

11.CONIC SECTION

Single Correct Answer Type

1.	The circle $x^2 + y^2 + 4x - 7$ a) 3	7 y + 12 = 0 cuts an inter b) 4	cept on <i>y</i> -axis of length c) 7	d) 1
2.	If the eccentricities of the el	llipse $\frac{x^2}{x} + \frac{y^2}{x} = 1$ and the	hyperbola $\frac{x^2}{x^2} - \frac{y^2}{x^2} = 1$ are	reciprocals of each other,
	then h^2 is equal to	4 3	$64 b^2$	1 ,
	a) 192 ł	o) 64	c) 16	d) 32
3.	The ellipse $x^2 + 4y^2 = 4$ is	inscribed in a rectangle a	ligned with the coordinate	axes, which is turn in
	inscribed in another ellipse	that passes through the p	point (4, 0). Then, the equa	tion of the ellipse is
	a) $x^2 + 12y^2 = 16$ b	$(x^2 + 48y^2 = 48)$	c) $4x^2 + 64y^2 = 48$	d) $x^2 + 16y^2 = 16$
4.	The Cartesian equation of the	he directrix of the parabo	la whose parametric equat	tions are $x = 2t + 1$, $y =$
	$t^2 + 2$, is			
_	a) $y = 2$ k	(b) $y = 1$	c) $y = -1$	d) $y = -2$
5.	The line $x - 1 = 0$ is the dir	rectrix of the parabola y^2	-kx + 8 = 0. Then one of	the value of k is
	a) $\frac{1}{8}$	0) 8	c) 4	d) $\frac{1}{4}$
6.	The equation of the axes of	the ellipse $3x^2 + 4y^2 + 6$	x - 8y - 5 = 0, are	4
	a) $x + 3, y = 5$ b	b) $x + 3 = 0, y - 5 = 0$	c) $x - 1 = 0, y = 0$	d) $x + 1 = 0, y - 1 = 0$
7.	Locus of the mid points of the	he chord of ellipse $\frac{x^2}{x} + \frac{y^2}{x}$	= 1. so that chord is alwa	vs touching the circle x^2 +
	$y^2 = c^2$ ($c \le a, c \le h$) is	$a^2 + b^2$		
	a) $(h^2 x^2 + a^2 v^2)^2 = c^2 (h^4)^4$	$x^2 + a^4 v^2$	b) $(a^2x^2 + h^2y^2)^2 = c^2(a^2)^2$	$a^4x^2 + b^4y^2$
	c) $(b^2x^2 + a^2y^2)^2 = c^2(b^2x^2)^2$	$x^4 + a^2 v^4$)	d) None of the above	
8.	The length intercepted by the	he curve $y^2 = 4x$ on the l	ine satisfying $dy/dx = 1$ a	nd passing through point
	(0, 1), is given by	, ,		
	a) 1 b	o) 2	c) 0	d) None of these
9.	Two vertices of an equilater	ral triangle are $(-1,0)$ and	d (1,0) and its third vertex	lies above the x-axis. The
	equation of its circumcircle,	, is		
	a) $x^2 + y^2 - \frac{1}{\sqrt{3}}y - 1 = 0$			
	b) $x^2 + y^2 + \frac{2}{\sqrt{2}}y - 1 = 0$			
	c) $x^2 + y^2 - \frac{1}{\sqrt{3}}y - 1 = 0$			
	d) None of these			
10.	The tangents to $x^2 + y^2 = a$	α^2 having inclinations α a	nd β intersect at <i>P</i> . If $\cot \alpha$	$+ \cot \beta = 0$, then the locus
	of P is			
	a) $x + y = 0$ b	(x - y) = 0	c) $xy = 0$	d) None of these
11.	The parametric representat	tion $(2 + t^2, 2t + 1)$ repr	esents	
	a) A parabola with focus at	(2,1)		
	c) An ollingo with contro at	(2,1)		
	d) None of these	(2,1)		
12.	Droduct of the normondicule	or from the faci upon any	tangent to the allings x^2	$y^2 - 1(a < b)$ is equal to
	riouuci of the perpendicula	a nom me four upon any	tangent to the entryse $\frac{1}{a^2}$ +	$\frac{1}{b^2} - 1(u < v)$ is equal to
10	a) 2a t) a"	CJD^{-}	$a_{J}a_{J}a_{J}a_{J}a_{J}a_{J}a_{J}a_{J}$
13.	drawn on AR RC CA as dia	neter The point of concu	x + y - 1, $4x - y + 4 = 0$	anu $2x + 5y = 6$. Uncles are rd is
	a) Centroid of the triangle	meter. The point of colleu	b) Orthocenter	
	,		·	

c) Circumcentre d) Incentre 14. The sum of the distances of a point (2, -3) from the foci of an ellipse $16 (x - 2)^2 + 25 (y + 3)^2 = 400$ is c) 50 a) 8 b) 6 d) 32 15. If the equation of a given circle is $x^2 + y^2 = 36$, then the length of the chord which lies along the line $3x + y^2 = 36$. 4y - 15 = 0 is b) $2\sqrt{3}$ c) $6\sqrt{3}$ d) None of these a) $3\sqrt{6}$ 16. The normal chord of a parabola $y^2 = 4ax$ at (x_1, x_1) subtends a right angle at the a) Focus b) Vertex c) End of the latusrectum d) None of these 17. The equation of the circle which has a tangent 2x - y - 1 = 0 at (3,5) on it and with the centre on x + y = 05. is a) $x^2 + y^2 + 6x - 16y + 28 = 0$ b) $x^2 + y^2 - 6x + 16y - 28 = 0$ c) $x^2 + y^2 + 6x + 6y - 28 = 0$ d) $x^2 + y^2 - 6x - 6y - 28 = 0$ 18. The equation of the tangent to the parabola $y^2 = 9x$ which goes through the point (4, 10), is a) x + 4y + 1 = 0b) 9x + 4y + 4 = 0c) x + 4y + 36 = 0d) 9x - 4y + 4 = 019. The length of the chord of the circle $x^2 + y^2 + 4x - 7y + 2 = 0$ along the *y*-axis, is b) 2 a) 1 c) 1/2 d) None of these 20. What is the slope of the tangent drawn to the hyperbola xy = a, $(a \neq 0)$ at the point (a, 1)? a) $\frac{1}{a}$ b) $-\frac{1}{a}$ c) a d) – a 21. The equation $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ represents a rectangular hyperbola if a) $\Delta \neq 0, h^2 > ab, a + b = 0$ b) $\Delta \neq 0, h^2 < ab, a + b = 0$ c) $\Delta \neq 0, h^2 = ab, a + b = 0$ d) None of these 22. The line passing through the extremity *A* of the major axis and extremity *B* of the minor axis of the ellipse $x^2 + 9y^2 = 9$ meets its auxiliary circle at the point *M*. Then, the area of the triangle with vertices at *A*, *M* and the origin O is a) $\frac{31}{10}$ b) $\frac{29}{10}$ c) $\frac{21}{10}$ d) $\frac{27}{10}$ 23. From the point (-1, -6) two tangents are drawn to the parabola $y^2 = 4x$. Then, the angle between the two tangents is a) 30° b) 45° d) 90° c) 60° 24. The centre of the ellipse $4x^2 + 9y^2 + 16x - 18y - 11 = 0$ is a) (-2, -1)b) (-2,1) c) (2,−1) d) None of these 25. The circle whose equation are $x^2 + y^2 + c^2 = 2ax$ and $x^2 + y^2 + c^2 - 2by = 0$ will touch one another externally if a) $\frac{1}{h^2} + \frac{1}{c^2} = \frac{1}{a^2}$ b) $\frac{1}{c^2} + \frac{1}{a^2} = \frac{1}{b^2}$ c) $\frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{c^2}$ d) None of these 26. In an ellipse the distance between the foci is 8 and the distance between the directrices is 25. The length of major axis is d) None of these b) $20\sqrt{2}$ c) $30\sqrt{2}$ a) $10\sqrt{2}$ 27. If lx + my + n = 0 represents a chord of the ellipse $b^2x^2 + a^2y^2 = a^2b^2$ whose eccentric angles differ by 90°, then b) $\frac{a^2}{l^2} + \frac{b^2}{m^2} = \frac{(a^2 - b^2)^2}{n^2}$ a) $a^2l^2 + b^2m^2 = n^2$ c) $a^2 l^2 + b^2 m^2 = 2n^2$ d) None of these

28. If the latusrectum of a hyperbola forms an equilateral triangle with the vertex at the centre of the hyperbola, then the eccentricity of the hyperbola is

		J J J J J J J J J J J J J J J J J J J	_	
	a) $\frac{\sqrt{5}+1}{2}$	b) $\frac{\sqrt{11}+1}{2}$	c) $\frac{\sqrt{13}+1}{2\sqrt{3}}$	d) $\frac{\sqrt{13}-1}{2\sqrt{3}}$
29.	The eccentricity of the co	nic $4x^2 + 16y^2 - 24x - 32$	y = 1 is	245
	a) $\frac{1}{2}$	b) √3	c) $\frac{\sqrt{3}}{\sqrt{3}}$	d) $\frac{\sqrt{3}}{\sqrt{3}}$
30	² 2 If the chords of contact of	f tangents from two points ($\begin{bmatrix} 2 \\ r_1 & v_2 \end{bmatrix}$ and $(r_2 & v_2)$ to the l	$\frac{1}{4}$
50.	36 = 0 are at right angles	s, then $\frac{x_1 x_2}{x_2}$ is equal to	<i>x</i> ₁ , <i>y</i> ₁) and (<i>x</i> ₂ , <i>y</i> ₂) to the f	iyperbolu ix yy
	<u>9</u>	y_1y_2 y	81	
	a) $\frac{-}{4}$	b) $-\frac{1}{4}$	c) $\frac{16}{16}$	d) $-\frac{16}{16}$
31.	The equation of a circle w	which cuts the three circles		
	$x^{2} + y^{2} - 2x - 6y + 14$ $x^{2} + y^{2} - x - 4y + 8 =$	$b \equiv 0$		
	$x^{2} + y^{2} + 2x - 6y + 9 =$	= 0		
	orthogonally, is			
	a) $x^2 + y^2 - 2x - 4y + y^2 - 2x - 4y + y^2 - 2x - 4y + y^2 - 2y $	1 = 0		
	b) $x^2 + y^2 + 2x + 4y +$ c) $x^2 + y^2 - 2x + 4y +$	1 = 0 1 = 0		
	c) $x + y = 2x + 4y + 4$	1 = 0 1 = 0		
32.	The length of the commo	n chord of the ellipse $\frac{(x-1)^2}{x}$	$+\frac{(y-2)^2}{2}=1$ and the circle	$(x-1)^2 + (y-2)^2 = 1$ is
	a) 2	b) $\sqrt{3}$	c) 4	d) None of these
33.	The mirror image of the o	directrix of the parabola y^2	= 4(x + 1) in the line mirr	ror $x + 2y = 3$, is
	a) $x = -2$	b) $4y - 3x = 16$	c) $x - 3y = 0$	d) $x + y = 0$
34.	The line $x = at^2$ meets the	the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ in the	real points, if	
	a) <i>t</i> < 2	b) $ t \le 1$	c) $ t > 1$	d) None of these
35.	The length of the latusree	ctum of the hyperbola $\frac{x^2}{a^2} - \frac{y}{b}$	$\frac{y^2}{y^2} = -1$, is	
	a) $\frac{2a^2}{2a^2}$	b) $\frac{2b^2}{2b^2}$	c) $\frac{b^2}{dt}$	d) $\frac{a^2}{a}$
36	<i>b</i> The condition that the ch	a ord $r \cos \alpha = 0 \pm v \sin \alpha =$	a $n = 0$ of $r^2 + y^2 - a^2 = 0$	<i>b</i>
50.	at the centre of the circle	is $u = 0 + y \sin u = 0$	p = 0 or x + y = u = 0	illay subtenu a light aligie
	a) $a^2 = 2p^2$	b) $p^2 = 2a^2$	c) $a = 2p$	d) $p = 2a$
37.	Given that circle $x^2 + y^2$	$-2x + 6y + 6 = 0$ and x^2	$+y^2 - 5x + 6y + 15 = 0$) touch, the equation to
	their common tangent is a) $x = 2$	b) $y = 6$	c) $7 x - 12 y - 21 - 0$	d) $7x + 12x + 21 = 0$
38.	The number of common t	tangents of the circles x^2 +	$y^2 - 2x - 1 = 0$ and $x^2 + 1$	$y^2 - 2y - 7 = 0$ is
	a) 1	b) 2	c) 3	d) 4
39.	A ray of light incident at t	the point $(-2, -1)$ gets refle	ected from the tangent at ($(0, -1)$ to the circle x^2 +
	$y^2 = 1$. The reflected ray	touches the circle. The equation b $4x + 2x + 11 = 0$	ation of the line along whice $2\pi + 4\pi + 11 = 0$	ch the incident ray moved is
40.	If the points $A(2.5)$ and E	0J 4x + 3y + 11 = 0 are symmetrical about the	tangent to the circle x^2 +	$v^2 - 4x + 4v = 0$ at the
10.	origin, then the coordinat	tes of <i>B</i> are		
	a) (5, -2)	b) (1,5)	c) (5,2)	d) None of these
41.	A rectangular hyperbola $CP^2 + CQ^2 + CQ^2$	whose centre is <i>C</i> is cut by a	any circle of radius <i>r</i> in fou	r points P, Q, R and S. Then,
	$r^{2} + cq^{2} + c\kappa^{2} + cS^{2}$	= b) $2r^2$	c) $3r^2$	d) $4r^2$
42.	If PO is a double ordinate	$\frac{y^2}{x^2} - \frac{y^2}{x^2} - \frac{y^2}{x^2} - \frac{y^2}{x^2}$	1 such that OPO is an equi	ilateral triangle Ω being the
		$a^2 b^2 = b^2$		nater ar trangic, o being the

centre of the hyperbola. Then, the eccentricity \boldsymbol{e} of the hyperbola satisfies

Page **| 3**

a)
$$1 < e < \frac{2}{\sqrt{3}}$$
 b) $e = \frac{2}{\sqrt{3}}$ c) $e = \frac{\sqrt{3}}{2}$ d) $e > \frac{2}{\sqrt{3}}$
43. If *e* and e_1 are the eccentricities of the hyperbolas $xy = c^2$ and $x^2 - y^2 = c^2$, then $e^2 + e_t^2$ is equal to
a) 1 b) 4 c) 6 d) 5
44. If *e* and e_1 are the eccentricities of hyperbolas $xy = c^2$ and $x^2 - y^2 = c^2$, then $e^2 + e_t^2$ is
a) 1 b) 4 c) 6 d) 8
45. The eccentricity of the hyperbola in the standard form $\frac{e^2}{x^2} - \frac{y^2}{y^2} = 1$, passing through (3, 0) and ($3,\sqrt{2},2$) is
a) $\frac{13}{3}$ b) $\sqrt{13}$ c) $\sqrt{3}$ d) $\frac{\sqrt{13}}{3}$
46. Which of the following is a point on the common chord of the circles $x^2 + y^2 + 2x - 3y + 6 = 0$ and $x^2 + y^2 + x - 8y - 13 = 0^2$
a) ($1, -2$) b) ($1, 4$) c) ($1, 2$) d) ($1, -4$)
47. If the chord of contact of tangents drawn from a point *P* to the ellipses $\frac{x^2}{e^2} + \frac{y^2}{b^2} = 1$ subtends a right-angle at
its centre, then *P* lies on
a) $\frac{x^2}{x^2} + \frac{y^2}{y^2} = \frac{1}{a^2} + \frac{1}{b^2}$ b) $\frac{x^2}{a^4} + \frac{y^2}{b^4} = (\frac{1}{a} + \frac{1}{b})^2$ c) $\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{1}{a^4} + \frac{1}{b^4}$ d) $\frac{x^2}{a^4} + \frac{y^2}{b^4} = \frac{1}{a^2} + \frac{1}{b^2}$
48. The locus of a point which moves such that the difference of its distances from two fixed points is always a
constant, is
a) a circle b) a straight line c) a hyperbola
d) an ellipse
49. Eccentricity of $\frac{a^2}{a^2} - \frac{y^2}{b^2} = 1$ and θ be the angle between the asymptotes, then sec $\frac{2}{2}$ equals
a) $\frac{1}{\sqrt{2}}$ b) $\frac{1}{a}$ c) $2e$ d) $2e$
51. If $P(-3,2)$ is one end of the focal chord PQ of the parabolas $y^2 + 4x + 4y = 0$, then the slope of the normal
at Q is
a) $\frac{1}{x^2} + \frac{y^2 - 4y - 12}{2} = 0$
($y^2 + y^2 - 4y - 12 = 0$
($y^2 + y^2 - 4y - 12 = 0$
($y^2 + y^2 - 4y - 12 = 0$
($y^2 + y^2 - 4y - 12 = 0$
($y^2 + y^2 - 4y - 12 = 0$
($y^2 + y^2 - 4y - 12 = 0$
($y^2 + y^2 - 4y - 12 = 0$
($y^2 + y^2 - 4y - 12 = 0$
($y^2 + y^2 - 4y - 12 = 0$
($y^2 + y^2 - 4y - 12 = 0$
($y^2 + y^2 - 4y - 12 = 0$
($y^2 + y^2 - 4y - 12 = 0$
($y^2 + y^2 - 4y - 12 = 0$
($y^2 + y$

^{58.} An ellipse is described by using an endless string which is passed over two pins. If the axes are 6 cm and 4

cm, the necessary length of the string and the distance between the pins respectively in cms. are a)
$$6_2\sqrt{5}$$
 b) $6_1\sqrt{5}$ c) $4_2\sqrt{5}$ c) $4_2\sqrt{5}$ d) None of these
5) The slope of tangents drawn form a point (4, 10) to the parabola $y^2 = 9x$ are $a) \frac{1}{4}, \frac{3}{4}$ b) $\frac{1}{4}, \frac{3}{4}$ c) $\frac{1}{4}, \frac{1}{3}$ d) None of these
6) The area of the triangle formed by the tangents from the point (4,3) to the circle $x^2 + y^2 = 9$ and the line joining their points of contact, is
 $a) \frac{25}{192}$ sq. units $b) \frac{192}{25}$ sq. units $c) \frac{384}{25}$ sq. units d) None of these
61. The value of m , for which the line $y = mx + 2$ becomes tangent to the conic $4x^2 - 9y^2 = 36$ are
 $a) \pm \frac{2}{3}$ b) $\pm \frac{2\sqrt{2}}{3}$ c) $\pm \frac{4}{9}$ d) $\pm \frac{4\sqrt{2}}{3}$
62. If the tangent at the point P on the circle $x^2 + y^2 + 6x + 6y = 2$ meets the straight line. $5x - 2y + 6 = 0$ at
 a point Q on the *y*-axis, then the length of PQ is
 $a) 4$ b) $2\sqrt{5}$ c) 5 d) $3\sqrt{5}$
63. Consider a family of circles, which are passing through the point (-1, 1) and are tangent to *x*-axis. If (h, k)
 $are the coordinates of the centre of the circle $x^2 + y^2 + 5x + 6y = 12$ meets the straight line. $5x - 2y + 6 = 0$ at
 $a) 0 < k < \frac{1}{2}$ b) $k \ge \frac{1}{2}$ c) $-\frac{1}{2} \le k \le \frac{1}{2}$ d) $k \le \frac{1}{2}$
64. The equation of the circle passing through the point (-1, 1) and are tangent to *x*-axis. If (h, k)
 $are the coordinates of the centre of the circles, the passing through the points of intersection of the
circle passing through the point (1, 1) and through the points of intersection of the
circle passing through the point (-1, 1) and through the points of intersection of the
circle $x^2 + y^2 = 3x + 1 = 0$ d) $5x^2 + 5y^2 + 6y + 16 = 0$
65. The number of distinct normal that can be drawn from $(1/4, 1/4)$ to the parabola $y^2 = 4x$, is
 $a) 3$ w) $y^2 + y^2 - 3x + 2 = 0$
 $y^2 + y^2 + 5(3x - 2y) = 0$
 $y^2 + y^2 + 5(3x - 2y) = 0$
 $y^2 + y^2 + 5(3x - 2y) = 0$
 $y^2 + y^2 + 5(3x - 2y) = 0$
 $y^2 + y^2 + 5(3x - 2y) = 0$$$

73. If m_1 and m_2 are the slopes of tangents to the circle $x^2 + y^2 = 4$ from the point (3, 2), then $m_1 - m_2$ is equal to b) $\frac{12}{5}$ a) $\frac{5}{12}$ d) 0 c) $\frac{3}{2}$ 74. The length of the axes of the conic $9x^2 + 4y^2 - 6x + 4y + 1 = 0$, are b) 3, 2 c) 1, 2 a) $\frac{1}{2}$, 9 d) 3,2 75. For different values of α , the locus of the point of intersection of the two straight lines $\sqrt{3}x - y - 4\sqrt{3}\alpha =$ 0 and $\sqrt{3}\alpha x + \alpha y - 4\sqrt{3} = 0$ is a) a hyperbola with eccentricity 2 b) an ellipse with eccentricity $\sqrt{\frac{2}{3}}$ c) an hyperbola with eccentricity $\sqrt{\frac{19}{16}}$ d) an ellipse with eccentricity $\frac{3}{4}$ 76. If the area of the circle $4x^2 + 4y^2 - 8x + 16y + k = 0$ is 9π sq unit, then the value of k is a) 4 b) 16 c) -16 d) +16 77. ABCD is a square whose side is a. The equation of the circle circumscribing the square, taking AB and AD as axes of reference, is a) $x^2 + y^2 + ax + ay = 0$ b) $x^2 + y^2 + ax - ay = 0$ c) $x^2 + y^2 - ax - ay = 0$ d) $x^2 + y^2 - ax + ay = 0$ 78. If the circle $x^2 + y^2 + 2gx + 2fy + c = 0$ bisects the circumference of the circle $x^2 + y^2 + 2g'x + 2f'y + c = 0$ c' = 0, then a) 2 g(g - g') + 2 f(f - f') = c - c'b) 2g'(g-g') + 2f'(f-f') = c'-cc) 2g'(g-g') + 2f'(f-f') = c - c'd) 2 g(g - g') + 2 f(f - f') = c' - c79. If the parabolas $y^2 = 4x$ and $x^2 = 32y$ intersect at (16,8) at an angle θ , then θ is equal to a) $\tan^{-1}(3/5)$ b) $\tan^{-1}(4/5)$ c) π d) $\pi/2$ 80. The equation of the circle, which cuts orthogonally each of three circles $x^2 + y^2 - 2x + 3y - 7 = 0.$ $x^{2} + y^{2} + 5x - 5y + 9 = 0$ and $x^2 + y^2 + 7x - 9y + 29 = 0$ a) $x^2 + y^2 - 16x - 18y - 4 = 0$ b) $x^2 + y^2 = a^2$ d) $y^2 - x^2 + 2x = 0$ c) $x^2 + y^2 - 16x = 0$ 81. The angle between the tangents drawn from the origin to the parabola $y^2 = 4 a(x - a)$, is a) 90° c) $\tan^{-1}(1/2)$ b) 30° d) 45° ^{82.} If for the ellipse $\frac{x^2}{\alpha^2} + \frac{y^2}{b^2} = 1$, *y*-axis is the minor axis and the length of the latusrectum is one half of the length of its minor axis, then its eccentricity is a) $\frac{1}{\sqrt{2}}$ a) $\frac{1}{\sqrt{2}}$ b) $\frac{1}{2}$ c) $\frac{\sqrt{3}}{2}$ d) $\frac{3}{4}$ The coordinates of the centre of the circle which intersects circles $x^2 + y^2 + 4x + 7 = 0$, $2x^2 + 2y^2 + 3x + 3x + 3y^2 + 3y^2$ 83. 5y + 9 = 0 and $x^2 + y^2 + y = 0$ orthogonally are a) (-2,1)b) (-2, -1) c) (2,−1) d) (2,1) 84. Equation $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ $(abc + 2fgh - af^2 - bg^2 - ch^2 \neq 0)$ represents a parabola, if a) $h^2 = ab$ b) $h^2 > ab$ c) $h^2 < ab$ d) None of these The ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1$ and the hyperbola $\frac{x^2}{25} - \frac{y^2}{16} = 1$ have in common 85. b) Centre, foci and directrices a) centre only

c) Centre, foci and vertices d) Centre and vertices only 86. The eccentricity of the hyperbola $\frac{x^2}{16} - \frac{y^2}{25} = 1$ is b) $\frac{3}{r}$ c) $\frac{\sqrt{41}}{4}$ a) $\frac{3}{4}$ d) $\frac{\sqrt{41}}{5}$ 87. One equation of common tangent to ellipse $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ and hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 2$ is b) $y = 2\sqrt{3}\frac{b}{a}x + 2b$ a) $2y = \sqrt{3}bx + ab$ c) No common tangent d) $ay = \sqrt{3}bx + 2ab$ 88. If lx + my + n = 0 is a tangent to the rectangular hyperbola $xy = c^2$, then b) l > 0, m < 0c) l < 0, m > 0a) l < m < 0d) None of these 89. The normals at three points *P*, *Q*, *R* of the parabola $y^2 = 4 ax$ meet in (h, k). The centroid of triangle *PQR* lies on c) x = -aa) x = 0b) v = 0d) v = a90. If the point P(4, -2) is the one end of the focal chord PQ of the parabola $y^2 = x$, then the slope of the tangent at Q is d) −4 a) -1/4b) 1/4 c) 4 91. Equation of normal to the parabola $y^2 = 4x$ which passes through (3,0) is b) x + y + 3 = 0c) x - 2y = 3d) None of these a) x + y = 392. Let *C* be the centre of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. If the tangent at any point on the ellipse cuts the coordinate axes in *P* and *Q* respectively, then $\frac{a^2}{CP^2} + \frac{b^2}{CQ^2} =$ d) 4 a) 1 b) 2 c) 3 93. The equation of the circle having x - y - 2 = 0 and x - y + 2 = 0 as two tangents and x - y = 0 as a diameter is a) $x^2 + y^2 + 2x - 2y + 1 = 0$ b) $x^2 + y^2 - 2x + 2y - 1 = 0$ d) $x^2 + y^2 = 1$ c) $x^2 + y^2 = 2$ 94. If (-3, 2) lies on the circle $x^2 + y^2 + 2gx + 2fy + c = 0$ which is concentric with the circle $x^2 + y^2 + 2gx + 2fy + c = 0$ 6x + 8y - 5 = 0, then *c* is equal to a) 11 c) 24 d) 100 b) -11 95. The equation of the circumcircle of the triangle formed by the lines x = 0, y = 0, 2x + 3y = 5 is a) $6(x^2 + y^2) + 5(3x - 2y) = 0$ b) $x^2 + y^2 - 2x - 3y + 5 = 0$ c) $x^2 + y^2 + 2x - 3y - 5 = 0$ d) $6(x^2 + y^2) - 5(3x + 2y) = 0$ 96. Circles are drawn through the point (2,0) to cut intercepts of length 5 units on the *x*-axis. If their centres lie in the first quadrant, then their equation is a) $x^2 + y^2 - 9x + 2ky + 14 = 0$ b) $3x^2 + 3y^2 + 27x - 2ky + 42 = 0$ c) $x^2 + y^2 - 9x - 2ky + 14 = 0$ d) $x^2 + y^2 - 2kx - 9y + 14 = 0$ 97. The number of points with integral coordinates with lie in the interior of the region common to the circle $x^2 + y^2 = 16$ and the parabola $y^2 = 4x$ is b) 10 c) 16 a) 8 d) None of these 98. If the chords of contact of the tangents from a point on the circle $x^2 + y^2 = a^2$ to the circle $x^2 + y^2 = b^2$ touch the circle $x^2 + y^2 = c^2$, then the roots of the equation $ax^2 + 2bx + c = 0$, are b) Real and equal c) Real and unequal d) Rational a) Imaginary 99. If the vertex and focus of a parabola are (3,3) and (-3,3) respectively, then its equation is a) $x^2 + 6x - 24y + 63 = 0$ b) $x^2 - 6x + 24y - 63 = 0$ c) $y^2 - 6y + 24x - 63 = 0$ d) $y^2 + 6y - 24x + 63 = 0$

100.	If the length of the major a	axis of an ellipse is three tir	nes the length of its minor	axis, its eccentricity, is
	a) $\frac{1}{3}$	b) $\frac{1}{\sqrt{3}}$	c) $\frac{1}{\sqrt{2}}$	d) $\frac{2\sqrt{2}}{3}$
101.	The number of integral va	lues of 'a' for which the rad	dius of the circle $x^2 + y^2 + y^2$	ax + (1 - a)y + 5 = 0
	cannot exceed 5, is		2	
	a) 14	b) 18	c) 16	d) None of these
102.	The number of common ta	angents to the circles		
	$x^2 + y^2 - 2x - 4y + 1 =$	0 and $x^2 + y^2 - 12x - 16y$	v + 91 = 0, is	
	a) 1	b) 2	c) 3	d) 4
103.	If two tangents drawn from	m a point <i>P</i> to the parabola	$y^2 = 4x$ are at right angle	s, then the locus of <i>P</i> is
	a) $x = 1$	b) $2x + 1 = 0$	c) $x = -1$	d) $2x - 1 = 0$
104.	A point P moves in such a	way that the ratio of its dis	stance from two coplanar p	oints is always a fixed
	number $(\neq 1)$. I nen, its io	cus is a	h) Circle	
	a) Parabola		d) Dair of straight lines	
105	Two circles each of radius	s 5 have a common tangen	t at (1.1) whose equation is	$s_{3x} + 4v - 7 = 0$ Then
100.	their centres are			
	a) $(4, -5), (-2,3)$	b) $(4, -3), (-2, 5)$	c) $(4,5), (-2, -3)$	d) None of these
106.	The tangent at (1, 7) to the	e curve $x^2 = y - 6$ touches	s the circle $x^2 + y^2 + 16x + 16x$	12y + c = 0 at
	a) (6,7)	b) (-6,7)	c) (6, -7)	d) (-6, -7)
107.	If the latusrectum subtend	ls a right angle at the centr	e of the hyperbola $\frac{x^2}{x} - \frac{y^2}{x}$	= 1. then its eccentricity is
	./12	√E 1	$\sqrt{E} + 1$	_,
	a) $\frac{\sqrt{15}}{2}$	b) $\frac{\sqrt{5-1}}{2}$	c) $\frac{\sqrt{3+1}}{2}$	d) $\frac{\sqrt{3+1}}{2}$
108.	L If a is the association of t	$\frac{z}{x^2} + \frac{y^2}{y^2} - 1 \text{ and } a$	L	$\sum_{x^2,y^2} \frac{y^2}{y^2} = 1 \text{ then}$
	If e_1 is the eccentricity of t	$\lim_{n \to \infty} e^{-16} = 1 \lim_{n \to \infty} e^{-16}$	² Is the eccentricity of the f	$\frac{1}{9} = \frac{1}{7} = 1, \text{ then}$
	$e_1 + e_2$ is equal to	25	25	16
	a) $\frac{10}{7}$	b) $\frac{25}{4}$	c) $\frac{25}{12}$	d) $\frac{10}{9}$
109.	If $y = mr = \frac{(a^2 - b^2)m}{1 + b^2}$ is not	ormal to the ellipse $\frac{x^2}{x^2} \pm \frac{y^2}{y^2}$	-1 for all values of m belo	onging to
	$\prod y = mx \qquad \sqrt{a^2 + b^2 m^2} \text{ is inc}$	$a^2 + b^2$		
110	a) (0,1)	b) (0,∞)	C) R	a) None of these r^2
110.	The area of the quadrilate y^2	ral formed by the tangents	at the end points of latus r	ectum to the ellipse $\frac{x}{9}$ +
	$\frac{y}{5} = 1$ is			
	a) 27/4 sq units	b) 9 sq units	c) 27/2 sq units	d) 27 sq units
111.	If the tangent at any point	$x^{2}P$ on the hyperbola $\frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}}$	$\frac{2}{2} = 1$ meets the lines $bx - b$	ay = 0 and $bx + ay = 0$ in
	the points Q and R, then C	$CQ \cdot CR =$		
	a) a^2b^2	b) $a^2 - b^2$	c) $a^2 + b^2$	d) None of these
112.	From a point T a tangent i parabola, then $\angle TPS$ can be	s drawn at the point $P(16, 5)$	16) of the parabola $y^2 = 10$	6 x. If S be the focus of the
	a) $\tan^{-1}(3/4)$	b) $\frac{1}{2} \tan^{-1}(1/2)$	c) $\tan^{-1}(1/2)$	d) π/4
113.	The number of common ta	angents to two circles x^2 +	$-y^2 = 4$ and $x^2 + y^2 - 8x$	+ 12 = 0 is
	a) 1	b) 2	c) 5	d) 3
114.	The circle $x^2 + y^2 + 2gx$ -	+2fy + c = 0 cuts the para	abola $x^2 = 4ay$ at points (x	$(x_i, y_i), i = 1, 2, 3, 4, $ then
	a) $\sum y_i = 0$	b) $\sum y_i = -4(f + 2a)$	c) $\sum x_i = -4(g+2a)$	d) $\sum x_i = -2(g+2a)$
115.	A straight rod of length 9	units with its ends <i>A</i> , <i>B</i> alw	rays on x and y axes respec	tively. then, the locus of the
	centroid of $\triangle OAB$, is	(1) (2) (2) (2)	-1 $+2$ $+2$ 1	1) 2 2 01
110	a) $x^2 + y^2 = 3$	$DJ x^2 + y^2 = 9$	$c_{J} x^{2} + y^{2} = 1$	a) $x^2 + y^2 = 81$
110.	IT a local chord of the para	y = ax is $2x - y - 8$	b = 0, then the equation of t	LITE UITECUTIX IS

Page **| 8**

a) $x + 4 = 0$	b) $x - 4 = 0$	c) $y - 4 = 0$	d) $y + 4 = 0$
117. The locus of the point o	f intersection of the tangent	s to the circle $x = r \cos \theta$, y	$= r \sin \theta$ at points whose
parametric angles diffe	r by a right angle is		
a) $x^2 + y^2 = \frac{r^2}{2}$	b) $x^2 + y^2 = 2r^2$	c) $x^2 + y^2 = 4 r^2$	d) None of these
118 If $P(1 3)$ and $O(1 1)$ are	two points on the parabola	$v^2 = 4x$ such that a point of	lividing PO internally in the
ratio 1 : λ is an interior	noint of the narabola then	λ lies in the interval	
a) (0.1)	b) $(-3/51)$	c) $(1/2 3/5)$	d) None of these
119 The value of c for which	h the line $y = 2x \pm c$ is a tan	usent to the circle $x^2 \pm y^2$ -	- 16 is
117. The value of c , for which	b) $4\sqrt{r}$	a) $1(\sqrt{r})$	d) 20
$a_{J} = 16\sqrt{5}$	$0J4\sqrt{5}$	CJ 16V5	$\frac{1}{2}$
120. How many common tar	igents can be drawn to the fo	blowing circles $x^2 + y^2 =$	$6x \text{ and } x^2 + y^2 + 6x + y^2 + y^2 + 6x + y^2 + 6x + y^2 + y^2 + 6x + y^2 + $
2y + 1 = 0?		2.2	1) 4
a) 4	b) 3	c) 2	d) 1
121. The equation of the unit	t circle concentric with x^2 +	$y^2 \cdot 8x + 4y - 8 = 0$ is	
a) $x^2 + y^2 - 8x + 4y$	-8 = 0		
b) $x^2 + y^2 - 8x + 4y$	+ 8 = 0		
c) $x^2 + y^2 - 8x + 4y$	-28 = 0		
d) $x^2 + y^2 - 8x + 4y$	+ 19 = 0	2	
122. If (9 <i>a</i> , 6 <i>a</i>) is a point bou	unded in region formed by p	arabola $y^2 = 16x$ and $x =$	9, then
a) $a \in (0,1)$	b) $a < \frac{1}{4}$	c) <i>a</i> < 1	d) 0 < <i>a</i> < 4
123. If the coordinates of the	e vertices of an ellipse are (-	-6.1) and (4.1) and the equation	ation of a focal chord
passing through the foc	us on the right side of the ce	entre is $2x - y - 5 = 0$. The	equation of the ellipse is
$(x+1)^2$ $(y+1)^2$	0	<i>y</i>	1 1
a) $\frac{1}{25} + \frac{1}{16}$	= 1		
$(x+1)^2$ $(y-1)^2$			
$\frac{1}{25} + \frac{1}{16}$	= 1		
$(x-1)^2 + (y+1)^2$	1		
$c_{j} = \frac{16}{25} + \frac{16}{16}$	= 1		
d) None of these			
124. The radius of the circle	$r = \sqrt{3}\sin\theta + \cos\theta$ is		
a) 1	b) 2	c) 3	d) 4
125. If the latusrectum of the	e hyperbola $\frac{x^2}{16} - \frac{y^2}{b^2} = 1$ is $\frac{9}{2}$,	then its eccentricity is	
a) 4/5	b) 5/4	c) 3/4	d) 4/3
126. <i>S</i> and <i>T</i> are the foci of a	n ellipse and <i>B</i> is end point of	of the minor axis . If STB is	an equilateral triangle, the
eccentricity of the ellips	se is		
ي ¹	b) ¹	c) ¹	d
$\frac{a}{4}$	$\frac{5}{3}$	$\frac{1}{2}$	$\frac{u}{3}$
127. The eccentricity of the l	nyperbola can never be equa	ll to	
9	1	. 1	d) 2
a) $\left \frac{s}{s}\right $	b) 2 $\left \frac{1}{9} \right $	c) $3 \left \frac{1}{8} \right $	
N ³	$\sqrt{2}$	$\sqrt{2}$	
^{128.} If the tangent at (α, β) t	to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	cuts the auxiliary circle at p	points whose ordinates are
v_1 and v_2 then $\frac{1}{1} + \frac{1}{2}$	- -		
y_1 and y_2 , then $y_1 + y_2$	-	1	2
a) <u>–</u>	b) $\frac{2}{-}$	c) $\frac{1}{2}$	d) $\frac{2}{2}$
α	α	β	β
^{129.} The eccentricity of the l	hyperbola $\frac{\sqrt{1999}}{3}(x^2 - y^2) =$	1, is	
a) √2	b) 2	c) 2√2	d) √3
130. If the line $3x - 4y - k = 1$	= 0, (k > 0) touches the circ	$le x^2 + y^2 - 4x - 8y - 5 =$	= 0 at (a, b), then k + a + b

P a g e **| 9**

is equal to a) 20 b) 22 c) -30 d) -28 131. The length of the latusrectum of the parabola whose focus is (3,3) and directrix is 3x - 4y - 2 = 0, is a) 2 b) 1 c) 4 d) None of these 132. The equation of the tangent from the point (0, 1) to the circle $x^{2} + y^{2} - 2x - 6y + 6 = 0$, is a) y - 1 = 0b) 4x + 3y + 3 = 0 c) 4x - 3y - 3 = 0d) y + 1 = 0133. The circles $x^2 + y^2 + 6x + 6y = 0$ and $x^2 + y^2 - 12x - 12y = 0$ a) Cut orthogonally b) Touch each other internally c) Intersect two points d) Touch each other externally 134. If tangents at *A* and *B* on the parabola $y^2 = 4ax$ intersect at point *C*, then ordinates of *A*, *C* and *B* are a) Always in AP b) Always in GP c) Always in HP d) None of these 135. The equations of the asymptotes of the hyperbola $2x^{2} + 5xy + 2y^{2} - 11x - 7y - 4 = 0$ are a) $2x^2 + 5xy + 2y^2 - 11x - 7y - 5 = 0$ b) $2x^2 + 4xy + 2y^2 - 7x - 11y + 5 = 0$ c) $2x^2 + 5xy + 2y^2 - 11x - 7y + 5 = 0$ d) None of the above 136. The circle $x^2 + y^2 + 2g_1x - a^2 = 0$ and $x^2 + y^2 + 2g_2x - a^2 = 0$ cut each other orthogonally. If p_1, p_2 are perpendicular from (0, a) and (0, -a) on a common tangent of these circles, then p_1p_2 is equal to a) $\frac{a^2}{2}$ b) *a*² c) 2*a*² d) $a^2 + 2$

137. If $(a \cos \alpha, b \sin \alpha)$, $(a \cos \beta, b \sin \beta)$ are the end points of a focal chord of an ellipse $b^2 x^2 + a^2 y^2 = a^2 b^2$, then which of the following is correct?

a)
$$e = \frac{\sin \alpha - \sin \beta}{\sin(\alpha - \beta)}$$

b) $e = \frac{\cos\left(\frac{\alpha - \beta}{2}\right)}{\cos\left(\frac{\alpha + \beta}{2}\right)}$
c) $\frac{e - 1}{\alpha + 1} = \tan \frac{\alpha}{2} \tan \frac{\beta}{2}$
d) None of these

- 138. A line meets the coordinates axes in *A* and *B*. A circle is circumscribed about the ΔOAB . The distances from the points *A* and *B* of the side *AB* to the tangent at *O* are equal to *m* and *n* respectively. Then, the diameter of the circle is
- a) m(m+n) b) n(m+n) c) m-n d) None of these 139. A line *L* passing through the focus of the parabola $(y-2)^2 = 4(x+1)$ intersects the parabola in two distinct points. If m be the slope of the line *L*, then

a)
$$m \in (-1,1)$$

- b) $m \in (-\infty, -1) \cup (1, \infty)$
- c) $m \in (-\infty, 0) \cup (0, \infty)$
- d) None of these

140. If a > 2b > 0, then the positive value of *m* fro which $y = mx - b\sqrt{1 + m^2}$ is a common tangent to $x^2 + y^2 = b^2$ and $(x - a)^2 + y^2 = b^2$, is

a)
$$\frac{2b}{\sqrt{a^2 - 4b^2}}$$
 b) $\frac{\sqrt{a^2 - 4b^2}}{2b}$ c) $\frac{2b}{a - 2b}$ d) $\frac{b}{a - 2b}$

141. For an equilateral triangle the centre is the origin and the length of altitude is*a*. Then, the equation of the circumcircle is

a) $x^2 + y^2 = a^2$ b) $3x^2 + 3y^2 = 2a^2$ c) $x^2 + y^2 = 4a^2$ d) $9x^2 + 9y^2 = 4a^2$ 142. the tangents drawn from the ends of latusrectum of $y^2 = 12x$ meets at a) Directrix b) Vertex c) Focus d) None of these 143. If *B* and *B*' are the ends of minor axis and *S* and *S*' are the foci of the ellipse $\frac{x^2}{25} + \frac{y^2}{9} = 1$, then area of the

rhombus *SBS'B'* will be

a) 12. sq. unitsb) 48 sq. unitsc) 24 sq. unitsd) 36 sq. units144. A point P moves so that sum of its distances from (- *ae*, 0) and (*ae*, 0) is 2*a*. Then, the locus of P is

	a) $\frac{x^2}{a^2} - \frac{x^2}{a^2(1-e^2)} = 1$	b) $\frac{x^2}{a^2} + \frac{y^2}{a^2(1-e^2)} = 1$	c) $\frac{x^2}{a^2} + \frac{y^2}{a^2(1+e^2)} = 1$	d) $\frac{x^2}{a^2} - \frac{y^2}{a^2(1+e^2)} = 1$
145.	Tangents are drawn from contact pass through a fix	the point on the line $x - y$ ed point, whose coordinate	$x - 5 = 0$ to $x^2 + 4y^2 = 4$, t es are	hen all the chords of
	a) $\left(\frac{1}{5}, \frac{4}{5}\right)$	b) $\left(\frac{4}{5}, \frac{1}{5}\right)$	c) $\left(-\frac{4}{5},-\frac{1}{5}\right)$	d) $\left(\frac{4}{5}, -\frac{1}{5}\right)$
146.	If the chord $y = mx + c$ so	ubtends a right angle at the	e vertex of the parabola y^2	= 4 ax, then the value of c
	is a) -4am	h) 4am	c) —2am	d) 2am
147.	If the chord of contact of t	angents drawn from a poir	It on the circle $x^2 + y^2 = a$	x^2 to the circle $x^2 + y^2 = b^2$
	touches the circle $x^2 + y^2$	$c = c^2$, then <i>a</i> , <i>b</i> , <i>c</i> are in		
	a) AP	b) GP	c) HP	d) None of these
148.	The length of the subnorm	hal to the parabola $y^2 = 4$	ax at any point is equal to	
	a) $a\sqrt{2}$	b) 2√2 a	c) $a/\sqrt{2}$	d) 2a
149.	If <i>P</i> is a point such that the	e ratio of the tangents from	n <i>P</i> to the circles $x^2 + y^2 + y^2$	$2x - 4y - 20 = 0 \text{ and } x^2 + \frac{1}{2}x^2 + \frac{1}{2}x^2$
	$y^2 - 4x + 2y - 44 = 0$ is	2:3, then the locus of P is	a circle with centre $(7, 0)$	
150	a) $(/, -8)$ The intersects on the line	D) $(-7,8)$	$CJ(7,8)$ ² $2\alpha = 0$ is 4P. Equation a	a) $(-7, -8)$
150.	diameter is	y = x by the chicle $x + y$	-2x = 0 (SAD. Equation 0	of the chicle of AD as a
	a) $x^2 + y^2 - x - y = 0$		b) $x^2 + y^2 - x + y = 0$	
	c) $x^2 + y^2 + x + y = 0$		d) $x^2 + y^2 + x - y = 0$	
151.	The equation of the norma	al at the point ($a \sec \theta$, $b \tan \theta$	$(n \theta)$ of the curve $b^2 x^2 - a^2$	$a^{2}y^{2} = a^{2}b^{2}$ is
	a) $ax + by = a^2 + b^2$		b) $ax + by = a^2 + b^2$	2
	a) $\frac{1}{\cos\theta} + \frac{1}{\sin\theta} - u + b$		$\sin\theta + \frac{1}{\sec\theta} = u + b$	
	c) $\frac{ax}{ax^2} + \frac{by}{bx^2} = a^2 + b^2$	2	d) $\frac{ax}{ax^2} + \frac{by}{ax^2} = a^2 - b^2$	2
152	Sec Θ tan Θ The equation of normal to	the circle $2x^2 + 2y^2 - 2x$	sec θ tan θ -5v + 3 = 0 at (1, 1) is	
101	a) $2x + v = 3$	b) $x - 2v = 3$	c) $x + 2y = 3$	d) None of these
153.	The product of perpendic	ular distances from any po	int on the hyperbola $9x^2$ –	$16y^2 = 144$ to its
	asymptotes is			
	a) $\frac{25}{2}$	b) $\frac{144}{$	c) $\frac{144}{$	d) $\frac{25}{25}$
4 - 4	12 12	25	⁵ 7	144
154.	The two parabolas $y^2 = 4$	$4x$ and $x^2 = 4y$ intersect a	t a point <i>P</i> , whose abscissa	e is not zero, such that
	a) They both touch each of b) They cut at right angles	s at P		
	c) The tangents to each cu	irve at P make complemen	tary angles with the x -axis	
	d) None of these	arve de l'indike comprenien	tury ungles with the x unis	
155.	If the four points of the in	tersection of the lines $2x -$	-y + 11 = 0 and $x - 2y + 3$	3 = 0 with the axes lie on a
	circle, then the coordinate	es of the centre of the circle	eare	
	a) (7/5, 5/2)	b) (7/4, 5/4)	c) (-7/4,5/4)	d) (7/4, -5/4)
156.	The radius of the circle pa	ssing through the foci of th	the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$ and has	aving its centre (0, 3) is
	a) 4	b) $\frac{3}{7}$	c) $\sqrt{12}$	d) $\frac{7}{2}$
157.	The curve with parametri	c equations $x = \alpha + 5 \cos \theta$	θ . $v = \beta + 4 \sin \theta$ (where θ	is parameter) is
	a) A parabola	b) An ellipse	c) A hyperbola	d) None of these
158.	If p and q are the segment	ts of a focal chord of an elli	pse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, then	
	a) $a^{2}(p+q) = 2bpq$	b) $b^2(p+q) = 2apq$	c) $a(p+q) = 2b^2pq$	d) $b(p+q) = 2a^2pq$
159.	The curve with parametri	c equation $x = e^t + e^{-t} y$	$= e^t - e^{-t}$ and is	
	a) A circle	b) An ellipse	c) A hyperbola	d) A parabola
160.	The equation of the circle	which passes through the	points of intersection of the	$e \text{ circles } x^2 + y^2 - 6x = 0$

and $x^2 + y^2 - 6y = 0$ and	d has its centre at $\left(\frac{3}{2}, \frac{3}{2}\right)$, is		
a) $x^2 + y^2 + 3x + 3y + 9$	$\theta = 0$	b) $x^2 + y^2 + 3x + 3y = 0$)
c) $x^2 + y^2 - 3x - 3y = 0$	0	d) $x^2 + y^2 - 3x - 3y + 9$	= 0
161. If (1, <i>a</i>), (<i>b</i> , 2) are conjug	ate points with respect to t	the circle $x^2 + y^2 = 25$, then	14a + 2b is equal to
a) 25	b) 50	c) 100	d) 150
162. The equation $(10x - 5)^2$	$+(10y-4)^2 = (3x+4y)^2$	$(-1)^2$ represents	-
a) A circle		b) A pair of straight lines	
c) An ellipse		d) A parabola	
163. The difference in focal di	stances of any point on the	hyperbola $\frac{x^2}{16} - \frac{y^2}{9} = 1$ is	
a) 8	b) 9	c) 0	d) 6
164. The chord of contact of ta through the point	angents drawn from any po	bint on $x - 1 = 0$ to $y^2 - 6y$	x + 4x + 9 = 0 passes
a) (-1,3)	b) (1, -3)	c) (3,-1)	d) (3,1)
165. The equation of the circle	e passing through (4, 5) and	d having the centre (2, 2), is	
a) $x^2 + y^2 + 4x + 4y - 5$	5 = 0	b) $x^2 + y^2 - 4x - 4y - 5$	= 0
c) $x^2 + y^2 - 4x = 13$		d) $x^2 + y^2 - 4x - 4y + 5$	= 0
166. The product of lengths of	f perpendicular from any po	oint on the hyperbola $x^2 - \frac{1}{2}$	$y^2 = 8$ to its asymptotes is
a) 8	b) 6	c) 2	d) 4
167. The foci of an ellipse are	$(0, \pm 4)$ and the equations f	for the directrices are $y = \pm$	9. The equation for the
ellipse is			
a) $5x^2 + 9y^2 = 4$	b) $2x^2 - 6y^2 = 28$	c) $6x^2 + 3y^2 = 45$	d) $9x^2 + 5y^2 = 180$
^{168.} Tangents at any points of	n the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	l cut the axes at A and B res	pectively. If the rectangle
OAPB, where O is the ori	gin is completed, then locus	s of point <i>P</i> is given by	
$a^2 b^2$	$a^2 b^2$	$a^2 b^2$	d) None of these
a) $\frac{1}{x^2} - \frac{1}{y^2} = 1$	b) $\frac{1}{x^2} + \frac{1}{y^2} = 1$	c) $\frac{1}{y^2} - \frac{1}{x^2} = 1$	
169. Let <i>P</i> be the point (1,0) a	and Q a point on the locus of	$f y^2 = 8x$, The locus of mid	point of PQ is
a) $x^2 - 4y + 2 = 0$	b) $x^2 + 4y + 2 = 0$	c) $y^2 + 4x + 2 = 0$	d) $y^2 - 4x + 2 = 0$
170. The equation $ax^2 + 2hxy$	$y + by^2 + 2gx + 2fy + c =$	= 0 represents an ellipse if	
a) $\Delta = 0, h^2 < ab$	b) $\Delta \neq 0$, $h^2 < ab$	c) $\Delta \neq 0, h^2 > ab$	d) $\Delta \neq 0$, $h^2 = ab$
171. If the lengths of major an	d semi-minor axes of an ell	lipse are 4 and $\sqrt{3}$ and their	corresponding equations
are $y - 5 = 0$ and $x + 3 = 0$	= 0, then the equation of th	ne ellipse is	
a) $3x^2 + 4y^2 + 18x - 40$	0y + 115 = 0		
b) $4x^2 - 3y^2 - 24x + 30$	0y + 99 = 0		
c) $3x^2 - 4y^2 - 18x + 40$	0y + 115 = 0		
d) $4x^2 + 3y^2 + 24x - 30$	0y + 99 = 0		
172. The pole of the straight li	ine $9x + y - 28 = 0$ with re	espect to the circle $2x^2 + 2y$	$y^2 - 3x + 5y - 7 = 0$ is
a) (3,1)	b) (1,3)	c) (3, -1)	d) (-3,1)
173. The locus of middle point	ts of chords of hyperbola 3:	$x^2 - 2y^2 + 4x - 6y = 0$ particularly particular par	rallel to $y = 2x$ is
a) $3x - 4y = 4$	b) $3y - 4x + 4 = 0$	c) $4x - 3y = 3$	d) $3x - 4y = 2$
174. If the circle $x^2 + y^2 - 10$	x - 14y + 24 = 0 cuts an i	ntercepts on y-axis of lengt	h
a) 5	b) 10	c) 1	d) None of these
175. The locus of a point $P(\alpha,$	β) moving under the condition	tion that the line $y = \alpha x + $	β is a tangent to the
hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$, is			
a) A hyperbola	b) A parabola	c) A circle	d) An ellipse
176. If y_1 , y_2 and y_3 are the ord	linates of the vertices of a t	riangle inscribed in the par	abola $y^2 = 4ax$, then its
area is		1	

a)
$$\frac{1}{2a}(y_1 - y_2)(y_2 - y_3)(y_3 - y_1)$$

b) $\frac{1}{4a}(y_1 - y_2)(y_2 - y_3)(y_3 - y_1)$

c)
$$\frac{1}{80}(y_1 - y_2)(y_2 - y_3)(y_3 - y_1)$$
 d) None of the above
177. A variable tangent to the parabola $y^2 = 4ax$ meets the parabola $y^2 = -4ax$ at P and Q . The locus of the mid-point of PQ is
a) $y^2 = -2ax$ b) $y^2 = -ax$ c) $y^2 - \frac{4}{3}ax$ d) $y^2 = -4ax$
178. P is a point on the hyperbola $\frac{x^2}{2} - \frac{y^2}{2} = 1.N$ is the foot of the perpendicular from P on the transverse axis.
The tangent to the hyperbola $\frac{x^2}{2} - \frac{y^2}{2} = 1.N$ is the foot of the perpendicular from P on the transverse axis.
The tangent to the hyperbola $x^2 - y^2 \sec^2 \theta = 4$ is $\sqrt{3}$ times the ccentre of the hyperbola, then
 $O^7 \cdot ON$ is equal to
a) e^2 b) a^2 c) b^2 d) b^2/a^2
179. If the eccentricity of the hyperbola $x^2 - y^2 \sec^2 \theta = 4$ is $\sqrt{3}$ times the eccentricity of the ellipse
 $x^2 \sec^2 \theta + y^2 = 16$, then the value of θ equals
 $a) \frac{\pi}{6}$ b) $\frac{3\pi}{4}$ c) $\frac{\pi}{3}$ d) $\frac{\pi}{2}$
180. If two circles of the same radius r and centres at (2,3) and (5, 6) respectively cut orthogonally, then the
value of r is
a) 3 b) 2 c c) 1 d) 5
181. If the circle $x^2 + y^2 + 4x + 22y + c = 0$ bisects the circumference of the circle $x^2 + y^2 - 2x + 8y - d = 0$,
then $c + d$ is equal to
a) 30 b) 50 c c) 40 d) 56
182. If C is the centre of the ellipse $9x^2 + 16y^2 = 144$ and S is one focus. The ratio of C to major axis, is
a) $\sqrt{7} \cdot 1.6$ b) $\sqrt{7} \cdot 4$ c) $\sqrt{5} : \sqrt{7}$ d) None of these
183. The angle between the normal to the parabola $y^2 = 24x$ at points (6,12) and (6,-12). Is
a) 30^3 b) 45° c) 40° c) 40°
184. If the circle $C_1 : x^2 + y^2 = 16$ intersects another circle C_2 of radius 5 in such a manner that the common
chord is of maximum length and has a slope equal to $3/4$, the coordinates of the centre G_2 are
a) $(-9/5, 12/5), (-9/5), (-12/5, 9/5)$
c) $(12/5, -9/5), (-12/5, 9/5)$

c) $\left(-\infty, 5\sqrt{2}\right) \cup \left(5\sqrt{2}, \infty\right)$)	d) $(5\sqrt{2} - 4, \infty)$	
192. The radius of the circle p	assing through the point (6	, 2) and two of whose diam	eters are $x + y = 6$ and $x + $
2y = 4, is			
a) 4	b) 6	c) 20	d) √20
193. The coordinates of the pe	point on the circle $x^2 + y^2 - y^2$	12x - 4y + 30 = 0, which	is farthest from the origin
are			
a) (9,3)	b) (8,5)	c) (12,4)	d) None of these
194. The points of contact of t	cangents to the circle $x^2 + y$	$v^2 = 25$ which are inclined a	at an angle of 30° to the x-
axis are			
a) (±5/2,±1/2)	b) (±1/2,±5/2)	c) (∓5/2,∓1/2)	d) None of these
195. How many real tangents	can be drawn to the ellipse	$5x^2 + 9y^2 = 32$ form the	point (2, 3)?
a) 2	b) 1	c) 0	d) 3
196. If the line $2x + \sqrt{6y} = 2$	touches the hyperbola x^2 –	$2y^2 = 4$, then the point of	contact is
a) $(-2,\sqrt{6})$	b) (−5, 2√6)	c) $\left(\frac{1}{2}, \frac{1}{\sqrt{6}}\right)$	d) (4, $-\sqrt{6}$)
197. The locus of the mid-poin	nts of focal chords of the ell	ipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, is	
a) $\frac{x^2}{x} + \frac{y^2}{x} - \frac{x}{x}$	h) $\frac{x^2}{2} + \frac{y^2}{2} - \frac{ex}{2}$	c) $\frac{x^2}{x^2} + \frac{y^2}{y^2} - \frac{x^2}{x^2}$	d) $\frac{x^2}{x^2} + \frac{y^2}{y^2} - \frac{ex}{x^2}$
a^{2} b^{2} a^{2}	$a^{2} b^{2} a^{2}$	$a^{2} b^{2} a^{4}$	$a^{2}a^{2}b^{2}a$
198. The curve described para	ametrically by $x = t^2 + 2t$	-1, y = 3t + 5 represents	
a) An ellipse	b) A hyperbola $(1 - 2)^{-2}$	c) A parabola	d) A circle
199. The number of points on	the circle $2(x^2 + y^2) = 3x$	which are a distance 2 from	n the point $(-2,1)$ is
aj 2 200 The number of normal d	DJ U	C_{J} I	a) None of these
	$\frac{1}{1}$	4x from the point (1,0) is	q) 3
201 If tangents at extremities	a of a focal chord AB of the a	$v_{2}^{2} - 4ax$ intersec	d_{J} J_{J}
is equal to		jarabola y – tux intersee	
$\frac{\pi}{2}$	h) $\frac{\pi}{-}$	π	$\frac{\pi}{-}$
4	³ 3	^c ²	⁶
202. A point moves in a plane	so that its distances PA and $P(h_{1}, f_{2})$	d <i>PB</i> from two fixed points	A and B in the plane satisfy
the relation $PA - PB = P$	$\kappa(\kappa \neq 0)$, then the locus of I	9 IS	
a) A parabola b) An ellipse			
c) A hyperbola			
d) A branch of a hyperbola	la		
203. If <i>OAB</i> is an equilateral t	riangle inscribed in the par	abola $v^2 = 4ax$ with Q as the function of the equation of	ne vertex, then the length of
the side of the $\triangle OAB$ is			
a) $8a\sqrt{3}$	b) $4a\sqrt{3}$	c) $2a\sqrt{3}$	d) $a\sqrt{3}$
204. The equation of the para	bola whose vertex is at (2, -	-1) and focus at $(2, -3)$ is	
a) $x^2 + 4x - 8y - 12 =$	0		
b) $x^2 - 4x + 8y + 12 =$	0		
c) $x^2 + 8y = 12$			
d) $x^2 - 4x + 12 = 0$			
205. The locus of the point of	intersection of the tangents	s at the end points of the foo	cal chord of an ellipse $\frac{x^2}{a^2}$ +
$\frac{y^2}{b^2} = 1$, $(b < a)$ is			
<i>u</i> - <i>a</i> ²	h^2	ab	d) None of these

a)
$$x = \pm \frac{a^2}{\sqrt{a^2 - b^2}}$$
 b) $y = \pm \frac{b^2}{\sqrt{a^2 - b^2}}$ c) $x = \pm \frac{ab}{\sqrt{a^2 - b^2}}$ d) None of these

206. Length of the straight line x - 3y = 1 intercepted by the hyperbola $x^2 - 4y^2 = 1$ is a) $\frac{3}{5}\sqrt{10}$ b) $\frac{6}{5}\sqrt{10}$ c) $\frac{5}{3}\sqrt{10}$ d) $\frac{5}{6}\sqrt{10}$

207. The length of latusrect	um of hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	l equals	
a) $\frac{a}{e^2 - 1}$	b) $2a(e^2 - 1)$	c) $2a^2(e^2-1)$	d) $\frac{e^2-1}{2a}$
208. The number of commo	n tangents to circles $x^2 + y$	$x^{2} + 2x + 8y - 23 = 0$ and x	$x^2 + y^2 - 4x - 10y + 9 = 0,$
a) 1	b) 3	c) 2	d) None of these
209. The inverse point of (1 a) $(-1,1)$	(-1) with respect to $x^2 + y$ b) $(-2,2)$	$c^{2} = 4$ is c) (1, -1)	d) (2, -2)
210. If the area of the circle	$4x^2 + 4y^2 - 8x + 16y + k$	= 0 is 9π sq unit, then the v	alue of <i>k</i> is
a) 4 units	b) 16 units	c) –16 units	d) ± 16 units
211. (-6, 0), (0, 6) And (-7,	, 7) are the vertices of ΔAB	C. The incircle of the triangl	e has the equation
a) $x^2 + y^2 - 9x - 9y + 3y^2 - 3y^2 $	+36 = 0	b) $x^2 + y^2 + 9x - 9y + 9x - 9y + 9x - 9y + 9x - 9y + 9y$	36 = 0
c) $x^2 + y^2 + 9x + 9y - y^2$	-36 = 0	d) $x^2 + v^2 + 18x - 18v$	+36 = 0
212. Minimum distance bety	ween the curves $v^2 = x - 1$	and $x^2 = y - 1$ is equal to	
31/2	5 ₁ /2	$7\sqrt{2}$	$\sqrt{2}$
a) $\frac{3\sqrt{2}}{4}$	b) $\frac{5\sqrt{2}}{4}$	c) $\frac{7\sqrt{2}}{4}$	d) $\frac{\sqrt{2}}{4}$
$\frac{4}{212} \text{ If } x^2 + 6x + 20x = 51$	-0 then axis of normalia is	4	4
213.11x + 6x + 20y - 51	= 0, then axis of parabola is	a $a = 1$	d) $w + 1 = 0$
a) $x + 3 = 0$	b) $x - 3 \equiv 0$	c) $x = 1$	a) $x + 1 = 0$
^{214.} Eccentricity of hyperbo	$\ln \frac{x^2}{k} + \frac{y^2}{k^2} = 1(k < 0)$ is		
	n n		
a) $\sqrt{1+k}$	b) $\sqrt{1-k}$	c) $\sqrt{1 + \frac{1}{k}}$	d) $\sqrt{1-\frac{1}{k}}$
215. The focus of the parabo	$x^{2} - x - 2y + 2 = 0$ is		
a) $\left(\frac{1}{4}, 0\right)$	b) (1, 2)	c) $\left(\frac{5}{4}, 1\right)$	d) $\left(\frac{3}{4}, \frac{5}{2}\right)$
216. The locus of the middle	e points of the focal chord of	f the parabola $v^2 = 4 ax$ is	
a) $y^2 = a(x - a)$	b) $v^2 2 a(x - a)$	c) $v^2 = 4 a(x - a)$	d) None of these
217 The conditions that ar	+ hy + c = 0 is tangent to t	the narabola $v^2 = 4ar$ is	
a) $a^2 - b^2 - c^2$	a = b	c) $h^2 - c$	d) $h^2 - a$
$a_{j}u = b = c$	b j u = b	$r^2 v^2$	d f b = d
asymptotes at	e line segment joining the fo	bci of the hyperbola $\frac{x}{a^2} - \frac{y}{b^2}$	= 1 as diameter cuts the
a) (a, a)	b) (b, a)	c) $(+b, +a)$	d) $(+a, +b)$
219. The coordinates of the	focus of the parabola descri	ibed parametrically by $x =$	$5t^2 + 2v + 10t + 4$ are
a) (7.4)	b) (3.4)	c) $(3 - 4)$	d) (-74)
220 The equation of the cor	nmon tangent touching the	circle $(x - 3)^2 + y^2 = 9$ an	d parabola $v^2 = 4r$ above
the r-axis is	innon tangent touching the	(x - y) = y	a parabola y = 1x above
$r_{\rm axis} = 1$	h $\sqrt{2}$		d $\sqrt{2}$ $(2 + 1)$
a) $\sqrt{3y} = 3x + 1$	b) $\sqrt{3y} = -(x+3)$	c) $\sqrt{3y} = x + 3$	$d \int \sqrt{3y} = -(3x+1)$
221. The equation of the circ a) $(x^2 + y^2) + 18 x +$	cle having radius 5 and touc 16 y + 120 = 0	ching the circle $x^2 + y^2 - 2$:	x - 4y - 20 = 0 at (5,5) is
b) $(x^2 + y^2) + 18 x - 10^{-1}$	16 y + 120 = 0		
c) $(x^2 + y^2) - 18x + 10^{-10}$	16v + 120 = 0		
d) $(r^2 + v^2) - 18 r - 10$	16y + 120 = 0		
222 The ends of a line segme	P(1,2) = 0	P is a point on the line segr	ment PO such that PP: OP -
1. 1 If D is an interior	Q(1, 1)	a thop	nent i g such that i n. gn =
$1: \lambda$. If R is all interior p	$\int \frac{d}{dt} = 4$	(1 3)	d) None of these
a) $\lambda \in (0, 1)$	b) $\lambda \in \left(-\frac{3}{5}, 1\right)$	c) $\lambda \in \left(\frac{1}{2}, \frac{3}{5}\right)$	
223. The chord AB of the pa	Trabola $y^2 = 4ax$ cuts the ax	the parabola at C . If A	$= (at_1^2, 2at_1), B =$
$(at_2^2, 2at_2)$ and AC: AB	= 1:3, then		
a) $t_2 = 2t_1$	b) $t_2 + 2t_1 = 0$	c) $t_1 + 2t_2 = 0$	d) None of these

224. The eccentricity of an ellipse whose pair of a conjugate diameter are y = x and 3y = -2x is b) 1/3 c) $1/\sqrt{3}$ d) None of these a) 2/3 225. The eccentricity of the conic $x^2 - 4x + 4y^2 = 12$ is b) $\frac{2}{\sqrt{3}}$ a) $\frac{\sqrt{3}}{2}$ d) None of these c) $\sqrt{3}$ 226. The equation of the directrix of the parabola $x^2 + 8y - 2x = 7$ is b) y = -3d) y = 0a) y = 3c) y = 2227. The locus of the centre of the circles which touch both the circles $x^2 + y^2 = a^2$ and $x^2 + y^2 = 4ax$ externally has the equation a) $12(x-a)^2 - 4y^2 = 3a^2$ b) $9(x-a)^2 - 5y^2 = 2a^2$ c) $8x^2 - 3(y - a)^2 = 9a^2$ d) None of these 228. If P_1, P_2, P_3 are the perimeter of the three circles $x^2 + y^2 + 8x - 6y = 0, 4x^2 + 4y^2 - 4x - 12y - 186 = 0$ and $x^2 + y^2 - 6x + 6y - 9 = 0$ respectively, then c) $P_3 < P_2 < P_1$ d) $P_2 < P_3 < P_1$ b) $P_1 < P_3 < P_2$ a) $P_1 < P_2 < P_3$ 229. The angle between the tangents drawn from the point (3,4) to the parabola $y^2 - 2y + 4x = 0$ is d) None of these b) $\tan^{-1}(12/\sqrt{5})$ c) $\tan^{-1}(\sqrt{5}/7)$ a) $\tan^{-1}(8\sqrt{5}/7)$ ^{230.} If *S* and *S'* are two foci of an ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (*a* < *b*) and *P*(*x*₁, *y*₁) a point on it, then *SP* + *S'P* is equal to d) $b + ey_1$ c) $a + e x_1$ b) 2*b* a) 2a 231. The locus of the mid-points of the chords of the circle $x^2 + y^2 = 16$ which are tangents to the hyperbola $9x^2 - 16y^2 = 144$ is a) $(x^2 + y^2)^2 = 16x^2 - 9v^2$ b) $(x^2 + y^2)^2 = 9x^2 - 16y^2$ c) $(x^2 - y^2)^2 = 16x^2 - 9y^2$ d) None of these 232. Equation of the circle which of the mirror image of the circle $x^2 + y^2 - 2x = 0$ in the line x + y = 2 is a) $x^2 + y^2 - 2x + 4y + 3 = 0$ b) $2(x^2 + y^2) + x + y + 1 = 0$ c) $x^2 + y^2 - 4x - 2y + 4 = 0$ d) None of the above 233. If the area of the quadrilateral by the tangent from the origin to the circle $x^2 + y^2 + 6x - 10y + c = 0$ and the pair of radii at the points of contract of these tangents to the circle is 8 sq unit, then c is a root of the equation a) $c^2 - 32c + 64 = 0$ b) $c^2 - 34c + 64 = 0$ c) $c^2 + 2c - 64 = 0$ d) $c^2 + 34c - 64 = 0$ 234. Circle $x^2 + y^2 - 2x - \lambda x - 1 = 0$ passes through two fixed points coordinates of the points are c) (0, 1) and (0, 2) a) $(0, \pm 1)$ b) (±1,0) d) (0, -1) and (0, -2)235. In an ellipse, the distances between its foci is 6 and minor axis is 8. Then, its eccentricity is 4 b) 5 1 c) $\frac{1}{\sqrt{5}}$ d) $\frac{3}{r}$ a) $\overline{2}$ 236. The line segment joining the points (4, 7) and (-2, -1) is a dismeter of a circle. If the circle intersects the *x*-axis at *A* and *B*, then *AB* is equal to a) 4 b) 5 c) 6 d) 8 237. ABCDIs a square whose side isa. If AB and AD are axes of coordinates, the equation of the circle circumscribing the square will be b) $x^2 + y^2 = a(x + y)$ c) $x^2 + y^2 = 2a(x + y)$ d) $x^2 + y^2 = \frac{a^2}{4}$ a) $x^2 + y^2 = a^2$ 238. The locus of a point which moves such that the sum of its distance from two fixed points is always a constant, is a) A straight line b) A circle c) An ellipse d) A hyperbola 239. If (-4,3) and (8,3) are the vertices of an ellipse whose eccentricity is 5/6 then the equation of the ellipse is

	a) $\frac{(x-2)^2}{11} + \frac{(y-1)^2}{2} =$	1		
	b) $\frac{(x-2)^2}{(x-2)^2} + \frac{(y-3)^2}{(y-3)^2} =$	1		
	$36 11 (x-3)^2 (y-2)^2$	-		
	c) $\frac{11}{11} + \frac{11}{11} =$	1		
240	a) None of the limit point of the	ne coaxial system of circles	containing $x^2 + y^2 - 6x - $	$-6y + 4 = 0$ $r^2 + y^2 - $
210.	2x - 4y + 3 = 0, is	te counter system of en cies		0 y 1 1 0, x 1 y
	a) (-1,1)	b) (-1,2)	c) (-2,1)	d) (-2,2)
241.	The locus of the middle po	pint of chords of the circle of	$x^2 + y^2 = a^2$ which pass the	rough the fixed point (h, k)
	is			
	a) $x^2 + y^2 - hx - ky = 0$			
	b) $x^2 + y^2 + nx + ky = 0$ c) $x^2 + y^2 - 2hx - 2ky = 0$	- 0		
	d) $x^2 + y^2 - 2hx - 2ky =$	= 0		
242.	If $x \cos \alpha + y \sin \alpha = p$ is a	a tangent to the ellipse, the	n	
	a) $a^2 \sin^2 \alpha + b^2 \cos^2 \alpha =$	p^2	b) $a^2 + b^2 \sin^2 \alpha = p^2 \cos^2 \alpha$	$ec^2 \alpha$
	c) $a^2 \cos^2 \alpha + b^2 \sin^2 \alpha =$	p^2	d) None of the above	
243.	Equation of chord of the p	parabola $y^2 = 16x$ whose m	nid point is (1, 1), is	
	a) $x + y = 2$	b) $x - y = 0$	c) $8x + y = 9$	d) $8x - y = 7$
244.	A parabola has the origin	as its focus and the line $x =$	= 2 as the directrix. Then, t	he vertex of the parabola is
	at $(2, 0)$	h) (0, 2)	c) (1 0)	d) (በ 1)
245.	The equation of the comm	ion tangent to the hyperbol	$x^{2} - y^{2} = 3$ and to the	parabola $v^2 = 8x$ is
	a) $2x - y - 1 = 0$	b) $x - 2y + 1 = 0$	c) $2x + y - 1 = 0$	d) $2x + y + 1 = 0$
246.	For any point on the hype	erbola $\frac{x^2}{2} - \frac{y^2}{2} = 1$, tangents	are drawn to the hyperbol	$a\frac{x^2}{2}-\frac{y^2}{2}=2$, then area cut
	off by the chord of contact	t on the region between the	e asymptotes is equal to	$a^2 b^2$
	a) <i>ab</i>	b) 2 <i>ab</i>	c) 3ab	d) 4 <i>ab</i>
247.	The locus of the foot of the	e perpendicular from the co	entre of the ellipse $\frac{x^2}{x^2} + \frac{y^2}{b^2}$	= 1 on any tangent is given
	by $(x^2 + y^2)^2 = lx^2 + my$	v ² where	u b	
	a) $l = a^2, m = b^2$	b) $l = b^2$, $m = a^2$	c) $l = m = a$	d) $l = m = b$
248.	If $y = mx + c$ is a tangent	to the ellipse $x^2 + 2y^2 = 6$	5, then $c^2 =$	
240	a) $36/m^2$	b) $6m^2 - 3$	c) $3m^2 + 6$	d) $6m^2 + 3$
249.	The angle between the tar	ngents drawn from a point b) $\pi/2$	$(-a, 2a)$ to $y^2 = 4 ax$, is	d) #/6
250.	a) $\pi/4$	x^2 y^2 1 subs the ellips	$x^2 + y^2 = 1$ in D and O T	
_00	A tangent to the hyperbolic	$a \frac{1}{a^2} - \frac{1}{b^2} = 1$ cuts the endps	$\sin \frac{1}{a^2} + \frac{1}{b^2} = 1 \ln P$ and Q. 1	ne locus of the mid-point of
	PQ is			
	a) $\left(\frac{x^2}{a^2} + \frac{y^2}{b^2}\right) = \frac{x^2}{a^2} - \frac{y^2}{b^2}$			
	b) $\left(\frac{x^2}{a^2} - \frac{y^2}{b^2}\right)^2 = \frac{x^2}{a^2} + \frac{y^2}{b^2}$			
	c) $\left(\frac{x^2}{a^2} - \frac{y^2}{b^2}\right)^2 = \frac{2x^2y^2}{a^2b^2}$			
	(u b) ub			
	d) None of these			

a) $7x^{2} + 2xy + 7y^{2} - 10x + 10y + 7 = 0$ b) $7x^{2} + 2xy + 7y^{2} + 7 = 0$ c) $7x^2 + 2xy + 7y^2 + 10x - 10y - 7 = 0$

- d) None of these
- 252. If the slope of the focal chord of $y^2 = 16x$ is 2, then the length of the chord is a) 22 b) 24 c) 20 d) 18 253. The radius of any circle touching the lines 3x - 4y + 5 = 0 and 6x - 8y - 9 = 0 is
- a) 1.9 b) 0.95 c) 2.9 d) 1.45

254. If the tangents are drawn to the ellipse $x^2 + 2y^2 = 2$, then the locus of the mid point of the intercept made by the tangents between the coordinate axes is

a)
$$\frac{1}{2x^2} + \frac{1}{4y^2} = 1$$
 b) $\frac{1}{4x^2} + \frac{1}{2y^2} = 1$ c) $\frac{x^2}{2} + \frac{y^2}{4} = 1$ d) $\frac{x^2}{4} + \frac{y^2}{2} = 1$

255. The sum of the focal distances from any point on the ellipse $9x^2 + 16y^2 = 144$ is a) 3 b) 6 c) 8 d) 4

256. Let *P* be a variable point on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, with foci *S*₁ and *S*₂, then coordinates of *P* such that area of Δ*S*₁ *PS*₂ is maximum, are

a)
$$(0,b)$$
 b) $\left(\frac{a}{2}, \frac{\sqrt{3}}{2}b\right)$ c) $\left(\frac{\sqrt{3}}{2}a, \frac{b}{2}\right)$ d) None of these

257. The values of α in $[0, 2\pi]$ so that $x^2 + y^2 + 2\sqrt{\sin \alpha} x + (\cos \alpha - 1) = 0$ having intercept on x-axis always greater than 2 is/are a) $(\pi/4, 3\pi/2)$ b) $(\pi/4, \pi)$ c) $(\pi/4, 5\pi/4)$ d) $[0, \pi]$

258. The locus of the mid point of the line segment joining the focus to a moving point on the parabola $y^2 = 4ax$ is another parabola with the directrix

a)
$$x = -a$$
 b) $x = -\frac{a}{2}$ c) $x = 0$ d) $x = \frac{a}{2}$

^{259.} If $(m_i, \frac{1}{m_i})$, i = 1, 2, 3, 4 are concyclic points, then the value of $m_1 m_2 m_3 m_4$ is

a) 1 b) -1 c) 0 d) None of these 260. The locus of the foot of the perpendicular from the focus upon a tangent to the parabola $y^2 = 4 ax$ is a) The directrix b) Tangent at the vertex c) x = a d) None of these

261. The focal distance of a point *P* on the parabola $y^2 = 12x$, if the ordinate of *P* is 6, is a) 12 b) 6 c) 3 d) 9

262. If one of the diameters of the circle $x^2 + y^2 - 2x - 6y + 6 = 0$ is a chord to the circle with centre (2, 1), then the radius of the circle is

a) $\sqrt{3}$ b) $\sqrt{2}$ c) 3 d) 2 263. Locus of the point of intersection of perpendicular tangents to the circle $x^2 + y^2 = 16$ is a) $x^2 + y^2 = 8$ b) $x^2 + y^2 = 32$ c) $x^2 + y^2 = 64$ d) $x^2 + y^2 = 16$

264. If the coordinates of the centre, a focus and adjacent vertex are (2, -3), (3, -3) and (4, -3) respectively, then the equation of the ellipse is

a)
$$\frac{(x-2)^2}{4} + \frac{(y+3)^2}{3} = 1$$

b)
$$\frac{(x-3)^2}{4} + \frac{(y-2)^2}{3} = 1$$

c)
$$\frac{(x-2)^2}{8} + \frac{(y+3)^2}{6} = 1$$

d)
$$\frac{(x+2)^2}{4} + \frac{(y-3)^2}{3} = 1$$

265. If the circles $x^2 + y^2 = 9$ and $x^2 + y^2 + 2\alpha x + 2y + 1 = 0$ tuoch each other internally, then α is equal to

$$\pm \frac{4}{3}$$
 b) 1 c) $\frac{4}{3}$ d) $-\frac{4}{3}$

266. The locus of a point represented by

a)

$$x = \frac{a}{2} \left(\frac{t+1}{t} \right)$$
, $y = \frac{a}{2} \left(\frac{t-1}{t} \right)$ is

a) An ellipse b) A circle c) A pair of lines d) None of these 267. The locus of the mid point of the line joining the focus and any point on the parabola $y^2 = 4ax$ is a parabola with the equation of directrix as d) $x = \frac{a}{2}$ a) x + a = 0b) 2x + a = 0c) x = 0^{268.} Tangents drawn from the point (*c*, *d*) to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ make angles α and β with the *x*-axis. If $\tan \alpha \tan \beta = 1$, then $c^2 - d^2 =$ a) $a^2 - b^2$ b) $b^2 - a^2$ c) $a^2 + b^2$ d) None of these 269. If $P(at^2, 2at)$ be one end of a focal chord of the parabola $y^2 = 4ax$, then the length of the chord is a) $a(t-\frac{1}{t})^2$ b) $a\left(t-\frac{1}{t}\right)$ c) $a\left(t+\frac{1}{t}\right)$ d) $a\left(t+\frac{1}{t}\right)^2$ 270. Focus of hyperbola is (\pm 3,0) and equation of tangent is 2x + y - 4 = 0, find the equation of hyperbola a) $4x^2 - 5y^2 = 20$ b) $5x^2 - 4y^2 = 20$ c) $4x^2 - 5y^2 = 1$ d) $5x^2 - 4y^2 = 1$ 271. The length of the common chord of the circles $x^2 + y^2 + 4x + 1 = 0$ and $x^2 + y^2 + 4y - 1 = 0$ d) None of these a) $\sqrt{\frac{15}{2}}$ b) $\sqrt{15}$ c) $2\sqrt{15}$ 272. The line $x = at^2$ meets the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, in the real points, iff a) |t| < 2 b) $|t| \le 1$ c) |t|273. If $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is an ellipse, then length of its latusrectum is a) |*t*| < 2 b) $|t| \le 1$ c) |t| > 1d) None of these b) $\frac{2a^2}{b}$ a) $\frac{2b^2}{a}$ c) Depends on whether a > b or b > ad) None of the above 274. C_1 Is a circle of radius 2 touching the x-axis and the y-axis. C_2 Is another circle of radius >2 and touching the axes as well as the circle C_1 . Then, the radius of C_2 is a) $6 - 4\sqrt{2}$ b) $6 + 4\sqrt{2}$ c) $6 - 4\sqrt{3}$ d) 6 + $4\sqrt{3}$ 275. The intersection point of the normals drawn at the end points of latusrectum of the parabola $x^2 = -2y$ is b) $\left(\frac{1}{2}, -\frac{3}{2}\right)$ a) $\left(-\frac{1}{2},-\frac{3}{2}\right)$ d) $\left(0, -\frac{3}{2}\right)$ c) (0,1) 276. The equation of the circle whose one diameter is *PQ*, where the ordinates of *P*, *Q* are the roots of the equation $x^2 + 2x - 3 = 0$ and the abscissae are the roots of the equation $y^2 + 4y - 12 = 0$, is a) $x^2 + y^2 + 2x + 4y - 15 = 0$ b) $x^2 + y^2 - 4x - 2y - 15 = 0$ c) $x^2 + y^2 + 4x + 2y - 15 = 0$ d) None of these 277. The locus of the point of intersection of tangents to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ which meet at right angle is c) An ellipse a) A circle b) A parabola d) A hyperbola 278. A circle passes through the origin and has its centre on y = x. If it cuts $x^2 + y^2 - 4x6y + 10 = 0$ orthogonally, then the equation of the circle is a) $x^2 + y^2 - x - y = 0$ b) $x^2 + y^2 - 6x - 4y = 0$ c) $x^2 + y^2 - 2x - 2y = 0$ d) $x^2 + y^2 + 2x + 2y = 0$ 279. Which of the following is a point on the common chord of the circle $x^2 + y^2 + 2x - 3y + 6 = 0$ and $x^2 + 3y + 6 = 0$ $y^2 + x - 8y - 13 = 0?$ a) (1, -2)c) (1, 2) d) (1, -4)b) (1, 4) 280. Area of the equilateral triangle inscribed in the circle $x^2 + y^2 - 7x + 9y + 5 = 0$ is a) $\frac{155}{8}\sqrt{3}$ sq units b) $\frac{165}{8}\sqrt{3}$ sq units c) $\frac{175}{8}\sqrt{3}$ sq units d) $\frac{185}{8}\sqrt{3}$ sq units

281. The equation $y^2 - 8y - x + 19 = 0$ represents

- a) A parabola whose focus is $\left(\frac{1}{4}, 0\right)$ and directrix is $x = \frac{-1}{4}$
- b) A parabola whose vertex is (3,4) and directrix is $x = \frac{11}{4}$
- c) A parabola whose focus is $\left(\frac{13}{4}, 4\right)$ and vertex is (0,0)
- d) A curve which is not a parabola

282. The two circles

- $x^2 + y^2 5 = 0$ and $x^2 + y^2 2x 4y 15 = 0$ a) Touch each other externallyc) Cut each other orthogonallyb) Touch each other internallyd) Do not intersect
- 283. The length of the common chord of the parabolas $y^2 = x$ and $x^2 = y$ and is

a)
$$2\sqrt{2}$$
 b) 1 c) $\sqrt{2}$ d) $\frac{1}{\sqrt{2}}$

284. The range of values of '*a*' such that the angle θ between the pair of tangents drawn from (*a*, 0) to the circle $x^2 + y^2 = 1$ satisfies $\frac{\pi}{2} < \theta < \pi$, is

a)
$$(1, 2)$$

b) $(1, \sqrt{2})$
c) $(-\sqrt{2}, -1)$
d) $(-\sqrt{2}, -1) \cup (1, \sqrt{2})$

285. The eccentricity of the hyperbola which passes through (3, 0) and $(3\sqrt{2}, 2)$, is

$\sqrt{\frac{3}{3}}$	a) $\sqrt{(13)}$	b) $\frac{\sqrt{13}}{3}$	c) $\sqrt{\frac{13}{4}}$
----------------------	------------------	--------------------------	--------------------------

d) None of these

- 286. If two circles, each of radius 5 unit, touch each other at (1, 2) and the equation of their common tangent is 4x + 3y = 10, then equation of the circle a portion of which lies in all the quadrants, is a) $x^2 + y^2 - 10x - 10y + 25 = 0$
 - b) $x^2 + y^2 + 6x + 2y 15 = 0$
 - c) $x^2 + y^2 + 2x + 6y 15 = 0$
- d) $x^2 + y^2 + 10x + 10y + 25 = 0$ 287. If $P(at_1^2, 2at_1)$ and $Q(at_2^2, 2at_2)$ are two variable points on the curve $y^2 = 4 ax$ and PQ subtends a right angle at the vertex, then t_1t_2 is equal to

a) -1 b) -2 c) -3 d) -4288. The number of common tangents to the circles $x^2 + y^2 = 4$ and $x^2 + y^2 - 6x - 8y + 24 = 0$ is a) 3 b) 4 c) 2 d) 1

289. If a variable tangent of the circle $x^2 + y^2 = 1$ intersects the ellipse $x^2 + 2y^2 = 4$ at points *P* and *Q*, then the locus of the point of intersection of tangent at *P* and *Q* is

- a) A circle of radius 2 unit b) A parabola with focus as (2, 3)
- c) An ellipse with eccentricity $\frac{\sqrt{3}}{2}$ d) None of the above
- 290. Consider the following statements :
 - I. Circle $x^2 + y^2 x y 1 = 0$ is completely inside the circle $x^2 + y^2 2x + 2y 7 = 0$
 - II. Number of common tangents of the circles $x^2 + y^2 + 14x + 12y + 21 = 0$ and $x^2 + y^2 + 2x 4y 4 = 0$ is 4
 - Which of these is/are correct?

29

a) Only (1) b) Only (2) c) Both of these d) None of these
1. If *P* is any point on the ellipse
$$9x^2 + 36y^2 = 324$$
 whose foci are *S* and *S'*. Then, *SP* + *S'P* equals

^{292.} If the polar with respect to $y^2 = 4ax$ touches the ellipse $\frac{x^2}{\alpha^2} + \frac{y^2}{\beta^2} = 1$, the locus of its pole is

a)
$$\frac{x^2}{\alpha^2} - \frac{y^2}{(4a^2\alpha^2/\beta^2)} = 1$$
 b) $\frac{x^2}{\alpha^2} + \frac{\beta^2 y^2}{4a^2} = 1$ c) $\alpha^2 x^2 + \beta^2 y^2 = 1$ d) None of these

293. The equation of the chord of contact of tangents from (1, 2) to the hyperbola $3x^2 - 4y^2 = 3$ is

a) 3x - 16y = 3 b) 3x - 8y - 3 = 0 c) $\frac{x}{3} - \frac{y}{4} = 1$ d) $\frac{x}{4} - \frac{y}{3} = 1$

294. Tangents PT_1 and PT_2 are drawn from a point *P* to the circle $x^2 + y^2 = a^2$. If the point *P* lies on the line px + qy - r = 0, then the locus of the circumcircle of the triangle PT_1T_2

- a) $px + qy = \frac{r}{2}$ b) 2px + 2py + r = 0
- c) px + qy = r
- d) $(x-p)^2 + (y-q)^2 = r^2$

295. The locus of the centre of a circle of radius 2 which rolls on the outside of the circle, is $x^2 + y^2 + 3x - 6y - 9 = 0$ is

a) $x^{2} + y^{2} + 3x - 6y + 5 = 0$ b) $x^{2} + y^{2} + 3x - 6y - 31 = 0$ c) $x^{2} + y^{2} + 3x - 6y + \frac{29}{4} = 0$ d) None of the above

296. A Basic Terms of Conics is defined by the equations $x = -1 + \sec t$, $y = 2 + 3 \tan t$. The coordinates of the foci are

- a) $(-1 \sqrt{10}, 2)$ and $(-1 + \sqrt{10}, 2)$ b) $(-1 - \sqrt{8}, 2)$ and $(-1 + \sqrt{8}, 2)$
- c) $(-1, 2 \sqrt{8})$ and $(-1, 2 + \sqrt{8})$ d) $(-1, 2 - \sqrt{10})$ and $(-1, 2 + \sqrt{10})$

297. If A and B are two fixed points and P is a variable point such that PA + PB = 4, the locus of P isa) A parabolab) An ellipsec) A hyperbolad) None of these

298. If the vertices of an ellipse are (-12,4) and (14,4) and eccentricity 12/13, then the equation of the ellipse is

a)
$$\frac{(x-4)^2}{25} + \frac{(y-1)^2}{169} = 1$$

b)
$$\frac{(x-4)^2}{169} + \frac{(y-1)^2}{25} = 1$$

c)
$$\frac{(x-1)^2}{169} + \frac{(y-4)^2}{25} = 1$$

d)
$$\frac{(x+1)^2}{169} + \frac{(y+4)^2}{25} = 1$$

^{299.} If *C* is the centre of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and the normal at an end of a latusrectum cuts the major axis in *G*, then *CG* =

a) ae b) a^2e^2 c) ae^2 d) a^2e^3

^{300.} The locus of the point of intersection of perpendicular tangents to the hyperbola $\frac{x^2}{3} - \frac{y^2}{1} = 1$ is a) $x^2 + y^2 = 2$ b) $x^2 + y^2 = 3$ c) $x^2 - y^2 = 3$ d) $x^2 + y^2 = 4$

301. The eccentricity of the ellipse represented by the equation $25 x^2 + 16 y^2 - 150 x - 175 = 0$ is a) 2/5 b) 3/5 c) 4/5 d) None of these

302. Axis of a parabola is y = x and vertex and focus are at a distance $\sqrt{2}$ and $2\sqrt{2}$ Respectively from the origin. Then, equation of the parabola is

a)
$$(x - y)^2 = 8(x + y - 2)$$

b) $(x + y)^2 = 2(x + y - 2)$
c) $(x - y)^2 = 4(x + y - 2)$
d) $(x + y)^2 = 2(x - y + 2)$

303. Let *PQ* and *PS* be tangents at the extremities of the diameter *PR* of a circle of radius *r*. If *PS* and *RQ* intersect at a point *x* on the circumference of the circle, then 2*r* equals

a)
$$\sqrt{PQ.RS}$$
 b) $\frac{PQ+RS}{2}$ c) $\frac{2PQ.RS}{PQ+RS}$ d) $\sqrt{\frac{PQ^2+RS^2}{2}}$

304. If the vertex of a parabola is the point (-3,0) and the directrix is the line x + 5 = 0, then its equation is a) $y^2 = 8(x + 3)$ b) $x^2 = 8(y + 3)$ c) $y^2 = -8(x + 3)$ d) $y^2 = 8(x + 5)$

305. The length of the latusrectum of the parabola $169\{(x-1)^2 + (y-3)^2\} = (5x - 12y + 17)^2$ is

a) 14/13 b) 12/13 c) 28/13 d) None of these 306. If *P* is a point on the parabola $y^2 = 4 ax$ such that the subtangent and subnormal at *P* are equal, then the coordinates of *P* are a) (*a*, 2*a*) or (*a*, −2*a*) b) $(2a, 2\sqrt{2}a)$ or $(2a, -2\sqrt{2}a)$ c) (4a, -4a) or (4a, 4a)d) None of these 307. In the normal at the end of latusrectum of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ with eccentricity *e*, passes through one end of the minor axis, then b) $e^2(1+e^2) = 1$ c) $e^2(1+e^2) = -1$ d) $e^2(1+e^2) = 2$ a) $e^2(1+e^2) = 0$ 308. The pole of a straight line with respect to the circle $x^2 + y^2 = a^2$ lies on the circle $x^2 + y^2 = 9a^2$. If the straight line touches the circle $x^2 + y^2 = r^2$, then c) $r^2 = a^2$ a) $9a^2 = r^2$ b) $9r^2 = a^2$ d) None of these 309. The equation of the latusrectum of the parabola $x^2 + 4x + 2y = 0$, is equal to d) 3v + 2 = 0a) 2y + 3 = 0b) 3y = 2c) 2y = 3310. If the normal at any point *P* on the ellipse cuts the major and minor axes in *G* and g respectively and *C* be the centre of the ellipse, then a) $a^2(CG)^2 + b^2(Cg)^2 = (a^2 - b^2)^2$ b) $a^2(CG)^2 - b^2(Cg)^2 = (a^2 - b^2)^2$ c) $a^2(CG)^2 - b^2(Cg)^2 = (a^2 + b^2)^2$ d) None of the above 311. The value of *m*, for which the line $y = mx + \frac{25\sqrt{3}}{3}$ is a normal to the conic $\frac{x^2}{16} - \frac{y^2}{9} = 1$, is a) $\pm \frac{2}{\sqrt{3}}$ b) $\pm \sqrt{3}$ c) $\pm \frac{\sqrt{3}}{2}$ d) Non d) None of these 312. Equation of the latusrectum of the ellipse $9x^2 + 4y^2 - 18x - 8y - 23 = 0$ are b) $y = \pm \sqrt{5}$ c) $y = 1 \pm \sqrt{5}$ d) $y = -1 \pm \sqrt{5}$ a) $y = \pm \sqrt{5}$ 313. The number of circles belonging to the system of circles $2(x^2 + y^2) + \lambda x - (1 + \lambda^2)y - 10 = 0$ and orthogonal to $x^2 + y^2 + 4x + 6y + 3 = 0$, is a) 2 b) 1 c) 0 d) None of these 314. The length of the semi-transverse axis of the rectangular hyperbola xy = 32 is b) 16 c) 64 d) 8 a) 32 315. If y = 2x + 3 is a tangent to the parabola, $y^2 = 24 x$, then its distance from the parallel normal is a) 5√5 b) $10\sqrt{5}$ c) $15\sqrt{5}$ d) 3√5 316. If $P(\alpha, \beta)$ is a point on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ with foci *S* and *S'* and eccentricity *e*, then area of $\Delta SPS'$ is b) $he\sqrt{h^2-\alpha^2}$ c) $ae\sqrt{b^2-\alpha^2}$ d) $he\sqrt{a^2-\alpha^2}$ a) $ae\sqrt{a^2-\alpha^2}$ 317. If a circle passes through the point (1, 2) and cuts the circle $x^2 + y^2 = 4$ orthogonally, then the equation of the locus of its centre is a) $x^2 + y^2 - 3x - 8y + 1 = 0$ b) $x^2 + y^2 - 2x - 6y - 7 = 0$ c) 2x + 4y - 9 = 0d) 2x + 4y - 1 = 0318. Three sides of a triangle have the equations $L_r \equiv y - m_r x - c_r = 0, r = 1,2,3$. If λ, μ, v are non-zero real numbers such that $\lambda L_2 L_3 + \mu L_3 L_1 + \nu L_1 L_2 = 0$ represents the circumcircle of the triangle, then a) $\lambda(m_2 + m_3) + \mu(m_3 + m_1) + \nu(m_1 + m_2) = 0$ b) $\lambda(m_2m_3 - 1) + \mu(m_3m_1 - 1) + \nu(m_1m_2 - 1) = 0$ c) Both (a) and (b) hold together d) None of these 319. The distinct points A(0,0), B(0,1), C(1,0) and D(2a,3a) are concyclic, then a) '*a*' can attain only rational values b) 'a' is irrational c) Cannot be concyclic for any 'd' d) None of the above 320. For the given circles $x^2 + y^2 - 6x - 2y + 1 = 0$ and $x^2 + y^2 + 2x - 8y + 13 = 0$, which of the following is true?

321	a) One circles lies inside thc) Two circles intersect inThe eccentricity of the ellipsical sectors in the ellipsical secto	he other two points nse $9r^2 + 5v^2 - 18r - 20r$	b) One circle lies complete d) They touch each other $y = 16 = 0$ is	ely outside the other externally
021	a) $\frac{1}{2}$	b) $\frac{2}{3}$	c) $\frac{3}{2}$	d) 2
322	The normal to the parabol a) $(-18, -12)$	$x^{2} = 8x$ at the point (2, 4 b) (-18, 12)	- +)meets the parabola again c) (18, 12)	at the point d) (18, –12)
323	To which of the following	circles, the line $y - x + 3 =$	= 0 is normal at the point ($3 + \frac{3}{5}, \frac{3}{5}$?
	$(3)^{2}$	3^{2}	r (√2´√2J
	a) $\left(x - 3 - \frac{3}{\sqrt{2}}\right) + \left(y - \frac{3}{\sqrt{2}}\right)$	$\left(\frac{3}{\sqrt{2}}\right) = 9$		
	b) $\left(x - \frac{3}{\sqrt{2}}\right)^2 + \left(y - \frac{3}{\sqrt{2}}\right)^2$	= 9		
	c) $x^2 + (y - 3)^2 = 9$			
224	d) $(x - 3)^2 + y^2 = 9$ The point on the curve $2x$	$2 4x^2 = 72$ which is not	rost to the line $2x + 2y = 1$	-0 is
524	a) (6.3)	-4y = 72, which is head b) (6 - 3)	c) (6, 6)	d (6 5)
325	The equation of the mirro	r that can reflect all incider	it ravs from origin parallel	to v-axis is
	a) $x^2 = 4a(y+a)$	b) $y^2 = 4a(x+a)$	c) $y^2 = -4a(x-a)$	d) None of these
326	For the two circles $x^2 + y$	$x^2 = 16$ and $x^2 + y^2 - 2y =$	= 0 there is/are	
	a) One pair of common tar	ngents	b) Only one common tang	ent
	c) Three common tangent	S	d) No common tangent	
327	The point on the curve y^2	= ax the tangent at which	makes an angle of 45° with	<i>x</i> -axis will be given by
220	a) $(a/2, a/4)$	b) $(-a/2, a/4)$	c) $(a/4, a/2)$	d) $(-a/4, a/2)$
328	The equation of hyperbola	a whose foci are (2, 4) and	$(-2,4)$ and eccentricity is $\frac{4}{3}$, is
	a) $x^2 - (y - 4)^2 = 5$		b) $\frac{x^2}{9} - \frac{(y-4)^2}{7} = \frac{1}{4}$	
	c) $\frac{x^2}{9} - \frac{y^2}{7} = \frac{1}{4}$		d) None of these	
329	If the line $lx + my + n = 0$	0 intersects the curve ax^2 -	$+2hxy + by^2 = 1$ at P and	<i>Q</i> such that the circle with
	PQ as a diameter passes the pa	hrough the origin, then l^2 +	$+m^2 =$	12 2 4 2 4 2
220	a) $n^2(a+b)$	b) $n^2(a+b)^2$	c) $n^2(a^2 - b^2)$	d) $n^2(a^2 + b^2)$
330	One of the diameter of the $x^2 = 0$	circle $x^2 + y^2 - 12x + 4y$	+ 6 = 0 is given by	d) $2\alpha + 2\alpha = 0$
331	a) $x + y = 0$ The length of the latusreet	y = 0 x + 3y = 0 y = 0	$y = -\frac{y}{12} - \frac{y}{12} - 0$ is	$u \int 3x + 2y = 0$
551	a) 4	b) 6	c) 8	d) 10
332	The coordinates of a point	t on the parabola $v^2 = 8 x$	whose focal distance is 4. a	re
	a) $(1/2, \pm 2)$	b) $(1, +2\sqrt{2})$	c) (2,±4)	d) None of these
333	. The eccentricity of the cor	nic $36x^2 + 144y^2 - 36x - 3$	96y - 119 = 0 is	
	$\sqrt{3}$	b) ¹	$\sqrt{3}$	1 d)
	a) <u> </u>	$\frac{1}{2}$	4	$\sqrt{\sqrt{3}}$
334	If the tangent and normal a) $ST \neq SG = SP$	at any point P of a parabole b) $ST - SG \neq SP$	a meet the axes in T and G r c) $ST = SG = SP$	respectively, then d) $ST = SG \cdot SP$
335	The tangents to the hyper	bola $x^2 - y^2 = 3$ are parall	lel to the straight line $2x +$	y + 8 = 0 at the following
	points:			
22.4	a) $(2, 1), (1, 2)$	b) $(2, -1), (-2, 1)$	c) (-2, -1), (1, 2)	d) $(-2, -1), (-1, -2)$
336	. I ne equation of the tanger	nts to the ellipse $4x^2 + 3y^2$	r = 5, which are parallel to	the line $y = 3x + 7$ are
	a) $y = 3x \pm \sqrt{\frac{155}{3}}$	b) $y = 3x \pm \sqrt{\frac{155}{12}}$	c) $y = 3x \pm \sqrt{\frac{95}{12}}$	uj none of these

^{337.} Tangent to the ellipse $\frac{x^2}{32} + \frac{y^2}{18} = 1$ having slope $-\frac{3}{4}$ meet the coordinate axes in *A* and *B*. Find the area of the $\triangle AOB$, where O is the origin d) 32 sq unit a) 12 sq unit b) 8 sq unit c) 24 sq unit 338. If the straight line lx + my + n = 0 touches the parabola, $y^2 = 4ax$, then b) $nl = am^2$ c) nl = amd) $ml = an^2$ a) $nm = al^2$ 339. If 3x + y + k = 0 is a tangent to the circle $x^2 + y^2 = 10$, the values of k are a) ±7 b) ±5 c) ±10 d) ±9 340. The area of the triangle formed by the lines x + y = 0, x - y = 0 and any tangent to the hyperbola $x^2 - y = 0$ $y^2 = a^2$ is b) $3a^2$ sq. units c) $2a^2$ sq. units a) $4a^2$ sq. units d) a^2 sq. units 341. The values of λ so that the line $3x - 4y = \lambda$ touches $x^2 + y^2 - 4x - 8y - 5 = 0$ are a) -35, 15 b) 3, -5 c) 35, -15 d) -3, 5342. The common chord of $x^2 + y^2 - 4x - 4y = 0$ and $x^2 + y^2 = 16$ subtends at the origin an angle equal to a) $\frac{\pi}{6}$ b) $\frac{\pi}{4}$ c) $\frac{\pi}{3}$ d) $\frac{\pi}{2}$ 343. The distance between the foci of an ellipse is 16 and eccentricity is 1/2. Length of the major axis of the ellipse is a) 8 b) 64 c) 16 d) 32 344. The centres of three circles $x^2 + y^2 = 1$, $x^2 + y^2 + 6x - 2y = 1$, $x^2 + y^2 - 12x + 4y = 1$ are b) Non-collinear c) Nothing to be said d) None of these a) Collinear 345. If the normal at the end of latusrectum of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ passes through (0, -b), then $e^4 + b^2$ e^2 (where *e* is eccentricity) equals a) 1 d) $\frac{\sqrt{5}+1}{2}$ c) $\frac{\sqrt{5-1}}{2}$ b) $\sqrt{2}$ 346. The equation of the pair of asymptotes of the hyperbola xy - 4x + 3y = 0 is a) xy - 4x + 3y - 1 = 0b) xy - 4x + 3y - 10 = 0c) xy - 4x + 3y - 12 = 0d) None of these 347. On the ellipse $4x^2 + 9y^2 = 1$ the point at which the tangent are parallel to 8x = 9y are a) $\left(\frac{2}{5}, \frac{1}{5}\right)$ or $\left(-\frac{2}{5}, \frac{1}{5}\right)$ b) $\left(-\frac{2}{5}, \frac{1}{5}\right)$ or $\left(\frac{2}{5}, -\frac{1}{5}\right)$ c) $\left(-\frac{2}{5}, -\frac{1}{5}\right)$ d) $\left(-\frac{3}{5}, -\frac{2}{5}\right)$ or $\left(\frac{3}{5}, \frac{2}{5}\right)$ 348. If roots of quadratic equation $ax^2 + 2bx + c = 0$ are not real, then $ax^2 + 2bxy + cy^2 + dx + ey + f = 0$ represents a/an a) Ellipse b) Circle c) Parabola d) Hyperbola 349. The equation of the hyperbola whose vertices are at (5,0) and (-5,0) and one of the directrices is $x = \frac{25}{7}$, is a) $\frac{x^2}{25} - \frac{y^2}{24} = 1$ b) $\frac{x^2}{24} - \frac{y^2}{25} = 1$ c) $\frac{x^2}{16} - \frac{y^2}{25} = 1$ d) $\frac{x^2}{25} - \frac{y^2}{16} = 1$ 350. The radius of the circle passing through the foci of the ellipse $\frac{x^2}{4} + \frac{4}{7}y^2 = 1$ and having its centre at $(\frac{1}{2}, 2)$, is b) 3 d) $\frac{7}{2}$ c) √12 a) √5 351. The directrix of the hyperbola $\frac{x^2}{9} - \frac{y^2}{4} = 1$ is b) $x = \frac{6}{\sqrt{13}}$ c) $y = \frac{9}{\sqrt{13}}$ d) $x = \frac{9}{\sqrt{13}}$ a) $y = \frac{6}{\sqrt{13}}$ 352. If the line y = 7x - 25 meets the circle $x^2 + y^2 = 25$ in the points *A*, *B*, then the distance between *A* and *B* is

u) v10	6)10	CJ 5VZ	-) -
353. Sides of an equilateral	\triangle <i>ABC</i> touch the parabola	$x^2 = 4x$, then the points .	A, B and C lie on
a) $y^2 = (x+a)^2 + 4a$	lx	b) $y^2 = 3(x+a)^2 +$	ax
c) $y^2 = 3(x+a)^2 + 4$	ax	d) $y^2 = (x+a)^2 + a$	x
354. A tangent to the ellips	$e x^2 + 4y^2 = 4$ meets the e	ellipse $x^2 + 2y^2 = 6$ at <i>P</i> a	and Q . The angle between the
tangent at P and Q of t	the ellipse $x^2 + 2y^2 = 6$ is		
$\frac{\pi}{2}$	b) $\frac{\pi}{\pi}$	$\frac{\pi}{-}$	d) $\frac{\pi}{-}$
$^{\circ}$ 2	3 3	$4^2 - 4$ which are normalial to	-56
sss. The equation of the ta	ingenits to the circle $x^2 + y$	= 4, which are parallel u	5x + 2y + 5 = 0, are
a) $x - 2y = 2$	b) $x + 2y = \pm 2\sqrt{3}$	c) $x + 2y = \pm 2\sqrt{5}$	a) $x - 2y = \pm 2\sqrt{5}$
356. Tangents are drawn a	t the ends of any focal chor	d of the parabola $y^2 = 16$	x. Then which of the following
statements about the	point of intersection of tan	gents is true	
a) Its abscissae is inde	ependent of the extremities	of the focal chord	
c) It is at a distance of	8 units from the vertex of	the narabola	
d) It is at a distance of	$\frac{1}{16}$ units from the focus of	the parabola	
		$x^2 + y^2 = 4$	
of the locus of points wi	lose polars with respect to	the ellipse $\frac{1}{a^2} + \frac{1}{b^2} = 1$ are	e at a distance <i>a</i> from the centre
of the ellipse, is	2 2 4)) ,	
a) $\frac{x^2}{x^2} + \frac{y^2}{x^2} = \frac{1}{x^2}$	b) $\frac{x^2}{4} + \frac{y^2}{4} = \frac{1}{12}$	c) $\frac{x^2}{x^2} + \frac{y^2}{x^2} = \frac{1}{x^4}$	d) None of these
$a^2 b^2 d^2$	$a^4 b^4 d^2$	$a^2 b^2 d^4$	
358. If $x = my + c$ is a norm	mai to the parabola $x^2 = 4$	ay, then the value of c is $2a$	2 a a
a) $-2 am - am^3$	b) 2 $am + am^3$	c) $-\frac{2u}{m} - \frac{u}{m^2}$	d) $\frac{2u}{m} + \frac{u}{m^3}$
359. If the line $v = 2x + \lambda$	be a tangent to the hyperb	ola $36x^2 - 25y^2 = 3600$.	then λ is equal to
a) 16	b) -16	c) ±16	d) None of these
260 The number of comm	an tanganta ta tha singlas u	2.2 02.2.	
Sou. The number of commo	on tangents to the circles x	$x^2 + y^2 - x = 0, x^2 + y^2 + y^2$	x = 0.1S
a) 2	b) 1	$x^{2} + y^{2} - x = 0, x^{2} + y^{2} + c) 4$	x = 0.1s d) 3
a) 2 361. Equation of the circle	b) 1 b) through the origin and mail	$x^{2} + y^{2} - x = 0, x^{2} + y^{2} + c) 4$ king intercepts of 3 and 4 c	x = 0.18 d) 3 on the positive sides of the axes
a) 2 361. Equation of the circle	b) 1 through the origin and mal	$x^{2} + y^{2} - x = 0, x^{2} + y^{2} + c) 4$ king intercepts of 3 and 4 c	x = 0.1S d) 3 on the positive sides of the axes
a) 2 361. Equation of the circle is a) $x^2 + y^2 + 3x + 4y$	b) 1 through the origin and male $v = 0$	$x^{2} + y^{2} - x = 0, x^{2} + y^{2} + c) 4$ king intercepts of 3 and 4 c	x = 0.1s d) 3 on the positive sides of the axes
a) 2 361. Equation of the circle x^{2} a) $x^{2} + y^{2} + 3x + 4y$ b) $x^{2} + y^{2} + 3x - 4y$	b) 1 through the origin and male $v = 0$ v = 0	 2' + y² - x = 0, x² + y² + c) 4 king intercepts of 3 and 4 of 	x = 0.1s d) 3 on the positive sides of the axes
a) 2 361. Equation of the circle f is a) $x^2 + y^2 + 3x + 4y$ b) $x^2 + y^2 + 3x - 4y$ c) $x^2 + y^2 + 3x - 4y$	b) 1 through the origin and male $y = 0$ y = 0 y = 0 y = 0	 2' + y² - x = 0, x² + y² + c) 4 king intercepts of 3 and 4 of 	 x = 0 is d) 3 on the positive sides of the axes
a) 2 361. Equation of the circle f is a) $x^2 + y^2 + 3x + 4y$ b) $x^2 + y^2 + 3x - 4y$ c) $x^2 + y^2 + 3x - 4y$ d) $x^2 + y^2 - 3x + 4y$	b) 1 through the origin and male y = 0 y = 0 y = 0 y = 0 y = 0	$x^{2} + y^{2} - x = 0, x^{2} + y^{2} + c) 4$ king intercepts of 3 and 4 king intercepts of 3 and 3 a	<pre>x = 0 is d) 3 on the positive sides of the axes</pre>
a) 2 361. Equation of the circle f is a) $x^2 + y^2 + 3x + 4y$ b) $x^2 + y^2 + 3x - 4y$ c) $x^2 + y^2 + 3x - 4y$ d) $x^2 + y^2 - 3x + 4y$ 362. The straight line $y = n$	b) 1 through the origin and male y = 0 y = 0 y = 0 y = 0 y = 0 x	$y^{2} + y^{2} - x = 0, x^{2} + y^{2} + c) 4$ king intercepts of 3 and 4 d $y^{2} = a^{2}$ in real points if	x = 0.1s d) 3 on the positive sides of the axes
a) 2 361. Equation of the circle f is a) $x^2 + y^2 + 3x + 4y$ b) $x^2 + y^2 + 3x - 4y$ c) $x^2 + y^2 + 3x - 4y$ d) $x^2 + y^2 - 3x + 4y$ 362. The straight line $y = n$ a) $\sqrt{a^2(1 + m^2)} < c$	b) 1 through the origin and male y = 0 y = 0 y = 0 y = 0 y = 0 y = 0 $nx + c$ cuts the circle $x^2 + b$ $\sqrt{a^2(1 - m^2)} < c$	$y^{2} + y^{2} - x = 0, x^{2} + y^{2} + c) 4$ king intercepts of 3 and 4 c $y^{2} = a^{2}$ in real points if c) $\sqrt{a^{2}(1 + m^{2})} > c$	x = 0.1s d) 3 on the positive sides of the axes d) $\sqrt{a^2(1-m^2)} > c$
a) 2 361. Equation of the circle f is a) $x^2 + y^2 + 3x + 4y$ b) $x^2 + y^2 + 3x - 4y$ c) $x^2 + y^2 + 3x - 4y$ d) $x^2 + y^2 - 3x + 4y$ 362. The straight line $y = n$ a) $\sqrt{a^2(1 + m^2)} < c$ 363. If the chords of contact	b) 1 through the origin and male y = 0 y = 0 y = 0 y = 0 y = 0 $nx + c$ cuts the circle $x^2 + b$ $\sqrt{a^2(1 - m^2)} < c$ et of tangents from two points	$y^{2} = a^{2}$ in real points if $(x^{2} - x) = 0, x^{2} + y^{2} + $	x = 0.1s d) 3 on the positive sides of the axes d) $\sqrt{a^2(1-m^2)} > c$ o the hyperbola $4x^2 - 9y^2 - 1$
a) 2 361. Equation of the circle f is a) $x^2 + y^2 + 3x + 4y$ b) $x^2 + y^2 + 3x - 4y$ c) $x^2 + y^2 + 3x - 4y$ d) $x^2 + y^2 - 3x + 4y$ 362. The straight line $y = n$ a) $\sqrt{a^2(1 + m^2)} < c$ 363. If the chords of contact 36 = 0 are at right an	b) 1 through the origin and male y = 0 y = 0 y = 0 y = 0 y = 0 $nx + c$ cuts the circle $x^2 + b$ $\sqrt{a^2(1 - m^2)} < c$ et of tangents from two poingles, then $\frac{x_1 x_2}{y_1 y_2}$ is equal to	$y^{2} + y^{2} - x = 0, x^{2} + y^{2} + c) 4$ king intercepts of 3 and 4 d $y^{2} = a^{2}$ in real points if c) $\sqrt{a^{2}(1 + m^{2})} > c$ nts (x_{1}, y_{1}) amd (x_{2}, y_{2}) to	x = 0.18 d) 3 on the positive sides of the axes d) $\sqrt{a^2(1-m^2)} > c$ o the hyperbola $4x^2 - 9y^2 - 1$
a) 2 361. Equation of the circle f is a) $x^2 + y^2 + 3x + 4y$ b) $x^2 + y^2 + 3x - 4y$ c) $x^2 + y^2 + 3x - 4y$ d) $x^2 + y^2 - 3x + 4y$ 362. The straight line $y = n$ a) $\sqrt{a^2(1 + m^2)} < c$ 363. If the chords of contact 36 = 0 are at right an	b) 1 through the origin and male y = 0 y = 0 y = 0 y = 0 y = 0 $nx + c$ cuts the circle $x^2 + b$ $\sqrt{a^2(1 - m^2)} < c$ et of tangents from two poingles, then $\frac{x_1x_2}{y_1y_2}$ is equal to 9	$y^{2} = a^{2}$ in real points if c) $\sqrt{a^{2}(1+m^{2})} > c$ nts (x_{1}, y_{1}) amd (x_{2}, y_{2}) to $x_{1}^{2} = a^{2}$	x = 0.1s d) 3 on the positive sides of the axes d) $\sqrt{a^2(1-m^2)} > c$ o the hyperbola $4x^2 - 9y^2 - 81$
a) 2 361. Equation of the circle f is a) $x^2 + y^2 + 3x + 4y$ b) $x^2 + y^2 + 3x - 4y$ c) $x^2 + y^2 + 3x - 4y$ d) $x^2 + y^2 - 3x + 4y$ 362. The straight line $y = n$ a) $\sqrt{a^2(1+m^2)} < c$ 363. If the chords of contact 36 = 0 are at right and a) $\frac{9}{4}$	b) 1 through the origin and male y = 0 y = 0 y = 0 y = 0 $nx + c$ cuts the circle $x^2 + b$ $\sqrt{a^2(1 - m^2)} < c$ et of tangents from two poingles, then $\frac{x_1 x_2}{y_1 y_2}$ is equal to $b) - \frac{9}{4}$	$y^{2} + y^{2} - x = 0, x^{2} + y^{2} + c) 4$ king intercepts of 3 and 4 of $y^{2} = a^{2} \text{ in real points if}$ $c) \sqrt{a^{2}(1 + m^{2})} > c$ nts (x_{1}, y_{1}) amd (x_{2}, y_{2}) to $c) \frac{81}{16}$	x = 0.1S d) 3 on the positive sides of the axes d) $\sqrt{a^2(1-m^2)} > c$ o the hyperbola $4x^2 - 9y^2 - dy^2 - dy$
a) 2 361. Equation of the circle f is a) $x^2 + y^2 + 3x + 4y$ b) $x^2 + y^2 + 3x - 4y$ c) $x^2 + y^2 + 3x - 4y$ d) $x^2 + y^2 - 3x + 4y$ 362. The straight line $y = n$ a) $\sqrt{a^2(1 + m^2)} < c$ 363. If the chords of contact 36 = 0 are at right and a) $\frac{9}{4}$ 364. The condition for the other states of the sta	b) 1 through the origin and male y = 0 y = 0 y = 0 y = 0 y = 0 $nx + c$ cuts the circle $x^2 + b$ $\sqrt{a^2(1 - m^2)} < c$ et of tangents from two poingles, then $\frac{x_1x_2}{y_1y_2}$ is equal to $b) -\frac{9}{4}$ coaxial system $x^2 + y^2 + 2$	$y^{2} = a^{2} \text{ in real points if}$ $y^{2} = a^{2} \text{ in real points if}$ $c) \sqrt{a^{2}(1+m^{2})} > c$ $c) \frac{81}{16}$ $c\lambda x + c = 0, \text{ where } \lambda \text{ is a p}$	x = 0.1s d) 3 on the positive sides of the axes d) $\sqrt{a^2(1 - m^2)} > c$ o the hyperbola $4x^2 - 9y^2 - d$ d) $-\frac{81}{16}$ parameter and <i>c</i> is a constant to
a) 2 361. Equation of the circle f is a) $x^2 + y^2 + 3x + 4y$ b) $x^2 + y^2 + 3x - 4y$ c) $x^2 + y^2 + 3x - 4y$ d) $x^2 + y^2 - 3x + 4y$ 362. The straight line $y = n$ a) $\sqrt{a^2(1+m^2)} < c$ 363. If the chords of contact 36 = 0 are at right and a) $\frac{9}{4}$ 364. The condition for the only of the straight limiting for the straight limiting f	b) 1 through the origin and male y = 0 y = 0 y = 0 y = 0 y = 0 $nx + c$ cuts the circle $x^2 + b$ $\sqrt{a^2(1 - m^2)} < c$ et of tangents from two poingles, then $\frac{x_1x_2}{y_1y_2}$ is equal to $b) - \frac{9}{4}$ coaxial system $x^2 + y^2 + 2$ points, is	$y^{2} = a^{2} \text{ in real points if}$ $c) \sqrt{a^{2}(1+m^{2})} > c$ $c) \frac{81}{16}$ $c\lambda x + c = 0, \text{ where } \lambda \text{ is a p}$	x = 0.1s d) 3 on the positive sides of the axes d) $\sqrt{a^2(1-m^2)} > c$ o the hyperbola $4x^2 - 9y^2 - d$ d) $-\frac{81}{16}$ barameter and <i>c</i> is a constant to
a) 2 361. Equation of the circle f is a) $x^2 + y^2 + 3x + 4y$ b) $x^2 + y^2 + 3x - 4y$ c) $x^2 + y^2 + 3x - 4y$ d) $x^2 + y^2 - 3x + 4y$ 362. The straight line $y = n$ a) $\sqrt{a^2(1+m^2)} < c$ 363. If the chords of contact 36 = 0 are at right and a) $\frac{9}{4}$ 364. The condition for the only of the phase distinct limiting y a) $c = 0$	b) 1 through the origin and male y = 0 y = 0 y = 0 y = 0 y = 0 $nx + c$ cuts the circle $x^2 + b$ $\sqrt{a^2(1 - m^2)} < c$ et of tangents from two poingles, then $\frac{x_1x_2}{y_1y_2}$ is equal to $b) -\frac{9}{4}$ coaxial system $x^2 + y^2 + 2$ points, is b) c < 0	$y^{2} = a^{2}$ in real points if c) $\sqrt{a^{2}(1+m^{2})} > c$ multiply of x^{2} , y_{2} in (x_{2}, y_{2}) to c) $\frac{81}{16}$ $(2\lambda x + c = 0)$, where λ is a particular of (x_{2}, y_{2}) is a particul	x = 0.1s d) 3 on the positive sides of the axes d) $\sqrt{a^2(1 - m^2)} > c$ o the hyperbola $4x^2 - 9y^2 - d$ d) $-\frac{81}{16}$ barameter and <i>c</i> is a constant to d) $c > 0$
a) 2 361. Equation of the circle f is a) $x^2 + y^2 + 3x + 4y$ b) $x^2 + y^2 + 3x - 4y$ c) $x^2 + y^2 + 3x - 4y$ d) $x^2 + y^2 - 3x + 4y$ 362. The straight line $y = n$ a) $\sqrt{a^2(1+m^2)} < c$ 363. If the chords of contact 36 = 0 are at right and a) $\frac{9}{4}$ 364. The condition for the only of the straight limiting $y = 1$ a) $c = 0$ 365. On the ellipse $2x^2 + 3$	b) 1 through the origin and male y = 0 y = 0 y = 0 y = 0 y = 0 $nx + c$ cuts the circle $x^2 + b$ $\sqrt{a^2(1 - m^2)} < c$ et of tangents from two point gles, then $\frac{x_1x_2}{y_1y_2}$ is equal to $b) - \frac{9}{4}$ coaxial system $x^2 + y^2 + 2$ points, is b) c < 0 $y^2 = 1$ the points at which	$y^{2} = a^{2}$ in real points if c) $\sqrt{a^{2}(1 + m^{2})} > c$ multiply $x^{2} = a^{2}$ in real points if c) $\sqrt{a^{2}(1 + m^{2})} > c$ multiply $x^{2} = a^{2}$ in real points if c) $\sqrt{a^{2}(1 + m^{2})} > c$ multiply $x^{2} = a^{2}$ in real points if c) $\sqrt{a^{2}(1 + m^{2})} > c$ multiply $x^{2} = a^{2}$ in real points if c) $\sqrt{a^{2}(1 + m^{2})} > c$ c) $\frac{81}{16}$ c) $\frac{81}{16}$ c) $c = -1$ where λ is a parallel to A	x = 0 is d) 3 on the positive sides of the axes $d) \sqrt{a^2(1 - m^2)} > c$ o the hyperbola $4x^2 - 9y^2 - d$ d) $-\frac{81}{16}$ barameter and <i>c</i> is a constant to d) $c > 0$ 4x = 3y + 4, are
a) 2 361. Equation of the circle f is a) $x^2 + y^2 + 3x + 4y$ b) $x^2 + y^2 + 3x - 4y$ c) $x^2 + y^2 + 3x - 4y$ d) $x^2 + y^2 - 3x + 4y$ 362. The straight line $y = n$ a) $\sqrt{a^2(1+m^2)} < c$ 363. If the chords of contact 36 = 0 are at right and a) $\frac{9}{4}$ 364. The condition for the only of the straight limiting y a) $c = 0$ 365. On the ellipse $2x^2 + 3$ a) $\left(\frac{2}{\sqrt{11}}, \frac{1}{\sqrt{11}}\right)$ or $\left(-\frac{2}{\sqrt{11}}, \frac{1}{\sqrt{11}}\right)$	b) 1 through the origin and male y = 0 y = 0 y = 0 y = 0 x = 1 y = 0 x = 0 y = 0 x = 0 y = 0 $y = 1$ the points at which $x = -\frac{1}{\sqrt{11}}$	$y^{2} = a^{2} \text{ in real points if}$ c) $\sqrt{a^{2}(1+m^{2})} > c$ multiply of x^{2} and	x = 0.1s d) 3 on the positive sides of the axes $d) \sqrt{a^2(1 - m^2)} > c$ o the hyperbola $4x^2 - 9y^2 - d$ d) $-\frac{81}{16}$ barameter and <i>c</i> is a constant to d) c > 0 4x = 3y + 4, are $\frac{1}{\sqrt{11}}, -\frac{1}{\sqrt{11}}$
a) 2 361. Equation of the circle f is a) $x^2 + y^2 + 3x + 4y$ b) $x^2 + y^2 + 3x - 4y$ c) $x^2 + y^2 + 3x - 4y$ d) $x^2 + y^2 - 3x + 4y$ 362. The straight line $y = n$ a) $\sqrt{a^2(1 + m^2)} < c$ 363. If the chords of contact 36 = 0 are at right and a) $\frac{9}{4}$ 364. The condition for the only of the straight limiting y a) $c = 0$ 365. On the ellipse $2x^2 + 3$ a) $\left(\frac{2}{\sqrt{11}}, \frac{1}{\sqrt{11}}\right)$ or $\left(-\frac{2}{\sqrt{11}}, \frac{1}{5}\right)$	b) 1 through the origin and male y = 0 y = 0 y = 0 y = 0 y = 0 $nx + c$ cuts the circle $x^2 + b$ $\sqrt{a^2(1 - m^2)} < c$ et of tangents from two poingles, then $\frac{x_1x_2}{y_1y_2}$ is equal to $b) -\frac{9}{4}$ coaxial system $x^2 + y^2 + 2$ points, is b) c < 0 $y^2 = 1$ the points at which $x_1 - \frac{1}{\sqrt{11}}$	$y^{2} = a^{2} \text{ in real points if}$ c) $\sqrt{a^{2}(1+m^{2})} > c$ multiply intercepts of 3 and 4 of $\sqrt{a^{2}(1+m^{2})} > c$ multiply intercepts of 3 and (x_{2}, y_{2}) to c) $\frac{81}{16}$ c) $\frac{81}{16}$ c) $\frac{81}{16}$ c) $c = -1$ in the tangent is parallel to λ b) $\left(-\frac{2}{\sqrt{11}}, \frac{1}{\sqrt{11}}\right)$ or $\left(\frac{2}{\sqrt{11}}, \frac{1}{\sqrt{11}}\right)$ or $\left(\frac{2}{\sqrt{11}}, \frac{2}{\sqrt{11}}\right)$	x = 0 is d) 3 on the positive sides of the axes d) $\sqrt{a^2(1 - m^2)} > c$ o the hyperbola $4x^2 - 9y^2 - d$ d) $-\frac{81}{16}$ barameter and <i>c</i> is a constant to d) $c > 0$ 4x = 3y + 4, are $\frac{1}{11}, -\frac{1}{\sqrt{11}}$
a) 2 361. Equation of the circle f is a) $x^2 + y^2 + 3x + 4y$ b) $x^2 + y^2 + 3x - 4y$ c) $x^2 + y^2 + 3x - 4y$ d) $x^2 + y^2 - 3x + 4y$ 362. The straight line $y = n$ a) $\sqrt{a^2(1+m^2)} < c$ 363. If the chords of contact 36 = 0 are at right and a) $\frac{9}{4}$ 364. The condition for the only and the ellipse $2x^2 + 3x^2 + 3x^$	b) 1 through the origin and male y = 0 y = 0 y = 0 y = 0 y = 0 $nx + c$ cuts the circle $x^2 + b$ $\sqrt{a^2(1 - m^2)} < c$ it of tangents from two poing gles, then $\frac{x_1x_2}{y_1y_2}$ is equal to $b) - \frac{9}{4}$ coaxial system $x^2 + y^2 + 2$ points, is b) c < 0 $y^2 = 1$ the points at which $x_1 - \frac{1}{\sqrt{11}}$	$y^{2} = a^{2} \text{ in real points if}$ c) $\sqrt{a^{2}(1+m^{2})} > c$ multiply $x^{2} = a^{2}$ in real points if c) $\sqrt{a^{2}(1+m^{2})} > c$ multiply $x^{2} = a^{2}$ in (x_{1}, y_{1}) and (x_{2}, y_{2}) to c) $\frac{81}{16}$ c) $\frac{81}{16}$ c) $\frac{81}{16}$ c) $x + c = 0$, where λ is a p c) $c = -1$ a the tangent is parallel to a b) $\left(-\frac{2}{\sqrt{11}}, \frac{1}{\sqrt{11}}\right)$ or $\left(\frac{2}{\sqrt{11}}, \frac{1}{\sqrt{11}}\right)$ or $\left(\frac{2}{\sqrt{11}}, \frac{1}{\sqrt{11}}\right)$ or $\left(\frac{3}{5}, \frac{2}{5}\right)$ and the parabola $y^{2} = 4ax$, whi	x = 0 is d) 3 on the positive sides of the axes d) $\sqrt{a^2(1-m^2)} > c$ o the hyperbola $4x^2 - 9y^2 -$ d) $-\frac{81}{16}$ barameter and <i>c</i> is a constant to d) $c > 0$ 4x = 3y + 4, are $\frac{4}{11}, -\frac{1}{\sqrt{11}}$) ch passes through the origin is
a) 2 361. Equation of the circle f is a) $x^2 + y^2 + 3x + 4y$ b) $x^2 + y^2 + 3x - 4y$ c) $x^2 + y^2 + 3x - 4y$ d) $x^2 + y^2 - 3x + 4y$ 362. The straight line $y = n$ a) $\sqrt{a^2(1 + m^2)} < c$ 363. If the chords of contact 36 = 0 are at right and a) $\frac{9}{4}$ 364. The condition for the only of $x^2 + 3x^2 + 3x^2$ a) $\left(\frac{2}{\sqrt{11}}, \frac{1}{\sqrt{11}}\right)$ or $\left(-\frac{2}{\sqrt{11}}, \frac{1}{\sqrt{11}}\right)$ a) $\left(-\frac{2}{5}, -\frac{1}{5}\right)$ 366. The locus of the middle a) $y^2 = ax$	b) 1 through the origin and male y = 0 y = 0 y = 0 y = 0 y = 0 $nx + c$ cuts the circle $x^2 + b$ $\sqrt{a^2(1 - m^2)} < c$ et of tangents from two poing gles, then $\frac{x_1x_2}{y_1y_2}$ is equal to $b) -\frac{9}{4}$ coaxial system $x^2 + y^2 + 2$ points, is b) c < 0 $y^2 = 1$ the points at which $x_1 - \frac{1}{\sqrt{11}}$ the points of the chords of the b) $y^2 = 2ax$	$y^{2} = a^{2} \text{ in real points if}$ c) $\sqrt{a^{2}(1+m^{2})} > c$ multiply of the term of the term of the term of ter	x = 0 is d) 3 on the positive sides of the axes d) $\sqrt{a^2(1 - m^2)} > c$ o the hyperbola $4x^2 - 9y^2 -$ d) $-\frac{81}{16}$ boarameter and <i>c</i> is a constant to d) $c > 0$ 4x = 3y + 4, are $\frac{1}{11}, -\frac{1}{\sqrt{11}}$) ch passes through the origin is d) $x^2 = 4ay$

d) None of these

a)
$$\frac{1}{\sqrt{2}}$$
 b) $\sqrt{\frac{2}{3}}$ c) $\sqrt{\frac{3}{2}}$ d) None of these
368. On the parabola $y = x^2$, the point at least distance from the straight line $y = 2x - 4$ is
a) $(1, 1)$ b) $(1, 0)$ c) $(1, -1)$ d) $(0, 0)$
369. For the curve $7x^2 - 2y^2 + 12xy - 2x + 14y - 22 = 0$ which of the following is true?
a) It is an hyperbola with directrix $2x + y - 1 = 0$
c) It is an hyperbola with directrix $2x + y - 1 = 0$
c) It is an hyperbola with directrix $2x + y - 1 = 0$
c) It is an hyperbola with focus $(1,2)$
d) All of the above
370. If e_1 is the eccentricity of the ellips $\frac{x^2}{16} + \frac{y^2}{2} = 1$ and e_2 is the eccentricity of the hyperbola passing through
the foci of the ellipse and $e_1e_2 = 1$, then equation of the hyperbola is
a) $\frac{x^2}{2} - \frac{y^2}{16} = 1$ b) $\frac{x^2}{16} - \frac{y^2}{9} = -1$ c) $\frac{x^2}{9} - \frac{y^2}{25} = 1$ d) None of these
371. The tangent to the parabola $y^2 = 16x$, which is perpendicular to a line $y - 3x - 1 = 0$, is
a) $3y + x + 36 = 0$ b) $3y - x - 36 = 0$ c) $x + y - 36 = 0$ d) $x - y + 36 = 0$
372. The locus of appoint which moves so that the ratio of the length of the tangents to the circles $x^2 + y^2 + 4x + 3 = 0$ and $x^2 + y^2 - 6x + 7 = 0$ is 2: 3, is
a) $5x^2 + 5y^2 - 60x - 7 = 0$ d) $5x^2 + 5y^2 + 60x - 7 = 0$
c) $5x^2 + 5y^2 - 60x - 7 = 0$ d) $2y = 3x - 4$ c) $y = 3x + 4$ d) $y = x + 1$
374. If the absciss and ordinates of two points P and Q are roots of the equations $x^2 + 2ax - b^2 = 0$ and $y^2 + 22y - 2^2 = 0$ end $y^2 + 2y^2 - 2ax - 2yy - b^2 - q^2 = 0$
d) $x^2 + y^2 - 2ax - 2yy - b^2 - q^2 = 0$
d) $x^2 + y^2 - 2ax - 2yy - b^2 - q^2 = 0$
d) $x^2 + y^2 - 2ax - 2yy - b^2 - q^2 = 0$
d) $x^2 + y^2 - 2ax - 2yy - b^2 - q^2 = 0$
d) $x^2 + y^2 - 2ax - 2yy - b^2 - q^2 = 0$
d) $x^2 + y^2 - 2ax - 2yy - b^2 - q^2 = 0$
d) $x^2 + y^2 - 2ax - 2yy - b^2 - q^2 = 0$
d) $x^2 + y^2 - 2ax - 2yy - b^2 - q^2 = 0$
d) $x^2 + y^2 - 2ax - 2yy - b^2 - q^2 = 0$
d) $x^2 + y^2 - 2ax - 2y - b^2 - q^2 = 0$
d) $x^2 + y^2 + 2x + 17y + 4 = 0$ and y^2
375. The length

a) 1	h) 2	റ്3	d) ()	
383 m 1/c	0,2	$x^2 y^2$	u) 0	
The difference in fo	cal distance of any point	on the hyperbola $\frac{1}{16} - \frac{5}{9} = 1$	L IS	
a) 8	b) 9	c) 0	d) 6	
384. The equation of the	e circle of radius 3 that lies	s in the fourth quadrant and	touching the lines $x = 0$ and y	/ =
0 is				
a) $x^2 + y^2 - 6x + 6$	6y + 9 = 0	b) $x^2 + y^2 - 6x - 4$	6y + 9 = 0	
c) $x^2 + y^2 + 6x - 6$	by + 9 = 0	a) $x^2 + y^2 + 6x +$	6y + 9 = 0	
1^{2}	1 101 0 file end of a local chi	of u of the parabola $y = 4 u$	χ , then its length is	
a) $a\left(t+\frac{1}{t}\right)$	b) $b\left(t-\frac{1}{t}\right)$	c) $a\left(t+\frac{1}{t}\right)$	d) $a\left(t-\frac{1}{t}\right)$	
386. The number of poin	nts with integral coordina	ites $(2a, a - 1)$ that fall in th	e interior of the larger segmen	t of
the circle $x^2 + y^2 =$	= 25 cut off by the parabo	$\ln x^2 + 4y = 0$, is		
a) 1	b) 2	c) 3	d) None of these	
387. The radius of the la coordinate axes, is	rger circle lying in the fir	st quadrant and touching the	e line $4x + 3y - 12 = 0$ and th	e
a) 5	b) 6	c) 7	d) 8	
388. The equation of a d	irectrix of the ellipse $\frac{x^2}{x}$ +	$\frac{y^2}{2} = 1$ is		
a) $2u = \pm 5$	b) $y = \pm 5$	25 c) $2n - \pm 25$	d) $y = \pm 2$	
a) $3y = \pm 3$ 389 If a circle passes the	$y = \pm 3$	$c_{J} = \frac{1}{2}$	$u_j y = \pm 3$	on
of the locus of its ce	$\frac{\partial u}{\partial t} = \frac{\partial u}{\partial t} = $	f(x) = p	or mogonany, men me equan	011
a) $2ax + 2by - (a)$	$a^2 + b^2 + n^2 = 0$			
b) $2ax + 2by - (a)$	$a^2 - b^2 + p^2) = 0$			
c) $x^2 + y^2 - 3 ax -$	$-4 bv + (a^2 + b^2 - p^2) =$	= 0		
d) $x^2 \pm y^2 = 2 ax$	$2h_{1} + (-2, -1, 2, -1, 2)$	2		
$u_{J} \chi + y - 2 u_{J} - $	$-3 py + (a^2 - b^2 - p^2) =$	= 0		
390. The parametric rep	$-3 by + (a^2 - b^2 - p^2) =$	= 0 the ellipse whose foci are (3,	0) and $(-1,0)$ and eccentricity	у
390. The parametric rep 2/3 is	presentation of a point of t	= 0 the ellipse whose foci are (3,	0) and (–1,0) and eccentricit	у
390. The parametric rep 2/3 is a) $(1 + 3 \cos \theta, \sqrt{3} \sin^2 \theta)$	$(a^2 - b^2 - p^2) =$ presentation of a point of t sin θ)	= 0 the ellipse whose foci are (3, b) (1 + 3 cosθ, 5 sin	0) and (−1,0) and eccentricit	у
390. The parametric rep 2/3 is a) $(1 + 3 \cos \theta, \sqrt{3} \sin^{2}\theta)$ c) $(1 + 3 \cos \theta, 1 + 1)$	$(a^2 - b^2 - p^2) = 0$ $(a^2 - b^2 - p^2) =$	= 0 the ellipse whose foci are (3, b) $(1 + 3 \cos\theta, 5 \sin\theta)$ d) $(1 + 3 \cos\theta, \sqrt{5})$	0) and (−1,0) and eccentricit nθ) sinθ)	у
390. The parametric rep 2/3 is a) $(1 + 3 \cos \theta, \sqrt{3} \sin^2\theta)$ c) $(1 + 3 \cos \theta, 1 + 3)$ 391. Which of the follow	$(a^2 - b^2 - p^2) =$ presentation of a point of t sin θ) $\sqrt{5} \sin \theta$) ving equations gives circle	the ellipse whose foci are (3, b) $(1 + 3\cos\theta, 5\sin\theta)$ d) $(1 + 3\cos\theta, \sqrt{5})$	0) and (−1,0) and eccentricit nθ) sinθ)	У
390. The parametric rep 2/3 is a) $(1 + 3 \cos \theta, \sqrt{3} \sin^{2}\theta)$ c) $(1 + 3 \cos \theta, 1 + 3 \sin^{2}\theta)$ Which of the follow a) $r = 2 \sin^{2}\theta$	$\sqrt{5} \sin \theta$ ($a^2 - b^2 - p^2$) = $\sqrt{5} \sin \theta$) $\sqrt{5} \sin \theta$) ying equations gives circle	the ellipse whose foci are (3, b) $(1 + 3\cos\theta, 5\sin\theta)$ d) $(1 + 3\cos\theta, \sqrt{5})$ e? b) $r^2 \cos 2\theta = 1$	0) and (—1,0) and eccentricit n θ) sin θ)	у
390. The parametric rep 2/3 is a) $(1 + 3 \cos \theta, \sqrt{3} \sin \theta)$ c) $(1 + 3 \cos \theta, 1 + 3 \sin \theta)$ 391. Which of the follow a) $r = 2 \sin \theta$ c) $r(4 \cos \theta + 5 \sin \theta)$	$(a^2 - b^2 - p^2) = 0^{-1}$ $(a^2 - b^2 - p^2) = 0^{-1}$ $(a^2$	the ellipse whose foci are (3, b) $(1 + 3\cos\theta, 5\sin\theta)$ d) $(1 + 3\cos\theta, \sqrt{5})$ e? b) $r^2 \cos 2\theta = 1$ d) $5 = r(1 + \sqrt{2}\cos\theta)$	0) and (–1,0) and eccentricit nθ) sinθ) s θ)	У
390. The parametric rep 2/3 is a) $(1 + 3 \cos \theta, \sqrt{3} \sin^2 \theta)$ c) $(1 + 3 \cos \theta, 1 + 3 \sin^2 \theta)$ Which of the follow a) $r = 2 \sin \theta$ c) $r(4 \cos \theta + 5 \sin \theta)$ 392. The equation of the	$(a^2 - b^2 - p^2) = 0^{-1}$ $(a^2 - b^2 - p^2) = 0^{-1}$ $(a^2$	the ellipse whose foci are (3, b) $(1 + 3\cos\theta, 5\sin\theta)$ d) $(1 + 3\cos\theta, 5\sin\theta)$ e? b) $r^2 \cos 2\theta = 1$ d) $5 = r(1 + \sqrt{2}\cos\theta)$ $y^2 = 81$, which is bisected at	0) and $(-1,0)$ and eccentricity $(n \theta)$ $(sin \theta)$ $(s \theta)$ (s the point (-2, 3), is	У
390. The parametric rep 2/3 is a) $(1 + 3 \cos \theta, \sqrt{3} \sin \theta)$ c) $(1 + 3 \cos \theta, 1 + 3 \sin \theta)$ d) $r = 2 \sin \theta$ c) $r(4 \cos \theta + 5 \sin \theta)$ 392. The equation of the a) $3x - y = 13$	$(a^2 - b^2 - p^2) =$ $bresentation of a point of the circle x^2 + ybresentation of a point of the circle x^2 + ybreak (a^2 - b^2 - p^2) =$	the ellipse whose foci are (3, b) $(1 + 3\cos\theta, 5\sin\theta)$ d) $(1 + 3\cos\theta, \sqrt{5})$ e? b) $r^2 \cos 2\theta = 1$ d) $5 = r(1 + \sqrt{2}\cos\theta)$ $y^2 = 81$, which is bisected at c) $2x - 3y = 13$	0) and $(-1,0)$ and eccentricity $n(\theta)$ $\sin(\theta)$ $(\sin(\theta))$	У
390. The parametric rep 2/3 is a) $(1 + 3 \cos \theta, \sqrt{3} \sin^2 \theta)$ c) $(1 + 3 \cos \theta, 1 + 3 \sin^2 \theta)$ 391. Which of the follow a) $r = 2 \sin \theta$ c) $r(4 \cos \theta + 5 \sin \theta)$ 392. The equation of the a) $3x - y = 13$ 393. The circles $x^2 + y^2$	$e^{-3} by + (a^2 - b^2 - p^2) = 0$ presentation of a point of the sin θ $\sqrt{5} \sin \theta$ ying equations gives circle θ = 3 e chord of the circle $x^2 + y^2$ b = 3 $+ x + y = 0$ and $x^2 + y^2$	the ellipse whose foci are (3, b) $(1 + 3\cos\theta, 5\sin\theta)$ d) $(1 + 3\cos\theta, 5\sin\theta)$ e? b) $r^2 \cos 2\theta = 1$ d) $5 = r(1 + \sqrt{2}\cos\theta)$ $y^2 = 81$, which is bisected at c) $2x - 3y = 13$ + x - y intersect at an angle	0) and $(-1,0)$ and eccentricity $n(\theta)$ $\sin(\theta)$ $s(\theta)$ $s(\theta)$ $s(\theta)$ the point (-2, 3), is d) 2x - 3y = -13 e of	у
390. The parametric rep 2/3 is a) $(1 + 3 \cos \theta, \sqrt{3} \sin^2 \theta)$ c) $(1 + 3 \cos \theta, 1 + 3 \sin^2 \theta)$ Which of the follow a) $r = 2 \sin \theta$ c) $r(4 \cos \theta + 5 \sin \theta)$ 392. The equation of the a) $3x - y = 13$ 393. The circles $x^2 + y^2$ a) $\frac{\pi}{6}$	$e^{-3by} + (a^2 - b^2 - p^2) = 0$ presentation of a point of the sin θ $\sqrt{5} \sin \theta$ ying equations gives circle θ) = 3 e chord of the circle $x^2 + y^2$ b) $3x - 4y = 13$ $+ x + y = 0$ and $x^2 + y^2$ b) $\frac{\pi}{4}$	the ellipse whose foci are (3, b) $(1 + 3\cos\theta, 5\sin\theta)$ d) $(1 + 3\cos\theta, 5\sin\theta)$ e? b) $r^2 \cos 2\theta = 1$ d) $5 = r(1 + \sqrt{2}\cos\theta)$ $y^2 = 81$, which is bisected at c) $2x - 3y = 13$ + x - y intersect at an angl c) $\frac{\pi}{2}$	0) and $(-1,0)$ and eccentricity $n(\theta)$ $\sin($	у
390. The parametric rep 2/3 is a) $(1 + 3 \cos \theta, \sqrt{3} \sin^2 \theta)$ c) $(1 + 3 \cos \theta, 1 + 3 \sin^2 \theta)$ 391. Which of the follow a) $r = 2 \sin \theta$ c) $r(4 \cos \theta + 5 \sin^2 \theta)$ 392. The equation of the a) $3x - y = 13$ 393. The circles $x^2 + y^2$ a) $\frac{\pi}{6}$	$e^{-3}by + (a^2 - b^2 - p^2) = 0$ presentation of a point of the sin θ $\sqrt{5}\sin\theta$ ring equations gives circle θ) = 3 e chord of the circle $x^2 + y^2$ b) $3x - 4y = 13$ $+ x + y = 0$ and $x^2 + y^2$ b) $\frac{\pi}{4}$	the ellipse whose foci are (3, b) $(1 + 3\cos\theta, 5\sin\theta)$ d) $(1 + 3\cos\theta, 5\sin\theta)$ e? b) $r^2 \cos 2\theta = 1$ d) $5 = r(1 + \sqrt{2}\cos\theta)$ $y^2 = 81$, which is bisected at c) $2x - 3y = 13$ + x - y intersect at an angl c) $\frac{\pi}{3}$	0) and $(-1,0)$ and eccentricity in θ) sin θ) s θ) the point $(-2, 3)$, is d) $2x - 3y = -13$ e of d) $\frac{\pi}{2}$	У
390. The parametric rep 2/3 is a) $(1 + 3 \cos \theta, \sqrt{3} \sin \theta)$ c) $(1 + 3 \cos \theta, 1 + 3 \sin \theta)$ c) $(1 + 3 \cos \theta, 1 + 3 \sin \theta)$ d) $r = 2 \sin \theta$ c) $r(4 \cos \theta + 5 \sin \theta)$ 392. The equation of the a) $3x - y = 13$ 393. The circles $x^2 + y^2$ a) $\frac{\pi}{6}$ 394. If $\frac{x}{a} + \frac{y}{b} = \sqrt{2}$ touched	$ext{presentation of a point of the circle } x^2 + y^2 = 1$ $ext{presentation of a point of the circle } x^2 + y^2$ $ext{plustored of the circle } x^2 + y^2$ $b) 3x - 4y = 13$ $ext{plustored of } x^2 + y^2$ $b) \frac{\pi}{4}$ $ext{plustored circle } x^2 + \frac{y^2}{b^2} = 1$	the ellipse whose foci are (3, b) $(1 + 3\cos\theta, 5\sin\theta)$ d) $(1 + 3\cos\theta, \sqrt{5}\sin\theta)$ e? b) $r^2 \cos 2\theta = 1$ d) $5 = r(1 + \sqrt{2}\cos\theta)$ y ² = 81, which is bisected at c) $2x - 3y = 13$ + $x - y$ intersect at an angle c) $\frac{\pi}{3}$ then the eccentric angle of the	0) and $(-1,0)$ and eccentricity $n(\theta)$ $\sin($	у
390. The parametric rep 2/3 is a) $(1 + 3 \cos \theta, \sqrt{3} \sin^2 \theta)$ c) $(1 + 3 \cos \theta, 1 + 3 \sin^2 \theta)$ 391. Which of the follow a) $r = 2 \sin \theta$ c) $r(4 \cos \theta + 5 \sin^2 \theta)$ 392. The equation of the a) $3x - y = 13$ 393. The circles $x^2 + y^2$ a) $\frac{\pi}{6}$ 394. If $\frac{x}{a} + \frac{y}{b} = \sqrt{2}$ touched a) 0°	$ext{presentation of a point of the circle } x^2 + y^2 = 1$ $ext{presentation of a point of the circle } x^2 + y^2$ $ext{plustering equations gives circle} x^$	the ellipse whose foci are (3, b) $(1 + 3\cos\theta, 5\sin\theta)$ d) $(1 + 3\cos\theta, 5\sin\theta)$ e? b) $r^2 \cos 2\theta = 1$ d) $5 = r(1 + \sqrt{2}\cos\theta)$ y ² = 81, which is bisected at c) $2x - 3y = 13$ + $x - y$ intersect at an angl c) $\frac{\pi}{3}$ then the eccentric angle of the c) 45°	0) and $(-1,0)$ and eccentricity in θ) sin θ) s θ) the point $(-2, 3)$, is d) $2x - 3y = -13$ e of d) $\frac{\pi}{2}$ the point of contact is equal to d) 60°	У
390. The parametric rep 2/3 is a) $(1 + 3 \cos \theta, \sqrt{3} \sin^2 \theta)$ c) $(1 + 3 \cos \theta, 1 + 3 \sin^2 \theta)$ d) $r = 2 \sin \theta$ c) $r(4 \cos \theta + 5 \sin \theta)$ 392. The equation of the a) $3x - y = 13$ 393. The circles $x^2 + y^2$ a) $\frac{\pi}{6}$ 394. If $\frac{x}{a} + \frac{y}{b} = \sqrt{2}$ touched a) 0°	$ (a^{2} - b^{2} - p^{2}) = b^{2} - p^{2} = b^{2} + p^{2} = b^{2} = b^{2} + p^{2} = 1 $ b) $3x - 4y = 13$ (b) $3x - 4y = 13$ (c) $x^{2} + y^{2} = 0$ and $x^{2} + y^{2} = 1$ (c) $\frac{\pi}{4}$ (c) $y = 0$ (c) $\frac{\pi}{4}$ (c) π	the ellipse whose foci are (3, b) $(1 + 3\cos\theta, 5\sin\theta)$ d) $(1 + 3\cos\theta, \sqrt{5}\sin\theta)$ e? b) $r^2 \cos 2\theta = 1$ d) $5 = r(1 + \sqrt{2}\cos\theta)$ y ² = 81, which is bisected at c) $2x - 3y = 13$ + $x - y$ intersect at an angl c) $\frac{\pi}{3}$ then the eccentric angle of th c) 45° $\sqrt{2}$ makes an angle $\pi/2$ at th	0) and $(-1,0)$ and eccentricity (1,0) (1	у
390. The parametric rep 2/3 is a) $(1 + 3 \cos \theta, \sqrt{3} \sin^2 \theta)$ c) $(1 + 3 \cos \theta, \sqrt{3} \sin^2 \theta)$ c) $(1 + 3 \cos \theta, 1 + 3 \sin^2 \theta)$ 391. Which of the follow a) $r = 2 \sin \theta$ c) $r(4 \cos \theta + 5 \sin^2 \theta)$ 392. The equation of the a) $3x - y = 13$ 393. The circles $x^2 + y^2$ a) $\frac{\pi}{6}$ 394. If $\frac{x}{a} + \frac{y}{b} = \sqrt{2}$ toucher a) 0° 395. Area of the circle in a) $\pi/2$	$(a^{2} - b^{2} - p^{2}) = b^{2}$ presentation of a point of the sin θ $\sqrt{5} \sin \theta$ ring equations gives circle θ) = 3 e chord of the circle $x^{2} + y^{2}$ b) $3x - 4y = 13$ $+ x + y = 0$ and $x^{2} + y^{2}$ b) $\frac{\pi}{4}$ es the ellipse $\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1$ b) 90° which a chord of length a^{2} b) 2π	the ellipse whose foci are (3, b) $(1 + 3\cos\theta, 5\sin\theta)$ d) $(1 + 3\cos\theta, 5\sin\theta)$ e? b) $r^2 \cos 2\theta = 1$ d) $5 = r(1 + \sqrt{2}\cos\theta)$ y ² = 81, which is bisected at c) $2x - 3y = 13$ + $x - y$ intersect at an angl c) $\frac{\pi}{3}$ then the eccentric angle of th c) 45° $\sqrt{2}$ makes an angle $\pi/2$ at th c) π	0) and $(-1,0)$ and eccentricity in θ) sin θ) s θ) the point $(-2, 3)$, is d) $2x - 3y = -13$ e of d) $\frac{\pi}{2}$ the point of contact is equal to d) 60° e centre is d) $\pi/4$	У
390. The parametric rep 2/3 is a) $(1 + 3 \cos \theta, \sqrt{3} \sin^2 \theta)$ c) $(1 + 3 \cos \theta, 1 + 3 \sin^2 \theta)$ d) $r = 2 \sin \theta$ c) $r(4 \cos \theta + 5 \sin \theta)$ 391. Which of the follow a) $r = 2 \sin \theta$ c) $r(4 \cos \theta + 5 \sin \theta)$ 392. The equation of the a) $3x - y = 13$ 393. The circles $x^2 + y^2$ a) $\frac{\pi}{6}$ 394. If $\frac{x}{a} + \frac{y}{b} = \sqrt{2}$ touched a) 0° 395. Area of the circle in a) $\pi/2$ 396. If the chord of contained	$ (a^{2} - b^{2} - p^{2}) = b^{2} = p^{2}) = b^{2} = b^{2} + p^{2}) = b^{2} = b^{2} + b^{$	the ellipse whose foci are (3, b) $(1 + 3\cos\theta, 5\sin\theta)$ d) $(1 + 3\cos\theta, 5\sin\theta)$ e? b) $r^2 \cos 2\theta = 1$ d) $5 = r(1 + \sqrt{2}\cos\theta)$ $y^2 = 81$, which is bisected at c) $2x - 3y = 13$ + x - y intersect at an angle c) $\frac{\pi}{3}$ then the eccentric angle of th c) 45° $\sqrt{2}$ makes an angle $\pi/2$ at th c) π int <i>P</i> to the parabola $y^2 = 4\theta$	0) and $(-1,0)$ and eccentricity (h θ) (sin θ) (s θ) (the point $(-2, 3)$, is (d) $2x - 3y = -13$ (e of (d) $\frac{\pi}{2}$ (he point of contact is equal to (d) 60° (e centre is (d) $\pi/4$ (ax touches the parabola $x^{2} = 4$	y 4 <i>by</i> ,
390. The parametric rep 2/3 is a) $(1 + 3 \cos \theta, \sqrt{3} \sin^2 \theta)$ c) $(1 + 3 \cos \theta, \sqrt{3} \sin^2 \theta)$ c) $(1 + 3 \cos \theta, 1 + 3 \sin^2 \theta)$ 391. Which of the follow a) $r = 2 \sin \theta$ c) $r(4 \cos \theta + 5 \sin^2 \theta)$ 392. The equation of the a) $3x - y = 13$ 393. The circles $x^2 + y^2$ a) $\frac{\pi}{6}$ 394. If $\frac{x}{a} + \frac{y}{b} = \sqrt{2}$ touched a) 0° 395. Area of the circle in a) $\pi/2$ 396. If the chord of contattion the locus of <i>P</i> in	$(a^{2} - b^{2} - p^{2}) = b^{2}$ presentation of a point of the sin θ) $\sqrt{5} \sin \theta$) ring equations gives circle θ) = 3 e chord of the circle $x^{2} + y^{2}$ b) $3x - 4y = 13$ $+ x + y = 0$ and $x^{2} + y^{2}$ b) $\frac{\pi}{4}$ es the ellipse $\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1$ b) 90° which a chord of length a^{2} b) 2π act of tangents from a points a points a point of the second	the ellipse whose foci are (3, b) $(1 + 3 \cos\theta, 5 \sin \theta)$ d) $(1 + 3 \cos\theta, 5 \sin \theta)$ e? b) $r^2 \cos 2\theta = 1$ d) $5 = r(1 + \sqrt{2} \cos \theta)$ y ² = 81, which is bisected at c) $2x - 3y = 13$ + $x - y$ intersect at an angle c) $\frac{\pi}{3}$ then the eccentric angle of the c) 45° $\sqrt{2}$ makes an angle $\pi/2$ at the c) π int <i>P</i> to the parabola $y^2 = 4d^2$	0) and $(-1,0)$ and eccentricity in θ) sin θ) s θ) the point $(-2, 3)$, is d) $2x - 3y = -13$ e of d) $\frac{\pi}{2}$ the point of contact is equal to d) 60° e centre is d) $\pi/4$ ax touches the parabola $x^{2} = 4$	у 4 <i>by</i> ,
390. The parametric rep 2/3 is a) $(1 + 3 \cos \theta, \sqrt{3} \sin \theta)$ c) $(1 + 3 \cos \theta, 1 + 3 \sin \theta)$ c) $(1 + 3 \cos \theta, 1 + 3 \sin \theta)$ c) $(1 + 3 \cos \theta, 1 + 3 \sin \theta)$ d) $r = 2 \sin \theta$ c) $r(4 \cos \theta + 5 \sin \theta)$ 391. Which of the follow a) $r = 2 \sin \theta$ c) $r(4 \cos \theta + 5 \sin \theta)$ 392. The equation of the a) $3x - y = 13$ 393. The circles $x^2 + y^2$ a) $\frac{\pi}{6}$ 394. If $\frac{x}{a} + \frac{y}{b} = \sqrt{2}$ touched a) 0° 395. Area of the circle in a) $\pi/2$ 396. If the chord of contatthen the locus of P is a) Circle	$ (a^{2} - b^{2} - p^{2}) = b^{2} = b^{2} = p^{2}) = b^{2} = b^{2} = p^{2}) = b^{2} = b^{$	the ellipse whose foci are (3, b) $(1 + 3\cos\theta, 5\sin\theta)$ d) $(1 + 3\cos\theta, 5\sin\theta)$ e? b) $r^2 \cos 2\theta = 1$ d) $5 = r(1 + \sqrt{2}\cos\theta)$ y ² = 81, which is bisected at c) $2x - 3y = 13$ + $x - y$ intersect at an angle c) $\frac{\pi}{3}$ then the eccentric angle of th c) 45° $\sqrt{2}$ makes an angle $\pi/2$ at th c) π int <i>P</i> to the parabola $y^2 = 4d\theta$ c) Ellipse	0) and $(-1,0)$ and eccentricity (h θ) (sin θ) (s θ) (the point $(-2, 3)$, is (d) $2x - 3y = -13$ (e of (d) $\frac{\pi}{2}$ (he point of contact is equal to (d) 60° (e centre is (d) $\pi/4$ (ax touches the parabola $x^{2} = 4$ (d) Hyperbola	y 4 <i>by</i> ,
390. The parametric rep 2/3 is a) $(1 + 3 \cos \theta, \sqrt{3} \sin^2 \theta)$ c) $(1 + 3 \cos \theta, \sqrt{3} \sin^2 \theta)$ c) $(1 + 3 \cos \theta, 1 + 3 \sin^2 \theta)$ 391. Which of the follow a) $r = 2 \sin \theta$ c) $r(4 \cos \theta + 5 \sin^2 \theta)$ 392. The equation of the a) $3x - y = 13$ 393. The circles $x^2 + y^2$ a) $\frac{\pi}{6}$ 394. If $\frac{x}{a} + \frac{y}{b} = \sqrt{2}$ touched a) 0° 395. Area of the circle in a) $\pi/2$ 396. If the chord of contatthen the locus of <i>P</i> is a) Circle 397. If $2x + y + k = 0$ is a) 16		the ellipse whose foci are (3, b) $(1 + 3 \cos\theta, 5 \sin \theta)$ $(1 + 3 \cos\theta, 5 \sin \theta)$ $(1 + 3 \cos\theta, \sqrt{5})$ e? b) $r^2 \cos 2\theta = 1$ d) $5 = r(1 + \sqrt{2} \cos \theta)$ y ² = 81, which is bisected at c) $2x - 3y = 13$ + $x - y$ intersect at an angl c) $\frac{\pi}{3}$ then the eccentric angle of th c) 45° $\sqrt{2}$ makes an angle $\pi/2$ at th c) π int <i>P</i> to the parabola $y^2 = 4d^{\circ}$ c) Ellipse a $y^2 = -8x$, then the values of $x^2 = -8x$, then the values of $x^2 = -8x$.	0) and $(-1,0)$ and eccentricity in θ) sin θ) s θ) the point $(-2, 3)$, is d) $2x - 3y = -13$ e of d) $\frac{\pi}{2}$ the point of contact is equal to d) 60° e centre is d) $\pi/4$ ax touches the parabola $x^{2} = 4$ d) Hyperbola of <i>k</i> is d) 24	у 4 <i>by</i> ,
390. The parametric rep 2/3 is a) $(1 + 3 \cos \theta, \sqrt{3} \sin \theta)$ c) $(1 + 3 \cos \theta, \sqrt{3} \sin \theta)$ c) $(1 + 3 \cos \theta, 1 + 3)$ 391. Which of the follow a) $r = 2 \sin \theta$ c) $r(4 \cos \theta + 5 \sin \theta)$ 392. The equation of the a) $3x - y = 13$ 393. The circles $x^2 + y^2$ a) $\frac{\pi}{6}$ 394. If $\frac{x}{a} + \frac{y}{b} = \sqrt{2}$ touched a) 0° 395. Area of the circle in a) $\pi/2$ 396. If the chord of contatthen the locus of P is a) Circle 397. If $2x + y + k = 0$ is a) -16 398. The equation of circle		the ellipse whose foci are (3, b) $(1 + 3\cos\theta, 5\sin\theta)$ d) $(1 + 3\cos\theta, 5\sin\theta)$ e? b) $r^2 \cos 2\theta = 1$ d) $5 = r(1 + \sqrt{2}\cos\theta)$ y ² = 81, which is bisected at c) $2x - 3y = 13$ + $x - y$ intersect at an angle c) $\frac{\pi}{3}$ then the eccentric angle of th c) 45° $\sqrt{2}$ makes an angle $\pi/2$ at th c) π int <i>P</i> to the parabola $y^2 = 4\theta$ c) Ellipse a $y^2 = -8x$, then the values of c) -24	0) and $(-1,0)$ and eccentricity (a) θ) (b) θ (c)	y 4 <i>by</i> ,
390. The parametric rep 2/3 is a) $(1 + 3 \cos \theta, \sqrt{3} \sin^2 \theta)$ c) $(1 + 3 \cos \theta, \sqrt{3} \sin^2 \theta)$ c) $(1 + 3 \cos \theta, 1 + 3 \sin^2 \theta)$ 391. Which of the follow a) $r = 2 \sin \theta$ c) $r(4 \cos \theta + 5 \sin^2 \theta)$ 392. The equation of the a) $3x - y = 13$ 393. The circles $x^2 + y^2$ a) $\frac{\pi}{6}$ 394. If $\frac{x}{a} + \frac{y}{b} = \sqrt{2}$ touched a) 0° 395. Area of the circle in a) $\pi/2$ 396. If the chord of contatter then the locus of P is a) Circle 397. If $2x + y + k = 0$ is a) -16 398. The equation of circle ay = 0 Then $n = 2$		the ellipse whose foci are (3, b) $(1 + 3 \cos\theta, 5 \sin \theta)$ $(1 + 3 \cos\theta, 5 \sin \theta)$ $(1 + 3 \cos\theta, \sqrt{5})$ e? b) $r^2 \cos 2\theta = 1$ d) $5 = r(1 + \sqrt{2} \cos \theta)$ y ² = 81, which is bisected at c) $2x - 3y = 13$ + $x - y$ intersect at an angle c) $\frac{\pi}{3}$ then the eccentric angle of th c) 45° $\sqrt{2}$ makes an angle $\pi/2$ at th c) π int <i>P</i> to the parabola $y^2 = 4d^{\circ}$ c) Ellipse a $y^2 = -8x$, then the values of c) -24 at origin and passes through	0) and $(-1,0)$ and eccentricity in θ) sin θ) sin θ) s θ) the point $(-2, 3)$, is d) $2x - 3y = -13$ e of d) $\frac{\pi}{2}$ the point of contact is equal to d) 60° e centre is d) $\pi/4$ ax touches the parabola $x^2 = 4$ d) Hyperbola of <i>k</i> is d) 24 the point $(2, 1)$ is $x^2 + y^2 + y^2$	y 4 <i>by</i> , 9x +
390. The parametric rep 2/3 is a) $(1 + 3 \cos \theta, \sqrt{3} \sin \theta)$ c) $(1 + 3 \cos \theta, \sqrt{3} \sin \theta)$ c) $(1 + 3 \cos \theta, 1 + 3 \sin \theta)$ d) $r = 2 \sin \theta$ c) $r(4 \cos \theta + 5 \sin \theta)$ 391. Which of the follow a) $r = 2 \sin \theta$ c) $r(4 \cos \theta + 5 \sin \theta)$ 392. The equation of the a) $3x - y = 13$ 393. The circles $x^2 + y^2$ a) $\frac{\pi}{6}$ 394. If $\frac{x}{a} + \frac{y}{b} = \sqrt{2}$ touch a) 0° 395. Area of the circle in a) $\pi/2$ 396. If the chord of contatthe the locus of P is a) Circle 397. If $2x + y + k = 0$ is a) -16 398. The equation of circle qy = 0. Then p, q and a) $-5, -5$	$ -3 by + (a^2 - b^2 - p^2) = 0 $ by the presentation of a point of the point of	the ellipse whose foci are (3, b) $(1 + 3\cos\theta, 5\sin\theta)$ d) $(1 + 3\cos\theta, 5\sin\theta)$ e? b) $r^2 \cos 2\theta = 1$ d) $5 = r(1 + \sqrt{2}\cos\theta)$ y ² = 81, which is bisected at c) $2x - 3y = 13$ + $x - y$ intersect at an angle c) $\frac{\pi}{3}$ then the eccentric angle of th c) 45° $\sqrt{2}$ makes an angle $\pi/2$ at th c) π int <i>P</i> to the parabola $y^2 = 4d\theta$ c) Ellipse a $y^2 = -8x$, then the values of c) -24 at origin and passes through	0) and $(-1,0)$ and eccentricity an θ) sin θ) sin θ) sin θ) s θ) the point $(-2, 3)$, is d) $2x - 3y = -13$ e of d) $\frac{\pi}{2}$ the point of contact is equal to d) 60° e centre is d) $\pi/4$ ax touches the parabola $x^{2} = 4$ d) Hyperbola of <i>k</i> is d) 24 th the point (2, 1) is $x^{2} + y^{2} + p$ d) None of these	y $4by$, $5x + 5x$

a) (0,1) b) (1,0) c) (0, -1)d) (-1, 0)400. A variable chord is drawn through the origin to the circle $x^2 + y^2 - 2ax = 0$. The locus of the centre of the circle drawn on this chord as diameter is b) $x^2 + y^2 - ax = 0$ c) $x^2 + y^2 + ay = 0$ d) $x^2 + y^2 - ay = 0$ a) $x^2 + y^2 + ax = 0$ 401. The centre of the ellipse $\frac{(x+y-2)^2}{9} + \frac{(x-y)^2}{16} = 1$ is a) (0,0) b) (1,1) c) (1,0) d) (0,1) 402. The equation of the directrix of $(x - 1)^2 = 2(y - 2)$ is d) 2y - 3 = 0a) 2y + 3 = 0b) 2x + 1 = 0c) 2x - 1 = 0403. The point of contact of the line x - 2y - 1 = 0 with the parabola $y^2 = 2(x - 3)$, is a) (5,2) b) (5, -2)c) (2,5) d) (5,3) 404. The equation of the hyperbola whose directrix x + 2y = 1, focus (2,1) and eccentricity 2 is a) $x^2 + 16 xy - 11 y^2 - 12 x + 6 y + 21 = 0$ b) $x^2 - 16 xy - 11 y^2 - 12 x + 6 y + 21 = 0$ c) $x^2 - 4xy - y^2 - 12x + 6y + 21 = 0$ d) None of these 405. Locus of mid point of any focal chord of $y^2 = 4ax$ is a) $y^2 = a(x - 2a)$ b) $y^2 = 2a(x - 2a)$ c) $y^2 = 2a(x - a)$ d) None of these 406. The angle between the pair of tangents drawn from the point (1, 2) to the ellipse $3x^2 + 2y^2 = 5$, is a) $\tan^{-1}(12/5)$ b) $\tan^{-1}(6/\sqrt{5})$ c) $\tan^{-1}(12/\sqrt{5})$ d) $\tan^{-1}(6/5)$ 407. If the foci of an ellipse are $(\pm\sqrt{5}, 0)$ and its eccentricity is $\sqrt{5}/3$, then the equation of the ellipse is a) $9x^2 + 4y^2 = 36$ b) $4x^2 + 9y^2 = 36$ c) $36x^2 + 9y^2 = 4$ d) $9x^2 + 36y^2 = 4$ 408. The locus of the mid-points of chords of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ that touch the circle $x^2 + y^2 = b^2$, is a) $\left(\frac{x^2}{a^2} + \frac{y^2}{b^2}\right)^2 = \frac{x^2}{a^4} + \frac{y^2}{b^4}$ b) $\left(\frac{x^2}{a^2} + \frac{y^2}{b^2}\right)^2 = b^2 \left(\frac{x^2}{a^4} + \frac{y^2}{b^4}\right)$ c) $\left(\frac{x^2}{a^2} + \frac{y^2}{b^2}\right)^2 = a^2 \left(\frac{x^2}{a^4} + \frac{y^2}{b^4}\right)$ d) None of these 409. The equations of the normal at the ends of the latus rectum of the parabola $y^2 = 4ax$ are given by a) $x^2 - y^2 - 6 ax + 9 a^2 = 0$ b) $x^2 - y^2 - 6 ax - 6 ay - 6 ay + 9 a^2 = 0$ c) $x^2 - y^2 - 6 ay + 9 a^2 = 0$ d) None of these 410. The value of k, if (1, 2), (k, -1) are conjugate points with respect to the ellipse $2x^2 + 3y^2 = 6$, is b) 4 a) 2 d) 8 411. The angle between the asymptotes of $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ is equal to b) $\tan^{-1}\left(\frac{a}{b}\right)$ c) $2\tan^{-1}\left(\frac{a}{b}\right)$ a) $2 \tan^{-1} \left(\frac{b}{a} \right)$ d) $\tan^{-1}\left(\frac{b}{a}\right)$ 412. The eccentricity of the conic $\frac{(x+2)^2}{7} + (y-1)^2 = 14$ is

a)
$$\sqrt{\frac{7}{8}}$$
 b) $\sqrt{\frac{6}{17}}$ c) $\frac{\sqrt{3}}{2}$ d) $\sqrt{\frac{6}{7}}$

413. The circle $x^2 + y^2 = 4$ cuts the circle $x^2 + y^2 + 2x + 3y - 5 = 0$ in *A* and *B*. Then the equation of the circle on *AB* as diameter is

a)
$$13(x^2 + y^2) - 4x - 6y - 50 = 0$$

b) $9(x^2 + y^2) + 8x - 4y + 25 = 0$

c) $x^2 + y^2 - 5x + 2y + 72 = 0$

d) None of these

414. If θ is the angle between the tangents from (-1, 0) to the circle

 $x^{2} + y^{2} - 5x + 4y - 2 = 0$, then θ is equal to

a)
$$2 \tan^{-1}\left(\frac{7}{4}\right)$$
 b) $\tan^{-1}\left(\frac{7}{4}\right)$ c) $2 \cot^{-1}\left(\frac{7}{4}\right)$ d) $\cot^{-1}\left(\frac{7}{4}\right)$

415. The equation to the circle having y = mx as a diameter where y = mx is a chord of the circle, through the origin, of radius a and having the x-axis as diameter is

- a) $(1 + m^2)(x^2 + y^2) 2a(x + my) = 0$
- b) $(1 m^2)(x^2 + y^2) 2a(x + my) = 0$ c) $(1 + m^2)(x^2 + y^2) + 2a(x + my) = 0$
- $(1 + m^{2})(x^{2} + y^{2}) + 2a(x + my) = 0$

d) None of these

416. A triangle *ABC* of area Δ is inscribed in the parabola $y^2 = 4ax$ such that A is the vertex and *BC* is a focal chord of the parabola. The difference of the ordinates of *B* and *C* is

a)
$$\frac{2\Delta}{a}$$
 b) $\frac{\Delta}{a}$ c) $\frac{2a^3}{\Delta}$ d) $\frac{2\Delta^2}{a^3}$

^{417.} Let *S*, *S'* be the foci and *BB'* be the minor axis of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. If $\angle BSS' = \theta$, then the eccentricity *e* of the ellipse is equal to a) $\sin \theta$ b) $\cos \theta$ c) $\tan \theta$ d) $\cot \theta$

418. An isosceles right angles triangle is inscribed in the circle $x^2 + y^2 = r^2$. If the coordinates of an end of the hypotenuse are (a, b), the coordinates of the vertex are

a) (-a, -b) b) (b, -a) c) (b, a) d) (-b, -a)419. If (-3, 2) lies on the circle $x^2 + y^2 + 2gx + 2fy + c = 0$ which is concentric with the circle $x^2 + y^2 + 6x + 8y - 5 = 0$, then *c* is equal to a) 11 b) -11 c) 24 d) 100

^{420.} Let *S* and *S'* be two foci of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. If the circle described on *SS'* as diameter touches the ellipse in real points, then the eccentricity of the ellipse is

a)
$$\frac{2}{\sqrt{3}}$$
 b) $\frac{\sqrt{3}}{2}$ c) $\frac{1}{\sqrt{2}}$ d) $\frac{1}{\sqrt{3}}$

421. The distance between the chords of contact of the tangent to the circle $x^2 + y^2 + 2gx + 2fy + c = 0$ from the origin and the point (g, f), is

a)
$$g^2 + f^2$$
 b) $\frac{1}{2}(g^2 + f^2 + c)$ c) $\frac{g^2 + f^2 + c}{2\sqrt{g^2 + f^2}}$ d) $\frac{g^2 + f^2 - c}{2\sqrt{g^2 + f^2}}$

422. If P(-1, -3) is a centre of similitude for the circles $x^2 + y^2 = 1$ and $x^2 + y^2 - 2x - 6y + 6 = 0$, then the length of the common tangent through *P* to the circles is a) 2 b) 3 c) 4 d) 5

423. The equation $x^2 + y^2 - 2x - 2\lambda y - 8 = 0$ represents a system of circles, λ being a parameter, passing through two fixed points *P* and *Q*. The circle on *PQ* as a diameter, is

a)
$$x^2 + y^2 - 2y = 0$$

- b) $x^2 + y^2 2x 8 = 0$
- c) $x^2 + y^2 2y = 8$
- d) $x^2 + y^2 2x 2y = 8$

a) √26

424. The radius of the circle $x^2 + y^2 + 4x + 6y + 13 = 0$ is

b) $\sqrt{13}$

c) √23

d) 0

425. If the vertex of a parabola is (0,2) and the extremities of latusrectum are (-6,4) and (6,4), then, its equation is

a) $x^2 - 4y + 8 = 0$ 426. One of the diameters of the circle $x^2 + y^2 - 12x + 4y + 6 = 0$ is given by a) x + y = 0b) x + 3y = 0c) $x^2 - 8y + 16 = 0$ d) $x^2 + 8y - 16 = 0$ d) 3x + 2y = 0 427. The equation of the director circle of the hyperbola $9x^2 - 16y^2 = 144$ is

a)
$$x^2 + y^2 = 7$$
 b) $x^2 + y^2 = 9$ c) $x^2 + y^2 = 16$ d) $x^2 + y^2 = 25$

- 428. A line is drawn through a fixed point $P(\alpha, \beta)$ to cut the circle $x^2 + y^2 = r^2$ at *A* and *B*. Then, $PA \cdot PB$ is equal to
- a) $(\alpha + \beta)^2 r^2$ b) $\alpha^2 + \beta^2 r^2$ c) $(\alpha \beta)^2 + r^2$ d) None of these 429. If (α, β) is a point on the chord *PQ* of the circle $x^2 + y^2 = 25$, where the coordinates of *P* and *Q* are (3, -4)
 - and (4,3) respectively, then
 - a) $3 \le \alpha \le 4$ and $-4 \le \beta \le 3$
 - b) $-4 \le \alpha \le 3$ and $3 \le \beta \le 4$
 - c) $\alpha = 3$ and $-4 \le \beta \le 4$
 - d) None of these
- 430. The parabola $y^2 = 8x$ and the circle $x^2 + y^2 = 2$
 - a) Have only two common tangents which are mutually perpendicular
 - b) Have only two common tangents which are parallel to each other
 - c) Have infinitely many common tangents
 - d) Does not have any common tangent
- 431. A parabola is drawn with focus at (3, 4) and vertex at the focus of the parabola $y^2 12x 4y + 4 = 0$. The equation of the parabola is
 - a) $x^2 6x 8y + 25 = 0$ b) $y^2 - 8x - 6y + 25 = 0$
 - c) $x^2 6x + 8y 25 = 0$ d) $x^2 + 6x - 8y - 25 = 0$
- 432. The foci of the ellipse, $25(x + 1)^2 + 9(y + 2)^2 = 225$ are at,
 - a) (-1,2) and (-1,-6)
 - b) (-2,1) and (-2,6)
 - c) (-1, -2) and (-2, -1)
 - d) (-1, -2) and (-1, -6)

433. Radius of circle in which a chord length $\sqrt{2}$ makes an angle $\frac{\pi}{2}$ at the centre, is

a) 1 b) $\sqrt{3}$ c) $\frac{\sqrt{3}}{2}$ d) None of these

434. If the focus and vertex of a parabola are the points (0,2) and (0,4) respectively, then its equation is a) $y^2 = 8x + 32$ b) $y^2 = -88x + 32$ c) $x^2 + 8y = 32$ d) $x^2 - 8y = 32$

435. The foci of an ellipse are $(0, \pm 6)$ and the equations of the directrices are $y = \pm 9$. The equation of the ellipse is

a) $5x^2 + 9y^2 = 4$ b) $2x^2 - 6y^2 = 28$ c) $6x^2 + 3y^2 = 45$ d) $9x^2 + 5y^2 = 180$ 436. The point of intersection of tangents at the ends of the latusrectum of the parabola $y^2 = 4x$, is equal to b) (-1,0) c) (0, 1) d) (0, -1)a) (1,0) 437. If a variable circle $x^2 + y^2 - 2ax + 4ay = 0$ intersects the hyperbola xy = 4 at the points $(x_i, y_i) =$ 1, 2, 3, 4, then locus of the point $\left(\frac{x_1+x_2+x_3+x_4}{4}, \frac{y_1+y_2+y_3+y_4}{4}\right)$ is a) y + 2x = 0438. The equation $13[(x - 1)^2 + (y - 2)^2] = 3(2x + 3y - 2)^2$ represents d) v + 4x - 7 = 0a) Parabola b) Ellipse c) Hyperbola d) None of these 439. The equation of the circle of radius 5 in the first quadrant which touches *x*-axis and the line 4y = 3x is b) $x^2 + y^2 - 30x - 10y + 225 = 0$ a) $x^2 + y^2 - 24x - y - 25 = 0$ c) $x^2 + y^2 - 16x - 18y + 64 = 0$ d) $x^2 + y^2 - 20x - 12y + 144 = 0$ 440. *AB*, *AC* are tangents to a parabola $y^2 = 4ax$; p_1 , p_2 , p_3 are the lengths of the perpendiculars from *A*, *B*, *C* on any tangent to the curve, then p_2 , p_1 , p_3 are in c) HP a) AP b) GP d) None of these 441. A circle cuts rectangular hyperbola xy = 1 in the points $(x_r, y_r), r = 1, 2, 3, 4$, then a) $y_1 y_2 y_3 y_4 = 1$ b) $x_1 x_2 x_3 x_4 = 1$ c) $x_1 x_2 x_3 x_4 = y_1 y_2 y_3 y_4 = -1$ d) $y_1 y_2 y_3 y_4 = 0$

442. If the line $y = 3x + \lambda$ touches the hyperbola $9x^2 - 5y^2 = 45$, then the value of λ is b) 45 a) 36 c) 6 d) 15 443. The equation of the circle touching x = 0, y = 0 and x = 4 is b) $x^2 + y^2 - 8x - 8y + 16 = 0$ a) $x^2 + y^2 - 4x - 4y + 16 = 0$ c) $x^2 + y^2 + 4x + 4y - 4 = 0$ d) $x^2 + y^2 - 4x - 4y + 4 = 0$ 444. *A*, *B*, *C* and *D* are the points of intersection with the coordinate axes of the lines ax + by = ab and bx + by =ay = ab, then a) A, B, C, D are concylic b) A, B, C, D form a parallelogram c) *A*, *B*, *C*, *D* from a rhombus d) None of the above 445. The condition for a line y = 2x + c to touch the circle $x^2 + y^2 = 16$ is d) $c^2 = 64$ b) $c^2 = 80$ c) c = 12a) c = 10446. If $(\sqrt{3})bx + ay = 2ab$ touches the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, then eccentric angle ϕ is d) $\frac{\pi}{2}$ c) $\frac{\pi}{3}$ a) $\frac{\pi}{4}$ b) $\frac{\pi}{4}$ 447. The equation of the ellipse whose foci are at $(\pm 2, 0)$ and eccentricity is $\frac{1}{2}$, is $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. Then, a) $a^2 = 16, b^2 = 12$ b) $a^2 = 12, b^2 = 16$ c) $a^2 = 16, b^2 = 4$ d) $a^2 = 4, b^2 = 16$ 448. In the standard form of an ellipse sum of the focal distances of a point is b) –2a d) None of these a) 1 c) 2a 449. The number of common tangents to the circles $x^2 + y^2 - y = 0$ and $x^2 + y^2 + y = 0$ is b) 3 c) 0 d) 1 a) 2 450. If asymptotes of a hyperbola are at 90°, then a) Eccentricity is $\sqrt{2}$ b) Eccentricity is 2 c) Eccentricity depends on equation of asymptotes d) None of the above 451. The centre of a circle is (2, -3) and the circumference is 10π . Then, the equation of the circle is a) $x^2 + y^2 + 4x + 6y + 12 = 0$ b) $x^2 + y^2 - 4x + 6y + 12 = 0$ c) $x^2 + y^2 - 4x + 6y - 12 = 0$ d) $x^2 + y^2 - 4x - 6y - 12 = 0$ 452. The equation of the pair of straight lines parallel to x-axis and touching the circle $x^2 + y^2 - 6x - 4y - 6x - 4x - 4y - 6x - 4y - 4x - 4x - 4x - 4x - 4x - 4$ 12 = 0. is a) $y^2 - 4y - 21 = 0$ b) $y^2 + 4y - 21 = 0$ c) $y^2 - 4y + 21 = 0$ d) $y^2 + 4y + 21 = 0$ 453. The equation $y^2 - 8y - x + 19 = 0$ represents a parabola whose focus is $(\frac{1}{4}, 0)$ and directrix is a) $x = \frac{-1}{4}$ a parabola whose vertex is (3, 4) and directrix is b) $x = \frac{11}{4}$ a parabola whose focus is $\left(\frac{13}{44}, 4\right)$ and vertex is (0, d) a curve which is not a parabola c) 454. Centre of circle whose normals are $x^2 - 2xy + 3x + 6y = 0$, is b) $(3, -\frac{3}{2})$ c) $(\frac{3}{2}, 3)$ d) None of these a) $(3, \frac{3}{2})$ 455. If the normal at (1,2) on the parabola $y^2 = 4x$ meets the parabola again at the point $(t^2, 2t)$, then the value of t is c) −3 a) 1 b) 3 456. The locus of the point of intersection of the straight lines $\frac{x}{a} + \frac{y}{b} = \lambda$ and $\frac{x}{a} - \frac{y}{b} = \frac{1}{\lambda} (\lambda \text{ is a variable})$ is a) A circle b) A parabola c) An ellipse d) A hyperbola 457. The equation of the hyperbola whose foci are (6, 5), (-4, 5) and eccentricity 5/4, is a) $\frac{(x-1)^2}{16} - \frac{(y-5)^2}{9} = 1$

	2 2			
	b) $\frac{x^2}{16} - \frac{y^2}{16} = 1$			
	c) $\frac{(x-1)^2}{16} - \frac{(y-5)^2}{9} =$	-1		
	d) None of these			
458	. The directrix of the parab	ola $x^2 - 4x - 8y + 12 = 0$	is	
	a) $y = 0$	b) $x = 1$	c) $y = -1$	d) $x = -1$
459	The locus of the vertices of	of the family of parabolas y	$=\frac{a^3x^2}{a^2x^2} + \frac{a^2x}{a^2x^2} - 2a$ is	-
	3	35	3 2 2000 64	105
	a) $xy = \frac{3}{4}$	b) $xy = \frac{35}{16}$	c) $xy = \frac{01}{105}$	d) $xy = \frac{105}{64}$
460	The limiting points of coard $10x - 4y - 1 = 0$ are	xial-system determined by	the circles $x^2 + y^2 + 5x + $	$y + 4 = 0$ and $x^2 + y^2 +$
	10x - 4y - 1 = 0 are a) (0, 3) and (2, 1)		b) $(0 - 3)$ and $(-2 - 1)$	
	c) $(0, 3)$ and $(2, 1)$		d) $(0, -3)$ and $(2, 1)$	
461	If the tengent of enviroint	D on the ellipse $x^2 + y^2$	1 mosto the ten gente at the	and D and D' of minor
-	axis at <i>L</i> and L' respective	elv, then $BL \cdot B'L' =$	1 meets the tangents at the	enus B anu B or minor
	a) a^2	b) b^2	c) $a^2 + b^2$	d) $a^2 - b^2$
462	. The equation of the ellips	e (referred to its axes as th	e axes of x and y respective	ely) which passes through
	the point $(-3,1)$ and has e	eccentricity $\sqrt{\frac{2}{5}}$, is		
	a) $3x^2 + 6y^2 = 33$	b) $5x^2 + 3y^2 = 48$	c) $3x^2 + 5y^2 = 32$	d) None of these
463	. The locus of the point whi	ich moves such that the rat	tio of its distance from two	fixed point in the plane is
	always a constant $k (< 1)$	is		
	a) hyperbola	b) ellipse	c) straight line	d) circle
464	The equation $\frac{x^2}{x^2} + \frac{y^2}{x^2} =$	= 1 represents		
	a) A hyperbola if $k < 8$	-		
	h) An ellipse if $k > 8$			
	c) A hyperbola if $8 < k < k$	12		
	d) None of these			
465	. The straight lines joining	the origin to the points of i	ntersection of the line $4x$ +	-3y = 24 with the curve
	$(x-3)^2 + (y-4)^2 = 25$	0 1		, ,
	a) Are coincident			
	b) Are perpendicular			
	c) Make equal angles with	n <i>x-</i> axis		
	d) None of these			
466	The value of k so that x^2 -	$+y^2 + kx + 4y + 2 = 0$ an	$d 2(x^2 + y^2) - 4x - 3y + y^2$	k = 0 cut orthogonally, is
	a) $\frac{10}{1}$	b) $-\frac{8}{3}$	c) $-\frac{10}{10}$	d) $\frac{8}{-}$
167	3 The diameter of 16 x^2	3	3	3
407	$\frac{16 \text{r}}{16 \text{r}} = \frac{16 \text{s}}{16 \text{r}}$	$y^{-} = 144$ which is conjug 32 x	are to $x = 2 y$ is $16 y$	32 v
	a) $y = \frac{10 x}{9}$	b) $y = \frac{32x}{9}$	c) $x = \frac{10^{9} y}{9}$	d) $x = \frac{32y}{9}$
468	The radius of the circle part $x + 2y = 4$ is	assing through the point $P($	(6, 2) and two of whose dia	meter are $x + y = 6$ and
	a) 4	h) 6	c) 20	d) $\sqrt{20}$
460	The total number of tange	onts through the points (?	5) that can be drawn to the	$u_{J} \vee 20$ $u_{J} \vee 20$ $u_{J} \vee 20$
409	and $25x^2 + 9y^2 = 450$ is	ents un ough the points (5,	<i>s j</i> that tan be thawn to the	z = z = z = z = z = z = z = z = z = z =
	a) 0	b) 2	c) 3	d) 4
470	If a point $(x, y) = (\tan \theta +$	$-\sin\theta$, tan θ $-\sin\theta$), then l	locus of (x, y) is	
	a) $(x^2y)^{2/3} + (xy^2)^{2/3} =$	1	b) $x^2 - y^2 = 4xy$	

c) $(x^2 - y^2)^2 = 16xy$		d) $x^2 - y^2 = 6xy$	
471. The latusrectum of the	e ellipse $9x^2 + 15y^2 = 144$	is	
a) 4	b) $\frac{11}{4}$	c) $\frac{7}{2}$	d) $\frac{9}{2}$
472. If the tangents are dra	when to the circle $x^2 + y^2 =$	12 at the point where it me	ets the circle $x^2 + y^2 - 5x +$
3y - 2 = 0, then the p	point of intersection of thes	e tangents is	
a) (6, -6)	b) (6,18/5)	c) (6, -18/5)	d) None of these
473. The difference of the f	ocal distances of any point	on the hyperbola is equal to	oits
a) Latusrectum	b) Eccentricity	c) Transverse axis	d) Conjugate axis
474. Equation of the hyper	bola whose vertices are $(\pm$	$(3,0)$ and foci at $(\pm 5, 0)$, is	, , ,
a) $16x^2 - 9y^2 = 144$	b) $9x^2 - 16y^2 = 144$	c) $25x^2 - 9y^2 = 225$	d) $9x^2 - 25y^2 = 81$
475. The tangent at point <i>F</i>	P on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	cuts the minor axis in Q and	<i>PR</i> is drawn perpendicular to
the minor axis. If <i>C</i> is	the centre of the ellipse, the	$en CQ \cdot CR =$	
a) <i>b</i> ²	b) 2 <i>b</i> ²	c) <i>a</i> ²	d) 2 <i>a</i> ²
476. If equation $(10x - 5)^{2}$	$\lambda^{2} + (10y - 4)^{2} = \lambda^{2}(3x + 4)^{2}$	$(4y - 1)^2$ represents a hyper	bola, then
a) $-2 < \lambda < 2$	b) $\lambda > 2$	c) $\lambda < -2$ or $\lambda > 2$	d) $0 < \lambda < 2$
477. The tangents at the po	pints $(at_1^2, 2at_1), (at_2^2, 2at_2)$) on the parabola $y^2 = 4ax$	are at right angles if
a) $t_1 t_2 = -1$	b) $t_1 t_2 = 1$	c) $t_1 t_2 = 2$	d) $t_1 t_2 = -2$
478. The angle between lim	es joining the origin to the	point of intersection of the l	line $\sqrt{3x + y} = 2$ and the
curve y - x = 41s	-	$\sqrt{2}$	-
a) $\tan^{-1}\left(\frac{2}{\sqrt{3}}\right)$	b) $\frac{\pi}{6}$	c) $\tan^{-1}\left(\frac{\sqrt{3}}{2}\right)$	d) $\frac{\pi}{2}$
479. In an ellipse length of	minor axis is 8 and eccentr	ficity is $\frac{\sqrt{5}}{5}$. The length of maj	or axis is
a) 6	b) 12	3 0 ,	d) 16
490 Three normals to the	UJ IZ	$(j \ 10)$	u) 10
1	parabola y = x through p	(a, 0). Then,	1
a) $a = \frac{1}{2}$	b) $a = \frac{1}{4}$	c) $a > \frac{1}{2}$	d) $a < \frac{1}{2}$
481. If a bar of given length	n moves with its extremitie	s on two fixed straight lines	at right angles, then the locus
of any point on bar ma	arked on the bar describes	a/an	00
a) Circle	b) Parabola	c) Ellipse	d) Hyperbola
482. If $3x + y = 0$ is a tang	ent to the circle with centr	e at the point $(2, -1)$. then t	the equation of the other
tangent to the circle fr	com the origin is	······	
a) $x - 3y = 0$	b) $x + 3y = 0$	c) $3x - y = 0$	d) $2x + y = 0$
483. The combined equation	on of the asymptotes of the	hyperbola $2x^2 + 5xy + 2y^2$	$x^{2} + 4x + 5y = 0$ is
a) $2x^2 + 5xy + 2y^2 =$	= 0	b) $2x^2 + 5xy + 2y^2 - 4$	4x + 5y + 2 = 0
c) $2x^2 + 5xy + 2y^2 + 5xy + $	-4x + 5y - 2 = 0	d) $2x^2 + 5xy + 2y^2 + 3x^2$	4x + 5y + 2 = 0
484 Tangents drawn from	the point $P(1, 8)$ to the circ	$rle x^2 + y^2 - 6x - 4y - 11$	= 0 touch the circle at the
noints AandR The equ	uation of the circumcircle of	of the triangle PAR is	o touch the chiefe at the
a) $r^2 + y^2 + 4r - 6y$	$\pm 19 - 0$	h the triangle $r m r r r r r r$ b) $r^2 \pm v^2 = 4r = 10v$	+ 19 - 0
c) $r^2 + y^2 - 2r + 6y$	-29 - 0	d) $x^2 + y^2 - 6x - 4y + 4y^2$	19 - 0
485	2) = 0	$x^2 y^2$	
The straight line $x + y$	v = c will be tangent to the	ellipse $\frac{1}{9} + \frac{1}{16} = 1$, c is equa	al to
a) 8	b) ±5	c) ±10	d) ±6
486. If the vertex of the par	Tabola $y = x^2 - 8x + c$ lies	s on <i>x</i> -axis, then the value of	c is
a) —16	b) -4	c) 4	d) 16
487. The equation of tange	nt drawn from the origin to	the circle $x^2 + y^2 - 2rx +$	$2hy + h^2 = 0$ are
a) $x = 0, y = 0$		b) $x = 1, y = 0$	
c) $(h^2 - r^2)x - 2rhy$	= 0, <i>y</i> = 0	d) $(h^2 - r^2)x - 2rhy =$	= 0, x = 0
488. Equation of a common	n tangent with positive slop	e to the circle as well as to t	he hyperbola is
a) $2x - \sqrt{5}y - 20 = 0$	b) $2x - \sqrt{5}y + 4 = 0$	c) $3x - 4y + 8 = 0$	d) $4x - 3y + 4 = 0$

^{489.} Let *E* be the ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$ and *C* be the circle $x^2 + y^2 = 9$. Let *P* and *Q* be the points (1,2) and (2,1) respectively. Then

a) *Q* lies inside *C* but outside *E*

b) *Q* lies outside both *C* and *E*

c) *P* lies inside both *C* and *E*

d) *P* lies inside *C* but outside *E*

490. All ellipse has its centre at (1, -1) and semi-major axis = 8 and it passes through the point (1,3). The equation of the ellipse is

a)
$$\frac{(x+1)^2}{64} + \frac{(y+1)^2}{16} = 1$$

b)
$$\frac{(x-1)^2}{64} + \frac{(y+1)^2}{16} = 1$$

c)
$$\frac{(x-1)^2}{64} + \frac{(y+1)^2}{16} = 1$$

d)
$$\frac{(x+1)^2}{64} + \frac{(y-1)^2}{16} = 1$$

491. The equation the tangent parallel to $y - x + 5 = 0$, drawn to $\frac{x^2}{3} - \frac{y^2}{2} = 1$ is
a) $x - y - 1 = 0$ b) $x - y + 2 = 0$ c) $x + y - 1 = 0$ d) $x + y + 2 = 0$
492. The equation of normal at $(at, \frac{a}{t})$ to the hyperbola $xy = a^2$ is
a) $x^3 - yt + at^4 - a = 0$ b) $x^2 - yt - at^4 + a = 0$
c) $x^4 + yt + at^4 - a = 0$ d) None of these
493. S and T are the foci of an ellipse and B is an end of the minor axis If ΔSTB is equilateral , then e is
a) $\frac{1}{4}$ b) $\frac{1}{3}$ c) $\frac{1}{2}$ d) None of these
494. The locus of the point of intersection of the perpendicular tangents to ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$ is
a) $x^2 + y^2 = 4$ b) $x^2 + y^2 = 9$ c) $x^2 + y^2 = 5$ d) $x^2 + y^2 = 13$
495. The equations to the common tangents to the two hyperbolas $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ and $\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$ are
a) $y = \pm x \pm \sqrt{b^2 - a^2}$ b) $y = \pm x \pm \sqrt{a^2 - b^2}$ c) $y = \pm x \pm (a^2 - b^2)$ d) $y = \pm x \pm \sqrt{a^2 + b^2}$
496. The equation of the image of the circle $(x - 3)^2 + (y - 2) = 1$ in the mirror $x + y = 19$, is
a) $(x - 14)^2 + (y - 13)^2 = 1$
b) $(x - 15)^2 + (y - 16^2) = 1$
d) $(x - 17)^2 + (y - 16^2) = 1$
d) $(x - 17)^2 + (y - 16^2) = 1$
d) $(x - 17)^2 + (y - 16^2) = 1$
d) $(x - 17)^2 + (y - 16^2) = 1$
d) $(x - 17)^2 + (y - 16^2) = 1$
d) $(x - 17)^2 + (y - 16^2) = 1$
d) $(x - 17)^2 + (y - 16^2) = 1$
d) $(x - 17)^2 + (y - 16^2) = 1$
d) $(x - 17)^2 + (y - 16^2) = 1$
d) $(x - 17)^2 + (y - 16^2) = 1$
d) $(x - 17)^2 + (y - 16^2) = 1$
d) $(x - 17)^2 + (y - 16^2) = 1$
d) $(x - 17)^2 + (y - 16^2) = 1$
d) $(x - 17)^2 + (y - 16^2) = 1$
d) $(x - 17)^2 + (y - 16^2) = 1$
d) $(x - 17)^2 + (y - 16^2) = 1$
d) $(x - 17)^2 + (y - 16^2) = 1$
d) $(x - 17)^2 + (y - 16^2) = 1$
d) $(x - 17)^2 + (y - 16^2) = 1$
d) $(x - 17)^2 + (y - 16^2) = 1$
d) $(x - 17)^2 + (y - 16^2) = 1$
d) $(x - 17)^2 +$

502. If distance between directrices of a rectangular hyperbola is 10, then distance between its foci will be

	b) 5	c) 5√2	d) 20	
503. The length of latusrectum of the ellipse $9x^2 + 16y^2 = 144$ is				
a) 4	b) $\frac{11}{4}$	c) $\frac{7}{2}$	d) $\frac{9}{2}$	
504. If the circle $x^2 + y^2 = 0$	a ² intersects the hyperbol	la $xy = c^2$ in four points $P($	$(x_1, y_1), Q(x_2, y_2), R(x_3, y_3)$ and	
$S(x_4, y_4)$, then				
a) $x_1 + x_2 + x_3 + x_4 =$	0	b) $y_1 + y_2 + y_3 + y_4 =$	= 0	
c) $x_1 x_2 x_3 x_4 = c^4$		d) All of these		
505. <i>AB</i> is a chord of the par	Tabola $y^2 = 4ax$ with vert	tex at A.BC is drawn perper	ndicular to AB meeting the axes	
at <i>C</i> . The projection of	BC on the axis of the para	bola is		
a) 2	b) 2 <i>a</i>	c) 4a	d) 8a	
506. The number of common	n tangents that can be dra	to the circles $x^2 + y^2 - y^2 - y^2 + y^2 - y$	$4x - 6y - 3 = 0$ and $x^2 + 3 = 0$	
$y^2 + 2x + 2y + 1 = 0$ i	S			
a) 1	b) 2	c) 3	d) 4	
507. If (x_1, y_1) and (x_2, y_x) a	re the ends of a focal chor	rd of $y^2 4ax$, then $x_1 x_2 + y_1$	y_2 is equal to	
a) $-3a^2$	b) 3a ²	c) $-4a^2$	d) $4a^2$	
508. If two distinct chords d	rawn from the point (<i>p</i> , <i>q</i>) on the circle $x^2 + y^2 = px$	$x + qy$ (where $pq \neq 0$) are	
bisected by the <i>x</i> -axis, t	then			
a) $p^2 = q^2$	b) $p^2 = 8q^2$	c) $p^2 < 8q^2$	d) $p^2 > 8q^2$	
509. An equilateral triangle	is inscribed in the parabo	la $y^2 = 4ax$, whose vertex	is at the vertex of the parabola.	
The length of its side is	_	_	_	
a) 2 <i>a</i> √3	b) 4a√3	c) 6a√3	d) 8a√3	
510. The two circles $x^2 + y^2$	$x^{2} - 2x - 2y + 1 = 0$ and	$x^2 + y^2 - 4x - 6y - 8 =$	0 are such that	
a) They touch each oth	er			
b) They intersect each	other			
c) One lies inside the o	ther			
d) Each lies outside the	other			
511. One of the directrices of	f the ellipse $8x^2 + 6y^2 - \frac{1}{2}$	16x + 12y + 13 = 0 is		
\[\] \[d) $y - 1 = -\sqrt{3}$	
a) $3y - 3 = \sqrt{6}$	b) $3y + 3 = \sqrt{6}$	c) $y + 1 = \sqrt{3}$		
a) $3y - 3 = \sqrt{6}$ 512. The line $3x - 2y = k$ m	b) $3y + 3 = \sqrt{6}$ neets the circle $x^2 + y^2 =$	c) $y + 1 = \sqrt{3}$ 4 r^2 at only one point if k^2	is equal to	
a) $3y - 3 = \sqrt{6}$ 512. The line $3x - 2y = k$ m a) $52r^2$	b) $3y + 3 = \sqrt{6}$ neets the circle $x^2 + y^2 =$ b) $20r^2$	c) $y + 1 = \sqrt{3}$ $4r^2$ at only one point if k^2 c) $\frac{20}{r^2}r^2$	is equal to d) $\frac{52}{r^2}r^2$	
a) $3y - 3 = \sqrt{6}$ 512. The line $3x - 2y = k$ m a) $52r^2$	b) $3y + 3 = \sqrt{6}$ neets the circle $x^2 + y^2 =$ b) $20r^2$	c) $y + 1 = \sqrt{3}$ $4r^2$ at only one point if k^2 c) $\frac{20}{9}r^2$ and forms (2.1) is	is equal to d) $\frac{52}{9}r^2$	
a) $3y - 3 = \sqrt{6}$ 512. The line $3x - 2y = k$ m a) $52r^2$ 513. The equation of the particular of $x^2 - 2y = 12r - 11$	b) $3y + 3 = \sqrt{6}$ neets the circle $x^2 + y^2 =$ b) $20r^2$ rabola with vertex (-1,1)	c) $y + 1 = \sqrt{3}$ $4r^2$ at only one point if k^2 c) $\frac{20}{9}r^2$ and focus (2,1) is b) $x^2 + 2r = 12x + 12$	is equal to d) $\frac{52}{9}r^2$	
a) $3y - 3 = \sqrt{6}$ 512. The line $3x - 2y = k$ m a) $52r^2$ 513. The equation of the part a) $y^2 - 2y - 12x - 11$ b) $x^2 - 2y - 12x - 11$	b) $3y + 3 = \sqrt{6}$ neets the circle $x^2 + y^2 =$ b) $20r^2$ rabola with vertex (-1,1) = 0	c) $y + 1 = \sqrt{3}$ $4r^2$ at only one point if k^2 c) $\frac{20}{9}r^2$ and focus (2,1) is b) $x^2 + 2x - 12y + 13$ d) $x^2 - 2x - 12y + 13$	is equal to $d)\frac{52}{9}r^{2}$ $B = 0$ $R = 0$	
a) $3y - 3 = \sqrt{6}$ 512. The line $3x - 2y = k$ m a) $52r^2$ 513. The equation of the para a) $y^2 - 2y - 12x - 11$ c) $y^2 - 2y + 12x + 11$	b) $3y + 3 = \sqrt{6}$ neets the circle $x^2 + y^2 =$ b) $20r^2$ vabola with vertex (-1,1) = 0 = 0 $x^2 - y^2$	c) $y + 1 = \sqrt{3}$ $4r^2$ at only one point if k^2 c) $\frac{20}{9}r^2$ and focus (2,1) is b) $x^2 + 2x - 12y + 13$ d) $y^2 - 2y - 12x + 13$	is equal to $d)\frac{52}{9}r^{2}$ $3 = 0$ $3 = 0$ $a^{2} = b^{2}$	
a) $3y - 3 = \sqrt{6}$ 512. The line $3x - 2y = k$ m a) $52r^2$ 513. The equation of the para a) $y^2 - 2y - 12x - 11$ c) $y^2 - 2y + 12x + 11$ 514. If any tangent to the ell	b) $3y + 3 = \sqrt{6}$ neets the circle $x^2 + y^2 =$ b) $20r^2$ rabola with vertex (-1,1) = 0 = 0 ipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ makes in	c) $y + 1 = \sqrt{3}$ $4r^2$ at only one point if k^2 c) $\frac{20}{9}r^2$ and focus (2,1) is b) $x^2 + 2x - 12y + 13$ d) $y^2 - 2y - 12x + 13$ tercepts <i>p</i> and <i>q</i> on the coordinates the second se	is equal to d) $\frac{52}{9}r^2$ 3 = 0 3 = 0 rdinate axes, then $\frac{a^2}{p^2} + \frac{b^2}{q^2} =$	
a) $3y - 3 = \sqrt{6}$ 512. The line $3x - 2y = k$ m a) $52r^2$ 513. The equation of the para a) $y^2 - 2y - 12x - 11$ c) $y^2 - 2y + 12x + 11$ 514. If any tangent to the ell a) 1	b) $3y + 3 = \sqrt{6}$ neets the circle $x^2 + y^2 =$ b) $20r^2$ rabola with vertex (-1,1) = 0 = 0 ipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ makes in b) 2	c) $y + 1 = \sqrt{3}$ $4r^2$ at only one point if k^2 c) $\frac{20}{9}r^2$ and focus (2,1) is b) $x^2 + 2x - 12y + 13$ d) $y^2 - 2y - 12x + 13$ therefore <i>p</i> and <i>q</i> on the coordinates <i>q</i> on the coordinates <i>p</i> and <i>q</i> on the coordinates <i>q</i> and <i>q</i> on the coordinates <i>q</i> and <i>q</i> an	is equal to d) $\frac{52}{9}r^2$ 3 = 0 3 = 0 rdinate axes, then $\frac{a^2}{p^2} + \frac{b^2}{q^2} =$ d) 4	
a) $3y - 3 = \sqrt{6}$ 512. The line $3x - 2y = k$ m a) $52r^2$ 513. The equation of the para a) $y^2 - 2y - 12x - 11$ c) $y^2 - 2y + 12x + 11$ 514. If any tangent to the ellipse a) 1 515. Equation of the ellipse	b) $3y + 3 = \sqrt{6}$ neets the circle $x^2 + y^2 =$ b) $20r^2$ rabola with vertex (-1,1) = 0 = 0 ipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ makes in b) 2 whose foci are (2,2) and (c) $y + 1 = \sqrt{3}$ $4r^2$ at only one point if k^2 c) $\frac{20}{9}r^2$ and focus (2,1) is b) $x^2 + 2x - 12y + 13$ d) $y^2 - 2y - 12x + 13$ tercepts <i>p</i> and <i>q</i> on the coordinates of the coordinates of the major axis is of the coordinates of the major axis is of the coordinates of the major axis is of the coordinates of the coordinates of the major axis is of the coordinates of the major axis is of the coordinates of the coordinates of the major axis is of the coordinates of the	is equal to d) $\frac{52}{9}r^2$ 3 = 0 3 = 0 rdinate axes, then $\frac{a^2}{p^2} + \frac{b^2}{q^2} =$ d) 4 f length 10 is	
a) $3y - 3 = \sqrt{6}$ 512. The line $3x - 2y = k$ m a) $52r^2$ 513. The equation of the para a) $y^2 - 2y - 12x - 11$ c) $y^2 - 2y + 12x + 11$ 514. If any tangent to the ellipse a) 1 515. Equation of the ellipse a) $\frac{(x + 3)^2}{2} + \frac{(y + 2)^2}{2}$	b) $3y + 3 = \sqrt{6}$ neets the circle $x^2 + y^2 =$ b) $20r^2$ rabola with vertex (-1,1) = 0 = 0 ipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ makes in b) 2 whose foci are (2,2) and (= 1	c) $y + 1 = \sqrt{3}$ $4r^2$ at only one point if k^2 c) $\frac{20}{9}r^2$ and focus (2,1) is b) $x^2 + 2x - 12y + 13$ d) $y^2 - 2y - 12x + 13$ function of the second s	is equal to d) $\frac{52}{9}r^2$ 3 = 0 3 = 0 rdinate axes, then $\frac{a^2}{p^2} + \frac{b^2}{q^2} =$ d) 4 f length 10 is $\frac{a^2}{p^2} + \frac{b^2}{q^2} =$	
a) $3y - 3 = \sqrt{6}$ 512. The line $3x - 2y = k$ m a) $52r^2$ 513. The equation of the para a) $y^2 - 2y - 12x - 11$ c) $y^2 - 2y + 12x + 11$ 514. If any tangent to the ellipse a) 1 515. Equation of the ellipse a) $\frac{(x + 3)^2}{24} + \frac{(y + 2)^2}{25}$	b) $3y + 3 = \sqrt{6}$ neets the circle $x^2 + y^2 =$ b) $20r^2$ rabola with vertex (-1,1) = 0 = 0 ipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ makes in b) 2 whose foci are (2,2) and (= 1	c) $y + 1 = \sqrt{3}$ $4r^2$ at only one point if k^2 c) $\frac{20}{9}r^2$ and focus (2,1) is b) $x^2 + 2x - 12y + 13$ d) $y^2 - 2y - 12x + 13$ itercepts p and q on the coordinate co	is equal to d) $\frac{52}{9}r^2$ 3 = 0 3 = 0 rdinate axes, then $\frac{a^2}{p^2} + \frac{b^2}{q^2} =$ d) 4 f length 10 is $\frac{a^2}{2} - 1$	
a) $3y - 3 = \sqrt{6}$ 512. The line $3x - 2y = k$ m a) $52r^2$ 513. The equation of the para a) $y^2 - 2y - 12x - 11$ c) $y^2 - 2y + 12x + 11$ 514. If any tangent to the ellipse a) 1 515. Equation of the ellipse a) $\frac{(x+3)^2}{24} + \frac{(y+2)^2}{25}$ c) $\frac{(x+3)^2}{25} + \frac{(y+2)^2}{25}$	b) $3y + 3 = \sqrt{6}$ neets the circle $x^2 + y^2 =$ b) $20r^2$ vabola with vertex (-1,1) = 0 = 0 ipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ makes in b) 2 whose foci are (2,2) and (= 1 = 1	c) $y + 1 = \sqrt{3}$ $4r^2$ at only one point if k^2 c) $\frac{20}{9}r^2$ and focus (2,1) is b) $x^2 + 2x - 12y + 13$ d) $y^2 - 2y - 12x + 13$ function of the major axis is on b) $\frac{(x-3)^2}{24} + \frac{(y-2)^2}{25}$ d) $\frac{(x-3)^2}{25} + \frac{(y-2)^2}{25}$	is equal to d) $\frac{52}{9}r^2$ 3 = 0 3 = 0 rdinate axes, then $\frac{a^2}{p^2} + \frac{b^2}{q^2} =$ d) 4 f length 10 is $a^2 - = 1$	
a) $3y - 3 = \sqrt{6}$ 512. The line $3x - 2y = k$ m a) $52r^2$ 513. The equation of the para a) $y^2 - 2y - 12x - 11$ c) $y^2 - 2y + 12x + 11$ 514. If any tangent to the ellipse a) 1 515. Equation of the ellipse a) $\frac{(x + 3)^2}{24} + \frac{(y + 2)^2}{25}$ c) $\frac{(x + 3)^2}{25} + \frac{(y + 2)^2}{24}$ 516. If $5x - 12y + 10 = 0$	b) $3y + 3 = \sqrt{6}$ neets the circle $x^2 + y^2 =$ b) $20r^2$ rabola with vertex (-1,1) = 0 = 0 ipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ makes in b) 2 whose foci are (2,2) and (= 1 = 1 and $12y = 5x + 16 = 0$ are	c) $y + 1 = \sqrt{3}$ $4r^2$ at only one point if k^2 c) $\frac{20}{9}r^2$ and focus (2,1) is b) $x^2 + 2x - 12y + 13$ d) $y^2 - 2y - 12x + 13$ tercepts p and q on the coordinates of p and q on the coordinates q and q on the coordinate	is equal to d) $\frac{52}{9}r^2$ 3 = 0 3 = 0 rdinate axes, then $\frac{a^2}{p^2} + \frac{b^2}{q^2} =$ d) 4 f length 10 is $\frac{a^2}{p^2} - 1$ $\frac{a^2}{p^2} + \frac{b^2}{q^2} =$	
a) $3y - 3 = \sqrt{6}$ 512. The line $3x - 2y = k$ m a) $52r^2$ 513. The equation of the para a) $y^2 - 2y - 12x - 11$ c) $y^2 - 2y + 12x + 11$ 514. If any tangent to the ellipse a) 1 515. Equation of the ellipse a) $\frac{(x+3)^2}{24} + \frac{(y+2)^2}{25}$ c) $\frac{(x+3)^2}{25} + \frac{(y+2)^2}{24}$ 516. If $5x - 12y + 10 = 0$ at a) 1	b) $3y + 3 = \sqrt{6}$ neets the circle $x^2 + y^2 =$ b) $20r^2$ vabola with vertex (-1,1) = 0 = 0 ipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ makes in b) 2 whose foci are (2,2) and (= 1 = 1 nd $12y - 5x + 16 = 0$ are b) 2	c) $y + 1 = \sqrt{3}$ $4r^2$ at only one point if k^2 c) $\frac{20}{9}r^2$ and focus (2,1) is b) $x^2 + 2x - 12y + 13$ d) $y^2 - 2y - 12x + 13$ d) $\frac{y^2 - 2y - 12x + 13}{24}$ tercepts <i>p</i> and <i>q</i> on the coordinates of the major axis is of the	is equal to d) $\frac{52}{9}r^2$ 3 = 0 3 = 0 rdinate axes, then $\frac{a^2}{p^2} + \frac{b^2}{q^2} =$ d) 4 if length 10 is $a^2 - = 1$ $a^2 - = 1$ the radius of the circle is d) 6	
a) $3y - 3 = \sqrt{6}$ 512. The line $3x - 2y = k$ m a) $52r^2$ 513. The equation of the para a) $y^2 - 2y - 12x - 11$ c) $y^2 - 2y + 12x + 11$ 514. If any tangent to the ellipse a) 1 515. Equation of the ellipse a) $\frac{(x+3)^2}{24} + \frac{(y+2)^2}{25}$ c) $\frac{(x+3)^2}{25} + \frac{(y+2)^2}{24}$ 516. If $5x - 12y + 10 = 0$ at a) 1 517. If <i>P</i> is a point on the ellipse	b) $3y + 3 = \sqrt{6}$ neets the circle $x^2 + y^2 =$ b) $20r^2$ vabola with vertex (-1,1) = 0 = 0 ipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ makes in b) 2 whose foci are (2,2) and (= 1 = 1 nd $12y - 5x + 16 = 0$ are b) 2 ipse $\frac{x^2}{16} + \frac{y^2}{20} = 1$ whose for	c) $y + 1 = \sqrt{3}$ $4r^2$ at only one point if k^2 c) $\frac{20}{9}r^2$ and focus (2,1) is b) $x^2 + 2x - 12y + 13$ d) $y^2 - 2y - 12x + 13$ d) $y^2 - 2y - 12x + 13$ etercepts p and q on the coordinates of p on the coordinates p and q on the coordinates $p^2 - 2y - 12x + 13$ and the major axis is ordered $p^2 - 2y - 12x + 13$ and the major axis is ordered $p^2 - 2y - 12x + 13$ and the major axis is ordered $p^2 - 2y - 12x + 13$ and the major axis is ordered q on the coordinates $p^2 - 2y - 12x + 13$ and the major axis is ordered q on the coordinates $p^2 - 2y - 12x + 13$ and the major axis is ordered q on the coordinates $p^2 - 2y - 12x + 13$ and the major axis is ordered q on the coordinates $p^2 - 2y - 12x + 13$ and the major axis is ordered q on the coordinates $p^2 - 2y - 12x + 13$ and the major axis is ordered q on the coordinates $p^2 - 2y - 12x + 13$ and the major axis is ordered q on the coordinates $p^2 - 2y - 12x + 13$ and the major axis is ordered q on the coordinates q on the coordin	is equal to d) $\frac{52}{9}r^2$ $a^3 = 0$ $a^3 = 0$ rdinate axes, then $\frac{a^2}{p^2} + \frac{b^2}{q^2} = 0$ d) 4 f length 10 is $a^2 - = 1$ $a^2 - = 1$ the radius of the circle is d) 6 PS' is	
a) $3y - 3 = \sqrt{6}$ 512. The line $3x - 2y = k$ m a) $52r^2$ 513. The equation of the particular of the particular of the end a) $y^2 - 2y - 12x - 11$ c) $y^2 - 2y + 12x + 11$ 514. If any tangent to the ellipse a) 1 515. Equation of the ellipse a) $\frac{(x + 3)^2}{24} + \frac{(y + 2)^2}{25}$ c) $\frac{(x + 3)^2}{25} + \frac{(y + 2)^2}{24}$ 516. If $5x - 12y + 10 = 0$ at a) 1 517. If <i>P</i> is a point on the ellipse a) 8	b) $3y + 3 = \sqrt{6}$ neets the circle $x^2 + y^2 =$ b) $20r^2$ rabola with vertex (-1,1) = 0 = 0 ipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ makes in b) 2 whose foci are (2,2) and (= 1 = 1 nd $12y - 5x + 16 = 0$ are b) 2 ipse $\frac{x^2}{16} + \frac{y^2}{20} = 1$ whose for b) $4\sqrt{5}$	c) $y + 1 = \sqrt{3}$ $4r^2$ at only one point if k^2 c) $\frac{20}{9}r^2$ and focus (2,1) is b) $x^2 + 2x - 12y + 13$ d) $y^2 - 2y - 12x + 13$ d) $y^2 - 2y - 12x + 13$ itercepts p and q on the coordinates of p c) 3 (4,2) and the major axis is of p b) $\frac{(x-3)^2}{24} + \frac{(y-2)^2}{25}$ d) $\frac{(x-3)^2}{25} + \frac{(y-2)^2}{24}$ is two tangents to a circle, the c) 4 bci are S and S' . Then $PS + A$ c) 10	is equal to d) $\frac{52}{9}r^2$ $a^3 = 0$ $a^3 = 0$ rdinate axes, then $\frac{a^2}{p^2} + \frac{b^2}{q^2} = 0$ d) 4 f length 10 is $a^2 - = 1$ $a^2 - = 1$ he radius of the circle is d) 6 PS' is d) 4	
a) $3y - 3 = \sqrt{6}$ 512. The line $3x - 2y = k$ m a) $52r^2$ 513. The equation of the para a) $y^2 - 2y - 12x - 11$ c) $y^2 - 2y + 12x + 11$ 514. If any tangent to the ellipse a) $\frac{(x+3)^2}{24} + \frac{(y+2)^2}{25}$ c) $\frac{(x+3)^2}{25} + \frac{(y+2)^2}{24}$ 516. If $5x - 12y + 10 = 0$ at a) 1 517. If <i>P</i> is a point on the ellipse a) 8 518. The arithmetic mean of	b) $3y + 3 = \sqrt{6}$ neets the circle $x^2 + y^2 =$ b) $20r^2$ rabola with vertex (-1,1) = 0 = 0 ipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ makes in b) 2 whose foci are (2,2) and (= 1 = 1 nd $12y - 5x + 16 = 0$ are b) 2 ipse $\frac{x^2}{16} + \frac{y^2}{20} = 1$ whose for b) $4\sqrt{5}$ i the ordinates of the feet	c) $y + 1 = \sqrt{3}$ $4r^2$ at only one point if k^2 c) $\frac{20}{9}r^2$ and focus (2,1) is b) $x^2 + 2x - 12y + 13$ d) $y^2 - 2y - 12x + 13$ d) $y^2 - 2y - 12x + 13$ d) $y^2 - 2y - 12x + 13$ tercepts <i>p</i> and <i>q</i> on the coordinates of the major axis is of the normals from (3, 5) the second	is equal to d) $\frac{52}{9}r^2$ $a^3 = 0$ $a^3 = 0$ rdinate axes, then $\frac{a^2}{p^2} + \frac{b^2}{q^2} = \frac{b^2}{q^2} $	
a) $3y - 3 = \sqrt{6}$ 512. The line $3x - 2y = k$ m a) $52r^2$ 513. The equation of the particular a) $y^2 - 2y - 12x - 11$ c) $y^2 - 2y + 12x + 11$ 514. If any tangent to the ellipset a) $\frac{(x + 3)^2}{24} + \frac{(y + 2)^2}{25}$ c) $\frac{(x + 3)^2}{25} + \frac{(y + 2)^2}{24}$ 516. If $5x - 12y + 10 = 0$ at a) 1 517. If <i>P</i> is a point on the ellipset a) 8 518. The arithmetic mean of a) 4	b) $3y + 3 = \sqrt{6}$ neets the circle $x^2 + y^2 =$ b) $20r^2$ rabola with vertex (-1,1) = 0 = 0 ipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ makes in b) 2 whose foci are (2,2) and (= 1 = 1 nd $12y - 5x + 16 = 0$ are b) 2 ipse $\frac{x^2}{16} + \frac{y^2}{20} = 1$ whose for b) $4\sqrt{5}$ The ordinates of the feet b) 0	c) $y + 1 = \sqrt{3}$ $4r^2$ at only one point if k^2 c) $\frac{20}{9}r^2$ and focus (2,1) is b) $x^2 + 2x - 12y + 13$ d) $y^2 - 2y - 12x + 13$ d) $y^2 - 2y - 12x + 13$ itercepts p and q on the coordinates of p and q on the coordinates of p and q on the coordinates of p and q on the coordinates q and	is equal to d) $\frac{52}{9}r^2$ 3 = 0 3 = 0 rdinate axes, then $\frac{a^2}{p^2} + \frac{b^2}{q^2} =$ d) 4 f length 10 is $2^2 - = 1$ $2^2 - = 1$ he radius of the circle is d) 6 PS' is d) 4 to the parabola $y^2 = 8x$ is d) None of these	

	2s, y = 2/s is given by			
	a) (1, -3)	b) (2,2)	c) (-2, 4)	d) (1,2)
520	The eccentricity of a recta	ngular hyperbola is		
	a) 2	b) √2	c) 0	d) None of these
521	The equation of the circle	which cuts orthogonally th	the circle $x^2 + y^2 - 6x + 4y$	-3 = 0, passes through
	(3, 0) and touches the axis	s of y is		
	a) $x^2 + y^2 + 6x - 6y + 9$	= 0	b) $x^2 + y^2 - 6x + 6y - 9$	= 0
	c) $x^2 + y^2 - 6x - 6y + 9$	= 0	d) None of the above	
522	. The number of rational po	point (s) (a point (a, b) is rate	tional, if <i>a</i> and <i>b</i> both are ra	ational numbers) on the
	circumference of a circle h	having centre (π, e) is		
	a) At most one	b) At least two	c) Exactly two	d) Infinite
523	. The equation of the hyper	bola in the standard form	(with transverse axis along	the x -axis) having the
	length of the latusrectum	= 9 unit and eccentricity =	$\frac{5}{4}$, is	
	$x^2 y^2$	$x^2 y^2$	$x^2 y^2$	$x^2 y^2$
	a) $\frac{1}{16} - \frac{5}{18} = 1$	b) $\frac{3}{36} - \frac{5}{27} = 1$	c) $\frac{3}{64} - \frac{3}{36} = 1$	d) $\frac{3}{36} - \frac{5}{64} = 1$
524	. The equation of the hyper	bola whose foci are (6, 4)	and $(-4,4)$ and eccentricity	v 2, is
	$4(x-1)^2 + 4(y-4)^2$	1	$4(x+1)^2$ $4(y+4)^2$	1
	$a) - \frac{25}{25} + \frac{25}{25}$	= 1	10 - 25 + 75	= 1
	c) $\frac{4(x-1)^2}{(x-1)^2} = \frac{4(y-4)^2}{(x-1)^2}$	- 1	d) $\frac{4(x-1)^2}{(x-1)^2} = \frac{4(y-4)^2}{(x-1)^2}$	- 1
	75 25	- 1	25 75	- 1
525	The subtangent, ordinate	and subnormal to the para	bola $y^2 = 4ax$ at a point (d	lifferent from the origin)
	are in			
	a) AP	b) GP	c) HP	d) None of these
526	If a line $21x + 5y = 116$ is	s a tangent to the hyperbol	a $7x^2 - 5y^2 = 232$, then pe	oint of contact is
	a) (-6,3)	b) (6, -2)	c) (8, 2)	d) None of these
527	The equation of the ellips	e passing through (2,1) hav	$\operatorname{ving} e = 1/2 \text{ is}$	
	a) $3x^2 + 4y^2 = 16$	b) $3x^2 + 5y^2 = 17$	c) $5x^2 + 3y^2 = 23$	d) None of these
528	For the ellipse $25x^2 + 9y^2$	$x^2 - 150x - 90y + 225 = 0$, the eccentricity <i>e</i> is equal	to 1
	a) $\frac{z}{r}$	b) $\frac{s}{r}$	c) $\frac{4}{r}$	d) $\frac{1}{r}$
529	The circles $r^2 + v^2 - 10r$	$r = 0$ and $r^2 + v^2 = r$	э ^{,2} intersect each other at tw	o distinct noints if
527	a) $r < 2$	r > 8	c) $2 < r < 8$	d) $2 < r < 8$
530	Three distinct normals to	the parabola $v^2 = x$ are du	cawn through a point $(c, 0)$	then
000	<u>1</u>	1	1	d) None of these
	a) $c = \frac{1}{4}$	b) $c = \frac{1}{2}$	c) $c > \frac{1}{2}$	
531	If the length of the major a	axis of an ellipse is $\frac{17}{2}$ times	s the length of the minor ax	is, then the eccentricity of
	the ellipse is	8		
	. 8	. 15	9	$2\sqrt{2}$
	a) $\frac{17}{17}$	b) $\frac{17}{17}$	c) $\frac{17}{17}$	d) $\frac{272}{17}$
532	The eccentricity of the hy	perbola conjugate to $x^2 - 3$	$3y^2 = 2x + 8$ is	17
	2		c) 2	d) None of these
	a) $\frac{1}{\sqrt{3}}$	b) √3		
533	The locus of the poles of t	he focal chords of a parabo	la is of the parabola	
	a) The axis			
	b) A focal chord			
	c) The directrix			
	d) The tangent at the vert	ex		
534	The eccentricity of the con	nic $4x^2 + 16y^2 - 24x - 32$	2y = 1 is	
	a) 1/2	b) √3	c) √3/2	d) $\sqrt{3}/4$
535	If $ax^2 + by^2 + 2hxy + 2g$	x + 2fy + c = 0 (abc + 2f)	$fgh - af^2 - bg^2 - ch^2 \neq 0$) represents an ellipse, if
	a) $h^2 = ab$	b) $h^2 > ab$	c) $h^2 < ab$	d) None of these
-----	--	--	---	--
536	The abscissae of two poin	ts A and B are the roots of	the equation $x^2 - 2ax - b^2$	$^{2} = 0$, and their ordinates
	are the roots of the equati	ion $x^2 + 2px - q^2 = 0$. The	e radius of the circle with A	<i>B</i> as diameter is
	a) $\sqrt{a^2 + p^2}$	b) $\sqrt{b^2 + a^2}$	c) $\sqrt{a^2 + b^2}$	d) $\sqrt{a^2 + b^2 + p^2 + a^2}$
537	The range of values of a fo	or which the point $(a, 4)$ is	outside the circles $x^2 + y^2$	$+10x = 0$ and $x^2 + y^2 - 10x^2 = 0$
007	12x + 20 = 0 is			
	a) $(-\infty, -8) \cup (-2.6) \cup ($	6.∞)		
	b) $(-8, -2)$	o,)		
	c) $(-\infty, -8) \cup (-2, \infty)$			
	d) None of these			
538	The equation of an ellipse	whose eccentricity is $\frac{1}{2}$ and	d the vertices are. (4.0) and	d (10, 0) is
	a) $3r^2 \pm 4v^2 = 42r \pm 120$	0 - 0	b) $3r^2 \pm 4y^2 \pm 42r \pm 120$	0 - 0
	a) $3x^2 + 4y^2 - 42x + 120$ c) $3r^2 + 4y^2 + 42r - 120$	0 = 0 0 = 0	d) $3x^2 \pm 4y^2 = 42x \pm 120$	0 = 0 0 = 0
520	If the length of the tangen	u = u t from any point on the cir.	$(y - 3)^2 + (y - 2)^2 - 5$	$(r^2 + 0)$
559	$(y \pm 2)^2 - r^2$ is 16 units	then the area between the	two circles in squalts is	f to the child $(x - 3)$ $+$
	(y + 2) = r is 10 units, a) 32π	then the area between the h) $A\pi$	c) 8π	d) 256π
540	A tangent is drawn to the	$rac{1}{2} rac{1}{2} rac{$	v = 0 and it touches the cir	cle at point 1 If the
540	tangent nasses through th	P(2 = 1) = 2(x + y) = 3x + 4	y = 0 and it touches the ch	cie at point A. II the
	angent passes through the λ	$\frac{1}{2} = \frac{1}{2} = \frac{1}$	a) $2\sqrt{2}$	d) None of these
E11	Cupped a circle passes th	0 2	$C_{J} = 2VZ$) is the origin then OD is
541	oqual to	ii ougii (2, 2) allu (9, 9) allu	i touches the x-axis atr. If t	Tis the origin, then OP is
		h) E	a) 6	4) 0
542	aj 4 Two porpondicular tango	DJJ J nts to $y^2 - 4ax$ always interval	cj u	uj 9
542	Two perpendicular tangents a_{1}	a = 4ax a = 0	r = 1 sect on the line, if	d) $x + 4a = 0$
512	a) $x = u$ The area of the triangle in	UJ x + u = 0	-4 x the ordinates of who	$u_J x + 4u = 0$
545	$\frac{1}{2}$ $\frac{1}$	b) $5/2$ sq units	-4x the ordinates of who c) $\frac{3}{2}$ sq unity	$d) \frac{3}{4}$ so units
544	P is a point on the circle r	$y^2 \pm y^2 = c^2$ The locus of t	be mid-points of chords of	contact of <i>P</i> with respect to
511	x^2 , y^2	y = c. The focus of c	ne ma points of choras of c	contact of 1 with respect to
	$\frac{1}{a^2} + \frac{b}{b^2} = 1$, is			
	a) $c^2 \left(\frac{x^2}{x^2} + \frac{y^2}{y^2} \right) - r^2 + y^2$	2		
	a) $\left(a^2 + b^2\right) = x + y$			
	$(x^2, y^2)^2$	2		
	$\left(\frac{1}{a^2} + \frac{1}{b^2} \right) = x^2 + 2$	<i>y</i> ²		
	$(x^2 y^2)$	2 . 2		
	c) $c^{2}\left(\frac{1}{a^{2}}+\frac{1}{b^{2}}\right) = (x^{2}+\frac{1}{b^{2}})$	$(y^2)^2$		
	d) None of these			
545	The condition that the cho	ord $x \cos \alpha + y \sin \alpha - p =$	$0 \text{ of } x^2 + y^2 - a^2 = 0 \text{ may}$	subtend a right angle at
	the centre of circle, is	у I	, , , , , , , , , , , , , , , , , , ,	0 0
	a) $a^2 = 2p^2$	b) $p^2 = 2a^2$	c) $a = 2p$	d) $p = 2a$
546	The locus of the equation	$x^2 - y^2 = 0$, is	, I	
	a) a circle		b) a hyperbola	
	c) a pair of lines		d) a pair of lines at right a	ngles
547	The eccentricity of the hy	perbola $x^2 - y^2 = 2004$ is		
	a) √3	b) 2	c) $2\sqrt{2}$	d) $\sqrt{2}$
548	The circle $x^2 + y^2 = 4x + y^2$	-8v + 5 intersects the line	3x - 4y = m at two distinct	ct points, if
	a) $-85 < m < -35$	b) −35 < <i>m</i> < 15	c) $15 < m < 65$	d) 35 < <i>m</i> < 85
549	The length of the tangent	drawn to the circle $x^2 + v^2$	$x^{2} - 2x + 4y - 11 = 0$ from	the point (1, 3) is
	a) 1	b) 2	c) 3	d) 4
550	The product of the length	s of perpendiculars drawn	from any point on the hype	erbola $x^2 - 2y^2 - 2 = 0$ to
	5		v 1	-

its asymptotes is

- a) 1/2 b) 2/3 c) 3/2 d) 20551. If tangent at any point *P* on the ellipse $7x^2 + 26y^2 = 12$ cuts the tangent at the end points of the major axis at the points *A* and *B*, then the circle with *AB* as diameter passes through a fixed point whose
- coordinates are a) $(\pm \sqrt{a^2 - b^2}, 0)$ b) $(\pm \sqrt{a^2 + b^2}, 0)$ c) $(0, \pm \sqrt{a^2 - b^2})$ d) $(0, \pm \sqrt{a^2 + b^2})$ 552. The circles $x^2 + y^2 - 8x + 4y + 4 = 0$ touches a) x-axis b) y-axis c) Both axes d) Neither *x*-axis not *y*-axis 553. If the circles $x^2 + y^2 + 2ax + cy + a = 0$ and $x^2 + y^2 - 3ax + dy - 1 = 0$ intersect in two distinct points *P* and *Q*, then the line 5x + by - a = 0 passes through *P* and *Q* for a) Exactly two values of *a* b) Infinitely many values of *a* c) No value of a d) Exactly one value of a 554. The two ends of latusrectum of a parabola are the points (3,6) and (-5,6). The focus is b) (-1,6) c) (1,−6) d) (-1, -6)a) (1,6) 555. Equation of the chord of the hyperbola $25x^2 - 16y^2 = 400$ which is bisected at the point (6, 2), is a) 16x - 75y = 418 b) 75x - 16y = 418c) 25x - 4y = 400d) None of these 556. Equation of the circle passing through the intersection of ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and $\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1$, is a) $x^2 + y^2 = a^2$ b) $x^2 + y^2 = b^2$ c) $x^2 + y^2 = \frac{a^2b^2}{a^2 + b^2}$ d) $x^2 + y^2 = \frac{2a^2b^2}{a^2 + b^2}$ 557. Let a focal chord of parabola $y^2 = 16x$ cuts it at points (f, g) and (h, k) Then, f. h is equal to a) 12 b) 16 c) 14 d) None of these 558. If y = 3x is a tangent to a circle with centre (1, 1), then the other tangent drawn through (0, 0) to the circle a) 3y = xb) y = -3xc) y = 2xd) y = -2x559. If the curve $xy = R^2 - 16$ represents a rectangular hyperbola whose branches lies only in the quadrant in which abscissa and ordinate are opposite in sigh but not equal in magnitude, then a) |R| < 4b) $|R| \ge 4$ c) |R| = 4d) None of these 560. Locus of the middle points of all chords of the parabola $y^2 = 4x$ which are drawn through the vertex is b) $y^2 = 2x$ a) $v^2 = 8x$ c) $x^2 + 4y^2 = 16$ d) $x^2 = 2y$ 561. The circles on focal radii of a parabola as diameter touch a) The tangent at the vertex b) The axis c) The directrix d) None of these 562. Let *O* be the origin and *A* be a point on the curve $y^2 = 4x$. Then, the locus of the mid point of *OA*, is b) $x^2 = 2y$ a) $x^2 = 4y$ c) $x^2 = 16y$ d) $y^2 = 2x$ 563. If a circle passes through the point (*a*, *b*) and cuts the circle $x^2 + y^2 = 4$ orthogonally, then the locus of its centre is a) $2ax + 2by + (a^2 + b^2 + 4) = 0$ b) $2ax + 2by - (a^2 + b^2 + 4) = 0$ d) $2ax - 2by - (a^2 + b^2 + 4) = 0$ c) $2ax - 2by + (a^2 + b^2 + 4) = 0$ 564. The length of the normal of the parabola $y^2 = 4x$ which subtends a right angle at the vertex is c) 2 d) 1 a) 6√3 b) $3\sqrt{3}$ 565. The eccentricity of the hyperbola $3x^2 - 4y^2 = -12$ is
 - a) $\sqrt{\frac{7}{3}}$ b) $\frac{\sqrt{7}}{2}$ c) $-\sqrt{\frac{7}{3}}$ d) $-\frac{\sqrt{7}}{2}$
- 566. A variable circle passes through the fixed point (2,0) and touches y-axis. Then, the locus of its centre isa) A parabolab) A circlec) An ellipsed) A hyperbola

567. If the lines 2x - 3y = 5 and 3x - 4y = 7 are two diameters of a circle of radius 7, then the equation of the circle is a) $x^2 + y^2 + 2x - 4y - 47 = 0$ b) $x^2 + y^2 = 49$ c) $x^2 + y^2 - 2x + 2y - 47 = 0$ d) $x^2 + y^2 = 17$ 568. If a point *P* moves such that its distances from the point A(1, 1) and the line x + y + 2 = 0 are equal, then the locus of P is a) A straight line b) A pair of straight lines d) An ellipse c) A parabola 569. Consider the two curves $C_1: y^2 = 4x$ $C_2: x^2 + y^2 - 6x + 1 = 0$, then a) C_1 and C_2 touch each other only at one point b) C_1 and C_2 touch each other exactly at two points c) C_1 and C_2 intersect (but do not touch) at exactly two point d) C_1 and C_2 neither intersect nor touch each other 570. If $g^2 + f^2 = c$, then the equation $x^2 + y^2 + 2gx + 2fy + c = 0$ will represent a) A circle of radius g b) A circle of radius *f* d) A circle of radius zero c) A circle of diameter \sqrt{c} 571. The two lines through (2,3) from which the circle $x^2 + y^2 = 25$ intercepts chords of length 8 units have equations a) 2x + 3y = 13, x + 5y = 17b) y = 3,12 x + 5 y = 39c) x = 2,9 x - 11 y = 51d) None of these 572. The shortest distance between the parabola $y^2 = 4x$ and the circle $x^2 + y^2 + 6x - 12y + 20 = 0$ is b) 0 d) 1 a) $4\sqrt{2} - 5$ c) $3\sqrt{2} + 5$ 573. The equation of normal at the point (0,3) of the ellipse $9x^2 + 5y^2 = 45$, is d) v - 3 = 0a) x-axis b) y-axis c) y + 3 = 0574. If the line $x \cos \alpha + y \sin \alpha = p$ be normal to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, then a) $p^2(a^2\cos^2\alpha + b^2\sin^2\alpha) = a^2 - b^2$ $\sum_{b}^{a} p^{2} (a^{2} \cos^{2} \alpha + b^{2} \sin^{2} \alpha) = (a^{2} - b^{2})^{2}$ d) $p^2(a^2 \sec^2 \alpha + b^2 \csc^2 \alpha) = (a^2 - b^2)^2$ c) $p^2(a^2 \sec^2 \alpha + b^2 \csc^2 \alpha) = a^2 - b^2$ 575. If the chord of contact of tangents drawn from P to the parabola $y^2 = 4ax$ touches the rectangular hyperbola $x^2 - y^2 = a^2$, then *P* lies on a) $4x^2 - y^2 = a^2$ b) $y^2 - 4x^2 = 4a^2$ c) $4x^2 + y^2 = 4a^2$ d) $4y^2 - x^2 = 4a^2$ 576. Two perpendicular tangents drawn to the ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1$ intersect on the curve a) $x = \frac{a}{c}$ b) $x^2 + y^2 = 41$ c) $x^2 + y^2 = 9$ d) $x^2 - y^2 = 41$ 577. A line through P(1, 4) intersect a circle $x^2 + y^2 = 16$ at *A* and *B*, then *PA*. *PB* is equal to c) 3 b) 2 a) 1 d) 4 578. If the circle $x^2 + y^2 + 4x + 22y + c = 0$ bisects the circumference of the circle $x^2 + y^2 - 2x + 8y - d = 0$, then c + d is equal to b) 50 c) 40 d) 30 a) 60 579. Equation of tangent to the parabola $y^2 = 16x$ at P(3,6) is b) 3y - 4x - 12 = 0c) 4x - 3y - 24 = 0d) 3y - x - 24 = 0a) 4x - 3y + 12 = 0580. Let (α, β) be a point from which two perpendicular tangents can be drawn to the ellipse $4x^2 + 5y^2 = 20$. If $F = 4\alpha + 3\beta$, then a) $-15 \le F \le 15$ b) $F \ge 0$ c) $-5 \le F \le 20$ d) $F < -5\sqrt{5}$ or $F > 5\sqrt{5}$ 581. If $\tan \theta_1$, $\tan \theta_2 = \frac{a^2}{h^2}$, then the chord joining two points θ_1 and θ_2 on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{h^2} = 1$ will subtend a

right angle at a) Focus b) Centre d) End of the minor axis c) End of the major axis 582. The equation of the circle which passes through the intersection of $x^2 + y^2 + 13x - 3y = 0$ and $2x^2 + 3y = 0$ $2y^2 + 4x - 7y - 25 = 0$ and whose centre lies on 13x + 30y = 0, is a) $x^2 + y^2 + 30x - 13y - 25 = 0$ b) $4x^2 + 4y^2 + 30x - 13y - 25 = 0$ d) $x^2 + y^2 + 30x - 13y + 25 = 0$ c) $2x^2 + 2y^2 + 30x - 13y - 25 = 0$ 583. If *P* and *Q* are the points of intersection of the circles $x^2 + y^2 + 3x + 7y + 2p - 5 = 0$ $x^{2} + y^{2} + 2x + 2y - p^{2} = 0$, then there is a circle passing through *P*, *Q* and (1, 1) and a) All values of p b) All except one value of p d) Exactly one value of p c) All except two values of p 584. The number of distinct normals that can be drawn to parabola $y^2 = 16x$ from the point (2, 0), is a) 1 b) 2 c) 3 d) 0 585. *P* is any point on the ellipse $81x^2 + 144y^2 = 1944$, whose foci are *S* and *S'*. Then, *SP* + *S'P* equals a) 3 b) $4\sqrt{6}$ c) 36 d) 324 586. If the tangent at *P* and *Q* on the parabola meet in *T*, then *SP*, *ST* and *SQ* are in b) GP d) None of these a) AP c) HP 587. Tangent is drawn to the ellipse $\frac{x^2}{27} + y^2 = 1$ at $(3\sqrt{3}\cos\theta, \sin\theta)$ [where $\theta \in (0, \frac{\pi}{2})$]. Then, the value of θ such that sum of intercepts on axes made by this tangent is minimum, is b) $\pi/6$ a) $\pi/3$ c) $\pi/8$ d) $\pi/4$ 588. The length of the common chord of the circles $x^2 + y^2 + 2x + 3y + 1 = 0$ and $x^2 + y^2 + 4x + 3y + 2 = 0$ is a) $\frac{9}{2}$ d) $\frac{3}{2}$ b) $2\sqrt{2}$ c) $3\sqrt{2}$ 589. The circles $x^2 + y^2 - 10x + 16 = 0$ and $x^2 + y^2 = r^2$ intersect each other at two distinct points, if b) *r* > 8 a) *r* < 2 c) 2 < *r* < 8 d) $2 \le r \le 8$ 590. The number of circles that touch all the straight lines x + y - 4 = 0, x - y + 2 = 0 and y = 2, is b) 2 c) 3 a) 1 591. The equation of a diameter conjugate to a diameter $y = \frac{b}{a}x$ of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is a) $y = -\frac{b}{a}x$ b) $y = -\frac{a}{b}x$ c) $y = \frac{a}{b}x$ d) None of these 592. The set of points on the axis of the parabola $y^2 - 2y - 4x + 5 = 0$ from which all the three normals to the parabola are real, is a) $\{(x, 1): x \ge 3\}$ b) { $(x, -1): x \ge 1$ } c) { $(x, 3): x \ge 1$ } d) { $(x, -3): x \ge 3$ } 593. A variable circle passes through the fixed point (2,0) and touches the y-axis. Then, the locus of its centre, is a) A parabola b) A circle c) An ellipse d) A hyperbola 594. Equation of the circle passing through the point (3, 4) and concentric with the circle $x^{2} + y^{2} - 2x - 4y + 1 = 0$ is a) $x^2 + y^2 - 2x - 4y = 0$ b) $x^2 + y^2 - 2x - 4y + 3 = 0$ c) $x^2 + y^2 - 2x - 4y - 3 = 0$ d) None of the above 595. The point of the straight line y = 2x + 11 which is nearest to the circle $16(x^2 + y^2) + 32x - 8y - 50 = 0$, is b) (-9/2, 2)c) (9/2,−2) a) 9/2.2 d) None of these 596. The distance of the centre of ellipse $x^2 + 2y^2 - 2 = 0$ to those tangents of the ellipse which are equally inclined from both the axes, is c) $\frac{\sqrt{2}}{3}$ b) $\frac{3}{2}$ a) $\frac{3}{\sqrt{2}}$ d) $\frac{\sqrt{3}}{2}$ 597. The equation $ax^2 + 2 hxy + by^2 + 2 gx + 2 fy + c = 0$ represents a hyperbola, if

a) $\Delta \neq 0, h^2 < ab$	b) $\Delta \neq 0, h^2 > ab$	c) $\Delta \neq 0, h^2 = ab$	d) $\Delta \neq 0, a + b = 0$
598. Two circles $x^2 + y^2 - 2x$	$x - 3 = 0$ and $x^2 + y^2 - 4x$	-6y - 8 = 0 are such that	
a) They touch internally		b) They touch externally	
c) They intersect at two	points	d) They are non-intersect	ing
599. If the eccentricity of a hy	perbola is $\sqrt{3}$, then the ecce	ntricity of its conjugate hyp	erbola is
	10		
a) √2	b) ^{√3}	c) $\left \frac{3}{2}\right $	d) 2√3
		$\sqrt{2}$	
600. If the normal at $(ap^2, 2ap)$	y) on the parabola $y^2 = 4ax$	x, meets the parabola again	at $(aq^2, 2aq)$, then
a) $p^2 + pq + 2 = 0$	b) $p^2 - pq + 2 = 0$	c) $q^2 + pq + 2 = 0$	d) $p^2 + pq + 1 = 0$
601. The equation of the conic	with focus at $(1, -1)$, direct	ctrix along $x - y + 1 = 0$ and	d with eccentricity $\sqrt{2}$ is
a) $x^2 - y^2 = 1$			
b) $xy = 1$			
c) $2xy - 4x + 4y + 1 =$	0		
d) $2xy - 4x + 4y - 1 =$	0		
602. <i>PQ</i> is a chord of the circle	$e^{x^2} + y^2 - 2x - 8 = 0$ who	ose midpoint is (2,2). The ci	rcle passing through P, Q
and (1,2) is			
a) $x^2 + y^2 - 7x + 10y + $	28 = 0		
b) $x^2 + y^2 - 7x - 10y + $	22 = 0		
c) $x^2 + y^2 + 7x + 10y - $	22 = 0		
d) $x^2 + y^2 + 7x + 10y - $	22 = 0		
603. The circle $x^2 + y^2 - 3x - 3x^2 - 3x$	-4y + 2 = 0 cuts <i>x</i> -axis at		
a) (2,0), (-3,0)	b) (3,0), (4,0)	c) (1,0), (-1,0)	d) (1,0), (2,0)
604. The normal at $(ap^2, 2ap)$) on $y^2 = 4 ax$, meets the c	urve again at $(aq^2, 2 aq)$ the	en
a) $p^2 + pq + 2 = 0$	b) $p^2 - pq + 2 = 0$	c) $q^2 + pq + 2 = 0$	d) $p^2 + pq + 1 = 0$
605. Let L_1 be a straight line p	assing through the origin a	nd L_2 be the straight line x +	-y = 1. If the intercepts
made by the circle $x^2 + y$	$y^2 - x + 3y = 0$ on L_1 and L_2	L_2 are equal, then L_1 can be	represented by
a) $x + y = 0$	b) $x - y = 0$	c) $7x + y = 0$	d) $x - 7y = 0$
606. The angle between the as	symptotes of the hyperbola	$2x^2 - 2y^2 = 9$ is	
a) $\pi/4$	b) π/3	c) π/6	d) $\pi/2$
607. A focus of an ellipse is at	the origin. The directrix is	the line $x = 4$ and the eccer	tricity is $\frac{1}{2}$, then length of
semi major axis is			
a) 5/3	b) 8/3	c) 2/3	d) 4/3
608. If $3x + y = 0$ is tangent t	o the circle having its centr	e at (2, −1), then the equati	on of other tangent to the
circle from the origin is			
a) $x - 3y = 0$	b) $x + 3y = 0$	c) $3x - y = 0$	d) $2x + y = 0$
609. The equation of the imag	e of the circle $x^2 + y^2 + 16$	x - 24y + 183 = 0 by the	line mirror 4x + 7y +
13 = 0 is			
a) $x^2 + y^2 + 32x - 4y - 4y$	+235 = 0		
b) $x^2 + y^2 + 32x + 4y - 32x + 4y$	-235 = 0		
c) $x^2 + y^2 + 32x - 4y - 4y$	-235 = 0		
d) $x^2 + y^2 + 32x + 4y - 32x + 4y$	+235 = 0		
610. The equation $x^2 + y^2 + x^2$	4x + 6y + 13 = 0 represent	nts	
a) A circle			
b) A pair of two straight	line		
c) A pair of containing st	raight lines		
d) A point			
611. The radical centre of the	circles		
$x^2 + y^2 - 16x + 60 = 0,$			
$x^2 + y^2 - 12x + 27 = 0$			

and x^2	$+y^2 - 12x + 8 =$	0 is		
a) (13,	$\left(\frac{33}{4}\right)$	b) $\left(\frac{33}{4}, -13\right)$	c) $\left(\frac{33}{4}, 13\right)$	d) None of these
612. The eq	uation of the tange	ent to the conic $x^2 - y^2 - 8$	2x + 2y + 11 = 0 at (2, 1) is	5
a) <i>x</i> + 2	2 = 0	b) $2x + 1 = 0$	c) $x + y + 1 = 0$	d) $x - 2 = 0$
613. An ellip	ose has OBas semi	minor axis, F and F it's foc	i and the angle <i>FBF</i> ′ is a rig	ht angle. Then, the
eccentr	ricity of the ellipse	is		
a) <u> </u>		h) $\frac{1}{-}$	$(1) \frac{1}{2}$	$d) \frac{1}{d}$
$\sqrt{3}$		4	2	$\sqrt{2}$
614. The eco	centric angle of the	point of contact of the line	$e^{\frac{x}{a}} + \frac{y}{b} = \sqrt{2}$ with the ellipse	$e \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, is
a) 0		b) π/3	c) π/4	d) π/2
615. The len	gth of the latusred	tum of the ellipse $5x^2 + 9y$	$v^2 = 45$ is	
a) <u>-</u>		b) $\frac{10}{}$	c) $\frac{2\sqrt{5}}{2}$	d) $\frac{\sqrt{5}}{\sqrt{5}}$
3	- · -	3	5	3
616. If the li	nes $3x - 4y - 7 =$	x = 0 and 2x - 3y - 5 = 0 are	e two diameters of a circle of	of area 49π sq unit, the
equation u^2	on of the circle is $a^2 + 2a = 2a$	2 - 0	b) $u^2 + u^2 - 2u + 2u = 0$	2 - 0
a) x^2	y' + 2x - 2y - 6	52 = 0 7 = 0	$\begin{array}{c} 0 \\ x + y \\ -2x + 2y \\ 0 \\ x^{2} + x^{2} + 2x \\ -2x \\ -4 \\ -2x \\ -4 \\ -4 \\ -4 \\ -4 \\ -4 \\ -4 \\ -4 \\ -$	2 = 0 7 = 0
$CJ \chi + 617$ The and	y' = 2x + 2y = 4	r = 0	$u_J x + y + 2x - 2y - 4$	$y^2 = 4ax$ is
π	gie made by a dou	π	π	$y = 4ux$ is π
a) _		b) $\frac{1}{2}$	c) $\frac{-}{4}$	d) _
618. Numbe	r of common tang	ents to the parabola $y^2 = 4$	ax and $x^2 = 4by$ is	
a) 4		b) 3	c) 2	d) 1
619. The nu	mber of normals to	the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	from an external point is	
a) 6		b) 5	c) 4	d) 2
620. The tar	gent drawn from	(α, β) to an ellipse $\frac{x^2}{2} + \frac{y^2}{12}$	= 1 touches the circle x^2 +	$y^2 = c^2$, then the locus of
(α.β) is	S	$a^2 b^2$		
a) An e	llipse	b) A circle	c) A parabola	d) None of these
621. The eco	centricity of the hy	perbola whose asymptotes	are $3x + 4y = 2$ and $4x - 2$	3y + 5 = 0, is
a) 1	5 5	b) 2	c) $\sqrt{2}$	d) None of these
622. The not	rmal at $(a, 2a)$ on	$y^2 = 4 ax$, meets the curve	again at $(at^2, 2at)$, then the	e value of <i>t</i> is
a) 1		b) 3	c) -1	d) -3
623. The cu	ve represented by	$x = a(\cosh\theta + \sinh\theta), y$	$= b(\cosh\theta - \sinh\theta)$, is	
a) A hy	perbola	b) An ellipse	c) A parabola	d) A circle
624. If <i>x</i> − 2	y - a = 0 is a cho	rd of $y^2 = 4ax$, then its len	gth is	
a) 4 <i>a√</i>	5	b) 40 <i>a</i>	c) 20 <i>a</i>	d) 15 a
625. The equ	uation of the norm	al at the point of contact of	f a tangent $\left(\frac{a}{m^2}, \frac{2a}{m}\right)$, is	
a) y =	$mx - 2 am - am^3$	ł		
b) <i>m</i> ³ <i>y</i>	$= m^2 x - 2 a m^2 - $	- a		
c) $m^3 y$	$= 2 am^2 - m^2 x +$	- a		
d) Non	e of these			
626. The po	int, at shortest dis	tance from the line $x + y =$	7 and lying on an ellipse <i>x</i>	$x^{2} + 2y^{2} = 6$, has
coordir	nates			

d) $\left(\sqrt{5}, \frac{1}{\sqrt{2}}\right)$ a) $\left(\sqrt{2}, \sqrt{2}\right)$ b) $(0, \sqrt{3})$ c) (2, 1)

627. The equation of any tangent to the circle $x^2 + y^2 - 2x + 4y - 4 = 0$, is a) $y = m(x - 1)^2 + 3\sqrt{1 + m^2} - 2$

b) $y = mx + 3\sqrt{1 + m^2}$

c) $y = mx + 3\sqrt{1 + m^2} - 2$

d) None of these

- 628. Origin is a limiting point of a coaxial system of which $x^2 + y^2 6x 8y + 1 = 0$ is a member. The other limiting point is
- a) (-2, -4) b) (3/25, 4/25) c) (-3/25, -4/25) d) 4/25, 3/25629. The line 5x + 12y = 9 touches the hyperbola $x^2 - 9y^2 = 9$ at the point

a) (-5, 4/3) b) (5, -4/3) c) (3, -1/2) d) None of these 630. Two perpendicular tangents to the circle $x^2 + y^2 = a^2$ meet at *P*. Then, the locus of *P* has the equation a) $x^2 + y^2 = 2a^2$ b) $x^2 + y^2 = 3a^2$ c) $x^2 + y^2 = 4a^2$ d) None of these

631. Two points *P* and *Q* are taken on the line joining the points A(0,0) and B(3a,0) such that AP = PQ = QB. Circles are drawn on AP, PQ and QB as diameters

The locus of the points, the sum of the squares of the tangents from which to the three circles is equal to b^2 , is

a) $x^{2} + y^{2} - 3ax + 2a^{2} - b^{2} = 0$ b) $3(x^{2} + y^{2}) - 9ax + 8a^{2} - b^{2} = 0$ c) $x^{2} + y^{2} - 5ax + 6a^{2} - b^{2} = 0$ d) $x^{2} + y^{2} - ax - b^{2} = 0$

632. The value of *c*, for which the line y = 2x + c, is tangent to the parabola $y^2 = 4a(x + a)$, is a) a b) $\frac{3a}{2}$ c) 2a d) $\frac{5a}{2}$

- 633. The equation of a parabola which passes through the intersection of a straight line x + y = 0 and the circle $x^2 + y^2 + 4y = 0$ is
- a) $y^2 = 4x$ $b) y^2 = x$ $b) y^2 = x$ $c) y^2 = 2x$ $c) y^2 = 2x$ $c) y^2 = 2x$ $c) y^2 = 2x$ $b) a^2 - b^2$ $b) a^2 + b^2$ $c) (a^2 + b^2)^2$ $c) (a^2 + b^2)^2$ $c) (a^2 + b^2)^2$ $d) (a^2 - b^2)^2$

635. The circle $x^2 + y^2 - 4x - 4y + 4 = 0$ is inscribed in a triangle which has two of its sides along the coordinate axes. If the locus of the circumcentre of the triangle is $x + y - xy + k\sqrt{x^2 - y^2} = 0$, then the value of k is equal to

a) 2 b) 1 c) -2 d) 3 636. Locus of the point which divides double ordinate of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ in the ratio 1:2 internally, is

a)
$$\frac{x^2}{a^2} - \frac{9y^2}{b^2} = \frac{1}{9}$$
 b) $\frac{x^2}{a^2} + \frac{9y^2}{b^2} = 1$ c) $\frac{9x^2}{a^2} + \frac{9y^2}{b^2} = 1$ d) None of these

637. Equation of the parabola with its vertex at (1,1) and focus (3,1) is

a) $(x-1)^2 = 8(y-1)$ b) $(y-1)^2 = 8(x-3)$ c) $(y-1)^2 = 8(x-1)$ d) $(x-3)^2 = 8(y-1)$ 638. A circle of radius 5 touches another circle $x^2 + y^2 - 2x - 4y - 20 = 0$ at (5, 5), then its equation is a) $x^2 + y^2 + 18x + 16y + 120 = 0$ b) $x^2 + y^2 - 18x - 16y + 120 = 0$

c)
$$x^2 + y^2 - 18x + 16y + 120 = 0$$

d) None of the above

- 639. If the chord of contact of tangents from a point $P(x_1, y_1)$ to the circle $x^2 + y^2 = a^2$ touches the circle $(x a)^2 + y^2 = a^2$, then the locus of (x_1, y_1) , is
- a) A circleb) A parabolac) An ellipsed) A hyperbola640. A line is at a constant distance *c* from the origin and meets the coordinate axes in *A* and *B*. The locus of the
centre of the circle passing through *O*, *A*, *B* is
- a) $x^{-2} + y^{-2} = c^{-2}$ b) $x^{-2} + y^{-2} = 2c^{-2}$ c) $x^{-2} + y^{-2} = 3c^{-2}$ d) $x^{-2} + y^{-2} = 4c^{-2}$ 641. An equilateral triangle *SAB* is inscribed in the parabola $y^2 = 4ax$ having it's focus at *S*. If chord *AB* lies towards the left *S*, then length of the side of this triangle is

a) $3a(2-\sqrt{3})$ b) $4a(2-\sqrt{3})$ c) $2a(2-\sqrt{3})$ d) $8a(2-\sqrt{3})$ 642. If the foci and vertices of an ellipse be $(\pm 1,0)$ and $(\pm 2,0)$ then the minor axis of the ellipse is

a) $2\sqrt{5}$ b) 2 c) 4 d) $2\sqrt{3}$ 643. If the circle $x^2 + y^2 + 2x + 3y + 1 = 0$ cuts $x^2 + y^2 + 4x + 3y + 2 = 0$ in *A* and *B*, then the equation of the circle on AB as diameter is a) $x^2 + y^2 + x + 3y + 3 = 0$ b) $2x^2 + 2y^2 + 2x + 6y + 1 = 0$ c) $x^2 + y^2 + x + 6y + 1 = 0$ d) None of these 644. Two tangents to the circle $x^2 + y^2 = 4$ at the points *A* and *B* meet at p(-4, 0). The area of the quadrilateral PAOB, where O is the origin, is a) 4 sq units c) $4\sqrt{3}$ sq units d) None of these b) $6\sqrt{2}$ sq units 645. Tangent at a point of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is drawn which cuts the coordinate axes at *A* and *B*. The minimum area of the $\triangle OAB$ is (*O* being the origin) a) ab b) $\frac{a^3 + ab + b^3}{3}$ c) $a^2 + b^2$ 646. The vertex of the parabola $x^2 + 2y = 8x - 7$ is d) $\frac{(a^2+b^2)}{4}$ b) $(4, \frac{9}{2})$ c) $(2, \frac{9}{2})$ d) $\left(4, \frac{7}{2}\right)$ a) $\left(\frac{9}{2}, 0\right)$ 647. Let *C* be the circle with centre (0, 0) and radius 3 unit. The equation of the locus of the mid points of the chords of the circle *C* that subtend an angle of $\frac{2\pi}{3}$ at its centre, is b) $x^2 + y^2 = \frac{27}{4}$ c) $x^2 + y^2 = \frac{9}{4}$ d) $x^2 + y^2 = \frac{3}{2}$ a) $x^2 + y^2 = 1$ 648. The equation of the circle passing through (1, 1) and the points of intersection of $x^{2} + y^{2} + 13x - 3y = 0$ and $2x^{2} + 2y^{2} + 4x - 7y - 25 = 0$ is a) $4x^2 + 4y^2 - 30x - 10y = 25$ b) $4x^2 + 4y^2 + 30x - 13y - 25 = 0$ c) $4x^2 + 4y^2 - 17x - 10y + 25 = 0$ d) None of the above 649. If the line $x \cos \alpha + y \sin \alpha = p$ be normal to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, then a) $p^2(a^2\cos^2\alpha + b^2\sin^2\alpha) = a^2 - b^2$ b) $p^2(a^2\cos^2\alpha + b^2\sin^2\alpha) = (a^2 - b^2)^2$ d) $p^2(a^2 \sec^2 \alpha + b^2 \csc^2 \alpha) = (a^2 - b^2)^2$ c) $p^2(a^2 \sec^2 \alpha + b^2 \csc^2 \alpha) = a^2 - b^2$ 650. Asymptotes of a hyperbola $\frac{x^2}{25} - \frac{y^2}{16} = 1$ are c) $y = \pm \frac{5}{4}x$ d) $y = \pm \frac{4}{5}x$ a) $x = \pm \frac{25}{16}y$ b) $x = \pm \frac{4}{5}y$ 651. The line among the following which touches the parabola $y^2 = 4ax$, is a) $x + mv + am^3 = 0$ b) $x - my + am^2 = 0$ c) $x + my - am^2 = 0$ d) $y + mx + am^2 = 0$ 652. The tangents from a point $(2\sqrt{2}, 1)$ to the hyperbola $16x^2 - 25y^2 = 400$ include an angle equal to b) $\pi/4$ d) $\pi/3$ a) π/2 c) π 653. The limiting points of the coaxial system of circles $x^2 + y^2 + 2\lambda y + 4 = 0$ are b) (±2,0) a) (0, ±4) c) $(0, \pm 1)$ d) $(0, \pm 2)$ 654. The equation of the circle which passes through the origin and cuts orthogonally each of the circles x^2 + $y^2 - 6x + 8 = 0$ and $x^2 + y^2 - 2x - 2y - 7 = 0$ is a) $3x^2 + 3y^2 - 8x - 13y = 0$ b) $3x^2 + 3y^2 - 8x + 29y = 0$ c) $3x^2 + 3y^2 + 8x + 29y = 0$ d) $3x^2 + 3y^2 - 8x - 29y = 0$ 655. If a normal of slope *m* to the parabola $y^2 = 4ax$ touches the hyperbola $x^2 - y^2 = a^2$, then a) $m^6 - 4m^4 - 3m^2 + 1 = 0$ b) $m^6 - 4m^4 + 3m^2 - 1 = 0$ c) $m^6 + 4m^4 - 3m^2 + 1 = 0$ d) $m^6 + 4m^4 + 3m^2 + 1 = 0$

656. If two tangents drawn fro	om a point <i>P</i> to the parabola	$y^2 = 4x$ be such that the s	slope of one tangent is
$a_{2} = 2u^{2}$	P lies on the curve	a b a b a	d) Nora of these
a) $9y = 2x^{-1}$	$0) 9x = 2y^{-1}$	c) $2x = 9y^2$	a) None of these
657. The other end of the diam	leter through the point (-1	, 1) on the chicle	
$x^2 + y^2 - 6x + 4y - 12 =$	= 0 IS	-) (7 Г)	
a) $(-7,5)$	D(-7, -5)	c) $(7, -5)$	a) (7, 5)
658. Angle between tangents of	lrawn from the point (5, 4)	to the ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1$, i	S
a) 60°	b) 90°	c) 120°	d) 45°
^{659.} A common tangent to circ	cle $x^2 + y^2 = 16$ and an elli	pse is $\frac{x^2}{49} + \frac{y^2}{4} = 1$ is	
a) $y = x + 4\sqrt{5}$	b) $y = x + \sqrt{53}$	c) $y = \frac{2}{\sqrt{11}}x + \frac{4\sqrt{4}}{\sqrt{11}}$	d) None of these
660. $y = 4x^2$ and $\frac{x^2}{a^2} - \frac{y^2}{16} = 1$ i	ntersect, if		
a) $ a \le \frac{1}{\sqrt{2}}$	b) $a < -\frac{1}{\sqrt{2}}$	c) $a > -\frac{1}{\sqrt{2}}$	d) None of these
661. Let <i>AB</i> be the intercept of	f the line $v = x$ the circle x^2	$+v^{2}-2x=0$. Then, the e	equation of the circle with
AB as its diameter is		<i>y</i>	1
a) $x^2 + y^2 - x - y = 0$		b) $x^2 + y^2 + x + y = 0$	
c) $x^2 + y^2 + 2(x - y) =$	0	d) $x^2 + y^2 - 2x + y = 0$	
662. The ends of the latusrect	$x^2 + 10x - 10x$	16v + 25 = 0 are	
a) $(3, -4), (13, 4)$	b) $(-3, -4), (13, -4)$	c) $(3, 4)$, $(-13, 4)$	d) (5, -8), (-5, 8)
663. Equation of a circle passi	ng through the origin and m	aking intercent by the line	4x + 3y = 12 with
coordinate axes, is		ianing intercept by the inte	
a) $r^2 + v^2 + 3r + 4v = 0$)	b) $r^2 + v^2 + 3r - 4v = 0$	
(c) $r^2 + y^2 - 3r + 4y = 0$)	d) $r^2 + y^2 - 3r - 4y = 0$	
664 The area of square inscrib	, and in a circle $x^2 \pm y^2 = 6x$	$\frac{1}{2} - \frac{3}{2} - \frac{3}{2} - \frac{3}{2} = 0$ is	
2) 100 sq unit	b) 50 sq unit	0y = 0.13	d) None of these
665 The length of the transver	b) 50 sq unit rse avis of the rectangular h	$v_{1} = 25$ sq unit	uj None or these
a) 6	h) 12	$\frac{1}{2} \int \frac{1}{2} \int \frac{1}$	4) d
666 Equation of the circle whi	ich touches $3x + 4y - 7a$	nd passes through $(1 - 2)$	and $(4 - 3)$ is
a) $r^2 \pm v^2 = 94 r \pm 18 v$	$\pm 55 = 0$		unu (1, 3) 13
a) $x + y = 94x + 10y$ b) $15x^2 + 15x^2 = 04x$	+ 33 - 0		
$b_{1} 15 x + 15 y - 94 x - 32 + 15 x^{2} + 04 x$	+ 10 y + 55 = 0		
c) $15x + 15y + 94x - d) w^2 + w^2 = 04w - 10w$	+ 10 y + 55 = 0		
$a_{1}x^{2} + y^{2} - 94x - 18y$	+ 55 = 0	$2 y^2$	
^{667.} The line $3x + 5y = 15\sqrt{2}$	is a tangent to the ellipse $\frac{x}{2}$	$\frac{1}{5} + \frac{y}{9} = 1$, at a point whose	e eccentric angle is
a) $\pi/6$	b) $\pi/4$	c) π/3	d) $2\pi/3$
668. The coordinates of the ce diameter are	ntre of the smallest circle p	assing through the origin a	nd having $y = x + 1$ as a
(1 1)	(1 1)	(10)	(11)
a) $(\frac{1}{2}, -\frac{1}{2})$	$b\left(\frac{1}{2},\frac{1}{3}\right)$	c) $(-1,0)$	a) $\left(-\frac{1}{2}, \frac{1}{2}\right)$
669. If the tangent at the point	$(a \sec \alpha, b \tan \alpha)$ to the hy	perbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ meets	the transverse axis at <i>T</i> ,
then the distance of T fro	m a focus of the hyperbola i	is	
a) $b(e - \cos \alpha)$	b) $b(e + \cos \alpha)$	c) $a(e + \cos \alpha)$	d) $\sqrt{a^2e^2 + b^2\cot^2\alpha}$
670. For an ellipse with eccent	tricity $1/2$ the centre is at the	ne origin. If one directrix is	x = 4, then the equation of
the ellipse is	,	0	,
a) $3x^2 + 4v^2 = 1$	b) $3x^2 + 4v^2 = 12$	c) $4x^2 + 3v^2 = 1$	d) $4x^2 + 3v^2 = 12$
671. If the focal distance of an	end of the minor axis of an	ellipse (referred to its axes	s as the axes of x and v
respectively) is k and the	distance between its foci is	s 2h, then its equation is	

a)
$$\frac{x^2}{k^2} + \frac{y^2}{k^2} = 1$$
 b) $\frac{x^2}{k^2} + \frac{y^2}{k^2 - h^2} = 1$ c) $\frac{x^2}{k^2} + \frac{y^2}{h^2 - k^2} = 1$ d) $\frac{x^2}{k^2} + \frac{y^2}{k^2 + h^2} = 1$
672. The stringht line $x + y - 1 = 0$ meets the circle $x^2 + y^2 - 6x - 8y = 0$ at Aand B. Then, the equation of the circle of which AB is a diameter is
a) $x^2 + y^2 - 2y - 6 = 0$ b) $x^2 + y^2 + 2y - 6 = 0$
c) $2(x^2 + y^2) + 2y - 6 = 0$ c) d) $3(x^2 + y^2) + 2y - 6 = 0$
c) $2(x^2 + y^2) + 2y - 6 = 0$ c) d) $3(x^2 + y^2) + 2y - 6 = 0$
c) $2(x^2 + y^2) + 2y - 6 = 0$ c) d) $3(x^2 + y^2) + 2y - 6 = 0$
c) $2(x^2 + y^2) + 2y - 6 = 0$ c) d) $3(x^2 + y^2) + 2y - 6 = 0$
c) $2(x^2 + y^2) + 2y - 6 = 0$ c) d) $3(x^2 + y^2) + 2y - 6 = 0$
c) $2(x^2 + y^2) + 2y - 6 = 0$ c) $\sqrt{3}x - y - 2 = 0$ d) $x + \sqrt{3}y + 2 = 0$
675. The normal at a point P on the ellipse $x^2 + 4y^2 = 16$ meets the x-axis to entre above x-axis. Equation of the interse segment P_0 , then the locus of M intersects the lature turn of the given ellipse at the points
a) $\left(\pm \frac{3\sqrt{5}}{2}, \pm \frac{7}{2}\right)$ b) $\left(\pm \frac{4\sqrt{5}}{2}, \pm \frac{\sqrt{19}}{4}\right)$ c) $\left(\pm 2\sqrt{3}, \pm \frac{1}{7}\right)$ d) $\left(\pm 2\sqrt{3}, \pm \frac{4\sqrt{3}}{7}\right)$
676. If (0,6) and (0.3) are respectively the vertex and focus of a parabola, then its equation is
a) $x^2 + 12y = 72$ b) $x^2 - 12y = 72$ c) $y^2 - 12x = 72$ d) $y^2 + 12x = 72$
677. Set of values of m for which a chord of slope m of the circle $x^2 + y^2 = 4$ touches the parabola $y^2 = 4x$, is
a) $\left(-\infty, -\sqrt{\sqrt{2}-1}\right) \cup \left(\sqrt{\sqrt{2}-\frac{1}{2}}, \infty\right)$
b) $(-\infty, -1) \cup (1, \infty)$
c) $(-1, 1)$
d) R
678. The parabola $y^2 = 4ax$ passes through the point $(2, -6)$, then the length of its latus rectum is
a) 18 b) 9 c. (2a)
d) $\left(-\infty, -\sqrt{\sqrt{2}-1}, \frac{1}{2}, \frac{1}{$

685. If $a \neq 0$ and the line $2bx - 4$	+ 3cy + 4d = 0, passes thr	ough the points of intersect	tion of the parabolas $y^2 =$
$4ax x^2 = 4ay$, then	$1 + 1^2 + (21 + 2 + 2)^2 = 0$	(2) (2) (2) (2) (2)	$1)$ $12 + (21 - 2.)^{2}$ 0
a) $d^2 + (2b + 3c)^2 = 0$	b) $a^2 + (3b + 2c)^2 = 0$	c) $a^2 + (2b - 3c)^2 = 0$	d) $a^2 + (3b - 2c)^2 = 0$
686. The foci of the Basic Term	is of Conics $25x^2 + 16y^2 - 10x^2 + 10y^2 - 10x^2 + 10x^2 +$	150x = 175 are	
a) $(0, \pm 3)$	b) $(0, \pm 2)$	c) $(3, \pm 3)$	d) (0, ±1)
687. The inverse of the point (1, 2) with respect to the cir	$rcle x^2 + y^2 - 4x - 6y + 9$	= 0, is
a) $\left(1,\frac{1}{2}\right)$	b) (2, 1)	c) (0, 1)	d) (1, 0)
688. the equation $ax^2 + 2 hxy$	$+ by^{2} + 2 gx + 2 fy + c =$	= 0 represents a circle, the o	condition will be
a) $a = b$ and $c = 0$	b) $f = g$ and $h = 0$	c) $a = b$ and $h = 0$	d) $f = g$ and $c = 0$
689. The equation of a circle w	ith origin as a centre and p	assing through an equilater	ral triangle whose median
is of length 3a, is			
a) $x^2 + y^2 = 9a^2$	b) $x^2 + y^2 = 16a^2$	c) $x^2 + y^2 = 4a^2$	d) $x^2 + y^2 = a^2$
690. A hyperbola, having the tr Then, its equation is	cansverse axis of length 2 s	in θ , is confocal with the ell	ipse $3x^2 + 4y^2 = 12$.
a) $x^2 \csc^2 \theta - y^2 \sec^2 \theta$	= 1	b) $x^2 \sec^2 \theta - y^2 \csc^2 \theta =$	= 1
c) $x^2 \sin^2 \theta - y^2 \cos^2 \theta =$	1	d) $x^2 \cos^2 \theta - y^2 \sin^2 \theta =$	1
691. The lines $3x - 4y + 4 = 0$) and $6x - 8y - 7 = 0$ are t	tangents to the same circle.	Then, its radius is
a) 1/4	b) 1/2	c) 3/4	d) None of these
692. The values of θ in $[0, 2\pi]$	so that circles $x^2 + y^2 + 2$	$(\sin \alpha)x + 2(\cos \alpha)y + \sin^2 \alpha$	$\theta = 0$ always lies inside
the square of unit side len	gth, is /are		
a) $(\pi/3, 2\pi/3)$	b) $[4 \pi, 5 \pi/3]$	c) $(\pi/4, 2\pi/3)$	d) None of these
693. The locus of the point inte	ersection of tangents to the	parabola $y^2 = 4(x+1)$ an	d $y^2 = 8(x + 2)$ which are
perpendicular to each oth	er is		
a) $x + 7 = 0$	b) $x - y = 4$	c) $x + 3 = 0$	d) $y - x = 12$
694. The equation of the parab	ola whose focus is $(3, -4)$	and directrix $6x - 7y + 5 =$	= 0, is
a) $(7x + 6y)^2 - 570x + 7$	750y + 2100 = 0	b) $(7x + 6y)^2 + 570x - 7$	750y + 2100 = 0
c) $(7x - 6y)^2 - 570x + 7$	750y + 2100 = 0	d) $(7x - 6y)^2 + 570x - 7$	750y + 2100 = 0
695. If one end of a diameter o	f the ellipse $4x^2 + y^2 = 16$	5 is $(\sqrt{3}, 2)$, then the other e	end is
a) $(-\sqrt{3} 2)$	h) $(\sqrt{3} - 2)$	c) $(-\sqrt{3} - \sqrt{2})$	q) (0 0)
696 The angle between the as	umptotes of the hyperbola	$27r^2 - 9v^2 - 24$ is	u) (0,0)
a) 20°	b) 120°	27x = 9y = 2415	4) 2400
$\begin{array}{c} a \\ b \\ c \\ c$	DJ 120 boing any real number lie	c_{J} 45	2x - 2y + 3 = 0 if
$(37.1110 \text{ point} (Sin \theta, \cos \theta), \theta)$	being any real number, lie	$\frac{1}{2} = \frac{1}{2} = \frac{1}$	$2x - 2y + \lambda = 0, II$
a) $\lambda < 1 + 2\sqrt{2}$	$DJ \lambda > 2\sqrt{2} - 1$	c) $\lambda < -1 - 2\sqrt{2}$	a) $\lambda > 1 + 2\sqrt{2}$
698. The angle between the pa	ir of tangents drawn to the	ellipse $3x^2 + 2y^2 = 5$ from	n the point (1, 2) is
a) $\tan^{-1}\left(\frac{12}{5}\right)$	b) $\tan^{-1}(6\sqrt{5})$	c) $\tan^{-1}\left(\frac{12}{\sqrt{5}}\right)$	d) $\tan^{-1}(12\sqrt{5})$
699. The maximum area of an a	isosceles triangle inscribed	in the ellipse $\frac{x^2}{x} + \frac{y^2}{x^2} = 1$ w	vith vertex at one at one
end of major axis is	_	$a^2 b^2$	
a) $\sqrt{3} ab$	b) $\frac{3\sqrt{3}}{4}ab$	c) $\frac{5\sqrt{3}}{4}ab$	d) None of these
700. If the minor axis of an elli	pse subtends an angle of 60	0° at each focus of the ellips	se, then its eccentricity is
$\sqrt{3}$	1	2	d) None of these
a) <u> </u>	b) $\sqrt{2}$	c) $\overline{\sqrt{3}}$	
701. A man running round a ra	ice course notes that the su	m of the distances of two fl	ag posts from him is
always 10m and the dista	nce between the flag posts	is 8m. The area of the path	he encloses (in square
metre) is		-	
a) 15π	b) 12π	c) 18π	d) 8π
702. The middle point of the ch	nord $x + 3y = 2$ of the con	ic $x^2 + xy - y^2 = 1$ is	

a) (5, -1)	b) (1, 1)	c) (2,0)	d) (-1, 1)
703. The circles $x^2 + y^2 - y^2$	$4x - 6y - 12 = 0$ and $x^2 + y$	$y^2 + 4x + 6y + 4 = 0$	
a) Touch externally		b) Do not intersect	
c) Intersect at two poi	nts	d) Are concentric	
^{704.} The equation of the di	rector circle of the hyperbola	$a\frac{x^2}{16} - \frac{y^2}{4} = 1$, is given by	
a) $x^2 + y^2 = 16$	b) $x^2 + y^2 = 4$	c) $x^2 + y^2 = 20$	d) $x^2 + y^2 = 12$
705. If the lines $2x + 3y + 3$	1 = 0 and $3x - y - 4 = 0$ lie	along diameters of acircle	of circumference 10π , then
the equation of the cir	cle is		
a) $x^2 + y^2 - 2x + 2y$	-23 = 0	b) $x^2 + y^2 - 2x - 2y - 2y - 2y - 2y - 2y - 2y - 2$	23 = 0
c) $x^2 + y^2 + 2x + 2y$	-23 = 0	d) $x^2 + y^2 + 2x - 2y -$	23 = 0
706. The value of λ , for whi 0 orthogonally, is	ch the circle $x^2 + y^2 + 2\lambda x$	+ 6y + 1 = 0 intersects the	e circle $x^2 + y^2 + 4x + 2y =$
11		5	ی 5
$\frac{a}{8}$	b) —1	c_{j}	$\frac{d}{2}$
707. The area of the triangl	e formed by any tangent to t	he hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ w	ith its asymptotes is
a) $4a^2b^2$	b) a^2b^2	c) 4 <i>ab</i>	d) <i>ab</i>
708. If the chords of contac at right angle, then <i>P</i> l	t of tangents drawn from <i>P</i> t ies on	to the hyperbola $x^2 - y^2 =$	<i>a</i> ² and its auxiliary circle are
a) $x^2 - y^2 = 3a^2$	b) $x^2 - y^2 = 2a^2$	c) $x^2 - y^2 = 0$	d) $x^2 - y^2 = 1$
709. Let P be a point on the	ellinse $\frac{x^2}{x} + \frac{y^2}{x} - 1$ of eccen	tricity ρ If $A A'$ are the vert	ices and $S S'$ are the foci of
	$a^2 + b^2 = 1, \text{ or eccent}$	there is a set of the vert	ites and 5,5° are the lot of
the ellipse, then Area A	$\Delta PSS'$: Area $\Delta APA' =$		1
a) <i>e</i> ³ :1	b) <i>e</i> ² :1	c) <i>e</i> : 1	d) $\frac{1}{e}$: 1
710. The centre of the ellips	$\sec 9x^2 + 25y^2 - 18x - 100y$	v - 166 = 0, is	
a) (1,1)	b) (-1,2)	c) (-1,1)	d) (1,2)
711. Length of major axis o	f ellipse $9x^2 + 7y^2 = 63$ is		
a) 3	b) 9	c) 6	d) 2√7
712. Equation of the norma	It to the ellipse $4(x-1)^2 + 9$	$9(y-2)^2 = 36$, which is par	rallel to the line $3x - y = 1$,
a) $2x - y - \sqrt{5}$		h) $2x - y - \sqrt{5} - 2$	
a) $3x - y = \sqrt{3}$		b) $3x - y = \sqrt{5}(\sqrt{5} + 1)$	
c) $3x - y = \sqrt{5} + 2$		$a_{1}^{3} 3x - y = \sqrt{5}(\sqrt{5} + 1)$	
/13. If e and e' be the ecce	ntricities of a hyperbola and	its conjugate, then $\frac{1}{e^2} + \frac{1}{(e)^2}$	is equal to
a) 0	b) 1	c) 2	d) 3
714. In the parabola $y^2 = 4$	ax, the length of the chord p	bassing through the vertex in	nclined to the axis at $\frac{\pi}{4}$ is
a) 4a√2	b) 2 <i>a</i> √2	c) a√2	d) a
715. If e is eccentricity of elements o	llipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b)$ and	e' is eccentricity of $\frac{x^2}{a^2} + \frac{y^2}{b^2}$	a = 1(a < b), then
a) $e = e'$	b) <i>ee'</i> = 1	c) $\frac{1}{e^2} + \frac{1}{(e')^2} = 1$	d) None of these
716. The area (in square una) 4π	hit) of the circle which touch b) 3π	es the lines $4x + 3y = 15$ as	nd $4x + 3y = 5$ is
717. The sum of the coeffic	ients in the expansion of (α^2)	$x^{2} - 2\alpha x + 1)^{51}$ as a poly	nomial in x vanishes
Position of the point ($\alpha^2 \alpha^2$) with respect to the c	$\frac{1}{2}u^2 + v^2 = 4$ is	
a) Outside	h) Inside	c) On side	d) Cannot be decided
^{718.} The locus of the poles	of tangents to the auxiliary c	ircle with respect to the elli	pse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, is
x^{2} v^{2} 1	x^{2} v^{2} 1	x^{2} v^{2} 1	d) None of these
a) $\frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{a^2}$	b) $\frac{1}{a^4} + \frac{b^2}{b^4} = \frac{1}{b^2}$	$c) \frac{1}{a^4} + \frac{b}{b^4} = \frac{1}{a^2}$,

a)
$$x^{2} + y^{2} - 8x = 0$$

b) $x^{2} + y^{2} - 5x + 7y = 0$
c) $x^{2} + y^{2} - 5x + 7y - 1 = 0$
d) $x^{2} + y^{2} - 8x + 7y - 2 = 0$

720. If the lines joining the foci of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, where a > b and an extremity of its minor axis are inclined at an angle 60°, then the eccentricity of the ellipse is

a)
$$-\frac{\sqrt{3}}{2}$$
 b) $\frac{1}{2}$ c) $\frac{\sqrt{5}}{2}$ d) $\frac{\sqrt{7}}{3}$

721. The two parabolas $x^2 = 4y$ and $y^2 = 4x$ meet in two distinct points. One of these is the origin and the other is

- a) (2,2) b) (4,-4) c) (4,4) d) (-2,2)722. If the circles $x^2 + y^2 + 2gx + 2fy = 0$ and $x^2 + y^2 + 2g'x + 2f'y = 0$ touch each other, then a) ff' = gg' b) fg = f'g' c) $(fg)^2 = (f'g')^2$ d) fg' = f'g
- 723. If the normals at two points *P* and *Q* of a parabola $y^2 = 4ax$ intersect at a third point *R* on the curve, then the product of ordinates of *P* and *Q* is
- a) $4a^2$ 724. The equation of the line which is tangent to both the circle $x^2 + y^2 = 5$ and the parabola $y^2 = 40x$ is a) $2x - y \pm 5 = 0$ b) 2x - y + 5 = 0c) 2x - y - 5 = 0d) 2x + y + 5 = 0
- 725. The length of the chord of the parabola $y^2 = 4ax$, which passes through the vertex and makes an angle α with the axis of the parabola is

a) $4a \cos \alpha \csc^2 \alpha$ b) $4a \cos \alpha \csc^2 \alpha$ c) $a \cos \alpha \csc^2 \alpha$ d) $a \cos^2 \alpha a \csc \alpha$ 726. x = 1 is the radical axis of the two orthogonally intersecting circles. If $x^2 + y^2 = 4$ is one of the circles, then the circle is

a) $x^2 + y^2 - 4x + 4 = 0$ b) $x^2 + y^2 - 8x + 4 = 0$ c) $x^2 + y^2 - 8x - 4 = 0$ d) None of these 727. The equation $(x - x_1)(x - x_2) + (y - y_1)(y - y_2) = 0$ represents a circle whose centre is

a)
$$\left(\frac{x_1 - x_2}{2}, \frac{y_1 - y_2}{2}\right)$$
 b) $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$ c) (x_1, y_1) d) (x_2, y_2)

728. $x = 4(1 + \cos \theta)$ and $y = 3(1 + \sin \theta)$ are the parametric equations of

a)
$$\frac{(x-3)^2}{9} + \frac{(y-4)^2}{16} = 1$$

b) $\frac{(x+4)^2}{16} + \frac{(y+3)^2}{9} = 1$
c) $\frac{(x-4)^2}{16} - \frac{(y-3)^2}{9} = 1$
d) $\frac{(x-4)^2}{16} + \frac{(y-3)^2}{9} = 1$

729. If the chord of contact of tangents from a point on the circle $x^2 + y^2 = r_1^2$ to the circle $x^2 + y^2 = r_2^2$ touches the circle $x^2 + y^2 = r_3^2$, then r_1, r_2, r_3 are in a) AP b) HP c) GP d) AGP

730. The locus of the poles of tangents to the director circle of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ with respect to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, is

a)
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{1}{a^2 + b^2}$$
 b) $\frac{x^2}{a^4} + \frac{y^2}{a^4} = \frac{1}{a^2 + b^2}$ c) $\frac{x^2}{a^6} + \frac{y^2}{b^6} = \frac{1}{a^2 + b^2}$ d) None of these

731. If chords of the hyperbola $x^2 - y^2 = a^2$ touch the parabola $y^2 = 4ax$. Then, the locus of the middle points of these chord is

a) $y^2 = (x - a)x^3$ b) $y^2(x - a) = x^3$ c) $x^2(x - a) = x^3$ d) None of these 732. If the parabola $y^2 = 4ax$ passes through the point (1, -2), then tangent at this point is a) x - y - 1 = 0 b) x + y + 1 = 0 c) x - y + 1 = 0 d) None of these

a) x - y - 1 = 0733. If the circles $x^2 + y^2 + 2x + 2ky + 11 = 6$ and $x^2 + y^2 + 2ky + K = 0$ intersect orthogonally, then *k* is

a)
$$2 \text{ or } -\frac{5}{2}$$

(a) $2 \text{ or } -\frac{5}{2}$
(b) $-2 \text{ or } \frac{5}{2}$
(c) $2 \text{ or } \frac{5$

735. Consider the circles $x^2 + (y - 1)^2 = 9$, $(x - 1)^2 + y^2 = 25$. They are such that a) These circles touch each other b) One of these circles lies entirely inside the other c) Each of these circle lies outside the other d) They intersect in two point 736. The circle $x^2 + y^2 + 8y - 4 = 0$, cuts the real circle $x^2 + y^2 + gx + 4 = 0$ orthogonally, if a) For any real value of *g* b) For no real value of g c) g = 0d) q < -2, q > 2737. If *P* is any point on the ellipse $\frac{x^2}{36} + \frac{y^2}{16} = 1$ and *S* and *S'* are the foci, then *PS* + *PS'* is equal to c) 10 a) 4 b) 8 738. If *A*, *A*' are the vertices, *S*, *S*' are the foci and *Z*, *Z*' are the feet of the directrices of an ellipse with centre *C*, then CS, CA, CZ are in c) H.P. d) None of these a) A.P. b) G.P. 739. The condition that the parabola $y^2 = 4c(x - d)$ and $y^2 = 4ax$ have a common normal other than *x*-axis (a > 0, c > 0), if a) 2a < 2c + db) 2*c* < 2*a* + *d* c) 2d < 2a + cd) 2d < 2c + a740. The equation of the circle whose diameter is the common chord of the circles $x^{2} + y^{2} + 2x + 3y + 2 = 0$ and $x^2 + y^2 + 2x - 3y - 4 = 0$ is a) $x^2 + y^2 + 2x + 2y + 2 = 0$ b) $x^2 + y^2 + 2x + 2y - 1 = 0$ d) $x^2 + y^2 + 2x + 2y + 3 = 0$ c) $x^2 + y^2 + 2x + 2y + 1 = 0$ 741. The coaxial system of circles given by $x^2 + y^2 + 2gx + c = 0$ for c < 0 respects b) Non-intersecting circles a) Intersecting circles c) Touching circles d) Touching or non-intersecting circles 742. The value of λ , for which the line $2x - \frac{8}{3}\lambda y = -3$ is a normal to the conic $x^2 + \frac{y^2}{4} = 1$ is a) $-\frac{\sqrt{3}}{2}$ b) $\frac{1}{2}$ c) -3 d) $\pm \frac{\sqrt{3}}{2}$ d) $\pm \frac{\sqrt{3}}{2}$ 743. If the length of the latusrectum of the ellipse $x^2 \tan^2 \theta + y^2 \sec^2 \theta = 1$ is 1/2, then $\theta = 1$ b) $\pi/6, 5\pi/6$ a) $\pi/12,5\pi/12$ c) $7 \pi / 12$ d) None of these 744. If 2y = x and 3y + 4x = 0 are the equations of a pair of conjugate diameters of an ellipse, then the eccentricity of the ellipse is d) $\frac{1}{2}$ a) $\frac{2}{3}$ b) $\frac{2}{5}$ c) $\frac{1}{3}$ 745. Equation $\frac{1}{r} = \frac{1}{8} + \frac{3}{8}\cos\theta$ represents a) A rectangular hyperbola b) A hyperbola c) An ellipse d) A parabola 746. The length of the latusrectum of an ellipse is one third of its major axis. Its eccentricity would be b) $\frac{2}{3}$ c) $\frac{1}{\sqrt{3}}$ a) $\frac{2}{2}$ d) $\frac{1}{\sqrt{2}}$ 747. The locus of centre of a circle which passes through the origin and cuts off a length of 4 unit from the line x = 3 is a) $v^2 + 6x = 0$ b) $y^2 + 6x = 13$ c) $y^2 + 6x = 10$ d) $x^2 + 6y = 13$ 748. The equation of latusrectum of a parabola is x + y = 8 and the equation of the tangent at the vertex is x + y = 8y = 12, then length of the latusrectum is c) 8 a) $4\sqrt{2}$ b) $2\sqrt{2}$ d) $8\sqrt{2}$ 749. The equation of the hyperbola referred to the axes of coordinate and whose distance between the foci is 16 and eccentricity is $\sqrt{2}$, is

a) $x^2 - y^2 = 16$ b) $x^2 - y^2 = 32$ c) $x = 2y^2 = 16$ d) $y^2 - x^2 = 16$ 750. A circle touches y-axis at (0,2) and has an intercept of 4 units on the positive side of x-axis. The equation of the circle is a) $x^{2} + y^{2} - 4(\sqrt{2}x + y) + 4 = 0$ b) $x^2 + y^2 - 4(x + \sqrt{2}y) + 4 = 0$ c) $x^{2} + y^{2} - 2(\sqrt{2}x + y) + 4 = 0$ d) None of these 751. If *t* is a parameter, then $x = a\left(t + \frac{1}{t}\right)$, $y = b\left(t - \frac{1}{t}\right)$ represents a) An ellipse b) A circle c) A pair of straight lines d) A hyperbola 752. A common tangent to $9x^2 - 16y^2 = 144$ and $x^2 + y^2 = 9$, is d) None of these a) $y = \frac{3}{\sqrt{7}}x + \frac{15}{\sqrt{7}}$ b) $y = 3\sqrt{\frac{2}{7}x + \frac{15}{\sqrt{7}}}$ c) $y = 2\sqrt{\frac{3}{7}x + 15\sqrt{7}}$ 753. Equation of the circle with centre on the *y*-axis and passing through the origin and (2,3) is a) $x^2 + y^2 + 13y = 0$ b) $3x^2 + 3y^2 - 13y = 0$ c) $x^2 + y^2 + 13x + 3 = 0$ d) $6x^2 + 6y^2 - 13x = 0$ ^{754.} The angle between the asymptotes of the hyperbola $\frac{x^2}{16} - \frac{y^2}{9} = 1$, is a) $\pi - 2 \tan^{-1} \frac{3}{4}$ b) $\pi - 2 \tan^{-1} \frac{3}{2}$ c) $\tan^{-1} \frac{3}{4}$ d) $\pi - 2 \tan^{-1} \frac{4}{3}$ 755. If the point $(-5 + \frac{\lambda}{\sqrt{2}}, -3 + \frac{\lambda}{\sqrt{2}})$ is an interior point of the larger segment of the circle $x^2 + y^2 = 16$ cut off by the line x + y = 2, then a) $\lambda \in (-\infty, 5\sqrt{2})$ b) $\lambda \in (4\sqrt{2} - \sqrt{14}, 5\sqrt{2})$ c) $\lambda \in (4\sqrt{2} - \sqrt{14}, 4\sqrt{2} + \sqrt{14})$ d) None of these 756. If the circle $x^2 + y^2 + 6x - 2y + k = 0$ bisects the circumference of the circle $x^2 + y^2 + 2x - 6y - 15 = 0$, then k is equal to a) 21 b) -21 c) 23 d) -23 757. If x = 9 is the chord of contact of the hyperbola $x^2 - y^2 = 9$, then the equation of the corresponding pair of tangents is a) $9x^2 - 8y^2 + 18x - 9 = 0$ b) $9x^2 - 8y^2 - 18x + 9 = 0$ c) $9x^2 - 8y^2 - 18x - 9 = 0$ d) $9x^2 - 8y^2 + 18x + 9 = 0$ 758. If the lines $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$ cut the coordinate axes in concyclic points, then a) $|a_1a_2| = |b_1b_2|$ b) $|a_1b_1| = |a_2b_2|$ c) $|a_1b_2| = |a_2b_1|$ d) None of these 759. One of the diameters of the circle circumscribing the rectangle *ABCD* is 4y = x + 7. If *A* and *B* are the points (-3,4) and (5,4) respectively, then the area of the rectangle is b) 24 sq. units c) 32 sq. units a) 16 sq. units d) None of these 760. The intercept on the line y = x by the circle $x^2 + y^2 - 2x = 0$ is *AB*. The equation of the circle with *AB* as diameter is a) $x^2 + y^2 + x + y = 0$ b) $x^2 + y^2 = x + y$ c) $x^2 + y^2 - 3x + y = 0$ d) None of these 761. Let *LL'* be the latusrectum and *S* be a focus of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. If $\Delta SLL'$ is equilaterial, then the eccentricity of the ellipse is d) $\sqrt{2}/3$ a) $1/\sqrt{5}$ b) $1/\sqrt{3}$ c) $1/\sqrt{2}$ 762. The radius of the circle $r^2 - 2\sqrt{2}r(\cos\theta + \sin\theta) - 5 = 0$, is a) 9 b) 5 c) 3 d) 2

^{763.} If $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 (a > b)$ and	$dx^2 - y^2 = c^2$ cut at right a	angles, then	
a) $a^2 + b^2 = 2 c^2$	b) $b^2 - a^2 = 2 c^2$	c) $a^2 - b^2 = 2 c^2$	d) $a^2 b^2 = 2 c^2$
764. If the chords of constant	of tangents from two point	(x_1, y_1) and (x_2, y_2) to th	e ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ are at
right angles, then $\frac{x_1x_2}{y_1y_2}$ is	equal to		
a) $\frac{a^2}{b^2}$	b) $-\frac{b^2}{a^2}$	c) $-\frac{a^4}{h^4}$	d) $-\frac{b^4}{a^4}$
765. The equation of the hype	erbola of given transverse a	xis 2a with its vertex mid-v	vay between the centre and
the corresponding focus	is		
a) $3x^2 - y^2 = a^2$	b) $3x^2 - y^2 = 3a^2$	c) $x^2 - 3y^2 = a^2$	d) $x^2 - 3y^2 = a^2$
766. The equation of the circl	e concentric to the circle 2x	$x^2 + 2y^2 - 3x + 6y + 2 = 0$) and having double the area
of this circle, is			
a) $8x^2 + 8y^2 - 24x + 48$	8y - 13 = 0		
b) $16x^2 + 16y^2 + 24x - 16y^2 + 24x - 16y^2 + 16y^2 + 16y^2 + 16y^2 + 16y^2 + 16y^2 + 10y^2 + 10y^2$	-48y - 13 = 0		
c) $16x^2 + 16y^2 - 24x + 16y^2 - 24y^2 - 24y^2 + 16y^2 - 24y^2 - 24y^2 + 16y^2 + 16y^2 - 24y^2 + 16y^2 +$	-48y - 13 = 0		
d) $8x^2 + 8y^2 + 24x - 48$	8y - 13 = 0		
^{767.} If a tangent, having slope	$e - \frac{4}{3}$, to the ellipse $\frac{x^2}{18} + \frac{y^2}{32} =$	= 1 intersects the major and	l minor axes in points A and
B respectively, then the	area of $\triangle OAB$ is equal to		
a) 12 sq. units	b) 48 sq. units	c) 64 sq. units	d) 24 sq. units
768. The angle of intersection	between the curves $x^2 = 4$	$4(y+1)$ and $x^2 = -4(y+1)$	1) is
$\frac{\pi}{2}$	h) $\frac{\pi}{-}$	c) 0	$\frac{\pi}{-}$
$7(0 \rightarrow 1)$	$\frac{3}{4}$		² 2
769. The equation $ \sqrt{x^2} + (y) $	$(-1)^2 - \sqrt{x^2 + (y+1)^2} =$	k will represent a hyperbo	la for
a) $k \in (0,2)$	b) $k \in (0,1)$	c) $k \in (1, \infty)$	d) $k \in R^+$
770. Angle between tangent of π	frawn to circle $x^2 + y^2 = 2$	0, from the point (6, 2) is π	
a) $\frac{\pi}{2}$	b) <i>π</i>	c) $\frac{\pi}{4}$	d) 2π
771. The foci of the ellipse $\frac{x^2}{16}$	$+\frac{y^2}{h^2}=1$ and the hyperbola	$\frac{x^2}{144} - \frac{y^2}{81} = \frac{1}{25}$ coincide. The	en, the value of b^2 is
a) 1	b) 5	c) 7	d) 9
772. If $\frac{x^2}{x^2} - \frac{y^2}{x^2} = 1$, is a hyper	oola. then which of the follo	wing statements can by tru	le?
$36 k^2$, $k^2 y^2 + y$	erhola	b) (3.1) lies on the hyper	hola
c) (10.4) lies on the hyp	erhola	d) $(5,1)$ lies on the hyper	hola
773. The locus of the point of	intersection of perpendicul	ar tangents to the narahola	$x^2 = 4 a y$ is
a) $v = a$	b) $v = -a$	c) $x = a$	d) $x = -a$
774. If a chord which is norm	al to the parabola $v^2 = 4 ax$	x at one end subtends a right	ht angle at the vertex. then
its slope is	r i i i i i i i i i i i i i i i i i i i	0	,
a) 1	b) √3	c) $\sqrt{2}$	d) 2
775. The equation of the circl	e on the common chord of t	the circles $(x - a)^2 + y^2 =$	a^2 and $x^2 + (y+b)^2 = b^2$
as diameter, is			
a) $x^2 + y^2 = 2ab(bx + c)$	ay)	b) $x^2 + y^2 = bx + ay$	
c) $(a^2 + b^2)(x^2 + y^2) =$	2ab(bx - ay)	d) $(a^2 + b^2)(x^2 + y^2) =$	2(bx + ay)
776. If in a $\triangle ABC$ (whose circ	cumcentre is at the origin),	$a \leq \sin A$, then for any poin	x(x, y) inside the
circumcircle of ΔABC , w	ve have		
a) $ ry \leq \frac{1}{2}$	b) $ ry > \frac{1}{-}$	1 1 1	d) None of these
8	8	^c ³ 8 ² 2	
777. The locus of the mid point.	nts of the chords of the circl	$e x^2 + y^2 = 4$ which subter	nd a right angle at the origin
1S	(1) (2) (2) (2)		d)
a) $x^2 + y^2 = 1$ 770 The dimension of the	$y_{1}x^{2} + y^{2} = 2$	$c_{j} x + y = 1$	$a_{j}x + y = 2$
778. The directrix of the para	$y_{1} = y_{2} + 4x + 3 = 0$ is		

a) $x - \frac{4}{3} =$	0 b) <i>x</i>	$+\frac{1}{4}=0$	c) $x - \frac{3}{4} = 0$	d) $x - \frac{1}{4} = 0$
779. The point A	P(9/2,6) lies on the	parabola $y^2 = 4ax$, th	en parameter of the point <i>I</i>	P is
За	2		2	3
a) 2	b) <u>3</u>	a	c) $\frac{-}{3}$	d) $\frac{1}{2}$
700 The longth	of the laturation of	f the nershele where	forma in (2.2) and dimentivi	$a^2 \alpha = 4 \alpha = 0$ is
vol. The length	b) 1	n the parabola whose	a) 4	y = 0, 1s
$dJ \Delta$	UJI	o vooton gulov hun ovho	CJ 4	uj none or these
$701.115 x^{-} + \lambda$	$y^2 = 20$ represents	a rectangular hyperbo	λ equals	d) None of these
aj 5 702 Tanganta a	UJ4	the sum $\omega^2 - 4 \sigma \omega$	$C_{J} = 5$	a) None of the service of the
area of ΔP	QR is	the curve $y = 4ax$ a	re meeting at a point K on	the axis of the parabola. the
a) $-8a^2t_1^3$	b) 2	$a^2 t_1^2 t_2$	c) $4a^2t_1t_2^2$	d) None of these
783. A variable the diamet	circle passes througl er through <i>A</i> is	the fixed point $A(p, a)$	q) and touches <i>x</i> -axis. The l	locus of the other end of
a) $(x - p)^2$	$e^{2} = 4qy$ b) (2	$(x-q)^2 = 4py$	c) $(y - p)^2 = 4qx$	d) $(y - q)^2 = 4px$
784. The equati	on of the directrix of	the parabola $x^2 - 4x$	x - 3y + 10 = 0, is	
a) $v = -\frac{5}{2}$	h) v	_ 5	c) $y = -\frac{3}{2}$	d) $r = \frac{5}{2}$
4 uj y	5) y	4	$y = \frac{4}{2}$	4
^{785.} The angle l	Detween the two asy	mptotes of the hyperb	pola $\frac{x^2}{16} - \frac{y^2}{9} = 1$ is	(4)
a) π – 2 ta	$n^{-1}\left(\frac{3}{4}\right)$ b) π	$-2 \tan^{-1}\left(\frac{3}{2}\right)$	c) $2 \tan^{-1} \left(\frac{3}{4}\right)$	d) $\pi - 2 \tan^{-1} \left(\frac{\pi}{3} \right)$
786. The equati	on of the ellipse who	(2) ose one focus is at (4,0) and whose eccentricity is $\frac{2}{2}$	4/5 is
a) $\frac{x^2}{x^2} + \frac{y^2}{z^2}$	$= 1$ b) $\frac{x}{x}$	$\frac{y^2}{2} + \frac{y^2}{2} = 1$	c) $\frac{x^2}{\pi^2} + \frac{y^2}{\pi^2} = 1$	d) $\frac{x^2}{x^2} + \frac{y^2}{x^2} = 1$
$3^2 5^2$	5	2 32 E simela massima thurse	5^2 4^2	4^2 5^2
787. The locus (O orthogonally is	i circle passing throug	gn the origin and cutting the	$x^2 + y^2 + 4x -$
6y - 13 =	U orthogonally, is		-) 4 + (- 12) 0	d) 4 (12 0
a) $4x + 6y$	+13 = 0 DJ 4	x - 6y + 13 = 0	c) $4x + 6y - 13 = 0$	a) $4x - 6y - 13 = 0$
/88. The angle (of intersection of the	circles $x^2 + y^2 = 4$ at	nd $x^2 + y^2 = 2x + 2y$, is	d = 1
aj 11/2	D) <i>1</i>	/ 3	c) <i>π</i> /6	$u_{J} u_{J} u_{J} u_{J}^{2}$
^{789.} Let $P(a \text{ sec})$	$(\theta, b \tan \theta)$ and $Q(a \sin \theta)$	sec $φ$, <i>b</i> tan $φ$), where	$\theta + \phi = \frac{\pi}{2}$ be two points on	the hyperbola $\frac{x}{a^2} - \frac{y}{b^2} = 1.$
If (<i>h</i> , <i>k</i>) is t	he point of intersect	ion of normals at P ar	nd <i>Q</i> , then <i>k</i> is equal to	
$a^{2} + b^{2}$	1.5	$[a^2 + b^2]$	$a^{2} + b^{2}$	$[a^2 + b^2]$
a) <u>a</u>	DJ —		b = b	$a_j - b_j$
790. The circle :	$x^2 + y^2 + 2\lambda x = 0, \lambda$	$\in R$, touches the para	abola $y^2 = 4x$ externally. T	hen
a) λ > 0	b) λ	< 0	c) $\lambda > 1$	d) None of these
791. If the circle	$x^2 + y^2 - 2x - 2y$	$y - 7 = 0$ and $x^2 + y^2$	+4x + 2y + k = 0 cut ort	hogonally, then the length
of the com	mon chord of the cir	cle is	2	
12	b) 2		c) 5	d) 8
a) $\frac{1}{\sqrt{13}}$				
792. The radica	l axis of the coaxial s	ystem of circles with l	imiting points (1, 2) and (-	–2, 1)is
a) <i>x</i> + 3 <i>y</i> =	= 0 b) 3	x + y = 0	c) $2x + 3y = 0$	d) $3x + 2y = 0$
793. If <i>P</i> (1,1/2)	is a centre of similit	ude for the circles x^2	$+y^2 + 4x + 2y - 4 = 0$ and	$d x^2 + y^2 - 4x - 2y + 4 =$
0, then the	length of the commo	on tangent through P (to the circles is	
a) 4	b) 3		c) 2	d) 1
794. Number of	tangents from (7,6)	to ellipse $\frac{x^2}{x} + \frac{y^2}{x} = 1$	is	
a) ()	b) 1	1 6 25	c) 2	d) None of these
795 The equati	on of the common to	ngent of the two touc	$v_{2} =$ hing circles $v^{2} + v^{2} = 6v$	$-12v + 37 - 0 \text{ and } v^2 \perp$
$y^2 - 6y \pm$	7 - 0 is	ingent of the two touch	x = y = x = 0x	$L_y = 0$, -0 and $\lambda = 1$
a) $x + v - x = 0$	5 = 0 b) x	-y + 5 = 0	c) $x - y - 5 = 0$	d) $x + y + 5 = 0$
, · ,		2		

^{796.} Let *E* be the ellipse $\frac{x^2}{8} + \frac{y^2}{4} = 1$ and *C* be the circle $x^2 + y^2 = 9$. Let *P* and *Q* be the points (1, 2) and (2, 1) respectively. Then a) *Q* lies inside *C* but outside *E* b) *Q* lies outside both *C* and *E* c) *P* lies inside both *C* and *E* d) *P* lies inside *C* but outside *E* 797. An isosceles triangle is inscribed in the circle $x^2 + y^2 - 6x - 8y = 0$ with vertex at the origin and one of the equal sides along the axis of *x*. Equation of the other side through the origin is b) 24x - 7y = 0a) 7x - 24y = 0c) 7x + 24y = 0d) 24x + 7y = 0798. The locus of the middle point of the chords of the circle $x^2 + y^2 = a^2$ such that the chords pass through a given point (x_1, y_1) , is b) $x^2 + y^2 = x_1^2 + y_1^2$ a) $x^2 + y^2 - xx_1 - yy_1 = 0$ d) $x + y = x_1^2 + y_1^2$ c) $x + y = x_1 + y_1$ ^{799.} If *p* is the length of the perpendicular from a facus upon the tangent at any point *p* of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} =$ 1 and r is the distance of p from the focus, then $\frac{2a}{r} - \frac{b^2}{p^2}$ is equal to b) 0 a) -1 d) 2 800. Equation of the ellipse with eccentricity $\frac{1}{2}$ and foci at (±1,0) is d) None of these a) $\frac{x^2}{3} + \frac{y^2}{4} = 1$ b) $\frac{x^2}{4} + \frac{y^2}{3} = 1$ c) $\frac{x^2}{4} + \frac{y^2}{3} = \frac{4}{3}$ 801. If the tangent at a point *P* on $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ cuts one of its directrices at *Q*, then the angle made by *PQ* at the corresponding focus, is b) 30° d) 90° a) 45° c) 60° 802. The common tangent to the parabola $y^2 = 4 ax$ and $x^2 = 4 ay$, is a) x + y + a = 0b) x + y - a = 0c) x - y + a = 0d) x - y - a = 0803. The equation of the tangent at the vertex of the parabola $x^2 + 4x + 2y = 0$ is a) x = -2b) x = 2c) y = 2d) y = -2804. If the normal at the $P(\theta)$ to the ellipse $\frac{x^2}{14} + \frac{y^2}{5} = 1$ intersect it again at the point $Q(2\theta)$, then $\cos \theta$ is equal to a) $\frac{2}{3}$ d) $-\frac{1}{2}$ c) $\frac{1}{3}$ b) $-\frac{2}{3}$ 805. The vertex of the parabola $y^2 + 6x - 2y + 13 = 0$, is a) (1,−1) b) (-2,1) c) (3/2,1) d) (-7/2,1)806. The equation to the hyperbola having its eccentricity 2 and the distance between its foci is 8, is a) $\frac{x^2}{12} - \frac{y^2}{4} = 1$ b) $\frac{x^2}{4} - \frac{y^2}{12} = 1$ c) $\frac{x^2}{8} - \frac{y^2}{2} = 1$ d) $\frac{x^2}{16} - \frac{y^2}{9} = 1$ 807. If *P* is a point such that the ratio of the square of the lengths of the tangents from *P* to the circles $x^2 + y^2 + y^2$ 2x - 4y - 20 = 0 and $x^2 + y^2 - 4x + 2y - 44 = 0$ is 2: 3, then the locus of *p* is a circle with centre a) (7,−8) b) (-7,8) c) (7,8) d) (-7, -8)808. The equation of a circle *C* is $x^2 + y^2 - 6c - 8y - 11 = 0$. The number of real points at which the circle drawn with points (1,8) and (0,0) as the ends of a diameter cuts the circle, C is b) 1 d) None of these a) 0 c) 2 809. The length of transverse axis of the hyperbola $3x^2 - 4y^2 = 32$ is b) $\frac{16\sqrt{2}}{\sqrt{2}}$ a) $\frac{8\sqrt{2}}{\sqrt{3}}$ c) $\frac{3}{32}$ d) $\frac{64}{3}$ 810. Vertex of the parabola $9x^2 - 6x + 36y + 9 = 0$ is a) (1/3, -2/9)b) (-1/3, -1/2)c) (-1/3, 1/2)d) (1/3, 1/2)811. If the latusrectum of a hyperbola through one focus subtends 60° angle at the other focus, then its eccentricity e is a) $\sqrt{2}$ b) $\sqrt{3}$ c) √5 d) $\sqrt{6}$

812. If a circle passes through the point of intersection of	the coordinates axes with	the lines $\lambda x - y + 1 = 0$
and $x - 2y + 3 = 0$, then the value of λ is		
a) 2 b) 4	c) 6	d) 3
813. Let <i>AB</i> be a chord of the circle $x^2 + y^2 = r^2$ subtend centroid of the $\triangle PAB$ as <i>P</i> moves on the circle is	ing a right angle at the4 ce	ntre. Then, the locus of the
a) A parabola	b) A circle	
c) An ellipse	d) A pair of straight lines	
814. The locus of the centre of a circle which cuts orthogo	nally the circle $x^2 + y^2 - 2$	20x + +4 = 0 and which
touches $x = 2$, is		
a) $y^2 = 16x + 4$ b) $x^2 = 16y$	c) $x^2 = 16y + 4$	d) $y^2 = 16x$
815. If from any point <i>P</i> on the circle $x^2 + y^2 + 2gx + 2y$	fy + c = 0, tangents are di	rawn to the circle
$x^{2} + y^{2} + 2 gx + 2 fy + c \sin^{2} \alpha + (g^{2} + f^{2}) \cos^{2} \alpha$	= 0,	
then the angle between the tangents is		
a) α b) 2 α	c) α/2	d) None of these
816. The equation of the chord joining two points (x_1, y_1)	and $(x_{2,y_{2}})$ on the rectang	gular hyperbola $xy = c^2$ is
$x^{-1} + \frac{y^{-1}}{2} = 1$	h) $\frac{x}{$	
$x_1 + x_2 + y_1 + y_2$	$y_1 - x_2 + y_1 - y_2 = y_1 - y_2$	
c) $\frac{x}{-1} + \frac{y}{-1} = 1$	d) $\frac{x}{-1} + \frac{y}{-1} = 1$	
$y_1 + y_2 = x_1 + x_2$	$y_1 + y_2 x_1 + x_2$	
817. If the line $y \cos \alpha = x \sin \alpha + a \cos \alpha$ be a tangent to t	he circle $x^2 + y^2 = a^2$, the	n 2 2
a) $\sin^2 \alpha = 1$ b) $\cos^2 \alpha = 1$	c) $\sin^2 \alpha = a^2$	d) $\cos^2 \alpha = a^2$
818. The tangent at <i>P</i> , any point on the circle $x^2 + y^2 = 4$, meets the coordinate axes	s in A and B, then
a) Length of <i>AB</i> is constant		
b) <i>PA</i> and <i>PB</i> are always equal		
c) The locus of the mid-point of <i>AB</i> is $x^2 + y^2 = x^2y$	2	
d) None of these		
819. The equation of the circle which touches both the axe	es and the straight line $4 x$	+3y = 6 in the first
quadrant and lies below it is		
a) $4x^2 + 4y^2 - 4x - 4y + 1 = 0$		
b) $x^2 + y^2 - 6x - 6y + 9 = 0$		
c) $x^2 + y^2 - 6x - y + 9 = 0$		
d) $4(x^2 + y^2 - x - 6y) + 1 = 0$		
820. The equation of circle which touches the <i>x</i> -axis and <i>y</i>	v-axis at the points (1, 0) a	nd (0, 1) respectively, is
a) $x^2 + y^2 - 4y + 3 = 0$	b) $x^2 + y^2 - 2y - 2 = 0$	
c) $x^2 + y^2 - 2x - 2y + 2 = 0$	d) $x^2 + y^2 - 2x - 2y + 1$	= 0
821. The shortest distance between the parabolas $y^2 = 4$.	$x \text{ and } y^2 = 2x - 6 \text{ is}$	
a) 2 b) $\sqrt{5}$	c) 3	d) None of these
822. The eccentricity of the ellipse $9x^2 + 5y^2 - 30y = 0$ i	S	
a) 1/3 b) 2/3	c) 3/4	d) 4/5
823. The equation of the circle concentric to the circle $2x^2$	$x^2 + 2y^2 - 3x + 6y + 2 = 0$	and having area double the
a) $9x^2 + 9y^2 - 24x + 49y - 13 - 0$	b) $16x^2 \pm 16y^2 \pm 24x =$	49u - 12 - 0
a) $6x^2 + 16y^2 - 24x + 40y - 13 = 0$	d) $9x^2 + 9x^2 + 24x = 40$	40y - 13 = 0
$c_{1} = 10x + 10y - 24x + 40y - 15 - 0$	$u \int 0x + 0y + 24x - 40$	y - 15 = 0
^{824.} Equation of the normal to the hyperbola $\frac{x}{25} - \frac{y}{16} = 1$	perpendicular to the line 2	x + y = 1 is
a) $\sqrt{21}(x - 2y) = 41$ b) $x - 2y = 1$	c) $\sqrt{41}(x - 2y) = 41$	d) $\sqrt{21}(x - 2y) = 21$
825. The point of the parabola $y^2 = 18x$, for which the or	dinate is three times the a	bscissa is
a) $(6,2)$ b) $(-2-6)$	c) (3,18)	d) (2,6)
826. The equation of tangent to the hyperbola $4x^2 - 9y^2$	= 1, which is parallel to th	e line $4y = 5x + 7$, are
a) $y = 30x \pm 161$ b) $24y = 30x \pm \sqrt{161}$	c) $24y - r + 161$	d) None of these
	c) $2+y = x + 101$	uj none or these

	equal to			
	a) 1	b) 2	c) 3	d) 4
828	. If the straight line $x - 2y$ coordinates of the point o	+1 = 0 intersects the circl f intersection of tangents d	le $x^2 + y^2 = 25$ in points <i>P</i> rawn at <i>P</i> and <i>Q</i> to the circ	and <i>Q</i> , then the le $x^2 + y^2 = 25$ are
	a) (25,50)	b) (-25, -50)	c) $(-25,50)$	d) $(25, -50)$
829	. The angle between the tai	ngents drawn from the poin	nt (1, 4) to the parabola v^2	=4x is
	π	π h) –	π	$\frac{\pi}{2}$
	$\frac{a}{6}$	$\frac{1}{4}$	$()\frac{1}{3}$	$\frac{1}{2}$
830	. Coordinates of foci of hyp	erbola are (-5,3) and (7, 3)	and eccentricity is 3/2. Th	en ,length of its
	latusrectum is		2.40	
021	a) 20	b) 10 $u^2 = u^2$	c) 40	d) None of these
831	• Three points <i>A</i> , <i>B</i> , <i>C</i> are ta	ken on the ellipse $\frac{x}{a^2} + \frac{y}{b^2} =$	= 1 with eccentric angles θ ,	$\theta + \alpha$ and $\theta + 2\alpha$, then
	a) The area $\triangle ABC$ is independent of the second s	pendent of θ	b) The area ΔABC is indep	pendent of α
	c) The maximum value of	area is $\frac{\sqrt{3}}{4}ab$	d) The maximum value of	area is $\frac{3\sqrt{3}}{4}ab$
832	. Equation of the parabola	with its vertex at $(1,1)$ and	focus (3,1) is	4
	a) $(x-1)^2 = 8(y-1)$	b) $(y-1)^2 = 8(x-3)$	c) $(y-1)^2 = 8(x-1)$	d) $(x-3)^2 = 8(y-1)$
833	· If the tangent at the point	$\left(4\cos\phi,\frac{16}{2}\sin\phi\right)$ to the	ellipse $16x^2 + 11y^2 = 256$	is also a tangent to the
	circle $x^2 + y^2 - 2x - 15$	then the value of ϕ is		
	circle $x + y = 2x = 13$, a) $\pm \pi/2$	h) + $\pi/4$	c) $+ \pi/3$	d) + $\pi/6$
834	If the circles $r^2 + v^2 + 2k$	$r_{1} = \frac{1}{2} \frac{1}{r_{1}} \frac{1}{r_{1}}$	$y^2 + 2ky + k = 0$ intersects	$r_{1} = \pi 70$
051	value of k is	y + 2x + 0 = 0 and $x + y$	+ 2ky + k = 0 intersects	or mogonarry. Then, the
			3	., 1
	a) $\frac{1}{2}$	b) -2	c) $-\frac{1}{2}$	d) $\frac{1}{2}$
835	. The equation of the asymp	ptotes of the hyperbola $3x^2$	$x^{2} + 4y^{2} + 8xy - 8x - 4y - 9x - 9x - 4y - 9x - 9$	6 = 0 is
	a) $3x^2 + 4y^2 + 8xy - 8x$	-4y - 3 = 0	b) $3x^2 + 4y^2 + 8xy - 8x$	-4y + 3 = 0
	c) $3x^2 + 4y^2 + 8xy - 8x$	-4y+6=0	d) $4x^2 + 3y^2 + 2xy - x + 3y^2 + $	-y + 3 = 0
836	. The equation of the chord	of the circle $x^2 + y^2 - 4x$	= 0, whose mid point is (1)	, 0) is
	a) <i>y</i> = 2	b) <i>y</i> = 1	c) <i>x</i> = 2	d) <i>x</i> = 1
837	The equation of a circle w $y^2 = a^2$ is $x = a/2$, is	hich passes through $(2a, 0)$) and whose radical axis in	relation to the circle x^2 +
	a) $x^2 + y^2 - ax = 0$	b) $x^2 + y^2 + 2 ax = 0$	c) $x^2 + y^2 - 2 ax = 0$	d) $x^2 + y^2 + ax = 0$
838	. The range of values of $\theta \in$ is	$[0,2\pi]$ for which $(1 + \cos$	θ , sin θ) is on interior poin	t of the circle $x^2 + y^2 = 1$,
	a) (π/6,5π/6)	b) (2 π/3, 5 π/3)	c) (π/6,7 π/6)	d) 2 π/3, 4 π/3
839	The equation $(x-2)^2 + (x-2)^2$	$(y-3)^2 = \left(\frac{3x+4y-2}{5}\right)^2 \operatorname{repr}$	resents	
	a) A parabola		b) A pair of straight lines	
	c) An ellipse		d) A hyperbola	
840	Two diameters of the circ Then, the value of c_1c_2 is	$le \ 3x^2 + 3y^2 - 6x - 18y -$	-7 = 0 are along the lines 3	$3x + y = c_1 \operatorname{and} x - 3y = c_2.$
	a) –48	b) 80	c) -72	d) 54
841	\cdot If e_1 and e_2 are respective	ly the eccentricities of the	ellipse $\frac{x^2}{18} + \frac{y^2}{4} = 1$ and the	hyperbola $\frac{x^2}{9} - \frac{y^2}{4} = 1$, then
	the relation between e_1 and	de_2 is		
	a) $3 e_1^2 + e_2^2 = 2$	b) $e_1^2 + 2 e_2^2 = 3$	c) $2 e_1^2 + e_2^2 = 3$	d) $e_1^2 + 3 e_2^2 = 2$
842	$x^2 + y^2 - 6x - 6y + 4 =$	$0, \ x^2 + y^2 - 2x - 4y + 3$	= 0,	
	$x^2 + y^2 + 2kx + 2y + 1 =$	= 0. If the radical centre of	the above three circles exis	ts, then which of the
	rollowing cannot be the va	alue of <i>K</i>	-) Г	4 (ا
042	aj Z	DJ I $2x^2 + 4x^2$	CJ 5	a) 4
o43	. The equations of tangents	$x^2 + 4y^2 =$	s, which are inclined at 30	to the x-axis, are

	a) $y = \sqrt{3}x \pm \frac{5}{2}$	b) $y = \frac{1}{\sqrt{3}}x \pm \frac{5}{2}$	c) $y = \frac{1}{\sqrt{3}}x \pm 1$	d) None of these
844.	The slope of the tangent a	t the point (h, h) to the circ	$x^2 + y^2 = a^2 \text{ is}$	
	a) 0	b) 1	c) -1	d) Will depend on h
845.	Coordinates of the foci of	the ellipse $5x^2 + 9y^2 + 10x^2$	x - 36y - 4 = 0, are	
	a) $(1,2)$ and $(-3,2)$	b) $(2,1)$ and $(-3,2)$	c) (1,2) and (3,2)	d) None of these
846.	The parametric coordinat	es of any point on the para	bola $y^2 = 4ax$ can be	
	a) $(a - at^2, -2at)$	b) $(a - at^2, 2at)$	c) $(a \sin^2 t, -2a \sin t)$	d) $(a \sin t, -2a \cos t)$
847.	The latusrectum of the par	rabola $y^2 = 4ax$ whose for	cal chord is <i>PSQ</i> such that <i>S</i>	P = 3 and $SQ = 2$, is given
	by			
	24 ²⁴	b) ¹²	c) 6	d) ¹
	a) <u>-</u>	5	5	u) <u>-</u> 5
848.	The one which does not re	epresent a hyperbola is		
	a) $xy = 1$	b) $x^2 - y^2 = 5$	c) $(x-1)(y-3) = 0$	d) $x^2 - y^2 = 0$
849.	Equation of the directrix of	of parabola $2x^2 = 14y$ is equivalent of parabola $2x^2 = 14y$ is equivalent of the parabola $2x^2 = 14y$ is	jual to	
	7 2) a –	b r $ 7$	c) a – ⁷	d $u = 7$
	a) $y = -\frac{1}{4}$	$x = -\frac{1}{4}$	$y = \frac{1}{4}$	$y = \frac{1}{4}$
850.	The angle between the asy	mptotes of the hyperbola	$3x^2 - y^2 = 3$ is	
	π	$\frac{\pi}{-}$	$c)\frac{2\pi}{2\pi}$	d) $\frac{2\pi}{2\pi}$
	3	5,5	3	5
851.	The equation of the ellipse	e whose foci are $(\pm 2,0)$ and	d eccentricity $\frac{1}{2}$ is	
	$x^2 y^2$	$x^2 y^2$	$x^{2} v^{2}$	d) None of these
	a) $\frac{1}{12} + \frac{3}{16} = 1$	b) $\frac{16}{16} + \frac{5}{12} = 1$	c) $\frac{16}{16} + \frac{5}{8} = 1$	
852.	The area of the triangle fo	rmed by the tangent at (3.	4) to the circle $x^2 + v^2 = 2$	5 and the coordinate axes
	is		-)	
	24	b) ()	325	
	a) $\frac{1}{25}$	5) 0	c) ${24}$	d) $-(\frac{1}{25})$
853.	If $2x + 3y - 6 = 0$ and $9x$	+6y - 18 = 0 cuts the ax	es in concyclic points, then	the centre of the circle, is
	a) (2,3)	b) (3,2)	c) (5,5)	d) (5/2.5/2)
854.	The point of interpretion (of two tongonts to the huma	whole $x^2 y^2 = 1$ the prod	$y = \frac{1}{2} $
	The point of intersection (of two tangents to the hype	$\frac{1}{a^2} - \frac{1}{b^2} = 1$, the prod	uct of whose slope is c ,
	lies on the curve			
	a) $y^2 - b^2 = c^2(x^2 + a^2)$		b) $y^2 + a^2 = c^2(x^2 - b^2)$	
	c) $y^2 + a^2 = c^2(x^2 - a^2)$		d) $y^2 - a^2 = c^2(x^2 + b^2)$	
855.	A parabola is drawn with	its focus at (3, 4) and verte	x at the focus of the parabo	$la y^2 - 12x - 4y + 4 = 0.$
	The equation of the parab	ola is		
	a) $y^2 - 8x + 6y + 25 = 0$		b) $y^2 - 6x + 8y - 25 = 0$	
	c) $x^2 - 6x - 8y + 25 = 0$		d) $x^2 + 6x - 8y - 25 = 0$	
856.	The common tangent of th	the parabolas $y^2 = 4x$ and x	$z^{2} = -8y$ is	
	a) $y = x + 2$	b) $y = x - 2$	c) $y = 2x + 3$	d) None of these
857.	The circle $x^2 + y^2 + 4x - $	4y + 4 = 0 touches		-
	a) <i>x</i> -axis	b) <i>v</i> -axis	c) x-axis and y-axis	d) None of these
858.	The line $2x - 3v = 5$ and	3x - 4v = 7 are the diame	ter of a circle of ares 154 so	unit. The equation of this
	circle is $(\pi = 22/7)$,		1
	a) $r^2 + v^2 + 2r - 2v = 6$	2	b) $x^2 + y^2 + 2x - 2y = 4$	7
	c) $x^2 + y^2 - 2x + 2y - 4$	7	d) $r^2 + y^2 - 2r + 2y = 6$	2
859	$\int x + y = \frac{1}{2} x + \frac{1}{2} y = \frac{1}{2}$ If $P = (x, y) F_{1} - (2, 0) F_{2}$	$L_{2} = (-3, 0)$ and $16x^{2} \pm 25x^{2}$	$v^2 = 400$ then $PF \perp PF$	- Paulals
007.	$111 - (x, y), r_1 - (0, 0), r_2$	2 - (3, 0) and 10x + 23	$r_{1} = 100, \text{ mon } r_{1} + r_{2} \text{ c}$	d) 12
ያደባ		v) v	v^2 v^2	uj 12
000.	The distance between the	directrices of the ellipse $\frac{x}{4}$	$\frac{1}{4} + \frac{3}{9} = 1$ is	
	$\frac{9}{2}$	$h) \frac{24}{2}$	$\frac{18}{1}$	d) None of these
	$\sqrt[a]{\sqrt{5}}$	$\sqrt{5}$	$\sqrt[6]{\sqrt{5}}$	

aviant	T and T' The size d	$rac{T}{T}$ as diameter passes	through the point	extremities of the major
axis at		b) c/\overline{E} on	(2, 1)	d) $(0, \sqrt{r})$
α) (0, γ	5)	UJ (V 5, U)	() (2, 1)	$(0, -\sqrt{5})$
002 . If θ and	$ \phi $ are eccentric ar	igle of the ends of a pair of	conjugate diameters of the	ellipse $\frac{x}{a^2} + \frac{y}{b^2} = 1$, then
$\theta - \phi i$	s equal to			
a) $\pm \frac{\pi}{2}$		b) ±π	c) 0	d) None of these
863. The rac	lius of any circle to	buching the lines $3x - 4y + 3x - 4y$	5 = 0 and $6x - 8y - 9 =$	0 is
a) 1.9		b) 0.95	c) 2.9	d) 1.45
864. If the ta	angent at the point	$(2 \sec \theta, 3 \tan \theta)$ to the hyp	perbola $\frac{x^2}{4} - \frac{y^2}{9} = 1$ is paral	lel to $3x - y + 4 = 0$, then
the val	ue of θ , is			
a) 45°		b) 60°	c) 30°	d) 75°
865. A circle	e passes through (((0, 0), (a, 0) and $(0, b)$ the co	ordinates of its centre are	
a) $\left(\frac{b}{2}, \frac{b}{2}\right)$	$\left(\frac{u}{2}\right)$	b) $\left(\frac{a}{2}, \frac{b}{2}\right)$	c) (<i>b</i> , <i>a</i>)	d) (<i>a</i> , <i>b</i>)
866. The Po	lar equation of the	circle with centre $\left(2,\frac{\pi}{2}\right)$ and	d radius 3 units is	
a) r ² +	$4r\cos\theta = 5$	b) $r^2 + 4r \sin \theta = 5$	c) $r^2 - 4r \sin \theta = 5$	d) $r^2 - 4r \cos \theta = 5$
867. The loc	us of the centre of	circle which cuts the circle	$s x^2 + y^2 + 4x - 6y + 9 =$	0 and $x^2 + y^2 - 4x + 6y + $
4 = 0 c	orthogonally, is			, , , , , , , , , , , , , , , , , , ,
a) 12 <i>x</i>	+8y + 5 = 0	b) $8x + 12y + 5 = 0$	c) $8x - 12y + 5 = 0$	d) None of these
868. If 2 <i>x</i> –	4y = 9 and $6x - 1$	2y + 7 = 0 are common ta	ngents to the circle, then ra	adius of the circle is
$\sqrt{3}$		b) 17	$\sqrt{2}$	17 d)
a) <u>-</u> 5		$6\sqrt{5}$	3	$3\sqrt{5}$
869. Let <i>p</i> (<i>x</i>	(x_1, y_1) and $Q(x_2, y_2)$) are two points such that t	heir abscissa x_1 and x_2 are	the roots of the equation
2 0				-
$x^2 + 2z$	x - 3 = 0 while the	e ordinates y_1 and y_2 are th	e roots of theequation y^2 +	4y - 12 = 0. The centre of
$x^2 + 2z$ the circ	x - 3 = 0 while the cle with <i>PQ</i> as diam	e ordinates y_1 and y_2 are th neter is	e roots of theequation y ² +	4y - 12 = 0. The centre of
$x^{2} + 2x^{2}$ the circ a) (-1)	x - 3 = 0 while the end of the	e ordinates y_1 and y_2 are th neter is b) (1, 2)	e roots of the equation y^2 + c) (1, -2)	4y - 12 = 0. The centre of d) (-1, 2)
$x^{2} + 2x^{2}$ the circ a) (-1) 870. Angle b	x - 3 = 0 while the cle with <i>PQ</i> as diam (-2) between the tanger	e ordinates y_1 and y_2 are the neter is b) (1, 2) nets drawn to $y^2 = 4x$ at the	e roots of theequation <i>y</i> ² + c) (1,−2) points where it is intersec	4y - 12 = 0. The centre of d) (-1, 2) ted by the line $y = x - 1$ is
$x^2 + 2x$ the circ a) (-1) 870. Angle b equal t	x - 3 = 0 while the cle with <i>PQ</i> as diam (-2) between the tanger o	e ordinates y_1 and y_2 are the neter is b) (1, 2) hts drawn to $y^2 = 4x$ at the	e roots of the equation y^2 + c) (1, -2) points where it is intersec	4y - 12 = 0. The centre of d) (-1, 2) ted by the line $y = x - 1$ is
$x^{2} + 2z$ the circ a) (-1 870. Angle b equal t a) $\frac{\pi}{4}$	x - 3 = 0 while the cle with <i>PQ</i> as diam (-2) between the tanger o	e ordinates y_1 and y_2 are the neter is b) (1, 2) nots drawn to $y^2 = 4x$ at the b) $\frac{\pi}{2}$	e roots of the equation y^2 + c) (1, -2) points where it is intersec c) $\frac{\pi}{c}$	4y - 12 = 0. The centre of d) (-1, 2) ted by the line $y = x - 1$ is d) $\frac{\pi}{2}$
$x^2 + 2x$ the circ a) (-1) 870. Angle b equal t a) $\frac{\pi}{4}$ 871. The cor	x - 3 = 0 while the ele with <i>PQ</i> as diam (-2) between the tanger o	e ordinates y_1 and y_2 are the neter is b) (1, 2) ats drawn to $y^2 = 4x$ at the b) $\frac{\pi}{3}$	e roots of the equation y^2 + c) (1, -2) points where it is intersec c) $\frac{\pi}{6}$ - $8y - 4 = 0$ are	4y - 12 = 0. The centre of d) (-1, 2) ted by the line $y = x - 1$ is d) $\frac{\pi}{2}$
$x^{2} + 2z$ the circ a) (-1, 870. Angle b equal t a) $\frac{\pi}{4}$ 871. The cor a) (0,2)	x - 3 = 0 while the cle with <i>PQ</i> as diam (-2) between the tanger o ordinates of the foo	e ordinates y_1 and y_2 are the neter is b) (1, 2) nots drawn to $y^2 = 4x$ at the b) $\frac{\pi}{3}$ cus of the parabola $x^2 - 4x$ b) (2, 1)	e roots of the equation y^2 + c) $(1, -2)$ points where it is intersec c) $\frac{\pi}{6}$ -8y - 4 = 0 are c) $(1, 2)$	4y - 12 = 0. The centre of d) (-1, 2) ted by the line $y = x - 1$ is d) $\frac{\pi}{2}$
$x^{2} + 2x$ the circ a) (-1, 870. Angle b equal t a) $\frac{\pi}{4}$ 871. The cor a) (0,2) 872. A line t	x - 3 = 0 while the cle with <i>PQ</i> as diam (-2) between the tanger o ordinates of the foo) ouches the circle <i>x</i>	e ordinates y_1 and y_2 are the neter is b) (1, 2) ats drawn to $y^2 = 4x$ at the b) $\frac{\pi}{3}$ cus of the parabola $x^2 - 4x$ b) (2,1) $x^2 + y^2 = 2$ and the parabola	e roots of the equation y^2 + c) $(1, -2)$ points where it is intersec c) $\frac{\pi}{6}$ -8y - 4 = 0 are c) $(1,2)$	4y - 12 = 0. The centre of d) (-1, 2) ted by the line $y = x - 1$ is d) $\frac{\pi}{2}$ d) (-2, -1) of tangent is
$x^{2} + 2x$ the circ a) (-1, 870. Angle b equal t a) $\frac{\pi}{4}$ 871. The cor a) (0,2) 872. A line t a) $y =$	x - 3 = 0 while the cle with <i>PQ</i> as diam (-2) between the tanger ordinates of the foc ouches the circle <i>x</i> x + 3	e ordinates y_1 and y_2 are the neter is b) (1, 2) ats drawn to $y^2 = 4x$ at the b) $\frac{\pi}{3}$ cus of the parabola $x^2 - 4x$ b) (2,1) $x^2 + y^2 = 2$ and the parabola b) $y = x + 2$	e roots of the equation y^2 + c) $(1, -2)$ points where it is intersec c) $\frac{\pi}{6}$ -8y - 4 = 0 are c) $(1,2)$ la $y^2 = 8x$, then equation of c) $y = x + 4$	4y - 12 = 0. The centre of d) (-1, 2) ted by the line $y = x - 1$ is d) $\frac{\pi}{2}$ d) (-2, -1) of tangent is d) $y = x + 1$
$x^{2} + 2x$ the circ a) (-1, 870. Angle b equal t a) $\frac{\pi}{4}$ 871. The cor a) (0,2) 872. A line t a) $y =$ 873. The loc	x - 3 = 0 while the ele with <i>PQ</i> as diam (-2) between the tanger o ordinates of the foc) ouches the circle <i>x</i> <i>x</i> + 3 us of middle point	e ordinates y_1 and y_2 are the neter is b) (1, 2) ats drawn to $y^2 = 4x$ at the b) $\frac{\pi}{3}$ cus of the parabola $x^2 - 4x$ b) (2,1) $x^2 + y^2 = 2$ and the parabola b) $y = x + 2$ s of chords of hyperbola $3x$	e roots of the equation y^2 + c) $(1, -2)$ points where it is intersec c) $\frac{\pi}{6}$ -8y - 4 = 0 are c) $(1,2)$ la $y^2 = 8x$, then equation of c) $y = x + 4$ $x^2 - 2y^2 + 4x - 6y = 0$ par	4y - 12 = 0. The centre of d) (-1, 2) ted by the line $y = x - 1$ is d) $\frac{\pi}{2}$ d) (-2, -1) of tangent is d) $y = x + 1$ rallel to $y = 2x$ is
$x^{2} + 2x$ the circ a) (-1, 870. Angle b equal t a) $\frac{\pi}{4}$ 871. The cor a) (0,2) 872. A line t a) $y =$ 873. The loc a) $3x -$	x - 3 = 0 while the cle with <i>PQ</i> as diam (-2) between the tanger o ordinates of the foc) ouches the circle <i>x</i> x + 3 us of middle point -4y = 4	e ordinates y_1 and y_2 are the neter is b) (1, 2) ats drawn to $y^2 = 4x$ at the b) $\frac{\pi}{3}$ cus of the parabola $x^2 - 4x$ b) (2,1) $x^2 + y^2 = 2$ and the parabol b) $y = x + 2$ s of chords of hyperbola $3x$ b) $3y - 4x + 4 = 0$	e roots of the equation y^2 + c) $(1, -2)$ points where it is intersec c) $\frac{\pi}{6}$ -8y - 4 = 0 are c) $(1,2)$ la $y^2 = 8x$, then equation c c) $y = x + 4$ $z^2 - 2y^2 + 4x - 6y = 0$ part c) $4x - 3y = 3$	4y - 12 = 0. The centre of d) (-1, 2) ted by the line $y = x - 1$ is d) $\frac{\pi}{2}$ d) (-2, -1) of tangent is d) $y = x + 1$ rallel to $y = 2x$ is d) $3x - 4y = 2$
$x^{2} + 2x$ the circ a) (-1, 870. Angle b equal t a) $\frac{\pi}{4}$ 871. The cor a) (0,2) 872. A line t a) $y =$ 873. The loc a) $3x -$ 874. The lin	x - 3 = 0 while the cle with <i>PQ</i> as diam (-2) between the tanger o ordinates of the foc) ouches the circle <i>x</i> x + 3 us of middle point -4y = 4 e $ax + by + c = 0$	e ordinates y_1 and y_2 are the neter is b) (1, 2) ats drawn to $y^2 = 4x$ at the b) $\frac{\pi}{3}$ cus of the parabola $x^2 - 4x$ b) (2,1) $x^2 + y^2 = 2$ and the parabol b) $y = x + 2$ s of chords of hyperbola $3x$ b) $3y - 4x + 4 = 0$ is normal to the circle $x^2 + 4x$	e roots of the equation y^2 + c) $(1, -2)$ points where it is intersec c) $\frac{\pi}{6}$ -8y - 4 = 0 are c) $(1,2)$ la $y^2 = 8x$, then equation of c) $y = x + 4$ $x^2 - 2y^2 + 4x - 6y = 0$ part c) $4x - 3y = 3$ $y^2 + 2gx + 2fy + d = 0$, i	4y - 12 = 0. The centre of d) (-1, 2) ted by the line $y = x - 1$ is d) $\frac{\pi}{2}$ d) (-2, -1) of tangent is d) $y = x + 1$ rallel to $y = 2x$ is d) $3x - 4y = 2$ f
$x^{2} + 2x$ the circ a) (-1, 870. Angle b equal t a) $\frac{\pi}{4}$ 871. The cor a) (0,2) 872. A line t a) $y =$ 873. The loc a) $3x -$ 874. The lin a) $ag +$	x - 3 = 0 while the cle with <i>PQ</i> as diam (-2) between the tanger over tanger over the tanger over the tang	e ordinates y_1 and y_2 are the neter is b) (1, 2) ats drawn to $y^2 = 4x$ at the b) $\frac{\pi}{3}$ cus of the parabola $x^2 - 4x$ b) (2,1) $x^2 + y^2 = 2$ and the parabol b) $y = x + 2$ s of chords of hyperbola $3x$ b) $3y - 4x + 4 = 0$ is normal to the circle $x^2 + 4x$ b) $ag + bf - c = 0$	e roots of the equation y^2 + c) $(1, -2)$ points where it is intersec c) $\frac{\pi}{6}$ -8y - 4 = 0 are c) $(1,2)$ la $y^2 = 8x$, then equation of c) $y = x + 4$ $z^2 - 2y^2 + 4x - 6y = 0$ part c) $4x - 3y = 3$ $y^2 + 2gx + 2fy + d = 0$, if c) $ag - bf + c = 0$	dy - 12 = 0. The centre of d) (-1, 2) ted by the line $y = x - 1$ is $d) \frac{\pi}{2}$ $d) (-2, -1)$ of tangent is d) y = x + 1 rallel to $y = 2x$ is d) 3x - 4y = 2 f d) ag - bf - c = 0
$x^{2} + 2x$ the circ a) (-1, 870. Angle b equal t a) $\frac{\pi}{4}$ 871. The con a) (0,2) 872. A line t a) $y =$ 873. The loc a) $3x -$ 874. The lin a) $ag +$ 875. The eq	x - 3 = 0 while the cle with <i>PQ</i> as diam (-2) between the tanger o ordinates of the foc) ouches the circle <i>x</i> x + 3 rus of middle point -4y = 4 e $ax + by + c = 0$ bf + c = 0 uation of the ellips	e ordinates y_1 and y_2 are the neter is b) (1, 2) ats drawn to $y^2 = 4x$ at the b) $\frac{\pi}{3}$ cus of the parabola $x^2 - 4x$ b) (2,1) $x^2 + y^2 = 2$ and the parabol b) $y = x + 2$ s of chords of hyperbola $3x$ b) $3y - 4x + 4 = 0$ is normal to the circle $x^2 + 4x$ b) $ag + bf - c = 0$ e whose vertices are (-4,1)	e roots of the equation y^2 + c) $(1, -2)$ points where it is intersec c) $\frac{\pi}{6}$ -8y - 4 = 0 are c) $(1,2)$ la $y^2 = 8x$, then equation of c) $y = x + 4$ $x^2 - 2y^2 + 4x - 6y = 0$ part c) $4x - 3y = 3$ $y^2 + 2gx + 2fy + d = 0$, i c) $ag - bf + c = 0$), (6,1) and one of the focal	4y - 12 = 0. The centre of d) $(-1, 2)$ ted by the line $y = x - 1$ is d) $\frac{\pi}{2}$ d) $(-2, -1)$ of tangent is d) $y = x + 1$ rallel to $y = 2x$ is d) $3x - 4y = 2$ f d) $ag - bf - c = 0$ chord is $x - 2y - 2 = 0$, is
$x^{2} + 2x$ the circ a) (-1, 870. Angle k equal t a) $\frac{\pi}{4}$ 871. The cor a) (0,2) 872. A line t a) (0,2) 872. A line t a) $y =$ 873. The loc a) $3x -$ 874. The lin a) $ag +$ 875. The eq a) $\frac{(x - a)}{2}$	x - 3 = 0 while the cle with <i>PQ</i> as diam (-2) between the tanger over tanger over the tanger over the tang	e ordinates y_1 and y_2 are the neter is b) (1, 2) ats drawn to $y^2 = 4x$ at the b) $\frac{\pi}{3}$ cus of the parabola $x^2 - 4x$ b) (2,1) $x^2 + y^2 = 2$ and the parabol b) $y = x + 2$ s of chords of hyperbola $3x$ b) $3y - 4x + 4 = 0$ is normal to the circle $x^2 + 2x^2 + 2x^2 + 3x^2 +$	e roots of the equation y^2 + c) $(1, -2)$ points where it is intersec c) $\frac{\pi}{6}$ -8y - 4 = 0 are c) $(1,2)$ la $y^2 = 8x$, then equation of c) $y = x + 4$ $z^2 - 2y^2 + 4x - 6y = 0$ part c) $4x - 3y = 3$ $y^2 + 2gx + 2fy + d = 0$, if c) $ag - bf + c = 0$), (6,1) and one of the focal	dy - 12 = 0. The centre of d) (-1, 2) ted by the line $y = x - 1$ is $d) \frac{\pi}{2}$ $d) (-2, -1)$ of tangent is d) y = x + 1 rallel to $y = 2x$ is d) 3x - 4y = 2 f d) ag - bf - c = 0 chord is $x - 2y - 2 = 0$, is
$x^{2} + 2x$ the circ a) (-1, 870. Angle b equal t a) $\frac{\pi}{4}$ 871. The con a) (0,2) 872. A line t a) $y =$ 873. The loc a) $3x -$ 874. The lin a) $ag +$ 875. The eq a) $\frac{(x - 2)}{2}$ b) $\frac{(x + 4)}{2}$	x - 3 = 0 while the cle with <i>PQ</i> as diam (-2) between the tanger over tanger over the tanger over the tang	e ordinates y_1 and y_2 are the heter is b) (1, 2) hts drawn to $y^2 = 4x$ at the b) $\frac{\pi}{3}$ cus of the parabola $x^2 - 4x$ b) (2,1) $x^2 + y^2 = 2$ and the parabol b) $y = x + 2$ s of chords of hyperbola $3x$ b) $3y - 4x + 4 = 0$ is normal to the circle $x^2 + 2x^2 + 2x$	e roots of the equation y^2 + c) $(1, -2)$ points where it is intersec c) $\frac{\pi}{6}$ -8y - 4 = 0 are c) $(1,2)$ la $y^2 = 8x$, then equation of c) $y = x + 4$ $x^2 - 2y^2 + 4x - 6y = 0$ part c) $4x - 3y = 3$ $y^2 + 2gx + 2fy + d = 0$, i c) $ag - bf + c = 0$), (6,1) and one of the focal	4y - 12 = 0. The centre of d) $(-1, 2)$ ted by the line $y = x - 1$ is d) $\frac{\pi}{2}$ d) $(-2, -1)$ of tangent is d) $y = x + 1$ rallel to $y = 2x$ is d) $3x - 4y = 2$ f d) $ag - bf - c = 0$ chord is $x - 2y - 2 = 0$, is
$x^{2} + 2z$ the circ a) (-1, 870. Angle b equal t a) $\frac{\pi}{4}$ 871. The cor a) (0,2) 872. A line t a) (0,2) 872. A line t a) (0,2) 872. A line t a) (0,2) 872. A line t a) (0,2) 873. The loc a) (3x - 874. The lin a) ag + 875. The eq a) $\frac{(x - 2)}{2}$ b) $\frac{(x + 2)}{2}$ c) $\frac{(x - 2)}{2}$	x - 3 = 0 while the cle with <i>PQ</i> as diam (-2) between the tanger over tanger over the tanger over the tang	e ordinates y_1 and y_2 are the heter is b) (1, 2) hts drawn to $y^2 = 4x$ at the b) $\frac{\pi}{3}$ cus of the parabola $x^2 - 4x$ b) (2,1) $x^2 + y^2 = 2$ and the parabola b) $y = x + 2$ s of chords of hyperbola $3x$ b) $3y - 4x + 4 = 0$ is normal to the circle $x^2 + 2x^2 + 2$	e roots of the equation y^2 + c) $(1, -2)$ points where it is intersec c) $\frac{\pi}{6}$ -8y - 4 = 0 are c) $(1,2)$ la $y^2 = 8x$, then equation of c) $y = x + 4$ $z^2 - 2y^2 + 4x - 6y = 0$ part c) $4x - 3y = 3$ $y^2 + 2gx + 2fy + d = 0$, if c) $ag - bf + c = 0$ b), (6,1) and one of the focal	4y - 12 = 0. The centre of d) $(-1, 2)$ ted by the line $y = x - 1$ is d) $\frac{\pi}{2}$ d) $(-2, -1)$ of tangent is d) $y = x + 1$ rallel to $y = 2x$ is d) $3x - 4y = 2$ f d) $ag - bf - c = 0$ chord is $x - 2y - 2 = 0$, is
$x^{2} + 2z$ the circ a) (-1, 870. Angle b equal t a) $\frac{\pi}{4}$ 871. The con a) (0,2 872. A line t a) $y =$ 873. The loc a) $3x -$ 874. The lin a) $ag +$ 875. The eq a) $\frac{(x - 2)}{2}$ b) $\frac{(x - 2)}{2}$ c) $\frac{(x - 1)}{2}$	x - 3 = 0 while the cle with PQ as diam (-2) between the tanger over tanger over the tanger over the tang	e ordinates y_1 and y_2 are the heter is b) (1, 2) hts drawn to $y^2 = 4x$ at the b) $\frac{\pi}{3}$ cus of the parabola $x^2 - 4x$ b) (2,1) $x^2 + y^2 = 2$ and the parabola b) $y = x + 2$ s of chords of hyperbola $3x$ b) $3y - 4x + 4 = 0$ is normal to the circle $x^2 + 2x^2 + 2$	e roots of the equation y^2 + c) $(1, -2)$ points where it is intersec c) $\frac{\pi}{6}$ -8y - 4 = 0 are c) $(1,2)$ la $y^2 = 8x$, then equation of c) $y = x + 4$ $x^2 - 2y^2 + 4x - 6y = 0$ part c) $4x - 3y = 3$ $y^2 + 2gx + 2fy + d = 0$, i c) $ag - bf + c = 0$), (6,1) and one of the focal	4y - 12 = 0. The centre of d) $(-1, 2)$ ted by the line $y = x - 1$ is d) $\frac{\pi}{2}$ d) $(-2, -1)$ of tangent is d) $y = x + 1$ rallel to $y = 2x$ is d) $3x - 4y = 2$ f d) $ag - bf - c = 0$ chord is $x - 2y - 2 = 0$, is
$x^{2} + 2z$ the circ a) (-1, 870. Angle b equal t a) $\frac{\pi}{4}$ 871. The cor a) (0,2) 872. A line t a) $y =$ 873. The loc a) $3x -$ 873. The loc a) $3x -$ 874. The lin a) $ag +$ 875. The eq a) $\frac{(x - 2)}{2}$ b) $\frac{(x - 2)}{2}$ c) $\frac{(x - 1)}{1}$ d) $\frac{(x + 1)}{2}$	x - 3 = 0 while the cle with <i>PQ</i> as diam (-2) between the tanger over tanger over the tanger over the tang	e ordinates y_1 and y_2 are the heter is b) (1, 2) hts drawn to $y^2 = 4x$ at the b) $\frac{\pi}{3}$ cus of the parabola $x^2 - 4x$ b) (2,1) $x^2 + y^2 = 2$ and the parabola b) $y = x + 2$ s of chords of hyperbola $3x$ b) $3y - 4x + 4 = 0$ is normal to the circle $x^2 + 2x^2 + 2$	e roots of the equation y^2 + c) $(1, -2)$ points where it is intersec c) $\frac{\pi}{6}$ -8y - 4 = 0 are c) $(1,2)$ la $y^2 = 8x$, then equation of c) $y = x + 4$ $z^2 - 2y^2 + 4x - 6y = 0$ part c) $4x - 3y = 3$ $y^2 + 2gx + 2fy + d = 0$, i c) $ag - bf + c = 0$), (6,1) and one of the focal	4y - 12 = 0. The centre of d) $(-1, 2)$ ted by the line $y = x - 1$ is d) $\frac{\pi}{2}$ d) $(-2, -1)$ of tangent is d) $y = x + 1$ rallel to $y = 2x$ is d) $3x - 4y = 2$ f d) $ag - bf - c = 0$ chord is $x - 2y - 2 = 0$, is

	a) $\frac{2}{5}$	b) $\frac{3}{5}$	c) $\sqrt{\frac{15}{24}}$	d) $\frac{1}{5}$
877.	If $x + y = k$ is normal to that a) 3	he parabola $y^2 = 12x$, ther b) 9	n <i>k</i> is c) -9	d) -3
878.	If the circles $x^2 + y^2 + 4x$ a) 12	+ $8y = 0$ and $x^2 + y^2 + 8$ b) 8	x + 2ky = 0 touch each oth c) -8	ner, then <i>k</i> is equal to d) 4
879.	If the circles $(x - a)^2 + (y - a)^2$	$(x-b)^2 = c^2$ and $(x-b)^2 - b^2 = c^2$	$(y-a)^2 = c^2$ touch each	other, then
	a) $a = b \pm 2 c$	b) $a = b \pm \sqrt{2} c$	c) $a = b \pm c$	d) None of these
880.	The sum of the focal distan	nces of any point on the co	$\operatorname{nic} \frac{x^2}{25} + \frac{y^2}{16} = 1 \text{ is}$	
	a) 10	b) 9	c) 41	d) 18
881.	The line $y = mx + 1$ is a ta	angent to the parabola y^2 =	= 4 <i>x</i> , if	
	a) $m = 1$	b) m = 2	c) $m = 4$	d) $m = 3$
882.	If in a hyperbola, the dista of its latusrectum is	nce between the foci is 10	and the transverse axis has	length 8, then the length
	a) 9	b) $\frac{9}{2}$	c) $\frac{32}{2}$	d) $\frac{64}{2}$
883	Extremities of a diagonal of	$\frac{1}{2}$	(43) The equations of the	3 tangents to the
000.	circumcircle of the rectang	gle which are parallel to the	e diagonal are	tungents to the
	a) $16x + 8y \pm 25 = 0$	b) $6x - 8y \pm 25 = 0$	c) $8x + 6y \pm 25 = 0$	d) None of these
884.	The number of values of <i>c</i>	such that the line $y = 4x$ -	+ <i>c</i> touches the curve $\frac{x^2}{4} + y$	$v^2 = 1$ is
	a) 1	b) 2	c) ∞	d) 0
885.	Two tangents are drawn fit tangents, then $\tan \alpha$ is equ	rom the point $(-2, -1)$ to t al to	the parabola $y^2 = 4x$. If α is	s the angle between these
	a) 3	b) 1/3	c) 2	d) 1/2
886.	The locus of the point of in	ntersection of the perpendi	cular tangents to the ellips	$e\frac{x^2}{9} + \frac{y^2}{4} = 1$ is
	a) $x^2 + y^2 = 9$	b) $x^2 + y^2 = 4$	c) $x^2 + y^2 = 13$	d) $x^2 + y^2 = 5$
887.	The locus of centre of a cire $8y = 0$, is	cle $x^2 + y^2 - 2x - 2y + 1$	= 0, which rolls outside th	e circle $x^2 + y^2 - 6x +$
	a) $x^2 + y^2 - 2x - 2y - 3^2$	4 = 0	b) $x^2 + y^2 - 6x - 8y + 12$	1 = 0
	c) $x^2 + y^2 - 6x + 8y - 12$	1 = 0	d) None of the above	
888.	The length of the chord of $y = 0$ is	the circle $x^2 + y^2 = 25$ pa	ssing through (5,0) and pe	rpendicular to the line x +
	a) 5√2	b) 5/√2	c) 2√5	d) None of these
889.	The equation of a tangent	parallel to $y = x$ drawn to	$\frac{x^2}{3} - \frac{y^2}{2} = 1$, is	
	a) $x - y + 1 = 0$	b) $x - y + 2 = 0$	c) $x + y - 1 = 0$	d) $x - y + 2 = 0$
890.	If $y = 2x + k$ is a tangent	to the curve $x^2 = 4y$, then	<i>k</i> is equal to	
	a) 4	b) 1/2	c) -4	d) -1/2
891. If the line $\frac{x}{a} + \frac{y}{b} = 1$ moves such that $\frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{c^2}$, where <i>c</i> is a constant, then the locus of the foot of the perpendicular from the origin to the line is				
	a) Straight line	b) Circle	c) Parabola	d) Ellipse
892.	If the tangent at any point	<i>P</i> on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	1 meets the tangents at the	vertices A and A' in L and
	L' respectively, then $AL \cdot A$	L'L' =		
	a) <i>a</i> + <i>b</i>	b) $a^2 + b^2$	c) <i>a</i> ²	d) <i>b</i> ²
893.	The slope of the normal at	the point $(at^2, 2 at)$ of the	e parabola, $y^2 = 4ax$, is	4
	a) $\frac{1}{t}$	b) <i>t</i>	c) - <i>t</i>	d) $-\frac{1}{t}$

894. Two rods of lengths *a* and *b* slide along the *x*-axis and *y*-axis respectively in such a manner that their ends

a) $4(x^2 + y^2) = a^2 + b^2$ b) $x^2 + y^2 = a^2 + b^2$ c) $4(x^2 - y^2) = a^2 - b^2$ d) $x^2 - y^2 = a^2 - b^2$ d) $x^2 - y^2 = a^2 - b^2$ even the circles is a) 60° b) $\tan^{-1}\left(\frac{1}{2}\right)$ c) $\tan^{-1}\left(\frac{3}{5}\right)$ d) 45° even the even the circles is a) 60° b) $\tan^{-1}\left(\frac{1}{2}\right)$ c) $\tan^{-1}\left(\frac{3}{5}\right)$ d) 45° even the even the circles is a) $3y = 8x - 10$ b) $3y - 8x + 7 = 0$ c) $8y + 3x + 7 = 0$ d) $3x + 2y + 7 = 0$ even the parabola $y^2 = 4ax$ with vertex <i>A</i> , <i>BC</i> is drawn perpendicular to <i>AB</i> meeting the axis at <i>C</i> . The projection of <i>BC</i> on the axis of the parabola is a) a b) $2a$ c) $4a$ d) $8a$ even the distance of the point <i>P</i> (<i>a</i>) on the ellipse $\frac{x^2}{b^2} + \frac{y^2}{b^2} = 1$ from a focus is a) $a(e + \cos \theta)$ b) $a(e - \cos \theta)$ c) $a(1 + e \cos \theta)$ d) $a(1 + 2e \cos \theta)$ even the number of real tangents that can be drawn to the curve $y^2 + 2xy + x^2 + 2x + 3y + 1 = 0$ from the point $(1, -2)$ is a) $0 c$ b) $1we$ c) $2cro$ d) None of these even the sparameter) c) $\left(a\frac{a^{4+a^2}}{2}, \frac{b^{4-a^2}}{2}\right) (where \theta$ is parameter) c) $\left(a\frac{a^{4+a^2}}{2}, \frac{b^{4-a^2}}{2}\right) (where t is parameter)$ c) $\left(a\frac{a^{4+a^2}}{2}, \frac{b^{4-a^2}}{2}\right) (where t is parameter)$ d) None of the above even the duameter is $(1, 1)$ and the other end lies on the line $x + y = 3$, then locus of centre of circle is a) $x + y = 1$ b) $2(x - y) = 5$ c) $2x + 2y = 5$ d) None of these even the duameter is $(1, 1)$ and the other end lies on the line $x + y = 3$, then locus of centre of circle is a) $x^2 + y^2 + 5x + 5y + 12 = 0$ b) $x^2 + y^2 - 5x + 5y - 12 = 0$ even the event of the diameter is $(1, 1)$ and the other end lies on the line $x + y = 3$, then locus of centre of circle is a) $x = -1$ b) $x = 1$ c) $x = -\frac{3}{2}$ d) $x = \frac{3}{2}$ even the event of the diameter is $(2 + 3x)^2 + 4y^2 - 5x - 5y + 12 = 0$ even the duameter of $(2 + 3x)^2 + 4y^2 - 5x - 5y + 12 = 0$ even the duameter of $(2 + 3x)^2 + 4y^2 - 3x + 5y^2 + 2z = 2$ even the event of the diamete		are concylic. The locus of the centre of the circle passing through the end points is					
c) $4(x^2 - y^2) = a^2 - b^2$ d) $x^2 - y^2 = a^2 - b^2$ gets. The point $(3, -4)$ lies on both the circles $x^2 + y^2 - 2x + 8y + 13 = 0$ and $x^2 + y^2 - 4x + 6y + 11 = 0$. Then, the angle between the circles is a) 60° b) $\tan^{-1}\left(\frac{1}{2}\right)$ c) $\tan^{-1}\left(\frac{3}{5}\right)$ d) 45° gets. The equation of the normal at the point $P(2,3)$ on the ellipse $9x^2 + 16y^2 = 180$ is a) $3y = 8x - 10$ b) $3y - 8x + 7 = 0$ c) $8y + 3x + 7 = 0$ d) $3x + 2y + 7 = 0$ gets. The projection of BC on the axis of the parabola is a) $3y = 8x - 10$ b) $2a - 8x + 7 = 0$ c) $8y + 3x + 7 = 0$ d) $3x + 2y + 7 = 0$ gets. The projection of BC on the axis of the parabola is a) $a(b + 2 \cos \theta)$ b) $a(c - \cos \theta)$ c) $a(1 + c \cos \theta)$ d) $a(1 + 2 c \cos \theta)$ gets. The distance of the point ' θ' on the ellips $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ from a focus is a) $a(c + \cos \theta)$ b) $a(c - \cos \theta)$ c) $a(1 + c \cos \theta)$ d) $a(1 + 2 c \cos \theta)$ gets. The number of real tangents that can be drawn to the curve $y^2 + 2xy + x^2 + 2x + 3y + 1 = 0$ from the point $(1, -2)$ is a) $0 n$ b) 1 Wo c) 2 Zero d) None of these 900. A general point on the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ is a) $(a \sin \theta, b \cos \theta)$ (where θ is parameter) d) (a tan $\theta, b \sec \theta)$ (where θ is parameter) c) $\left(a\frac{e^4e^{-2}}{2}, b\frac{e^4-e^{-2}}{2}\right)$ (where t is parameter) d) None of the above 901. If one end of the diameter is $(1, 1)$ and the other end lies on the line $x + y = 3$, then locus of centre of circle is a) $x + y = 1$ b) $2(x - y) = 5$ c) $2x + 2y = 5$ d) None of these 902. The equation of the smallest circle passing through the points $(2, 2)$ and $(3, 3)$ is a) $x^2 + y^2 + 5x + 5y + 12 = 0$ b) $x^2 + y^2 - 5x - 5y + 12 = 0$ c) $x^2 + y^2 + 5x - 5y + 12 = 0$ d) $x^2 + y^2 - 5x - 5y + 12 = 0$ c) $x^2 + y^2 + 5x - 5y + 12 = 0$ d) $3x^2 + y^2 - 5x - 5y + 12 = 0$ e) $(2, x^2 + y^2 + 5x - 5y + 12 = 0$ d) $3x^2 + y^2 - 5x - 5y + 12 = 0$ 903. The equation of the gravial $y^2 + 4y + 4x + 2 = 0$ is a) $x^2 - y^2 + 5x - 5y + 12 = 0$ b) $x^2 + y^2 - 5x - 5y$		a) $4(x^2 + y^2) = a^2 + b^2$		b) $x^2 + y^2 = a^2 + b^2$			
895. The point (3, -4) lies on both the circles $x^2 + y^2 - 2x + 8y + 13 = 0$ and $x^2 + y^2 - 4x + 6y + 11 = 0$. Then, the alge between the circles is a) 60° b) $\tan^{-1}\left(\frac{1}{2}\right)$ c) $\tan^{-1}\left(\frac{3}{5}\right)$ d) 45° 896. The equation of the normal at the point $P(2,3)$ on the ellipse $9x^2 + 16y^2 = 180$ is a) $3y = 8x - 10$ b) $3y - 8x + 7 = 0$ c) $8y + 3x + 7 = 0$ d) $3x + 2y + 7 = 0$ 897. <i>AB</i> is a chord of the parabola $y^2 = 4ax$ with vertex <i>A</i> , <i>BC</i> is drawn perpendicular to <i>AB</i> meeting the axis at <i>C</i> . The projection of <i>BC</i> on the axis of the parabola is a) a b) $2a$ c) $4a$ d) $8a$ 898. The distance of the point '0' on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ from a focus is a) $a(e + \cos \theta)$ b) $a(e - \cos \theta)$ c) $a(1 + e \cos \theta)$ d) $a(1 + 2e \cos \theta)$ 899. The number of real tangents that can be drawn to the curve $y^2 + 2xy + x^2 + 2x + 3y + 1 = 0$ from the point (1, -2) is a) $0n$ b) Two c) Zero d) None of these 900. A general point on the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ is a) $(a \sin \theta, b \cos \theta)$ (where θ is parameter) b) $(a \tan \theta, b \sec \theta)$ (where θ is parameter) c) $\left(a\frac{e^4 + e^2}{2}, b\frac{e^4 - e^2}{2}\right)$ (where <i>t</i> is parameter) d) None of the above 901. If one end of the diameter is (1, 1) and the other end lies on the line $x + y = 3$, then locus of centre of circle is a) $x + y = 1$ b) $2(x - y) = 5$ c) $2x + 2y = 5$ d) None of these 902. The equation of the diameter is cluce passing through the points (2, 2) and (3, 3) is a) $x^2 + y^2 + 5x + 5y + 12 = 0$ b) $x^2 + y^2 - 5x + 5y - 12 = 0$ c) $x^2 + y^2 + 5x - 5y + 12 = 0$ d) $x^2 + y^2 - 5x + 5y - 12 = 0$ c) $x^2 + y^2 + 5x - 5y + 12 = 0$ d) $x^2 + \frac{3}{2} = \frac{3}{10}$ 904. If a point $P(x, y)$ moves along the ellipse $\frac{x^2}{25} + \frac{x^2}{16} = 1$ and if <i>C</i> is the centre of the ellipse, then the sum of maximum and minimum values of <i>CP</i> is a) $x^2 + y^2 - ax = 0$ b) $x^2 + y^2 - 5x - 5y + 12 = 0$ (2) $\frac{a}{2} + \frac{a}{2} - \frac{a}{2}$ d) $x = \frac{3}{2}$ 906. If the tangent to the parabola $y^2 = ax$ makes an angle		c) $4(x^2 - y^2) = a^2 - b^2$		d) $x^2 - y^2 = a^2 - b^2$			
Then, the angle between the circles is a) 60° b) $\tan^{-1}\left(\frac{1}{2}\right)$ c) $\tan^{-1}\left(\frac{3}{5}\right)$ d) 45° 896. The equation of the normal at the point $P(2,3)$ on the ellipse $9x^2 + 16y^2 = 180$ is a) $3y = 8x - 10$ b) $3y - 8x + 7 = 0$ c) $8y + 3x + 7 = 0$ d) $3x + 2y + 7 = 0$ 897. <i>AB</i> is a chord of the parabola $y^2 = 4ax$ with vertex <i>A</i> , <i>BC</i> is drawn perpendicular to <i>AB</i> meeting the axis at <i>C</i> . The projection of <i>BC</i> on the axis of the parabola is a) a b) $2a$ c) $4a$ d) $8a$ 898. The distance of the point ' θ' on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ from a focus is a) $a(e + \cos \theta)$ b) $a(e - \cos \theta)$ c) $a(1 + e \cos \theta)$ d) $a(1 + 2e \cos \theta)$ 899. The number of real tangents that can be drawn to the curve $y^2 + 2xy + x^2 + 2x + 3y + 1 = 0$ from the point $(1, -2)$ is a) $0ne$ b) Two c) Zero d) None of these 900. A general point on the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ is a) $(a \sin \theta, b \cos \theta)$ (where θ is parameter) b) $(a \tan \theta, b \sec \theta)$ (where θ is parameter) c) $(a\frac{e^{t,xe^{-t}}}{2}, b\frac{e^{t-e^{-t}}}{2})$ (where t is parameter) d) None of the above 901. If one end of the diameter is $(1, 1)$ and the other end lies on the line $x + y = 3$, then locus of centre of circle is a) $x + y = 1$ b) $2(x - y) = 5$ c) $2x + 2y = 5$ d) None of these 902. The equation of the smallest circle passing through the points $(2, 2)$ and $(3, 3)$ is a) $x^2 + y^2 + 5x + 5y + 12 = 0$ d) $x^2 + y^2 - 5x + 5y - 12 = 0$ 903. The equation of the directrix of parabola $y^2 + 4y + 4x + 2 = 0$ is a) $x = -1$ b) $x = 1$ c) $x = -\frac{3}{2}$ d) $x = \frac{3}{2}$ 904. If a point $P(x, y)$ moves along the ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1$ and if <i>C</i> is the centre of the ellipse, then the sum of maximu and minimum values of <i>CP</i> is a) $(\frac{a}{2}, \frac{a}{2})$ b) $(\frac{a}{4}, \frac{a}{4})$ c) $(\frac{a}{2}, \frac{a}{4})$ d) $(\frac{a}{4}, \frac{a}{2})$ 905. If the tangent to the parabola $y^2 = ax$ makes an angle of 45° with x-axis, then the point of contact is a) $(\frac{a}{2}, \frac{a}{2})$ b) $(\frac{a}{4}, \frac{a}{4})$ c) $(a$	895.	The point $(3, -4)$ lies on l	both the circles $x^2 + y^2 - 2$	$2x + 8y + 13 = 0$ and $x^2 + y$	$y^2 - 4x + 6y + 11 = 0.$		
a) 60° b) $\tan^{-1}\left(\frac{1}{2}\right)$ c) $\tan^{-1}\left(\frac{1}{5}\right)$ d) 45° 896. The equation of the normal at the point $P(2,3)$ on the ellipse $9x^2 + 16y^2 = 180$ is a) $3y = 8x - 10$ b) $3y - 8x + 7 = 0$ c) $8y + 3x + 7 = 0$ d) $3x + 2y + 7 = 0$ 897. <i>AB</i> is a chord of the parabola $y^2 = 4ax$ with vertex <i>A</i> , <i>BC</i> is drawn prependicular to <i>AB</i> meeting the axis at <i>C</i> . The projection of <i>BC</i> on the axis of the parabola is a) <i>a</i> b) $2a$ c) $4a$ d) $8a$ 898. The distance of the point ' <i>θ'</i> on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ from a focus is a) $a(e + \cos \theta)$ b) $a(e - \cos \theta)$ c) $a(1 + e \cos \theta)$ d) $a(1 + 2e \cos \theta)$ 899. The number of real tangents that can be drawn to the curve $y^2 + 2xy + x^2 + 2x + 3y + 1 = 0$ from the point $(1, -2)$ is a) $0ne$ b) Two c) Zero d) None of these 900. A general point on the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ is a) (<i>a</i> sin <i>b</i> , b cos θ (where θ is parameter) b) (<i>a</i> tan θ , <i>b</i> sec θ) (where θ is parameter) c) $\left(a\frac{e^{t+e^{-t}}}{2}, b\frac{e^{t-e^{-t}}}{2}\right)$ (where <i>t</i> is parameter) d) None of the above 901. If one end of the diameter is $(1, 1)$ and the other end lies on the line $x + y = 3$, then locus of centre of circle is a) $x + y = 1$ b) $2(x - y) = 5$ c) $2x + 2y = 5$ d) None of these 902. The equation of the smallest circle passing through the points $(2, 2)$ and $(3, 3)$ is a) $x^2 + y^2 + 5x + 5y + 12 = 0$ d) $x^2 + y^2 - 5x - 5y + 12 = 0$ c) $x^2 + y^2 + 5x - 5y + 12 = 0$ d) $x^2 + y^2 - 5x + 5y - 12 = 0$ 903. The equation of the directrix of parabola $y^2 + 4y + 4x + 2 = 0$ is a) $x = -1$ b) $x = 1$ c) $x = -\frac{3}{2}$ d) $x = \frac{3}{2}$ 904. If a point $P(x,y)$ moves along the ellipse $\frac{x^2}{a} + \frac{x^2}{16} = 1$ and if <i>C</i> is the centre of the ellipse, then the sum of maximum and minimum values of <i>CP</i> is a) $2(\frac{a}{2}, \frac{a}{2})$ b) $9(\frac{a}{4}, \frac{a}{4})$ c) $(\frac{a}{2}, \frac{a}{4})$ d) $(\frac{a}{4}, \frac{a}{2})$ 905. If the tangent to the parabola $y^2 = ax$ makes an angle of 45 ^s with x-axis, then the point of contact is a) $(\frac{a}{2$		Then, the angle between t	the circles is	0			
896. The equation of the normal at the point $P(2,3)$ on the ellipse $9x^2 + 16y^2 = 180$ is a) $3y = 8x - 10$ b) $3y - 8x + 7 = 0$ c) $8y + 3x + 7 = 0$ d) $3x + 2y + 7 = 0$ 897. <i>AB</i> is a chord of the parabola $y^2 = 4x$ with vertex <i>A</i> , <i>BC</i> is drawn perpendicular to <i>AB</i> meeting the axis at <i>C</i> . The projection of <i>BC</i> on the axis of the parabola is a) a b) $2a$ c) $4a$ d) $8a$ 898. The distance of the point ' θ' on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ from a focus is a) $a(e + \cos \theta)$ b) $a(e - \cos \theta)$ c) $a(1 + e \cos \theta)$ d) $a(1 + 2e \cos \theta)$ 899. The number of real tangents that can be drawn to the curve $y^2 + 2xy + x^2 + 2x + 3y + 1 = 0$ from the point $(1, -2)$ is a) $0ne$ b) Two c) $2ero$ d) None of these 900. A general point on the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ is a) $(a \sin \theta, b \cos \theta)$ (where θ is parameter) d) $(a \tan \theta, b \sec \theta)$ (where θ is parameter) c) $(a\frac{e^4xe^{-t}}{2}, b\frac{e^4xe^{-t}}{2})$ (where t is parameter) d) None of the above 901. If one end of the diameter is $(1, 1)$ and the other end lies on the line $x + y = 3$, then locus of centre of circle is a) $x + y = 1$ b) $2(x - y) = 5$ c) $2x + 2y = 5$ d) None of these 902. The equation of the smallest circle passing through the points $(2, 2)$ and $(3, 3)$ is a) $x^2 + y^2 + 5x + 5y + 12 = 0$ d) $x^2 + y^2 - 5x - 5y + 12 = 0$ 903. The equation of the directrix of parabola $y^2 + 4y + 4x + 2 = 0$ is a) $x = -1$ b) $x = 1$ c) $x = -\frac{3}{2}$ d) $x = \frac{3}{2}$ 904. If a point $P(x, y)$ moves along the ellipse $\frac{x^2}{x^2} + \frac{y^2}{x^2} = 1$ and if <i>C</i> is the centre of the ellipse, then the sum of maximum and minimum values of <i>CP</i> is a) 25 b) 9 c) 4 d) $(\frac{a}{4}, \frac{a}{4})$ c) $(\frac{a}{2}, \frac{a}{4})$ d) $(\frac{a}{4}, \frac{a}{2})$ 906. The locus of the point (l, m) so that $lx + my = 1$ touches the circle $x^2 + y^2 = a^2$, is a) $x^2 + y^2 - ax = 0$ b) $x^2 + y^2 = \frac{1}{a^2}$ () $y^2 = 4ax$ d) $x^2 + y^2 - 18x - 64y - 199 = 0$ is a) $\frac{16}{9}$ b) $\frac{5}{4}$ c) $\frac{25}{16}$ d) Zero 908. <i>Ib</i> and <i>C</i> are the l		a) 60°	b) $\tan^{-1}\left(\frac{1}{2}\right)$	c) $\tan^{-1}\left(\frac{3}{5}\right)$	d) 45°		
a) $3y = 8x - 10$ b) $3y - 8x + 7 = 0$ c) $8y + 3x + 7 = 0$ d) $3x + 2y + 7 = 0$ 897. <i>AB</i> is a chord of the parabola $y^2 = 4ax$ with vertex <i>A</i> , <i>BC</i> is drawn perpendicular to <i>AB</i> meeting the axis at <i>C</i> . The projection of <i>BC</i> on the eaxis of the parabola is a) a b) $2a$ c) $4a$ d) $8a$ 898. The distance of the point ' θ' on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ from a focus is a) $a(e + \cos \theta)$ b) $a(e - \cos \theta)$ c) $a(1 + e \cos \theta)$ d) $a(1 + 2e \cos \theta)$ 899. The number of real tangents that can be drawn to the curve $y^2 + 2xy + x^2 + 2x + 3y + 1 = 0$ from the point (1, -2) is a) $0ne$ b) Two c) Zero d) None of these 900. A general point on the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ is a) $(a \sin \theta, b \cos \theta)$ (where θ is parameter) b) $(a \tan \theta, b \sec \theta)$ (where θ is parameter) c) $\left(a\frac{e^{t+e^{-t}}}{2}, \frac{e^{t-e^{-t}}}{2}$ (where <i>t</i> is parameter) d) None of the above 901. If one end of the diameter is (1, 1) and the other end lies on the line $x + y = 3$, then locus of centre of circle is a) $x + y = 1$ b) $2(x - y) = 5$ c) $2x + 2y = 5$ d) None of these 902. The equation of the smallest circle passing through the points (2, 2) and (3, 3) is a) $x^2 + y^2 + 5x + 5y + 12 = 0$ d) $x^2 + y^2 - 5x - 5y + 12 = 0$ c) $x^2 + y^2 + 5x - 5y + 12 = 0$ d) $x^2 + y^2 - 5x - 5y + 12 = 0$ 903. The equation of the directrix of parabola $y^2 + 4y + 4x + 2 = 0$ is a) $x = -1$ b) $x = 1$ c) $x = -\frac{3}{2}$ d) $x = \frac{3}{2}$ 904. If a point $P(x, y)$ moves along the ellipse $\frac{x^2}{2} + \frac{y^2}{16} = 1$ and if <i>C</i> is the centre of the ellipse, then the sum of maximum and minimum values of <i>CP</i> is a) 2^2 b) 9 c) 4 d) $(\frac{a}{4}, \frac{a}{4})$ c) $(\frac{a}{2}, \frac{a}{4})$ d) $(\frac{a}{4}, \frac{a}{2})$ 906. The locus of the point (l, m) so that $lx + my = 1$ touches the circle $x^2 + y^2 = a^2$, is a) $x^2 + y^2 - ax = 0$ b) $x^2 - 16y^2 - 18x - 64y - 199 = 0$ is a) $\frac{16}{9}$ b) $\frac{5}{4}$ c) $\frac{25}{16}$ d) Zero 907. The eccentricity of the hyperbola $9x^2 - 16y^2 - 18x - 64y - 199 = 0$ is a) $\frac{16}{9}$ b) $$	896.	The equation of the norm	al at the point $P(2,3)$ on the	$e \text{ ellipse } 9x^2 + 16y^2 = 180$	is		
897. AB is a chord of the parabola $y^2 = 4ax$ with vertex A, BC is drawn perpendicular to AB meeting the axis at C . The projection of BC on the axis of the parabola is a) a b) $2a$ c) $4a$ d) $8a$ 898. The distance of the point ' θ' on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ from a focus is a) $a(e + \cos \theta)$ b) $a(e - \cos \theta)$ c) $a(1 + e \cos \theta)$ d) $a(1 + 2e \cos \theta)$ 899. The number of real tangents that can be drawn to the curve $y^2 + 2xy + x^2 + 2x + 3y + 1 = 0$ from the point $(1, -2)$ is a) $0ne$ b) Two c) Zero d) None of these 900. A general point on the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{a^2} = 1$ is a) ($a \sin \theta, b \cos \theta$) (where θ is parameter) b) ($a \tan \theta, b \sec \theta$) (where θ is parameter) c) $(a \frac{e^4 + e^{-t}}{2}, b \frac{e^4 - e^{-t}}{2})$ (where t is parameter) d) None of the above 901. If one end of the diameter is $(1, 1)$ and the other end lies on the line $x + y = 3$, then locus of centre of circle is a) $x + y = 1$ b) $2(x - y) = 5$ c) $2x + 2y = 5$ d) None of these 902. The equation of the smallest circle passing through the points $(2, 2)$ and $(3, 3)$ is a) $x^2 + y^2 + 5x + 5y + 12 = 0$ b) $x^2 + y^2 - 5x - 5y + 12 = 0$ c) $x^2 + y^2 + 5x - 5y + 12 = 0$ d) $x^2 + y^2 - 5x - 5y - 12 = 0$ 903. The equation of the directrix of parabola $y^2 + 4y + 4x + 2 = 0$ is a) $x = -1$ b) $x = 1$ c) $x = -\frac{3}{2}$ d) $x = \frac{3}{2}$ 904. If a point $P(x, y)$ moves along the ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1$ and if C is the centre of the ellipse, then the sum of maximum and minimum values of CP is a) 25 b) 9 c) 4 d) 5 905. If the tangent to the parabola $y^2 = ax$ makes an angle of 45° with x-axis, then the point of contact is a) $(\frac{a}{2}, \frac{a}{2})$ b) $(\frac{a}{4}, \frac{a}{4})$ c) $(\frac{a}{2}, \frac{a}{4})$ d) $(\frac{a}{4}, \frac{a}{2})$ 906. The locus of the point (l, m) so that $lx + my = 1$ touches the circle $x^2 + y^2 = a^2$, is a) $x^2 + y^2 - ax = 0$ b) $x^2 + y^2 - ax - ay + a^2 = 0$ 907. The eccentricity of the hyperbola $9x^2 - 16y^2 - 18x - 64y - 199 = 0$ is a) 16		a) $3y = 8x - 10$	b) $3y - 8x + 7 = 0$	c) $8y + 3x + 7 = 0$	d) $3x + 2y + 7 = 0$		
a) a b) $2a$ c) $4a$ d) $8a$ 898. The distance of the point ' θ' on the ellipse $\frac{x^2}{b^2} + \frac{y^2}{b^2} = 1$ from a focus is a) $a(e + \cos \theta)$ b) $a(e - \cos \theta)$ c) $a(1 + e \cos \theta)$ d) $a(1 + 2e \cos \theta)$ 899. The number of real tangents that can be drawn to the curve $y^2 + 2xy + x^2 + 2x + 3y + 1 = 0$ from the point $(1, -2)$ is a) $0n$ b) Two c) Zero d) None of these 900. A general point on the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ is a) $(a \sin \theta, b \cos \theta)$ (where θ is parameter) b) $(a \tan \theta, b \sec \theta)$ (where θ is parameter) c) $(a \frac{e^{i+e^{-t}}}{a}, b \frac{e^{i-e^{-t}}}{a})$ (where t is parameter) d) None of the above 901. If one end of the diameter is $(1, 1)$ and the other end lies on the line $x + y = 3$, then locus of centre of circle is a) $x + y = 1$ b) $2(x - y) = 5$ c) $2x + 2y = 5$ d) None of these 902. The equation of the smallest circle passing through the points $(2, 2)$ and $(3, 3)$ is a) $x^2 + y^2 + 5x + 5y + 12 = 0$ d) $x^2 + y^2 - 5x - 5y + 12 = 0$ c) $x^2 + y^2 + 5x - 5y + 12 = 0$ d) $x^2 + y^2 - 5x - 5y + 12 = 0$ 903. The equation of the directrix of parabola $y^2 + 4y + 4x + 2 = 0$ is a) $x = -1$ b) $x = 1$ c) $x = -\frac{3}{2}$ d) $x = \frac{3}{2}$ 904. If a point $P(x, y)$ moves along the ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1$ and if <i>C</i> is the centre of the ellipse, then the sum of maximum and minimum values of <i>CP</i> is a) 25 b) 9 c) 4 d) 5 905. If the tangent to the parabola $y^2 = ax$ makes an angle of 45° with x-axis, then the point of contact is a) $(\frac{a}{2}, \frac{a}{2})$ b) $(\frac{a}{4}, \frac{a}{4})$ c) $(\frac{a}{2}, \frac{a}{4})$ d) $(\frac{a}{4}, \frac{a}{2})$ 906. The locus of the point (l, m) so that $lx + my = 1$ touches the circle $x^2 + y^2 = a^2$, is a) $x^2 + y^2 - ax = 0$ b) $x^2 + y^2 - ax - ay + a^2 = 0$ 907. The eccentricity of the hyperbola $9x^2 - 16y^2 - 18x - 64y - 199 = 0$ is a) $\frac{16}{9}$ b) $\frac{5}{4}$ c) $\frac{25}{16}$ d) Zero 908. If <i>b</i> and <i>C</i> are the lengths of the segments of any focal chord of a parabola $y^2 = 4ax$, then the length of the	897.	<i>AB</i> is a chord of the parab <i>C</i> . The projection of <i>BC</i> or	pola $y^2 = 4ax$ with vertex A in the axis of the parabola is	A, BC is drawn perpendicula	ar to <i>AB</i> meeting the axis at		
898. The distance of the point 'b' on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ from a focus is a) $a(e + \cos \theta)$ b) $a(e - \cos \theta)$ c) $a(1 + e \cos \theta)$ d) $a(1 + 2e \cos \theta)$ 899. The number of real tangents that can be drawn to the curve $y^2 + 2xy + x^2 + 2x + 3y + 1 = 0$ from the point $(1, -2)$ is a) One b) Two c) Zero d) None of these 900. A general point on the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ is a) $(a \sin \theta, b \cos \theta)$ (where θ is parameter) b) $(a \tan \theta, b \sec \theta)$ (where θ is parameter) c) $\left(a \frac{e^{1+e^{-t}}}{2}, b \frac{e^{t}-e^{-t}}{2}\right)$ (where t is parameter) d) None of the above 901. If one end of the diameter is $(1, 1)$ and the other end lies on the line $x + y = 3$, then locus of centre of circle is a) $x + y = 1$ b) $2(x - y) = 5$ c) $2x + 2y = 5$ d) None of these 902. The equation of the smallest circle passing through the points $(2, 2)$ and $(3, 3)$ is a) $x^2 + y^2 + 5x + 5y + 12 = 0$ b) $x^2 + y^2 - 5x - 5y + 12 = 0$ c) $x^2 + y^2 + 5x + 5y + 12 = 0$ d) $x^2 + y^2 - 5x + 5y - 12 = 0$ 903. The equation of the directrix of parabola $y^2 + 4y + 4x + 2 = 0$ is a) $x = -1$ b) $x = 1$ c) $x = -\frac{3}{2}$ d) $x = \frac{3}{2}$ 904. If a point $P(x, y)$ moves along the ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1$ and if <i>C</i> is the centre of the ellipse, then the sum of maximum and minimum values of <i>CP</i> is a) 25 b) 9 c) 4 d) 5 905. If the tangent to the parabola $y^2 = ax$ makes an angle of 45° with x-axis, then the point of contact is a) $\left(\frac{a}{2}, \frac{a}{2}\right)$ b) $\left(\frac{a}{4}, \frac{a}{4}\right)$ c) $\left(\frac{a}{2}, \frac{a}{4}\right)$ d) $\left(\frac{a}{4}, \frac{a}{2}\right)$ 906. The locus of the point (l, m) so that $lx + my = 1$ touches the circle $x^2 + y^2 = a^2$, is a) $x^2 + y^2 - ax = 0$ b) $x^2 + y^2 = \frac{1}{a^2}$ c) $y^2 = 4ax$ d) $x^2 + y^2 - 18x - 64y - 199 = 0$ is a) $\frac{16}{9}$ b) $\frac{5}{4}$ c) $\frac{2^{25}}{16}$ d) Zero 908. If <i>b</i> and <i>C</i> are the lengths of the segments of any focal chord of a parabola $y^2 = 4ax$, then the length of the		a) <i>a</i>	b) 2 <i>a</i>	c) 4 <i>a</i>	d) 8 <i>a</i>		
a) $a(e + \cos \theta)$ b) $a(e - \cos \theta)$ c) $a(1 + e \cos \theta)$ d) $a(1 + 2e \cos \theta)$ 899. The number of real tangents that can be drawn to the curve $y^2 + 2xy + x^2 + 2x + 3y + 1 = 0$ from the point $(1, -2)$ is a) One b) Two c) Zero d) None of these 900. A general point on the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ is a) $(a \sin \theta, b \cos \theta)$ (where θ is parameter) b) $(a \tan \theta, b \sec \theta)$ (where θ is parameter) c) $\left(a \frac{e^t + e^{-t}}{2}, b \frac{e^t - e^{-t}}{2}\right)$ (where t is parameter) d) None of the above 901. If one end of the diameter is $(1, 1)$ and the other end lies on the line $x + y = 3$, then locus of centre of circle is a) $x + y = 1$ b) $2(x - y) = 5$ c) $2x + 2y = 5$ d) None of these 902. The equation of the smallest circle passing through the points $(2, 2)$ and $(3, 3)$ is a) $x^2 + y^2 + 5x + 5y + 12 = 0$ d) $x^2 + y^2 - 5x - 5y + 12 = 0$ c) $x^2 + y^2 + 5x - 5y + 12 = 0$ d) $x^2 + y^2 - 5x + 5y - 12 = 0$ 903. The equation of the directrix of parabola $y^2 + 4y + 4x + 2 = 0$ is a) $x = -1$ b) $x = 1$ c) $x = -\frac{3}{2}$ d) $x = \frac{3}{2}$ 904. If a point $P(x, y)$ moves along the ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1$ and if <i>C</i> is the centre of the ellipse, then the sum of maximum and minimum values of <i>CP</i> is a) 25 b) 9 c) 4 d) 5 905. If the tangent to the parabola $y^2 = ax$ makes an angle of 45° with x-axis, then the point of contact is a) $\left(\frac{a}{2}, \frac{a}{2}\right)$ b) $\left(\frac{a}{4}, \frac{a}{4}\right)$ c) $\left(\frac{a}{2}, \frac{a}{4}\right)$ d) $\left(\frac{a}{4}, \frac{a}{2}\right)$ 906. The locus of the point (l, m) so that $lx + my = 1$ touches the circle $x^2 + y^2 = a^2$, is a) $x^2 + y^2 - ax = 0$ b) $x^2 + y^2 = \frac{1}{a^2}$ c) $y^2 = 4ax$ d) $x^2 + y^2 - 18x - 64y - 199 = 0$ is a) $\frac{16}{9}$ b) $\frac{5}{4}$ c) $\frac{25}{16}$ d) Zero 907. The eccentricity of the hyperbola $9x^2 - 16y^2 - 18x - 64y - 199 = 0$ is a) $\frac{16}{9}$ b) $\frac{5}{4}$ c) $\frac{25}{16}$ d) Zero	898.	The distance of the point	θ' on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} =$	1 from a focus is			
899. The number of real tangents that can be drawn to the curve $y^2 + 2xy + x^2 + 2x + 3y + 1 = 0$ from the point $(1, -2)$ is a) One b) Two c) Zero d) None of these 900. A general point on the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ is a) $(a \sin \theta, b \cos \theta)$ (where θ is parameter) b) $(a \tan \theta, b \sec \theta)$ (where θ is parameter) c) $\left(a \frac{a^{e^+e^{-t}}}{2}, b \frac{e^+-e^{-t}}{2}\right)$ (where <i>t</i> is parameter) d) None of the above 901. If one end of the diameter is $(1, 1)$ and the other end lies on the line $x + y = 3$, then locus of centre of circle is a) $x + y = 1$ b) $2(x - y) = 5$ c) $2x + 2y = 5$ d) None of these 902. The equation of the smallest circle passing through the points $(2, 2)$ and $(3, 3)$ is a) $x^2 + y^2 + 5x + 5y + 12 = 0$ b) $x^2 + y^2 - 5x - 5y + 12 = 0$ c) $x^2 + y^2 + 5x - 5y + 12 = 0$ d) $x^2 + y^2 - 5x + 5y - 12 = 0$ 903. The equation of the directrix of parabola $y^2 + 4y + 4x + 2 = 0$ is a) $x = -1$ b) $x = 1$ c) $x = -\frac{3}{2}$ d) $x = \frac{3}{2}$ 904. If a point $P(x, y)$ moves along the ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1$ and if <i>C</i> is the centre of the ellipse, then the sum of maximum and minimum values of <i>CP</i> is a) 25 b) 9 c) 4 d) 5 905. If the tangent to the parabola $y^2 = ax$ makes an angle of 45° with <i>x</i> -axis, then the point of contact is a) $\left(\frac{a}{2}, \frac{a}{2}\right$ b) $\left(\frac{a}{4}, \frac{a}{4}\right)$ c) $\left(\frac{a}{2}, \frac{a}{4}\right)$ d) $\left(\frac{a}{4}, \frac{a}{2}\right)$ 906. The locus of the point (l, m) so that $lx + my = 1$ touches the circle $x^2 + y^2 = a^2$, is a) $x^2 + y^2 - ax = 0$ b) $x^2 + y^2 - ax - ay + a^2 = 0$ 907. The eccentricity of the hyperbola $9x^2 - 16y^2 - 18x - 64y - 199 = 0$ is a) $\frac{16}{9}$ b) $\frac{5}{4}$ c) $\frac{25}{16}$ d) Zero 908. If <i>b</i> and <i>C</i> are the lengths of the segments of any focal chord of a parabola $y^2 = 4ax$, then the length of the		a) $a(e + \cos \theta)$	b) $a(e - \cos \theta)$	c) $a(1 + e\cos\theta)$	d) $a(1+2e\cos\theta)$		
a) One b) Two c) Zero d) None of these 900. A general point on the hyperbola $\frac{x^2}{2} - \frac{y^2}{b^2} = 1$ is a) $(a \sin \theta, b \cos \theta)$ (where θ is parameter) b) $(a \tan \theta, b \sec \theta)$ (where θ is parameter) c) $\left(a \frac{e^t + e^{-t}}{2}, b \frac{e^t - e^{-t}}{2}\right)$ (where <i>t</i> is parameter) d) None of the above 901. If one end of the diameter is (1, 1) and the other end lies on the line $x + y = 3$, then locus of centre of circle is a) $x + y = 1$ b) $2(x - y) = 5$ c) $2x + 2y = 5$ d) None of these 902. The equation of the smallest circle passing through the points (2, 2) and (3, 3) is a) $x^2 + y^2 + 5x + 5y + 12 = 0$ b) $x^2 + y^2 - 5x - 5y + 12 = 0$ c) $x^2 + y^2 + 5x - 5y + 12 = 0$ d) $x^2 + y^2 - 5x + 5y - 12 = 0$ 903. The equation of the directrix of parabola $y^2 + 4y + 4x + 2 = 0$ is a) $x = -1$ b) $x = 1$ c) $x = -\frac{3}{2}$ d) $x = \frac{3}{2}$ 904. If a point $P(x, y)$ moves along the ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1$ and if <i>C</i> is the centre of the ellipse, then the sum of maximum and minimum values of <i>CP</i> is a) 25 b) 9 c) 4 d) 5 905. If the tangent to the parabola $y^2 = ax$ makes an angle of 45° with x-axis, then the point of contact is a) $\left(\frac{a}{2}, \frac{a}{2}\right)$ b) $\left(\frac{a}{4}, \frac{a}{4}\right)$ c) $\left(\frac{a}{2}, \frac{a}{4}\right)$ d) $\left(\frac{a}{4}, \frac{a}{2}\right)$ 906. The locus of the point (l, m) so that $lx + my = 1$ touches the circle $x^2 + y^2 = a^2$, is a) $x^2 + y^2 - ax = 0$ b) $x^2 + y^2 - ax - ay + a^2 = 0$ 907. The eccentricity of the hyperbola $9x^2 - 16y^2 - 18x - 64y - 199 = 0$ is a) $\frac{16}{9}$ b) $\frac{5}{4}$ c) $\frac{25}{16}$ d) Zero 908. If <i>b</i> and <i>C</i> are the lengths of the segments of any focal chord of a parabola $y^2 = 4ax$, then the length of the	899.	The number of real tange point $(1, -2)$ is	nts that can be drawn to th	e curve $y^2 + 2xy + x^2 + 2x$	x + 3y + 1 = 0 from the		
900. A general point on the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ is a) $(a \sin \theta, b \cos \theta)$ (where θ is parameter) b) $(a \tan \theta, b \sec \theta)$ (where θ is parameter) c) $\left(a \frac{e^{t+e^{-t}}}{2}, b \frac{e^{t-e^{-t}}}{2}\right)$ (where <i>t</i> is parameter) d) None of the above 901. If one end of the diameter is (1, 1) and the other end lies on the line $x + y = 3$, then locus of centre of circle is a) $x + y = 1$ b) $2(x - y) = 5$ c) $2x + 2y = 5$ d) None of these 902. The equation of the smallest circle passing through the points (2, 2) and (3, 3) is a) $x^2 + y^2 + 5x + 5y + 12 = 0$ b) $x^2 + y^2 - 5x - 5y + 12 = 0$ c) $x^2 + y^2 + 5x - 5y + 12 = 0$ d) $x^2 + y^2 - 5x + 5y - 12 = 0$ 903. The equation of the directrix of parabola $y^2 + 4y + 4x + 2 = 0$ is a) $x = -1$ b) $x = 1$ c) $x = -\frac{3}{2}$ d) $x = \frac{3}{2}$ 904. If a point $P(x, y)$ moves along the ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1$ and if <i>C</i> is the centre of the ellipse, then the sum of maximum and minimum values of <i>CP</i> is a) 25 b) 9 c) 4 d) 5 905. If the tangent to the parabola $y^2 = ax$ makes an angle of 45° with x-axis, then the point of contact is a) $\left(\frac{a}{2}, \frac{a}{2}\right)$ b) $\left(\frac{a}{4}, \frac{a}{4}\right)$ c) $\left(\frac{a}{2}, \frac{a}{4}\right$ d) $\left(\frac{a}{4}, \frac{a}{2}\right)$ 906. The locus of the point (l, m) so that $lx + my = 1$ touches the circle $x^2 + y^2 = a^2$, is a) $x^2 + y^2 - ax = 0$ b) $x^2 + y^2 - ax - ay + a^2 = 0$ 907. The eccentricity of the hyperbola $9x^2 - 16y^2 - 18x - 64y - 199 = 0$ is a) $\frac{16}{9}$ b) $\frac{5}{4}$ c) $\frac{25}{16}$ d) Zero 908. If <i>b</i> and <i>C</i> are the lengths of the segments of any focal chord of a parabola $y^2 = 4ax$, then the length of the		a) One	b) Two	c) Zero	d) None of these		
a) $(a \sin \theta, b \cos \theta)$ (where θ is parameter) c) $\left(a \frac{e^{t} + e^{-t}}{2}, b \frac{e^{t} - e^{-t}}{2}\right)$ (where <i>t</i> is parameter) d) None of the above 901. If one end of the diameter is (1, 1) and the other end lies on the line $x + y = 3$, then locus of centre of circle is a) $x + y = 1$ b) $2(x - y) = 5$ c) $2x + 2y = 5$ d) None of these 902. The equation of the smallest circle passing through the points (2, 2) and (3, 3) is a) $x^2 + y^2 + 5x + 5y + 12 = 0$ b) $x^2 + y^2 - 5x - 5y + 12 = 0$ c) $x^2 + y^2 + 5x - 5y + 12 = 0$ d) $x^2 + y^2 - 5x + 5y - 12 = 0$ 903. The equation of the directrix of parabola $y^2 + 4y + 4x + 2 = 0$ is a) $x = -1$ b) $x = 1$ c) $x = -\frac{3}{2}$ d) $x = \frac{3}{2}$ 904. If a point $P(x, y)$ moves along the ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1$ and if <i>C</i> is the centre of the ellipse, then the sum of maximum and minimum values of <i>CP</i> is a) 25 b) 9 c) 4 d) 5 905. If the tangent to the parabola $y^2 = ax$ makes an angle of 45° with <i>x</i> -axis, then the point of contact is a) $\left(\frac{a}{2}, \frac{a}{2}\right)$ b) $\left(\frac{a}{4}, \frac{a}{4}\right)$ c) $\left(\frac{a}{2}, \frac{a}{4}\right)$ d) $\left(\frac{a}{4}, \frac{a}{2}\right)$ 906. The locus of the point (l, m) so that $lx + my = 1$ touches the circle $x^2 + y^2 = a^2$, is a) $x^2 + y^2 - ax = 0$ b) $x^2 + y^2 - ax - ay + a^2 = 0$ 907. The eccentricity of the hyperbola $9x^2 - 16y^2 - 18x - 64y - 199 = 0$ is a) $\frac{16}{9}$ b) $\frac{5}{4}$ c) $\frac{25}{16}$ d) Zero 908. If <i>b</i> and <i>C</i> are the lengths of the segments of any focal chord of a parabola $y^2 = 4ax$, then the length of the	900.	A general point on the hy	perbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ is				
c) $\left(a\frac{e^{t}+e^{-t}}{2}, b\frac{e^{t}-e^{-t}}{2}\right)$ (where <i>t</i> is parameter) d) None of the above 901. If one end of the diameter is (1, 1) and the other end lies on the line $x + y = 3$, then locus of centre of circle is a) $x + y = 1$ b) $2(x - y) = 5$ c) $2x + 2y = 5$ d) None of these 902. The equation of the smallest circle passing through the points (2, 2) and (3, 3) is a) $x^2 + y^2 + 5x + 5y + 12 = 0$ b) $x^2 + y^2 - 5x - 5y + 12 = 0$ c) $x^2 + y^2 + 5x - 5y + 12 = 0$ d) $x^2 + y^2 - 5x + 5y - 12 = 0$ 903. The equation of the directrix of parabola $y^2 + 4y + 4x + 2 = 0$ is a) $x = -1$ b) $x = 1$ c) $x = -\frac{3}{2}$ d) $x = \frac{3}{2}$ 904. If a point $P(x, y)$ moves along the ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1$ and if <i>C</i> is the centre of the ellipse, then the sum of maximum and minimum values of <i>CP</i> is a) 25 b) 9 c) 4 d) 5 905. If the tangent to the parabola $y^2 = ax$ makes an angle of 45° with <i>x</i> -axis, then the point of contact is a) $\left(\frac{a}{2}, \frac{a}{2}\right)$ b) $\left(\frac{a}{4}, \frac{a}{4}\right)$ c) $\left(\frac{a}{2}, \frac{a}{4}\right)$ d) $\left(\frac{a}{4}, \frac{a}{2}\right)$ 906. The locus of the point (l, m) so that $lx + my = 1$ touches the circle $x^2 + y^2 = a^2$, is a) $x^2 + y^2 - ax = 0$ b) $x^2 + y^2 - ax - ay + a^2 = 0$ 907. The eccentricity of the hyperbola $9x^2 - 16y^2 - 18x - 64y - 199 = 0$ is a) $\frac{16}{9}$ b) $\frac{5}{4}$ c) $\frac{25}{16}$ d) Zero 908. If <i>b</i> and <i>C</i> are the lengths of the segments of any focal chord of a parabola $y^2 = 4ax$, then the length of the		a) $(a \sin \theta, b \cos \theta)$ (where	e θ is parameter)	b) $(a \tan \theta, b \sec \theta)$ (where θ is parameter)			
901. If one end of the diameter is (1, 1) and the other end lies on the line $x + y = 3$, then locus of centre of circle is a) $x + y = 1$ b) $2(x - y) = 5$ c) $2x + 2y = 5$ d) None of these 902. The equation of the smallest circle passing through the points (2, 2) and (3, 3) is a) $x^2 + y^2 + 5x + 5y + 12 = 0$ b) $x^2 + y^2 - 5x - 5y + 12 = 0$ c) $x^2 + y^2 + 5x - 5y + 12 = 0$ d) $x^2 + y^2 - 5x + 5y - 12 = 0$ 903. The equation of the directrix of parabola $y^2 + 4y + 4x + 2 = 0$ is a) $x = -1$ b) $x = 1$ c) $x = -\frac{3}{2}$ d) $x = \frac{3}{2}$ 904. If a point $P(x, y)$ moves along the ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1$ and if <i>C</i> is the centre of the ellipse, then the sum of maximum and minimum values of <i>CP</i> is a) 25 b) 9 c) 4 d) 5 905. If the tangent to the parabola $y^2 = ax$ makes an angle of 45° with <i>x</i> -axis, then the point of contact is a) $(\frac{a}{2}, \frac{a}{2})$ b) $(\frac{a}{4}, \frac{a}{4})$ c) $(\frac{a}{2}, \frac{a}{4})$ d) $(\frac{a}{4}, \frac{a}{2})$ 906. The locus of the point (l, m) so that $lx + my = 1$ touches the circle $x^2 + y^2 = a^2$, is a) $x^2 + y^2 - ax = 0$ b) $x^2 + y^2 = \frac{1}{a^2}$ c) $y^2 = 4ax$ d) $x^2 + y^2 - ax - ay + a^2 = 0$ 907. The eccentricity of the hyperbola $9x^2 - 16y^2 - 18x - 64y - 199 = 0$ is a) $\frac{16}{9}$ b) $\frac{5}{4}$ c) $\frac{25}{16}$ d) Zero 908. If <i>b</i> and <i>C</i> are the lengths of the segments of any focal chord of a parabola $y^2 = 4ax$, then the length of the		c) $\left(a\frac{e^t+e^{-t}}{2}, b\frac{e^t-e^{-t}}{2}\right)$ (wh	nere <i>t</i> is parameter)	d) None of the above			
circle is a) $x + y = 1$ b) $2(x - y) = 5$ c) $2x + 2y = 5$ d) None of these 902. The equation of the smallest circle passing through the points (2, 2) and (3, 3) is a) $x^2 + y^2 + 5x + 5y + 12 = 0$ b) $x^2 + y^2 - 5x - 5y + 12 = 0$ c) $x^2 + y^2 + 5x - 5y + 12 = 0$ d) $x^2 + y^2 - 5x + 5y - 12 = 0$ 903. The equation of the directrix of parabola $y^2 + 4y + 4x + 2 = 0$ is a) $x = -1$ b) $x = 1$ c) $x = -\frac{3}{2}$ d) $x = \frac{3}{2}$ 904. If a point $P(x, y)$ moves along the ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1$ and if <i>C</i> is the centre of the ellipse, then the sum of maximum and minimum values of <i>CP</i> is a) 25 b) 9 c) 4 d) 5 905. If the tangent to the parabola $y^2 = ax$ makes an angle of 45° with <i>x</i> -axis, then the point of contact is a) $\left(\frac{a}{2}, \frac{a}{2}\right)$ b) $\left(\frac{a}{4}, \frac{a}{4}\right)$ c) $\left(\frac{a}{2}, \frac{a}{4}\right)$ d) $\left(\frac{a}{4}, \frac{a}{2}\right)$ 906. The locus of the point (l, m) so that $lx + my = 1$ touches the circle $x^2 + y^2 = a^2$, is a) $x^2 + y^2 - ax = 0$ b) $x^2 + y^2 = \frac{1}{a^2}$ c) $y^2 = 4ax$ d) $x^2 + y^2 - ax - ay + a^2 = 0$ 907. The eccentricity of the hyperbola $9x^2 - 16y^2 - 18x - 64y - 199 = 0$ is a) $\frac{16}{9}$ b) $\frac{5}{4}$ c) $\frac{25}{16}$ d) Zero 908. If <i>b</i> and <i>C</i> are the lengths of the segments of any focal chord of a parabola $y^2 = 4ax$, then the length of the	901.	If one end of the diameter	is $(1, 1)$ and the other end	lies on the line $x + y = 3$,	then locus of centre of		
a) $x + y = 1$ b) $2(x - y) = 5$ c) $2x + 2y = 5$ d) None of these 902. The equation of the smallest circle passing through the points (2, 2) and (3, 3) is a) $x^2 + y^2 + 5x + 5y + 12 = 0$ b) $x^2 + y^2 - 5x - 5y + 12 = 0$ c) $x^2 + y^2 + 5x - 5y + 12 = 0$ d) $x^2 + y^2 - 5x + 5y - 12 = 0$ 903. The equation of the directrix of parabola $y^2 + 4y + 4x + 2 = 0$ is a) $x = -1$ b) $x = 1$ c) $x = -\frac{3}{2}$ d) $x = \frac{3}{2}$ 904. If a point $P(x, y)$ moves along the ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1$ and if <i>C</i> is the centre of the ellipse, then the sum of maximum and minimum values of <i>CP</i> is a) 25 b) 9 c) 4 d) 5 905. If the tangent to the parabola $y^2 = ax$ makes an angle of 45° with <i>x</i> -axis, then the point of contact is a) $\left(\frac{a}{2}, \frac{a}{2}\right)$ b) $\left(\frac{a}{4}, \frac{a}{4}\right)$ c) $\left(\frac{a}{2}, \frac{a}{4}\right)$ d) $\left(\frac{a}{4}, \frac{a}{2}\right)$ 906. The locus of the point (l, m) so that $lx + my = 1$ touches the circle $x^2 + y^2 = a^2$, is a) $x^2 + y^2 - ax = 0$ b) $x^2 + y^2 = \frac{1}{a^2}$ c) $y^2 = 4ax$ d) $x^2 + y^2 - ax - ay + a^2 = 0$ 907. The eccentricity of the hyperbola $9x^2 - 16y^2 - 18x - 64y - 199 = 0$ is a) $\frac{16}{9}$ b) $\frac{5}{4}$ c) $\frac{25}{16}$ d) Zero 908. If <i>b</i> and <i>C</i> are the lengths of the segments of any focal chord of a parabola $y^2 = 4ax$, then the length of the		circle is					
902. The equation of the sinalest circle passing through the points $(x, 2)$ and $(3, 5)$ is a) $x^2 + y^2 + 5x + 5y + 12 = 0$ b) $x^2 + y^2 - 5x - 5y + 12 = 0$ 903. The equation of the directrix of parabola $y^2 + 4y + 4x + 2 = 0$ is a) $x = -1$ b) $x = 1$ c) $x = -\frac{3}{2}$ d) $x = \frac{3}{2}$ 904. If a point $P(x, y)$ moves along the ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1$ and if <i>C</i> is the centre of the ellipse, then the sum of maximum and minimum values of <i>CP</i> is a) 25 b) 9 c) 4 d) 5 905. If the tangent to the parabola $y^2 = ax$ makes an angle of 45° with <i>x</i> -axis, then the point of contact is a) $\left(\frac{a}{2}, \frac{a}{2}\right)$ b) $\left(\frac{a}{4}, \frac{a}{4}\right)$ c) $\left(\frac{a}{2}, \frac{a}{4}\right)$ d) $\left(\frac{a}{4}, \frac{a}{2}\right)$ 906. The locus of the point (l, m) so that $lx + my = 1$ touches the circle $x^2 + y^2 = a^2$, is a) $x^2 + y^2 - ax = 0$ b) $x^2 + y^2 = \frac{1}{a^2}$ c) $y^2 = 4ax$ d) $x^2 + y^2 - ax - ay + a^2 = 0$ 907. The eccentricity of the hyperbola $9x^2 - 16y^2 - 18x - 64y - 199 = 0$ is a) $\frac{16}{9}$ b) $\frac{5}{4}$ c) $\frac{25}{16}$ d) Zero 908. If <i>b</i> and <i>C</i> are the lengths of the segments of any focal chord of a parabola $y^2 = 4ax$, then the length of the	002	a) $x + y = 1$ The equation of the small	D) $Z(x - y) = 5$	C) $2x + 2y = 5$	a) None of these		
b) $x + y^2 - 5x + 5y + 12 = 0$ c) $x^2 + y^2 + 5x - 5y + 12 = 0$ d) $x^2 + y^2 - 5x + 5y - 12 = 0$ 903. The equation of the directrix of parabola $y^2 + 4y + 4x + 2 = 0$ is a) $x = -1$ b) $x = 1$ c) $x = -\frac{3}{2}$ d) $x = \frac{3}{2}$ 904. If a point $P(x, y)$ moves along the ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1$ and if <i>C</i> is the centre of the ellipse, then the sum of maximum and minimum values of <i>CP</i> is a) 25 b) 9 c) 4 d) 5 905. If the tangent to the parabola $y^2 = ax$ makes an angle of 45° with <i>x</i> -axis, then the point of contact is a) $\left(\frac{a}{2}, \frac{a}{2}\right)$ b) $\left(\frac{a}{4}, \frac{a}{4}\right)$ c) $\left(\frac{a}{2}, \frac{a}{4}\right)$ d) $\left(\frac{a}{4}, \frac{a}{2}\right)$ 906. The locus of the point (l, m) so that $lx + my = 1$ touches the circle $x^2 + y^2 = a^2$, is a) $x^2 + y^2 - ax = 0$ b) $x^2 + y^2 = \frac{1}{a^2}$ c) $y^2 = 4ax$ d) $x^2 + y^2 - ax - ay + a^2 = 0$ 907. The eccentricity of the hyperbola $9x^2 - 16y^2 - 18x - 64y - 199 = 0$ is a) $\frac{16}{9}$ b) $\frac{5}{4}$ c) $\frac{25}{16}$ d) Zero 908. If <i>b</i> and <i>C</i> are the lengths of the segments of any focal chord of a parabola $y^2 = 4ax$, then the length of the	902.	For a second se					
903. The equation of the directrix of parabola $y^2 + 4y + 4x + 2 = 0$ is a) $x = -1$ b) $x = 1$ c) $x = -\frac{3}{2}$ d) $x = \frac{3}{2}$ 904. If a point $P(x, y)$ moves along the ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1$ and if <i>C</i> is the centre of the ellipse, then the sum of maximum and minimum values of <i>CP</i> is a) 25 b) 9 c) 4 d) 5 905. If the tangent to the parabola $y^2 = ax$ makes an angle of 45° with <i>x</i> -axis, then the point of contact is a) $(\frac{a}{2}, \frac{a}{2})$ b) $(\frac{a}{4}, \frac{a}{4})$ c) $(\frac{a}{2}, \frac{a}{4})$ d) $(\frac{a}{4}, \frac{a}{2})$ 906. The locus of the point (l, m) so that $lx + my = 1$ touches the circle $x^2 + y^2 = a^2$, is a) $x^2 + y^2 - ax = 0$ b) $x^2 + y^2 = \frac{1}{a^2}$ c) $y^2 = 4ax$ d) $x^2 + y^2 - ax - ay + a^2 = 0$ 907. The eccentricity of the hyperbola $9x^2 - 16y^2 - 18x - 64y - 199 = 0$ is a) $\frac{16}{9}$ b) $\frac{5}{4}$ c) $\frac{25}{16}$ d) Zero 908. If <i>b</i> and <i>C</i> are the lengths of the segments of any focal chord of a parabola $y^2 = 4ax$, then the length of the		c) $x^2 + y^2 + 5x - 5y + 1$	2 = 0 2 = 0	d) $x^2 + y^2 - 5x + 5y - 1$	2 = 0 2 = 0		
a) $x = -1$ b) $x = 1$ c) $x = -\frac{3}{2}$ d) $x = \frac{3}{2}$ 904. If a point $P(x, y)$ moves along the ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1$ and if <i>C</i> is the centre of the ellipse, then the sum of maximum and minimum values of <i>CP</i> is a) 25 b) 9 c) 4 d) 5 905. If the tangent to the parabola $y^2 = ax$ makes an angle of 45° with <i>x</i> -axis, then the point of contact is a) $\left(\frac{a}{2}, \frac{a}{2}\right)$ b) $\left(\frac{a}{4}, \frac{a}{4}\right)$ c) $\left(\frac{a}{2}, \frac{a}{4}\right)$ d) $\left(\frac{a}{4}, \frac{a}{2}\right)$ 906. The locus of the point (l, m) so that $lx + my = 1$ touches the circle $x^2 + y^2 = a^2$, is a) $x^2 + y^2 - ax = 0$ b) $x^2 + y^2 = \frac{1}{a^2}$ c) $y^2 = 4ax$ d) $x^2 + y^2 - ax - ay + a^2 = 0$ 907. The eccentricity of the hyperbola $9x^2 - 16y^2 - 18x - 64y - 199 = 0$ is a) $\frac{16}{9}$ b) $\frac{5}{4}$ c) $\frac{25}{16}$ d) Zero 908. If <i>b</i> and <i>C</i> are the lengths of the segments of any focal chord of a parabola $y^2 = 4ax$, then the length of the	903.	03. The equation of the directrix of parabola $v^2 + 4v + 4x + 2 = 0$ is					
904. If a point $P(x, y)$ moves along the ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1$ and if <i>C</i> is the centre of the ellipse, then the sum of maximum and minimum values of <i>CP</i> is a) 25 b) 9 c) 4 d) 5 905. If the tangent to the parabola $y^2 = ax$ makes an angle of 45° with <i>x</i> -axis, then the point of contact is a) $\left(\frac{a}{2}, \frac{a}{2}\right)$ b) $\left(\frac{a}{4}, \frac{a}{4}\right)$ c) $\left(\frac{a}{2}, \frac{a}{4}\right)$ d) $\left(\frac{a}{4}, \frac{a}{2}\right)$ 906. The locus of the point (l, m) so that $lx + my = 1$ touches the circle $x^2 + y^2 = a^2$, is a) $x^2 + y^2 - ax = 0$ b) $x^2 + y^2 = \frac{1}{a^2}$ c) $y^2 = 4ax$ d) $x^2 + y^2 - ax - ay + a^2 = 0$ 907. The eccentricity of the hyperbola $9x^2 - 16y^2 - 18x - 64y - 199 = 0$ is a) $\frac{16}{9}$ b) $\frac{5}{4}$ c) $\frac{25}{16}$ d) Zero 908. If <i>b</i> and <i>C</i> are the lengths of the segments of any focal chord of a parabola $y^2 = 4ax$, then the length of the		a) $x = -1$	b) $x = 1$	c) $x = -\frac{3}{2}$	d) $x = \frac{3}{2}$		
maximum and minimum values of <i>CP</i> is a) 25 b) 9 c) 4 d) 5 905. If the tangent to the parabola $y^2 = ax$ makes an angle of 45° with <i>x</i> -axis, then the point of contact is a) $\left(\frac{a}{2}, \frac{a}{2}\right)$ b) $\left(\frac{a}{4}, \frac{a}{4}\right)$ c) $\left(\frac{a}{2}, \frac{a}{4}\right)$ d) $\left(\frac{a}{4}, \frac{a}{2}\right)$ 906. The locus of the point (l, m) so that $lx + my = 1$ touches the circle $x^2 + y^2 = a^2$, is a) $x^2 + y^2 - ax = 0$ b) $x^2 + y^2 = \frac{1}{a^2}$ c) $y^2 = 4ax$ d) $x^2 + y^2 - ax - ay + a^2 = 0$ 907. The eccentricity of the hyperbola $9x^2 - 16y^2 - 18x - 64y - 199 = 0$ is a) $\frac{16}{9}$ b) $\frac{5}{4}$ c) $\frac{25}{16}$ d) Zero 908. If <i>b</i> and <i>C</i> are the lengths of the segments of any focal chord of a parabola $y^2 = 4ax$, then the length of the	904.	If a point $P(x, y)$ moves a	long the ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1$	and if <i>C</i> is the centre of the	ellipse, then the sum of		
a) 25 b) 9 c) 4 d) 5 905. If the tangent to the parabola $y^2 = ax$ makes an angle of 45° with x-axis, then the point of contact is a) $\left(\frac{a}{2}, \frac{a}{2}\right)$ b) $\left(\frac{a}{4}, \frac{a}{4}\right)$ c) $\left(\frac{a}{2}, \frac{a}{4}\right)$ d) $\left(\frac{a}{4}, \frac{a}{2}\right)$ 906. The locus of the point (l, m) so that $lx + my = 1$ touches the circle $x^2 + y^2 = a^2$, is a) $x^2 + y^2 - ax = 0$ b) $x^2 + y^2 = \frac{1}{a^2}$ c) $y^2 = 4ax$ d) $x^2 + y^2 - ax - ay + a^2 = 0$ 907. The eccentricity of the hyperbola $9x^2 - 16y^2 - 18x - 64y - 199 = 0$ is a) $\frac{16}{9}$ b) $\frac{5}{4}$ c) $\frac{25}{16}$ d) Zero 908. If <i>b</i> and <i>C</i> are the lengths of the segments of any focal chord of a parabola $y^2 = 4ax$, then the length of the		maximum and minimum	values of <i>CP</i> is				
905. If the tangent to the parabola $y^2 = ax$ makes an angle of 45 with x-axis, then the point of contact is a) $\left(\frac{a}{2}, \frac{a}{2}\right)$ b) $\left(\frac{a}{4}, \frac{a}{4}\right)$ c) $\left(\frac{a}{2}, \frac{a}{4}\right)$ d) $\left(\frac{a}{4}, \frac{a}{2}\right)$ 906. The locus of the point (l, m) so that $lx + my = 1$ touches the circle $x^2 + y^2 = a^2$, is a) $x^2 + y^2 - ax = 0$ b) $x^2 + y^2 = \frac{1}{a^2}$ c) $y^2 = 4ax$ d) $x^2 + y^2 - ax - ay + a^2 = 0$ 907. The eccentricity of the hyperbola $9x^2 - 16y^2 - 18x - 64y - 199 = 0$ is a) $\frac{16}{9}$ b) $\frac{5}{4}$ c) $\frac{25}{16}$ d) Zero 908. If <i>b</i> and <i>C</i> are the lengths of the segments of any focal chord of a parabola $y^2 = 4ax$, then the length of the	005	a) 25	b) 9	c) 4	d) 5		
a) $\left(\frac{x}{2}, \frac{x}{2}\right)$ b) $\left(\frac{x}{4}, \frac{x}{4}\right)$ c) $\left(\frac{x}{2}, \frac{x}{4}\right)$ d) $\left(\frac{x}{4}, \frac{x}{2}\right)$ 906. The locus of the point (l, m) so that $lx + my = 1$ touches the circle $x^2 + y^2 = a^2$, is a) $x^2 + y^2 - ax = 0$ b) $x^2 + y^2 = \frac{1}{a^2}$ c) $y^2 = 4ax$ d) $x^2 + y^2 - ax - ay + a^2 = 0$ 907. The eccentricity of the hyperbola $9x^2 - 16y^2 - 18x - 64y - 199 = 0$ is a) $\frac{16}{9}$ b) $\frac{5}{4}$ c) $\frac{25}{16}$ d) Zero 908. If <i>b</i> and <i>C</i> are the lengths of the segments of any focal chord of a parabola $y^2 = 4ax$, then the length of the	905.	If the tangent to the paral (a, a)	y ² = ax makes an angl	le of 45 with x-axis, then the (a, a)	ne point of contact is		
906. The locus of the point (l, m) so that $lx + my = 1$ touches the circle $x^2 + y^2 = a^2$, is a) $x^2 + y^2 - ax = 0$ b) $x^2 + y^2 = \frac{1}{a^2}$ c) $y^2 = 4ax$ d) $x^2 + y^2 - ax - ay + a^2 = 0$ 907. The eccentricity of the hyperbola $9x^2 - 16y^2 - 18x - 64y - 199 = 0$ is a) $\frac{16}{9}$ b) $\frac{5}{4}$ c) $\frac{25}{16}$ d) Zero 908. If <i>b</i> and <i>C</i> are the lengths of the segments of any focal chord of a parabola $y^2 = 4ax$, then the length of the		a) $\left(\frac{\pi}{2}, \frac{\pi}{2}\right)$	b) $\left(\frac{\pi}{4}, \frac{\pi}{4}\right)$	c) $\left(\frac{\pi}{2}, \frac{\pi}{4}\right)$	d) $\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$		
a) $x^2 + y^2 - ax = 0$ b) $x^2 + y^2 = \frac{1}{a^2}$ c) $y^2 = 4ax$ d) $x^2 + y^2 - ax - ay + a^2 = 0$ 907. The eccentricity of the hyperbola $9x^2 - 16y^2 - 18x - 64y - 199 = 0$ is a) $\frac{16}{9}$ b) $\frac{5}{4}$ c) $\frac{25}{16}$ d) Zero 908. If <i>b</i> and <i>C</i> are the lengths of the segments of any focal chord of a parabola $y^2 = 4ax$, then the length of the	906. The locus of the point (l, m) so that $lx + my = 1$ touches the circle $x^2 + y^2 = a^2$, is						
c) $y^2 = 4ax$ 907. The eccentricity of the hyperbola $9x^2 - 16y^2 - 18x - 64y - 199 = 0$ is a) $\frac{16}{9}$ b) $\frac{5}{4}$ c) $\frac{25}{16}$ d) Zero 908. If <i>b</i> and <i>C</i> are the lengths of the segments of any focal chord of a parabola $y^2 = 4ax$, then the length of the		a) $x^2 + y^2 - ax = 0$		b) $x^2 + y^2 = \frac{1}{a^2}$	_		
907. The eccentricity of the hyperbola $9x^2 - 16y^2 - 18x - 64y - 199 = 0$ is a) $\frac{16}{9}$ b) $\frac{5}{4}$ c) $\frac{25}{16}$ d) Zero 908. If <i>b</i> and <i>C</i> are the lengths of the segments of any focal chord of a parabola $y^2 = 4ax$, then the length of the	-	c) $y^2 = 4ax$		d) $x^2 + y^2 - ax - ay + a$	$^{2} = 0$		
a) $\frac{16}{9}$ b) $\frac{5}{4}$ c) $\frac{25}{16}$ d) Zero 908. If <i>b</i> and <i>C</i> are the lengths of the segments of any focal chord of a parabola $v^2 = 4ax$, then the length of the	907.	The eccentricity of the hy	perbola $9x^2 - 16y^2 - 18x$	-64y - 199 = 0 is	NR		
908. If b and C are the lengths of the segments of any focal chord of a parabola $y^2 = 4ax$, then the length of the		a) $\frac{16}{9}$	b) $\frac{5}{4}$	c) $\frac{25}{16}$	d) Zero		
semilatusrectum is	908.	908. If <i>b</i> and <i>C</i> are the lengths of the segments of any focal chord of a parabola $y^2 = 4ax$, then the length of the semilatusrectum is					
a) $\frac{bc}{b+c}$ b) \sqrt{bc} c) $\frac{b+c}{2}$ d) $\frac{2bc}{b+c}$		a) $\frac{bc}{h+c}$	b) <i>\(\begin{subarray}{c} b c \ b c \ b c \ b c \ b c \ b c \ b c \ c \</i>	c) $\frac{b+c}{2}$	d) $\frac{2bc}{b+c}$		
^{909.} If the area of the auxiliary circle of the ellipse $\frac{x^2}{a} + \frac{y^2}{b^2} = 1(a > b)$ is twice the area of the ellipse, then the	909.	If the area of the auxiliary	y circle of the ellipse $\frac{x^2}{x} + \frac{y^2}{x}$	$\frac{1}{2} = 1(a > b)$ is twice the ar	rea of the ellipse, then the		

eccentricity of the ellipse is

	a) $\frac{1}{\sqrt{2}}$	b) $\frac{\sqrt{3}}{2}$	c) $\frac{1}{\sqrt{2}}$	d) $\frac{1}{2}$
910	$\sqrt{2}$	2 pint of line joining two poir	$\sqrt{3}$	$\frac{2}{2}$
<i>9</i> 10.	$v^2 = 16$ is	bille of fille joining two poli	nts (4, 0) and (0, 4) nonn un	e centre of the child $x +$
	y = 10.13	h) $2\sqrt{2}$	c) 3 <u>√</u> 2	d) $2\sqrt{3}$
911	The equation of the chord	of the circle $x^2 + y^2 - a^2$	having (r, y) as its mid r	$a_{J} \geq \sqrt{3}$
<i>)</i> 11.	a) $rv_1 + vr_2 = a^2$	b) $r_1 + v_2 = a$	(a) $rr_1 + yy_1 - r_1^2 + y_1^2$	d) $rr_1 + vv_2 - a^2$
912.	The angle between the particular th	ir of tangents drawn from $\int_{a}^{b} dx = \frac{1}{2}$	(1,3) to the parabola $y^2 = 3$	8x, is
	a) tan ⁻¹ 2	b) $\tan^{-1}\frac{1}{2}$	c) $\tan^{-1}\frac{1}{3}$	d) tan ⁻¹ 3
913.	The equations of the tange	ents to circle $x^2 + y^2 - 6x$	+ 4y - 12 = 0, which are p	parallel to line $4x + 3y +$
	15are			
	a) $4x + 3y + 11 = 0$ and $4x + 3y + 11 = 0$	4x + 3y + 8 = 0	b) $4x + 3y - 9 = 0$ and 4	x + 3y + 7 = 0
	c) $4x + 3y + 19 = 0$ and 4	4x + 3y - 31 = 0	d) $4x + 3y - 10 = 0$ and	4x + 3y + 12 = 0
914.	Eccentricity of hyperbola	whose asymptotes are $3x$ -	-4y = 7 and $4x + 3y = 8$,	is
	a) √2		b) Z	
.	c) Not sufficient informat	ion	d) None of the above	
915.	Length of the tangents fro	m the point (1, 2) to the ci	rcles $x^2 + y^2 + x + y - 4 =$	$= 0 \text{ and } 3x^2 + 3y^2 - x - 3x^2 + 3y^2 - x - 3x^2 + 3y^2 - 3x^2 + 3y^2 + $
	y - k = 0 are in the ratio	1 4:3, then k is equal to 1×4	2.12	12 20 /4
016	a) 3//2	b) 4/3/	c) 12 $u^2 = u^2$	a) 39/4
916.	If $P(\theta)$ and $Q(\pi/2 + \theta)$ are	e two points on the ellipse	$\frac{x}{a^2} + \frac{y}{b^2} = 1$. Locus of the m	id-point of <i>PQ</i> is
	a) $\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{1}{2}$	b) $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 4$	c) $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 2$	d) None of these
917.	The circle $ax^2 + ay^2 + 2g$	$g_1 x + 2f_1 y + c_1 = 0$		
	and $bx^2 + by^2 + 2g_2x + 2g$	$2f_2y + c_2 = 0$		
	$(a \neq 0 \text{ and } b \neq 0)$ cut orth	hogonally, if		
	a) $g_1g_2 + f_1f_2 = ac_1 + bc_1$	2	b) $2(g_1g_2 + f_1f_2) = bc_1 + bc_1 + bc_2 + bc_2$	- <i>bc</i> ₂
	c) $bg_1g_2 + af_1f_2 = ac_1 + af_1f_2 = ac_1f_2 = af_1f_2 = af_$	bc ₂	d) $g_1g_2 + f_1f_2 = c_1 + c_2$	
918.	The curve represented by	the equation $4x^2 + 16y^2$ -	-24x - 32y - 12 = 0 is	
	a) A parabola		b) A pair of straight lines	
	c) An ellipse with eccentr	icity 1/2	d) An ellipse with eccentr	icity $\sqrt{3}/2$
919.	If the chord of contact of t	angents drawn from the po	pint (h, k) to the circle x^2 +	$y^2 = a^2$ subtends a right
	angle at the centre, then			
	a) $h^2 + k^2 = a^2$	b) $2(h^2 + k^2) = a^2$	c) $h^2 - k^2 = a^2$	d) $h^2 + k^2 = 2a^2$
920.	The tangent to $x^2 + y^2 =$	9 which is parallel to y-axi	s and does not lie in the thi	rd quadrant touches the
	circle at the point			
	a) (3,0)	b) (-3,0)	c) (0,3)	d) (0, -3)
921.	The equation of the circle	of radius 5 and touching th	ne coordinate axes in third	quadrant is
	a) $(x-5)^2 + (y+5)^2 = 1$	25	b) $(x+4)^2 + (y+4)^2 =$	25
	c) $(x+6)^2 + (y+6)^2 = 1$	25	d) $(x+5)^2 + (y+5)^2 =$	25
922.	The straight line $x + y = x$	$\sqrt{2}n$ will touch the hyperbo	$12 4x^2 - 9y^2 = 36$ if	
	a) $p^2 = 2$	b) $p^2 = 5$	c) $5n^2 = 2$	d) $2n^2 = 5$
923.	If <i>P</i> is a point such that the	e ratio of the squares of the	e lengths of the tangents fro	om P to the circles x^2 +
	$y^2 + 2x - 4y - 20 = 0$ and	$dx^2 + y^2 - 4x + 2y - 44$	= 0 is 2: 3, then the locus of	of <i>P</i> is a circle with centre
	a) (7, -8)	b) (-7,8)	c) (7,8)	d) (-7, -8)
924.	The length of the latusrect	tum of the ellipse $\frac{x^2}{x} + \frac{y^2}{y} =$	1 is	
	a) 00/6	b) 72 /7	$r = \frac{1}{2}$	d) 09/12
	aj 70/U	UJ / 4/ /	LJ / 2/ 14	uj 70/12

925. The equation $\frac{x^2}{2-\lambda} - \frac{y^2}{\lambda-5} - 1 = 0$, represent an ellipse, if c) 2 < λ < 5 a) $\lambda > 5$ b) $\lambda < 2$ d) $2 > \lambda > 5$ 926. If the normals from any point to the parabola $x^2 = 4y$ cuts the line y = 2 in points whose abscissae are in A.P., then the slopes of the tangents at the three conormal points are in a) A.P. b) G.P. d) None of these c) H.P. 927. The area of the quadrilateral formed by the tangents at the end points of latusrectum to the ellipse $\frac{x^2}{9}$ + $\frac{y^2}{5} = 1$ is b) 9 sq unit a) 27/4 sq unit c) 27/2 sq unit d) 27 sq unit 928. The mid-point of the chord 2x + y - 4 = 0 of the parabola $y^2 = 4x$ is b) (-1,5/2) c) (3/2,−1) d) None of these a) (5/2, -1)929. The equation of the circle with centre (2, 1) and touching the line 3x + 4y = 5 is a) $x^2 + y^2 - 4x - 2y + 5 = 0$ b) $x^2 + y^2 - 4x - 2y - 5 = 0$ c) $x^2 + y^2 - 4x - 2y + 4 = 0$ d) $x^2 + y^2 - 4x - 2y - 4 = 0$ 930. If $(-1, -2\sqrt{2})$ is one of extremity of a focal chord of the parabola $y^2 = -8x$, then the other extremity is b) $(2\sqrt{2}, -1)$ c) $(-4, 4\sqrt{2})$ a) $(-1, -\sqrt{2})$ d) $(4, 4\sqrt{2})$ 931. The length of the chord joining the points $(4\cos\theta, 4\sin\theta)$ and $(4\cos(\theta + 60^\circ), 4\sin(\theta + 60^\circ))$ of the circle $x^2 + y^2 = 16$ is a) 4 b) 8 d) 2 c) 16 932. The distance between the foci of the hyperbola $x^2 - 3y^2 - 4x - 6y - 11 = 0$ is d) 10 b) 6 a) 4 933. The locus of the centre of the circle which cuts the circles $x^2 + y^2 + 2g_1x + 2f_1y + c_1 = 0$ and $x^2 + y^2 + 2g_1x + 2f_1y + c_1 = 0$ $2 g_2 + 2f_2 y + c_2 = 0$ orthogonally, is a) An ellipse b) The radical axis of the given circles c) A conic d) Another circle 934. The radius of the circle with the polar equation $r^2 - 8r(\sqrt{3}\cos\theta + \sin\theta) + 15 = 0$ is a) 8 d) 5 b) 7 c) 6 935. The centre of the circle passing through (0,0)(a, 0) and (0, b) is b) a/2, b/2 c) (-a/2, -b/2)d) -a, -ba) (a, b)936. The mid-point of the line joining the common points of the line 2x - 3y + 8 = 0 and $y^2 = 8x$, is b) (5,6) c) (4,−1) d) (2, -3)a) (3,2) 937. The equation of the tangent to the parabola $y^2 = 8x$ which is perpendicular to the line x - 3y + 8 = 0 is b) 3x + y + 2 = 0c) 3x - y - 1 = 0a) 9x + 3y + 2 = 0d) 9x - 3y + 2 = 0938. The length of the chord of the parabola $y^2 = 4 ax$ passing through the vertex and making an angle θ with the axis is a) 4 $a \operatorname{cosec}^2 \theta$ b) $4 a \cos \theta \operatorname{cosec}^2 \theta$ c) $4 a \cot \theta \operatorname{cosec}^2 \theta$ d) 2 $a \operatorname{cosec}^2 \theta$ 939. The distance between the foci of the ellipse $5x^2 + 9y^2 = 45$, is b) 4 d) 2 a) $2\sqrt{2}$ c) $4\sqrt{2}$ 940. The equation of the parabola with focus (0,0) and directrix x + y = 4, is a) $x^2 + y^2 - 2xy + 8x + 8y - 16 = 0$ b) $x^2 + y^2 - 2xy + 8x + 8y = 0$ c) $x^2 + y^2 + 8x + 8y - 16 = 0$ d) $x^2 - y^2 + 8x + 8y - 16 = 0$ 941. The length of the chord cut off by y = 2x + 1 from the circle $x^2 + y^2 = 2$, is c) $\frac{6}{\sqrt{5}}$ a) $\frac{5}{4}$ b) $\frac{6}{5}$ d) <u>√5</u> 942. The two circles $x^2 + y^2 - 2x + 6y + 6 = 0$ and $x^2 + y^2 - 5x + 6y + 15 = 0$ touch each other b) Internally a) Externally c) Coincide d) None of these

^{943.} The equation of the normal to the hyperbola $\frac{x^2}{16} - \frac{y^2}{2} = 1$ at (-4, 0) is				
a) $2x - 3y = 1$	b) $x = 0$	c) $x = 1$	d) $y = 0$	
944. The locus of the centre	of the circle for which one e	nd of a diameter is (1, 1) w	hile the other end is on the	
line $x + y = 3$, is				
a) $x + y = 1$	b) $2(x - y) = 5$	c) $2x + 2y = 5$	d) None of these	
945. The mid-point of the ch	ord intercepted by the hype	erbola $9x^2 - 16y^2 = 144$ of	n the line $9x - 8y - 10 = 0$,	
is				
a) (1,2)	b) (-1,2)	c) (-2,1)	d) (2, 1)	
946. The radius of the circle,	which is touched by the line	y = x and has its centre of	on the positive direction of <i>x</i> -	
axis and also cuts-off a	chord of length 2 unit along	the line $\sqrt{3}y - x = 0$, is		
a) √5	b) √3	c) √2	d) 1	
947. If a focal chord of the pa	arabola $y^2 = ax$ is $2x - y - y$	8 = 0, then the equation of	f the directrix is	
a) $x + 4 = 0$	b) $x - 4 = 0$	c) $y - 4 = 0$	d) $y + 4 = 0$	
948. The focus of the parabo	$\ln x^2 + 2y + 6x = 0$ is			
a) (-3,4)	b) (3, 4)	c) (3, -4)	d) (-3, -4)	
949. The normal drawn at a	point $(at_1^2, 2 at_1)$ of the part	abola $y^2 = 4ax$ meets it ag	ain on the point $(at_2^2, 2 at_2)$,	
then				
a) $t_1 = 2 t_2$	b) $t_1^2 = 2 t_2$	c) $t_1 t_2 = -1$	d) None of these	
950. If tangent and normal to	b a rectangular hyperbola x_{j}	$y = c^2$ cut off intercepts a_1	and a_2	
on one axis and b_1, b_2 of	n the other, then	a h		
a) $a_1 = b_1$	b) $a_2 = b_2$	c) $\frac{a_1}{a_2} = \frac{b_1}{b_2}$	d) $a_1 a_2 + b_1 b_2 = 0$	
951. The range of α which the	he point (α, α) lies inside th	e region bounded by the cu	rives $y = \sqrt{1 - r^2}$ and $r \perp$	
v = 1 is	te point (u, u) nes miside m	e region bounded by the ed	$1 \sqrt{3} y = \sqrt{1} x$ and $x + 1$	
1 1	1 1	1 1	1 1	
a) $\frac{1}{2} < \alpha < \frac{1}{\sqrt{2}}$	b) $\frac{1}{2} < \alpha < \frac{1}{3}$	c) $\frac{1}{3} < \alpha < \frac{1}{\sqrt{3}}$	d) $\frac{1}{4} < \alpha < \frac{1}{2}$	
952. The normal at the point (3,4) on a circle at the point $(-1, -2)$. The equation of the circle, is				
a) $x^2 + y^2 + 2x - 2y -$	13 = 0	· · · · ·		
b) $x^2 + y^2 - 2x - 2y - 2y - 2y - 2y - 2y - 2y - 2$	11 = 0			
c) $x^2 + y^2 - 2x + 2y + $	12 = 0			
d) $x^2 + y^2 - 2x - 2y + y^2 - 2x - 2x + y^2 - 2x - 2x + y^2 - 2x - 2x + y^2 - $	14 = 0			
953. The focal chord to $y^2 =$	16 <i>x</i> is tangent to $(1-6)^2$.	$+ y^2 = 2$, then the possible	values of the slope of this	
chord are				
a) {-1, 1}	b) {-2, 2}	c) $\{-2,\frac{1}{2}\}$	d) $\left\{2, -\frac{1}{2}\right\}$	
954. The equation of the par	abola with its vertex at the	(2)	d passing through the point	
(6 - 3) is				
(0, $y^2 = 12r + 6$	b) $r^2 = 12v$	c) $x^2 = -12y$	d) $v^2 = -12x + 6$	
955 The sum of focal distant	re of any point on the ellipse	$e_{y} = 12y$	$a_{j}y = 12x + 0$ and $2h$ respectively	
is equal to	ee of any point on the empsy	e with major and minor axe	<i>20 as 2a and 20 respectively</i> ,	
	a	b	b^{2}	
a) 2 <i>a</i>	b) $2\frac{1}{b}$	c) 2— a	d) $\frac{a}{a}$	
956. The maximum number of points with rational coordinates on a circle whose centre is ($\sqrt{3}$, 0) is				
a) One	b) Two	c) Four	d) Infinite	
957. The length of major and minor axis of an ellipse are 10 and 8 respectively and its major axis along y-axis				
the equation of the ellipse referred to its centre as origin is				
a) $\frac{x^2}{x^2} + \frac{y^2}{y^2} = 1$	b) $\frac{x^2}{2} + \frac{y^2}{2} = 1$	c) $\frac{x^2}{2} + \frac{y^2}{2} = 1$	d) $\frac{x^2}{x^2} + \frac{y^2}{x^2} = 1$	
a) $\frac{1}{2} + \frac{1}{2} = 1$	$y_{1} + \frac{1}{2} = 1$	$\int \frac{1}{100} + \frac{1}{10} = 1$	$(1) \frac{1}{1} + \frac{1}{100} = 1$	

a) $\frac{1}{25} + \frac{1}{16} = 1$ b) $\frac{1}{16} + \frac{1}{25} = 1$ c) $\frac{1}{100} + \frac{1}{64} = 1$ d) $\frac{1}{64} + \frac{1}{100} = 1$ 958. The equation of the circle which touches the axes of the coordinates and the line $\frac{x}{3} + \frac{y}{4} = 1$ and whose centre lies in the first quadrant is $x^2 + y^2 - 2cx - 2cy + c^2 = 0$, where *c* is a) 1,6 b) 2,1 c) 3,6 d) 6,4

959. The area of the triangle formed by three points on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ whose eccentric angles are α , β and γ is

a) $2 ab \sin \frac{\alpha - \beta}{2} \cos \frac{\beta - \gamma}{2} \cos \frac{\gamma - \alpha}{2}$ b) $2ab \sin \frac{\alpha - \beta}{2} \sin \frac{\beta - \gamma}{2} \cos \frac{\gamma - \alpha}{2}$ c) $2ab \sin \frac{\alpha - \beta}{2} \sin \frac{\beta - \gamma}{2} \sin \frac{\gamma - \alpha}{2}$ d) $2 ab \cos \frac{\alpha - \beta}{2} \cos \frac{\beta - \gamma}{2} \cos \frac{\gamma - \alpha}{2}$

960. The eccentricity of the conic $4x^2 + 16y^2 - 24x - 32y = 1$ is

a) $\frac{1}{2}$ b) $\sqrt{3}$ c) $\frac{\sqrt{3}}{2}$ d) $\frac{\sqrt{3}}{4}$ 961. The equation of the ellipse having vertices at (±5,0) and (±4,0) is

a)
$$\frac{x^2}{25} + \frac{y^2}{16} = 1$$
 b) $9x^2 + 25y^2 = 225$ c) $\frac{x^2}{9} + \frac{y^2}{25} = 1$ d) $4x^2 + 5y^2 = 20$

- 962. The circle S_1 with centre $C_1(a_1, b_1)$ and radius r_1 touches externally the circle S_2 with centre $C_2(a_2, b_2)$ and radius r_2 . If the tangent at their common point passes through the origin, then
 - a) $(a_1^2 + a_2^2) + (b_1^2 + b_2^2) = r_1^2 + r_2^2$
 - b) $(a_1^2 a_2^2) + (b_1^2 b_2^2) = r_1^2 r_2^2$
 - c) $(a_1^2 b_2^2) + (a_2^2 + b_2^2) = r_1^2 + r_2^2$
 - d) $(a_1^2 b_1^2) + (a_2^2 + b_2^2) = r_1^2 + r_2^2$

^{963.} If eccentricity of hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ is *e* and *e'* is the eccentricity of its conjugate hyperbola, then

a)
$$e = e'$$
 b) $ee' = 1$ c) $\frac{1}{e^2} + \frac{1}{(e')^2}$ d) None of these

964. If the equation of tangent to the circle $x^2 + y^2 - 2x + 6y - 6 = 0$ parallel to 3x - 4y + 7 = 0 is 3x - 4y + k = 0, then the value of k are

a) 5,-35 b) -5,35 c) 7,-32 d) -7,32965. If circle $x^2 + y^2 + 2gx + 2fy + k = 0$ intersect hyperbola $xy = c^2$ at four points $(x_i, y_1), i = 1, 2, 3, 4$ then a) $x_1 + x_2 + x_3 + x_4 = -g$ b) $x_1 + x_2 + x_3 + x_4 = -2g$ c) $x_1 + x_2 + x_3 + x_4 = -4g$ d) $x_1 + x_2 + x_3 + x_4 = 2g$

966. If tangents are drawn to the ellipse $x^2 + 2y^2 = 2$, then the locus of the mid point of the intercept made by the tangents between the coordinate axes is

- a) $\frac{1}{2x^2} + \frac{1}{4y^2} = 1$ b) $\frac{1}{4x^2} + \frac{1}{2y^2} = 1$ c) $\frac{x^2}{2} + \frac{y^2}{4} = 1$ d) $\frac{x^2}{4} + \frac{y^2}{2} = 1$ 967. The curve represented by the equation $4x^2 + 16y^2 - 24x - 32y - 12 = 0$ is b) A pair of straight lines a) A parabola c) An ellipse with eccentricity $\frac{1}{2}$ d) An ellipse with eccentricity $\frac{\sqrt{3}}{2}$ 968. If the eccentricity of the two ellipse $\frac{x^2}{169} + \frac{y^2}{25} = 1$ and $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ are equal, then the value of $\frac{a}{b}$ is a) $\frac{5}{13}$ b) $\frac{6}{13}$ c) $\frac{13}{5}$ d) $\frac{13}{6}$ 969. The distance between the directrices of the hyperbola $x = 8 \sec \theta$, $y = 8 \tan \theta$ is a) 8√2 b) $16\sqrt{2}$ c) $4\sqrt{2}$ d) $6\sqrt{2}$ 970. The equation to the line touching both the parabolas $y^2 = 4x$ and $x^2 = -32y$, is b) 2x + y - 4 = 0c) x - 2y - 4 = 0d) x - 2y + 4 = 0a) x + 2y + 4 = 0
- 971. The locus of the mid point of the chord of the circle $x^2 + y^2 2x 2y 2 = 0$ which makes an angle of 120° at the centre, is

a) $x^2 + y^2 - 2x - 2y - 1 = 0$ b) $x^2 + y^2 + x + y - 1 = 0$ c) $x^2 + y^2 - 2x - 2y + 1 = 0$ d) None of the above 972. If $\frac{x}{\alpha} + \frac{y}{\beta} = 1$ touches the circle $x^2 + y^2 = a^2$, the point $(1/\alpha, 1/\beta)$ lies on a/an c) Parabola a) Straight line b) Circle d) Ellipse 973. The graph represented by the equations $x = \sin^2 t$, $y = 2 \cos t$, is a) A portion of a parabola b) A parabola c) A part of a sine graph d) A part of a hyperbola 974. The equation of tangent to the ellipse $x^2 + 4y^2 = 5$ at (-1, 1), is b) x - 4y - 5 = 0 c) x + 4y - 5 = 0 d) x - 4y + 5 = 0a) x + 4y + 5 = 0975. Two circles, each of radius 5, have a common tangent at (1,1) whose equation is 3x + 4y - 7 = 0. Then, their centres are a) (4, -5)(-2, 3)b) (4, -3)(-2, 5)c) (4,5)(-2,-3)d) None of these 976. The equation of the circle having its centre on the line x + 2y - 3 = 0 and passing through the point of intersection of the circles $x^{2} + y^{2} - 4y + 1 = 0$ and $x^{2} + y^{2} - 4x - 2y + 4 = 0$ is a) $x^2 + y^2 - 6x + 7 = 0$ b) $x^2 + y^2 - 3x + 4 = 0$ c) $x^2 + y^2 - 2x - 2y + 1 = 0$ d) $x^2 + y^2 + 2x - 4y + 4 = 0$ 977. If two different tangents of $y^2 = 4x$ are the normals to $x^2 = 4by$, then a) $|b| > \frac{1}{2\sqrt{2}}$ b) $|b| < \frac{1}{2\sqrt{2}}$ c) $|b| > \frac{1}{\sqrt{2}}$ d) $|b| < \frac{1}{\sqrt{2}}$ 978. The line 3x - 2y = k meets the circle $x^2 + y^2 = 4r^2$ at only one point, if k^2 is d) $\frac{20}{0}r^2$ c) $\frac{52}{0}r^2$ b) 52*r*² a) 20*r*² 979. The distance between the foci of the conic $7x^2 - 9y^2 = 63$ is equal to c) 3 a) 8 d) 7 b) 4 980. If the circle $x^2 + y^2 = a^2$ intersects the hyperbola $xy = c^2$ in four points (x_i, y_i) , for i = 1,2,3 and 4, then $y_1 + y_2 + y_3 + y_4$ equals d) *c*⁴ a) 0 b) c c) a 981. Consider the following statements : 1. The equation of the parabola whose focus is at the origin is $y^2 = 4a(x + a)$ 2. The line lx + my + n = 0 will touch the parabola $y^2 = 4ax$, if $ln = am^2$ Which of these is/are correct c) Both of these a) Only (1) b) Only (2) d) None of these 982. If M_1 and M_2 are the feet of the perpendiculars from the foci S_1 and S_2 of the ellipse $\frac{x^2}{9} + \frac{y^2}{16} = 1$ on the tangent at any point P on the ellipse, then $(S_1M_1)(S_2M_2)$ is equal to a) 16 b) 9 c) 4 d) 3 983. The equation of two circles which touch the y-axis at (0, 3) and make an intercept of 8 unit on x-axis, are a) $x^2 + y^2 \pm 10x - 6y + 9 = 0$ b) $x^2 + y^2 \pm 6x - 10y + 9 = 0$ d) $x^2 + y^2 \pm 10x \pm 6v + 9 = 0$ c) $x^2 + y^2 - 8x \pm 10y + 9 = 0$ 984. If $ax^2 + by^2 + 2gx + 2fy + c = 0$ represents an ellipse, then a) It's major axis is parallel to x-axis b) It's major axis is parallel to y-axis c) It's axes (*ie*, major axis and minor axis) are neither parallel to x-axis nor parallel to y-axis d) It's axes are parallel to coordinates axes 985. Which of the following is a point on the common chord of the circles $x^2 + y^2 + 2x - 3y + 6 = 0$ and $x^2 + y^2 + 2x - 3y + 6 = 0$

	$y^2 + x - 8y - 13 = 0$			
	a) (1, 4)	b) (1, -2)	c) (1,-4)	d) (1, 2)
986.	<i>AB</i> is a diameter of $x^2 + 9$	$y^2 = 25$. The eccentric and	gle of A is $\pi/6$. Then, the ec	centric angle of <i>B</i> is
	a) 5π/6	b) -5 π/6	c) -2 π/3	d) None of these
987.	The mirror image of the p	arabola $y^2 = 4x$ in the tan	gent to the parabola at the p	point (1, 2) is
	a) $(x-1)^2 = 4(y+1)$	b) $(x+1)^2 = 4(y+1)$	c) $(x+1)^2 = 4(y-1)$	d) $(x-1)^2 = 4(y-1)$
988.	The equation of the tangen	nt to circle $5x^2 + 5y^2 = 1$,	parallel to line $3x + 4y = 1$	l are
	a) $3x + 4y = \pm 2\sqrt{5}$	b) $6x + 8y = \pm \sqrt{5}$	c) $3x + 4y = \pm \sqrt{5}$	d) None of these
989.	The diameter of a circle an	The along $2x + y - 7 = 0$ and	dx + 3y - 11 = 0. Then, the	e equation of this circle,
	which also passes through	n (5, 7), is		
	a) $x^2 + y^2 - 4x - 6y - 10^{-1}$	6 = 0	b) $x^2 + y^2 - 4x - 6y - 2$	0 = 0
	c) $x^2 + y^2 - 4x - 6y - 12$	2 = 0	d) $x^2 + y^2 + 4x + 6y - 12$	2 = 0
990.	If the tangent at a point (a	$(\cos \theta, b \sin \theta)$ on the ellips	se $\frac{x^2}{x^2} + \frac{y^2}{x^2} = 1$ meets the au	xiliary circle in two points,
	the chord joining them su	btends a right angle at the	<i>a² b²</i> centre, then the eccentricity	v of the ellipse is given by
	a) $(1 + \cos^2 \theta)^{-1/2}$	b) $(1 + \sin^2 \theta)$	c) $(1 + \sin^2 \theta)^{-1/2}$	d) $(1 + \cos^2 \theta)$
991			$x^2 y^2 = 1$	
,, <u>,</u>	The value of <i>m</i> for which y	y = mx + 6 is a tangent to	the hyperbola $\frac{1}{100} - \frac{1}{49} = 1$,	, 1S
	, 17	20	3	, 20
	a) $\frac{1}{20}$	$\left \frac{17}{17}\right $	$\left \frac{1}{20}\right $	a) $\frac{1}{3}$
992	N The parametric equation (N of a narabola is $r - t^2 + 1$	v = 2t + 1 The cartesian e	N Advision of its directrix is
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	a) $r = 0$	b) $r + 1 = 0$	y = 2t + 1. The callestant c c) $y = 0$	d) None of these
993	The length of the subtange	ent to the parabola $v^2 = 16$	6 x at the point whose absci	issa is 4 is
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	a) 2	h) 4	c) 8	d) None of these
994.	The angle between the asy	mptotes of the hyperbola	$x^{2} + 2xy - 3y^{2} + x + 7y +$	-9 = 0 is
			$(1)^{-1} (1)^{-1}$	(1)
	a) $\tan^{-1}(\pm 2)$	b) $\tan^{-1}(\pm \sqrt{3})$	c) $\tan^{-1}\left(\frac{1}{\sqrt{3}}\right)$	d) $\tan^{-1}(\frac{-1}{2})$
995.	If the points (2, 0), (0, 1),	(4, 5) and (0, <i>c</i>) are concyc	lic, then the value of <i>c</i> is	
	a) 1	h) $\frac{14}{}$	c) 5	d) None of these
001		3	2	
996.	If the line $x + y - 1 = 0$ is	a tangent to the parabola	$y^2 - y + x = 0$, then the po	oint of contact is
	a) (0, 1)	b) (1, 0)	c) $(0, -1)$	d) (-1,0)
997.	If $4x - 3y + k = 0$ touche	s the ellipse $5x^2 + 9y = 45$	5, then <i>k</i> is equal to	
	a) $+3\sqrt{21}$	b) $3\sqrt{21}$	c) $-3\sqrt{21}$	d) $2\sqrt{21}$
998.	The point of the parabola	$v^2 = 18x$, for which the or	dinate is three times the ab	scissa. is
	a) (6,2)	b) (-2, -6)	c) (3,18)	d) (2, 6)
999.	Tangent at the vertex divi	des the distance between d	lirectrix and latusrectum in	the ratio
	a) 1:1		b) 1:2	
	c) Depends on directrix a	nd focus	d) None of the above	
100	The point $(4, -3)$ with res	spect to the ellipse $4x^2 + 5$	$y^2 = 1$ is	
0.				
	a) Lies on the curve	b) Is inside the curve	c) Is outside the curve	d) Is focus of the curve
100	If $x - y + 1 = 0$ meets the	e circle $x^2 + y^2 + y - 1 = 0$	0 at A and B, then the equat	tion of the circle with <i>AB</i> as
1.	diameter is			
	a) $2(x^2 + y^2) + 3x - y +$	1 = 0	b) $2(x^2 + y^2) + 3x - y + 3x + 3x - y + 3x + $	2 = 0
	c) $2(x^2 + y^2) + 3x - y + 3$	3 = 0	d) $x^2 + y^2 + 3x - y + 1 =$	= 0
100	The equation of circle with	h centre (1, 2) and tangent	x + y - 5 = 0 is	
2.		0		0
	a) $x^2 + y^2 + 2x - 4y + 6$	= 0	b) $x^2 + y^2 - 2x - 4y + 3$	= 0
	c) $x^2 + y^2 - 2x + 4y + 8$	= 0	a) $x^2 + y^2 - 2x - 4y + 8$	= 0

¹⁰⁰ Equation of chord of an ellipse $\frac{x^2}{25} + \frac{y^2}{9} = 1$, whose mid point is (1, 1), is 3. b) 9x + 25y = 34c) 9x - 25y = 34a) 25x + 9y = 36d) None of these 100 The latusrectum of the parabola $y^2 = 4ax$, whose focal chord is *PSQ*, such that *SP* = 3 and *SQ* = 2 is given 4. bv a) $\frac{24}{5}$ c) $\frac{6}{5}$ b) $\frac{12}{5}$ d) $\frac{1}{r}$ 100 Length of normal chord y = x + c to the parabola $y^2 = 8x$ is 5. c) $16\sqrt{2}$ unit b) $12\sqrt{2}$ unit a) $6\sqrt{2}$ unit b) $12\sqrt{2}$ unit c) $16\sqrt{2}$ unit d) None of these 100 If the circle $x^2 + y^2 + 6x - 2y + k = 0$ bisects the circumference of the circle $x^2 + y^2 + 2x - 6y - 15 = 0$, a) $6\sqrt{2}$ unit then *k* is equal to b) -21 d) -23 c) 23 a) 21 100 The equation of the normal at the point (2, 3) on the ellipse $9x^2 + 16y^2 = 180$ is c) 8y + 3x + 7 = 0 d) 3x + 2y + 7 = 0a) 3y = 8x - 10b) 3y - 8x + 7 = 0100 If $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ and $\frac{x^2}{a^2} - \frac{y^2}{b^2} = -1$ are two hyperbola, then a) Their asymptotes are same b) Their eccentricity are same c) Their transverse axes are same d) Asymptotes of Ist are angle bisectors of asymptotes of IInd hyperbola ¹⁰⁰ If the chord joining points $P(\alpha)$ and $Q(\beta)$ on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ subtends a right angle at the vertex 9. A(a, 0), then $\tan \alpha/2 \tan \beta/2 =$ c) $\frac{b^2}{c^2}$ b) $-\frac{a^2}{h^2}$ d) $-\frac{b^2}{a^2}$ a) $\frac{a^2}{h^2}$ 101 Equation of asymptotes of xy = 7x + 5y are 0. a) x = 7, y = 5 b) x = 5, y = 7 c) xy = 35 d) None of these 101 The point diametrically opposite to the point P(1, 0) on the circle $x^2 + y^2 + 2x + 4y - 3 = 0$ is d) None of these 1. b) (3, -4)c) (-3,4) d) (-3, -4)a) (3, 4) 101 The equation of the circle passing through (0,0) and belonging to the system of circles of which (3,1) and 2. (-1,5) are limiting points, is a) $x^2 + y^2 - x + 3y = 0$ b) $x^2 + y^2 - 11x + 3y = 0$ c) $x^2 + y^2 = 1$ d) None of these 101 The angle between the tangent drawn from the point (1, 4) to the parabola $y^2 = 4x$ is 3. a) $\frac{\pi}{\epsilon}$ b) $\frac{\pi}{4}$ c) $\frac{\pi}{2}$ d) $\frac{\pi}{2}$ 101 The equations of the circle which pass through the origin and makes intercepts of lengths 4 and 8 on the *x* and *y*-axes respectively are 4. a) $x^2 + y^2 \pm 4x \pm 8y = 0$ b) $x^2 + y^2 \pm 2x \pm 4y = 0$ c) $x^2 + y^2 \pm 8x \pm 16y = 0$ d) $x^2 + y^2 \pm x \pm y = 0$ 101 The equation of the tangent to the hyperbola $4y^2 = x^2 - 1$ at the point (1,0), is 5. d) x = 4a) x = 1b) y = 1c) *y* = 4 101 The parametric representation of a point on the ellipse whose foci are (-1,0) and (7,0) and eccentricity

6. 1/2 is a) $(3 + 8\cos\theta, 4\sqrt{3}\sin\theta)$ b) $(8\cos\theta, 4\sqrt{3}\sin\theta)$ c) $(3 + 4\sqrt{3}\cos\theta, 8\sin\theta)$ d) None of these 101 If a focal chord of the parabola $y^2 = ax$ is 2x - y - 8 = 0, then the equation of the directrix is 7. a) x + 4 = 0b) x - 4 = 0c) y - 4 = 0d) y + 4 = 0101 The line x + y = 6 is a normal to the parabola $y^2 = 8x$ at the point 8. a) (18, -12) b) (4, 2) c) (2, 4) d) (8,8) 101 The focal chord to $y^2 = 16x$ is tangent to $(x - 6)^2 + y^2 = 2$, then the possible values of the slope of this chord, are 9. b) {-2, 2} c) {-2, 1/2} a) $\{-1, 1\}$ d) $\{2, -1/2\}$ 102 If from the origin a chord is drawn to the circle $x^2 + y^2 - 2x = 0$, then the locus of the mid point of the 0. chord has equation a) $x^2 + y^2 + x + y = 0$ b) $x^2 + y^2 + 2x + y = 0$ c) $x^2 + y^2 - x = 0$ d) $x^2 + y^2 - 2x + y = 0$ 102 Four distinct points (2*k*, 3*k*), (1,0), (0,1) and (0,0) lie on a circle for 1. a) All integral values of k b) 0 < k < 1c) *k* < 0 d) For two values of k 102 The equation of parabola with focus (0, 0) and directrix x + y = 4, is 2. b) $x^2 + y^2 - 2xy + 8x + 8y = 0$ a) $x^2 + y^2 - 2xy + 8x + 8y - 16 = 0$ c) $x^2 + y^2 + 8x + 8y - 16 = 0$ d) $x^2 - y^2 + 8x + 8y - 16 = 0$ 102 One of the points on the parabola $y^2 = 12x$ with focal distance 12, is 3. b) $(9, 6\sqrt{3})$ a) (3,6) c) $(7, 2\sqrt{21})$ d) $(8, 4\sqrt{6})$ 102 The equation of family of circles with centre at (h, k) touching the *x*-axis is given by b) $x^2 + y^2 - 2hx - 2ky + h^2 = 0$ d) $x^2 + x^2 = 2x^2$ 4. a) $x^2 + y^2 - 2hx + h^2 = 0$ c) $x^2 + y^2 - 2hx - 2ky - h^2 = 0$ 102 The parabola with directrix x + 2y - 1 = 0 and focus (1,0) is 5. a) $4x^2 - 4xy + y^2 - 8x + 4y + 4 = 0$ b) $4x^2 + 4xy + y^2 - 8x + 4y + 4 = 0$ c) $4x^2 + 5xy + y^2 + 8x - 4y + 4 = 0$ d) $4x^2 - 4xy + y^2 - 8x - 4y + 4 = 0$ 102 The square of the length of the tangent from (3, -4) to the circle $x^2 + y^2 - 4x - 6y + 3 = 0$, is 6. a) 20 b) 30 c) 40 d) 50 102 Let *P*, *Q*, *R* be three points on parabola $y^2 = 4x$ and normal at *P* and *R* meet at *Q*, then the locus of the midpoint of the chord *PR* is a parabola whose vertex is at b) (0, -2)c) (-2,0) d) None of these a) (2,0) 102 The equations to the directrices of the ellipse $4(x - 3)^2 + 9(y + 2)^2 = 144$ are 8. a) $5x - 15 + 18\sqrt{5} = 0$ b) $5x + 15 \pm 2\sqrt{5} = 0$ c) $15x + 5 + 2\sqrt{5} = 0$ d) $15x - 5 + 18\sqrt{5} = 0$

¹⁰² Let *P* be a variable point on the ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1$ with foci at *S* and *S'*. If *A* be the area of triangle *PSS'*,

9. then the maximum value of A is a) 24 sq. units b) 12 sq. units c) 36 sq. units d) None of these 103 The focal distance of a point on the parabola $y^2 + 16x$ whose ordinate is twice the abscissa, is 0. a) 6 b) 8 d) 12 c) 10 103 If θ is a parameter, then $x = a(\sin \theta + \cos \theta), y = b(\sin \theta - \cos \theta)$ represents 1. a) An ellipse b) A circle c) A pair of straight lines d) A hyperbola 103 The circles $x^2 + y^2 + x + y = 0$ and $x^2 + y^2 + x - y = 0$ intersect at an angle 2. a) $\frac{\pi}{6}$ b) $\frac{\pi}{4}$ c) $\frac{\pi}{3}$ d) $\frac{\pi}{2}$ 103 In the two circles $(x + 7)^2 + (y - 3)^2 = 36$ and $(x - 5)^2 + (y + 2)^2 = 49$ touch each other externally, then a) $\frac{\pi}{6}$ 3. the point of contact is a) $\left(\frac{-19}{13}, \frac{19}{13}\right)$ b) $\left(\frac{-19}{13}, \frac{9}{13}\right)$ c) $\left(\frac{17}{13}, \frac{9}{13}\right)$ d) $\left(\frac{-17}{12}, \frac{9}{12}\right)$ 103 If y_1, y_2 are the ordinates of two points *P* and *Q* on the parabola and y_3 is the ordinate of the point of intersection of tangents at *P* and *Q*, then a) y_1, y_2, y_3 are in AP b) y_1, y_3, y_2 are in AP c) y_1, y_2, y_3 are in GP d) y_1, y_3, y_2 are in GP 103 One of the diameter of the circle $x^2 + y^2 - 2x + 4y - 4 = 0$ is 5. a) x - y - 3 = 0b) x + y - 3 = 0 c) -x + y - 3 = 0d) x + y + 3 = 0103 If 5x - 12y + 10 = 0 and 12y - 5x + 16 = 0 are two tangents to a circle, then the radius of the circle is 6. a) 1 b) 2 c) 4 d) 6 103 The image of the centre of the circle $x^2 + y^2 = a^2$ with respect to the mirror x + y = 1 is 7. b) $(\sqrt{2}, \sqrt{2})$ c) $(\sqrt{2}, 2\sqrt{2})$ a) $\left(\frac{1}{\sqrt{2}}, \sqrt{2}\right)$ d) None of these 103 The eccentricity of the ellipse $25x^2 + 16y^2 - 150x - 175 = 0$ is 8. b) $\frac{2}{2}$ a) _ d) $\frac{3}{5}$ c) $\frac{4}{r}$ 103 If the vertex of the parabola $y = x^2 - 16x + k$ lies on *x*-axis, then the value of *k* is 9. b) 8 d) -64 a) 16 c) 64 104 The latusractum of the hyperbola $9x^2 - 16y^2 + 72x - 32 - 16 = 0$ is 0. a) $\frac{9}{2}$ b) $-\frac{9}{2}$ c) $\frac{32}{2}$ d) $-\frac{32}{2}$ 104 Equation of hyperbola passing through origin and whose asymptotes are 3x + 4y = 5 and 4x + 3y = 5 is 1. a) $x^2 - v^2 = 1$ b) $12x^2 + 12y^2 + 35xy - 15x - 15y = 0$ d) $12x^2 + 12y^2 + 25xy - 25x - 25y = 0$ c) $12x^2 + 12y^2 + 25xy - 35x - 35y = 0$ 104 If $g^2 + f^2 = c$, then the equations $x^2 + y^2 + 2gx + 2fy + c = 0$ will represent b) A circle of radius *f* a) A circle of radius g d) A circle of radius 0 c) A circle of diameter \sqrt{c}

104 The equation of parabola whose focus is (5,3) and directrix is 3x - 4y + 1 = 0, is 3. b) $(4x - 3y)^2 - 256x - 142y + 849 = 0$ d) $(3x - 4y)^2 - 256x - 142y + 849 = 0$ a) $(4x + 3y)^2 - 256x - 142y + 849 = 0$ c) $(3x + 4y)^2 - 142x - 256y + 849 = 0$ 104 If the radical axis of the circles $x^{2} + y^{2} + 2gx + 2fy + c = 0$ and $2x^{2} + 2y^{2} + 3x + 8y + 2c = 0$, touches the circle $x^{2} + y^{2} + 2x + 2y + 1 = 0$, then a) $g = \frac{3}{4}$ and $f \neq 2$ b) $g \neq \frac{3}{4}$ and f = 2 c) $g = \frac{3}{4}$ or f = 2d) None of these ¹⁰⁴ If the normal at point *P* on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ meets the axes in *R* and *S* respectively, then *PR* : *RS* is 5. equal to b) $a^2: b^2$ c) $b^2: a^2$ a) a:bd) b:a104 The mid point of the chord 4x - 3y = 5 of the hyperbola $2x^2 - 3y^2 = 12$ is 6. b) (2, 1) c) $\left(\frac{5}{4}, 0\right)$ d) $\left(\frac{11}{4}, 2\right)$ a) $(0, -\frac{5}{3})$ 104 The circle on focal radii of a parabola as diameter touches the 7. b) Directrix c) Tangent at the vertex d) None of these a) Axis 104 A set of points is such that each point is three times as far away from the *y*-axis as it is from the point (4,0). Then, the locus of the points is a) Hyperbola b) Parabola c) Ellipse d) Circle 104 The number of common tangents to the two circles $x^2 + y^2 - 8x + 2y = 0$ and $x^2 + y^2 - 2x - 16y + y^2 - 2x - 16y + 100$ 25 = 0 is a) 1 b) 2 c) 3 d) 4 105 If transverse and conjugate axes of hyperbola are equal then it's eccentricity is 0. c) $\frac{1}{\sqrt{2}}$ d) 2 b) $\sqrt{2}$ a) $\sqrt{3}$ 105 Distance between foci is 8 and distance between directrices is 6 of hyperbola, then length of latusrectum is 1. d) None of these c) $\left|\frac{3}{4}\right|$ b) $\frac{4}{\sqrt{3}}$ a) $4\sqrt{3}$ 105 The eccentricity of the hyperbola $5x^2 - 4y^2 + 20x + 8y = 4$ is 2. c) 2 d) 3 b) $\frac{3}{2}$ a) $\sqrt{2}$ 105 A line is drawn through the point P(3,11) to cut the circle $x^2 + y^2 = 9$ at *A* and *B*. Then, *PA*. *PB* is equal to 3. a) 9 b) 121 c) 205 d) 139 105 Locus of the point of intersection of straight lines $\frac{x}{a} - \frac{y}{b} = m$ and $\frac{x}{a} + \frac{y}{b} = \frac{1}{m}$ is 4. c) A hyperbola a) An ellipse b) A circle d) A parabola 105 Consider the set of hyperbola $xy = k, k \in R$. Let e_1 be the eccentricity when k = 4 and e_2 be the eccentricity when k = 9, then $e_1 - e_2$ is equal to 5. a) –1 c) 2 d) -3b) 0 ¹⁰⁵ The product of the perpendicular from two foci on any tangent to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$, is 6. a) a^2 b) *b*² c) $-a^{2}$ d) $-b^2$ 105 The equation of the tangents to the circle $x^2 + y^2 = 13$ at the points whose abscissa is 2, are

7. a) 2x + 3y = 13, 2x - 3y = 13b) 3x + 2y = 13, 2x - 3y = 13c) 2x + 3y = 13, 3x - 2y = 13d) None of the above 105 The equation of the tangent to the circle $x^2 + y^2 = 4$, which are parallel to x + 2y + 3 = 0, are 8. b) $x + 2y = \pm 2\sqrt{3}$ c) $x + 2y = \pm 2\sqrt{5}$ d) $x - 2y = \pm 2\sqrt{5}$ a) x - 2y = 2105 The equations of the tangents to the circle $x^2 + y^2 - 6x + 4y - 12 = 0$ which are parallel to the line 4x + 4y - 12 = 09. 3v + 5 = 0, are a) 4x + 3y + 11 = 0 and 4x + 3y + 8 = 0c) 4x + 3y + 19 = 0 and 4x + 3y - 31 = 0106 The tangent at (1, 7) to the curve $x^2 = y - 6$ touches the circle $x^2 + y^2 + 16x + 12y + c = 0$ at d) 4x + 3y - 10 = 0 and 4x + 3y + 12 = 00. d) (−6, −7) a) (6,7) b) (-6,7) c) (6, -7)106 The equation of the tangent to the circle $x^2 + y^2 + 4x - 4y + 4 = 0$ which makes equal intercepts on the positive coordinate axes, is 1. b) $x + y = 2\sqrt{2}$ c) x + y = 4a) x + y = 2d) x + y = 8106 From the point *P*(16, 7) tangents *PQ* and *PR* are drawn to the circle $x^2 + y^2 - 2x - 4y - 20 = 0$. If *C* be the centre of the circle, then area of quadrilateral *PQCR* is b) 15 sq units c) 50 sq units a) 450 sq units d) 75 sq units 106 Any point on the hyperbola $\frac{(x+1)^2}{16} - \frac{(y-2)^2}{4} = 1$ is of the form 3. b) $(4 \sec \theta - 1, 2 \tan \theta + 2)$ a) $(4 \sec \theta, 2 \tan \theta)$ c) $(4 \sec \theta - 1, 2 \tan \theta - 2)$ d) $(4 \sec \theta - 4, 2 \tan \theta - 2)$ 106 The centre of the circ le $x = 2 + 3\cos\theta$, $y = 3\sin\theta - 1$ is 4. b) (2, −1) c) (−2, 1) d) (1, -2)a) (3, 3) 106 The asymptotes of the hyperbola xy = hx + ky are 5. a) x = k, y = hb) x = h, y = k c) x = h, y = hd) x = k, y = k106 If the equation $\lambda x^2 + (2\lambda - 3)y^2 - 4x - 1 = 0$ represents a circle, then its radius is 6. a) $\frac{\sqrt{11}}{3}$ b) $\frac{\sqrt{13}}{3}$ c) $\frac{\sqrt{7}}{3}$ d) $\frac{1}{2}$ 106 If $\frac{x^2}{f(4a)} + \frac{y^2}{f(a^2-5)}$ represents an ellipse with major axis as *y*-axis and *f* is a decreasing function, then 7. b) $a \in (5, \infty)$ c) $a \in (1, 4)$ d) $a \in (-1,5)$ a) $a \in (-\infty, 1)$ 106 If the two circles $(x - 1)^2 + (y - 3)^2 = r^2$ and $x^2 + y^2 - 8x + 2y + 8 = 0$ intersect in two distinct points, 8. then d) r > 2a) 2 < *r* < 8 b) *r* < 2 c) r = 2106 The angle between the tangents drawn at the points (5, 12) and (12, -5) to the circle $x^2 + y^2 = 169$ is 9. c) 30° b) 60° d) 90° a) 45° 107 If the point $(\lambda, \lambda + 1)$ lies in the interior of the region bounded by $y = \sqrt{25 - x^2}$ and *x*-axis, then λ lies in 0. the interval b) $(-\infty, -1) \cup (3, \infty)$ a) (-4,3) c) (-1,3) d) None of these 107 The equation of the common tangent to the curves $y^2 = 8x$ and xy = -1 is 1. a) 3y = 9x + 2b) y = 2x + 1c) 2y = y + 8d) v = x + 2107 If $(a \cos \theta_i, a \sin \theta_i), i = 1, 2, 3$ represents the vertices of an equilibrium triangle inscribed in a circle, then 2.

a) $\cos \theta_1 + \cos \theta_2 + \cos \theta_3 = 0$ b) $\sec \theta_1 + \sec \theta_2 + \sec \theta_3 = 0$ c) $\tan \theta_1 + \tan \theta_2 + \tan \theta_3 = 0$ d) $\cot \theta_1 + \cot \theta_2 + \cot \theta_3 = 0$ 107 The circle $x^2 + y^2 - 8x + 4y + 4 = 0$ touches 3. a) *x*-axis b) *y*-axis d) Neither x-axis nor y-axis c) Both axis 107 The number of maximum normals which can be drawn from a point to ellipse is 4. b) 2 a) 4 c) 1 d) 3 107 The equation of the parabola with vertex at the origin and directrix y = 2 is 5. b) $y^2 = -8x$ a) $y^2 = 8x$ c) $v^2 = \sqrt{8}x$ d) $x^2 = -8y$ 107 The equation to the chord of the circle $x^2 + y^2 = 9$ whose middle point is (1, -2) is 6. a) x - 2y = 9b) x - 2y - 4 = 0c) x - 2y - 5 = 0d) x - 2y + 5 = 0107 The equation of the circle radius $2\sqrt{2}$ whose centre lies on the line x - y = 0 and which touches the line x + y = 4, and whose centre is coordinate satisfy x + y > 4, is 7. a) $x^2 + y^2 - 8x - 8y + 24 = 0$ b) $x^2 + y^2 = 8$ c) $x^2 + y^2 - 8x + 8y - 24 = 0$ d) None of these 107 The greatest distance of the point *P*(10, 7) from the circle $x^2 + y^2 - 4x - 2y - 20 = 0$ is 8. a) 10 b) 15 c) 5 107 The two circles $x^2 + y^2 - 2x - 2y - 7 = 0$ and $3(x^2 + y^2) - 8x + 29y = 0$ d) None of these 9. a) Touch externally b) Touch internally c) Cut each other orthogonally d) Do not cut each other 108 The equation of the circle described on the common chord of the circles $x^2 + y^2 + 2x = 0$ and $x^2 + y^2 + 2x = 0$ 2 y = 0 as diameter is 0. b) $x^2 + y^2 - x - y = 0$ c) $x^2 + y^2 - x + y = 0$ d) $x^2 + y^2 + x + y = 0$ a) $x^2 + y^2 + x - y = 0$ 108 The product of perpendiculars drawn from any point of a hyperbola to its asymptotes is 1. b) $\frac{a^2 + b^2}{a^2 b^2}$ c) $\frac{ab}{\sqrt{a} + \sqrt{b}}$ d) $\frac{ab}{a^2 + b^2}$ a) $\frac{a^2b^2}{a^2 + b^2}$ 108 Number of points from where perpendicular tangents to the curve $\frac{x^2}{16} - \frac{y^2}{25} = 1$ can be drawn, is 2. d) None of these b) 2 a) 1 c) 0 ¹⁰⁸ Suppose *S* and *S'* are foci of the ellipse $\frac{x^2}{25} + \frac{y^2}{6} = 1$. If *P* is variable point on the ellipse and if Δ is area of the 3. triangle PSS', then the maximum value of Δ is d) 20 c) 16 b) 12 108 For the ellipse $3x^2 + 4y^2 + 6x - 8y - 5 = 0$ the eccentricity is 4. b) 1/2 a) 1/3 d) 1/5 ¹⁰⁸ The locus of the poles of normal chords of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, is 5. a) $\frac{x^2}{a^4} + \frac{y^2}{b^4} = a^2 + b^2$
b)
$$\frac{x^2}{x^2} + \frac{y^2}{b^2} = a^2 - b^2$$

c) $\frac{a^6}{x^2} + \frac{b^6}{y^2} = (a^2 - b^2)^2$
d) $\frac{a^2}{x^2} + \frac{b^4}{y^2} = (a^2 - b^2)^2$
108 The product of the lengths of perpendicular drawn from any point on the hyperbola $x^2 - 2y^2 - 2 = 0$ to
6. its asymptotes, is
a) $1/2$ b) $2/3$ c) $3/2$ d) 2
108 If e_1 and e_2 are the eccentricities of a hyperbola $3x^2 - 3y^2 = 25$ and its conjugate, then
7.
a) $e_1^2 + e_2^2 = 2$ b) $e_1^2 + e_2^2 = 4$ c) $e_1 + e_2 = 4$ d) $e_1 + e_2 = \sqrt{2}$
108 The straight line $x + y = k$ touches the parabola $y = x - x^2$, if $k = 8$.
a) 0 b) -1 c) 1 d) None of these
108 Abyerbola has the asymptotes $x + 2y = 3$ and $x - y = 0$ and passes through (2, 1). Its centre is
9.
a) (1, 2) b) (2, 2) c) (1, 1) d) (2, 1)
109 The angular between the tangent drawn from the origin to the circle
10. $(x - 7)^2 + (y + 1)^2 = 25$ is
a) $\frac{\pi}{3}$ b) $\frac{\pi}{6}$ c) $\frac{\pi}{2}$ d) $\frac{\pi}{8}$
109 The length of the latusrectum of the hyperbola $xy - 3x - 3y + 7 = 0$ is
1.
a) 2 b) 4 c) $2\sqrt{2}$ d) None of these
109 The circle $x^2 + y^2 = 4$ cuts the circle $x^2 + y^2 - 2x - 4 = 0$ at the points A and B . If the circle $x^2 + y^2 - 2x - 4 = 0$ at the points A and B . If the circle $x^2 + y^2 - 2x - 4 = 0$ at the points A and B . If the circle $x^2 + y^2 - 2x - 4 = 0$ at the points A and B . If the circle $x^2 + y^2 - 2x - 4 = 0$ at the points A and B . If the circle $x^2 + y^2 = 180$
109 The equation of the ellipse whose distance between foci is equal to 8 and distance between the directrix is
3. 18, is
3. The area of ΔABC is maximum when it is isosceles
b) The area of ΔABC is maximum when it is isosceles
b) The area of the circle centred at (1, 2) and passing through (4, 6), is
5.
a) 5. a) 5. na quints
b) 10 ns quints
c) 25. ma quints
d) None of these
109 If $(3, -2)$ is the centre of a circle and $4x + 3y + 19 = 0$ is a tangent to the circle, then the equation of the
circle is
a) $x^2 + y^2 - 6x + 4y -$

11.CONIC SECTION

						: ANS	W	ER K	EY						
1)	d	2)	а	3)	а	4)	b	189)	b	190)	d	191)	d	192)	d
5)	С	6)	d	7)	а	8)	С	, 193)	а	194)	d	195)	а	196)	d
9)	С	10)	С	11)	b	12)	b	197)	b	198)	с	199)	b	200)	b
13)	b	14)	b	15)	С	16)	а	201)	С	202)	С	203)	а	204)	b
17)	а	18)	d	19)	а	20)	b	205)	а	206)	b	207)	b	208)	С
21)	С	22)	d	23)	d	24)	b	209)	d	210)	С	211)	b	212)	а
25)	С	26)	а	27)	С	28)	С	213)	а	214)	d	215)	с	216)	b
29)	С	30)	d	31)	а	32)	d	217)	С	218)	d	219)	а	220)	С
33)	b	34)	b	35)	а	36)	а	221)	d	222)	а	223)	b	224)	С
37)	а	38)	а	39)	b	40)	С	225)	а	226)	а	227)	а	228)	b
41)	d	42)	b	43)	b	44)	b	229)	а	230)	b	231)	а	232)	С
45)	d	46)	d	47)	d	48)	С	233)	b	234)	а	235)	d	236)	d
49)	а	50)	d	51)	а	52)	С	237)	b	238)	С	239)	b	240)	а
53)	С	54)	С	55)	b	56)	b	241)	а	242)	С	243)	d	244)	С
57)	С	58)	d	59)	b	60)	b	245)	d	246)	d	247)	а	248)	d
61)	b	62)	С	63)	b	64)	b	249)	b	250)	а	251)	а	252)	С
65)	а	66)	d	67)	d	68)	С	253)	b	254)	а	255)	С	256)	а
69)	а	70)	С	71)	а	72)	а	257)	b	258)	С	259)	а	260)	b
73)	b	74)	С	75)	а	76)	С	261)	b	262)	С	263)	b	264)	а
77)	С	78)	С	79)	а	80)	а	265)	а	266)	d	267)	С	268)	С
81)	а	82)	С	83)	b	84)	а	269)	d	270)	а	271)	а	272)	b
85)	d	86)	С	87)	d	88)	а	273)	С	274)	b	275)	d	276)	а
89)	b	90)	С	91)	а	92)	а	277)	а	278)	С	279)	d	280)	b
93)	С	94)	b	95)	d	96)	С	281)	b	282)	b	283)	С	284)	d
97)	а	98)	b	99)	С	100)	d	285)	b	286)	b	287)	d	288)	b
101)	С	102)	d	103)	С	104)	b	289)	С	290)	а	291)	b	292)	а
105)	С	106)	d	107)	С	108)	С	293)	b	294)	а	295)	b	296)	а
109)	С	110)	d	111)	С	112)	С	297)	b	298)	С	299)	С	300)	а
113)	d	114)	b	115)	b	116)	а	301)	b	302)	а	303)	а	304)	а
117)	b	118)	а	119)	b	120)	а	305)	С	306)	а	307)	b	308)	b
121)	d	122)	а	123)	b	124)	а	309)	С	310)	а	311)	а	312)	С
125)	b	126)	С	127)	b	128)	d	313)	а	314)	d	315)	С	316)	d
129)	а	130)	а	131)	а	132)	а	317)	С	318)	С	319)	а	320)	d
133)	d	134)	а	135)	С	136)	b	321)	b	322)	d	323)	d	324)	b
137)	b	138)	d	139)	С	140)	а	325)	а	326)	d	327)	С	328)	b
141)	d	142)	а	143)	С	144)	d	329)	а	330)	b	331)	С	332)	С
145)	d	146)	а	147)	b	148)	d	333)	а	334)	С	335)	b	336)	b
149)	b	150)	а	151)	С	152)	С	337)	С	338)	b	339)	С	340)	d
153)	b	154)	С	155)	С	156)	а	341)	а	342)	d	343)	d	344)	а
157)	b	158)	b	159)	С	160)	С	345)	а	346)	С	347)	b	348)	а
161)	b	162)	С	163)	а	164)	а	349)	а	350)	а	351)	d	352)	С
165)	b	166)	d	167)	d	168)	а	353)	С	354)	а	355)	С	356)	а
169)	d	170)	b	171)	а	172)	С	357)	b	358)	а	359)	С	360)	d
173)	а	174)	b	175)	а	176)	С	361)	b	362)	С	363)	d	364)	d
177)	С	178)	b	179)	b	180)	а	365)	b	366)	b	367)	а	368)	а
181)	b	182)	d	183)	d	184)	а	369)	d	370)	b	371)	а	372)	d
185)	а	186)	а	187)	d	188)	С	373)	а	374)	а	375)	b	376)	b

							1							
377)	d	378)	а	379)	С	380) a	581)	b	582)	b	583)	b	584)	а
381)	С	382)	а	383)	а	384) a	585)	b	586)	b	587)	b	588)	b
385)	а	386)	b	387)	b	388) c	589)	С	590)	d	591)	а	592)	а
389)	а	390)	d	391)	а	392) d	593)	а	594)	С	595)	b	596)	d
393)	d	394)	С	395)	С	396) d	597)	b	598)	С	599)	С	600)	а
397)	d	398)	b	399)	а	400) b	601)	С	602)	b	603)	d	604)	а
401)	b	402)	d	403)	а	404) b	605)	b	606)	d	607)	b	608)	а
405)	С	406)	С	407)	b	408) b	609)	d	610)	d	611)	d	612)	d
409)	а	410)	С	411)	а	412) d	613)	d	614)	С	615)	b	616)	С
413)	а	414)	а	415)	а	416) a	617)	b	618)	d	619)	С	620)	а
417)	b	418)	b	419)	b	420) c	621)	С	622)	d	623)	а	624)	С
421)	d	422)	b	423)	b	424) d	625)	С	626)	С	627)	а	628)	b
425)	С	426)	b	427)	а	428) b	629)	b	630)	а	631)	b	632)	d
429)	а	430)	а	431)	а	432) a	633)	С	634)	С	635)	b	636)	b
433)	а	434)	С	435)	d	436) b	637)	С	638)	b	639)	b	640)	d
437)	d	438)	с	439)	b	440) b	641)	b	642)	d	643)	b	644)	а
441)	а	442)	С	443)	d	444) a	645)	а	646)	b	647)	С	648)	b
445)	b	446)	a	447)	a	448) c	649)	d	650)	d	651)	b	652)	a
449)	b	450)	a	451)	c	452) a	653)	d	654)	h	655)	d	656)	h
453)	h	454)	a	455)	c	456) d	657)	c	658)	h	659)	d	660)	a
457)	2	458)	c	459)	d	460) h	661)	a	662)	c	663)	d	664)	h
461)	a	462)	c	463)	h	464) c	665)	u h	666)	с h	667)	h	668)	d
465)	u h	466)	c	467)	h	468) d	669)	C	670)	h	671)	h	672)	u a
469) 460)	C C	400)	c	471)	d	400) u 472) h	673)	с 2	674)	h	675)	C	676)	а 2
472)	c	474)	с 2	475)	u	472) 0	677)	a	679)	2	670)	c	620)	a
473)	L A	474J 470)	a	473)	a h	470) C	601)	a	60705	a h	602)	L D	694)	c
4//J /01)	d C	470J 402)	L a	4/9J 402)	U d	400) C	001) 605)	a	696)	U C	605J	d	604J	C
401J 405)	ι h	404J 404)	d d	403J 407)	u d	404) U 400) h	005J	a	600J	l n	601)	C	000J 602)	L d
405)	U d	400)	ս հ	407J	u	400J U	(02)	L	(04)	d	(071)	C	(042)	u h
489)	a	490J	J	491J	a L	492) D	093)	C	094J	a	095J	C L	090J 700)	D
493)	C L	494J	a	495J	D	496) a	697J	C	698J 702)	C J	699J 702)	D	/00J 704)	a
497)	D	498J	C	499J	C	500) C	/01)	a	702J	a	/03]	C	/04J	a
501)	a	502)	a	503J	a	504) d	705)	а	706)	C	707)	a	708)	C
505)	C	506)	C	507)	a	508) d	709)	C	710)	d	711)	С	712)	d
509)	d	510)	b	511)	b	512) a	713)	b	714)	а	715)	С	716)	d
513)	a	514)	a	515)	d	516) a	717)	а	718)	С	719)	a	720)	b
517)	b	518)	b	519)	b	520) b	721)	С	722)	d	723)	d	724)	a
521)	С	522)	а	523)	С	524) d	725)	b	726)	b	727)	b	728)	d
525)	b	526)	b	527)	а	528) c	729)	С	730)	b	731)	b	732)	b
529)	С	530)	С	531)	b	532) c	733)	а	734)	а	735)	b	736)	а
533)	С	534)	С	535)	С	536) d	737)	d	738)	b	739)	С	740)	С
537)	а	538)	а	539)	d	540) b	741)	а	742)	d	743)	а	744)	С
541)	С	542)	b	543)	d	544) a	745)	b	746)	b	747)	b	748)	d
545)	а	546)	b	547)	d	548) b	749)	b	750)	а	751)	d	752)	b
549)	С	550)	b	551)	а	552) b	753)	b	754)	а	755)	b	756)	d
553)	С	554)	b	555)	b	556) d	757)	b	758)	а	759)	С	760)	b
557)	b	558)	а	559)	а	560) b	761)	b	762)	С	763)	С	764)	С
561)	а	562)	d	563)	b	564) a	765)	b	766)	С	767)	d	768)	С
565)	а	566)	а	567)	С	568) c	769)	а	770)	а	771)	С	772)	С
569)	b	570)	d	571)	b	572) a	773)	b	774)	С	775)	С	776)	а
573)	b	574)	d	575)	С	576) b	777)	b	778)	d	779)	d	780)	а
577)	а	578)	b	579)	b	580) a	781)	С	782)	С	783)	а	784)	b

785)	С	786)	b	787)	d	788) d	945)	d	946)	С	947)	а	948) a
789)	d	790)	а	791)	а	792) b	949)	d	950)	d	951)	a	952) b
793)	с	794)	С	795)	С	796) d	953)	а	954)	С	955)	a	956) b
797)	d	798)	а	799)	С	800) b	957)	b	958)	а	959)	С	960) c
801)	d	802)	а	803)	С	804) b	961)	b	962)	b	963)	С	964) a
805)	b	806)	b	807)	b	808) c	965)	b	966)	а	967)	d	968) c
809)	a	810)	a	811)	b	812) a	969)	а	970)	d	971)	С	972) b
813)	b	814)	d	815)	b	816) a	973)	b	974)	d	975)	С	976) a
817)	b	818)	С	819)	а	820) d	977)	b	978)	b	979)	a	980) a
821)	b	822)	b	823)	С	824) a	981)	С	982)	а	983)	a	984) d
825)	d	826)	b	827)	С	828) c	985)	С	986)	b	987)	С	988) c
829)	С	830)	b	831)	d	832) c	989)	С	990)	b	991)	a	992) a
833)	С	834)	С	835)	а	836) d	993)	С	994)	а	995)	b	996) a
837)	С	838)	d	839)	а	840) a	997)	а	998)	d	999)	a	1000) c
841)	С	842)	С	843)	d	844) c	1001)	а	1002)	b	1003)	b	1004) a
845)	а	846)	С	847)	а	848) d	1005)	С	1006)	d	1007)	С	1008) a
849)	а	850)	С	851)	b	852) c	1009)	d	1010)	b	1011)	d	1012) b
853)	d	854)	С	855)	С	856) d	1013)	С	1014)	а	1015)	a	1016) a
857)	С	858)	С	859)	С	860) c	1017)	а	1018)	С	1019)	a	1020) c
861)	b	862)	а	863)	b	864) c	1021)	d	1022)	а	1023)	b	1024) b
865)	b	866)	С	867)	С	868) b	1025)	а	1026)	С	1027)	С	1028) a
869)	а	870)	d	871)	b	872) b	1029)	b	1030)	b	1031)	a	1032) d
873)	а	874)	b	875)	а	876) c	1033)	b	1034)	b	1035)	a	1036) a
877)	b	878)	b	879)	b	880) a	1037)	d	1038)	d	1039)	С	1040) a
881)	а	882)	b	883)	b	884) b	1041)	С	1042)	d	1043)	a	1044) c
885)	а	886)	С	887)	С	888) a	1045)	С	1046)	b	1047)	С	1048) c
889)	а	890)	С	891)	b	892) d	1049)	b	1050)	b	1051)	b	1052) b
893)	С	894)	С	895)	d	896) b	1053)	b	1054)	С	1055)	b	1056) b
897)	С	898)	С	899)	С	900) c	1057)	а	1058)	С	1059)	С	1060) d
901)	С	902)	b	903)	d	904) b	1061)	b	1062)	d	1063)	b	1064) b
905)	d	906)	b	907)	b	908) d	1065)	а	1066)	С	1067)	d	1068) a
909)	b	910)	b	911)	С	912) c	1069)	d	1070)	С	1071)	d	1072) a
913)	С	914)	а	915)	d	916) a	1073)	b	1074)	а	1075)	d	1076) c
917)	b	918)	d	919)	d	920) a	1077)	а	1078)	b	1079)	С	1080) d
921)	d	922)	d	923)	b	924) b	1081)	а	1082)	С	1083)	b	1084) b
925)	b	926)	b	927)	d	928) a	1085)	С	1086)	b	1087)	b	1088) c
929)	С	930)	С	931)	а	932) c	1089)	С	1090)	С	1091)	b	1092) d
933)	b	934)	b	935)	b	936) b	1093)	d	1094)	а	1095)	С	1096) c
937)	а	938)	b	939)	b	940) a							
941)	С	942)	b	943)	d	944) c							
							I						

: HINTS AND SOLUTIONS :

5

6

7

8

1 (d)

The circle $x^2 + y^2 + 2 gx + 2 fy + c = 0$ cuts an intercept of length $2\sqrt{f^2 - c}$ on *y*-axis. For the circle $x^2 + y^2 + 4x - 7y + 12 = 0$, we have g = 2, f = -7/2 and c = 12

$$\therefore y - \text{intercept} = 2\sqrt{f^2 - c} = 2\sqrt{\frac{49}{4} - 12} = 1$$

2 (a)

: Eccentricity of ellipse= $\sqrt{1 - \frac{b^2}{a^2}} = \sqrt{1 - \frac{3}{4}} = \frac{1}{2}$

∵ Eccentricity of hyperbola= 2

$$\Rightarrow \sqrt{1 + \frac{b^2}{64}} \Rightarrow 2$$
$$\Rightarrow 4 = 1 + \frac{b^2}{64} \Rightarrow 192 = b^2$$

3 (a)

Let the equation of the required ellipse be $\frac{x^2}{16} + \frac{y^2}{b^2} = 1$

But the ellipse passes through the point (2,1)

$$\Rightarrow \frac{1}{4} + \frac{1}{b^2} = 1$$
$$\Rightarrow \frac{1}{b^2} = \frac{3}{4} \Rightarrow b^2 = \frac{4}{3}$$

Hence, equation is

 $\frac{x^2}{16} + \frac{3y^2}{4} = 1$ $\Rightarrow x^2 + 12y^2 = 16$

4 **(b)**

We have, $x = 2t + 1, y = t^2 + 2$ $\Rightarrow y = \left(\frac{x-1}{2}\right)^2 + 2$ $\Rightarrow (x-1)^2 = 4(y-2)$ The equation of the directrix of this parabola is y - 2 = -1 or, y = 1 [Using y = -a] (c) Given equation can be rewritten as $y^2 = \frac{4k}{4} \left(x - \frac{8}{k} \right)$ The standard equation of parabola is $Y^2 = 4AX$, where $A = \frac{k}{4}$: Equation of directrix is $X + \frac{k}{4} = 0$ $\Rightarrow x - \frac{8}{k} + \frac{k}{4} = 0$ But the given equation of directrix is x - 1 = 0Since, both equations are same $\therefore \frac{8}{k} - \frac{k}{4} = 1$ $\Rightarrow 32 - k^2 = 4k \Rightarrow k = -8,4$ (d) The equation of the ellipse is $3(x+1)^2 + 4(y-1)^2 = 12 \text{ or, } \frac{(x+1)^2}{2^2} + \frac{(y-1)^2}{(\sqrt{3})^2} = 1$ The equations of its major and minor axes are y - y = 01 = 0 and x + 1 = 0 respectively (a) Let mid point of the chord be (h, k), then equation of the chords be $\frac{hx^2}{a^2} + \frac{ky^2}{b^2} - 1 = \frac{h^2}{a^2} + \frac{k^2}{b^2} - 1$ $\Rightarrow y = -\frac{b^2}{a^2} \cdot \frac{h}{k} x + \left(\frac{h^2}{a^2} + \frac{k^2}{b^2}\right) \frac{b^2}{k} \quad ...(i)$ Since, line (i) is touching the circle $x^2 + y^2 = c^2$ $\therefore \left(\frac{h^2}{a^2} + \frac{k^2}{b^2}\right) \frac{b^4}{k^2} = c^2 \left(1 + \frac{b^4 h^2}{a^4 k^2}\right)$ Hence, locus is $(b^2x^2 + a^2y^2)^2 = c^2(b^4x^2 + a^2y^2)^2$ $a^4 v^2$) (c) Given curve is $y^2 = 4x$...(i) Let the equation of line be y = mx + cSince, $\frac{dy}{dx} = m = 1$ and above line is passing through the point (0, 1) $1 = 1(0) + c \implies c = 1$

y = x + 1 ...(ii)

On solving Eqs. (i) and (ii), we get

x = 1 and y = 2

This shows that line touch the curve at one point. So, length of intercept is zero.

9 **(c)**

We have, AB = 2Since $\triangle ABC$ is equilateral. Therefore,

Thus, the coordinates of *C* are $(0, \sqrt{3})$ Let the circumcircle of $\triangle ABC$ be $x^2 + y^2 + 2gx + 2fy + c = 0$ It passes through (1,0), (-1,0) and $(0, \sqrt{3})$ $\therefore 1 + 2g + c = 0, 1 - 2g + c = 0$ and $3 + 2\sqrt{3}f + c = 0$ Solving these three equations, we get g = 0, c = -1 and $f = -\frac{1}{\sqrt{3}}$

Thus, the equation of the circumcircle is

$$x^2 + y^2 - \frac{2}{\sqrt{3}}y - 1 = 0$$

10 **(c)**

The coordinates of *P* be (h, k)Let the equation of a tangent from P(h, k) to the circle

$$x^{2} + y^{2} = a^{2} \text{ be } y = mx + a\sqrt{1 + m^{2}}$$

Since $P(h, k)$ lies on $y = mx + a\sqrt{1 + m^{2}}$
 $\therefore k = mh + a\sqrt{1 + m^{2}}$
 $\Rightarrow (k = mh)^{2} = a(1 + m^{2})$
 $\Rightarrow m^{2}(h^{2} - a^{2}) - 2 mkh + k^{2} - a^{2} = 0$
This is a quadric in *m*. Let the two roots be m_{1} and m_{2} . Then,
 $2 hk$

 $m_1 + m_2 = \frac{1}{h^2 - a^2}$ But, $\tan \alpha = m_1$, $\tan \beta = m_2$ and it is given that $\cot \alpha + \cot \beta = 0$

$$\Rightarrow \frac{1}{m_1} + \frac{1}{m_2} = 0 \Rightarrow m_1 + m_2 = 0 \Rightarrow \frac{2 hk}{k^2 - a^2} = 0$$

$$\Rightarrow hk = 0$$
Hence, the locus of (h, k) is $xy = 0$
11 **(b)**
We have,
 $x = 2 + t^2, y = 2 t + 1$
 $\Rightarrow x - 2 = t^2$ and $y - 1 = 2t$
 $\Rightarrow (y - 1)^2 = 4t^2$ and $x - 2 = t^2$
 $\Rightarrow (y - 1)^2 = 4(x - 2)$,
Which is a parabola with vertex at (2,1)
12 **(b)**
Given equation of ellipse is
 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a < b)$
It is a vertical ellipse with foci $(0, \pm be)$
Equation of any tangent line to the above ellipse is
 $y = mx + \sqrt{a^2m^2 + b^2}$
 \therefore Required product
 $= \left| \frac{-be + \sqrt{a^2m^2 + b^2}}{\sqrt{m^2 + 1}} \right| \left| \frac{be + \sqrt{a^2m^2 + b^2}}{\sqrt{m^2 + 1}} \right|$
 $= \left| \frac{a^2m^2 + b^2 - b^2e^2}{m^2 + 1} \right|$
 $= \left| \frac{a^2m^2 + b^2(1 - e^2)}{m^2 + 1} \right|$
 $= \left| \frac{a^2m^2 + a^2}{m^2 + 1} \right|$ [$\because a^2 = b^2(1 - e^2)$]
 $= a^2$
13 **(b)**
Since $\angle ADB = \angle ADC = 90^\circ$, circle on AB and AC

Since, $\angle ADB = \angle ADC = 90^\circ$, circle on *AB* and *AC* as dismeters pass through *D* and therefore the altitude *AD* is the common chord. Similarly, the other two common chords are the other two altitudes and hence they concur at the

orthocenter

14 **(b)**

Given equation of ellipse can be rewritten as

$$\frac{(x-2)^2}{25} + \frac{(y+3)^2}{16} = 1 \Rightarrow \frac{X^2}{25} + \frac{Y^2}{16} = 1$$

Where X = x - 2, Y = y + 3

Here, a > b

$$\therefore e = \sqrt{1 - \frac{b^2}{a^2}} = \sqrt{1 - \frac{16}{25}} = \frac{3}{5}$$

	$\therefore \text{ Focus } (\pm ae, 0) = (\pm 3, 0)$
	$\Rightarrow x-2 = \pm 3, y+3 = 0$
	$\Rightarrow x = 5, = -1, y = -3$
	: Foci are $(-1, -3)$ and $(-1, -3)$
	Distance between (2,-3) and (-1,-3)
	$= \sqrt{(2+1)^2 + (-3+3)^2} = 3$
	and distance between $(2, -3)$ and $(5, -3)$
	$=\sqrt{(2-5)^2 + (-3+3)^2} = 3$
	Hence, sum of the distance of point $(2, -3)$ from the foci
	= 3 + 3 = 6
15	(c) We have, OC = Length of the perpendicular from (0,0) on the line $3x + 4y - 15 = 0$ $\Rightarrow OC = \frac{15}{\sqrt{3^2 + 4^2}} = 3$ $\therefore AB = 2AC = 2\sqrt{OA^2 - OC^2} = 2\sqrt{36 - 9} = 6\sqrt{3}$
16	(a) We know that the normal at $(at_1^2, 2at_1)$ meets the
	parabola at $(at_2^2, 2 at_2)$, if $t_2 = -t_1 - \frac{2}{t_1}$
	Here, the normal is drawn at (x_1, x_1) : $at^2 = 2 at \Rightarrow t = 2 \Rightarrow t = -2$
	The coordinates of the end points of the normal chord are $P(4a, 4a)$ and $Q(9a, -6a)$
17	(a) The equation of the family of circles touching 2x - y - 1 = 0 at (3,5) is $(x - 3)^2 + (y - 5)^2 + \lambda(2x - y - 1) = 0$ (i)
	It has its tentre $\left(-\lambda + 3, \frac{\lambda}{2}\right)$ on the line $x + y = 5$ $\lambda + 2 + \frac{\lambda + 10}{2} = 5 \rightarrow 1 = 6$
	$\cdots -\lambda + 3 + \frac{1}{2} = 5 \Rightarrow \lambda = 6$

Putting $\lambda = 6$ in (i), we get $x^2 + y^2 + 6x - 16y + 28 = 0$ As the equation of the required circle 18 (d) Given that equation of parabola is $y^2 = 9x$ On comparing with $y^2 = 4ax$, we get $a = \frac{9}{4}$ Now, equation of tangent to the parabola $y^2 = 9x$ is $y = mx + \frac{9/4}{m} \dots (i)$ If this tangent passing through the point (4, 10), then $10 = 4m + \frac{9}{4m}$ $\Rightarrow 16m^2 - 40m + 9 = 0$ $\Rightarrow (4m-9)(4m-1) = 0$ $\Rightarrow m = \frac{1}{4}, \frac{9}{4}$ On putting the values of *m* in Eq. (i) 4y = x + 36 and 4y = 9x + 4 $\Rightarrow x - 4y + 36 = 0$ and 9x - 4y + 4 = 019 **(a)** Required length = *y*-intercept = $2\sqrt{\frac{9}{4} - 2} = 1$ 20 **(b)** Given equation is xy = aOn differentiating, we get $x\frac{dy}{dx} + y = 0$ $\Rightarrow \frac{dy}{dx} = -\frac{y}{x}$ $\Rightarrow \left(\frac{dy}{dx}\right)_{(a,1)} = -\frac{1}{a}$ 22 **(d)** Equation of auxiliary circle is $x^2 + y^2 = 9$... (i) B(0,1)Equation of AM is $\frac{x}{3} + \frac{y}{1} = 1$... (ii) On solving Eqs. (i) and (ii), we get $M\left(-\frac{12}{5},\frac{9}{5}\right)$

Now, area of $\triangle AOM = \frac{1}{2} \cdot OA \times MN$

$$=\frac{27}{10}$$
 sq unit

23 **(d)**

Equation of tangent to $y^2 = 4x$ is $y = mx + \frac{1}{m}$

Since, tangent passes through (-1, -6)

$$\therefore -6 = -m + \frac{1}{m} \Rightarrow m^2 - 6m - 1 = 0$$

Here, $m_1 m_2 = -1$

 \therefore Angle between them is 90°

24 **(b)**

The equation of the ellipse is $4(x^{2} + 4x + 4) + 9(y^{2} - 2y + 1) = 36$ $\Rightarrow \frac{(x + 2)^{2}}{3^{2}} + \frac{(y - 1)^{2}}{2^{2}} = 1$ So, the coordinates of the centre are (-2,1)

25 (c)

The two circles are $x^{2} + y^{2} - 2 ax + c^{2} = 0$ and $x^{2} + y^{2} - 2 by + c^{2} = 0$

Centres and radii of these two circles are : Centres : $C_1(a, 0)$ $C_2(0, b)$ Radii : $r_1 = \sqrt{a^2 - c^2}$ $r_2 = \sqrt{b^2 - c^2}$ Since the two circles touch each other externally. $\therefore C_1 C_2 = r_1 + r_2$ $\Rightarrow \sqrt{a^2 + b^2} = \sqrt{a^2 - c^2} + \sqrt{b^2 - c^2}$ $\Rightarrow a^2 + b^2 = a^2 - c^2 + b^2 - c^2$ $+ 2\sqrt{a^2 - c^2}, \sqrt{b^2 - c^2}$

$$\Rightarrow c^{4} = a^{2}b^{2} - c^{2}(a^{2} + b^{2}) + c^{4}$$
$$\Rightarrow a^{2}b^{2} = c^{2}(a^{2} + b^{2}) \Rightarrow \frac{1}{a^{2}} + \frac{1}{b^{2}} = \frac{1}{c^{2}}$$

26 (a)

It is given that
$$2ae = 8$$
 and $\frac{2a}{e} = 25$
 $\Rightarrow 2ae \times \frac{2a}{e} = 8 \times 25 \Rightarrow 4a^2 = 200 \Rightarrow a = 5\sqrt{2}$
 $\Rightarrow 2a = 10\sqrt{2}$

27 (c)

Equation of chord joining points $P(a \cos \alpha, b \sin \alpha) \text{ and } Q(a \cos \beta, b \sin \beta) \text{ is } \frac{x}{a} \cos\left(\frac{\alpha+\beta}{2}\right) + \frac{y}{b} \sin\left(\frac{\alpha+\beta}{2}\right) = \cos\left(\frac{\alpha-\beta}{2}\right)$ Now, $\beta = \alpha + 90^{\circ}$ $\frac{x}{a} \cos\left(\frac{2\alpha+90^{\circ}}{2}\right) + \frac{y}{b} \sin\left(\frac{2\alpha+90^{\circ}}{2}\right) = \frac{1}{\sqrt{2}}$ now, compare it with lx + my = -n, we get $\frac{\cos\left(\frac{2\alpha+90^{\circ}}{2}\right)}{al} = \frac{\sin\left(\frac{2\alpha+90^{\circ}}{2}\right)}{bm} = -\frac{1}{\sqrt{2}n}$ $\therefore \cos^2 \theta + \sin^2 \theta = 1$ $\Rightarrow a^2 l^2 + b^2 m^2 = 2n^2$

28 **(c)**

Let LSL'' be a latusrectum and C be the centre of the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$. It is given that CLL'' is equilateral triangle. Therefore, $\angle LCS = 30^\circ$ In $\triangle CSL$, we have

29 **(c)**

Given equation can be rewritten as

$$\Rightarrow 4(x^{2} - 6x + 9) + 16(y^{2} - 2y + 1) - 36 - 6$$

= 1
$$\Rightarrow \frac{(x - 3)^{2}}{\frac{53}{4}} + \frac{(y - 1)^{2}}{\frac{53}{16}} = 1$$

Here, $a^{2} = \frac{53}{4}$ and $b^{2} = \frac{53}{16}$
 \therefore Eccentricity of ellipse is $e = \frac{\sqrt{a^{2} - b^{2}}}{a^{2}}$
 $\Rightarrow e = \frac{\sqrt{\frac{53}{4} - \frac{53}{16}}}{\frac{53}{4}}$
 $\Rightarrow e = \frac{\sqrt{3}}{2}$

30 (d) The equation of hyperbola is $4x^2 - 9y^2 = 36$

$$\Rightarrow \frac{x^2}{9} - \frac{y^2}{4} = 1 \dots (i)$$

The equation of the chords of contact of tangents from (x_1, y_1) and (x_2, y_2) to the given hyperbola are

$$\frac{x x_1}{9} - \frac{y y_1}{4} = 1 \quad ...(ii)$$

and $\frac{x x_2}{9} - \frac{y y_2}{4} = 1 \quad ...(iii)$
Lines (ii) and (iii) are at ri

Lines (ii) and (iii) are at right angles.

$$\therefore \frac{9}{4} \cdot \frac{x_1}{y_1} \times \frac{4}{9} \cdot \frac{x_2}{y_2} = -1$$

$$\Rightarrow \frac{x_1 x_2}{y_1 y_2} = -\left(\frac{9}{4}\right)^2 = -\frac{81}{16}$$

31 **(a)**

The circle having centre at the radical centre of three given circles and radius equal to the length of the tangent from it to any one of three circles cuts all the three circles orthogonally. The given circles are

 $x^{2} + y^{2} - 3x - 6y + 14 = 0 ...(i)$ $x^{2} + y^{2} - x - 4y + 8 = 0 ...(ii)$ $x^{2} + y^{2} + 2c - 6y + 9 = 0 ...(iii)$ The radical axes of (i), (ii) and (ii), (iii) are respectively x + y - 3 = 0 ...(iv)

and, 3x - 2y + 1 = 0 ...(v) Solving (iv) and (v), we get x = 1, y = 2Thus, the coordinates of the radical centre are (1,2)

The length of the tangent from (1,2) to circle (i) is given by

$$r = \sqrt{1 + 4 - 3 - 12 + 14} = 2$$

Hence, the required circle is
 $(x - 1)^2 + (y - 2)^2 = 2^2$
 $\Rightarrow x^2 + y^2 - 2x - 4y + 1 = 0$

32 **(d)**

It is clear from the figure that the two curves do not intersect each other

33 **(b)**

Directrix of $y^2 = 4(x + 1)$ is x = -2. Any point on x = -2 is (-2, k)Now mirror image (x, y) of (-2, k) in the line x + 2y = 3 is given by $\frac{x+2}{1} = \frac{y-k}{2} = -2\left(\frac{-2+2k-3}{5}\right)$ $\Rightarrow x = \frac{10-4k}{5} - 2$

$$\Rightarrow x = -\frac{4k}{5} \qquad \dots(i)$$

And $y = \frac{20-8k}{5} + k$
$$\Rightarrow y = \frac{20-3k}{5} \qquad \dots(ii)$$

From Eqs. (i) and (ii), we get
 $y = 4 + \frac{3}{5} \left(\frac{5x}{4}\right)$
$$\Rightarrow y = 4 + \frac{3x}{4}$$

$$\Rightarrow 4y = 16 + 3x \text{ is the equation of the mirror image of the directrix}$$

34 **(b)**

Putting
$$x = at^2$$
 in $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$,
We get, $t^4 + \frac{y^2}{b^2} = 1$
i.e., $y^2 = b^2(1 - t^4) = b^2(1 + t^2)(1 - t^2)$
y is real, if $1 - t^2 \ge 0$
i.e., $|t| \le 1$

36 **(a)**

The combined equation of the lines joining the origin to the points of intersection of $x \cos \alpha + y \sin \alpha = p$ and $x^2 + y^2 - a^2 = 0$ is a homogeneous equation of second degree given by

$$x^{2} + y^{2} - a^{2} \left(\frac{x \cos \alpha + y \sin \alpha}{p}\right)^{2} = 0$$

$$\Rightarrow x^{2} (p^{2} - a^{2} \cos^{2} \alpha) + y^{2} (p^{2} - a^{2} \sin^{2} \alpha)$$

$$- (\alpha^{2} \sin 2\alpha) xy = 0$$

The lines given by this equation are at right angle Coeff. of x^2 + Coeff. of $y^2 = 0$ $\Rightarrow p^2 - a^2 \cos^2 \alpha + p^2 - a^2 \sin^2 \alpha = 0 \Rightarrow 2 p^2$ $= a^2$

37 **(a)**

Using $S_1 - S_2 = 0$, we obtain 3x - 9 = 0 or, x = 3 as the equation of the required common tangent (a)

38 **(a)**

Since the difference of the radii of two circles is equal to the distance between their centres. Therefore, two circles touch each other internally and so only one common tangent can be drawn to given two circles

39 **(b)**

Clearly, the incidence ray passes through the point P(-2, -1) and the image of any point Q on BP is y = -1

Let us find the equation of *PB*. Let its equation be y + 1 = m(x + 2)It touches the circle $x^2 + y^2 = 1$ $\therefore \left|\frac{2m - 1}{\sqrt{m^2 + 1}}\right| = 1 \Rightarrow m = 0, \frac{4}{3}$ So, the equation of *PB* is $y + 1 = \frac{4}{3}(x + 2)$ or, 4x - 3y + 5 = 0Let Q(-5,5) be a point on *PB*. The image of Q in y = -1 is R(-5,3). So, the equation of *RP* is $y - 3 = \frac{3 + 1}{-5 + 2}(x + 5)$ or, 4x + 3y + 11 = 0

40 **(c)**

The equation of the tangent to the given circle at the origin is y = x. Image of the point A(2,5) in y = x is (5,2). Thus, the coordinates of *B* are (5,2)

42 **(b)**

 $PQ ext{ Is the double ordinate. Let } MP = MQ = l.$ Given that Δ*OPQ* is an equilateral, then *OP* = OQ = PQ $\Rightarrow (OP)^2 = (OQ)^2 = (PQ)^2$ $\Rightarrow \frac{a^2}{b^2}(b^2 + l^2) + l^2 = \frac{a^2}{b^2}(b^2 + l^2) + l^2 = 4l^2$

$$\Rightarrow \frac{1}{b^{2}}(b^{2} + l^{2}) + 3l^{2}$$

$$y \quad (\frac{a}{b}\sqrt{b^{2} + l^{2}}, l)$$

$$y \quad (\frac{a}{b}\sqrt{b^{2} + l^{2}}, l)$$

$$y \quad (\frac{a}{b}\sqrt{b^{2} + l^{2}}, l)$$

$$\Rightarrow a^{2} = l^{2}\left(3 - \frac{a^{2}}{b^{2}}\right)$$

$$\Rightarrow l^{2} = \frac{a^{2}b^{2}}{(3b^{2} - a^{2})} > 0$$

$$\therefore 3b^{2} - a^{2} > 0$$

$$\Rightarrow 3b^{2} > a^{2}$$

$$\Rightarrow 3a^{2}(e^{2} - 1) > a^{2}$$

$$\Rightarrow e^2 > 4/3$$
$$\therefore e > \frac{2}{\sqrt{3}}$$

43 **(b)**

Clearly, $x^2 - y^2 = c^2$ and $xy = c^2$ are rectangular hyperbolas each of eccentricity $\sqrt{2}$ $\therefore e = e_1 = \sqrt{2} \Rightarrow e^2 + e_1^2 = 4$

44 **(b)**

Since, both the given hyperbolas are rectangular hyperbolas

$$\therefore e = \sqrt{2}, e_1 = \sqrt{2}$$

Hence, $e^2 + e_1^2 = 2 + 2 = 4$

45 **(d)**

Since, $\frac{x^2}{a^2} - \frac{y^2}{b^2} =$ 1, passes through (3, 0) and (3 $\sqrt{2}$, 2)

$$\therefore \frac{9}{a^2} = 1$$

$$\Rightarrow \quad a^2 = 9$$
and $\frac{9 \times 2}{9} - \frac{4}{b^2} = 1 \Rightarrow b^2 = 4$

$$\therefore e = \sqrt{1 + \frac{b^2}{a^2}} = \sqrt{1 + \frac{4}{9}} = \frac{\sqrt{13}}{3}$$

46 **(d)**

47

Let the equation of circles are $S_1 \equiv x^2 + y^2 + 2x - 3y + 6 = 0$...(i) $S_2 \equiv x^2 + y^2 + x - 8y - 13 = 0$...(ii) \therefore Equation of common chord is $S_1 - S_2 = 0$ $\Rightarrow (x^2 + y^2 + 2x - 3y + 6)$ $- (x^2 + y^2 + x - 8y - 13) = 0$ $\Rightarrow x + 5y + 19 = 0$...(iii) In the given option only the point (1, -4) satisfied the Eq. (iii) (d)

Let P(h, k) be the given point. Then, the chord of contact of tangents drawn from P to the ellipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text{ is}$$

$$\frac{hx}{a^2} + \frac{ky}{b^2} = 1 \qquad \dots (i)$$

This subtends a right angle at the centre C(0,0) of the ellipse. The combined equation of the pair of straight lines joining C to the points of intersection of (i) and the ellipse is

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = \left(\frac{hx}{a^2} + \frac{ky}{b^2}\right)^2$$

This equation represents a pair of perpendicular straight lines.

$$\therefore \frac{1}{a^2} - \frac{h^2}{a^4} + \frac{1}{b^2} - \frac{k^2}{b^4} = 0 \Rightarrow \frac{h^2}{a^4} + \frac{k^2}{b^4} = \frac{1}{a^2} + \frac{1}{b^2}$$

Hence, the locus of (h, k) is $\frac{x^2}{a^4} + \frac{y^2}{b^4} = \frac{1}{a^2} + \frac{1}{b^2}$

48 (c)

The locus is a hyperbola.

49 (a)

Given equation of ellipse can be rewritten as

$$\frac{(x-1)^2}{1/8} + \frac{\left(y+\frac{3}{4}\right)^2}{1/16} = 1$$

$$\therefore \text{ Eccentricity} = \sqrt{1-\frac{b^2}{a^2}} = \sqrt{1-\frac{8}{16}} = \frac{1}{\sqrt{2}}$$

51 (a)

The equation of the tangent at (-3,2) to the parabola $y^2 + 4x + 4y = 0$ is 2y + 2(x - 3) + 2(y + 2) = 0 $\Rightarrow 2x + 4y - 2 = 0$ $\Rightarrow x + 2y - 1 = 0$

Since the tangent at one end of the focal chord is parallel to the normal at the other end. Therefore, the slope of the normal at the other end of the focal chord is -1/2

52 **(c)**

length 4 units

Solving the equations of lines in pairs, we obtain that the vertices of the $\triangle ABC$ are $A(0,6), B(-2\sqrt{3}, 0)$ and $C(2\sqrt{3}, 0)$ Clearly, AB = BC = CASo, $\triangle ABC$ is an equilateral triangle. Therefore, centroid of the triangle *ABC* coincides with the circumcentre. Co-ordinates of the circumcentre are O'(0,2) and the radius = O'A = 4. Hence, the equation of the circumcircle is $(x-0)^2 + (y-2)^2 = 4^2$ or, $x^2 + y^2 - 4y = 12$ 53 (c) Given, $r^2 - 4r(\cos \theta + \sin \theta) - 4 = 0$...(i) Put $x = r \cos \theta$, $y = r \sin \theta$, then $r^2 = x^2 + y^2$ ∴ From Eq. (i) $x^2 + y^2 - 4(x + y) - 4 = 0$ $\Rightarrow x^2 + y^2 - 4x - 4y - 4 = 0$ \therefore Centre of circle is (2, 2) 54 (c) Let P(h, k) be the mid-point of a chord AB of

In
$$\triangle OPA$$
, we have
 $OA^2 = OP^2 + AP^2 \Rightarrow 4^2 = h^2 + k^2 + 2^2$
 $\Rightarrow h^2 + k^2 = 12$

Hence, the locus of P(h, k) is $x^2 + y^2 = 12$, which is a circle of radius $2\sqrt{3}$

55 **(b)**

Equation of normal at P (a sec ϕ , b tan ϕ) is a x cos ϕ + by cot ϕ = a^2 + b^2 Then, coordinates of L and M are $\left(\frac{a^2+b^2}{a} \cdot \sec \phi, 0\right)$ and $\left(0, \frac{a^2+b^2}{b} \tan \phi\right)$ respectively. Let mid point of ML is Q (h, k), Then $h = \frac{(a^2+b^2)}{2a} \sec \phi$ $\therefore \sec \phi = \frac{2ah}{(a^2+b^2)}$... (i) and $k = \frac{(a^2+b^2)}{2b} \tan \phi$ $\therefore \tan \phi = \frac{2bk}{(a^2+b^2)}$... (ii) From Eqs.(i) and (ii), we get $\sec^2 \phi - \tan^2 \phi = \frac{4a^2h^2}{(a^2+b^2)^2} - \frac{4b^2k^2}{(a^2+b^2)^2}$ Hence, required locus is $\frac{x^2}{\left(\frac{a^2+b^2}{2a}\right)} - \frac{y^2}{\left(\frac{a^2+b^2}{2b}\right)^2} = 1$ Let eccentricity of this curve is e_1 . $\left(a^2 + b^2\right)^2 - \left(a^2 + b^2\right)^2$

$$\Rightarrow \left(\frac{a^2 + b^2}{2a}\right)^2 = \left(\frac{a^2 + b^2}{2a}\right)^2 (e_1^2 - 1) \Rightarrow a^2 = b^2(e_1^2 - 1) \Rightarrow a^2 = a^2(e^2 - 1)(e_1^2 - 1) \quad [\because b^2 = a^2(e^2 - 1)] \Rightarrow e^2e_1^2 - e^2 - e_1^2 + 1 = 1 \Rightarrow e_1^2(e^2 - 1) = e^2 \Rightarrow e_1 = \frac{e}{\sqrt{e^2 - 1}}$$

56 **(b)**

Let (h, k) be the mid-point of a chord of the hyperbola $x^2 - y^2 = a^2$. Then, the equation of the chord is $hx - ky = h^2 - k^2$ [Using : T = S'] $\Rightarrow y = \frac{h}{k}x + \frac{k^2 - h^2}{k}$

This touches the parabola $y^2 = 4ax$ $\therefore \frac{k^2 - h^2}{k} = \frac{a}{h/k}$ [Using: c = a/m] $\Rightarrow h(k^2 - h^2) = ak^2$ Hence, the locus of (h, k) is $x(y^2 - x^2) = ay^2$ or, $v^2(x-a) = x^3$ 57 (c) $x^2 + y^2 + 6x + 6y - 2 = 0$ Centre (-3, -3), radius = $\sqrt{9 + 9 + 2} = \sqrt{20}$ 5x - 2y + 6 = 0Q(0, 3)Now, $QC = \sqrt{(-3)^2 + 6^2} = \sqrt{45}$ In right ΔCPQ $PQ = \sqrt{45 - 20} = 5$ 58 (d) We have, 2a = 6, 2b = 4 $\therefore e = \sqrt{1 - \frac{b^2}{a^2}} \Rightarrow e = \sqrt{\frac{5}{3}}$ So, distance between foci = $2ae = 6\sqrt{\frac{5}{3}} = 2\sqrt{5}$ and, length of the string = $2a + 2ae = 6 + 2\sqrt{5}$ 59 (b) The equation of a tangent to the given parabola is $y = mx + \frac{9}{4m}$ If it passes through (4,10), then $10 = 4m + \frac{9}{4m}$ $\Rightarrow 16m^2 - 40m + 9 = 0$ $\Rightarrow (4m-1)(4m-9) = 0 \Rightarrow m = \frac{1}{4}, \frac{9}{4}$ 60 (b) We know that the area Δ of the triangle formed by the tangent drawn from (x_1, y_1) to the circle x^2 + $y^2 = a^2$ and their chord of contact is given by $\Delta = \frac{a(x_1^2 + y_1^2 - a^2)^{3/2}}{x_1^2 + y_1^2}$

Here, the point is P(4,3) and the circle is $x^2 + y^2 = 9$ \therefore Required area $= \frac{3(4^2 + 3^2 - 9)^{3/2}}{4^2 + 3^2}$ sq. units $= \frac{192}{25}$ sq. units (b)

Given, y = mx + 2

and
$$\frac{x^2}{9} - \frac{y^2}{4} = 1$$

Condition of tangency, $c = \pm \sqrt{a^2 m^2 - b^2}$

$$2 = \pm \sqrt{9m^2 - 4} \Rightarrow m = \pm \frac{2\sqrt{2}}{3}$$

62 **(c)**

63

64

61

Let any point $P(x_1, y_1)$ outside the circle. Then, equation of tangent to the circle $x^2 + y^2 + 6x + y^2$ 6y = 2 at the point *P* is $xx_1 + yy_13(x + x_1) + 3(y + y_1) - 2 = 0$...(i) The Eq. (i) and the line 5x - 2y + 6 = 0 intersect at a point Q on y-axis ie, x = 0 $\Rightarrow 5(0) - 2y + 6 = 0 \Rightarrow y = 3$ \therefore Coordinates of Q are (0, 3) Point *Q* satisfies Eq. (i) $\therefore 3x_1 + 6y_1 + 7 = 0$...(ii) Distance between *P* and *Q* is given by $PQ^2 = x_1^2 + (y_1 - 3)^2$ $= x_1^2 + y_1^2 - 6y_1 + 9$ $= 11 - 6x_1 - 12y_1 (:: x_1^2 + y_1^2 + 6x_1 + 6y_1 - 2)$ = 0) $= 11 - 2(3x_1 - 6y_1)$ = 11 - 2(-7) = 25 [from Eq. (ii)] $\therefore PQ = 5$ (b) Equation of circle which touches *x*-axis and coordinates of centre are (h, k) is $(x-h)^2 + (y-k)^2 = k^2$ Since, it is passing through (-1, 1), then $(-1-h)^2 + (1-k)^2 = k^2$ $\Rightarrow h^2 + 2h - 2k + 2 = 0$ For real circles, $D \ge 0$, $\Rightarrow \quad (2)^2 - 4(-2k+2) \ge 0 \Rightarrow k \ge \frac{1}{2}$ **(b)** The required equation of circle is $(x^{2} + y^{2} - 6) + \lambda(x^{2} + y^{2} - 6y + 8) = 0$...(i)

It passes through (1, 1)

$$\therefore (1 + 1 - 6) + \lambda(1 + 1 - 6 + 8) = 0$$

$$\Rightarrow -4 + 4\lambda = 0$$

$$\Rightarrow \lambda = 1$$

Page | 84

∴ required equation of circle is

$$x^2 + y^2 - 6 + x^2 + y^2 - 6y + 8 = 0$$

 $\Rightarrow 2x^2 + 2y^2 - 3y + 1$
65 (a)
The equation of a normal to $y^2 = 4x$ is $y = mx - 2m - m^3$.
If it passes through $(11/4, 1/4)$, then
 $\frac{1}{4} = \frac{11}{4}m - 2m - m^3$
 $\Rightarrow 1 = 11m - 8m - 4m^3$
 $\Rightarrow 4m^3 - 3m + 1 = 0 \Rightarrow m = \frac{1}{2}, \frac{-1 \pm \sqrt{3}}{2}$
Hence, three normals can be drawn from
 $(11/4, 1/4)$ to $y^2 = 4x$
66 (d)
Here, $a^2 = \cos^2 \alpha$ and $b^2 = \sin^2 \alpha$
Now, $e = \sqrt{1 + \frac{b^2}{a^2}} \Rightarrow e = \sqrt{1 + \frac{\sin^2 \alpha}{\cos^2 \alpha}}$
 $\Rightarrow e = \sqrt{1 + \tan^2 \alpha} \Rightarrow e = \sec \alpha$
Coordinates of foci are $(\pm ae, 0)ie, (\pm 1, 0)$
Hence, abscissae of foci remain constant when α
varies.
68 (c)
It is a known result
 $t_1t_2 = -1$
69 (a)
Here, $g_1 = -1, f_1 = 11, c_1 = 5$
and $g_2 = 7, f_2 = 3, c_2 = k$
 $\Rightarrow 2(-1.7 + 11.3) = 5 + k \Rightarrow k = 47$
70 (c)
If the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and the straight line $y = ma + c$ intersect in real points, then the quadratic
equation $\frac{x^2}{a^2} + \frac{(mx+c)^2}{b^2} = 1$ must have real roots.
 \therefore Discriminant $\ge 0 \Rightarrow c^2 \le a^2m^2 + b^2$
71 (a)
Let the equation of rectangular hyperbola is $xy = c^2$.
Take any four points on the hyperbola
 $P(ct_1, \frac{c}{t_1}), Q(ct_2, \frac{c}{t_2}), R(ct_3, \frac{c}{t_3})$ and $S(ct_4, \frac{c}{t_4})$
Such that PQ is perpendicular to RS.

Since, *OP* makes angle α with *OX*. Therefore, $\tan \alpha = \frac{\frac{c}{t_1}}{\frac{ct_1}{ct_1}} = \frac{1}{t_1^2}$ Similarly, $\tan \beta = \frac{1}{t_2^2}$, $\tan \gamma = \frac{1}{t_3^2}$ and $\tan \delta = \frac{1}{t_4^2}$ $\therefore \tan \alpha \tan \beta \tan \gamma \tan \delta = \frac{1}{t_1^2 t_2^2 t_3^2 t_4^2} \dots (i)$ Now, PQ is perpendicular to RS. $\therefore \frac{\frac{c}{t_2} - \frac{c}{t_1}}{ct_2 - c_1} \times \frac{\frac{c}{t_4} - \frac{c}{t_3}}{ct_4 - ct_3} = -1$ $\Rightarrow -\frac{1}{t_1 t_2} \times \left(-\frac{1}{t_3 t_4}\right) = -1$ $\Rightarrow \frac{1}{t_1 t_2 t_3 t_4} = -1$ $\Rightarrow t_1 t_2 t_3 t_4 = -1$ From Eq.(i), $\tan \alpha \tan \beta \tan \gamma \tan \delta = 1$ 72 **(a)** Equation of hyperbola is $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ Distance between foci of hyperbola= 2ae and its distance between directrices $=\frac{2a}{e}$ According to the question, $\frac{2ae}{2a/e} = \frac{3}{2}$ $\Rightarrow e^2 = \frac{3}{2}$ Using, $b^2 = a^2(e^2 - 1) \Rightarrow \frac{b^2}{a^2} = \frac{3}{2} - 1$

$$\Rightarrow \frac{a}{b} = \frac{\sqrt{2}}{1}$$

73 **(b)**

Equation of pair of tangents is

$$SS_1 = T^2$$

$$\Rightarrow (x^2 + y^2 - 4)(9 + 4 - 4) = (3x + 2y - 4)^2$$

$$\Rightarrow 5y^2 + 16y - 12xy + 24x - 50 = 0$$

$$\therefore \ m_1 + m_2 = -\frac{2h}{b} = \frac{12}{5}$$

and $m_1 m_2 = 0$

Now,
$$m_1 - m_2 = \sqrt{(m_1 + m_2)^2 - 4m_1m_2}$$

= $\sqrt{\left(\frac{12}{5}\right)^2 - 0} = \frac{12}{5}$

74 (c)

Given equation is $9x^2 + 4y^2 - 6x + 4y + 1 = 0$ $\Rightarrow 9\left(x^2 - \frac{2}{3}x + \frac{1}{3^2}\right) + 4\left(y^2 + y + \frac{1}{4}\right) + 1 - 1 - 1$ = 0 $\Rightarrow \frac{\left(x - \frac{1}{3}\right)^2}{\left(\frac{1}{3}\right)^2} + \frac{\left(y + \frac{1}{2}\right)^2}{\left(\frac{1}{2}\right)^2} = 1 \text{ (here, } a < b)$

Length of major axis $= 2b = 2\left(\frac{1}{2}\right) = 1$ Length of minor axis $= 2a = 2\left(\frac{1}{3}\right) = \frac{2}{3}$

75 **(a)**

Equation of two straight lines are

$$\sqrt{3} x - y = 4\sqrt{3}\alpha$$

and $\sqrt{3} x + y = \frac{4\sqrt{3}}{\alpha}$

Solving above equations, we get

$$3x^2 - y^2 = 48 \Rightarrow \frac{x^2}{16} - \frac{y^2}{48} = 1$$

Which is a hyperbola

Whose eccentricity

$$e = \sqrt{\frac{48 + 16}{16}} = \sqrt{4} = 2$$

76 **(c)**

77

Given equation of circle can be rewritten as k = 0

$$x^{2} + y^{2} - 2x + 4y + \frac{1}{4} = 0$$

$$\therefore \text{ Radius of circle} = \sqrt{1 + 4 - \frac{k}{4}} = \sqrt{5 - \frac{k}{4}}$$

Area of circle = 9π (given)

$$\Rightarrow \pi \left(5 - \frac{k}{4}\right) = 9\pi$$

$$\Rightarrow 5 - 9 = \frac{k}{4} \Rightarrow k = -16$$

(c)

The circle passes through (0,0), (a,0), (0,a) and

(*a*, *a*) Hence, the required equation is $x^2 + y^2 - ax - ay = 0$

78 **(c)**

It is given that the circle $x^2 + y^2 + 2 gx + 2 fy + c = 0$ bisects the circumference of the circle $x^2 + y^2 + 2 g'x + 2 f'y + c' = 0$. Therefore, the common chord of these two circles passes through the centre (-g', -f') of $x^2 + y^2 + 2 g'x + 2 f'y + c' = 0$ The equation of the common chord of the two given circles is 2 x(g - g') + 2 y(f - f') + c - c' = 0This passes through (-g', -f') $\therefore -2 g'(g - g') - 2f'(f - f') + c - c' = 0$

 $\Rightarrow 2g'(g-g') + 2f'(f-f') = c - c'$

79 **(a)**

The slope of the tangent to $y^2 = 4x$ at (16,8) is given by

$$m_1 = \left(\frac{dy}{dx}\right)_{(16,8)} = \left(\frac{4}{2y}\right)_{(16,8)} = \frac{2}{8} = \frac{1}{4}$$

The slope of the tangent to $x^2 = 32 y$ at (16,8) is given by

$$m_{2} = \left(\frac{dy}{dx}\right)_{(16,8)} = \left(\frac{2x}{32}\right)_{(16,8)} = 1$$

$$\therefore \tan \theta = \frac{1 - \frac{1}{4}}{1 + \frac{1}{4}} = \frac{3}{5} \Rightarrow \theta = \tan^{-1}\left(\frac{3}{5}\right)$$

80 **(a)**

81

Let the equation of circle be $x^{2} + y^{2} + 2gx + 2fy + c = 0$...(i) Given equation of circles are $x^2 + y^2 - 2x + 3y - 7 = 0$...(ii) $x^2 + y^2 + 5x - 5y + 9 = 0$...(iii) and $x^2 + y^2 + 7x - 9y + 29 = 0$...(iv) Since, the circle (i) cut all three circles orthogonally, c = -7 ...(v) c = 9 ...(vi) $2g\left(\frac{7}{2}\right) + 2f\left(-\frac{9}{2}\right) = c + 29 \implies 7g - 9f - c = 29$...(vii) On solving Eqs. (v), (vi) and (vii), we get g = -8, f = -9 and c = -4On putting the values of g, f and c in Eq. (i), we get $x^2 + y^2 - 16x - 18y - 4 = 0$ (a) Using $SS' = T^2$, the combined equation of the

Page **86**

tangents drawn from (0,0) to $y^2 = 4 a(x - a)$ is $(y^2 - 4 ax + 4 a^2)(0 - 0 + 4 a^2)$ $= [v \cdot 0 - 2 a(x + 0 - 2a)]^2$ $\Rightarrow (y^2 - 4 ax + 4 a^2)(4a^2) = 4 a^2(x - 2a)^2$ $\Rightarrow y^2 - 4 ax + 4 a^2 = (x - 2a)^2$ $\Rightarrow x^2 - y^2 = 0$ Clearly, Coeff. of x^2 + Coeff. of y^2 = 0. Therefore, the required angle is a right angle <u>ALITER</u> The point (0,0) lies on the directrix x = 0of the parabola $y^2 = 4 a(x - a)$, therefore the tangents are at right angle 82 (c) We know that length of latusrectum of an ellipse= $\frac{2b^2}{a}$ and length of its minor axis = 2bThen, $\frac{2b^2}{a} = b \implies 2b = a$ $\therefore e = \sqrt{1 - \frac{b^2}{a^2}} = \sqrt{1 - \frac{b^2}{4b^2}} = \frac{\sqrt{3}}{2}$ 83 (b) The required point is the radical centre of the given circles 84 (a) Equation $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ represents a parabola, if $h^2 = ab$ 85 (d) Let *e* and *e*' be the eccentricities of the ellipse and hyperbola

$$\therefore e = \sqrt{\frac{a^2 - b^2}{a^2}} = \sqrt{\frac{25 - 16}{25}} = \frac{3}{5}$$

and $e' = \sqrt{\frac{a^2 + b^2}{a^2}} = \sqrt{\frac{25 + 16}{25}} = \frac{\sqrt{41}}{25}$

and $e' = \sqrt{\frac{a^2 + b^2}{a^2}} = \sqrt{\frac{25 + 16}{25}} = \frac{\sqrt{41}}{5}$

- 1. Centre of ellipse is (0, 0) and centre of hyperbola is (0, 0)
- 2. Foci of ellipse are $(\pm ae, 0)$ or $(\pm 3, 0)$ foci of hyperbola are $(\pm ae', 0)$ or $(\pm \sqrt{41}, 0)$
- 3. Directrices of ellipse are $x = \pm \frac{a}{e} \Rightarrow x = \pm \frac{25}{3}$

Directrices of hyperbola are $x = \pm \frac{a}{e}$

$$\Rightarrow x = \pm \frac{25}{\sqrt{41}}$$

4. Vertices of ellipse are $(\pm a, 0)$ or $(\pm 5, 0)$

Vertices of hyperbola are $(\pm a, 0)$ or $(\pm 5, 0)$

From the above discussions, their are common in centre and vertices.

86 **(c)**

Given equation is $\frac{x^2}{16} - \frac{y^2}{25} = 1$

$$\therefore e = \sqrt{1 + \frac{b^2}{a^2}} = \sqrt{1 + \frac{25}{16}} = \frac{\sqrt{41}}{4}$$

87 (d)

Equation of tangent to $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is $y = mx + \sqrt{a^2m^2 + b^2}$ And equation of tangent to $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 2$ is $y = mx + \sqrt{2a^2m^2 + 2b^2}$ For common tangent, $a^2m^2 + b^2 = 2a^2m^2 - 2b^2$ $\Rightarrow a^2m^2 = 3b^2 \Rightarrow m = \pm \frac{\sqrt{3}b}{a}$ \therefore Equation of common tangent is $y = \frac{\sqrt{3}b}{a}x + 2b$.

88 **(a)**

The equation of a tangent to $xy = c^2$ is $\frac{x}{t} + yt = 2c$ (i) If lx + my + n = 0 is a tangent to $xy = c^2$, then it

should be of the form of equation (i).

$$\therefore \frac{l}{1/t} = \frac{m}{t} = \frac{-n}{2c}$$

$$\Rightarrow lt = \frac{m}{t} = -\frac{n}{2c}$$

$$\Rightarrow lt = -\frac{n}{2c} \text{ and } \frac{m}{t} = -\frac{n}{2c}$$

$$\Rightarrow lm = \frac{n^2}{4c^2}$$

$$\Rightarrow lm > 0 \Rightarrow l \text{ and } m \text{ are of the same sign}$$

90 (c)

The equation of the tangent at (4, -2) to $y^2 = x$ is $-2 \ y = \frac{1}{2}(x+4) \Rightarrow x+4 \ y+4 = 0$

Its slope is -1/4. Therefore, the slope of the perpendicular line is 4. Since the tangents at the end points of a focan chord of a parabola are at right angles. Therefore, the slope of the tangent at Q is 4

91 **(a)**

The equation of a normal to $y^2 = 4x$ is

 $y + tx = 2t + t^{3} \qquad \dots(i)$ If it passes through (3,0), then $3t = 2t + t^{3} \Rightarrow t = 0, \pm 1$ Putting the values of *t* in (i), we get y = 0, y + x = 3 and y - x = -3As the equation of the normals

92 (a)

Let $\frac{x}{a}\cos\theta + \frac{y}{b}\sin\theta = 1$ be tangent at $P(a\cos\theta, b\sin\theta)$. Its cuts the coordinates axes at $P(a\sec\theta, 0)$ and $Q(0, b\csc\theta)$ $\therefore CP = a\sec\theta$ and $CQ = b\csc\theta$ $\Rightarrow \frac{a^2}{CP^2} + \frac{b^2}{CQ^2} = 1$

93 (c)

Since, the equation of tangents x - y - 2 = 0 and x - y + 2 = 0 are parallel.

: Distance between them=Diameter of the 2-(-2)

$$\operatorname{circle} = \frac{\frac{2}{\sqrt{1^2 + 1^2}}}{\left(\because \frac{c_2 - c_1}{\sqrt{a^2 + b^2}} \right)}$$
$$= \frac{4}{\sqrt{2}} = 2\sqrt{2}$$

 $\therefore \quad \text{Radius} = \frac{1}{2} (2\sqrt{2}) = \sqrt{2}$

It is clear from the figure that centre lies on the origin.

 \therefore Equation of circle is

$$(x - 0)^{2} + (y - 0)^{2} = (\sqrt{2})^{2}$$

 $\Rightarrow x^{2} + y^{2} = 2$

94 **(b)**

Equation of family of concentric circles to the circle $x^2 + y^2 + 6x + 8y - 5 = 0$ is $x^2 + y^2 + 6x + 8y + \lambda = 0$ which is similar to $x^2 + y^2 + 2gx + 2fy + c = 0$. Since, it is equation of concentric circle to the circle $x^2 + y^2 + 6x + 8y - 5 = 0$. Thus, the point (-3, 2) lies on the circle $x^2 + y^2 + 6x + 8y + c = 0$ $\Rightarrow (-3)^2 + (2)^2 + 6(-3) + 8(2) + c = 0$ $\Rightarrow 9 + 4 - 18 + 16 + c = 0$ $\Rightarrow c = -11$

95 (d) On solving the given equations, we get(0,0), B(0,5/3), C(5/2,0).Let equation of circle be $x^{2} + y^{2} + 2gx + 2fy + c = 0$...(i) Eq. (i) passes through A(0, 0), we get c = 0Similarly, Eq. (i) passes through B(0,5/3) and C(5/2, 0), we get 2f = -5/3 and 2g = -5/2: Required equation of circle is $x^2 + y^2 - \frac{5}{2}x - \frac{5}{3}y = 0$ $\Rightarrow 6x^2 + 6y^2 - 15x - 10y = 0$ 96 (c) We have. OM = OA + AM = 2 + 5/2 = 9/2So, the *x*-coordinate of the centre is 9/2: Radius = $CA = \sqrt{(9/2 - 2)^2 + (k - 0)^2}$ Hence, the equation of the circle is $(x-9/2)^{2} + (y-k)^{2} = \sqrt{(9/2-2)^{2} + k^{2}}$ $\Rightarrow x^{2} + y^{2} - 9x - 2ky + 14 = 0$

98 **(b)**

Let $P(x_1, y_1)$ be a point on $x^2 + y^2 = a^2$. Then, $x_1^2 + y_1^2 = a^2$...(i) Let *QR* be the chord of contact of tangents drawn from $P(x_1, y_1)$ to the circle $x^2 + y^2 = b^2$. Then, the equation *QR* is $xx_1 + yy_1 = b^2$...(ii) This touches the circle $x^2 + y^2 = c^2$ $\therefore \left| \frac{0x_1 + 0y_1 - b^2}{\sqrt{x_1^2 + y_1^2}} \right| = c \Rightarrow b^2 = ac \quad [\text{Usin}: (i)]$ Let *D* be the discriminant of $ax^2 + 2bx + c = 0$. Then. $D = 4(b^2 - ac) = 0$ $[\because b^2 = ac]$ Hence, the roots of the given equal are real and equal 99 (c) The equation of the line joining (3,3) and (-3,3)i.e. axis of the parabola is y - 3 = 0. Since the directrix is a line perpendicular to the axis. Therefore, its equation is $x + \lambda = 0$.

The directrix intersects with the axis at $(-\lambda, 3)$

and the vertex is the mid point of the line segment joining the focus and the point of intersection of the directrix and axis

$$\therefore \frac{-\lambda - 3}{2} = 3 \Rightarrow \lambda = -9$$

So, the equation of the directrix is x - 9 = 0Let P(x, y) be any point on the parabola. Then, by definition, we have

 $(x+3)^2 + (y-3)^2 = (x-9)^2$ $\Rightarrow y^2 - 6y + 24x - 63 = 0$

100 **(d)**

Let the equation of the ellipse be $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ It is given that,

$$2a = 3(2b) \Rightarrow a^2 = 9b^2 = a^2 = 9a^2(1 - e^2)$$
$$\Rightarrow e = \frac{2\sqrt{2}}{3}$$

101 **(c)**

We have, $x^2 + y^2 + ax + (1 - a)y + 5 = 0$ It is given that the radius of this circle is less than or equal to 5 $\therefore \frac{a^2}{4} + \frac{(1 - a)^2}{4} - 5 \le 25$ $\Rightarrow 2a^2 - 2a - 119 \le 0 \Rightarrow -7.2 \le a \le 8.2 \Rightarrow a$ $\in [-7,8]$ But, *a* is an integer $\therefore a$ = -7, -6, -5, -4, -3, -2, -1, 1, 0, 1, 2, 3, 4, 5, 6, 7, 8Hence, these are 16 integral values of *a*

102 **(d)**

Given equation of circles are $x^2 + y^2 - 2x - 4y + 1 = 0$ and $x^2 + y^2 - 12x - 16y + 91 = 0$ whose centre and radius are $C_1(1, 2), r_1 = 2$ and $C_2(6, 8), r_2 = 3$ $\therefore C_1C_2 = \sqrt{(1-6)^2 + (2-8)^2}$ $= \sqrt{25 + 36} = \sqrt{61}$ And $r_1 + r_2 = 2 + 3 = 5$ $\therefore C_1C_2 > r_1 + r_2$ \therefore Number of common tangents =4

103 (c)

We know that the locus of point *P* from which two perpendicular tangents are drawn to the parabola, is the directrix of the parabola.

Hence, the required locus is x = 1

104 **(b)**

Let two coplanar points be (0, 0) and (a, 0)

$$\therefore \quad \frac{\sqrt{x^2 + y^2}}{\sqrt{(x - a)^2 + y^2}} = \lambda \quad [\lambda \neq 1]$$

[where λ is any number]

$$\Rightarrow x^2 + y^2 + \left(\frac{\lambda^2}{\lambda^2 - 1}\right)(a^2 - 2ax) = 0$$

Which is the equation of circle

105 **(c)**

The equation of line C_1C_2 is $\frac{x-1}{3/5} = \frac{y-1}{4/5}$

b, the coordinates of
$$C_1$$
 and C_2 are given by -1 $y-1$

 $\frac{x-1}{3/5} = \frac{y-1}{4/5} = \pm 5 \Rightarrow x = 1 \pm 3, y = 1 \pm 4$ Thus, the second instead of the contrast are

Thus, the coordinates of the centres are (4,5), (-2, -3)

106 **(d)**

The tangent at (1, 7) to the parabola $x^2 = y - 6$ is $x = \frac{1}{2}(y+7) - 6$ $\Rightarrow 2x = y + 7 - 12$ $\Rightarrow y = 2x + 5$ Which is also tangent to the circle $x^{2} + y^{2} + 16x + 12y + c = 0$ $\therefore x^2 + (2x+5)^2 + 16x + 12(2x+5) + c = 0$ Or $5x^2 + 60x + 85 + c = 0$ Must have equal roots Let α and β are the roots of the equation $\Rightarrow \alpha + \beta = -12 \Rightarrow \alpha = -6$ (:: $\alpha = \beta$) $\therefore x = -6 \text{ and } y = 2x + 5 = -7$ \Rightarrow point of contact is (-6, -7)107 (c) Let C(0,0) be the centre and $L(ae, b^2/a)$ and $L'(-ae, b^2/a)$ be the vertices of latusrectum LL'. Then. m_1 = Slope of $CL = \frac{b^2/a - 0}{ae - 0} = \frac{b^2}{a^2e}$ $m_2 = \text{Slope of } CL' = \frac{b^2/a - 0}{-ae - 0} = \frac{-b^2}{a^2e}$ It is given that $\angle LCL' = \pi/2$ $\therefore m_1 m_2 = -1$ $\Rightarrow \frac{b^2}{a^2 a} \times \frac{-b^2}{a^2 a} = -1$

$$a e^{-a} e^{-a} e^{-a}$$

$$\Rightarrow (e^{2} - 1)^{2} = e^{2}$$

$$\Rightarrow e^{2} - 1 = e \Rightarrow e^{2} - e - 1 = 0 \Rightarrow e = \frac{1 + \sqrt{5}}{2}$$
108 (c)

Given, ellipse
$$\frac{x^2}{16} + \frac{y^2}{7} = 1$$

 $\therefore e_1 = \sqrt{1 - \frac{7}{16}} = \frac{3}{4}$
and hyperbola $\frac{x^2}{9} - \frac{y^2}{7} = 1$
 $\therefore e_2 = \sqrt{1 + \frac{7}{9}} = \frac{4}{3}$
Now, $e_1 + e_2 = \frac{3}{4} + \frac{4}{3} = \frac{25}{12}$
 P (c)
The equation of normal to the $P(a \cos \theta, b \sin \theta)$ is
 $ax \sec \theta - by \csc \theta - a^2 = b$
 $\Rightarrow y = (\frac{a}{b} \tan \theta) x - \frac{a^2 - b^2}{b} \sin \theta$
Let $\frac{a}{b} \tan \theta = m$, then $\sin \theta = \frac{1}{\sqrt{3}}$

given ellipse at b^2 θ...(i) bm $a^2 + b^2 m^2$ \therefore From Eq. (i), we get $y = mx - \frac{(a^2 - b^2)m}{\sqrt{a^2 + b^2m^2}}$ $:: \frac{a}{b} \tan \theta \in R \Rightarrow m \in R$ 110 (d) Given, $\frac{x^2}{9} + \frac{y^2}{5} = 1$

Latusrectum of an ellipse be

$$ae = \sqrt{a^2 - b^2} = \sqrt{4} = 2$$

By symmetry the quadrilateral is rhombus

⇒ Equation of tangent at
$$\left(ae, \frac{b^2}{a}\right) = \left(2, \frac{5}{3}\right)$$

 $ie, \frac{2}{9}x + \frac{5}{3}, \frac{y}{5} = 1$ $\Rightarrow \frac{x}{9/2} + \frac{y}{3} = 1$

: Area of quadrilateral ABCD = 4 (area of $\triangle AOB$)

 $=4.\left\{\frac{1}{2},\frac{9}{2},3\right\}$

= 27 sq units

111 (c)

The equation of the tangent at $P(a \sec \theta, b \tan \theta)$ to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ is $\frac{x}{a}\sec\theta - \frac{y}{b}\tan\theta = 1$ This cuts the line $\frac{x}{a} - \frac{y}{b} = 0$ and $\frac{x}{a} + \frac{y}{b} = 0$ at Q and R The coordinates of Q and Rare $Q\left(\frac{a}{\sec\theta - \tan\theta}, \frac{b}{\sec\theta - \tan\theta}\right), R\left(\frac{a}{\sec\theta + \tan\theta}, \frac{a}{\sin\theta}\right)$ $\therefore CQ \cdot CR = \frac{\sqrt{a^2 + b^2}}{(\sec\theta - \tan\theta)} \times \frac{\sqrt{a^2 + b^2}}{(\sec\theta + \tan\theta)}$ $= a^2 + b^2$

112 (c)

We know that *PT* bisects $\angle NPS$ Let $\angle NPT = \angle TPS = \frac{\theta}{2}$. Then,

$$\Rightarrow \tan \theta = \frac{16 - 0}{16 - 4}$$

$$\Rightarrow \tan \theta = \frac{4}{3}$$

$$\Rightarrow \frac{2 \tan \theta/2}{1 - \tan^2 \theta/2} = \frac{4}{3}$$

$$\Rightarrow 3 \tan \frac{\theta}{2} = 2 - 2 \tan^2 \frac{\theta}{2}$$

$$\Rightarrow 2 \tan^2 \frac{\theta}{2} + 3 \tan \frac{\theta}{2} - 2 = 0$$

$$\Rightarrow \left(2 \tan \frac{\theta}{2} - 1\right) \left(\tan \frac{\theta}{2} + 2\right) = 0$$

$$\Rightarrow \tan \frac{\theta}{2} = \frac{1}{2} \qquad \left[\because \frac{\theta}{2} \text{ is acute}\right]$$

$$\Rightarrow \frac{\theta}{2} = \tan^{-1} \left(\frac{1}{2}\right) \Rightarrow \angle TPS = \tan^{-1} \left(\frac{1}{2}\right)$$
113 (d)

The centres and radii of gives circles are $C_1(0,0), C_2(4,0)$ and $r_1 = 2, r_2 = 2$ Now, $C_1 C_2 = \sqrt{(4-0)^2 + 0} = 4$ and $r_1 + r_2 = 2 + 2 = 4$ $\therefore C_1 C_2 = r_1 + r_2$ Hence, three common tangents are possible 114 **(b)**

Given, circle cuts the parabola

$$\therefore x^{2} + \left(\frac{x^{2}}{4a}\right)^{2} + 2gx + 2f\left(\frac{x^{2}}{4a}\right) + c = 0$$

$$\Rightarrow x^{4} + 16a^{2}x^{2} + 8afx^{2} + 32gxa^{2} + 16a^{2}c = 0$$

$$\sum x_{i} = 0 \qquad \dots(i)$$

$$\sum x_{1}x_{2} = 16a^{2} + 8af \qquad \dots(ii)$$
Now,
$$\sum y_{i} = \frac{1}{4a}\sum x_{i}^{2}$$

$$= \frac{1}{4a}[(x_{1} + x_{2} + x_{3} + x_{4})^{2} - 2\sum x_{1}x_{2}]$$

$$= -\frac{1}{2a}(16a^{2} + 8af) = -4(f + 2a)$$

115 **(b)**

Let the coordinates of *A* and *B* be (*a*, 0) and (0, *b*) respectively. then,

 $a^{2} + b^{2} = 9^{2}$...(i) Let P(h, k) be the centroid of $\triangle OAB$. Then, a b

$$h = \frac{a}{3}$$
 and $k = \frac{a}{3} \Rightarrow a - 3h$ and $b = 3k$

Substituting the values of *a* and *b* in (i), we get $9h^2 + 9k^2 = 9^2 \Rightarrow h^2 + k^2 = 9$

Hence, the locus of (h, k) is $x^2 + y^2 = 9$

116 **(a)**

Given focal chord of parabola $y^2 = ax$ is 2x - y - 8 = 0

Since, this chord passes through focus $\left(\frac{a}{4}, 0\right)$

$$\therefore 2 \cdot \frac{a}{4} - 0 - 8 = 0 \Rightarrow a = 16$$

Hence, directrix is $x = -4 \Rightarrow x + 4 = 0$

117 **(b)**

Let one of the points be $P(r \cos \theta, r \sin \theta)$. Then, the other point is $Q(r \cos(\pi/2 + \theta))$, $(r \sin(\pi/2 + \theta))$ i.e. $Q(-r \sin \theta, r \cos \theta)$. The equations of tangents at P and Q are $x \cos \theta + y \sin \theta = r$ and $-x \sin \theta + y \cos \theta = r$ The locus of the point of intersection of these two is obtained by eliminating θ from these two equations. Squaring and adding the two equations, we get $(x \cos \theta + y \sin \theta)^2 + (-x \sin \theta + y \cos \theta)^2$ $= r^2 + r^2$ or, $x^2 + y^2 = 2r^2$, which is the required locus 118 (a) The coordinates of a point dividing PQ internally in the ratio 1 : λ are

 $\left(\frac{1+\lambda}{1+3\lambda}\right)$

$$\overline{\lambda+1}' \overline{\lambda+1}$$

This point is an interior point of the parabola

 $v^2 = 4x$ $\therefore \left(\frac{1+3\,\lambda}{\lambda+1}\right)^2 - 4\left(\frac{1+\lambda}{\lambda+1}\right) < 0$ $\Rightarrow (3 \lambda + 1)^2 - 4(\lambda + 1)^2 < 0$ $\Rightarrow 5 \lambda^2 - 2 \lambda - 3 < 0$ $\Rightarrow (5 \lambda + 3)(\lambda - 1) < 0$ $\Rightarrow \lambda - 1 < 0 \qquad [\because \lambda > 0]$ $\Rightarrow 0 < \lambda < 1 \Rightarrow \lambda \in (0,1)$ 119 **(b)** Given that, y = 2x + c ...(i) And $x^2 + y^2 = 16$...(ii) We know that, if y = mx + c is tangent to the circle $x^{2} + y^{2} = a^{2}$, then $c = \pm a\sqrt{1 + m^{2}}$, here, m =2.a = 4 $\therefore c = \pm 4\sqrt{1+2^2} = \pm 4\sqrt{5}$ 120 (a) Given, $x^2 + y^2 = 6x$...(i) and $x^2 + y^2 + 6x + 2y + 1 = 0$...(ii) From Eq. (i), $x^2 - 6x + y^2 = 0$ $\Rightarrow (x-3)^2 + y^2 = 3^2$: Centre (3, 0), r = 3From Eq. (ii), $x^{2} + 6x + y^{2} + 2y + 1 + 3^{2} = 3^{2}$ \Rightarrow $(x+3)^2 + (y+1)^2 = 3^2$ \therefore Centre (-3, -1), radius=3 Now, distance between centres $=\sqrt{(3+3)^2+1}$ $=\sqrt{37} > r_1 + r_2 = 6$: Circles do not cut each other \Rightarrow 4 tangents (two direct and two transversal) are possible 121 (d) Centre of the given circle is (4, -2). Therefore, the equation of the unit circle concentric with the given circle is $(x - 4)^2 + (y + 2)^2 = 1 \Rightarrow x^2 + y^2 = 1$ $y^2 - 8x + 4y + 19 = 0$ 122 (a) Since, the point (9a, 6a) is bounded in the region formed by the parabola $y^2 = 16x$ and x = 9, then $y^2 - 16x < 0, x - 9 < 0$ $\Rightarrow 36a^2 - 16 \cdot 9a < 0, 9a - 9 < 0$ \Rightarrow 36a(a-4) < 0, a < 1 $0 < a < 4, a < 1 \implies 0 < a < 1$ 123 (b) It is given that the coordinates of the vertices are A'(-6,1) and A(4,1). So, centre of the ellipse is at C(-1,1) and length of major axis is 2a = 10Let *e* be the eccentricity of the ellipse. Then,

coordinates its focus on the right side of centre

ar(ae, 1) or (5e, 1) It is given that 2x - y - 5 = 0 is a focal chord of the ellipse. So, it passes through (5*e*, 1) $\therefore 10e - 1 - 5 = 0 \Rightarrow e = \frac{3}{5}$ So, $b^2 = a^2(1 - e^2) = 25\left(1 - \frac{9}{25}\right) = 16$ Hence, the equation of the ellipse is $\frac{(x+1)^2}{25} + \frac{(y-1)^2}{16} = 1$ 124 (a) Given, $r = \sqrt{3}\sin\theta + \cos\theta$ Put $x = r \cos \theta$, $y = r \sin \theta$ $\therefore \quad r = \sqrt{3}\frac{y}{r} + \frac{x}{r}$ \Rightarrow $r^2 = \sqrt{3}y + x$ $\Rightarrow x^2 + y^2 - \sqrt{3}y - x = 0$ $\therefore \text{Radius} = \sqrt{\left(\frac{\sqrt{3}}{2}\right)^2 + \left(\frac{1}{2}\right)^2} = 1$ 125 (b) We have. $2\left(\frac{b^2}{4}\right) = \frac{9}{2} \Rightarrow b^2 = 9 \Rightarrow 16(e^2 - 1) = 9$ $\Rightarrow 16 e^2 = 25 \Rightarrow e = \frac{5}{4}$

126 **(c)**

Form right ΔOSB

$$\tan 0^{\circ} = \frac{b}{ae}$$

$$\Rightarrow \sqrt{3} = \frac{b}{ae}$$

$$\Rightarrow b = \sqrt{3} ae$$
Also, $b^2 = a^2(1 - e^2)$

$$\Rightarrow 3a^2e^2 = a^2(1 - e^2)$$

$$\Rightarrow 3e^2 = 1 - e^2 \Rightarrow 4e^2$$

$$\Rightarrow e = \frac{1}{2}$$

$$x' \leftarrow e = \frac{1}{2}$$

127 **(b)**

The eccentricity of a hyperbola is never less than or equal to 1. So option (b) is correct

= 1

128 (d)

The equation of the tangent at (α, β) to the

hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ is $\frac{ax}{a^2} - \frac{\beta y}{b^2} = 1$ The ordinates of the points of intersection of this tangent and the auxiliary circle $x^2 + y^2 = a^2$ are the roots of the equation

$$\begin{cases} \frac{a^2}{\alpha} \left(1 + \frac{\beta y}{b^2} \right) \\ \Rightarrow \frac{a^4}{\alpha^2} \left(1 + \frac{\beta^2 y^2}{b^4} + \frac{2 \beta y}{b^2} \right) + y^2 = a^2 \\ \Rightarrow y^2 \left(\frac{\alpha^2}{a^4} + \frac{\beta^2}{b^4} \right) + \frac{2 \beta}{b^2} y - \frac{\alpha^2}{a^2} + 1 = 0 \end{cases}$$

Clearly, y_1 and y_2 are the roots of this equation

$$\therefore y_{1} + y_{2} = -\frac{2\beta/b^{2}}{\frac{\alpha^{2}}{a^{4}} + \frac{\beta^{2}}{b^{4}}} \text{ and, } y_{1}y_{2} = \frac{1 - \frac{\alpha}{a^{2}}}{\frac{\alpha^{2}}{a^{4}} + \frac{\beta^{2}}{b^{4}}}$$
$$\Rightarrow \frac{1}{y_{1}} + \frac{1}{y_{2}} = \frac{-2\beta/b^{2}}{1 - \frac{\alpha^{2}}{a^{2}}}$$
$$= \frac{-2\beta/b^{2}}{-\frac{\beta^{2}}{b^{2}}} \qquad \left[\because \frac{\alpha^{2}}{a^{2}} - \frac{\beta^{2}}{b^{2}} = 1\right]$$
$$\Rightarrow \frac{1}{y_{1}} + \frac{1}{y_{2}} = \frac{2}{\beta}$$

129 (a)

Given hyperbola is a rectangular hyperbola whose eccentricity is $\sqrt{2}$

130 **(a)**

Since, the given line touches the given circle, the length of the perpendicular from the centre (2, 4) of the circle to the line 3x - 4y - k = 0 is equal to the radius $\sqrt{4 + 16 + 5} = 5$ of the circle

$$\therefore \frac{3 \times 2 - 4 \times 4 - k}{\sqrt{9 + 16}} = \pm 5$$

$$\Rightarrow k = 15 \quad (\because k > 0)$$

Now, equation of the tangent at (a, b) to the given
circle is
 $xa + yb - 2(x + a) - 4(y + b) - 5 = 0$

$$\Rightarrow (a - 2)x + (b - 4)y - (2a + 4b + 5) = 0$$

If it represents the given line $3x - 4y - k = 0$
Then, $\frac{a-2}{3} = \frac{b-4}{-4} = \frac{2a+4b+5}{k} = l$ (say)

$$\Rightarrow a = 3l + 2, b = 4 - 4l$$

and $2a + 4b + 5 = kl$

$$\Rightarrow 2(3l + 2) + 4(4 - 4l) + 5 = 15l \quad (\because k = 15)$$

$$\Rightarrow l = 1 \Rightarrow a = 5, b = 0$$

$$\therefore k + a + b = 15 + 5 + 0 = 20$$

131 (a)

Since, the distance between the focus and directrix of the parabola is half of the length of the latusrectum. Therefore length of latusrectum =2

(length of the perpendicular from (3, 3) to 3x - 4y - 2 = 0) = $2 \left| \frac{9 - 12 - 2}{\sqrt{9 + 16}} \right| = 2 \cdot \frac{5}{5} = 2$ 132 (a) Given equation of circle is $x^2 + y^2 - 2x - 6y + 6 = 0 ...(i)$

Its centre is (1, 3) and radius = $\sqrt{1+9-6} = 2$ Equation of any line through (0, 1) is y - 1 = m(x - 0) $\Rightarrow mx - y + 1 = 0$...(ii) If it touches the circle (i), then the length of

perpendicular from centre (1, 3) to the circle is equal to radius 2

$$\therefore \frac{m-3+1}{\sqrt{m^2+1}} = \pm 2$$

$$\Rightarrow (m-2)^2 = 4(m^2+1)$$

$$\therefore m = 0, -\frac{4}{3}$$

On substituting these values of *m* in Eq. (ii), the required tangent are y - 1 = 0 and 4x + 3y - 3 = 0

133 (d)

The centres of given circles are $C_1(-3, -3)$ and $C_2(6, 6)$ respectively and radii are $r_1 = \sqrt{9+9+0} = 3\sqrt{2}$ and $r_2 = \sqrt{36+36+0} = 6\sqrt{2}$ respectively Now, $C_1C_2 = \sqrt{(6+3)^2 + (6+3)^2} = 9\sqrt{2}$ and $r_1 + r_2 = 3\sqrt{2} + 6\sqrt{2} = 9\sqrt{2}$ $\Rightarrow C_1C_2 = r_1 + r_2$ \therefore Both circles touch each other externally 134 (a)

Let $A \equiv (at_1^2, 2at_1), B \equiv (at_2^2, 2at_2)$ Tangents, at A and B will intersect at the point C, whose coordinate is given by $\{at_1t_2, a(t_1 + t_2)\}$. Clearly, ordinates of A, C and B are always in AP

135 **(c)**

The pair of asymptotes and second degree curve differ by a constant.

∴ Pair of asymptotes is

 $2x^2 + 5xy + 2y^2 - 11x - 7y + \lambda = 0$...(i) Hence, Eq. (i) represents a pair of straight lines. $\therefore \Delta = 0$

$$\Rightarrow 2 \times 2 \times \lambda + 2 \times -\frac{7}{2} \times -\frac{11}{2} \times \frac{5}{2} - 2 \times \left(-\frac{7}{2}\right)^2 - 2 \times \left(-\frac{11}{2}\right)^2 - \lambda \times \left(\frac{5}{2}\right)^2 = 0$$
$$\Rightarrow \lambda = 5$$

From Eq.(i), pair of asymptotes is $2x^{2} + 5xy + 2y^{2} - 11x - 7y + 5 = 0$ 136 **(b)** Since, the given circles cut each other orthogonally $\therefore g_1g_2 + a^2 = 0$...(i) If lx + my = 1 is a common tangent of these circles, then $\frac{-lg_1 - 1}{\sqrt{l^2 + m^2}} = \pm \sqrt{g_1^2 + a^2}$ $\Rightarrow (lg_1 + 1)^2 = (l^2 + m^2)(g_1^2 + a^2)$ $\Rightarrow m^2 g_1^2 - 2lg_1 + a^2(l^2 + m^2) - 1 = 0$ Similarly, $m^2g_2^2 - 2lg_2 + a^2(l^2 + m^2) - 1 = 0$ So, that g_1, g_2 are the roots of the equation $m^2g^2 - 2lg + a^2(l^2 + m^2) - 1 = 0$ $\Rightarrow g_1g_2 = \frac{a^2(l^2+m^2)-1}{m^2} = -a^2 \quad \text{[from Eq. (i)]} \\\Rightarrow a^2(l^2+m^2) = 1 - a^2m^2 \quad \dots \text{(ii)}$ Now, $p_1p_2 = \frac{|ma-1|}{\sqrt{l^2+m^2}} \cdot \frac{|-ma-1|}{\sqrt{l^2+m^2}}$ $=\frac{|1-m^2a^2|}{l^2+m^2}=a^2$ [from Eq. (ii)] 137 (b)

If
$$(a \cos \alpha, b \sin \alpha)$$
 and $(a \cos \beta, b \sin \beta)$ are the
end points of chord, then equation of chord is
 $\frac{x}{a}\cos\left(\frac{\alpha+\beta}{2}\right) + \frac{y}{b}\sin\left(\frac{\alpha+\beta}{2}\right) = \cos\left(\frac{\alpha-\beta}{2}\right)$
If it is a focal chord, it passes through $(ae, 0)$, so
 $e\cos\left(\frac{\alpha+\beta}{2}\right) = \cos\left(\frac{\alpha-\beta}{2}\right)$
 $\Rightarrow e = \frac{\cos\left(\frac{\alpha-\beta}{2}\right)}{\cos\left(\frac{\alpha+\beta}{2}\right)}$

138 **(d)**

Let the equation of circle be $x^{2} + y^{2} + 2gx + 2fgy = 0$ (passing through origin)

Radius =
$$\sqrt{g^2 + f^2}$$

Now, equation of tangents at O(0, 0) is x(0) + y(0) + g(x) + f(y) = 0 $\Rightarrow gx + fy = 0$ Distance from $A(2g, 0) = \frac{2g^2}{\sqrt{g^2 + f^2}} = m$ and distance from $B(0, 2f) = \frac{2f^2}{\sqrt{g^2 + f^2}} = n$ $\Rightarrow \frac{2r^2}{r} = m + n \Rightarrow 2r = m + n$ 139 (c) We know that every line passing through the focus of a parabola intersects the parabola in two distinct points except lines parallel to the axis. The equation $(y - 2)^2 = 4(x + 1)$ represents a parabola with vertex (-1,2) and axis parallel to *x*-axis. So, the line of slope *m* will cut the parabola in two distinct points if $m \neq 0$ i.e. $m \in (-\infty, 0) \cup (0, \infty)$

140 (a)

Given that, any tangent to the circle $x^2 + y^2 = b^2$ isy = $mx - b\sqrt{1 + m^2}$. It touches the circle $(x - a)^2 + y^2 = b^2$, then $\frac{ma - b\sqrt{1 + m^2}}{\sqrt{m^2 + 1}} = b$ $\Rightarrow ma = 2b\sqrt{1 + m^2}$ $\Rightarrow m^2a^2 = 4b^2 + 4b^2m^2$ $\therefore m = \pm \frac{2b}{\sqrt{a^2 - 4b^2}}$

141 (d)

Centre of triangle is (0, 0)Since, triangle is an equilateral, the centre of circumcircle is also (0, 0)AD = a (given)

 $= \frac{1}{\sin 60^{\circ}} = \frac{1}{\sqrt{3}}$ $\therefore \text{ Circumradius} = \frac{AC}{2 \sin B}$ $= \frac{2a}{2\sqrt{3}} \times \frac{2}{\sqrt{3}} = \frac{2a}{3} \quad [\because B = 60^{\circ}]$

 \therefore required equation of circumcircle is

$$x^{2} + y^{2} = \frac{4a^{2}}{9}$$
$$\Rightarrow 9x^{2} + 9y^{2} = 4a^{2}$$

142 **(a)**

The coordinates of end point of latusrectum are (a, 2a) and (a, -2a) *ie*, (3, 6) and (3, -6)The equation of directrix is x = -3The equation of tangents from the above points are 6y = 6(x + 3) and -6y = 6(x + 3) $\Rightarrow x - y + 3 = 0$ and x + y + 3 = 0The intersection point is (-3, 0) The equation of directrix of the parabola $y^2 = 12x$ is x = -3

 \Rightarrow Intersection point (-3, 0) lies on the directrix 143 (c)

We have, $\frac{x^2}{25} + \frac{y^2}{9} = 1$

The eccentricity of this ellipse is $\frac{4}{5}$. So, the coordinates of foci *S* and *S'* are (4,0) and (-4,0) \therefore Area of rhombus = $\frac{1}{2} \times$ Product of diagonals \Rightarrow Area of rhombus = $\frac{1}{2}(BB' \times SS')$ \Rightarrow Area of rhombus = $\frac{1}{2} \times 6 \times 8$ sq. units = 24 sq. units

144 (d)

Let the equation of ellipse be

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

$$\therefore b^2 = a^2(1 - e^2)$$

$$\therefore \frac{x^2}{a^2} + \frac{y^2}{a^2(1 - e^2)} = 1$$

145 **(d)**

Any point on the line x - y - 5 = 0 will be of the form (t, t - 5) Chord of contact of this point with respect to curve $x^2 + 4y^2 = 4$ is tx + 4(t - 5)y - 4 = 0 $\Rightarrow (-20y - 4) + t(x + 4y) = 0$ Which is a family of straight lines, each member of this family pass through point of intersection of straight lines -20y - 4 = 0 and x + 4y = 0 which is $\left(\frac{4}{5}, -\frac{1}{5}\right)$

146 (a)

The combined equation of the lines joining the origin (vertex) to the points of intersection of

$$y^{2} = 4 ax \text{ and } y = mx + c \text{ is}$$

$$y^{2} = 4 ax \left(\frac{y - mx}{c}\right) \Rightarrow cy^{2} - 4 axy + 4 am x^{2}$$

$$= 0$$

This represents a pair of perpendicular lines $\therefore c + 4 am = 0 \Rightarrow c = -4 am$

147 **(b)**

Let the point on $x^2 + y^2 = a^2$ is $(a \cos \theta, a \sin \theta)$ Equation of chord of contact is $ax \cos \theta + ay \sin \theta = b^2$ It touches circle $x^2 + y^2 = c^2$ $\therefore \left| \frac{-b^2}{\sqrt{a^2 \cos^2 \theta + a^2 \sin^2 \theta}} \right| = c$ $\Rightarrow b^2 = ac$

$\therefore a, b, c$ are in GP

148 (d)

We have, $y^2 = 4ax \Rightarrow \left(\frac{dy}{dx}\right)_{(x_1,y_1)} = \frac{2a}{y_1}$ \therefore Length of the sub-normal at $P(x_1, y_1)$ $= y_1 \left(\frac{dy}{dx}\right)_p = y_1 \times \frac{2a}{y_1} = 2a$

149 **(b)**

Let P(h, k) be the point such that the ratio of the squares of the lengths of the tangents from P to the circles $x^2 + y^2 + 2x - 4y - 20 = 0$ and $x^2 + y^2 - 4x + 2y - 44 = 0$ is 2:3. Then, $\frac{h^2 + k^2 + 2h - 4k - 20}{h^2 + k^2 + 4h + 2k - 44} = \frac{2}{3}$ $\Rightarrow h^2 + k^2 + 14h - 16k + 22 = 0$ So, the locus of P(h, k) is $x^2 + y^2 + 14x - 16y + 22 = 0$ Clearly, it represents a circle having its centre at (-7,8)

150 **(a)**

The intersection of given line and circle is $x^2 + y^2 - 2x = 0$ $\Rightarrow 2x(x - 1) = 0$

$$\Rightarrow 2x(x-1) = \Rightarrow x = 0, x = 1$$

And
$$y = 0, 2$$

Let coordinates of A are (0, 0) and coordinates of B are (1, 1).

: Equition of circle (*AB* as a diameter) is $(x - x_1)(x - x_2) + (y_-y_1)(y - y_2) = 0$ $\Rightarrow (x - 0)(x - 1) + (y - 0)(y - 1) = 0$ $\Rightarrow x^2 + y^2 - x - y = 0$

151 **(c)**

Equation of normal to hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ at

$$(a \sec \theta, b \tan \theta)$$
 is $\frac{ax}{\sec \theta} + \frac{by}{\tan \theta} = a^2 + b^2$

152 **(c)**

The equation of tangent to the given circle $2x^2 + 2y^2 - 2x - 5y + 3 = 0$ at point (1, 1) is $2x + 2y - (x + 1) - \frac{5}{2}(y + 1) + 3 = 0$ $\Rightarrow x - \frac{1}{2}y - \frac{1}{2} = 0$ $\Rightarrow 2x - y - 1 = 0$ $\Rightarrow y = 2x - 1$ Slope of tangent=2, therefore slope of normal = $-\frac{1}{2}$

Hence, equation of normal at point (1, 1) and

having slope $\left(-\frac{1}{2}\right)$ is $y-1 = -\frac{1}{2}(x-1)$ $\Rightarrow 2y - 2 = -x + 1$ $\Rightarrow x + 2y = 3$ 153 (b) The product of perpendicular distance from any point on $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ to its asymptotes is $\frac{a^2b^2}{a^2+b^2}$ (See illustration 3 on page 26.12) \therefore Required product = $\frac{16 \times 9}{16 + 9} = \frac{144}{25}$ 154 (c) $x^2 = 4 y$ and $y^2 = 4x$ intersect at O(0,0) and (4,4). Therefore, the coordinates of *P* are (4,4). The equations of the tangents to the two parabolas at (4,4) are : 2x - y - 4 = 0...(i) and, x - 2y + 4 = 0 ...(ii) Now, m_1 = Slope of (i) = 2, m_2 = Slope of (ii) = 1/2Clearly, $m_1m_2 = 1$ $\Rightarrow \tan \theta_1 \tan \theta_2 = 1$ $\Rightarrow \tan \theta_1 = \cot \theta_2$ $\Rightarrow \theta_1$ and θ_2 are such that $\theta_1 + \theta_2 = \pi/2$ 155 (c) The equation of a second degree curve passing through the points of intersection of the lines 2x - y + 11 = 0 and x - 2y + 3 = 0 with the coordinate axes is $(2x - y + 11)(x - 2y + 3) + \lambda xy = 0$...(i) This equation will represent a circle, if Coeff. of x^2 = Coeff. of y^2 and Coeff. of xy = 0 $\Rightarrow \lambda - 5 = 0 \Rightarrow \lambda = 5$ Putting the value of λ in (i), we obtain that the equation of the circle is (2x - y + 11)(x - 2y + 3) + 5xy = 0 $\Rightarrow 2x^{2} + 2y^{2} + 7x - 5y + 3 = 0$ The coordinates of its centre are (-7/2, 5/2)156 (a) Given, $\frac{x^2}{16} + \frac{y^2}{9} = 1$ $\therefore e = \sqrt{1 - \frac{9}{16}} = \frac{\sqrt{7}}{4}$ \therefore Coodinates of foci are $(\pm\sqrt{7}, 0)$

Since, centre of circle is (0, 3) and passing through foci $(\pm 7, 0)$

$$\therefore$$
 Radius of circle = $\sqrt{\left(0 \pm \sqrt{7}\right)^2 + (3 - 0)^2}$

$$=\sqrt{7+9}=4$$

157 (b)

Given equation of curve is $x = \alpha + 5 \cos \theta$, y = $\beta + 4 \sin \theta$ Or $\cos \theta = \frac{x-\alpha}{5}$, $\sin \theta = \frac{y-\beta}{4}$ $:\cos^2\theta + \sin^2\theta = 1$

 $\Rightarrow \left(\frac{x-\alpha}{5}\right)^2 + \left(\frac{y-\beta}{4}\right)^2 = 1$ This represents the equation of an ellipse.

158 (b)

Let *PQ* be a focal chord of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ having focus *S*. Then, $\frac{2 SP \cdot SQ}{SP + SQ} = \frac{b^2}{a} \Rightarrow \frac{2pq}{p+q} = \frac{b^2}{a} \Rightarrow b^2(p+q) = 2apq$

159 (c)

Given, parametric equations are $x = e^t + e^{-t}$ and $y = e^t - e^{-t}$

Now, on squaring and then on subtracting, we get

 $x^2 - y^2 = 4$

160 (c)

Intersection points of given circles are (0, 0) and (3, 3) let equation of required circle whose centre $\left(\frac{3}{2},\frac{3}{2}\right)$, is $x^2 + y^2 - 3x - 3y + c = 0$ Since, this circle passes through (0, 0), thus equation of circle becomes, $x^2 + y^2 - 3x - 3y = 0$

161 **(b)**

Equation of circle is $x^2 + y^2 = 25$...(i) Polar equation of a circle with respect to the point (1, a) and (b, 2) is x + ay = 25 ...(ii) and bx + 2y = 25 ...(iii) since, (1, a) and (b, 2) are the conjugate point of a circle, therefore point (1, a) satisfy the Eq. (iii), we get $b + 2a = 25 \Rightarrow 2b + 4a = 50$

163 (a)

Given, $\frac{x^2}{16} - \frac{y^2}{9} = 1$

We know that the difference of focal distances of any point of the hyperbola is equal to major axis

 \therefore Required distance= $2a = 2 \times 4 = 8$

164 (a)

We have.

...(ii)

 $y^{2} - 6y + 4x + 9 = 0 \Rightarrow (y - 3)^{2} = -4(x - 0)$ The coordinate of the focus of this parabola are (-1,3) and the equation of the directrix is x - 1 =0 We know that the chord of contact of tangents drawn from any point on the directrix always passes through the focus. Hence, the required point is (-1,3)<u>ALITER</u> Let $P(1, \lambda)$ be an arbitrary point on $x - \lambda$ 1 = 0. The chord of contact of tangents drawn from $P(1, \lambda)$ to the parabola $y^2 - 6y + 4x + 9 = 0$ is $\lambda y - 3(y + \lambda) + 2(x + 1) + 9 = 0$ $\Rightarrow (2x - 3y + 11) + \lambda(y - 3) = 0$ Clearly, it represents a family of lines passing through the intersection of the lines 2x - 3y + 11 = 0 and y - 3 = 0 i.e. (-1,3) 165 **(b)** Equation of circle whose centre is at (2, 2) and radius r is $(x-2)^2 + (y-2)^2 = r^2$...(i) This circle passes through (4, 5), then $(4-2)^2 + (5-2)^2 = r^2$ $\Rightarrow r^2 = 13$ On putting this values in Eq. (i), we get $(x-2)^2 + (y-2)^2 - 13 = 0$ $\Rightarrow x^2 + y^2 - 4x - 4y - 5 = 0$ 166 (d) The equations of asymptotes of $x^2 - y^2 = 8$ are given by $x^{2} - y^{2} = 0$ or, x + y = 0 and x - y = 0Let (x_1, y_1) be a point on the hyperbola $x^2 - y^2 =$ 8. Then, product of perpendicular from (x_1, y_1) on the asymptotes $= \left| \frac{x_1 - y_1}{\sqrt{2}} \right| \left| \frac{x_1 + y_1}{\sqrt{2}} \right|$ $= \left| \frac{x_1^2 - y_1^2}{2} \right| = \left| \frac{8}{2} \right| = 4 \qquad [\because x_1^2 - y_1^2 = 8]$ 167 (d) Given foci of ellipse are (0, -4) and (0, 4) \therefore Focal distance is 2be = 8be = 4...(i) Also, since equation of directrices are $\frac{b}{e} = \pm 9$

From, Eqs. (i) and (ii), we get

$$b^{2} = 36 \Rightarrow b = 6 \text{ and } e = \frac{2}{3}$$

 $\therefore a^{2} = b^{2}(1 - e^{2}) = 36\left(1 - \frac{4}{9}\right) = 20$
 $\therefore \frac{x^{2}}{20} + \frac{y^{2}}{36} = 1$
 $\Rightarrow 9x^{2} + 5y^{2} = 180$

168 **(a)**

The equation of tangent is $\frac{x}{a} \sec \theta - \frac{y}{b} \tan \theta = 1$ $\therefore \text{ Coordinates of } A \text{ and } B \text{ are } (a \cos \theta, 0) \text{ and } (0, -b \cot \theta) \text{respectively.}$ Let coordinates of $P \operatorname{are}(h, k)$. $\therefore h = a \cos \theta, k = -b \cot \theta$ $\Rightarrow \frac{k}{h} = -\frac{b}{a \sin \theta}$ $\Rightarrow \sin \theta = -\frac{bh}{ak}$ $\Rightarrow \frac{b^2 h^2}{a^2 k^2} = \sin^2 \theta$ $\Rightarrow \frac{b^2 h^2}{a^2 k^2} + \frac{h^2}{a^2} = 1$ $\Rightarrow \frac{b^2}{h^2} + 1 = \frac{a^2}{h^2}$ $\Rightarrow \frac{a^2}{h^2} - \frac{b^2}{k^2} = 1$ Hence, the locus of P is $\frac{a^2}{x^2} - \frac{b^2}{y^2} = 1$

169 (d)

The coordinates of *P* are (1, 0). A gerneral point *Q* on $y^2 = 8x$ is $(2t^2, 4t)$. Let mid point of *PQ* is (h, k)

$$\therefore 2h = 2t^2 + 1 \text{ and } 2k = 4t \Rightarrow t = \frac{k}{2}$$

$$\therefore 2h = \frac{2k^2}{4} + 1 \implies 4h = k^2 + 2$$

Hence, the locus of (h, k) is $y^2 - 4x + 2 = 0$

171 (a)

The equation of the ellipse is $\frac{(x+3)^2}{2^2} + \frac{(y-5)^2}{(\sqrt{3})^2} = 1$ $\Rightarrow 3x^2 + 4y^2 + 18x - 40y + 115 = 0$

172 **(c)**

Let (h, k) be the pole of the line 9x + y - 28 = 0with respect to the circle $x^2 + y^2 - \frac{3}{2}x + \frac{5}{2}y - \frac{7}{2} =$ 0. Then, the equation of the polar is

 $hx + ky - \frac{3}{4}(x+h) + \frac{5}{4}(y+k) - \frac{7}{2} = 0$ $\Rightarrow x\left(h-\frac{3}{4}\right)+y\left(k+\frac{5}{4}\right)-\frac{3}{4}h+\frac{5}{4}k-\frac{7}{2}=0$ $\Rightarrow x(4 h - 3) + y(4 k + 5) - 3 h + 5 k - 14 = 0$ This equation and 9x + y - 28 = 0 represent the same line. $\therefore \frac{4h-3}{9} = \frac{4k+5}{1} = \frac{-3h+5k-14}{-28} = \lambda \text{ (say)}$ $\Rightarrow h = \frac{3+9\lambda}{4}, k = \frac{\lambda-5}{4}, -3h+5k-14$ $\Rightarrow -3\left(\frac{3+9\,\lambda}{4}\right) + 5\left(\frac{\lambda-5}{4}\right) - 14 = -28\,\lambda$ $\Rightarrow -9 - 27 \lambda + 5 \lambda - 25 - 56 = -112 \lambda$ $\Rightarrow -22\lambda - 90 = -112\lambda$ $\Rightarrow 90\lambda = 90 \Rightarrow \lambda = 1$ Hence, the pole of the given line is (3, -1)173 (a) Let (h, k) is mid point of chord. Then, its equation is $T = S_1$ $\therefore 3hx - 2kv + 2(x + h) - 3(v + k)$ $=3h^2 - 2k^2 + 4h - 6k$ $x(3h+2) + v(-2k-3) = 3h^2 - 2k^2 + 2h - 3k$ Since, this line is parallel to y = 2x $\frac{3h+2}{2k+3} = 2$ $\Rightarrow 3h - 4k = 4$ Thus, locus of point is 3x - 4y = 4174 (b) If circle $x^2 + y^2 - 10x - 14y + 24 = 0$ cuts an intercept on y-axis, then Length of intercept= $2\sqrt{f^2 - c} = 2\sqrt{49 - 24} =$ 10 175 (a) Given line $y = ax + \beta$ is a tangent to given hyperbola, if $\beta^2 = a^2 \alpha^2 - b^2$ Hence, locus of (α, β) is $y^2 = a^2 x^2 - b^2$, which represents a hyperbola 176 (c) Let the points are (x_1, y_1) , (x_2, y_2) and (x_3, y_3) $\therefore y_1^2 = 4ax_1, y_2^2 = 4ax_2, y_3^2 = 4ax_3$

∴ Area of triangle whose vertices are

$$(x_{1}, y_{1}), (x_{2}, y_{2}) \text{ and } (x_{3}, y_{3})$$

$$= \frac{1}{2} \left\| \begin{matrix} x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \\ x_{3} & y_{3} & 1 \end{matrix} \right\| = \frac{1}{2} \left\| \begin{matrix} y_{1}^{2} & y_{1} & 1 \\ y_{2}^{2} & y_{2} & 1 \\ y_{3}^{2} & y_{3} & 1 \end{matrix} \right\|$$

$$= \frac{1}{8a} \left\| \begin{matrix} y_{1}^{2} & y_{1} & 1 \\ y_{2}^{2} & y_{2} & 1 \\ y_{3}^{2} & y_{3} & 1 \end{matrix} \right\|$$

$$\Rightarrow \text{ Area of triangle}$$

$$= \frac{1}{8a} (y_{1} - y_{2})(y_{2} - y_{3})(y_{3} - y_{1})$$
177 (c)
Let $y = mx + \frac{a}{m}$ be a tangent to $y^{2} = 4ax$ cutting
 $y^{2} = -4ax$ at P and Q . Let (h, k) be mid-point of
 PQ . Then, equation of PQ is
 $ky + 2a(x + h) = k^{2} + 4ah$ [Using : $T = S'$]
or, $ky = -2ax + k^{2} + 2ah$
But, equation of PQ is
 $y = mx + \frac{a}{m}$
 $\therefore m = -\frac{2a}{k}$ and $\frac{k^{2} + 2ah}{k} = \frac{a}{m}$
 $\Rightarrow -\frac{2a}{k}(k^{2} + 2ah) = ak$
 $\Rightarrow -2(k^{2} + 2ah) = k^{2} \Rightarrow 3k^{2} + 4ah = 0$
Hence, the locus of (h, k) is $3y^{2} + 4ax = 0$ or,
 $y^{2} = -\frac{4a}{3}x$
178 (b)
Let $P(x_{1}, y_{1})$ be a point on the hyperbola. Then
the coordinates of N are $(x_{1}, 0)$
The equation of the tangent at (x_{1}, y_{1}) is $\frac{xx_{1}}{a^{2}} - \frac{yx_{1}}{b^{2}} = 1$
This meets x-axis at $T\left(\frac{a^{2}}{x_{1}}, 0\right)$
 $\therefore OT. ON = \frac{a^{2}}{x_{1}} \times x_{1} = a^{2}$
180 (a)
The equation of circles whose radius is r and
centres $(2, 3)$ and $(5, 6)$ is
 $(x - 2)^{2} + (y - 3)^{2} = r^{2}$
And $(x - 5)^{2} + (y - 6)^{2} = r^{2}$

And $x^2 + y^2 - 10x - 12y + (-r^2 + 61) = 0$

 \Rightarrow 2(2)(5) + 2(3)(6) = 13 - r² + 61 - r²

Since, circles cut orthogonally, then

 $2g_1g_2 + 2f_1f_2 = c_1 + c_2$

 $\Rightarrow 2r^2 = 18 \Rightarrow r = 3$

Equation of the normal at point $(bt_1^2, 2bt_1)$ on parabola is

$$y = -t_1 x + 2bt_1 + bt_1^3$$

It is also passes through $(bt_2^2, 2bt_2)$, then

 $2bt_2 = t_1 \cdot bt_2^2 + 2bt_1 + bt_1^3$

The common chord of the given circle is $S_1 - S_2 = 0$ *ie*, 6x + 14y + c + d = 0 ...(i) So, Eq. (i) passes through the centre of the second circle, ie, (1, -4) $\therefore 6 + 56 + c + d = 0$ $\Rightarrow c + d = 50$ We have, $a^2 = 16, b^2 = 9$ $\therefore e = \sqrt{1 - \frac{b^2}{a^2}} = \frac{\sqrt{7}}{4}$

Coordinates of *S* are $(\sqrt{7}, 0)$. Therefore, $CS = \sqrt{7}$ \therefore CS : Major axis = $\sqrt{7}$: 2a = $\sqrt{7}$: 8

Given that, $S_1 \equiv x^2 + y^2 + 4x + 22y + c = 0$,

bisects the circumference of the circle $S_2 \equiv x^2 + y^2 - 2x + 8y - d = 0$

183 (d)

S']

182 (d)

The given points are the ends of the latusrectum where the normals are always at right angle

184 (a)

Let (h, k) be the coordinates of the centre of circle C_2 . Then its equation is

 $(x-h)^2 + (y-k)^2 = 5^2$ The equation of C_1 is $x^2 - y^2 = 4^2$ and so the equation of the common chord of C_1 and C_2 is $2 hx + 2 ky = h^2 + k^2 - 9$...(i) Let *p* be the length of the perpendicular from the centre (0,0) of C_1 to (i). Then,

$$p = \left| \frac{h^2 + k^2 - 9}{\sqrt{4 h^2 + 4 k^2}} \right|$$

The length of the common chord is $2\sqrt{4^2 - p^2}$ which will be of maximum length, if $p = 0 \Rightarrow h^2 + k^2 - 9 = 0$...(ii) Now, Slope of common chord $=\frac{3}{4}$ $\therefore -\frac{h}{k} = \frac{3}{4} \Rightarrow k = -\frac{4h}{3} \quad \dots \text{(iii)}$ Putting the value of k in (ii), we get $h = \pm \frac{9}{5} \Rightarrow k = \pm \frac{12}{5}$ [From (iii)] Hence, the centres of circle C_2 are (9/5, -12/5)and (-9/5, 12/5) 185 (a)

181 **(b)**

$$\Rightarrow 2t_2 - 2t_1 = t_1(t_1^2 - t_1^2)$$
$$\Rightarrow 2 = -t_1(t_2 + t_1)$$
$$\Rightarrow t_2 = -t_1 - \frac{2}{t_1}$$

186 (a)

Let the equation of tangent which is perpendicular to the line 3x + 4y = 7, is $4x - 3y = \lambda \Rightarrow y = \frac{4}{3}x - \frac{\lambda}{3}$

Since, it is a tangent to the ellipse

$$\therefore \left(\frac{\lambda}{3}\right)^2 = 9 \times \left(\frac{4}{3}\right)^2 + 4 \quad [\therefore a^2 = 9, b^2 = 4]$$
$$\Rightarrow \ \lambda^2 = 180 \ \Rightarrow \ \lambda = \pm 6\sqrt{5}$$

 \therefore Equation is $4x - 3y = \pm 6\sqrt{5}$

187 (d)

Any point on the hyperbola

$$\frac{(x+1)^2}{16} - \frac{(y-2)^2}{4} = 1$$
, is of the form
(4 sec $\theta - 1$, 2 tan $\theta + 2$)

188 (c)

In the given equation we observe that the denominator of y^2 is greater than that of x^2 . So, the two foci lie on *y*-axis and their coordinates are $(0, \pm be)$, where

$$b = 5$$
 and $e = \sqrt{1 - \frac{a^2}{b^2}} = \sqrt{1 - \frac{9}{25}} = \frac{4}{5}$

The focal distances of a point $P(x_1, y_1)$ on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, where $b^2 > a^2$ are given by $b \pm ey_1$

Hence, required distances $= b \pm ey_1 = 5 \pm \frac{4}{5}y_1$

189 **(b)**

Let *PQ* be a double ordinate of $y^2 = 4 ax$, and let R(h, k) be a point of trisection. Let the coordinates of *P* be (x, y). Then,

x = h and y = 3 k

But, (x - y) lies on $y^2 = 4 ax$ $\therefore 9 k^2 = 4 ah$

Hence, the locus of (h, k) is $9y^2 = 4 ax$

190 **(d)**

Let $P(at^2, 2at)$ any point on the parabola and focus is (a, 0)

$$X = -a$$

$$y = (at^2, 2at)$$

$$P$$

$$P$$

$$x = -a$$

The equation of tangent at *P* is $yt = x + at^2$ Since, it meets the directrix x = -a at *K* Then, the coordinate of *K* is $\left(-a, \frac{at^2-a}{t}\right)$ Slope of $SP = m_1 = \frac{2at}{a(t^2-1)}$ Slope of $SK = m_2 = \frac{a(t^2-1)}{-2at}$ $\therefore m_1m_2 = \frac{2at}{a(t^2-1)} \cdot \frac{a(t^2-1)}{(-2at)} = -1$ $\therefore \angle PSK = 90^\circ$ (d)

191 **(d)**

Since, y = |x| + c and $x^2 + y^2 - 8|x| - 9 = 0$ both are symmetrical about *y*-axis for x > 0, y = x + c. Equation of tangent to circle $x^2 + y^2 - 8x - 9 = 0$ which is parallel to y = x + c is $y = (x - 4) + 5\sqrt{1 + 1}$ $\Rightarrow y = x + (5\sqrt{2} - 4)$ For no solution $c > 5\sqrt{2} - 4$, $\therefore c \in (5\sqrt{2} - 4, \infty)$

192 (d)

Centre is the point of intersection of two diameter, *ie*, the point of intersection of two diameters is C(8, -2), therefore the distance from the centre to the point P(6, 2) is

$$r = CP = \sqrt{4 + 16} = \sqrt{20}$$

193 **(a)**

Only the point (9,3) lies on the given circle

194 (d) The equation of a tangent of slope *m* to the circle $x^2 + y^2 = a^2$ is $y = mx \pm a\sqrt{1 + m^2}$ and the coordinates of point of contact are $\left(\mp \frac{am}{\sqrt{1 + m^2}}, \pm \frac{a}{\sqrt{1 + m^2}}\right)$ Here, a = 5 and $m = \tan 30 = 1/\sqrt{3}$ So, the coordinates of the points of contact are $\left(\mp \frac{5}{2}, \pm \frac{5\sqrt{3}}{2}\right)$ 195 (a) Given, $\frac{x^2}{32/5} + \frac{y^2}{32/9} = 1$

Let the equation of tangent be y = mx + c

$$y = mx \pm \sqrt{\frac{32}{5}m^2 + \frac{32}{9}} \quad ... (i)$$

[:: $c^2 = a^2m^2 + b^2$ for $a > b$]

Since, (2,3) lies on Eq. (i)

$$\Rightarrow 3 = m \cdot 2 \pm \sqrt{\frac{32}{5}m^2 + \frac{32}{9}}$$
$$45(3 - 2m)^2 = 288m^2 + 160$$

$$\Rightarrow 108m^2 + 540m - 245 = 0$$

$$\therefore D = (540)^2 + 4.180.245 > 0 \implies D > 0$$

 \Rightarrow Two values of *m* will exist

 \Rightarrow Two tangents will exist

Alternate

Let $S \equiv 5x^2 + 9y^2 - 32$

Now, $S(2,3) \equiv 20 + 81 - 32 > 0$

∴ Point (2,3) lies outside ellipse

Thus, two tangents can be drawn

196 **(d)**

As we know equation of tangent to the given hyperbola at $(x_{1,}y_{1})$ is $xx_{1} - 2yy_{1} = 4$ which is same as $2x + \sqrt{6}y = 2$

 $\Rightarrow x_1 = 4 \text{ and } y_1 = \sqrt{6}$

Thus, the point of contact is $(4, -\sqrt{6})$

197 **(b)**

Let (h, k) be the mid-point of a focal chord of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. Then, its equation is $\frac{hx}{a^2} + \frac{ky}{b^2} = \frac{h^2}{a^2} + \frac{k^2}{b^2}$ It passes through the focus S(ae, 0) $\therefore \frac{he}{a} = \frac{h^2}{a^2} + \frac{k^2}{b^2}$ Hence, the locus of (h, k) is $\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{xe}{a}$ 198 **(c)** Given, $x = t^2 + 2t - 1$...(i) and $y = 3t + 5 \Rightarrow t = \frac{y-5}{3}$...(ii)

On putting the value of *t* in Eq. (i), we get

$$x = \left(\frac{y-5}{3}\right)^2 + 2\left(\frac{y-5}{3}\right) - 1$$

 $\Rightarrow x = \frac{1}{9} \{y^2 - 4y - 14\}$ $\Rightarrow (y - 2)^2 = 9(x + 2)$

This is an equation of a parabola

199 **(b)**

We observe that the minimum distance between point *P* and the given circle is

$$PA = CP - CA = \frac{\sqrt{137}}{4} - \frac{3}{4} = \frac{\sqrt{137} - 3}{4} > 2$$

So, there is no point on the circle whose distance from *P* is 2 units

200 **(b)**

Given curve is $y^2 = 4x$

Also, point (1, 0) is the focus of the parabola. It is clear from the graph that only normal is possible

$$x' \qquad y' = 4x$$

$$(1, 0)$$

$$y'$$

201 (c)

Let the extremities of focal chords be $A(at_1^2, 2at_1)$ and $B(at_2^2, 2at_2)$

The equation of tangents at *A* and *B* are

$$t_{1y} = x + at_2^2$$
 and $t_2y = x + at_2^2$

which meets the points C

Slopes of these lines are $m_1 = \frac{1}{t_1}$, $m_2 = \frac{1}{t_2}$

Now,
$$m_1 m_2 = \frac{1}{t_1} \times \frac{1}{t_2}$$

= $\frac{1}{-1}$ (:: $t_1 t_2 = -1$)

Hence, $\angle ACB = 90^\circ = \frac{\pi}{2}$

202 **(c)**

We know that the difference of the focal distances of any point on a hyperbola is constant equal to its transverse axis. Therefore, the locus of *P* is a hyperbola

203 (a)

In
$$\triangle OCA$$
, tan $30^\circ = \frac{AC}{OC}$

$$\Rightarrow \ \frac{1}{\sqrt{3}} = \frac{2at}{at^2}, t = 2\sqrt{3}$$

Again in $\triangle OCA$,

$$OA = \sqrt{OC^2 + AC^2} = \sqrt{(at^2)^2 + (2at)^2}$$
$$= \sqrt{\left[\left(2\sqrt{3} \right)^2 \right]^2 a^2 + 4a^2 \left(2\sqrt{3} \right)^2} = \sqrt{192a^2}$$
$$= 8a\sqrt{3}$$

204 **(b)**

Let (x_1, y_1) be the point of intersection of the axis of the parabola with the directrix.

Since vertex is the mid-point of the segment joining the focus and the point of intersection of axis and directrix.

$$\therefore \frac{x_1 + 2}{2} = 2 \text{ and } \frac{y_1 - 3}{2} = -1$$

$$\Rightarrow x_1 = 2 \text{ and } y_1 = 1$$

Since directrix is perpendicular to the axis and passes through (2,1). Clearly, axis is parallel to *y*-axis. So, directrix is parallel to *x*-axis and passes through (2,1). So, its equation is y = 1. Thus, the focus and directrix of the parabola are (2, -3) and y = 1 respectively.

Hence, the equation of the parabola is

$$\sqrt{(x-2)^2 + (y+3)^2} = \left| \frac{y-1}{\sqrt{0+1}} \right|$$

$$\Rightarrow (x-2)^2 + (y+3)^2 = (y-1)^2$$

$$\Rightarrow x^2 - 4x + 8y + 12 = 0$$

205 (a)

Since, locus of the point of intersection of the tangents at the end points of a focal chord is directrix

 \therefore Required locus is $x = \pm \frac{a}{e} = \pm \frac{a^2}{\sqrt{a^2 - b^2}}$

206 **(b)**

The intersection points of given curves are (1, 0) and $\left(-\frac{13}{5}, -\frac{6}{5}\right)$

 \therefore The distance between these two points

$$= \sqrt{\left(1 + \frac{13}{5}\right)^2 + \left(0 + \frac{6}{5}\right)^2}$$
$$= \frac{1}{5}\sqrt{324 + 36}$$
$$= \frac{6}{5}\sqrt{10}$$

207 **(b)**

The length of latusrectum of a hyperbola $= \frac{2b^2}{a} = \frac{2a^2(e^2 - 1)}{a} = 2a(e^2 - 1)$ 3 (c) The centres and radii of given circles are

The centres and radii of given circles are $C_1(-1, -4), C_2(2, 5)$ and $r_1 = \sqrt{1 + 16 + 23} = \sqrt{40},$ $r_2 = \sqrt{4 + 25 - 9} = \sqrt{20}$ Now, $C_1C_2 = \sqrt{(2 + 1)^2 + (5 + 4)^2} = \sqrt{90}$ And $r_1 + r_2 = \sqrt{40} + \sqrt{20}$ Here, $C_1 C_2 < r_1 + r_2$

∴ Two common tangents can be drawn

209 (d)

We know that two point are inverse point with respect to a circle if each lies on the polar of the other.

The polar of (1, -1) with respect to $x^2 + y^2 = 4$ is x - y = 4

Clearly, (2, -2) lies on it. Hence, the inverse point of (1, -1) with respect of $x^2 + y^2 = 4$ is (1, -1)

210 **(c)**

Given, $x^2 + y^2 - 2x + 4y + \frac{k}{4} = 0$ \therefore Radius of circle $= \sqrt{1 + 4 - \frac{k}{4}}$ Area of circle $= 9\pi$ [given] $\Rightarrow \pi \left(5 - \frac{k}{4}\right) = 9\pi \Rightarrow k = -16$

211 **(b)**

The triangle is isosceles and therefore the median through *C* is the bisector of $\angle C$. The equation of the angle bisector can be taken as y = -x and l = (-a, a), where *a* is positive

Equation of *AC* is y - 0 = -7(x + 6) or 7x + y + 42 = 0 and equation of *AB* is x - y + 6 = 0The length of the perpendicular from *l* to *AB* and *AC* are equal 1-7a + a + 421 1-a - a + 61

$$\therefore \left| \frac{ya + a + b}{\sqrt{50}} \right| = \left| \frac{a + a + b}{\sqrt{2}} \right|$$

Giving the positive value $a = \frac{9}{2}$
$$\therefore \text{ Centre is } \left(-\frac{9}{2}, \frac{9}{2} \right) \text{ and radius } = \frac{3}{\sqrt{2}}$$

The equation of the circle is
 $\left(x + \frac{9}{2} \right)^2 \left(y - \frac{9}{2} \right)^2 = \frac{9}{2}$
$$\Rightarrow x^2 + y^2 + 9x - 9y + 36 = 0$$

212 (a)

General point on the curve $y^2 = x - 1$ is $(t^2 + 1, t)$ and the general point on the curve $x^2 = y - 1$ is $(t, t^2 + 1)$. Since, both curves are symmetrical about line y = x. For nearest point on curve $y^2 = x - 1$ from the line y = x

y
(x² = y - 1)
(x² = y - 1)
(y² = x - 1)
Let
$$D = \frac{t^2 + 1 - t}{\sqrt{2}}$$

 $\Rightarrow \frac{dD}{dt} = \frac{1}{\sqrt{2}}(2t - 1)$
Put $\frac{dD}{dt} = 0 \Rightarrow t = \frac{1}{2}$. Then point is $(\frac{5}{4}, \frac{1}{2})$
Similarly, point on the other curve is $(\frac{1}{2}, \frac{5}{4})$
Distance between them

$$= \sqrt{\left(\frac{5}{4} - \frac{1}{2}\right)^2 + \left(\frac{1}{2} - \frac{5}{4}\right)}$$
$$= \sqrt{\frac{18}{16}} = \frac{3\sqrt{2}}{4}$$

213 (a)

Given, $(x + 3)^2 = -20(y - 3)$

This is of the form $X^2 = -4 aY$

= 0

 $\therefore\,$ Axis of such parabola is given by

$$\begin{aligned} X &= 0 \\ \Rightarrow (x+3) \end{aligned}$$

214 **(d)**

Given equation can be rewritten as $\frac{y^2}{k^2} - \frac{x^2}{(-k)} =$

$$1(-k > 0)$$

$$e^{2} = 1 + \frac{(-k)}{k^{2}} = 1 - \frac{k}{k^{2}}$$

$$\Rightarrow e = \sqrt{1 - \frac{1}{k}}$$

215 (c) Given, $(y-1)^2 = x = 1$

$$\Rightarrow$$
 $Y^2 = X$, where $Y = y - 1$, $X = x - 1$

Here,
$$a = \frac{1}{2}$$

 \therefore Focus is $(a, 0)ie, \left(\frac{1}{4}, 0\right)$

$$\Rightarrow X = \frac{1}{4}, Y = 0$$
$$\Rightarrow x - 1 = \frac{1}{4}, y - 1 = 0 \Rightarrow x = \frac{5}{4}, y = 1$$

 \therefore Required focus is $\left(\frac{5}{4}, 1\right)$

216 **(b)**

Let P(h, k) be the mid-point of a focal chord of the parabola $y^2 = 4ax$. Then, its equation is $ky - 2a(x + h) = k^2 = 4ah$ [Using : T = S'] It passes through the focus (a, 0) $\therefore -2a(a + h) = k^2 - 4ah$ $\Rightarrow k^2 = 2a(h - a)$ Hence, the locus of (h, k) is $y^2 = 2a(x - a)$ 217 **(c)**

Since, the line $y = \frac{1}{b}x - \frac{c}{b}$ is tangent to the parabola $y^2 = 4ax$, then

$$-\frac{c}{b} = \frac{a}{-\frac{a}{b}} \Rightarrow c = b^2$$

218 (d)

The circle drawn on foci (*ae*, 0) and (-*ae*, 0) as diameter is $(x - ae)(x + ae) + (y - 0)^2 = 0$ or, $x^2 + y^2 = a^2e^2$ or, $x^2 + y^2 = a^2 + b^2$... (i) The equations of asymptotes are $y = \pm \frac{b}{a}x$

These two intersect at $(\pm a, \pm b)$

219 **(a)**

Given parametric curves are

$$x = 5t^{2} + 2, y = 10 t + 4$$

or $\frac{x-2}{5} = t^{2}, \frac{y-4}{10} = t$
 $\Rightarrow \frac{x-2}{5} = \left(\frac{y-4}{10}\right)^{2}$
 $\Rightarrow (y-4)^{2} = 20(x-2)$
 $\Rightarrow Y^{2} = 20X$, where $Y = y - 4, X = x - 2$
 \therefore Coodinates of focus are (5, 0)
ie, $x - 2 = 5, y - 4 = 0$
 $\Rightarrow x = 7, y = 4$

Hence, required coordinates are (7, 4)

221 **(d)**

The centre of the given circle is (1,2) and its radius is 5. Since the radii of the two circles are equal. Therefore, the two circles are equal. Therefore, the two circles will touch externally and the point of contact will lie mid-way between the two centres. Let the coordinates of the centre

of the required circle be(h, k). Then, $\frac{h+1}{2} = 5$ and $\frac{k+2}{2} = 5 \Rightarrow h = 9$ and k = 8Thus, the centre of the required circle is (9,8). Its equation is $(x - 9)^2 + (y - 8)^2 = 5^2 \Rightarrow x^2 + y^2 - y^2 = 5^2 \Rightarrow x^2 + y^2 = 5^2 \Rightarrow x^2 = 5^2 \Rightarrow x^2 + y^2 = 5^2 \Rightarrow x^2 \Rightarrow x^2$ 18x - 16y + 120 = 0222 (a) Let any point on the line segment *PQ* is $R(\alpha, \beta)$, then $\alpha = \frac{\lambda(1)+1}{\lambda+1} = 1,$ And $\beta = \frac{3\lambda + 1}{\lambda + 1}$ (:: $\lambda > 0$ as *R* is on segment *AB*) A point is inside parabola $y^2 = 4x$, if $v^2 - 4x < 0$ $\Rightarrow \left(\frac{3\lambda+1}{\lambda+1}\right)^2 - 4(1) < 0$ $\Rightarrow \left(\frac{3\lambda+1}{\lambda+1}+2\right)\left(\frac{3\lambda+1}{\lambda+1}-2\right) < 0$ $\Rightarrow (5\lambda + 3)(\lambda - 1) < 0$ $\Rightarrow -\frac{3}{5} < \lambda < 1$ So, $0 < \lambda < 1$ (but $\lambda > 0$) 223 (b) $\therefore A(at_1^2, 2at_1)$ and $B(at_2^2, 2at_2)$ are such that AC: AB = 1:3 $\therefore \text{ Coordinates of } C \text{ are } \left(\frac{2at_1^2 + at_2^2}{3}, \frac{4at_1 + 2at_2}{2} \right)$ Point *C* lies on *x*-axis, then $\frac{4at_1 + 2at_2}{3} = 0$ $\Rightarrow t_2 + 2t_1 = 0$ 224 (c) Let the ellipse be $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ Since y = x and 3y = -2x is a pair of conjugate diameters. $\therefore m_1 m_2 = -\frac{b^2}{a^2}$ $\Rightarrow 1 \times \left(-\frac{2}{3}\right) = -\frac{b^2}{a^2}$ $\Rightarrow 2 a^{2} = 3 b^{2} \Rightarrow 2a^{2} = 3 a^{2}(1 - e^{2}) \Rightarrow e^{2} = \frac{1}{3}$ $\Rightarrow e = \frac{1}{\sqrt{2}}$ 225 (a) We have, $x^2 - 4x + 4y^2 = 12$ $\Rightarrow (x-2)^2 + 4(y-0)^2 = 8$ $\Rightarrow \frac{(x-2)^2}{(2\sqrt{2})^2} + \frac{(y-0)^2}{(\sqrt{2})^2} = 1$ This is an ellipse whose major and minor axes are

 $2a = 2\sqrt{2}$ and $2b = \sqrt{2}$ respectively. Therefore,

Page | 103

its eccentricity e is given by

$$e = \sqrt{1 - \frac{b^2}{a^2}} = \sqrt{1 - \frac{2}{8}} = \frac{\sqrt{3}}{2}$$

226 (a)

Given equation can be rewritten as

$$(x-1)^2 = -4 \times (2)(y-1)$$

 $\Rightarrow X^2 = -4aY$, where $X = x - 1, Y = y - 1$

So, equation of directrix is

Y = a

 \Rightarrow $y - 1 = 2 \Rightarrow y = 3$

227 (a)

If the circle
$$(x - h)^2 + (y - k)^2 = r^2$$
 touches
both the circles $x^2 + y^2 = a^2$ and $x^2 + y^2 - 4ax = 0$ externally. Then,
 $\sqrt{h^2 + k^2} = r + a$ and $\sqrt{(h - 2a)^2 + k^2} = r + 2a$
 $\therefore \sqrt{(h - 2a)^2 + k^2} - \sqrt{h^2 + k^2} = a$
 $\Rightarrow \sqrt{(h - 2a)^2 + k^2} = a + \sqrt{h^2 + k^2}$
 $\Rightarrow (h - 2a)^2 + k^2 = a^2 + h^2 + k^2 + 2a\sqrt{h^2 + k^2}$
 $\Rightarrow (h - 2a)^2 + k^2 = a^2 + h^2 + k^2 + 2a\sqrt{h^2 + k^2}$
 $\Rightarrow -4ah + 3a^2 = 2a\sqrt{h^2 + k^2}$
 $\Rightarrow (3a - 4h)^2 = 4(h^2 + k^2)$
 $\Rightarrow 12(h - a)^2 - 4k^2 = 3a^2$
Hence, the locus of (h, k) is $12(x - a)^2 - 4y^2 = 3a^2$

228 **(b)**

Let r_1, r_2 and r_3 be the radii of the respective circles, then

$$\begin{split} r_1 &= \sqrt{(-4)^2 + (-3)^2 + 0} = \sqrt{25} = 5 \\ r_2 &= \sqrt{\left(\frac{1}{2}\right)^2 + \left(\frac{3}{2}\right)^2 + \left(\frac{186}{4}\right)} = \sqrt{49} = 7 \\ r_3 &= \sqrt{(3)^2 + (3)^2 + 9} = \sqrt{27} = 3\sqrt{3} \\ \therefore \quad P_1 &= 2\pi r_1 = 10\pi, P_2 = 2\pi r_2 = 14\pi, P_3 = 2\pi r_3 \\ &= 6\sqrt{3}\pi \\ \therefore \quad P_1 &< P_3 < P_2 \end{split}$$

229 (a)

The equation of the parabola is

$$(y-1)^{2} = -4\left(x - \frac{1}{4}\right)$$

The equation of any tangent to this parabola is
$$y - 1 = m\left(x - \frac{1}{4}\right) - \frac{1}{m}$$

If it passes through (3,4), then
$$3 = \frac{11m}{4} - \frac{1}{m}$$
$$\Rightarrow 12m = 11m^{2} - 4 \Rightarrow 11m^{2} - 12m - 4 = 0$$

Let m_1, m_2 be the roots of this equation. Then, $m_1 + m_2 = \frac{12}{11}$ and $m_1 m_2 = -\frac{4}{11}$ Let θ be the angle between the tangents. Then, $\tan \theta = \frac{m_1 - m_2}{1 + m_1 m_2}$ $\Rightarrow \tan \theta = \frac{\sqrt{(m_1 + m_2)^2 - 4m_1 m_2}}{1 + m_1 m_2}$ $\Rightarrow \tan \theta = \frac{\sqrt{\frac{144}{121} + \frac{16}{11}}}{1 - \frac{4}{11}} = \frac{\sqrt{144 + 176}}{7} = \frac{\sqrt{320}}{7}$ $= \frac{8\sqrt{5}}{7}$ $\Rightarrow \theta = \tan^{-1}\left(\frac{8\sqrt{5}}{7}\right)$

ALITER The combined equation of the pair of tangents drawn from (3,4) to the parabola $y^2 - 2y + 4x = 0$ is $(y^2 - 2y + 4x)(16 - 8 + 12)$ $= \{4y - (y + 4) + 2(x + 3)\}^2$ $\Rightarrow 4x^2 + 12xy - 11y^2 - 72x + 12y + 4 = 0$ Let θ be the angle between the lines given by this equation.

Then,

$$\tan \theta = \left| \frac{2\sqrt{36 + 44}}{4 - 11} \right|$$
$$= \frac{8\sqrt{5}}{7} \quad \left[\because \tan \theta = \frac{2\sqrt{h^2 - ab}}{a + b} \right]$$

230 **(b)**

The equations of the directrices of the given ellipse are $y = \pm b/e$ Let *PM* and *PM'* be perpendiculars from $P(x_1, y_1)$ on these two directrices. Then, by definition SP = e(PM) and S'P = e(PM') $\Rightarrow SP + S'P = e(PM + PM')$

$$= e\left(y_1 + \frac{b}{e} + \frac{b}{e} - y_1\right) = 2b$$

<u>ALITER</u> The sum of the focal distances of a point is the major axis of the ellipse

231 (a)

Let P(h, k) be the mid-point of a chord of the circle $x^2 + y^2 = 16$. Then, the equation of the chord is

$$hx + ky - 16 = h^2 + k^2 - 16 \text{ or, } y = \left(-\frac{h}{k}\right)x + \left(\frac{h^2 + k^2}{k}\right)$$

It touches the hyperbola $9x^2 - 16y^2 = 144$
$$\therefore \left(\frac{h^2 + k^2}{k}\right)^2 = 16\left(-\frac{h}{k}\right)^2 - 9 \quad [\text{Using } c^2$$
$$= a^2m^2 - b^2]$$

 $\Rightarrow (h^{2} + k^{2})^{2} = 16h^{2} - 9k^{2}$ Hence, the locus of (h, k) is $(x^{2} + y^{2})^{2} = 16x^{2} - 9y^{2}$

232 **(c)**

Centre and radius of the given circle are (1, 0)and 1.

Let the centre of the image circle be (x_1, y_1) Hence, (x_1, y_1) be the image of the point (1, 0)w.r.t. the line x + y = 2, then $\frac{x_1 - 1}{1} = \frac{y_1 - 0}{1} = \frac{-2[1(1) + 1(0) - 2]}{(1)^2 + (1)^2}$ $\Rightarrow \frac{x_1 - 1}{1} = \frac{y_1}{1} = 1$ $\Rightarrow x_1 = 2, y_1 = 1$

 $\therefore x_1 - 2, y_1 - 1$ ∴ Equation of the imaged circle is $(x - 2)^2 + (y - 1)^2 = 1^2$ $\Rightarrow x^2 + y^2 - 4x - 2y + 4 = 0$

233 **(b)**

Let *OA*, *OB* be the tangents from the origin to the given circle with centre *C*(-3, 5) and radius $\sqrt{9 + 25 - c} = \sqrt{34 - c}$ Then, area of the quadrilateral *OACB* = 2 × area of the ΔOAC = 2 × $\left(\frac{1}{2}\right)$ × *OA* × *AC* Now, *OA* = length of the tangent from the origin to the given circle = \sqrt{c} And *AC* = radius of the circle = $\sqrt{34 - c}$ So, that $\sqrt{c}\sqrt{34 - c} = 8$ (given) $\Rightarrow c(34 - c) = 34$ $\Rightarrow c^2 - 34c + 64 = 0$ 234 **(a)** ($x^2 + y^2 - 2x - 1$) + $\lambda x = 0$, they pass through intersection points of line x = 0 and circle $x^2 + y^2 + y$

 $y^2 - 2x - 1 = 0$

$$\Rightarrow y = \pm 1$$

 \therefore Required points are $(0, \pm 1)$

235 **(d)**

Given, 2ae = 6 and 2b = 8

 $\Rightarrow ae = 3 \text{ and } b = 4$ $\Rightarrow \frac{ae}{b} = \frac{3}{4}, \frac{b^2}{a^2} = \frac{16e^2}{9}$

$$\frac{b^2}{a^2} = 1 - e^2 \Rightarrow \frac{16e^2}{9} = 1 - e^2$$
$$\Rightarrow \left(\frac{16+9}{9}\right)e^2 = 1 \Rightarrow e = \frac{3}{5}$$

236 (d)

Equation of circle is (x - 4)(x + 2) + (y - 7)(y + 1) = 0 $\Rightarrow x^2 - 2x - 8 + y^2 + y - 7y - 7 = 0$ $\Rightarrow x^2 + y^2 - 2x - 6y - 15 = 0$ Here, g = -1, c = -15 $\therefore AB = 2\sqrt{g^2 - c}$ $= 2\sqrt{1 + 15}$ = 8

237 **(b)**

Since, *E* is the mid point of *AC*, therefore, the coordinates of *D* are $\left(\frac{a}{2}, \frac{a}{2}\right)$

$$(0, a) B$$

Now, $AC = \sqrt{a^2 + a^2} = \sqrt{2}a$ $\therefore \quad AE = \frac{1}{2}AC = \frac{a}{\sqrt{2}}$

: The equation of circle whose centre is $\left(\frac{a}{2}, \frac{a}{2}\right)$ and radius $\frac{a}{\sqrt{2}}$ is

$$\left(x - \frac{a}{2}\right)^2 + \left(y - \frac{a}{2}\right)^2 = \left(\frac{a}{\sqrt{2}}\right)^2$$
$$\Rightarrow x^2 + y^2 = a(x + y)$$

239 **(b)**

The centre of the ellipse is at (2,3) and its axes are parallel to the coordinate axes. So, let its equation be

$$\frac{(x-2)^2}{a^2} + \frac{(y-3)^2}{b^2} = 1$$

We have,

2*a* = Disatnce between vertices =12⇒ *a* = 6 Also, *e* = 5/6 ∴ *b*² = *a*²(1 - *e*²) ⇒ 36 - 25 = 11 Hence, the equation of the ellipse is $\frac{(x-2)^2}{36}$ + $\frac{(y-3)^2}{11}$ = 1

240 (a)

The equation of the family of coaxial system of circles having $x^2 + y^2 - 6x - 6y + 4 = 0$ and $x^2 + y^2 - 2x - 4y + 3 = 0$ as two members is $x^2 + y^2 - 6x - 6y + 4 + \lambda(-4x - 2y + 1) = 0$ [Using : $S_1 - S_2 = 0$] $\Rightarrow x^2 + y^2 - 2x(3 + 2\lambda) - 2y(3 + \lambda) + 4 + \lambda =$ 0 ...(i) Coordinates of centre of circle (i) are $(3 + 2\lambda, 3 + \lambda)$

λ) Radius = $\sqrt{(3+2\lambda)^2 + (3+\lambda)^2 - (4+\lambda)}$ For limiting points, we must have Radius = $0 \Rightarrow 5 \lambda^2 + 17 \lambda + 14 = 0 \Rightarrow \lambda$ = -2, -7/5Hence, limiting points are (-1,1) and (1/5, 8/5)241 (a) Let (α, β) be the mid point of a chord of the circle $x^2 + y^2 = a^2$. Then its equation is $\alpha x + \beta y = \alpha^2 + \beta^2$ [Using S' = T] This passes through (h, k) $\therefore \alpha h + \beta k = \alpha^2 + \beta^2$ Hence, the locus of (α, β) is $x^2 + y^2 = hx + ky \Rightarrow x^2 + y^2 - hx - ky = 0$ 242 (c) We have, $x \cos \alpha + y \sin \alpha = p$ $\Rightarrow y = -x \cot \alpha + p \csc \alpha$ Since, above line is tangent to the ellipse $\therefore c^2 = a^2m^2 + b^2$ $\Rightarrow p^2 \cos^2 \alpha = a^2 \cot^2 \alpha + b^2$ $\Rightarrow a^2 \cos^2 \alpha + b^2 \sin^2 \alpha = p^2$ 243 (d) Given equation of parabola is $y^2 = 16x$ If (1, 1) is the mid point of the chord, then its equation of chord is $T = S_1$ $\therefore y(1) - 8(x+1) = 1 - 16$ $\Rightarrow y - 8x - 8 = -15$ $\Rightarrow 8x - y = 7$ 244 (c) The vertex in a mid point of focus and directrix. Hence, coordinate of vertex is (1, 0)245 (d) The equation of a tangent to $y^2 = 8x$ is $y = mx + \frac{2}{m}$...(i) This will touch the hyperbola $\frac{x^2}{y^2} - \frac{y^2}{y^2} = 1$, if

$$\frac{4}{m^2} = m^2 - 3 \qquad [\text{Using}: c^2 = a^2m^2 - b^2]$$

$$\Rightarrow m^4 - 3m^2 - 4 = 0 \Rightarrow (m^2 - 4)(m^2 + 1) = 0$$

$$\Rightarrow m = \pm 2$$

So, equations of common tangents are

 $y = (\pm 2) x \pm 1$ or, 2x - y + 1 = 0 and 2x + y + 1 = 0

247 (a)

Equation of any tangent to the given ellipse is

$$y = mx \pm \sqrt{a^2m^2 + b^2}$$

 $\Rightarrow y - mx = \pm \sqrt{a^2 m^2 + b^2} \quad ...(i)$ Equation of perpendicular line is $my + x = \lambda$ It passes through the centre (0, 0) $\therefore \lambda = 0$ $\therefore my + x = 0 \quad ...(ii)$ On squaring and adding Eqs. (i) and (ii) $y^2 + m^2 x^2 + m^2 y^2 x^2 = a^2 m^2 + b^2$ $(1 + m^2)(x^2 + y^2) = a^2 m^2 + b^2$ $\Rightarrow \left(1 + \frac{x^2}{y^2}\right)(x^2 + y^2) = \frac{a^2 x^2}{y^2} + b^2$ $\Rightarrow (x^2 + y^2)^2 = a^2 x^2 + b^2 y^2$ But $(x^2 + y^2)^2 = lx^2 + my^2$ $\therefore l = a^2, m = b^2$

248 (d)

If y = mx + c is a tangent to $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, then $c^2 = a^2m^2 + b^2$. We have, $a^2 = 6, b^2 = 3$ $\therefore c^2 = 6 m^2 + 3$

249 **(b)**

The given point (-a, 2a) lies on the directrix x = -a of the parabola $y^2 = 4 ax$. Thus, the tangents are at right angle

251 **(a)**

Let P(x, y) be any point on the ellipse. Then, by definition, we have

SP = e PM, where PM is the length of perpendicular from P on the directrix

$$\Rightarrow \sqrt{(x-1)^2 + (y+1)^2} = \frac{1}{2} \left| \frac{x-y-3}{\sqrt{2}} \right|$$

$$\Rightarrow (x-1)^2 + (y+1)^2 = \frac{1}{8} (x-y-3)^2$$

$$\Rightarrow 7 x^2 + 2 xy + 7 y^2 - 10 x + 10 y + 7 = 0$$

Hence, the equation of the ellipse is

$$7x^{2} + 2xy + 7y^{2} - 10x + 10y + 7 = 0$$

252 (c)

Let $P(4t_2^2, 8t_2)$ be the end-points of a focal chord of the parabola $y^2 = 16 x$. Then,

$$PQ = 4(t_2 - t_1)^2$$

Now, Slope of $PQ = 2$
 $\Rightarrow \frac{8t_2 - 8t_1}{4t_2^2 - 4t_1^2} = 2 \Rightarrow t_2 + t_1 = 1$

 $\therefore PQ = 4(t_2 - t_1)^2 = 4\{(t_2 + t_1)^2 - 4t_1t_2\}$ $\Rightarrow PQ = 4\{(t_2 + t_1)^2 + 4\} = 4(1 + 4) = 20$ <u>ALITER</u> We know that the length of a focal chord of the parabola $y^2 = 4ax$ making an angle θ with the axis of the parabola is $4a \operatorname{cosec}^2 \theta$ Here, we have

a = 4 and $\tan \theta = 2$

: Length of the focal chord = $16\left(1+\frac{1}{4}\right) = 20$

253 (b)

Since, given lines are parallel to each other, so the line segment joining the points of contact is diameter of the circle. Distance between the lines 3x - 4y + 5 = 0 and $3x - 4y - \frac{9}{2} = 0$ is

$$\left|\frac{5+\frac{9}{2}}{\sqrt{3^2+4^2}}\right| = \left|\frac{19}{10}\right| = 1.9$$

Length of diameter of the circle is 1.9

$$\therefore$$
 Radius of circle $=\frac{1.9}{2}=0.95$

254 (a)

Let the point be $P(\sqrt{2}\cos\theta,\sin\theta)$ on $\frac{x^2}{2} + \frac{y^2}{1} = 1$

 \Rightarrow Equation of tangent is

$$\frac{x\sqrt{2}}{2}\cos\theta + y\sin\theta = 1$$

Whose intercept on coordinate axes are $A(\sqrt{2} \sec \theta, 0)$ and $B(0, \csc \theta)$

 \div Mid point of its intercept between axes is

$$\left(\frac{\sqrt{2}}{2}\sec\theta, \frac{1}{2}\csc\theta\right) = (h, k)$$
$$\cos\theta = \frac{1}{\sqrt{2h}} \text{ and } \sin\theta = \frac{1}{2k}$$

Thus, locus of mid point M is

$$\cos^2 \theta + \sin^2 \theta = \frac{1}{2h^2} + \frac{1}{4k^2}$$
$$\Rightarrow \frac{1}{2x^2} + \frac{1}{4y^2} = 1$$

255 (c)

256 (a)

Given, $\frac{x^2}{16} + \frac{y^2}{9} = 1$

Sum of the focal distance = $2a = 2 \times 4 = 8$

To maximise the area of $\Delta S_1 P S_2$ altitude should be maximum as base S_1, S_2 is fixed. So, *P* should be (0, b)

$$y = (0, b)$$

$$y = (0, b)$$

$$P = (0, b)$$

257 **(b)**

λ

For real circle, we must have

$$\sin \alpha \ge 0 \Rightarrow \alpha \in [0, \pi]$$

Now, $x - \text{intercept} > 2$
 $\Rightarrow \sqrt{\sin \alpha - \cos \alpha + 1} > 2$
 $\Rightarrow \sin \alpha - \cos \alpha + 1 > 1$
 $\Rightarrow \sin \alpha - \cos \alpha > 0$
 $\Rightarrow \sin \left(\alpha - \frac{\pi}{4}\right) > 0 \Rightarrow 0 < \alpha - \frac{\pi}{4} < \pi \Rightarrow \frac{\pi}{4} < \alpha$
 $< \frac{5\pi}{4}$
But, $\alpha \in [0, \pi]$ [$\therefore \frac{\pi}{4} < \alpha \le \pi \text{ i. e. } \alpha \in (\pi/4, \pi)$]

258 (c)

Let any point on the parabola be $(at^2, 2at)$ If the equation of parabola is $y^2 = 4ax$, then focus is (a, 0)Let the focus of a point be (α, β) if it is a mid point $\therefore \alpha = \frac{at^2 + a}{2}, \beta = \frac{2at + 0}{2}$ $\Rightarrow 2\alpha = at^{2} + a, \qquad \beta = at$ $\therefore 2\alpha = a\left(\frac{\beta}{a}\right)^{2} + a$ $\Rightarrow 2a\alpha = \beta^2 + a^2$ $\Rightarrow \beta^2 = -a^2 + 2a\alpha$ $\Rightarrow \beta^2 = \frac{4a}{2} \left(\alpha - \frac{a}{2} \right)$ \therefore The locus is $y^2 = \frac{4a}{2}\left(x - \frac{a}{2}\right)$ The directrix is $X = -\frac{a}{2}$ $\Rightarrow x - \frac{a}{2} = -\frac{a}{2}$ $\Rightarrow x = 0$ 259 (a) Let the equation of circle is $x^{2} + y^{2} + 2gx + 2fy + c = 0$ Since, $\left(m, \frac{1}{m}\right)$ lies on this circle $\therefore \ m^2 + \frac{1}{m^2} + 2gm + \frac{2f}{m} + c = 0$ $\Rightarrow m^4 + 2gm^3 + cm^2 + 2fm + 1 = 0$ $\Rightarrow m_1 m_2 m_3 m_4 = 1$ 260 (b) Any line touching the parabola $y^2 = 4 ax$ can be

written as

 $y = mx + \frac{a}{m} \qquad \dots (i)$ Equation of a line passing through the focus (a, 0)and perpendicular to (i) is $y = -\frac{1}{m}(x - a) \qquad \dots (ii)$ Let P(h, k) be the point of intersection of (i) and (ii). Then, $k = mh + \frac{a}{m} \text{ and } k = -\frac{1}{m}(h - a)$ $\Rightarrow mh + \frac{a}{m} = -\frac{1}{m}(h - a)$ $\Rightarrow mh = -\frac{h}{m} \Rightarrow (m^2 + 1)h = 0 \Rightarrow h = 0$ Hence, the locus of P(h, k) is x = 0, Which is a line tangent to the parabola $y^2 = 4 ax$ at the vertex 261 **(b)** Given parabola is $y^2 = 12 x$

Here, a = 3

For point P(x, y), y = 6

This point lie on the parabola

 $\therefore \quad (6)^2 = 12x \implies x = 3$

Thus , focal distance of point P is 6

262 (c)

The centre of given circle is (1, 3) and radius is 2. So, *AB* is a diameter of the given circle has its mid point as (1, 3). The radius of the required circle is 3

263 **(b)**

We know that, if two perpendicular tangents to the circle $x^2 + y^2 = a^2$ meet at *P*, then the point *P* lies on a director circle

 \therefore Required locus is $x^2 + y^2 = 32$

264 **(a)**

It is given that the coordinates of the centre, focus and adjacent vertex of an ellipse are

(2, -3), (3, -3) and (4, -3) respectively. So,

$$\frac{(x-2)^2}{a^2} + \frac{(y+3)^2}{b^2} = 1$$

Clearly, ae = Distance between centre (2, -3) and focus (3, -3)and, a = Distance between centre (2, -3) and vertex (4, −3) $\Rightarrow ae = 1 \text{ and } a = 2 \Rightarrow a = 2, e = \frac{1}{2}$ $\therefore b^2 = a^2(1 - e^2) \Rightarrow b^2 = 3$ So, the equation of the ellipse is $\frac{(x-2)^2}{4} + \frac{(y+3)^2}{3} =$ 1 265 (a) Centres and radii of the given circles are $C_1(0,0), r_1 = 3$ And $C_2(-\alpha, -1)$ and $r_2 = \sqrt{\alpha^2 + 1 - 1} = |\alpha|$ Since, two circles touch internally, $\therefore \quad C_1 C_2 = r_1 - r_2$ $\Rightarrow \sqrt{\alpha^2 + 1^2} = 3 - |\alpha|$ $\Rightarrow \alpha^2 + 1 = 9 + \alpha^2 - 6|\alpha|$ $\Rightarrow 6|\alpha| = 8$ $\Rightarrow |\alpha| = \frac{4}{2}$ $\Rightarrow \alpha \pm \frac{4}{2}$ 266 (d) We have, $x = \frac{a}{2} \left(\frac{t+1}{t} \right), y = \frac{a}{2} \left(\frac{t-1}{t} \right)$ $\Rightarrow \frac{2x}{a} = 1 + \frac{1}{t}, \frac{2y}{a} = 1 - \frac{1}{t}$ $\Rightarrow \frac{2x}{a} - 1 = \frac{1}{t}, 1 - \frac{2y}{a} = \frac{1}{t}$ $\Rightarrow \frac{2x}{a} - 1 = 1 - \frac{2y}{a} \Rightarrow x + y = a$, which is a straight line 267 (c) Let the coordinates of focus be S(a, 0)

Let any point on the parabola be $P(at^2, 2at)$. Let the coordinates of mid point of *P* and *S* be (x_1, y_1)

$$\therefore x_1 = \frac{a + at^2}{2}, y_1 = \frac{0 + 2at}{2}$$
$$\Rightarrow at^2 = 2x_1 - a, \qquad y_1 = at$$
$$\Rightarrow a\left(\frac{y_1}{a}\right)^2 = 2x_1 - a$$

 $\Rightarrow y_1^2 = 2x_1a - a^2$ =Hence , the locus of the mid point is

$$y^2 = 2a\left(x - \frac{a}{2}\right)$$
: Equation of directrix is $x - \frac{a}{2} = -\frac{a}{2} \Rightarrow x = 0$

268 **(c)**

The equation of any tangent to $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ is

$$y = mx + \sqrt{a^2m^2 - b^2}$$

If it passes through (c, d) , then
 $d = mc + \sqrt{a^2m^2 - b^2}$
 $\Rightarrow m^2(c^2 - a^2) - 2mcd + d^2 + b^2 = 0$
This equation gives two values of *m* i.e. slopes of
tangents passing through (c, d) . This means that
tan α and tan β are its roots.

$$\therefore \tan \alpha \tan \beta = \frac{d^2 + b^2}{c^2 - a^2}$$
$$\Rightarrow 1 = \frac{d^2 + b^2}{c^2 - a^2} \Rightarrow c^2 - d^2 = a^2 + b^2$$

269 (d)

If $P(at^2, 2at)$ be one end of a focal chord of the parabola $y^2 = 4ax$, then another end of chord will be $Q\left(\frac{a}{t^2}, \frac{-2a}{t}\right)$

2

 \therefore Length of focal chord = PQ

$$= \sqrt{\left(\frac{a}{t^2} - at^2\right)^2 + \left(-\frac{2a}{t} - 2at\right)^2}$$
$$= a\left(\frac{1}{t} + t\right)\sqrt{\left(\frac{1}{t} - t\right)^2 + 4}$$
$$= a\left(\frac{1}{t} + t\right)^2$$

270 (a)

Given, $(\pm ae, 0) = (\pm 3, 0)$

- $\Rightarrow ae = 3$
- $\Rightarrow a^2 e^2 = 9$
- $\Rightarrow b^2 + a^2 = 9$...(i)

$$\therefore 2x + y - 4 = 0$$

$$\Rightarrow y = -2x + 4$$

is the tangent to the hyperbola

∴
$$(4)^2 = a^2(-2)^2 - b^2$$

⇒ $4a^2 - b^2 = 16$...(ii)

On solving Eqs. (i) and (ii), we get

 $a^2 = 5, b^2 = 4$

: Equation of hyperbola is $\frac{x^2}{5} - \frac{y^2}{4} = 1$

$$\Rightarrow 4x^2 - 5y^2 = 20$$

271 (a)

Given circles intersect orthogonally. So, the length of their common chord is

$$l = \frac{2 r_1 r_2}{\sqrt{r_1^2 + r_2^2}}$$

where r_1 and r_2 are the radii of the given circles Here $r_1 = \sqrt{5}$ and $r_2 = \sqrt{3}$

$$\therefore \ l = \frac{2\sqrt{15}}{\sqrt{5+3}} = \sqrt{\frac{15}{2}}$$

272 **(b)**

Put $x = at^2$ in the given equation, we get

$$\frac{a^{2}t^{4}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1$$
$$y^{2} = b^{2}(1 - t^{2})(1 + t^{2})$$

This will give real values of *y*, if

 $1-t^2 \ge 0 \; \Rightarrow \; |t| \le 1$

274 **(b)**

Since a radius of circle C_1 is 2 and this circle touches both the axes So, centre of circle $C_1 = (2, 2)$ and let radius of another circle is r and this circle also touches both the axes so centre of circle $C_2 = (r, r)$ Since, both circles touches each other $\sqrt{(r-2)^2 + (r-2)^2} = 2 + r$ $\Rightarrow 2(r-2)^2 = (r+2)^2$ \Rightarrow $r^2 - 12r + 4 = 0$ $\Rightarrow r = \frac{12 \pm \sqrt{128}}{2} = 6 \pm 4\sqrt{2}$ \Rightarrow $r = 6 + 4\sqrt{2}$ [:: r > 2] 275 (d) Given parabola is $x^2 = -2y$ Coordinates of end points of a latusrectum are $A\left(1,-\frac{1}{2}\right)$ and $B\left(-1,-\frac{1}{2}\right)$ Now, $2x = -2\frac{dy}{dx}$ $\Rightarrow \frac{dy}{dx} = -x$ And slope of normal is $-\frac{dx}{dy} = \frac{1}{x}$ The equations of normals at points A and B are $y + \frac{1}{2} = \frac{1}{1}(x - 1)$ $\Rightarrow 2y - 2x = -3$...(i)

And $y + \frac{1}{2} = -\frac{1}{1}(x+1)$ $\Rightarrow 2y + 2x = -3$...(ii) On solving Eqs. (i) and (ii), we get $x = 0, y = -\frac{3}{2}$ 276 (a) Let $P(x_1, y_1)$ and $Q(x_2, y_2)$ be end points of diameter PQ. Then, $x_1 + x_2 = -2$, $x_1 x_2 = -3$, $y_1 + y_2 = -4$ and $y_1 y_2 = -12$ The equation of the circle having *PQ* as a diameter $x^{2} + y^{2} - x(x_{1} + x_{2}) - y(y_{1} + y_{2}) + x_{1}x_{2} + y_{1}y_{2}$ $\Rightarrow x^{2} + y^{2} + 2x + 4y - 3 - 12 = 0$ $\Rightarrow x^{2} + y^{2} + 2x + 4y - 15 = 0$ 277 (a) The locus of the point of intersection of perpendicular tangents to an ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is its director circle $x^2 + y^2 = a^2 + b^2$ 278 (c) Let the required circle be $x^{2} + y^{2} + 2 gx + 2 fy + x = 0$...(i) This passes through (0,0). Therefore, c = 0The centre (-g, -f) of circle (i) lies on y = x. Therefore, g = fSince (i) cuts the circle $x^2 + y^2 - 4x - 6y + y^2 - 4x - 6y + y^2 - 4x - 6y + y^2 - 4y + y^2 + y^2 - 4y + y^2 + y^2 + y^2 + y^2 + y^2 - 4y + y^2 + y^$ 10 = 0 orthogonally $\therefore 2(-2 g - 3 f) = c + 10$ $[\because g = f \text{ and } c = 0]$ $\Rightarrow -10 \ g = 10$ $\Rightarrow g = f = -1$ Hence, the required circle is $x^2 + y^2 - 2x - 2y =$ 0 279 (d) ∴ equation of common chord is $(x^2 + y^2 + 2x - 3y + 6)$ $-(x^{2} + v^{2} + x - 8v - 13) = 0$ $[:: S_1 - S_2 = 0]$ $\Rightarrow x + 5y + 19 = 0$ In the given option, only the point (1, -4) satisfies 284 (d) this equation 280 (b) Given, $x^2 + y^2 - 7x + 9y + 5 = 0$ $\therefore R = \sqrt{\left(\frac{-7}{2}\right)^2 + \left(\frac{9}{2}\right)^2 - 5}$ = $\frac{49}{4} + \frac{81}{4} - 5 = \frac{\sqrt{110}}{2}$

In $\triangle OAB$, $\cos 30^\circ = \frac{AB}{R} \Rightarrow \frac{\sqrt{3}}{2} = \frac{AB}{\frac{\sqrt{110}}{2}}$ $\Rightarrow \frac{\sqrt{330}}{A} = AB$ $\therefore \text{ Length } AC = \frac{\sqrt{330}}{2}$: Area of equilateral $\Delta = \frac{\sqrt{3}}{4} (a)^2$ $=\frac{\sqrt{3}}{4} \times \frac{330}{4} = \frac{165\sqrt{3}}{4}$ sq units 281 (b) Given equation is $y^2 - 8y - x + 19 = 0$ $\Rightarrow (y-4)^2 = x-3$ \Rightarrow $Y^2 = 4AX$, where Y - y - 4, $A = \frac{1}{4}$ and X =x - 3 $\therefore \text{ Focus is } (A,0) = \left(\frac{1}{4}, 0\right) = \left(\frac{13}{4}, 4\right)$ Vertex is (0, 0) = (3, 4)Directrix is $x = -A \Rightarrow x - 3 = -\frac{1}{A}$ $\Rightarrow x = \frac{11}{4}$ 282 (b) Centre and radii of two circles are $C_1(0,0), C_2(1,2)$ and $r_1 = \sqrt{5}, r_2 = 2\sqrt{5}$ Since, $C_1 C_2 = \sqrt{5} = r_2 - r_1$, therefore, the two circles touch each other internally 283 (c) The point of intersection of given curves are (0, 0)and (1, 1) : Length of common chord = $\sqrt{1^2 + 1^2} = \sqrt{2}$ Equation of pair of tangents is $(a^2 - 1)y^2 - x^2 + 2ax - a^2 = 0$ If θ be the angle between the tangents, then $\tan \theta = \frac{2\sqrt{(h^2 - ab)}}{a + b}$ $= \frac{2\sqrt{-(a^2 - 1)(-1)}}{a^2 - 2}$ $= \frac{2\sqrt{a^2 - 1}}{a^2 - 1}$

$$∴ θ \text{ lies in II quadrant, the tan } θ < 0 ∴ $\frac{2\sqrt{a^2 - 1}}{a^2 - 2} < 0 ⇒ a^2 - 1 > 0 \text{ and } a^2 - 2 < 0 ⇒ 1 < a^2 < 2 ⇒ a ∈ (-\sqrt{2}, -1) ∪ (1, \sqrt{2})$$$

285 (b)

Let the equation of hyperbola is

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
 ...(i)

It passes through the point (3, 0) and $(3, \sqrt{2}, 2)$.

$$\therefore \frac{9}{a^2} = 1 \Rightarrow a^2 = 9$$

And $\frac{18}{a^2} - \frac{4}{b^2} = 1 \Rightarrow \frac{4}{b^2} = \frac{18}{9} - 1$
$$\Rightarrow \frac{4}{b^2} = 1 \Rightarrow b^2 = 4$$

$$\therefore \text{ Eccentricity of hyperbola,}$$

$$e = \sqrt{1 + \frac{b^2}{a^2}} = \sqrt{1 + \frac{4}{9}} = \frac{\sqrt{13}}{3}$$

286 (b)

The centres of the two circles will lie on the line through P(1, 2) perpendicular to the common tangent 4x + 3y = 10. If C_1 and C_2 are the centres of these circles, then $PC_1 = 5 = r_1, PC_2 = -5 = r_2$. Also, C_1, C_2 lie on the line $\frac{x-1}{\cos \theta} = \frac{y-2}{\sin \theta} = r$, where $\tan \theta = \frac{3}{4}$. When $r = r_1$ the coordinates of C_1 are $(5 \cos \theta + 1, 5 \sin \theta + 2)$ or (5, 5) as $\cos \theta =$ $\frac{4}{5}$, sin $\theta = \frac{3}{5}$ When $r = r_2$, the coordinates of C_2 are (-3, -1)The circle with centre $C_1(5,5)$ and radius 5 touches both the coordinates axes and hence lies completely in the first quadrant Therefore, the required circle is with centre (-3, -1) and radius 5, so its equation is $(x+3)^2 + (y+1)^2 = 5^2$ or $x^2 + y^2 + 6x + 2y - 15 = 0$ Since, the origin lies inside the circle, a portion of the circle lies in all the quadrants 287 (d) The slopes of *AP* and *AQ* (*A* is the vertex) are given by

 $m_1 = \frac{2 a t_1 - 0}{a t_1^2 - 0} = \frac{2}{t_1} \text{ and } m_2 = \frac{2 a t_2 - 0}{a t_2^2 - 0} = \frac{2}{t_2}$ Now, $AP \perp AQ \Rightarrow m_1 m_2 = -1 \Rightarrow \frac{2}{t_1} \cdot \frac{2}{t_2} = -1$ $\Rightarrow t_1 t_2 = -4$

288 **(b)**

The centre and radii of circles are $C_1(0,0), C_2(3,4)$ and

 $r_1 = 2, r_2 = \sqrt{9 + 16 - 24} = 1$ Now, $C_1 C_2 = \sqrt{(3-0)^2 + (4-0)^2} = 5$ $r_1 + r_2 = 2 + 1 = 3$ Since, $C_1 C_2 > r_1 + r_2$ \therefore Number of common tangents=4 289 (c) Let point of intersection be (h, k). Then, equation of the line passing through *P* and *Q* is hx + 2ky =4 (chord of contact) Since, hx + 2ky = 4 touches $x^2 + y^2 = 1, \frac{16}{4k^2} = 1$ $1 + \frac{h^2}{4k^2}$ *ie*, $4k^2 + h^2 = 16$. So, required locus is $4y^2 +$ $x^2 = 16$, which is an ellipse of eccentricity $\frac{\sqrt{3}}{2}$ and length of latusrectum is 2 unit 290 (a) The centre and radius of circle 1 $x^2 + y^2 - x - y - 1 = 0$ are $\left(\frac{1}{2}, \frac{1}{2}\right)$ and $\sqrt{\frac{3}{2}}$ respectively and the centre and radius of circle

 $x^2 + y^2 - 2x + 2y - 7 = 0$

are (1, -1) are 3 respectively

Distance between the centres is $\sqrt{\frac{5}{2}} < 3 - \sqrt{\frac{3}{2}}$

 $(\because C_1 C_2 < r_1 - r_2)$

 \therefore First circle is completely inside the second circle

2. The centre and radius of circle

 $x^2 + y^2 + 14x + 12y + 21 = 0$

are (-7, 6) and 8 respectively and the centre and radius of circle

 $x^2 + y^2 + 2x - 4y - 4 = 0$

are (-1, 2) and 1 respectively

Distance between the centres is $2\sqrt{13} > 8 + 1$ (:: $C_1C_2 > r_1 + r_2$)

These two circles intersect each other, therefore the number of common tangents is 2. Hence, only first statements is correct

291 **(b)**

We know that the sum of the focal distance of a

point on an ellipse is equal to the length of the major axis of the ellipse

 $\therefore SP + S'P = 12$

292 **(a)**

Let (h, k) be the pole. Then, the equation of the polar is

$$ky = 2a(x+h) \Rightarrow y = \left(\frac{2a}{k}\right)x + \frac{2ah}{k}$$

This touches the ellipse $\frac{x^2}{\alpha^2} + \frac{y^2}{\beta^2} = 1$
 $\therefore \left(\frac{2ah}{k}\right)^2 = \alpha^2 \left(\frac{2a}{k}\right)^2 + \beta^2 \Rightarrow 4a^2 h^2$
 $= 4a^2\alpha^2 + \beta^2k^2$
Hence the locus of (h, k) is $4a^2 x^2 = 4a^2\alpha^2$

Hence, the locus of (h, k) is $4a^2 x^2 = 4a^2\alpha^2 + \beta^2 y^2$

293 **(b)**

The equation of the chord of contact of tangents drawn from (1,2) to $3x^2 - 4y^2 = 3$ is 3x - 8y = 3

294 (a)

Let $C(\alpha, \beta)$ be the circumcentre of ΔPT_1T_2 . Then, $\alpha = \frac{h}{2}$ and $\beta = \frac{k}{2} \Rightarrow h = 2 \alpha$ and $k = 2 \beta$ Since (h, k) lies on px + qy - r = 0 $\therefore ph + qk - r = 0 \Rightarrow 2p \alpha + 2q \beta - r = 0$

Hence, the locus of (α, β) is

$$2 px + 2qy - r = 0 \Rightarrow px + qy - \frac{r}{2} = 0$$

295 **(b)**

The centre and radius of given circle are $C_1\left(-\frac{3}{2},3\right)$ and $r_1 = \frac{9}{2}$

Let the centre and radius of required circle are $C_2(g, f)$ and $r_2 = 2$

Since, the required circle is rolled outside the given circle.

$$\therefore \ C_1 C_2 = r_1 + r_2$$

$$\Rightarrow \sqrt{\left(g + \frac{3}{2}\right)^2 + (f - 3)^2} = 2 + \frac{9}{2}$$

$$\Rightarrow \ g^2 + \frac{9}{4} + 3g + f^2 + 9 - 6f = \left(\frac{13}{2}\right)^2$$

$$\Rightarrow \ g^2 + f^2 + 3g - 6f = 31$$

Hence, locus of the centre is $x^2 + y^2 + 3x - 6y - 31 = 0$ 296 (a) Given, $x + 1 = \sec t$, $\frac{y-2}{2} = \tan t$ Since $\sec^2 t - \tan^2 = 1$ $\therefore \frac{(x+1)^2}{1} - \frac{(y-2)^2}{9} = 1$ Now, $e = \sqrt{1 + \frac{b^2}{a^2}} = \sqrt{1 + \frac{9}{1}} = \sqrt{10}$ \therefore Foci = $(-1 \pm ae, 2)$ $= (-1 - \sqrt{10}, 2)$ and $(-1 + \sqrt{10}, 2)$ 297 (b) We have, PA + PB = 4 \Rightarrow *P* lies on the ellipse having its foci at *A* and *B* and length of the major axis = 4298 (c) It is given that the vertices of an ellipse are at A'(-12,4)6 and A(14,4). So, its centre is at (1,4) and $2a = \text{Length of major axis} = 26 \Rightarrow a = 13$ Clearly, major axis is parallel to x-axis $\therefore b^2 = a^2(1 - e^2) = 169\left(1 - \frac{144}{169}\right) = 25$ Hence, the equation of the ellipse is $\frac{(x-1)^2}{169}$ + $\frac{(y-4)^2}{25} = 1$ 299 (c) Let $L\left(ae, \frac{b^2}{a}\right)$ be an end of latusrectum The equation of normal at *L* is $\frac{a}{a}x - ay = a^2 - b^2$ or, $\frac{a}{a}x - ay = a^2e^2$ It cuts major axis at $G(ae^3, 0)$ $\therefore CG = ae^3$ 300 (a) We know that the locus of the point of intersection of perpendicular tangents to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ is a circle $x^2 + y^2 = a^2 - a^2 - b^2$ b^2 . Thus, locus of the point of intersection of perpendicular tangents to the hyperbola $\frac{x^2}{3} - \frac{y^2}{1} =$ 1 is a circle $x^2 + y^2 = 3 - 1$ $\Rightarrow x^2 + y^2 = 2$ 301 (b)

The equation of the ellipse is

$$25(x^2 - 6x) + 16(y^2) = 175$$

 $\Rightarrow 25(x - 3)^2 + 16(y - 0)^2 = 400$
 $\Rightarrow \frac{(x - 3)^2}{16} + \frac{(y - 0)^2}{25} = 1$

The major axis of this ellipse is on a line parallel to *y*-axis i.e. x = 3. Therefore, its eccentricity *e* is given by

$$e = \sqrt{1 - \frac{a^2}{b^2}} = \sqrt{1 - \frac{16}{25}} = \frac{3}{5}$$

302 **(a)**

As distance of vertex from origin is $\sqrt{2}$ and focus is $2\sqrt{2}$

 \therefore *V*(1,1) and *F*(2,2) (*ie*, lying on *y* = *x*)

Length of latusrectum = $4a = 4\sqrt{2}$ [where $a = \sqrt{2}$]

 \therefore By definition of parabola

 $PM^2 = (4a)(PN)$

where, *PN* is length of perpendicular upon x + y - 2 = 0 (*ie*, tangent at vertex)

$$\Rightarrow \frac{(x-y)^2}{2} = 4\sqrt{2} \left(\frac{x+y-2}{\sqrt{2}}\right)$$
$$\Rightarrow (x-y)^2 = 8(x+y-2)$$

303 (a)

Let *RS* and *PQ* are the tangents at the extremities of diameter of circle

In
$$\Delta RQP$$
, $\tan \theta = \frac{PQ}{PR} = \frac{PQ}{2r}$... (i)
Also, in ΔSRP ,

$$\tan\left(\frac{\pi}{2} - \theta\right) = \frac{RS}{RP} = \frac{RS}{2r}$$

$$\Rightarrow \cot \theta = \frac{RS}{2r} \quad \dots \text{(ii)}$$

From Eqs. (i) and (ii), we get

$$\tan \theta \cdot \cot \theta = \frac{PQ \cdot RS}{4r^2}$$

$$\Rightarrow 4r = PQ \cdot RS$$

$$\Rightarrow 2r = \sqrt{(PQ)(RS)}$$

304 (a)

Since the line passing through the focus and perpendicular to the directrix is *x*-axis. Therefore, axis of the required parabola is *x*-axis. Let the coordinates of the focus *S* be (a, 0). Since the vertex is the mid point of the line joining the focus and the point (-5,0) where the directrix x + 5 = 0 meets the axis.

$$\therefore -3 = \frac{a-5}{2} \Rightarrow a = -1$$

Thus, the coordinates of the focus are (-1,0). Let P(x, y) be a point on the parabola. then, by definition, we have

$$\sqrt{(x+1)^2 + y^2} = (x+5)^2 \Rightarrow y^2 = 8(x+3)$$

305 **(c)**

Given equation of parabola is rewritten as $169\{(x-1)^2 + (y-3)^2\}$

$$= (13)^{2} \left\{ \left(\frac{5x - 12y + 17}{13} \right)^{2} \right\}$$

$$\Rightarrow (x - 1)^{2} + (y - 3)^{2} \left(\frac{5x - 12y + 17}{13} \right)^{2}$$

$$\Rightarrow SP = PM$$

:. Focus is (1, 3) and equation of directrix is 5x - 12y + 17 = 0The distance of the focus from directrix = $\left|\frac{5-36+17}{\sqrt{25+144}}\right| = \frac{14}{13}$

 $\therefore \text{ Length of latusrectum} = 2 \times \frac{14}{13} = \frac{28}{13}$

306 **(a)**

Since the length of the subtangent at a point on the parabola is twice the abscissa of the point and the length of the subnormal is equal to semilatusrectum. Therefore, if P(x, y) is the required point, then

$$2x = 2a \Rightarrow x = a$$

Since (x, y) lies on the parabola $y^2 = 4ax$
 $\therefore y^2 = 4ax$
 $\Rightarrow 4a^2 = y^2 \Rightarrow y = \pm 2a$
Thus, the required points are $(a, 2a)$ and $(a, -2a)$

307 **(b)**

Normal at
$$\left(ae, \frac{b^2}{a}\right)$$
 of ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is
 $\frac{x - ae}{\frac{ae}{a^2}} = \frac{y - \frac{b^2}{a}}{\left(\frac{b^2}{a}/b^2\right)}$

Since, it passes through (0, -b), then

$$\frac{0-ae}{\frac{ae}{a^2}} = \frac{-b-\frac{b}{a}}{\frac{1}{a}}$$

$$\Rightarrow -a^2 = -a\left(b+\frac{b^2}{a}\right)$$

$$\Rightarrow a^2 = ab+b^2$$

$$\Rightarrow a^2 = ab+a^2-a^2e^2 \quad (\because b^2 = a^2-a^2e^2)$$

$$\Rightarrow b = ae^2$$

$$\Rightarrow b^2 = a^2e^4$$

$$\Rightarrow a^2(1-e^2) = a^2e^4$$

$$\Rightarrow 1-e^2 = e^4$$

$$\Rightarrow e^2(e^2+1) = 1$$

308 (b)

Let (α, β) be the pole of the given straight line with respect to the circle $x^2 + y^2 = a^2$.then, the equation of the polar is

 $\begin{aligned} \alpha x + \beta y - a^2 &= 0 \quad \dots(i) \\ \text{It is given that } (\alpha, \beta) \text{ lies on the circle } x^2 + y^2 &= \\ 9 a^2 \\ \therefore \alpha^2 + \beta^2 &= 9 a^2 \quad \dots(ii) \\ \text{Since line in (i) touches the circle } x^2 + y^2 &= r^2 \\ \therefore \left| \frac{-a^2}{\sqrt{\alpha^2 + \beta^2}} \right| &= r \Rightarrow \frac{a^2}{\sqrt{9 a^2}} = r \Rightarrow 9 r^2 = a^2 \end{aligned}$

309 (c)

Given equation can be rewritten as

 $(x+2)^2 = -2(y-2)$

Equation of latusrectum is

$$y-2 = -\frac{1}{2} \Rightarrow y = \frac{3}{2} \Rightarrow 2y = 3$$

311 (a)

Given,
$$y = mx + \frac{25\sqrt{3}}{3}$$
 ... (i)
and $\frac{x^2}{16} + \frac{y^2}{9} = 1$... (ii)

Here, Eq. (i) is normal to Eq. (ii), then

$$\frac{(a^2 + b^2)^2}{c^2} = \frac{a^2}{m^2} - \frac{b^2}{1}$$
$$\Rightarrow \frac{(16+9)^2 \times 9}{625 \times 3} = \frac{16}{m^2} - \frac{9}{1}$$

$$\Rightarrow \frac{16}{m^2} = 12 \Rightarrow m = \pm \frac{2}{\sqrt{3}}$$

$$\begin{bmatrix} \therefore \text{ condition for } lx + my + n \\ = 0 \text{ to be a hyperbola is } \frac{a^2}{l^2} - \frac{b^2}{m^2} = \frac{(a^2 + b^2)^2}{n^2} \end{bmatrix}$$

312 (c)
Given equation can be rewritten as

$$\Rightarrow \frac{(x-1)^2}{4} + \frac{(y-1)^2}{9} = 1$$
Also $e = \sqrt{1 - \frac{4}{9}} = \frac{\sqrt{5}}{3}$ [:: $a < b$]
 \therefore Equations of latusrectum are

$$y - 1 = \pm 3.\frac{\sqrt{5}}{3} \text{ [using } y = \pm be\text{]}$$
$$\Rightarrow y = 1 + \sqrt{5}$$

The equations of the circles are

$$x^{2} + y^{2} + \frac{\lambda}{2}x - \left(\frac{1+\lambda^{2}}{2}\right)y - 5 = 0 \quad \dots (i)$$

And,
$$x^{2} + y^{2} + 4x + 6y + 3 = 0 \quad \dots (ii)$$

These circles will be orthogonal, if
$$2(g_{1}g_{2} + f_{1}f_{2}) = c_{1} + c_{2}$$

$$\Rightarrow 2\left\{2 \times \frac{\lambda}{4} + 3 \times \left(\frac{1+\lambda^{2}}{-4}\right)\right\} = -5 + 3$$

$$\Rightarrow \lambda - \frac{3}{2}(1+\lambda^{2}) = -2$$

$$\Rightarrow 2\lambda - 3 - 3\lambda^{2} = -4 \Rightarrow 3\lambda^{2} - 2\lambda - 1 = 0 \Rightarrow \lambda$$

$$= 1, -1/3$$

Hence, there are two circles

314 **(d)**

The equation of the hyperbola $x^2 - y^2 = a^2$ referred to its asymptotes as the coordinates axes is $xy = \frac{a^2}{2}$

Comparing xy = 32 with $xy = \frac{a^2}{2}$, we get a = 8: Length of semi-transverse axis = 8

315 **(c)**

The equation of a normal to the parabola $y^2 = 24x$ is $y = mx - 12 m - 6 m^3$, Where *m* is the slope of the normal But, it is parallel to y = 2 x + 3. Therefore, m = 2Thus, the equation of the parallel normal is

 $y = 2 x - 24 - 48 \Rightarrow y = 2 x - 72$ The distance 'd' between y = 2x + 3 and y =2x - 72 is given by $d = \left| \frac{72 + 3}{\sqrt{4 + 1}} \right| = 15\sqrt{5}$ 316 (d) We have, Area of $\triangle SPS' = \frac{1}{2}$ (Base × Height) \Rightarrow Area of $\triangle SPS' = \frac{1}{2}(2ae) \times \beta$ \Rightarrow Area of $\Delta SPS' = ae \beta$ = ae $\times \frac{b}{a}\sqrt{a^2 - \alpha^2} \left[\because \frac{\alpha^2}{a^2} + \frac{\beta^2}{b^2} = 1 \right]$ \Rightarrow Area of \triangle SPS' = $be\sqrt{a^2 - a^2}$ 317 (c) Let the equation of the circle be $x^2 + y^2 + 2gx + 2fy + c = 0$ Since, this passes through (1, 2) $\therefore 1^2 + 2^2 + 2g(1) + 2f(2) + c = 0$ $\Rightarrow 5 + 2q + 4f + c = 0$...(i) Also, the circle $x^2 + y^2 = 4$ intersects the circle $x^{2} + y^{2} + 2gx + 2fy + c = 0$ orthologonally \therefore 2(q.0+f.0) = c - 4 \Rightarrow c = 4 On putting the value of *c* in Eq. (i), we get 2g + 4f + 9 = 0Hence, the locus of centre (-g, -f) is $-2x - 4y + 9 = 0 \implies 2x + 4y - 9 = 0$ 318 (c) We have, $\lambda L_2 L_3 + \mu L_3 L_1 + \nu L_1 L_2 = 0$ $\Rightarrow \lambda(y - m_2 x - c_2)(y - m_3 x - c_3)$ $+\mu(y-m_3x-c_3)(y-m_1x-c_1)$ $+v(y-m_1x-c_1)(y-m_2x-c_2)=0$ This equation will represent a circle, if Coefficient of x^2 = Coefficient of y^2 and Coefficient of xy = 0 $\Rightarrow \lambda(m_2m_3 - 1) + \mu(m_3m_1 - 1) + \nu(m_1m_2 - 1)$ and, $\lambda(m_2 + m_3) + \mu(m_3 + m_1) + \nu(m_1 + m_2) = 0$ 319 (a) Since, *B* and *C* are the ends of diameter as $\angle BAC$ is 90° ∴ Equation of circle is x(x-1) + y(y-1) = 0 $\Rightarrow x^2 + y^2 - x - y = 0$ Now, point *D* satisfies this equation $\Rightarrow 4a^2 + 9a^2 - 5a = 0$ $\Rightarrow a(13a - 5) = 0$

 $\Rightarrow a = 0, a = \frac{5}{12}$ 320 (d) The centres of given circles are $C_1(3, 1)$ and $C_2(-1, 4)$ and corresponding radii are $r_1 = \sqrt{3^2 + 1^2 - 1} = 3$ and $r_2 = \sqrt{(-1)^2 + 4^2 - 13} = 2$ Now, $C_1C_2 = \sqrt{(-1-3)^2 + (4-1)^2} = 5$ $\therefore C_1 C_2 = r_1 + r_2$ Hence, two circles touch externally 321 (b) Given equation can be rewritten as $9(x-1)^2 + 5(y-2)^2 = 45$ $\Rightarrow \frac{(x-1)^2}{5} + \frac{(y-2)^2}{9} = 1$ $\therefore \text{ Eccentricity, } e = \sqrt{1 - \frac{a^2}{b^2}} = \sqrt{1 - \frac{5}{9}} = \frac{2}{3}$ 322 (d) Given that equation of parabola is $y^2 = 8x$ $\Rightarrow a = 2$ We know, if the normal at point $(at_1^2, 2at_1)$ is passing through the point on the parabola $(at_2^2, 2at_2)$, then $t_2 = -t_1 - \frac{2}{t_1}$ Given point is (2, 4) $\Rightarrow at_1^2 = 2$ $\Rightarrow t_1 = 1$ $\therefore t_2 = -1 - \frac{2}{1} = -3$ The other end will be $(at_2^2, 2at_2)ie$, (18, -12)323 (d) The normal to a circle passes through the centre of the circle and centre of circles in (a) and (d) satisfy the equation of the normal. But, the point $\left(3 + \frac{\sqrt{3}}{2}, \frac{\sqrt{3}}{2}\right)$ does not lie on circle given in option (a) Hence, the required circle is as given in option (d) 324 (b) Given equation of curve is $3x^2 - 4y^2 = 72$ Since, the points (6, 3) and (6-3) lies on the curve. At point (6, 3) $d_1 = \frac{3(6) + 2(3) - 1}{\sqrt{3^3 + 2^2}} = \frac{23}{\sqrt{13}}$

At point (6-3)

$$d_2 = \frac{3(6) + 2(-3) - 1}{\sqrt{3^3 + 2^2}} = \frac{11}{\sqrt{13}}$$

Here, d_2 is minimum.

Hence, the point (6, -3) is on the curve which is nearest to the given line

325 **(a)**

The equation of such mirror is an equation of the parabola whose axis is y-axis and whose focus is (0, 0)

$$\therefore \text{ Required equation is } x^2 = 4a(y+a)$$

326 **(d)**

The centres and radii of given circles are $C_1(0,0), r_1 = 4$ and $C_2(0,1),$ $r_2 = \sqrt{0+1} = 1$ Now, $C_1C_2 = \sqrt{0+(0-1)^2} = 1$ and $r_1 - r_2 = 4 - 1 = 3 \therefore C_1C_2 < r_1 - r_2$ Hence second circle lies inside the first circle, so no common tangent is possible

327 **(c)**

The equation of any tangent to the parabola $y^2 = 4 ax$ in terms of its slope *m* is $y = mx + \frac{a}{m}$ and the

coordinates of the point of contact are

 $(a/m^2, 2a/m)$

Therefore, the equation of any tangent to $y^2 = ax$ is

 $y = mx + \frac{a}{4m}$

and the coordinates of the point of contact are $\left(\frac{a}{4 m^2}, \frac{a}{2 m}\right)$ It is given that $m = \tan 45^\circ = 1$ So, the coordinates of the point of contact are

(a/4, a/2)

328 (b) Given, eccentricity, $e = \frac{4}{3}$ Distance between foci = $4 = 2 ae \Rightarrow a^2 = \frac{9}{4}$ $\therefore b^2 = a^2(e^2 - 1) = \frac{9}{4}(\frac{16}{9} - 1) = \frac{7}{4}$ and centre is (0, 4). \therefore Equation of hyperbola is $\frac{x^2}{9} - \frac{(y-4)^2}{7} = \frac{1}{4}$ 329 (a) It is given that the circle with *PQ* as a diameter passes through the origin. This means that $\angle POQ = 90^{\circ}$ i.e. the lines joining the origin to the points of intersection of $ax^2 + 2hxy + by^2 = 1$ and lx + my + n = 0 are at right angle. The combined equation of *OP* and *OQ* is given by

$$ax^{2} + 2hxy + by^{2} = \left(\frac{lx + my}{-n}\right)^{2}$$

This represents a pair of perpendicular lines \therefore Coeff. of x^2 + Coeff. of $y^2 = 0$ $\Rightarrow an^2 - l^2 + bn^2 - m^2 = 0 \Rightarrow l^2 + m^2$ $= (a + b)n^2$

330 **(b)**

The coordinates of the centre of given circle are(6, -2). Clearly the line x + 3y = 0 passes through this point. Hence, x + 3y = 0 is a diameter of the given circle.

331 (c)

The given equation of parabola is $x^2 - 4x - 8y + 12 = 0$ $\Rightarrow x^2 - 4x = 8y - 12$ $\Rightarrow x^2 - 4x + 4 = 8y - 12 + 4$ $\Rightarrow (x - 2)^2 = 8(y - 1)$ \therefore The length of latusrectum = 4a = 8332 (c)

If the coordinates of a point on the parabola $y^2 = 4 ax$ are P(x, y), then its focal distance is SP = x + a. Here, a = 2 and SP = 4 $\therefore 4 = x + 2 \Rightarrow x = 2$ $\therefore y^2 = 8x \Rightarrow y^2 = 8 \times 2 \Rightarrow y = \pm 4$ Thus, the coordinates of the required point are $(2, \pm 4)$

333 (a)

Given equation can be rewritten as

$$36\left(x^{2} - x + \frac{1}{4}\right) + 144\left(y^{2} - \frac{2}{3}y + \frac{1}{9}\right) = 144$$
$$\Rightarrow \frac{\left(x - \frac{1}{2}\right)^{2}}{4} + \frac{\left(y - \frac{1}{3}\right)^{2}}{1} = 1$$
$$\therefore e = \sqrt{1 - \frac{b^{2}}{a^{2}}} = \sqrt{1 - \frac{1}{4}} = \frac{\sqrt{3}}{2}$$

334 **(c)**

Let $P(at^2, 2at)$ be any point on the parabola $y^2 = 4ax$, then equation of tangent and normal at $P(at^2, 2at)$ are $ty = x + at^2$ and $y = -tx + 2at + at^3$ respectively Since, tangent and normal meet its axis at *T* and *G* : Coordinates of T and G are $(-at^2, 0)$ and $(2a + at^2, 0)$ respectively

$$x + a = 0$$

$$T = 0$$

$$V$$

$$F(at^{2}, 2at)$$

$$G$$

$$X$$

$$F(a, 0)$$

From definition of parabola $SP = PM = a + at^2$ Now, $SG = VG - VS = 2a + at^2 - a = a + at^2$ And $ST = VS + VT = a + at^2$ Hence, SP = SG = ST

335 **(b)**

The coordinates of the points of contact of tangents of slope *m* to the hyperbola $x^2 - y^2 = a^2$ are $\left(\pm \frac{am}{\sqrt{m^2 - 1}}, \pm \frac{a}{\sqrt{m^2 - 1}}\right)$

Here, we have $a = \sqrt{3}$ and m = -2So, the required points are (-2,1) and (2,-1)

336 **(b)**

Given, equation of ellipse is $\frac{x^2}{5/4} + \frac{y^2}{5/3} = 1$

Here, $a^2 = \frac{5}{4}$, $b^2 = \frac{5}{3}$

Given, line is y = 3x + 7, whose slope is 3, therefore slopes of the parallel line is also 3

Now, equations of tangent are

$$\Rightarrow y = mx \pm \sqrt{a^2 m^2 + b^2}$$
$$\Rightarrow y = 3x \pm \sqrt{\frac{5}{4}(3)^2 + \frac{5}{3}}$$
$$\Rightarrow y = 3x \pm \sqrt{\frac{155}{12}}$$

337 **(c)**

Equation of tangent with slope $-\frac{3}{4}$ is

$$y = -\frac{3}{4}x + c$$

According to condition of tangency

$$c = \sqrt{32 \times \left(\frac{-3}{4}\right)^2 + 18}$$

$$= \sqrt{18} + 18 = 6$$

$$\therefore y = -\frac{3}{4}x + 6$$

$$\Rightarrow 4y + 3x = 24$$

It meets the coordinate axes in *A* and *B*

 $\therefore A \equiv (8,0) \text{ and } B \equiv (0,6)$

Required area $=\frac{1}{2} \times 8 \times 6 = 24$ sq unit

338 **(b)**

Given equation of line is lx + my + n = 0 or $y = -\frac{lx}{m} - \frac{n}{m}$ and equation of parabola $y^2 = 4ax$

Condition for tangency

$$\left(-\frac{n}{m}\right) = \frac{a}{-l/m}$$

 $\Rightarrow nl = am^2$

339 (c)

Given lines is y = -3x - kAnd equation of circle is $x^2 + y^2 = 10$ Here, $a^2 = 10, m = -3, c = -k$ For tangency, $c^2 = a^2(1 + m^2)$ For tangency, $c^2 = a^2(1 + m^2)$ $\Rightarrow k^2 = 10(1 + 9) \Rightarrow k = \pm 10$

340 (d)

Let $P(a \sec \theta, a \tan \theta)$ be a point on the hyperbola $x^2 - y^2 = a^2$. The equation of tangent at P is $x \sec \theta - y \tan \theta = a$ The coordinates of the vertices of triangle formed by the above tangent and the lines x + y = 0 and x - y = 0 are

 $and B(a(\sec \theta - \tan \theta), a(\sec \theta + \tan \theta))$ and $B(a(\sec \theta - \tan \theta), -a(\sec \theta - \tan \theta))$ Clearly, $\triangle AOB$ is right angled at O

$$\therefore \text{ Area of } \Delta AOB = \frac{1}{2}OA \times OB$$

$$\Rightarrow \text{ Area of } \Delta AOB$$

$$= \frac{1}{2} \times a\sqrt{2}(\sec \theta + \tan \theta)$$

$$\times a\sqrt{2}(\sec \theta - \tan \theta)$$

⇒ Area of
$$\triangle AOB = a^2$$
 sq. units
341 (a)
The centre of circle is (2, 4)
Radius= $\sqrt{4 + 16 + 5} = 5$
 \therefore Perpendicular distance of $3x - 4y - \lambda = 0$ from
(2, 4) is equal to the readius of circle

$$\therefore \left| \frac{6 - 16 - \lambda}{\sqrt{9 + 16}} \right| = 5$$
$$\Rightarrow -10 - \lambda = \pm 25 \quad \lambda = -35, 15$$

342 (d)

The equation of the common chord of the circles $x^2 + y^2 - 4x - 4y = 0$ and $x^2 + y^2 = 16$ is x + y = 4 which meets $x^2 + y^2 = 16$ at A(4,0) and B(-4,0)

Obviously $OA \perp OB$. Hence the common chord ABmakes a right angle at the centre of the circle $x^2 + y^2 = 16$

343 (d)

Given the distance between the foci = 2ae = 16and eccentricity of ellipse $(e) = \frac{1}{2}$

 \div Length of the major axis of the ellipse

$$= 2a = \frac{2ae}{e} = \frac{16}{\frac{1}{2}} = 32$$

344 **(a)**

The centre of given circles are $C_1(0,0), C_2(-3,1)$ and $C_3(6,-2)$ Now, $\begin{vmatrix} 0 & 0 & 1 \\ -3 & 1 & 1 \\ -3 & 1 & 1 \end{vmatrix} = 1(6-6) = 0$

345 (a)

Normal at the extremity of latusrectum in the first quadrant (*ae*, b^2/a) is $x - ae = v - b^2/a$

$$\frac{a}{ae/a^2} = \frac{b^2/ab^2}{b^2/ab^2}$$
As it passes through $(0, -b)$

$$\frac{-ae}{ae/a^2} = \frac{-b - b^2/a}{1/a}$$

$$\Rightarrow -a^2 = -ab - b^2$$

$$\Rightarrow a^2 - b^2 = ab$$

$$\Rightarrow a^2e^2 = ab$$
Or $e^2 = b/a$

$$\therefore e^4 = \frac{b^2}{a^2} = 1 - e^2$$

$$\Rightarrow e^4 + e^2 = 1$$
347 (b)

Here,
$$a^2 = -\frac{1}{4}$$
, b^2 , $=\frac{1}{9}$, $m = \frac{8}{9}$

 \div Point of contact is

$$\left(\pm \frac{a^2 m}{\sqrt{a^2 m^2 + b^2}}, \mp \frac{b^2}{\sqrt{a^2 m^2 + b^2}}\right)$$
$$= \left(\pm \frac{\frac{1}{4} \cdot \frac{8}{9}}{\sqrt{\frac{1}{4} \times \frac{64}{81} + \frac{1}{9}}}, \pm \frac{\frac{1}{9}}{\sqrt{\frac{1}{4} \times \frac{64}{81} + \frac{1}{9}}}\right)$$
$$= \left(\pm \frac{2}{5}, \pm \frac{1}{5}\right)$$

348 (a)

Given equation is $ax^2 + 2bx + c = 0$. Since, roots are not real $\therefore b^2 < ac$ $\Rightarrow ax^2 + 2bxy + cy^2 + dx + ey + f = 0$ Can represent an ellipse

349 **(a)**

Given vertices are (5, 0), (-5,)

 $\therefore a = 5$

Also, one of the directrix let $x = \frac{a}{e}$ is

Given as $x = \frac{25}{7} \Rightarrow e = \frac{7}{5}$

$$\therefore b^2 = a^2(e^2 - 1) = 25\left(\frac{49}{25} - 1\right) = 24$$

Equation hyperbola is $\frac{x^2}{25} - \frac{y^2}{24} = 1$

350 **(a)**

Given equation of ellipse is $\frac{x^2}{4} + \frac{y^2}{\frac{7}{4}} = 1$ Here, $a^2 = 4, b^2 = \frac{7}{4}$ $\therefore b^2 = a^2(1 - e^2)$ $\Rightarrow \frac{7}{4} = 4(1 - e^2)$ $\Rightarrow e^2 = 1 - \frac{7}{16} = \frac{9}{16}$ $\Rightarrow e = \frac{3}{4}$ Thus, the foci are $(\pm \frac{3}{2}, 0)$ The radius of required circle = $\sqrt{(\frac{3}{2} - \frac{1}{2})^2 + (2 - 0)^2}$ $= \sqrt{1 + 4} = \sqrt{5}$ 351 (d)

Given hyperbola is
$$\frac{x^2}{9} - \frac{y^2}{4} = 1$$

$$\therefore e = \sqrt{\frac{a^2 + b^2}{a^2}} = \sqrt{\frac{9+4}{9}} = \frac{\sqrt{13}}{3}$$

$$\therefore \text{ Directrices are } x = -\frac{9}{\sqrt{13}} \text{ and } x = \frac{9}{\sqrt{13}}$$
352 (c)
The intersection point of line $y = 7x - 25$ and circle $x^2 + y^2 = 25$ is $x^2 + (7x - 25)^2 = 25$
 $\Rightarrow 50x^2 - 350x + 600 = 0$
 $\Rightarrow (x - 3)(x - 4) = 0$
 $\Rightarrow x = 3, \quad x = 4 \Rightarrow y = -4, 3$
 $\therefore \text{ Coordinates of } A(3, -4) \text{ and } B(4, 3)$
 $\therefore \text{ Distance between } A \text{ and } B = \sqrt{(4-3)^2 + (3+4)^2} = 5\sqrt{2}$
Alternate Required distance $2\sqrt{\frac{a^2(1+m^2)-c^2}{1+m^2}}$
 $= 2\sqrt{\frac{25(1+49)-625}{1+49}} = 5\sqrt{2}$
State between A and $B = \sqrt{(4-3)^2 + (3+4)^2} = 5\sqrt{2}$
(c)
Equation of any tangent to the parabola is $y = mx + \frac{a}{m}$
 $A(h, k) = \frac{b}{60^9}$
It passes through $A(h, k)$
 $\therefore k = mh + \frac{a}{m}$
 $\Rightarrow m^2h - mk + a = 0$
Let m_1 and m_2 be the roots
 $\Rightarrow m_1 + m_2 = \frac{k}{h}, m_1m_2 = \frac{a}{h}$
 $\therefore \tan 60^\circ = \left|\frac{m_1 - m_2}{1 + m_1m_2}\right|$
 $\Rightarrow 3 = \frac{(m_1 - m_2)^2}{(1 + m_1m_2)^2} \Rightarrow 3 = \frac{\frac{k^2}{n^2} - \frac{4a}{h}}{(1 + \frac{a}{h})^2}$
 $\Rightarrow 3(h + a)^2 = k^2 - 4ah$
 $\therefore \text{ Locus of a point is $y^2 = 3(x + a)^2 + 4ax$
354 (a)
The equation of a tangent to $x^2 + 4y^2 = 4$ at ($2\cos\theta$, $\sin\theta$) is $2x \cos\theta + 4y \sin\theta = 4$ or, $x \cos\theta + 2y \sin\theta = 2$...(i)$

This cuts the ellipse $x^2 + 2y^2 = 6$ at *P* and *Q* Let R(h, k) be the point of intersection of tangents at P and Q. Then, PQ is the chord of contact of tangents drawn from R(h, k) to the ellipse $x^2 + 2y^2 = 6$. Therefore, the equation of *PQ* is hx + 2ky = 6...(ii) Clearly, (i) and (ii) represent the same line $\therefore \frac{h}{\cos \theta} = \frac{2k}{2\sin \theta} = \frac{6}{2}$ $\Rightarrow h = 3\cos\theta, k = 3\sin\theta$ $\Rightarrow h^2 + k^2 = 9$ \Rightarrow (*h*, *k*) lies on $x^2 + y^2 = 9$, which is the director of circle of the ellipse $x^2 + 2y^2 = 6$ Hence, the angle between the tangents is a right angle 355 (c) Centre of circle is (0, 0)Equation of tangent which is parallel to x + 2y + y = 03 = 0 is $x + 2y + \lambda = 0$...(i) As we know perpendicular distance from centre (0, 0) to $x + 2y + \lambda = 0$ should be equal to radius (0, 0) $x + 2v + \lambda = 0$ $\therefore \frac{0+2\times 0+\lambda}{\sqrt{1^2+2^2}} = \pm 2$ $\Rightarrow \lambda = \pm 2\sqrt{5}$ On putting the value of λ in Eq. (i), we get $x + 2y = \pm 2\sqrt{5}$ Which represents the required equation of tangents 357 **(b)** Let (h, k) be the pole. Then, the equation of the polar is $\frac{hx}{a^2} + \frac{ky}{b^2} = 1$ It is at a distance d from the centre C(0,0) of the ellipse $\therefore \left| \frac{1}{\sqrt{\frac{h^2}{a^4} + \frac{k^2}{b^4}}} \right| = d \Rightarrow \frac{h^2}{a^4} + \frac{k^2}{b^4} = \frac{1}{d^2}$ Hence, the locus of (h, k) is $\frac{x^2}{a^4} + \frac{y^2}{b^4} = \frac{1}{a^2}$

358 (a)

=

The equation of the normal to $x^2 = 4 ay$ is of the form $x = my - 2 am - am^3$. Therefore, k =

 $-2 am - am^3$

359 **(c)**

If $y = 2x + \lambda$ is tangent to given hyperbola,

then
$$\lambda = \pm \sqrt{a^2 m^2 - b^2}$$

= $\pm \sqrt{(100)(4) - 144} = \pm 16 [\because a^2 = 100, b^2 = 14]$

360 **(d)**

The centres and radii of the circles are: Centres : $C_1(1/2,0)$ $C_2(-1/2,0)$ Radii : $r_1 = \frac{1}{2}$ $r_2 = \frac{1}{2}$ Clearly, $C_1C_2 = r_1 + r_2$ Therefore, the circles touch each other externally Hence, there are 3 common tangents

361 **(b)**

The circle passes through (0,0), (3,0) and (0,4). So, its equation is $x^2 + y^2 - 3x - 4y = 0$

362 (c)

If the straight line y = mx + c cuts the circle $x^2 + y^2 = a^2$ in real points, then the equation $x^2 + (mx + c)^2 = a^2$ must have real roots i.e. $x^2(1 + m^2) + 2mcx + c^2 - a^2 = 0$ must have real roots $\Rightarrow 4m^2c^2 - 4(1 + m^2)(c^2 - a^2) \ge$ $\Rightarrow -c^2 + a^2(1 + m^2) \ge 0$ $\Rightarrow a^2(1 + m^2) \ge c^2 \Rightarrow \sqrt{a^2(1 + m^2)} \ge c$ 363 (d)

Given, $\frac{x^2}{9} - \frac{y^2}{4} = 1$... (i)

are

The equation of the chord of contact of tangents from (x_1, y_1) and (x_2, y_2) to the given hyperbola

 $\frac{xx_1}{9} - \frac{yy_1}{4} = 1 \quad \dots \text{ (ii)}$ and $\frac{xx_2}{9} - \frac{yy_2}{4} = 1 \quad \dots \text{ (iii)}$

Since, lines (ii) and (iii) are at right angles

$$\frac{4}{9} \cdot \times \frac{x_1}{y_1} \times \frac{4}{9} \cdot \frac{x_2}{y_2} = -1$$
$$\Rightarrow \quad \frac{x_1 x_2}{y_1 y_2} = -\frac{81}{16}$$

364 **(d)**

Centre and radius of given circle are $(-\lambda, 0)$ and $r = \sqrt{\lambda^2 - c}$ For limiting, point $r = 0, \lambda = \pm \sqrt{c}$ Thus, we get two limiting points of the given coaxial system as $(\pm \sqrt{c}, 0)$

For real and distinct c > 0

365 **(b)**

We have, $a^2 = \frac{1}{2}$, $b^2 = \frac{1}{3}$, $m = \frac{4}{3}$ The required points are

$$\left(\pm \frac{a^2m}{\sqrt{a^2m^2 + b^2}}, \pm \frac{b^2}{\sqrt{a^2m^2 + b^2}}\right)$$
$$= \left(\pm \frac{\frac{1}{2} \times \frac{4}{3}}{\sqrt{\frac{1}{2} \times \frac{16}{9} + \frac{1}{3}}}, \pm \frac{\frac{1}{3}}{\sqrt{\frac{1}{2} \times \frac{16}{9} + \frac{1}{3}}}\right)$$
$$= \left(\pm \frac{2}{\sqrt{11}}, \pm \frac{1}{\sqrt{11}}\right)$$

366 **(b)**

Let mid point be (*h*, *k*)

 \div Equation of chord is

 $T = S_1$

$$yy_1 - 2a(x + x_1) = y_1^2 - 4ax_1$$

Since, it passes through origin

$$\therefore -2ax_1 = y_1^2 - 4ax_1$$
$$\Rightarrow y_1^2 = 2ax_1$$

 \therefore Locus is $y^2 = 2ax$

We have,

$$\frac{2 b^2}{a} = a \Rightarrow 2 b^2 = a^2 \Rightarrow 2 a^2 (1 - e^2) = a^2 \Rightarrow e$$

$$= \frac{1}{\sqrt{2}}$$

368 (a)

Given equation of parabola is $y = x^2$...(i) Equation of straight line is y = 2x - 4 ...(ii) On solving Eqs. (i) and (ii), we get $x^2 - 2x + 4 = 0$ Let $z = x^2 - 2x + 4$ $\therefore z' = 2x - 2$ For least value, $z' = 0 \Rightarrow 2x - 2 = 0 \Rightarrow x = 1$ z'' is positive at x = 1 \therefore It is minimum, putting x = 1 in Eq. (i), we get y = 1So, the required point at the least distance from the line is (1, 1) 370 **(b)**

The eccentricity of $\frac{x^2}{16} + \frac{y^2}{25} = 1$ is $e_1 = \sqrt{1 - \frac{16}{25}} =$

3

371

⁵
∴
$$e_2 = \frac{5}{3}$$
 (∵ $e_1e_2 = 1$)
and foci of given ellipse (0,±3)
∴ $2b = 3 + 3 = 6 \Rightarrow b = 3 \Rightarrow b^2 = 9$
⇒ $a^2 = 16$
⇒equation of hyperbola is $\frac{x^2}{16} - \frac{y^2}{9} = -1$
Hence, (b) is the correct answer
(a)
Given , $y^2 = 16x$, then $a = 4$

Let line perpendicular to given line y - 3x - 1 = 0 is

 $x + 3y = \lambda$

 $\Rightarrow y = -\frac{1}{3}x + \frac{\lambda}{3}$

Here, $c = \frac{\lambda}{3}$, $m = -\frac{1}{3}$

: Condition of tangency is, $c = \frac{a}{m}$

$$\Rightarrow \frac{\lambda}{3} = \frac{4}{-1/3} \Rightarrow \lambda = -36$$

: Required tangent is x + 3y + 36 = 0

372 **(d)**

Since,
$$\frac{\sqrt{S_1}}{\sqrt{S_2}} = \frac{2}{3}$$

$$\therefore \frac{\sqrt{x_1^2 + y_1^2 + 4x_1 + 3}}{\sqrt{x_1^2 + y_1^2 - 6x_1 + 5}} = \frac{2}{3}$$

$$\Rightarrow 9x_1^2 + 9y_1^2 + 36x_1 + 27 - 4x_1^2 - 4y_1^2 + 24x_1$$

$$-20 = 0$$

$$\Rightarrow 5x_1^2 + 5y_1^2 + 60x_1 + 7 = 0$$

$$\therefore \text{ Locus of point is}$$

$$5x^2 + 5y^2 + 60x + 7 = 0$$
373 (a)
Centre of circle is $(1, -2)$

$$\therefore \text{ Required equation of normal=equation of}$$
straight line passing through $(1, -2)$ and $(2, 1)$

$$ie, y + 2 = \frac{-2 - 1}{1 - 2}(x - 1)$$

$$\Rightarrow y + 2 = 3x - 3$$

$$\Rightarrow 3x - y - 5 = 0$$
374 (a)

Let x_1 and x are the roots of the equation $x^2 + 2ax - b^2 = 0$ $\therefore x_1 + x_2 = -2a$ and $x_{1x_2} = -b^2$ Also, y_1 and y_2 are roots of the equation $y^2 + 2py - q^2 = 0$: $y_1 + y_2 = -2p$ and $y_1y_2 = -q^2$ The equation of the circle with $P(x_1, y_1)$ and $Q(x_2, y_2)$ as then end points of diameter is $(x - x_1)(x - x_2) + (y - y_1)(y - y_2) = 0$ $\Rightarrow x^{2} + y^{2} - x(x_{1} + x_{2}) - y(y_{1} + y_{2}) + x_{1}x_{2}$ $+ y_1 y_2 = 0$ $\Rightarrow x^{2} + y^{2} + 2ax + 2py - b^{2} - q^{2} = 0$ 375 (b) We have, $x^2 + y^2 + 4x + 2y - 4 = 0$ PQ = Length of the tangent drawn from P(1,1/2)to the circle (i) $\Rightarrow PQ = \sqrt{1 + \frac{1}{4} + 4 + 1 - 4} = \frac{3}{2}$ C(-2, -1)R In ΔCPQ , we have, $\tan \theta = \frac{CQ}{PQ} = \frac{3}{3/2} = 2$ \therefore Required angle = 2 θ = 2 tan⁻¹ 2 = sin⁻¹ $\frac{4}{5}$ 376 (b) Given, $a^2 = 25$ and $b^2 = 16$ $\therefore e = \sqrt{1 - \frac{b^2}{a^2}} = \sqrt{1 - \frac{16}{25}} = \frac{3}{5}$ So, the coordinates of foci S and S' are (3, 0) and (-3, 0) respectively. Let $P(5 \cos \theta, 4 \sin \theta)$ be a variable point on the ellipse. Then, $\Delta = \text{ area of } \Delta PSS' = \begin{vmatrix} 3 & 0 & 1 \\ -3 & 0 & 1 \\ 5 \cos \theta & 4 \sin \theta & 1 \end{vmatrix} =$ $12 \sin \theta$

[Since, value of $\sin \theta$ lies between -1 and 1]

So, maximum value of area of $\Delta PSS'$ is 12

377 (d)

We have,

$$3 x^{2} + y^{2} = 12 \Rightarrow \frac{x^{2}}{4} + \frac{y^{2}}{12} = 1$$

This is of the form $\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1$, where $b^{2} > a^{2}$
 \therefore Length of the *L*. $R = \frac{2a^{2}}{b} = \frac{2(4)}{\sqrt{12}} = \frac{4}{\sqrt{3}}$

378 (a)

Given equation can be rewritten as $x(x-2y) - 3(x-2y) = 0 \Rightarrow x = 3$ And x = 2yare two normals. Their intersection point is the centre $\left(3, \frac{3}{2}\right)$

379 **(c)**

The given equation of parabola is

$$y = 2x^{2} + x \implies x^{2} + \frac{x}{2} = \frac{y}{2}$$

$$\Rightarrow x^{2} + \frac{x}{2} + \frac{1}{16} = \frac{y}{2} + \frac{1}{16}$$

$$\Rightarrow \left(x + \frac{1}{4}\right)^{2} = \frac{1}{2}\left(y + \frac{1}{8}\right)$$

It can be rewritten as $X^{2} = \frac{1}{2}Y$...(i)
Where $x + \frac{1}{4} = X$ and $y + \frac{1}{8} = Y$
On comparing with $X^{2} = 4AY$, we get
 $A = \frac{1}{8}$, focus of Eq. (i) is $\left(0, \frac{1}{8}\right)$ *ie*,
 $X = 0, Y = \frac{1}{8}$

$$\Rightarrow x + \frac{1}{4} = 0, y + \frac{1}{8} = \frac{1}{8}$$

$$\Rightarrow x = -\frac{1}{4}, y = 0$$

 \therefore Focus of given parabola is $\left(-\frac{1}{4},0\right)$

380 **(a)**

Let general equation of a circle is $x^2 + y^2 + 2gx + 2fy + c = 0$...(i) If the circle (i) cuts orthogonally each of the given three circles Then, condition is $2g_1g_2 = 2f_1f_2 = c_1 + c_2$ Applying the condition one by one, we get 2g + 17f = c + 4 ...(ii) 7g + 6f = c + 11 ...(iii) And -g + 22f = c + 3 ...(iv) On solving Eqs. (ii), (iii) and (iv), we get g = -3, f = -2Therefore, the centre of the circle is (3, 2)

381 **(c)**

Let two points on the parabola are $p(at_1^2, 2at_1)$ and $Q(at_2^2, 2at_2)$

$$x' = \sqrt{\frac{p(at_1^{-2}, 2at_1)}{p(at_2^{-2}, 2at_2)}} x$$
Now, $SP = \sqrt{(a - at_1^2)^2} + (0 - 2at_1)^2$

$$= a + at_1^2$$
 $SQ = \sqrt{(a - at_2^2)^2} + (0 - 2at_2)^2$

$$= a + at_2^2 = a + \frac{a}{t_1^2} \quad (\because t_1 t_2 = -1)$$
Now, $\frac{2 \times SP \times SQ}{SP + SQ} = \frac{2 \times a(1 + t_1^2) \times a(1 + \frac{1}{t_1^2})}{(a + at_1^2) + (a + \frac{a}{t_1^2})}$

$$= \frac{2a(2 + \frac{1}{t_1^2} + t_1^2)}{(2 + \frac{1}{t_1^2} + t_1^2)} = 2a = l \text{ (given)}$$

y ▲

Hence, SP, l, SQ are in HP

382 **(a)**

The point (1,2) lies on the circle $x^2 + y^2 = 5$ Hence, there is only one tangent 383 (a) In the given equation of hyperbola a = 4 and b = 3We know that the difference of focal distance of any point of the hyperbola= 2a $= 2 \times 4 = 8$ 384 (a) Since, the circle touching both the coordinates axes in fourth quadrant, so equation is $(x - 3)^2 + (y + 3)^2 = 3^2$

$$\Rightarrow x^2 + y^2 - 6x + 6y + 9 = 0$$

385 (a)

The value of the parameter for the other end of the focal chord is -1/t. Therfore, the coordinates of the end points of the focal chord are $(at^2, 2 at)$ and $(\frac{a}{t^2}, -\frac{2a}{t})$ and hence the length of the focal chord is

$$\sqrt{\left(\frac{a}{t^2} - at^2\right)^2 + \left(-\frac{2a}{t} - 2at\right)^2} = a\left(t + \frac{1}{t}\right)\sqrt{\left(t - \frac{1}{t}\right)^2 + 4} = a\left(t + \frac{1}{t}\right)^2$$
386 **(b)**

larger segment of the circle $x^2 + y^2 = 25$ cut off by $x^2 + 4y = 0$, if it is in the interior of the circle and exterior of the parabola. $\therefore 4a^2 + (a-1)^2 - 25 < 0$ and $4a^2 + 4(a-1) > 0$ 0 $\Rightarrow (5a - 12)(a + 2)$ < 0 and $\left(a + \frac{1 + \sqrt{5}}{2}\right) \left(a\right)$ $+\frac{1-\sqrt{5}}{2}\Big)>0$ $\Rightarrow -2 < a < \frac{12}{5}$ and $\left(a < \frac{-1 - \sqrt{5}}{2} \text{ or, } a\right)$ $>\frac{\sqrt{5}-1}{2}$ $\Rightarrow a = 1,2$ 387 (b) Let the equation of the circle be $(x-a)^2 + (y-a)^2 = a^2, a > 0$ It touches 4x + 3y - 12 = 0 $\therefore \left|\frac{4a+3a-12}{5}\right| = a \Rightarrow 7a-12 = 5a \Rightarrow a = 6$ 388 (c) Here, a = 4, b = 5 and $e = \sqrt{1 - \frac{16}{25}} = \frac{3}{5}$ \therefore Equation of directrix is $y = \pm \left(\frac{5}{3/5}\right)$ $\Rightarrow 3y = \pm 25$ 389 (a) Let the equation of the circle through (a, b) be $x^{2} + y^{2} + 2 gx + 2 fy + c = 0$...(i) Where, $a^2 + b^2 + 2 ag + 2 fb + c = 0$...(ii) Since the circle $x^2 + y^2 = p^2$ cut the circle (i) orthogonally. $\therefore 2 q \times 0 + 2f \times 0 = c - p^2 \Rightarrow c = p^2 \quad \dots \text{(iii)}$ Substituting the value of *c* in (ii), we obtain $a^{2} + b^{2} + 2 ag + 2 fb + p^{2} = 0$ Hence, the locus of (-q, -f) is $a^2 + b^2 - 2ax - ax - b^2 - 2ax - b^2 - 2$ $2 by + p^2 = 0$ 390 (d) Given that, foci are (3, 0) and (-1, 0) and $e = \frac{2}{3}$ $\therefore 2ae = 4 \Rightarrow a = 3$ Also, $e^2 = 1 - \frac{b^2}{a^2}$ $\Rightarrow \frac{4}{9} = 1 - \frac{b^2}{9}$

The point (2a, a - 1) will lie in the interior of the

 $\Rightarrow b = \sqrt{5}$

Since, centre of the ellipse is the mid point of the line joining the two foci, therefore the coordinates of the centre are (1, 0)

∴ Equation of ellipse is

$$\frac{(x-1)^2}{9} + \frac{(y-0)^2}{5} = 1$$

Hence, the parametric coordinates are $(1 + 3\cos\theta, \sqrt{5}\sin\theta)$

391 (a)

Now, taking option (a) $r = 2 \sin \theta$ Let $x = r \cos \theta$, $y = r \sin \theta$ $\therefore r^2 = 2r \sin \theta$ $\Rightarrow x^2 + y^2 = 2y$ Which represents a equation of circle 392 (d)

Required equation of chord is $T = S_1$ $\Rightarrow -2x + 3y - 81 = 4 + 9 - 81$ $\Rightarrow 2x - 3y = -13$

393 **(d)**

The angle of intersection of two circles is given by

$$\cos\theta = \frac{r_1^2 + r_2^2 - C_1 C_2^2}{2 r_1 r_2}$$

Where r_1, r_2 are radii of two circles and C_1C_2 is the distance between their centres.

Here,
$$r_1 = \sqrt{\frac{1}{4} + \frac{1}{4}} = \sqrt{\frac{1}{2}} = r_2$$
 and $C_1 C_2 = 1$
 $\therefore \cos \theta = 0 \Rightarrow \theta = \frac{\pi}{2}$

394 **(c)**

Let θ be the eccentric angle of the point of contact. Then, the equation of the tangent is

$$\frac{x}{a}\cos\theta + \frac{y}{b}\sin\theta = 1$$

It is same as $\frac{x}{a} + \frac{y}{b} = \sqrt{2}$
 $\therefore \cos\theta = \sin\theta = \frac{1}{\sqrt{2}} \Rightarrow \theta = \frac{\pi}{4}$

395 **(c)**

Let AB be the chord of length $\sqrt{2}$, 0 be the centre of the circle and let OC be the perpendicular from 0 on AB. Then,

$$AC = BC = \frac{\sqrt{2}}{2} = \frac{1}{\sqrt{2}}$$

 $\Rightarrow \frac{|-f+g|}{\sqrt{1^2+1^2}} = \sqrt{g^2+f^2} \Rightarrow f^2+g^2-2fg$ $= 2(g^2 + f^2)$ $\Rightarrow (g+f)^2 = 0 \Rightarrow g = -f$: From Eq. (i), 4(-f) + 2f = -5 $\Rightarrow f = \frac{5}{2}$ and $g = -\frac{5}{2}$ $\therefore x^2 + y^2 - 5x + 5y = 0$ On comparing with $x^2 + y^2 + px + qy = 0$ $\therefore p = -5, q = 5$ 399 (a) Since, x + y - 1 = 0 is a tangent to the parabola $y^2 - y + x = 0$, then the point of contact is (0, 1) 400 (b) Let (h, k) be the coordinates of the centre of circle of which the given chord is the diameter. Then, (h, k) be mid point of the chord, so, its equation is S' = T $h^{2} + k^{2} - 2ah = hx + ky - a(x + h)$ \Rightarrow $x(h-a) + ky = h^2 + k^2 - ah$ If it passes through (0, 0), therefore $h^2 + k^2 - k$ ah = 0 and the locus of (h, k) is $x^2 + y^2 - ax = 0$ 401 (b) The equations of the axes of the ellipse are $x + x^2$ y - 2 = 0 and x - y = 0. The centre of the given y - 2 = 0 and x - y = 0 i.e. the point (1,1) 402 (d) Equation of directrix of $(x - 1)^2 = 2(y - 2)$ is $y-2=-\frac{1}{2}$ $\Rightarrow 2y - 3 = 0$ 403 (a) We have, $y^2 = 2(x-3) \Rightarrow (y-0)^2 = 2(x-3)$...(i) As the equation of the parabola The equation of the tangent is $x - 2y - 1 = 0 \Rightarrow y = \frac{x}{2} - \frac{1}{2} \Rightarrow y - 0$ $=\frac{1}{2}(x-3)+1$ So, the coordinates of the point of contact are given by $x - 3 = \frac{1/2}{1}, y = 0$

$$= \frac{2 \times 1/2}{1/2} \left[\text{Using} : x = \frac{a}{m^2} \text{ and } y \right]$$
$$= \frac{2a}{m} = \frac{2a}{m}$$
$$\Rightarrow x = 5 \text{ and } y = 2$$

404 **(b)**

Let P(x, y) be any point on the hyperbola, then by definition, we have SP = e PM

$$\Rightarrow SP^{2} = e^{2} PM^{2}$$

$$\Rightarrow (x - 2)^{2} + (y - 1)^{2} = 4 \left| \frac{x + 2y - 1}{\sqrt{5}} \right|^{2}$$

$$\Rightarrow x^{2} - 16 xy - 11y^{2} - 12 x + 6 y + 21 = 0$$

This is the required equation of the hyperbola 405 **(c)**

Let the mid point be P(h, k). Equation of this chord is

$$T = S_1 ie, \quad ky - 2a(x+h) = k^2 - 4ah$$

It must passes through (*a*, 0)

 $(-2a)(a+h) = k^2 - 4ah$

Hence, the locus is $y^2 = 2ax - 2a^2$

406 (c)

The combined equation of the pair of tangents drawn from (1, 2) to the ellipse $3x^2 + 2y^2 = 5$ is $SS' = T^2$ $\Rightarrow (3x^2 + 2y^2 - 5)[3(1)^2 + 2(2)^2 - 5] =$ $[3x(1) + 2y(2) - 5]^2$ $\Rightarrow (3x^2 + 2y^2 - 5)(3 + 8 - 5) = (3x + 4y - 5)^2$ $\Rightarrow 9x^2 - 24xy - 4y^2 + 40y + 30x - 55 = 0$ This is the equation of pair of straight lines, Where, a = 9, h = -12, b = -4The angle between these lines is given by

$$\tan \theta = \frac{2\sqrt{h^2 - ab}}{a + b}$$

$$\Rightarrow \tan \theta = \frac{2\sqrt{144 + 36}}{9 - 4} = \frac{2\sqrt{180}}{5} = \frac{12}{\sqrt{5}}$$

$$\Rightarrow \theta = \tan^{-1}\left(\frac{12}{\sqrt{5}}\right)$$

407 (b)

Given, eccentricity $e = \frac{\sqrt{5}}{3}$ and foci = $(\pm \sqrt{5}, o)$ $\Rightarrow ae = \sqrt{5} \Rightarrow a = 3$ $\therefore b^2 = a^2 (1 - e^2 = 9(1 - \frac{5}{9}))$ $\Rightarrow b^2 = 4$

The equation of ellipse is

 $\frac{x^2}{9} + \frac{y^2}{4} = 1$

$$\Rightarrow 4x^2 + 9y^2 = 36$$

408 **(b)**

Let P(h, k) be the mid-point of a chord. Then, the equation of the chord is

$$\frac{hx}{a^2} + \frac{ky}{b^2} = \frac{h^2}{a^2} + \frac{k^2}{b^2} \text{ or, } y$$
$$= \left(-\frac{b^2}{a^2}\frac{h}{k}\right)x + \frac{b^2}{k}\left(\frac{h^2}{a^2} + \frac{k^2}{b^2}\right)$$
This touches the circle $x^2 + y^2 = h^2$

This touches the circle $x^2 + y^2 = b^2$

$$\therefore \frac{b^4}{k^2} \left(\frac{h^2}{a^2} + \frac{k^2}{b^2} \right)^2 = b^2 \left(1 + \frac{b^4 h^2}{a^4 k^2} \right)$$

$$\Rightarrow \left(\frac{h^2}{a^2} + \frac{k^2}{b^2} \right)^2 = b^2 \left(\frac{h^2}{a^4} + \frac{k^2}{b^4} \right)$$

Hence, the locus of (h, k) is $\left(\frac{x^2}{a^2} + \frac{y^2}{b^2}\right)^2 = b^2 \left(\frac{x^2}{a^4} + \frac{y^2}{b^4}\right)$

$b^2 \left(\frac{1}{a}\right)$

409 (a)

The coordinates of the ends of the latusrectum of the parabola $y^2 = 4 ax$ are (a, 2a) and (a, -2a) respectively.

The equations of the normal at (a, 2a) and (a, -2a) to $y^2 = 4 ax$ are

x + y - 3a = 0 and x - y - 3a = 0 respectively. The combined equation of these two normal is $x^2 - y^2 - 6ax + 9a^2 = 0$

410 **(c)**

Given ,
$$\frac{x^2}{3} + \frac{y^2}{2} = 1$$

Polar of P(1,2) with respect to ellipse is $S_1 = 0$

 $\Rightarrow x + 3y - 3 = 0$

Since, (1,2) and (k, -1) are conjugates, therefore one passes through the polar of the other.

$$k-3-3=0$$

 $\Rightarrow k = 6$

411 **(a)**

Asymptotes of the given hyperbola are $y = \pm \frac{b}{a}x$ \therefore Angle between the asymptotes = 2θ , where $\tan \theta = \frac{b}{a}$ \Rightarrow Angle between the asymptotes = $2 \tan^{-1} \left(\frac{b}{a}\right)$

412 **(d)**
Given,
$$\frac{(x+2)^2}{7 \times 14} + \frac{(y-1)^2}{14} = 1$$

Here, $a^2 = 7 \times 14$ and $b^2 = 14$

We know,
$$e = \sqrt{1 - \frac{b^2}{a^2}} = \sqrt{1 - \frac{14}{7 \times 14}} = \sqrt{\frac{6}{7}}$$

414 (a)

We know, that, the angle between the two tangents from (α, β)

To the circle $x^2 + y^2 = r^2$ is $2 \tan^{-1} \frac{r}{\sqrt{S_1}}$ Let $S = x^2 + y^2 - 5x + 4y - 2$ Here, $r = \sqrt{\left(-\frac{5}{2}\right)^2 + (2)^2 + 2} = \frac{7}{2}$ At point (-1, 0) $S_1 = (-1)^2 + (0)^2 - 5(-1) + 4(0) - 2 = 4$ \therefore Required angle, $\theta = 2 \tan^{-1} \frac{7/2}{\sqrt{4}}$ $= 2 \tan^{-1} \left(\frac{7}{4}\right)$

415 (a)

Since the circle passes through the origin, has centre on *x*-axis and has radius *a*. So, its centre is at (a, 0). The equation of the circle is $(x - a)^2 + (y - 0)^2 = a^2 \Rightarrow x^2 + y^2 - 2ax = 0$...(i)

The circle passing through the intersection of (i) and the line y = mx is

$$x^{2} + y^{2} - 2ax + \lambda(y - mx) = 0$$

$$\Rightarrow x^{2} + y^{2} - x(2a + \lambda m) + \lambda y = 0 \qquad ...(ii)$$
Since $y = mx$ is a diameter of this circle.
Therefore, centre $\left(\frac{2a + \lambda m}{2}, -\frac{\lambda}{2}\right)$ lies on it.
i. e. $-\frac{\lambda}{2} = m\left(\frac{2a + \lambda m}{2}\right) \Rightarrow \lambda = -\frac{2am}{1 + m^{2}}$
putting the value of λ in (ii), we get
 $(1 + m^{2})(x^{2} + y^{2}) - 2a(x + my) = 0$
This is the equation of the required circle
416 (a)

Let $B(at_1^2, 2at_1)$ and $C(at_2^2, 2at_2)$ be the coordinates of the end-points of focal chord *BC*. Then,

$$\Delta = \text{Area of } \Delta ABC$$

$$\Rightarrow \Delta = \frac{1}{2} \text{ Absolute value of } \begin{vmatrix} 0 & 0 & 1 \\ at_1^2 & 2at_1 & 1 \\ at_2^2 & 2at_2 & 1 \end{vmatrix}$$

$$\Rightarrow \Delta = |a^2 t_1 t_2 (t_1 - t_2)|$$

$$\Rightarrow \Delta = a^2 |t_1 - t_2| \qquad [\because t_1 t_2 = -1]$$

$$\Rightarrow |2at_1 - 2at_2| = \frac{2\Delta}{a}$$
417 **(b)**
We have, $\angle BSS' = \theta$
 $\therefore \text{ Slope of } BS = \tan(180^\circ - \theta)$
 $\Rightarrow \frac{-b}{ae} = -\tan \theta$

 $\Rightarrow b = ae \tan \theta$

$$\Rightarrow b^{2} = a^{2}e^{2}\tan^{2}\theta$$

$$\Rightarrow a^{2}(1 - e^{2}) = a^{2}e^{2}\tan^{2}\theta$$

$$\Rightarrow 1 - e^{2} = e^{2}\tan^{2}\theta$$

$$\Rightarrow 1 = e^{2}\sec^{2}\theta \Rightarrow \cos^{2}\theta = e^{2} \Rightarrow \cos\theta = e^{2}$$

418 **(b)**

Since, the hypocenter of a right angled triangle inscribed in a circle is a diameter of the circle. If the coordinates of the end *C* of the hypotenuse *BC* are (a, b), the coordinates of *B*

are (-a, -b). Equation of *BC* is $\frac{y}{x} = \frac{b}{a}$. If *A* is the vertex of the isosceles triangle, then *OA* is perpendicular to *BC* and the equation of *AO* is $\frac{y}{x} = -\frac{a}{b}$ which meets the circle $x^2 + y^2 = r^2$ at points for which $\left(\frac{a^2}{b^2} + 1\right)x^2 = r^2 = a^2 + b^2$ [$\because (a, b)$ lies on $x^2 + y^2 = r^2$] $\Rightarrow x^2 = b^2 \Rightarrow x = \pm b$ $\Rightarrow y = \pm a$ \therefore Coordinates of *A* are (-b, a) or (b, -a)

419 **(b)**

Equation of family of concentric circles to the circle $x^2 + y^2 + 6x + 8y - 5 = 0$ is $x^2 + y^2 + 6x + 8y + \lambda = 0$ Which is similar to $x^2 + y^2 + 2gx + 2fy + c = 0$ Thus, the point (-3, 2) lies on the circle $x^2 + y^2 + 6x + 8y + c = 0$ $\therefore (-3)^2 + (2)^2 + 6(-3) + 8(2) + c = 0 \Rightarrow c$ = -11

420 (c)

Proceeding as in Example 39, we have $(2e^2 - 1)$

$$x^2 = a^2 \left(\frac{2e^2 - 1}{e^2}\right)$$

This will give exactly one value of *x* if $2e^2 - 1 = 0$ i.e. $e = \frac{1}{\sqrt{2}}$

421 **(d)**

The equations of chords of contact of the tangents drawn from the origin and the point (g, f) to the given circle are respectively

gx + fy + c = 0 ...(i) and $2 gx + 2 fy + g^2 + f^2 + c = 0$...(ii) Clearly, (i) and (ii) are parallel. Therefore, the distance 'd' between them is given by

 $d = \frac{g^2 + f^2 + c}{\sqrt{4 g^2 + 4 f^2}} - \frac{c}{\sqrt{g^2 + f^2}} = \frac{g^2 + f^2 - c}{2\sqrt{g^2 + f^2}}$ 422 (b) Clearly, P(-1, -3) is the external centre of similitude. Thus, Required length of the common tangent = $|l_1 - l_2|,$ where l_1 and l_2 are the lengths of the tangents to the given circles drawn from point P(-1, -3)Now. l_1 = Length of the tangent from P(-1, -3) to x^2 + $y^2 = 1$ $\Rightarrow l_1 = \sqrt{1+9-1} = 3$ And. l_2 = Length of the tangent from P(-1, -3) to x^2 + $y^2 - 2x - 6y + 6 = 0$ $\Rightarrow l_2 = \sqrt{1 + 9 + 2 + 18 + 6} = 6$: Length of the common tangent = $|l_1 - l_2|$ = |3-6| = 3423 **(b)** We have, $x^2 + y^2 - 2x - 2\lambda y - 8 = 0$ $\Rightarrow (x^2 + y^2 - 2x - 8) - 2\lambda y = 0$...(i) This equation represents a family of circles passing through the points *P* and *Q* which are 8 = 0 and y = 0The coordinates of the centre of (i) are $(1, \lambda)$ Equation of PQ is y = 0If *PQ* is a diameter of (i). Then, $\lambda = 0$ Putting $\lambda = 0$ in (i), we get $x^2 + y^2 - 2x - 8 = 0$ as the equation of the required circle 424 (d) Given equation of circle can be rewritten as $(x+2)^2 + (y+3)^2 = 0$ \therefore Radius of circle is 0 425 (c) The coordinates of the focus are $\left(\frac{-6+6}{2},\frac{4+4}{2}\right) = (0,4)$ \therefore Distance between focus and vertex = 2 Clearly, parabola opens upward, has its axis along y-axis. So, its equation is $(x-0)^2 = 4 \times 2(y-2) \Rightarrow x^2 - 8y + 16 = 0$ 426 **(b)** The coordinates of the centre of the circle x^2 + $y^2 - 12x + 4y + 6 = 0$ are (6, -2). Clearly, the line x + 3y = 0 passes through this point

Hence, x + 3y = 0 is a diameter of the given circle 427 (a)

Given equation can be rewritten as

$$\frac{x^2}{16} - \frac{y^2}{9} = 1$$

 \therefore Required equation of director circle is

$$x^2 + y^2 = 16 - 9$$

$$\Rightarrow x^2 + y^2 = 7$$

428 **(b)**

The equation of any line through $P(\alpha, \beta)$ is $\frac{x-\alpha}{\cos\theta} = \frac{y-\beta}{\sin\theta} = k$ (say) Any point on this line is $(\alpha + k \cos \theta, \beta + k \sin \theta)$. This point lies on the given circle if $(\alpha + k\cos\theta)^2 + (\beta + k\sin\theta)^2 = r^2$ $\Rightarrow k^{2} + 2 k(\alpha \cos \theta + \beta \sin \theta) + \alpha^{2} + \beta^{2} - r^{2} = 0$...(i) This equation, being quadratic in k, gives two values of k and hence the distances of two points A and B on the circle from the point P. Let $PA = k_1$, $PB = k_2$, where k_1 , k_2 are the roots of equation (i) Then, $PAPB = k_1k_2 = \alpha^2 + \beta^2 - r^2$ <u>ALITER</u> *PAPB* is the power of the point $P(\alpha, \beta)$ with respect to the circle $x^2 + y^2 = r^2$. Therefore, $PAPB = \alpha^2 + \beta^2 - r^2$ 429 (a) If (α, β) is a point on the chord *PQ*, then the either it is the interior point or one of the end-points of the chord *PQ*. $\therefore 3 \le \alpha \le 4$ and $-4 \le \beta \le 3$ 430 (a) Let the equation y = mx + c be the common tangents so the curve $y^2 = 8x$ and $x^2 + y^2 = 2$ Then, $c = \frac{2}{m}$ and $c^2 = 2(1 + m^2)$ If $m^2 = t$, then $\frac{4}{t} = 2(1+t) \Rightarrow t^2 + t - 2 = 0$ $\Rightarrow (t+2)(t-1) = 0 \Rightarrow t = 1, -2$ Thus, $m = \pm 1$ (:: $t \neq -2$) Hence, tangents are y = x + c and y = -x + cwhich are perpendicular to each other 431 (a) $v^{2} - 12x - 4y + 4 = 0$ $\Rightarrow (y-2)^2 = 12x$

Its vertex is (0, 2) and a = 3, Its focus is (3, 2) Hence, for the required parabola; focus is (3, 4), Vertex is (3, 2) and a = 2Hence, for the required parabola is $(x - 3)^2 = 4(2)(y - 2)$ Or $x^2 - 6x - 8y + 25 = 0$

432 (a)

The given equation can be written as $\frac{(x+1)^2}{9} + \frac{(y+2)^2}{25} = 1$ Clearly, it represents an allinearly are

Clearly, it represents an ellipse whose centre (-1, -2) and semi-major and minor axes 5 and 3 respectively.

The eccentricity *e* of the ellipse is given by

$$9 = 25(1-e)^2 \Rightarrow e = \frac{4}{5}$$

The coordinates of the foci of the ellipse are given by

x + 1 = 0 and $y + 2 = \pm \left(5 \times \frac{4}{5}\right)$ $\Rightarrow x = -1, y = 2$ or, x = -1 and y = -6Hence, the coordinates of the foci are (-1,2) and

$$(-1, -6)$$
 respectively

433 (a)

In
$$\triangle ADB$$
, $AD = \frac{1}{\sqrt{2}} \operatorname{cosec} 45^\circ = 1$

434 (c)

Since the focus and vertex of the parabola are on y-axis. Therefore, its directrix is parallel to x-axis and axis of the parabola is y-axis. Let the equation of the directrix be y = k. The directrix meets the axis of the parabola at (0, k). But, vertex is the mid point of the line segment joining the focus to the point where directrix meets axis of the parabola.

$$\therefore \frac{k+2}{2} = 4 \Rightarrow k = 6$$

Thus, the equation of the directrix is y = 6Let (x, y) be a point on the parabola. then, by definition $(x-0)^2 + (y-2)^2 = (y-6)^2 \Rightarrow x^2 + 8 y = 32$ 435 (d) Let the equation of the ellipse to be $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ It is given that be b = 6 and $\frac{b}{e} = 9$ $\therefore b^2 = 36$ and $e = \frac{2}{3}$ Now, $a^2 = b^2(1-e^2) \Rightarrow a^2 = 36(1-\frac{4}{9}) = 20$ So, the equation of the ellipse of $\frac{x^2}{20} + \frac{y^2}{36} = 1$ or, $9x^2 + 5y^2 = 180$ 436 (b) The coordinates at the ends of the latusrectum of

the parabola $y^2 = 4x$ are L(1,2) and $L_1(1-2)$

Equation of tangent at *L* and l_1 are 2y = 2(x + 1)and -2y = 2(x + 1), which gives x = -1, y = 0

438 **(c)**

Given equation is

$$(x-1)^{2} + (y-2)^{2} = 3 \times \left(\frac{2x+3y-2}{\sqrt{13}}\right)^{2}$$

On comparing with PS = ePM

 $\therefore e = 3$

Hence, it represents a hyperbola

439 **(b)**

Let the centre of circle be (g, 5) $\therefore \frac{3(g)-4(5)}{\sqrt{3^2+4^2}} = 5 \quad [radius]$ $\Rightarrow 3g = 25 + 20 \Rightarrow g = 15$ $\therefore \text{ Equation of circle whose centre (15, 5) and radius 5 is}$ $(x - 15)^2 + (y - 5)^2 = 5^2$ $\Rightarrow x^2 - 30x + y^2 - 10y + 225 = 0$

440 **(b)**

Let third tangent is tangent at vertices, then $p_1 = |at_1t_2|, P_2 = at_1^2, P_3 = at_2^2$ clearly p_2, p_1, p_3 are in GP

$$x' \underbrace{Q}_{A} \underbrace{C(at^{2}, 2at_{1})}_{y'} x$$

$$[at_{1}t_{2}, a(t_{1}+t_{2})]$$

441 (a)

Let the equation of circle is $x^2 + y^2 + 2gx + 2 fy + c = 0 ...(i)$ Given that, xy = 1 ...(ii)From Eq.(i) and (ii), we get $x^4 + 2gx^3 + cx^2 + 2fx + 1 = 0$ \therefore Product of roots $x_1x_2x_3x_4 = 1$ and similarly $y_1y_2y_3y_4 = 1$

442 **(c)**

We know that the line y = mx + c touches the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$, if $c^2 = a^2m^2 - b^2$. The given hyperbola and the line are $\frac{x^2}{5} - \frac{y^2}{9} = 1$ and $y = 3 x + \lambda$ Here, $a^2 = 5$, $b^2 = 9$, m = 3 $\therefore \lambda \sqrt{a^2m^2 - b^2} = \sqrt{45 - 9} = \sqrt{36} = 6$ 443 (d) Since, the required circle touch x = 0, y = 0 and x = 4Centre is (2, 2) and radius=2 \therefore Required circle is $(x - 2)^2 + (y - 2)^2 = (2)^2$ $\Rightarrow x^2 + y^2 - 4x - 4y + 4 = 0$

445 **(b)**

Here, $c = c, m = 2, a^2 = 16$ $\therefore c^2 = a^2(1 + m^2) \therefore c^2 = 16(1 + 4)$ $\Rightarrow c^2 = 80$

446 (a)

Given equation of tangent is $\frac{x\sqrt{3}}{a} + \frac{y}{b}\frac{1}{2} = 1$ and equation of tangent at the point $(a \cos \phi, b \sin \phi)$ on the ellipse is $\frac{x}{a} \cos \phi + \frac{y}{b} \sin \phi = 1$ Both are same $\therefore \cos \phi = \frac{\sqrt{3}}{2}, \sin \phi = \frac{1}{2} \Rightarrow \phi = \frac{\pi}{6}$ 447 (a)

Given , foci $(\pm ae, 0) = (\pm 2, 0)$ and $e = \frac{1}{2}$

 $\therefore ae = 2 \Rightarrow a = 4$

Now,
$$b = a \sqrt{1 - \frac{1}{4}} = 2\sqrt{3}$$

$$\therefore a^2 = 16 \text{ and } b^2 = 12$$

448 **(c)**

In the standard form of an ellipse sum of the focal distances of a point is 2a

449 **(b)**

Given circles are $x^2 + y^2 - y = 0$ and $x^2 + y^2 + y^2$ y = 0 centres and radii of these circles are $C_1\left(0,\frac{1}{2}\right), C_2\left(0,-\frac{1}{2}\right)$ And $r_1 = \frac{1}{2}, r_2 = \frac{1}{2}$ Now, $C_1 C_2 = \sqrt{0 + (\frac{1}{2} + \frac{1}{2})^2} = 1$ And $r_1 + r_2 = \frac{1}{2} + \frac{1}{2} = 1$:: $C_1 C_2 = r_1 + r_2$ It means that two circles touch each other externally Hence, number of common tangents are 3 450 (a) Since, asymptotes are at90°, it means that it is a rectangular hyperbola. \therefore Eccentricity is $\sqrt{2}$. 451 (c) It is given, centre is (2, -3) and circumference of circle = 10π $\Rightarrow 2\pi r = 10\pi \Rightarrow r = 5$ The equation of circle, if centre is (2, -3) and radius is 5, is $(x-2)^2 + (y+3)^2 = 5^2$ $\Rightarrow x^2 + y^2 - 4x + 6y + 13 = 25$ $\Rightarrow x^{2} + y^{2} - 4x + 6y - 12 = 0$ 453 (b) Given equation is $v^2 - 8v - x + 19 = 0$ $\Rightarrow (y-4)^2 = x - 19 + 16$ $\Rightarrow (y-4)^2 = (x-3)$ $\Rightarrow Y^2 = 4AX$ Where, Y = y - 4, $A = \frac{1}{4}$ and X = x - 3: Focus = $(A, 0) = \left(\frac{1}{4}, 0\right) = \left(\frac{13}{4}, 4\right)$ Vertex = (3,4)Directrix $X = -\frac{1}{4}$

$$\Rightarrow x - 3 = -\frac{1}{4}$$
$$\Rightarrow x = \frac{11}{4}$$

454 **(a)**

Given equation can be rewritten as x(x-2y) - 3(x-2y) = 0 $\Rightarrow (x-3)(x-2y) = 0$ $\Rightarrow x = 3, x = 2y$ $\Rightarrow x = 3, y = \frac{3}{2}$ \therefore Centre of circle is $\left(3, \frac{3}{2}\right)$

455 (c)

If the normal at t_1 meets the parabola at t_2 , then $t_2 = -t_1 - \frac{2}{t_1}$

$$t_2 = -t_1 - \frac{1}{t_1}$$

Here,
$$t_1 = 1$$
 and $t_2 = t$. Therefore, $t = -3$ 456 (d)

Eliminating λ from the two given equations, we get

 $\left(\frac{x}{a} + \frac{y}{b}\right) \left(\frac{x}{a} - \frac{y}{b}\right) = 1$ $\Rightarrow \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1, \text{ which is the equation of a hyperbola}$

457 (a)

Centre of the hyperbola is the mid-point of the line segment joining two foci. Therefore, coordinates od the centre are (1,5). Now, Distance between the foci = 10 $\Rightarrow 2a \ e = 10 \Rightarrow ae = 5 \Rightarrow a = 4$ [:: e = 5/4] $\therefore b^2 = a^2(e^2 - 1) \Rightarrow b = 3$

Hence, the equation of the hyperbola is

$$\frac{(x-1)^2}{16} - \frac{(y-5)^2}{9} = 1$$
458 (c)

Given equation can be rewritten as

$$(x-2)^2 = 8(y-1)$$

$$\Rightarrow X^2 = 4AY$$

Where X = x - 2, Y = y - 1 and A = 2

So, directrix is given by

$$Y = -A \Rightarrow y - 1 = -2$$

 $\Rightarrow y = -1$

459 (d)

Given,
$$y + 2a = \frac{a^2}{3} \left(x^2 + \frac{3}{2a} x \right)$$

$$\Rightarrow y + 2a = \frac{a^3}{3} \left(x + \frac{3}{4a} \right)^2 - \frac{9}{16^2} \times \frac{a^3}{3}$$

$$\Rightarrow \left(y + \frac{35a}{16} \right) = \frac{a^3}{3} \left(x + \frac{3}{4a} \right)^2$$

Thus, the vertices of parabola is $\left(-\frac{3}{4a}, -\frac{35a}{16}\right)$

Let
$$h = -\frac{3}{4a}$$
 and $k = -\frac{35a}{16}$

$$hk = \frac{105}{64}$$

Hence, the locus of vertices of a parabola is $xy = \frac{105}{64}$

460 **(b)**

Equation of the coaxial system of circle is $S_1 + \lambda S_2 = 0$ \therefore $(x^2 + y^2 + 5x + y + 4)$ $+\lambda(x^2 + y^2 + 10x - 4y - 1) = 0$ $\Rightarrow x^2 + y^2 + \frac{5(1+2\lambda)}{(1+\lambda)}x + \frac{(1-4\lambda)}{(1+\lambda)}y + \frac{4-\lambda}{1+\lambda}$ ∴ The centre of the circle is $\left(-\frac{5(1+2\lambda)}{2(1+\lambda)},-\frac{(1-4\lambda)}{2(1+\lambda)}\right)...(i)$ For limiting point, r = 0 $\therefore \quad \sqrt{\frac{25(1+2\lambda)^2}{4(1+\lambda)^2} + \frac{(1-4\lambda)^2}{4(1+\lambda)^2} - \frac{(4-\lambda)}{(1+\lambda)}} = 0$ $\Rightarrow 25(1+2\lambda)^2 + (1-4\lambda)^2 - 4(4-\lambda)(1+\lambda)$ $\Rightarrow 120\lambda^2 + 80\lambda + 10 = 0 \Rightarrow (6\lambda + 1)(2\lambda + 1)$ $\Rightarrow \lambda = -\frac{1}{6}$ and $-\frac{1}{2}$ On substituting the values of λ in Eq. (i), we get (-2, -1) and (0, -3)461 (a) The equation tangent to $\frac{x^2}{a^2} + \frac{y^2}{b} = 1$ at any point $P(a\cos\theta, b\sin\theta)$ is $\frac{x}{a}\cos\theta + \frac{y}{b}\sin\theta = 1$... (i) The equations of tangents at B(0, b) and B'(0, -b)are y = b and y = -b respectively. These two tangents intersect (i) at $L\left(\frac{a(1-\sin\theta)}{\cos\theta}, b\right)$ and $L'\left(\frac{a(1+\sin\theta)}{\cos\theta}, -b\right)$ respectively

$$\therefore BL = \left| \frac{a(1 - \sin \theta)}{\cos \theta} \right| \text{ and } B'L' = \left| \frac{a(1 + \sin \theta)}{\cos \theta} \right|$$
$$\Rightarrow BL \times B'L' = \left| \frac{a^2(1 - \sin^2 \theta)}{\cos \theta} \right| = a^2$$

462 (c)

Let the equation to the required ellipse be $\frac{x^2}{a^2}$ +

$$\frac{y^2}{b^2} = 1. \text{ It passes through } (-3,1)$$

$$\therefore \frac{9}{a^2} + \frac{1}{b^2} = 1$$

$$\Rightarrow 9 \ b^2 + a^2 = a^2 b^2$$

$$\Rightarrow 9 \ a^2 (1 - e^2) + a^2 = a^4 (1 - e^2) \quad [\because b^2 = a^2 (1 - e^2)]$$

$$\Rightarrow 9 \ a^2 \left(1 - \frac{2}{5}\right) + a^2 = a^4 \left(1 - \frac{2}{5}\right) \Rightarrow a^2 = \frac{32}{3}$$

Now, $b^2 = a^2 (1 - e^2) \Rightarrow b^2 = \frac{32}{3} \left(1 - \frac{2}{5}\right) = \frac{32}{5}$
Hence, the equation of the required ellipse is

$$\frac{x^2}{\frac{32}{3}} + \frac{y^2}{\frac{32}{5}} = 1 \text{ or, } 3x^2 + 5y^2 = 32$$

463 **(b)**

The locus of the point which moves such that the ratio of its distance from two fixed point in the plane is always a constant k(k < 1) is an ellipse.

464 (c)

We have, $\frac{x^2}{12-k} + \frac{y^2}{8-k} = 1$ This equation will represent a hyperbola, if (12-k) and (8-k) are of opposite signs $\Rightarrow (12-k)(8-k) < 0 \Rightarrow (k-12)(k-8) < 0$ $\Rightarrow 8 < k < 12$

465 **(b)**

The given line is a diameter of the circle and the origin lies on the circle. So, required angle is the angle in a semi-circle, which is a right angle

466 **(c)**

Here,
$$g_1 = \frac{k}{2}$$
, $f_1 = 2$, $c_1 = 2$
And $g_2 = -1$, $f_2 = -\frac{3}{4}$, $c_2 = \frac{k}{2}$
 \therefore Given circles cut orthogonally
 $\therefore 2 \times \frac{k}{2} \times (-1) + 2 \times 2 \times (-\frac{3}{4}) = 2 + \frac{k}{2}$
 $\Rightarrow -k - 3 = 2 + \frac{k}{2} \Rightarrow k = \frac{-10}{3}$

467 **(b)**

We know that the diameters $y = m_1 x$ and $y = m_2 x$ are conjugate diameters of the hyperbola

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
, if $m_1 m_2 = \frac{b^2}{a^2}$
Here, $a^2 = 9$, $b^2 = 16$ and $m_1 = 1/2$

$$\therefore m_1 m_2 = \frac{b^2}{a^2} \Rightarrow \frac{1}{2}(m_2) = \frac{16}{9} \Rightarrow m_2 = \frac{32}{9}$$

Hence, the required diameter is $y = \frac{32x}{9}$

468 (d)

Centre is point of intersection of two diameter *ie*, the point is C(8, -2)

$$\therefore r = CP = \sqrt{4 + 16} = \sqrt{20}$$

Let
$$S_1 = 3x^2 + 5y^2 - 32$$

and
$$S_2 = 25x^2 + 9y^2 - 450$$

$$3x^2 + 5y^2 = 32$$
 (3, 5)
x' x' 25x^2 + 9y^2 = 450

At point (3, 5)

 $S_1 = 3(3)^2 + 5(5)^2 - 32 = 120 > 0$ and $S_2 = 25(3)^2 + 9(5)^2 - 450$

= 225 + 225 - 450 = 0

 \therefore Point (3, 5) lies outside the first ellipse and for second ellipse lies on the ellipse.

Hence, two tangents for first ellipse and one tangent for second ellipse can be drawn

470 **(c)**

Put the value of $(x, y) \equiv (\tan \theta + \sin \theta, \tan \theta - \sin \theta)$ In the given option, we get the required result. On putting the value of x and y in option (c), we get $[(\tan \theta + \sin \theta)^2 - (\tan \theta - \sin \theta^2]^2$ $= 16(\tan \theta$ $+ \sin \theta) \times (\tan \theta - \sin \theta)$ $\Rightarrow [\tan^2 \theta + \sin^2 \theta - \tan^2 \theta - \sin^2 \theta +$ $4 \tan \theta \sin \theta]^2 = 16(\tan^2 \theta - \sin^2 \theta)$ $\Rightarrow (4 \tan \theta \cdot \sin \theta)^2 = 16(\tan^2 \theta - \sin^2 \theta)$ $\Rightarrow 16 \tan^2 \theta \sin^2 \theta = 16 \tan^2 \theta (1 - \cos^2 \theta)$ $\Rightarrow 16 \tan^2 \cdot \theta \sin^2 \theta = 16 \tan^2 \theta \sin^2 \theta$ Hence, the option (c) satisfies 471 (d)

Given, $\frac{x^2}{16} + \frac{y^2}{9} = 1$

Length of latusrectum

$$=\frac{2b^2}{a}=\frac{2\times 9}{4}=\frac{9}{2}$$

472 **(b)**

Let (h, k) be the point of intersection of the tangents. Then, the chord of contact of tangents is the coomon chord of the circles $x^2 + y^2 = 12$ and $x^2 + y^2 - 5x + 3y - 2 = 0$

The equation of the common chord is 5x - 3y - 10 = 0 ...(i) Also, the equation of the chord of contact is hx + ky - 12 = 0 ...(ii)

Equations (i) and (ii) represent the same line. Therefore,

$$\frac{h}{5} = \frac{k}{-3} = \frac{-12}{-10} \Rightarrow h = 6, k = -18/5$$

Hence, the required point is $(6, -18/5)$

473 **(c)**

If *S* and *S'* are two foci of the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ and P(x, y) is any point on it. Then, S'P - SP = 2a = Transverse axis

474 **(a)**

Let the equation of the hyperbola be $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ It is given that a = 3 and ae = 5

∴
$$e = \frac{5}{3}$$
 and $b^2 = a^2(e^2 - 1) \Rightarrow b^2 = 9\left(\frac{25}{9} - 1\right)$
= 16

So, the equation of the hyperbola is $\frac{x^2}{9} - \frac{y^2}{16} = 1$

475 **(a)**

The coordinates of Q and R are $(0, b \operatorname{cosec} \theta)$ and $(0, b \sin \theta)$

$$\therefore CQ = b \operatorname{cosec} \theta \text{ and } CR = b \sin \theta$$

$$\Rightarrow CQ \times CR = b^{2}$$

476 **(c)**

Given, equation of hyperbola $(10x - 5)^2 + (10y - 4)^2 = \lambda^2(3x + 4y - 1)^2$ can be rewritten as

$$\frac{\sqrt{\left(x - \frac{1}{2}\right)^2 + \left(y - \frac{2}{5}\right)^2}}{\left|\frac{3x + 4y - 1}{5}\right|} = \left|\frac{\lambda}{2}\right|$$

This is of the form of $\frac{PS}{PM} = e$ Where, *P* is any point on the hyperbola and *S* is a focus and *M* is the point of directrix. Here, $\left|\frac{\lambda}{2}\right| > 1 \implies |\lambda| > 2 \quad (\because e > 1)$ $\implies \lambda < -2 \text{ or } \lambda > 2$

On homogenising $y^2 - x^2 = 4$ with the help of the line $\sqrt{3}x + y = 2$, we get

$$y^{2} - x^{2} = 4 \frac{\left(\sqrt{3}x + y\right)^{2}}{4}$$

$$\Rightarrow y^{2} - x^{2} = 3x^{2} + y^{2} + 2\sqrt{3}xy$$

$$\Rightarrow 4x^{2} + 2\sqrt{3}xy = 0$$

$$\therefore \tan \theta = 2 \frac{\sqrt{h^{2} - ab}}{a + b}$$

$$\Rightarrow \tan \theta = \frac{2\sqrt{3 - 0}}{4}$$

$$\Rightarrow \theta = \tan^{-1}\left(\frac{\sqrt{3}}{2}\right)$$

479 **(b)**

Let the standard equation of ellipse is $\frac{x^2}{a^2} + \frac{y^2}{b^2} =$ 1 (a > b) Minor axis = $2b = 8 \Rightarrow b = 4$ And eccentricity = $e = \frac{\sqrt{5}}{3}$ Now, $b^2 = a^2(1 - e^2)$ $\Rightarrow (4)^2 = a^2\left(1 - \frac{5}{9}\right)$ $\Rightarrow 16 = a^2\left(\frac{4}{9}\right)$ $\Rightarrow a^2 = 36 \Rightarrow a = 6$ Length of major axis = 2a = 12480 (c) We know that, if three normals to the parabola $y^2 = 4ax$ through point (h, k), then h > 2aHere, h = a and $a = \frac{1}{4}$ $\therefore a > 2.\frac{1}{4} \Rightarrow a > \frac{1}{2}$

481 **(c)**

Obviously it is an ellipse, because the normal and tangent at point P of an ellipse bisect the internal and external angles between the focal distance of the point

482 **(a)**

Since 3x + y = 0 is a tangent to the circle with centre at (2, -1)

 $\therefore \text{Radius} = \text{Length of the} \perp \text{from } (2, -1) \text{ on } 3x + y = 0$

$$\Rightarrow \text{ Radius } = \frac{6-1}{\sqrt{9+1}} = \frac{5}{\sqrt{10}} = \sqrt{\frac{5}{2}}$$

So, the equation of the circle is

$$(x-2)^{2} + (y+1)^{2} = \frac{5}{2}$$

$$\Rightarrow x^{2} + y^{2} - 4x + 2y + \frac{5}{2} = 0$$

The combined equation of the tangents drawn from the origin to this circle is

$$\left(x^2 + y^2 - 4x + 2y + \frac{5}{2}\right) \left(\frac{5}{2}\right) = \left(-2x + y + \frac{5}{2}\right)^2 \Rightarrow 3x^2 - 8xy - 3y^2 = 0 \Rightarrow 3x + y = 0, x - 3y = 0$$

483 (d)

Given equation is $2x^2 + 5xy + 2y^2 + 4x + 5y = 0$ and equation of its asymptotes is $2x^2 + 5xy + 2y^2 + 4x + 5y + \lambda = 0$...(i) Which is the equation of pair of straight lines Eq.(i) is compared by the standard equation of pair of straight lines. $\Rightarrow a = 2, b = 2, h = \frac{5}{2}, g = 2, f = \frac{5}{2}$ and $c = \lambda$ The condition for a pair of straight lines is $abc + 2fgh - af^2 - bg^2 - ch^2 = 0$ $\therefore 2(2)(\lambda) + 2(\frac{5}{2})2(\frac{5}{2}) - 2(\frac{5}{2})^2 - 2(2)^2 - \lambda(\frac{5}{2})^2$ = 0 $\Rightarrow 4\lambda + 25 - \frac{25}{2} - 8 - \frac{25\lambda}{4} = 0$ $\Rightarrow \frac{25\lambda}{4} - 4\lambda = \frac{25}{2} - 8 \Rightarrow \lambda = 2$

 $\Rightarrow \frac{1}{4} - 4\lambda = \frac{1}{2} - 8 \Rightarrow \lambda = 2$ On putting the value of λ in Eq.(i), we get $2x^2 + 5xy + 2y^2 + 4x + 5y + 2 = 0$

Which is the required equation.

484 **(b)**

The centre of the given circle is O(3, 2)

Since, *OA* and *OB* are perpendicular to *PA* and *PB*. Also, *OP* is the diameter of the circumcircle of \triangle *PAB*

Its equation is (x-3)(x-1) + (y-2)(y-8) = 0 $\Rightarrow x^2 + y^2 - 4x - 10y + 19 = 0$

485 **(b)**

Condition for tangency to the ellipse is

 $c^{2} = a^{2}m^{2} \pm b^{2}$ $\Rightarrow c^{2} = 9(-1)^{2} \pm 16$

$$c^2 = 25$$

 $\Rightarrow c = +5$

486 (d)

The given equation can be written as $(x - 4)^2 = y - (c - 16)$ Therefore, the vertex of the parabola is (4, c + 16). This point lies on *x*-axis $\therefore c - 16 = 0 \Rightarrow c = 16$

487 (d)

The centre and radius of given circle are (r, h) and r

Thus, x = 0 is one of tangent

Let another tangent is y = mx to the circ le. This line will be tangent, if

$$\frac{h - mr}{\sqrt{1 + m^2}} = r$$
$$\Rightarrow m = \left(\frac{h^2 - r^2}{2hr}\right)$$

Therefore, equation of tangent is $y = \frac{(h^2 - r^2)}{2hr}x$

 $\Rightarrow (h^2 - r^2)x - 2hr y = 0$

Required tangents are x = 0 and $(h^2 - r^2)x - 2hry = 0$

488 **(b)**

Equation of tangent to hyperbola having slope *m* is

$$y = mx + \sqrt{9m^2 - 4}$$
 ...(i)

Equation of tangent to circle is

$$y = m(x - 4) + \sqrt{16m^2 + 16}$$
 ...(ii)

Eqs. (i)and (ii)will be identical for $m = \frac{2}{\sqrt{5}}$ satisfy

∴ Equation of common tangent is

$$2x - \sqrt{5}y + 4 = 0$$

489 (d)

The given ellipse is $\frac{x^2}{9} + \frac{y^2}{4} = 1$. The value of the expression $\frac{x^2}{9} + \frac{y^2}{4} - 1$ is positive for x = 1, y = 2 and negative for x = 2, y = 1. Therefore, *P* lies outside *E* and *Q* lies inside *E*. The value of the expression $x^2 + y^2 - 9$ is —ive for both the points *P* and *Q*. Therefore, *P* and *Q* both lie inside *C*. Hence, *P* lies inside *C* but outside *E* 490 **(b)**

 $\frac{(x-1)^2}{a^2} + \frac{(y+1)^2}{b^2} = 1 \qquad \dots (i)$ It is given that a = 8 and ellipse (i) passes through (1,3) $\therefore b^2 = 16$ Hence, the equation of the ellipse is $\frac{(x-1)^2}{64}$ + $\frac{(y+1)^2}{16} = 1$ 491 (a) Equation of *AB* is 493 (c) Let the equation of ellipse be $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ B(0, b)In ΔSOB , $\tan 60^\circ = \frac{OB}{OS}$ $\Rightarrow \sqrt{3} = \frac{b}{ae}$ $\Rightarrow \frac{b}{a} = e\sqrt{3}$ Now, $e^2 = 1 - \frac{b^2}{a^2} \Rightarrow e^2 = 1 - 3e^2$ $\Rightarrow 4e^2 = 1 \Rightarrow e = \frac{1}{2}$ 494 (d) The locus of the point of intersection of the perpendicular tangents to ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, is a director circle and whose equation is given by $x^2 + y^2 = a^2 + b^2$: Here, the equation of director circle is $x^{2} + y^{2} = 9 + 4 \Rightarrow x^{2} + y^{2} = 13$ 495 (b) Any tangent to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ is $y = mx \pm \sqrt{a^2 m^2 - b^2}$ or, y = mx + x, where $c = \pm \sqrt{a^2 m^2 - b^2}$... (i) This will touch the hyperbola $\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$, $c^2 = a^2 - b^2 m^2$ $\Rightarrow a^2m^2 - b^2 = a^2 - b^2m^2$ [Using (i)] $\Rightarrow m^2(a^2 + b^2) = a^2 + b^2 \Rightarrow m = \pm 1$ Hence, the equations of the common tangents are

Let the equation of the ellipse be

 $y = \pm x \pm \sqrt{a^2 - b^2}$ 497 (b) The required equation is 4x + 5y - 20 = 8 + 5 - 20[Using : T = S'] $\Rightarrow 4x + 5y = 13$ 498 (c) Let $P(x_1, y_2)$ be any point outside the circle. Length of tangent to the circle $x^2 + y^2 + 4x + 3 =$ 0 is $\sqrt{x_1^2 + y_1^2 + 4x_1 + 3}$ And length of tangent of the circle $x^2 + y^2 - 6x +$ 5 = 0 is $\sqrt{x_1^2 + y_1^2 - 6x_1 + 5}$ According to question, $\frac{\sqrt{x_1^2 + y_1^2 + 4x_1 + 3}}{\sqrt{x_1^2 + y_1^2 - 6x_1 + 5}} = \frac{2}{3}$ $\Rightarrow 9x_1^2 + 9y_1^2 + 36x_1 + 27 - 4x_1^2 - 4y_1^2 + 24x_1$ -20 = 0 $\Rightarrow 5x_1^2 + 5y_1^2 + 60x_1 + 7 = 0$: Locus of point is $5x^2 + 5y^2 + 60x + 7 = 0$ 499 (c) Let $S = x^2 + y^2 - 2x$ At $P(-1, 0), S_1 = (-1)^2 + 0 - 2(-1) = 3 > 0$ This point P(-1, 0) lies outside the circle 500 (c) Here, $r = \sqrt{(4-2)^2 + (6-3)^2} = 13$ \therefore area of circle= $\pi r^2 = \pi \times 13 = 13\pi$ sq units 501 (d) Let *AB* is a chord and its equation is y = mx ...(i) (0, 0)Equation of *CM* which is perpendicular to *AB*, is $x + my = \lambda$ It passes through the centre (a, 0) $\Rightarrow x + my = a$...(ii) On eliminating *m* from Eqs. (i) and (ii), we get $x^2 + y^2 = ax$ $\Rightarrow x^2 + y^2 - ax = 0$ is the locus of the centre of the required circle 502 (d) Since, distance between directrices, $\frac{2a}{e} = 10$ $\Rightarrow a = \frac{10 \times \sqrt{2}}{2} = 5\sqrt{2}$

: Distance between foci, $2ae = 2 \times 5\sqrt{2} \times \sqrt{2}$

= 20503 (d) The given equation of ellipse can be rewritten as $\frac{x^2}{16} + \frac{y^2}{9} = 1$ Here, a = 4, b = 3: Length of latusrectum $=\frac{2b^2}{a}=\frac{2\times 9}{4}=\frac{9}{2}$ 504 (d) It is given that $x^2 + y^2 = a^2$...(i) and $xy = c^2$...(ii) From Eq.(i) and (ii), $x^2 + \frac{c^4}{r^2} = a^2$ $\Rightarrow x^4 - a^2 x^2 + c^4 = 0$...(iii) Now, x_1, x_2, x_3, x_4 will be roots of Eq.(iii) $\therefore x_1 + x_2 + x_3 + x_4 = 0$ and $x_1 x_2 x_3 x_4 = c^4$ Similarly, $y_1 + y_2 + y_3 + y_4 = 0$ and $y_1 y_2 y_3 y_4 = c^4$ 505 (c)

In $\triangle ABD$, we have

$$\tan \theta = \frac{y}{x} \quad \dots (i)$$

$$x' \leftarrow A \qquad \qquad \begin{array}{c} B \\ \theta x | 90^{\circ} \cdot \theta \\ D \\ y' = 4a_{X} \\ y' \end{array}$$

In $\triangle BCD$, we have

$$\tan(90^\circ - \theta) = \frac{y}{CD}$$

$$\Rightarrow CD = y \tan \theta = \frac{y^2}{x} \text{ [using Eq. (i)]}$$

$$\Rightarrow CD = \frac{4ax}{x} = 4a$$

506 (c)

The two circles are $x^2 + y^2 - 4x - 6y - 3 = 0$ and, $x^2 + y^2 + 2x + 2y + 1 = 0$ The coordinates of the centres and radii are : Centres: $C_1(2,3)$ $C_2(-1,-1)$ Radii: $r_1 = 4$ $r_2 = 1$

Clearly, $C_1 C_2 = 5 = r_1 + r_2$ Therefore, there are 3 common tangents to the given circles 507 (a) Let $P(at_1, 2at_1), Q(at_2^2, 2at_2)$ be a focal chord of the parabola $y^2 = 4ax$ Therefore, the tangents at *P* and *Q* meet at $[at_1t_2, a(t_1 + t_2)]$ Since, $t_1 t_2 = -1$ $x_1 = -a$ and $y_1 = a(t_1 + t_2)$ and normal at P and Q, meet at $[2a + a(t_1^2 + t_2^2 - 1), a(t_1 + t_2)]$ $\therefore x_2 = 2a + a(t_1^2 + t_2^2 - 1)$ and $y_2 = a(t_1 + t_2)$ $\therefore x_1 x_2 + y_1 y_2 = -a \left[2a + a(t_1^2 + t_2^2 - 1) \right]$ $+ a^2 (t_1 + t_2)^2$ $= -3a^{2}$ Now, $x_1x_2 + y_1y_2 = at_1^2 \cdot at_2^2 + 2at_1 \cdot 2at_2$ $=a^{2}(t_{1}t_{2})^{2}+4a^{2}(t_{1}t_{2})$ $=a^2-4a^2=-3a^2$ (: $t_1t_2=-1$)

508 **(d)**

Suppose *AB* is a chord of the circle through A(p,q) having M(h,0) as its mid point. The coordinates of *B* are (-p + 2h, -q)

As *B* lies on the circle $x^2 + y^2 = px + qy$, we have $(-p + 2h)^2 + (-q)^2 = p(-p + 2h) + q(-q)$ $\Rightarrow 2p^2 + 2q^2 - 6ph + 4h^2 = 0$ $\Rightarrow 2h^2 - 3ph + p^2 + q^2 = 0$...(i) As there are two distinct chords from A(p,q)which are bisected on *x*-axis, there must be two distinct values of *h* satisfying Eq. (i) $D = 9p^2 - (4)(2)(p^2 + q^2) > 0$ $\Rightarrow p^2 > 8q^2$

509 (d)

Again, in
$$\triangle OCA$$

 $OA = \sqrt{OC^2 + AC^2}$
 $= \sqrt{(at^2)^2 + (2at)^2}$
 $= \sqrt{[(2\sqrt{3})^2]^2 a^2 + 4a^2(2\sqrt{3})^2}$
 $= \sqrt{144a^2 + 48a^2} = \sqrt{192a^2}$
 $\Rightarrow OA = 8\sqrt{3}a$

510 (b)

The coordinates of centres C_1 and C_2 of two circles are (1,0) and (2,3) respectively. Let r_1 and r_2 be the radii of two circles. Then, $r_1 = 2$ and $r_2 =$ $\sqrt{21}$

Clearly, $r_1 - r_2 < C_1 C_2 < r_1 + r_2$ Hence, the two circles intersect each other

511 (b)

Given equation of an ellipse can be rewritten as

$$\frac{(x-1)^2}{1/8} + \frac{(y+1)^2}{1/6} = 1$$

Here, b > a

Now,
$$e = \sqrt{1 - \frac{1/8}{1/6}} = \frac{1}{2}$$

 \therefore Directrix, $y + 1 = \pm \left(\frac{\sqrt{1/6}}{1/2}\right) \quad \left[\because y = \pm \frac{b}{e}\right]$
 $\Rightarrow y + 1 = \pm \frac{2}{\sqrt{6}} \Rightarrow 3y + 3 = \pm \sqrt{6}$

512 (a)

The line y = mx + c touches the circle $x^2 + y^2 =$ r^2 , if and only if $c = \pm r\sqrt{1 + m^2}$ here we have line 3x - 2y = k $\Rightarrow \quad y = \frac{3}{2}x - \frac{1}{2}k$ and circle $x^2 + y^2 = 4r^2$

$$\therefore$$
 By condition $c = \pm a\sqrt{1 + m^2}$, we have

$$-\frac{1}{2}k = \pm 2r\sqrt{1 + \frac{9}{4}}$$
On squaring both sides, we get
$$\frac{1}{4}k^2 = 4r^2\left(\frac{13}{4}\right)$$

$$\Rightarrow k^2 = 52r^2$$
513 (a)
By the condition of parabola
$$PM^2 = PS^2$$

$$\Rightarrow (x + 4)^2 = (x - 2)^2 + (y - 1)^2$$

$$\frac{1}{x} = \frac{1}{2} + \frac{1}{(1,1)} + \frac{1}{(2,1)} + \frac{1}{x}$$

$$\Rightarrow y^2 - 2y - 12x - 11 = 0$$
514 (a)
Let $\frac{x}{a}\cos\theta + \frac{y}{b}\sin\theta = 1$ be a tangent to the ellipse.
It is given that
$$p = a \sec\theta$$
 and $q = b \csc\theta$

$$\therefore \frac{a^2}{p^2} + \frac{b^2}{q^2} = 1$$
515 (d)
Since, given that foci of an ellipse are (2, 2) and (4, 2) major axis is of length 10
$$\Rightarrow 2ae = 2 \dots(i)$$
and $2a = 10 \Rightarrow a = 5 \dots(ii)$
From Eqs. (i) and (ii),
 $2 \times 5 \times e = 2$

$$\Rightarrow e = \frac{1}{5}$$

$$\therefore b^2 = a^2(1 - e^2) \therefore b^2 = 25\left(1 - \frac{1}{25}\right) = 24$$

and centre of an ellipse = mid point of foci = (3, 2)

Equation of an ellipse is

$$\frac{(x-3)^2}{25} + \frac{(y-2)^2}{24} = 1$$

516 (a)

Given tangents 5x - 12y + 10 = 0 and 5x - 12y + 10 = 0

= 24

2)and (4,

12y - 16 = 0 are parallel
∴ Radius =
$$\left| \frac{c_1 - c_2}{2\sqrt{a^2 + b^2}} \right|$$

= $\left| \frac{10 - (-16)}{2\sqrt{5^2 + (-12)^2}} \right| = \left| \frac{26}{2.13} \right| = 1$

517 **(b)**

As we know, if *P* is any point on the ellipse, then sum of focal distances of any point on the ellipse is equal to the length of major axis, *ie*, $PS + Ps' = 2a = 2 \cdot \sqrt{20} = 4\sqrt{5}$

518 **(b)**

Sum of ordinates of feet of normals drawn from a point is zero

So, there arithmetic mean is zero

519 **(b)**

Eliminating t from $x = t^2 + 1$, y = 2t, we obtain $y^2 = 4x - 4$ Substituting x = 2s, $y = \frac{2}{s}$ in $y^2 = 4x - 4$, we

substituting $x = 2s, y = \frac{1}{s}$ in y = 1x = 1, wobtain

 $2s^3 - s^2 - 1 = 0 \Rightarrow (s - 1)(2s^2 + s + 1) = 0$ $\Rightarrow s = 1$

Putting s = 1 in x = 2s, $y = \frac{2}{s}$, we obtain x = 2, y = 2

Hence, the required point is (2,2)

520 **(b)**

Transverse and conjugate axes of a rectangular hyperbola are equal i.e. b = a

$$\therefore e = \sqrt{1 + \frac{b^2}{a^2}} = \sqrt{1 + 1} = \sqrt{2}$$

521 **(c)**

Let the equation of circle be $x^{2} + y^{2} + 2gx + 2fy + c = 0$...(i) Since, circle (i) cuts the given circle orthogonally $\therefore 2(-g)(3) + 2(-f)(-2) = c - 3$ $\Rightarrow -6g + 4f = c - 3$...(ii) Also, Eq. (i) passes through (3, 0) $\therefore \ 3^2 + 0^2 + 2g(3) + 2f(0) + c = 0$ $\Rightarrow 6g + c + 9 = 0$...(iii) As Eq. (i) touches y-axis $\therefore |-f| = \sqrt{g^2 + f^2 - c}$ $\Rightarrow g^2 = c$...(iv) From Eqs. (iii) and (iv), we get g = -3 and c = 9∴ From Eq. (ii), $-6(-3) + 4f = 9 - 3 \implies f = -3$ ∴ Required equation of circle is $x^2 + y^2 - 6x - 6y + 9 = 0$ 522 (a)

Radius = $\sqrt{(a - \pi)^2 + (b - e)^2}$ =irrational= k \therefore Circle $(x - \pi)^2 + (y - e)^2 = k^2$ 523 (c) Given length of latusrectum = $\frac{2b^2}{a} = 9$ $\Rightarrow b^2 = \frac{9a}{2}$...(i) and $e = \frac{5}{4}$ $\frac{25}{16} = 1 + \frac{b^2}{a^2}$ $\Rightarrow 1 + \frac{9a}{2a^2} = \frac{25}{16}$ [form eq.(i)] $\Rightarrow \frac{9}{2a} = \frac{9}{16} \Rightarrow a = 8$

On putting the value of *a* in Eq. (i), we get

$$b^2 = \frac{9 \times 8}{2} \Rightarrow b = 6$$

 \therefore Equation of hyperbola is

$$\frac{x^2}{8^2} - \frac{y^2}{6^2} = 1 \implies \frac{x^2}{64} - \frac{y^2}{36} = 1$$

524 (d)

Given, S (6, 4) and S'(-4, 4) and eccentricity, e =2 $\therefore SS' = \sqrt{(6+4)^2 + (4-4)^2} = 10$ But SS' = 2 ae $\therefore 2a \times 2 = 10$ $\Rightarrow a = \frac{5}{2}$ And we know that, $b^2 = a^2(e^2 - 1)$ $\Rightarrow b^2 = \frac{25}{4}(4-1) = \frac{75}{4}$ Centre of hyperbola is $\left(\frac{6+(-4)}{2}, \frac{4+4}{2}\right) = (1, 4)$: Equation of hyperbola is $\frac{(x-1)^2}{\frac{25}{4}} - \frac{(y-4)^2}{\frac{75}{4}} = 1$ $\Rightarrow \frac{4(x-1)^2}{25} - \frac{4(y-4)^2}{75} = 1$ 525 (b) We have. $y^2 = 4 ax \Rightarrow 2y \frac{dy}{dx} = 4a \Rightarrow \frac{dy}{dx} = \frac{2a}{y}$ At (x_1, y_1) , we have Subtangent = $\frac{y_1}{(dy/dx)} = \frac{y_1}{2a/y_1} = \frac{y_1^2}{2a}$

Subnormal =
$$y_1 \frac{dy}{dx} = 2a$$

Clearly, $y_1^2 = \left(\frac{y_1^2}{2a}\right) \times 2a$
i.e. (Ordinate)² = Subtangent × Subnormal
Hence, subtangent, ordinate and subnormal are in

Hence, subtangent, ordinate and subnormal are in G.P.

527 **(a)**

Let the equation of the ellipse be $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ It passes through (2,1)

$$\therefore \frac{4}{a^2} + \frac{1}{b^2} = 1$$

$$\Rightarrow \frac{4}{a^2} + \frac{1}{a^2(1 - e^2)} = 1 \Rightarrow \frac{4}{a^2} + \frac{1}{a^2\left(1 - \frac{1}{4}\right)} = 1$$

$$\Rightarrow \frac{4}{a^2} + \frac{4}{3a^2} = 1 \Rightarrow \frac{16}{3a^2} = 1 \Rightarrow a^2 = \frac{16}{3}$$

$$\therefore \frac{4}{a^2} + \frac{1}{b^2} = 1 \Rightarrow \frac{1}{b^2} = \frac{1}{4} \Rightarrow b^2 = 4$$

Hence, the equation of the ellipse is

$$\frac{3x^2}{16} + \frac{y^2}{4} = 1 \text{ or, } 3x^2 + 4y^2 = 16$$

Given equation can be rewritten as

$$\frac{(x-3)^2}{9} + \frac{(y-5)^2}{25} = 1 \quad [b > a]$$

$$\therefore \ e = \sqrt{1 - \frac{a^2}{b^2}} = \sqrt{1 - \frac{9}{25}} = \frac{4}{5}$$

529 **(c)**

The equations of the given circles are $x^2 + y^2 - 10x + 16 = 0$ $\Rightarrow (x - 5)^2 + y^2 = 3^2$...(i) Whose centre is (5, 0) and radius=3 And $x^2 + y^2 = r^2$...(ii)

Whose centre is (0, 0) and radius = rClearly, these two circles will intersect each other at two distinct points, if r > OA $\Rightarrow r > 5 - 3 \Rightarrow r > 2$ and r < OB $\Rightarrow r < 2 + 3 + 3 \Rightarrow r < B$ $\therefore 2 < r < 8$ (c)

530 **(c)**

Equation of normal is $y = mx - \frac{m}{2} - \frac{m^3}{4} \left(a = \frac{1}{4}\right)$. It passes through (*c*, 0)

$$\therefore 0 = cm - \frac{m}{2} - \frac{m^3}{2} \Rightarrow m = 0$$
And $\frac{m^2}{4} = c - \frac{1}{2} \Rightarrow c > \frac{1}{2}$
Then, all values of *m* are real
531 **(b)**

$$2a = \frac{17}{8} \cdot 2b$$

$$\Rightarrow a = \frac{17}{8}b$$

$$\because b^2 = a^2(1 - e^2)$$

$$\Rightarrow b^2 = \frac{289}{64}b^2(1 - e^2)$$

$$\Rightarrow 1 - e^2 = \frac{64}{289}$$

$$\Rightarrow e^2 = \frac{225}{289}$$

$$\Rightarrow e = \frac{15}{17}$$

532 **(c)**

Given equation can be rewritten as

$$\frac{(x-1)^2}{9} - \frac{y^2}{3} = 1 \dots (i)$$

Then, equation of its conjugate hyperbola will be

$$\frac{y^2}{3} - \frac{(x-1)^2}{9} = 1 \dots (ii)$$

Here, $a^2 = 9$, $b^2 = 3$
 $\therefore a^2 = b^2(e^2 - 1) \Rightarrow 9 = 3(e^2 - 1)$
 $\Rightarrow e^2 - 1 = 3 \Rightarrow e = 2$

533 (c)

Let P(h, k) be the pole of a focal chord of the parabola $y^2 = 4ax$. Then, the equation of the chord is ky - 2a(x + h) = 0It passes through (a, 0) $\therefore a + h = 0$ Hence, the locus of (h, k) is x + a = 0 i.e. x = -aClearly, it is the directrix of the parabola 534 **(c)** The equation of the given conic is $4(x^2 - 6x + 9) + 16(y^2 - 2y + 1) = 53$ or, $4(x - 3)^2 + 16(y - 1)^2 = 53$ or, $\frac{(x - 3)^2}{\frac{53}{4}} + \frac{(y - 1)^2}{\frac{53}{16}} = 1$ Let \boldsymbol{e} be the eccentricity of the above ellipse. Then,

$$e = \sqrt{1 - \frac{53/16}{53/14}} = \frac{\sqrt{3}}{2}$$

536 **(d)**

Let the coordinates of *A* and *B* be (x_1, y_1) and (x_2, y_2) respectively. Then, x_1, x_2 are roots of $x^2 + 2ax - b^2 = 0$ and y_1, y_2 are roots of $x^2 + 2px - q^2 = 0$ $\therefore x_1 + x_2 = -2a, x_1x_2 = -b^2$ and $y_1 + y_2 = -2p, y_1y_2 = -q^2$ Now, Radius $= \frac{1}{2}AB$ \Rightarrow Radius $= \frac{1}{2}\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ \Rightarrow Radius $= \frac{1}{2}\sqrt{(x_1 + x_2)^2 + (y_1 + y_2)^2 - 4x_1x_2 - 4y_1y_2}$ \Rightarrow Radius $= \frac{1}{2}\sqrt{4a^2 + 4p^2 + 4b^2 + 4q^2}$ $= \sqrt{a^2 + b^2 + p^2 + q^2}$ 537 (a) The point (*a*, 4) lies out side the circles

The point (a, 4) lies out side the circles $x^2 + y^2 + 10 \ x = 0 \text{ and } x^2 + y^2 - 12x + 20 = 0.$ Therefore, $a^2 + 16 + 10a > 0 \text{ and } a^2 + 16 - 12a + 20 > 0$ $\Rightarrow (a + 2)(a + 8) > 0 \text{ and } (a - 6)^2 > 0$ $\Rightarrow (a + 2)(a + 8) > 0 \text{ and } (a - 6)^2 > 0$ $\Rightarrow (a + 2)(a + 8) > 0 \text{ and } a \neq 6 \quad [\because (a - 6)^2 > 0 \text{ of or all } a \neq 6]$ $\Rightarrow a \in (-\infty, -8) \cup (-2, 6) \cup (6, \infty)$ (a)

538 **(a)**

Major axis = 6 = 2a

 $\Rightarrow a = 3$

Also, $e = \frac{1}{2} \implies b = \frac{3\sqrt{3}}{2}$

Thus required equation is

$$\frac{(x-7)^2}{9} + \frac{y^2}{\frac{27}{4}} = 1$$

$$\Rightarrow 3x^2 + 4y^2 - 42x + 120 = 0$$

539 (d)

Let point $P(x_1, y_1)$ be any point on the circle, therefore it satisfy the circle $(x_1 - 3)^2 + (y_1 + 2)^2 = 5r^2$...(i) The length of the tangent drawn from point $P(x_1, y_1)$ to the circle $(x - 3)^2 + (y + 2)^2 = r^2$ is

 $\sqrt{(x_1-3)^2+(y_1+2)^2-r^2} = \sqrt{5r^2-r^2}$ [from Eq. (i)] \Rightarrow 16 = 2r \Rightarrow r = 8 : The area between two circles $= \pi 5r^2 - \pi r^2 = 4\pi r^2 = 4\pi \times 8^2 = 256\pi$ sq units 540 **(b)** Clearly, PA is the length of the tangent drawn from *P*(2,1) to the circle $2(x^2 + y^2) - 3x + 4y =$ $\Delta PA = \sqrt{4 + 1 - \frac{3}{2} \times 2 + 2 \times 1} = 2$ 541 (c) Let equation of circle touching *x*-axis is $x^2 - 2hx + h^2 + y^2 - 2ky = 0$ It passes through (2, 2) and (9, 9) $\Rightarrow 4 - 4h + h^2 + 4 - 4k = 0$...(i) and $81 - 18h + 81 + h^2 - 18k = 0$...(ii) On solving Eqs. (i) and (ii), we get $7h^2 - 252 = 0 \implies h = 6$ 542 (b) Since, the tangent to the parabola at point t_1 and t_2 are $t_1 y = x + at_1^2$ and $t_2 y = at_2^2$ Also, tangents are perpendicular to the parabola therefore, $\frac{1}{t_1} \cdot \frac{1}{t_2} = -1$ or $t_2 t_2 = -1$ We also know that their point of intersection is $[at_1t_2, a(t_1 + t_2)]$ or $[-a, a(t_1 + t_2)]$: Point of intersection lie on directrix x = -a or x + a = 0543 (d) If y_1, y_2 and y_3 are the ordinates of three points on the parabola $y^2 = 4ax$, then the area of the triangle formed by them is given by $\Delta = \frac{1}{8a} |(y_1 - y_2)(y_2 - y_3)(y_3 - y_1)|$ Here, $a = 1, y_1 = 1, y_2 = 2$ and $y_3 = 4$ ∴ Required area $=\frac{1}{9}|(1-2)(2-4)(4)|$ -1)|sq.units \Rightarrow Required area $=\frac{3}{4}$ sq. units 544 (a) Let $P(c \cos \theta, c \sin \theta)$ be a point on $x^2 + y^2 = c^2$. Then, the chord of contact of tangents drawn from P to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is $\left(\frac{c\cos\theta}{a^2}\right)x + \left(\frac{c\sin\theta}{b^2}\right)y = 1$... (i) Let Q(h, k) be the mid-point of the chord of contact of tangents to the ellipse drawn from

point *P*. Then, its equation is $\frac{hx}{a^2} + \frac{ky}{b^2} = \frac{h^2}{a^2} + \frac{k^2}{b^2} \qquad \dots (ii)$ Clearly, (i) and (ii) represent the same line $\therefore \frac{c \cos \theta}{h} = \frac{c \sin \theta}{k} = \frac{1}{\frac{h^2}{a^2} + \frac{k^2}{b^2}}$ $\Rightarrow \cos \theta = \frac{h}{c \left(\frac{h^2}{a^2} + \frac{k^2}{b^2}\right)} \text{ and } \sin \theta = \frac{k}{c \left(\frac{h^2}{a^2} + \frac{k^2}{b^2}\right)}$ $\Rightarrow \cos^2 \theta + \sin^2 \theta = \left(\frac{h^2}{c^2} + \frac{k^2}{c^2}\right) \cdot \frac{1}{\left(\frac{h^2}{a^2} + \frac{k^2}{b^2}\right)^2}$ $\Rightarrow c^2 \left(\frac{h^2}{a^2} + \frac{k^2}{b^2}\right)^2 = h^2 + k^2$ Hence, the locus of (h, k) is $c^2 \left(\frac{x^2}{a^2} + \frac{y^2}{b^2}\right)^2 = x^2 + y^2$

545 (a)

The combined equation of the lines joining the origin to the points of intersection of $x \cos \alpha + y \sin \alpha = p$ and $x^2 + y^2 - a^2 = 0$ is a homogeneous equation of second degree given by

$$x^{2} + y^{2} - a^{2} \left(\frac{a\cos\alpha + y\sin\alpha}{p}\right)^{2} = 0$$

$$\Rightarrow [x^{2}(p^{2} - a^{2}\cos^{2}\alpha) + y^{2}(p^{2} - a^{2}\sin^{2}\alpha) - 2xya^{2}\sin\alpha\cos\alpha = 0]$$

The lines given by this equation are at right angle, if

$$(p^{2} - a^{2} \cos^{2} \alpha) + (p^{2} - a^{2} \sin^{2} \alpha) = 0$$

$$\Rightarrow 2p^{2} = a^{2} (\sin^{2} \alpha + \cos^{2} \alpha)$$

$$\Rightarrow a^{2} = 2p^{2}$$

546 **(b)**

The equation $x^2 - y^2 = 0$, is an equation of rectangular hyperbola. Therefore, the locus of the equation $x^2 - y^2 = 0$ is a hyperbola

547 **(d)**

Since, the given hyperbola is a rectangular hyperbola, therefore the eccentricity of given hyperbola is $\sqrt{2}$

548 **(b)**

Centre of circle is (2, 4) and radius is 5. The line will intersect the circle at two distinct points, if the distance of (2, 4) from 3x - 4y = m is less than radius of the circle.

ie,
$$\left|\frac{6-16-m}{5}\right| < 5$$

 $\Rightarrow -25 < 10 + m < 25$
 $\Rightarrow -35 < m < 15$
549 (c)

The length of the tangent drawn to the circle x^2 + $y^2 - 2x + 4y - 11 = 0$ from the point (1, 3)

$$=\sqrt{1^2 + 3^2 - 2.1 + 12 - 11} = \sqrt{22 - 13} = 3$$

550 **(b)**

Given,
$$\frac{x^2}{2} - \frac{y^2}{1} = 1$$

Here, $a^2 = 2, b^2 = 1$

Equation of asymptotes to the given hyperbola is

$$\frac{x}{\sqrt{2}} - \frac{y}{1} = 0$$
 and $\frac{x}{\sqrt{2}} + \frac{y}{1} = 0$

Let $P(\sqrt{2} \sec \theta, \tan \theta)$ be any point, then product of length of perpendicular.

$$= \frac{\left[\frac{\sqrt{2} \sec \theta}{\sqrt{2}} - \frac{\tan \theta}{1}\right] \left[\frac{\sqrt{2} \sec \theta}{\sqrt{2}} + \frac{\tan \theta}{1}\right]}{\sqrt{\frac{1}{2} + \frac{1}{1}} \sqrt{\frac{1}{2} + \frac{1}{1}}}$$
$$= \frac{\sec^2 \theta - \tan^2 \theta}{\frac{3}{2}}$$
$$= \frac{2}{3}$$

552 **(b)**

We have, $x^2 + y^2 - 8x + 4y + 4 = 0$ Here, centre=(4, -2)And radius = $\sqrt{(4)^2 + (-2)^2 - 4} = 4$ Here, radius of circle is equal to *x*-coordinates of the centre \therefore Circle touches *y*-axis

553 **(c)**

Chord through intersection points *P* and *Q* of the given circles is $S_1 - S_2 = 0$ $\therefore (x^2 + y^2 + 2ax + cy + a)$

$$-(x^{2} + y^{2} - 3ax + dy - 1) = 0$$

$$\Rightarrow 5ax + (c - d)y + a + 1 = 0$$
On comparing it with $5x + by - a = 0$, we get
$$\frac{5a}{5} = \frac{c - d}{b} = \frac{a + 1}{-a}$$

$$\Rightarrow a(-a) = a + 1$$

$$\Rightarrow a^{2} + a + 1 = 0$$
Which gives no real value of a
Hence, the line will passes through P and Q for no
value of a
554 (b)
Focus is the mid-point of latusrectum

So, its coordinates are $\left(\frac{3-5}{2}, \frac{6+6}{2}\right) = (-1,6)$ 555 **(b)** Given equation of hyperbola is $25x^2 - 16y^2 =$ 400. If (6,2) is the mid point of the chord, then equation of chord is $T = S_1$. $\Rightarrow 25(6x) - 16(2y) = (25)(36) - 16(4)$ $\Rightarrow 75x - 16y = 418$

556 (d)

Given equation of ellipse are

$$\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1 \text{ and } \frac{x^{2}}{b^{2}} + \frac{y^{2}}{a^{2}} = 1$$

$$x' - \frac{y}{b^{2}} + \frac{y^{2}}{b^{2}} = 1$$

$$x' - \frac{y}{b^{2}} + \frac{y^{2}}{a^{2}} = 1$$

$$x' - \frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1$$

The point of the intersection of these ellipse are

$$\left(\pm \frac{ab}{\sqrt{a^2 + b^2}}, \pm \frac{ab}{\sqrt{a^2 + b^2}}\right) ie,$$
$$P\left(\frac{ab}{\sqrt{a^2 + b^2}}, \frac{ab}{\sqrt{a^2 + b^2}}\right)$$

 \therefore The distance between OP = r

$$= \sqrt{\left(\frac{ab}{\sqrt{a^2 + b^2}} - 0\right)^2 + \left(\frac{ab}{\sqrt{a^2 + b^2}} - 0\right)^2}$$
$$= \frac{ab}{\sqrt{a^2 + b^2}}\sqrt{2}$$

 \div Equation of circle is

 $x^2 + y^2 = r^2$

$$\Rightarrow x^2 + y^2 = \frac{2a^2b^2}{a^2 + b^2}$$

557 **(b)**

Let (f, g) and (h, k) are $(4t_1^2, 8t_1)$ and $(4t_2^2, 8t_2)$

respectively. Since, they are end points of a focal chord.

 $\therefore t_1 t_2 = -1$

Now, $fh = 4t_1^2 \cdot 4t_2^2 = 16(t_1t_2)^2 = 16$

558 (a)

Since, the line y - 3x = 0 touches the circle \therefore radius =perpendicular distance from the centre (1, 1) to the tangent

$$=\frac{|1-3|}{\sqrt{1+9}}=\frac{2}{\sqrt{10}}$$
 ...(i)

Let the other equation of tangent which is passing through origin is y = mx

Radius =
$$\frac{|1-m|}{\sqrt{1+m^2}}$$

 $\Rightarrow \frac{4}{10} = \frac{(1-m)^2}{(1+m^2)}$
 $\Rightarrow 3m^2 - 10m + 3 = 0$
 $\Rightarrow (3m - 1)(m - 3) = 0$
 $\Rightarrow m = 3, \frac{1}{3}$
At $m = 3, y = 3x$ it is already given
At $m = \frac{1}{3}, 3y = x$
60 (b)
Let (h,k) be the mid-point of a chord of $y^2 = 4x$.
Then, its equation is
 $ky - 2(x + h) = k^2 - 4h$ [Using : $T = S'$]
or, $ky - 2x - k^2 + 2h = 0$
This passes through the vertex $(0,0)$
 $\therefore -k^2 + 2h = 0$
Hence, the locus of (h,k) is $-y^2 + 2x = 0$ or, $y^2 = 2x$
62 (d)
Let coordinates of 0 and $4(0, 0)$ and $(at^2, 2at)$

Let coordinates of *O* and *A* (0, 0) and $(at^2, 2at)$ respectively

 \therefore Coordinates of mid point of *OA* are

$$\left(\frac{0+at^2}{2},\frac{0+2at}{2}\right) = \left(\frac{at^2}{2},at\right)$$

Since, $(at^2) = 4\left(\frac{at^2}{2}\right)$

Hence, that locus of required point is $y^2 = 2x$

563 **(b)**

5

5

Let the equation of circle is $x^2 + y^2 + 2gx + 2fy + c = 0$ It cuts the circle $x^2 + y^2 = 4$ orthogonally, if $2g.0 + 2f.0 = c - 4 \implies c = 4$ \therefore equation of circle is $x^2 + y^2 + 2gx + 2fy + 4 = 0$ \therefore It passes through the points (a, b) $\therefore a^2 + b^2 + 2ag + 2fb + 4 = 0$ Locus of centre (-g, -f) will be $a^2 + b^2 - 2xa - 2yb + 4 = 0$ $\Rightarrow 2ax + 2by - (a^2 + b^2 + 4) = 0$

564 **(a)**

Let $P(t_1^2, 2t_1)$ be a point on $y^2 = 4x$ such that the normal to P cuts the parabola at $Q(t_2^2, 2t_2^2)$ and PQ subtends a right angle at the vertex. Then,

$$t_2 = -t_1 - \frac{2}{t_1}$$
 and $t_1^2 = 2 \Rightarrow t_2 = -2\sqrt{2}$ and t_1
= $\sqrt{2}$

$$\therefore PQ = \sqrt{(t_2^2 - t_1^2)^2 + 4(t_2 - t_1)^2} = \sqrt{36 + 18}$$
$$= 6\sqrt{3}$$

565 (a)

The given equation can be written as

$$-\frac{x^2}{4} + \frac{y^2}{3} = 1$$

The eccentricity of this hyperbola is given by

$$e = \sqrt{1 + \frac{a^2}{b^2}} = \sqrt{1 + \frac{4}{3}} = \sqrt{\frac{7}{3}}$$

566 (a)

Clearly, centre of the circle is equidistant from the point (2,0) and *y*-axis.

Hence, the locus of the centre of the circle is a parabola having its focus at (2, 0) and directrix *y*-axis

567 **(c)**

The intersection of diameter lines is the centre of the circle, *ie*, C(1, -1)

∴ Required equation of circle is $(x - 1)^2 + (y + 1)^2 = 7^2$ ⇒ $x^2 + y^2 - 2x + 2y - 47 = 0$

568 (c)

Let the coordinates of *P* are (x, y) according to given condition

$$(x-1)^{2} + (y-1)^{2} = \frac{(x+y+2)^{2}}{2}$$

$$\Rightarrow x^{2} + y^{2} - 2xy - 8x - 8y = 0$$

Here, $a = 1, b = 1, h = -1, g = -4, f = -4, c = 0$
Now, $abc + 2fgh - af^{2} - bg^{2} - ch^{2}$

$$= 1.1.0 + 2(-4)(-4)(-1) - 1(-4)^{2} - 1(-4)^{2} - 0$$

$$= -64 \neq 0$$

and $h^{2} - ab = 1 - 1 = 0$
Since, $\Delta \neq 0$ and $h^{2} = ab$

Hence, locus of *P* is a parabola

569 **(b)**

For the points of intersection of the two given curves

$$C_1: y^2 = 4x$$
 and $C_2: x^2 + y^2 - 6x + 1 = 0$

We have, $x^2 + 4x - 6x + 1 = 0 \Rightarrow (x - 1)^2 = 0$

 $\Rightarrow x = 1, 1 \Rightarrow y = 2, -2$

Thus, the given curves touch each other at exactly two points (1, 2) and (a, -2)

570 **(d)**

Given, $x^2 + y^2 + 2gx + 2fy + c = 0$ \therefore Radius of circle $= \sqrt{g^2 + f^2 - c}$ $= \sqrt{c - c} = 0$ [giveng² + f² = c]

571 **(b)**

We know that the length '*l*' of the chord intercepted by the circle $x^2 + y^2 = a^2$ on the straight line y = mx + c is

$$l = 2\sqrt{\frac{a^2(1+m^2)-c^2}{1+m^2}}$$

y = 3 and 12x + 5y = 39

Here, a = 5 and y = mx + c passes through (2,3) $\therefore 3 = 2m + c \Rightarrow c = 3 - 2m$

$$\therefore 2 \sqrt{\frac{a^2(1+m^2)-c^2}{1+m^2}} = 8$$

$$\Rightarrow 2 \sqrt{\frac{25(1+m^2)-(3-2m)^2}{1+m^2}} = 8$$

$$\Rightarrow 5m^2 + 12m = 0 \Rightarrow m = 0, -12/5$$

$$\Rightarrow c = 3 \text{ or, } 39/5 \qquad [Using c = 3-2m]$$

Hence, the equations of the required lines are

572 (a)

Normal at a point $(m^2, -2m)$ on the parabola $y^2 = 4x$ is given by $y = mx - 2m - m^3$. If this is normal to the circle also, then it will passes through centre (-3, 6) of the circle $\therefore 6 = -3m - 2m - m^3 \Rightarrow m = -1$ Since, shortest distance between parabola and circle will occurs along common normal \therefore Shortest distance = distance between $(m^2, -2m)$

And centre (-3, 6) – radius of circle = $4\sqrt{2} - 5$ 573 **(b)**

Given,
$$\frac{x^2}{5} + \frac{y^2}{9} = 1$$

Here, $a^2 = 5$, $b^2 = 9$

Equation of normal to the ellipse at the point (0, 3) is

$$\frac{x-0}{0/5} = \frac{y-3}{3/9} \left[\therefore \frac{x-x_1}{x_1/a^2} = \frac{y-y_1}{y_1/b^2} \right]$$

$$\Rightarrow \quad x = 0$$

Which is the equation of y –axis

574 (d)

The equation of any normal to $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is $ax \sec \phi - by \csc \phi = a^2 - b^2 \qquad \dots$ (i)

Given straight line $x \cos \alpha + y \sin \alpha = p$ will be a normal to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, if Eq.(i)and $x \cos \alpha + y \sin \alpha = p$ represent the same line.

$$\frac{a \sec \phi}{\cos \alpha} = -\frac{b \operatorname{cosec} \phi}{\sin \alpha} = \frac{a^2 - b^2}{p}$$

$$\Rightarrow \cos \phi = \frac{ap}{(a^2 - b^2) \cos \alpha},$$

$$\sin \phi = \frac{-bp}{(a^2 - b^2) \sin \alpha}$$

$$\therefore \sin^2 \phi + \cos^2 \phi = 1$$

$$\Rightarrow \frac{b^2 p^2}{(a^2 - b^2)^2 \sin^2 \alpha} + \frac{a^2 p^2}{(a^2 - b^2)^2 \cos^2 \alpha} = 1$$

$$\Rightarrow p^2(b^2 \csc^2 \alpha + a^2 \sec^2 \alpha) = (a^2 - b^2)^2$$

575 **(c)**

Let the coordinates of *P* be (x_1, y_1) . The equation of the chord of contact of tangents drawn from (x_1, y_1) to the parabola $y^2 = 4ax$ is $yy_1 = 2a(x + x_1) \Rightarrow y = \frac{2a}{y_1}x + \frac{2ax_1}{y_1}$... (i) It touches the hyperbola $x^2 - y^2 = a^2$ $\therefore 4a^2 \frac{x_1^2}{y_1^2} = a^2 \times \frac{4a^2}{y_1^2} - a^2$ $\Rightarrow 4 x_1^2 = 4a^2 - y_1^2 \Rightarrow 4x_1^2 + y_1^2 = 4a^2$ Hence, (x_1, y_1) lies on $4x^2 + y^2 = 4a^2$ 576 (b) We know that the locus of the point of intersection of perpendicular tangents to $\frac{x^2}{a^2}$ + $\frac{y^2}{h^2} = 1$ is the director circle given by $x^2 + y^2 =$ $a^2 + b^2$ Hence, the perpendicular tangents drawn to $\frac{x^2}{25}$ + $\frac{y^2}{16} = 1$ intersect on the curve $x^2 + y^2 = 25 + 16$ i.e. $x^2 + v^2 = 41$ 577 (a) Since, $PA. PB = PT^2$, where PT is length of tangent Here, $PT = \sqrt{S_1} = \sqrt{1^2 + 4^2 - 16} = 1$ $\therefore PA.PB = 1$

578 (b) Given that, circle $S_1 \equiv x^2 + y^2 + 4x + 22y + c =$ 0 bisects the circumference of the circle $S_2 = x^2 + y^2 - 2x + 8y - d = 0$ The common chord of the given circles is $S_1 - S_2 = 0$ $\Rightarrow x^{2} + y^{2} + 4x + 22y + c - x^{2} - y^{2} + 2x - 8y$ + d = 0 $\Rightarrow 6x + 14y + c + d = 0$...(i) So, Eq. (i) passes through the centre of the second circle, *ie*, (1, −4) $\therefore 6 - 56 + c + d = 0$ $\Rightarrow c + d = 50$ 579 (b) Equation of tangent to parabola $y^2 16x$ at P(3,6) is 6y = 8(x + 3)

$$\Rightarrow 3y = 4x + 12$$
$$\Rightarrow 3y - 4x - 12 = 0$$

580 **(a)**

(α, β) lies on the director circle of the ellipse *ie*, on $x^2 + y^2 = 9$ So, we can assume α = 3 cos θ, β = 3 sin θ ∴ F = 12 cos θ + 9 sin θ = 3(4 cos θ + 3 sin θ)⇒ -15 ≤ F ≤ 15

581 **(b)**

Let $P(a \cos \theta_1, b \sin \theta_1)$ and $Q(a \cos \theta_2, b \sin \theta_2)$ be two point on the ellipse. Then,

$$m_1 = \text{slope of } OP = \frac{b}{a} \tan \theta_1$$

and
$$m_2 = \text{slope of } OQ = \frac{b}{a} \tan \theta_2$$

$$\therefore m_1 m_2 = \frac{b^2}{a^2} \tan \theta_1 \tan \theta_2$$

$$=\frac{b^2}{a^2}\times\frac{-a^2}{b^2}$$

$$\left[\because \tan \theta_1 \, \tan \theta_2 = -\frac{a^2}{b^2} (\text{given}) \right]$$

$$= -1$$
$$\therefore < POQ = \frac{\pi}{2}$$

Hence, *PQ* makes a right angle at the centre of the ellipse

582 **(b)**

Let the equation of circles be $S_1 \equiv x^2 + y^2 + 13x - 3y = 0$...(i) And $S_2 = 2x^2 + 2y^2 + 4x - 7y - 25 = 0$...(ii) The equation of intersecting circle is $\lambda S_1 + S_2 = 0$ $\Rightarrow \lambda(x^2 + y^2 + 13x - 3y)$ $+\left(x^2 + y^2 + 2x - \frac{7y}{2} - \frac{25}{2}\right) = 0$ $\Rightarrow \left[x^2(1+\lambda) + y^2(1+\lambda) + x(2+13\lambda) - \right]$ $y\left(\frac{7}{2}+3\lambda\right)-\frac{25}{2}=0$...(iii) $\therefore \text{ Centre} = \left(-\frac{(2+13\lambda)}{2(1+\lambda)}, \frac{(7/2)+3\lambda}{2(1+\lambda)}\right)$ \therefore Centre lies on 13x + 30y = $\Rightarrow -13\left(\frac{2+13\lambda}{2}\right) + 30\left(\frac{(7/2)+3\lambda}{2}\right) = 0$ $\Rightarrow -26 - 169\lambda + 105 + 90\lambda = 0 \Rightarrow \lambda = 1$ Hence, putting the value of x in Eq. (iii), then required equation of circle is $4x^2 + 4y^2 + 30x - 13y - 25 = 0$ 583 (b) Let $S_1 + \lambda S_2 = 0$ Since, it passes through (1, 1), then $(1 + 1 + 3 + 7 + 2p - 5) + \lambda(1 + 1 + 2 + 2 - p^2)$ $\Rightarrow \lambda = -\frac{7+2p}{6-p^2}$ But $p^2 \neq 6 \Rightarrow p \neq \pm \sqrt{6}$ But the other circle $x^2 + y^2 + 2x + 2y - 6 = 0$ at $p = \pm \sqrt{6}$ also satisfy the point (1, 1)So, $p = \pm \sqrt{6}$ is valid Now, $\lambda \neq -1 \Rightarrow \frac{7+2p}{6-p^2} \neq 1$ \Rightarrow 7 + 2p \neq 6 - p² $\Rightarrow p^2 + 2p + 1 \neq 0 \Rightarrow p \neq -1$ 584 (a) The equation of normal is $y = mx - 8m - 4m^3$ (: $y = mx - 2am - am^3$) Since, it is passing through (2,0) $\therefore 0 = 2m - 8m - 4m^3$ $\Rightarrow m = 0$ and $2m^2 = -3$ (no real value exist) Only one real value of *m* exist : One normal can be drawn

585 **(b)**
Given,
$$\frac{x^2}{24} + \frac{y^2}{13.5} = 1$$

 $\therefore SP + S'P = 2a = 4\sqrt{6}$

586 **(b)**

Since, tangent at *P* and *Q* on the parabola meet in Т If the coordinates of *P* and *Q* are $(at_1^2, 2at_1)$ and $(at_2^2, 2at_2)$ respectively, then coordinates of T are $\{at_1t_2, a(t_1+t_2)\}$ $\therefore SP = a(1+t_1^2)$ $SP = a(1 + t_2^2)$ $ST^2 = a^2(1 - t_1t_2)^2 + a^2(t_1 + t_2)^2$ $= a^{2}(1 + t_{1}^{2} + t_{2}^{2} + t_{1}^{2}t_{2}^{2})$ $= a(1 + t_1^2)a(1 + t_2^2) = SP \cdot SQ$ Thus, SP, ST, SQ are in GP 587 (b) Equation of tangent at $(3\sqrt{3}\cos\theta, \sin\theta)$ to the ellipse $\frac{x^2}{27} + y^2 = 1$ is $\frac{x \cos \theta}{3\sqrt{3}} + y \sin \theta = 1$ It cuts intercepts on the coordinate axes. : Sum of intercepts on axes is $3\sqrt{3}\sec\theta + \csc\theta = f(\theta)$ (say) On differentiating w.r.t. θ $f'(\theta) = \frac{3\sqrt{3}\sin^3\theta - \cos^3\theta}{\sin^2\theta\cos^2\theta}$ For maxima and minima, put $f'(\theta) = 0$ $\Rightarrow 3\sqrt{3}\sin^3\theta - \cos^3\theta = 0$ $\Rightarrow \tan^3 \theta = \frac{1}{3\sqrt{3}}$ $\Rightarrow \tan \theta = \frac{1}{\sqrt{2}} \Rightarrow \theta = \frac{\pi}{6}$ At $\theta = \frac{\pi}{3}$, $f''(\theta) > 0$ $\therefore f(\theta)$ is minimum at $\theta = \frac{\pi}{c}$ 588 (b) The equation of common chord PQ is 2x + 1 = 0 [*ie*, $S_2 - S_1 = 0$] Here, $C_1 = \left(-1, \frac{-3}{2}\right)$, $r_1 = \frac{3}{2} = C_1 P$ and $C_2 = \left(-2, \frac{-3}{2}\right), r_2 = \frac{\sqrt{17}}{2}$ $C_1 M$ = Perpendicular distance from C_1 to the common chord $\therefore \quad C_1 M = \frac{|-2+1|}{\sqrt{2^2}} = \frac{1}{2}$
Now, $PQ = 2PM = 2\sqrt{(C_1M)^2 - (C_1M)^2} =$ $2\sqrt{\frac{9}{4}-\frac{1}{4}}=2\sqrt{2}$ 589 (c) The centres and radii of given circles are $C_1(5,0), C_2(0,0)$ and $r_1 = \sqrt{25 + 0 - 16} = 3$ $r_2 = r$ Now, $C_1 C_2 = 5$ For intersection of two circle, $r_2 - r_1 < C_1 C_2 < r_1 + r_2$ \Rightarrow r-3 < 5 < 3 + r \Rightarrow r < 8 and r > 2 $\Rightarrow 2 < r < 8$ 590 (d) Given straight lines form a triangle. So, there will be an in-circle and three ex-circles touching all the sides 591 (a) We know that $y = m_1 x$ and $y = m_2 x$ are conjugate diameters of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, if $m_1 m_2 = -\frac{b^2}{a^2}$ Here, $m_1 = \frac{b}{a}$. Therefore, $m_2 = -\frac{b}{a}$ Hence, $y = -\frac{bx}{a}$ is the required diameter 592 (a) Given equation of parabola can be rewritten as $(y-1)^2 = 4(x-1)$ Axis of parabola is y = 1, equation of normal is $(y-1) = m(x-1) - 2m - m^3$ Let (h, 1) is a point on it's axis, then $0 = m(h-1) - 2m - m^3$ $\Rightarrow m^2 = h - 3$ \Rightarrow *h* \geq 3 for real values of *m* 593 (a) Let the variable circle be $x^2 + y^2 + 2gx + c = 0$...(i) It passes through (2,0) and touches *y*-axis $\therefore 4 + 4g + c = 0$ and $c = f^2$ $\Rightarrow 4 + 4g + f^2 = 0$ Hence, the locus of the centre (-g, -f) of circle (i) is $4 - 4x + y^2 = 0$ \Rightarrow $y^2 = 4(x - 1)$, which is a parabola 594 (c)

Let the equation of the centric circles be $x^2 + y^2 - 2x - 4y + \lambda = 0$, it passes through (3, 4) $\therefore 3^2 + 4^2 - 2(3) - 4(4) + \lambda = 0$ $\Rightarrow \lambda = -3$

Thus, the equation of concentric circle is $x^2 + y^2 - 2x - 4y - 3 = 0$ 595 (b) Clearly, required point is the point of intersection of the line y = 2x + 11 and the line perpendicular to it passing through the centre of the circle. The coordinates of the centre are (-1,1/4)The equation of the line through (-1,1/4) and perpendicular to y = 2x + 11 is $y - \frac{1}{4} = -\frac{1}{2}(x+1) \Rightarrow 2x + 4y + 1 = 0$ Clearly, (-9/2, 2) is the point of intersection of y = 2x + 11 and 2x + 4y + 1 = 0So, the coordinates of the required point are (9/2,2)596 (d) Equation of ellipse is $\frac{x^2}{2} + \frac{y^2}{1} = 1$. General equation of tangent to the ellipse of slope *m* is $y = mx \pm \sqrt{2m^2 + 1}$ Since, this is equally inclined to axes, so $m = \pm 1$. Thus, tangents are $y = \pm x \pm \sqrt{2+1} = \pm x \pm \sqrt{3}$ Distance of any tangent from origin $=\frac{|0+0\pm\sqrt{3}|}{\sqrt{1^2+1^2}}=\frac{\sqrt{3}}{2}$ 598 (c) The centres of given circles are $C_1(1,0), C_2(2,3)$ and

 $r_1 = \sqrt{1^2 + 0 + 3} = 2,$ $r_2 = \sqrt{4 + 9 + 8} = \sqrt{21}$ Now, $C_1C_2 = \sqrt{(2 - 1)^2 + (3 - 0)^2} = \sqrt{10} = 3.16$ and $r_1 + r_2 = 2 + \sqrt{21} = 6.58$

Hence, two circles intersect, each other at two points

599 (c)

Let *e* and *e*' are the eccentricities of a hyperbola and its conjugate hyperbola.

Then,
$$\frac{1}{e^2} + \frac{1}{(e')^2} = 1 \Rightarrow \frac{1}{3} + \frac{1}{(e')^2} = 1 \Rightarrow e' = \sqrt{\frac{3}{2}}$$

600 (a)

We know that the normal drawn at a point $P(at_1^2, 2at_1)$ to the parabola $y^2 = 4ax$ meets again the parabola at $Q(at_2^2, 2at_2)$, then

$$t_2 = -t_1 - \frac{2}{t_1}$$

Here, $t_1 = P$ and $t_2 = Q$

$$\therefore q = -p - \frac{2}{p}$$
$$\Rightarrow p^2 + pq + 2 = 0$$

601 (c)

Let P(x, y) be any point on the conic. Then,

$$\sqrt{(x-1)^2 + (y+1)^2} = \sqrt{2} \left| \frac{x-y+1}{\sqrt{2}} \right| \text{ [Using: } SP$$

= $e PM$]
 $\Rightarrow 2 xy - 4x + 4y + 1 = 0$

602 **(b)**

The equation of the chord of the circle $x^2 + y^2 - y^2 -$ 2x - 8 = 0 having (2,2) as its mid-point is 2x + 2y - (x + 2) - 8 = 4 + 4 - 4 - 8 [Using] : S' = T] $\Rightarrow x + 2y - 6 = 0$ The equation of a circle passing through P and Qis $x^{2} + y^{2} - 2x - 8 + \lambda(x + 2y - 6) = 0$...(i) It passes through (1,2) $\therefore 1 + 4 - 2 - 8 + \lambda(1 + 4 - 6) = 0 \Rightarrow \lambda = -5$ Putting the value of λ in (i), we obtain $x^2 + y^2 - 7x - 10y + 22 = 0$ As the equation of the required circle 603 (d) Given equation of circle is $x^2 + y^2 - 3x - 4y + y^2 - 3x + y^2 + y^2 - 3x + y^2 + y^2 - 3x + y^2 + y^2$ 2 = 0 and it cuts the *x*-axis $\therefore y = 0$ The equation of the circle becomes $x^{2} + 0 - 3x - 4(0) + 2 = 0$ $\Rightarrow x^2 - 3x + 2 = 0 \Rightarrow x^2 - 2x - x + 2 = 0$ $\Rightarrow (x-1)(x-2) = 0 \Rightarrow x = 1,2$ Therefore, the points are (1, 0), (2, 0)Since the normal at $(ap^2, 2ap)$ on $y^2 = 4ax$

604 (a)

meets the curve again at $(aq^2, 2aq)$. Therefore, $px + y = 2 ap + ap^3$ passes through $(aq^2, 2 aq)$ $\Rightarrow paq^2 + 2 aq = 2 ap + ap^3$ $\Rightarrow p(q^2 - p^2) = 2(p - q)$ $\Rightarrow p(q+p) = -2$ $[\because p \neq q]$ $\Rightarrow p^2 + pq + 2 = 0$

605 (b)

Let the equation of L_1 be y = mx. Since, the intercepts made by the circle on L_1 and L_2 are equal, their distance from the centre of the circle are also equal

The centre of the given circle is $\left(\frac{1}{2}, -\frac{3}{2}\right)$

$$\therefore \left| \frac{\frac{1}{2} - \frac{3}{2} - 1}{\sqrt{1+1}} \right| = \left| \frac{m \times \frac{1}{2} + \frac{3}{2}}{\sqrt{m^2 + 1}} \right|$$

$$\Rightarrow \frac{2}{\sqrt{2}} = \frac{|m+3|}{2\sqrt{m^2+1}}$$

$$\Rightarrow 8(m^2+1) = (m+3)^2$$

$$\Rightarrow 7m^2 - 6m - 1 = 0$$

$$\Rightarrow (m-1)(7m+1) = 0$$

$$\Rightarrow m = 1 \text{ or } m = -\frac{1}{7}$$

So, the equations representing L_1 are
 $y = x \text{ or } y = \left(-\frac{1}{7}\right)x$

$$\Rightarrow x - y = 0 \text{ or } x + 7y = 0$$

606 (d)
Given hyperbola is a rectangular hyperbola. So, its
asymptotes are at right angle
607 (b)
Since, $\frac{a}{e} - ae = 4$ and $e = \frac{1}{2}$

|m + 2|

$$\therefore 2a - \frac{a}{2} = 4$$
$$\Rightarrow a = \frac{8}{2}$$

608 (a)

Let y = mx be a tangent drawn from the origin to the circle having its centre at (2, -1) and touching 3x + y = 0.

Then,

$$\left|\frac{2m+1}{\sqrt{m^2+1}}\right| = \left|\frac{6-1}{\sqrt{9+1}}\right|$$

$$\Rightarrow 2(2m+1)^2 = 5(m^2+1)$$

$$\Rightarrow 3m^2 + 8m - 3 = 0 \Rightarrow (3m-1)(m+3) = 0$$

$$\Rightarrow m = -3, \frac{1}{3}$$

Thus, the equation of the tangents drawn from the origin are y = -3x and y = x/3

609 (d)

The centre of the required circle is the image of the centre (-8,12) with respect to the line mirror 4x + 7y + 13 = 0 and radius equal to the radius of the given circle. Let (h, k) be the image of the point (-8,12) with respect to the line mirror.

$$4x + 7y + 13 = 0$$
. Then,

$$\frac{h - (-8)}{4} = \frac{k - 12}{7} = -2\left(\frac{4 \times -8 + 7 \times 12 + 13}{4^2 + 7^2}\right)$$

$$\Rightarrow h = -16, k = -2$$

Thus, the centre of the image circle is (-16, -2). The radius of the image circle is same as that of the given circle i.e.5.

Hence, the equation of the required circle is $(x + 16)^2 + (y + 2)^2 = 5^2$ $\Rightarrow x^{2} + y^{2} + 32x + 4y + 235 = 0$

610 (d)

We have, $x^{2} + y^{2} + 4x + 6y + 13 = 0$ $\Rightarrow (x + 2)^{2} + (y + 3)^{2} = 0$ $\Rightarrow x + 2 = 0, y + 3 = 0 \Rightarrow x = -2, y = -3$ Hence, the given equation represents the point (-2, -3)

611 (d)

The radical axis of circle Ist and IInd is $S_1 - S_2 = 0$ $\Rightarrow (x^2 + y^2 - 16x + 60)$ $-(x^2 + y^2 - 12x + 27) = 0$ $\Rightarrow -4x + 33 = 0 \Rightarrow x = \frac{33}{4}$...(i) The radical axis of circle IInd and IIIrd is $S_2 - S_3 = 0$ $\Rightarrow (x^2 + y^2 - 12x + 27) - (x^2 + y^2 - 12y + 8)$ $\Rightarrow -12x + 12y + 19 = 0$...(ii) : From Eqs. (i) and (ii), we get radical centre $\left(\frac{33}{4},\frac{20}{3}\right)$

612 (d)

Equation of the tangent at (x_1, y_1) is

$$xx_1 - yy_1 - 4(x + x_1) + (y + y_1) + 11 = 0$$

Put $x_1 = 2$ and $y_1 = 1$, we get
$$2x - y - 4(x + 2) + (y + 1) + 11 = 0$$
$$\Rightarrow -2x - 8 + 12 = 0$$

$$\Rightarrow x - 2 = 0$$

613 (d)

Since, $\angle FBF'' = 90^\circ$, then

 $\angle OBF'' = 45^{\circ} \text{ and } \angle BF''O = 45^{\circ}$

 $\Rightarrow ae = b$

[$: \Delta BOF''$ is an isosceles traiangle]

and
$$e^2 = 1 - \frac{b^2}{a^2}$$

 $\Rightarrow e^2 = 1 - \frac{a^2 e^2}{a^2}$

$$\Rightarrow e = \frac{1}{\sqrt{2}}$$
 [: *e* cannot be negative]

614 (c)

Let θ be the eccentric angle of the point of contact P(say) Then, the coordinates of *P* are $(a \cos \theta, b \sin \theta)$

The equation of tangent at *P* is $\frac{x}{a}\cos\theta$ +

$$\frac{y}{b}\sin\theta = 1$$

But, $\frac{x}{a} + \frac{y}{b} = \sqrt{2}$ is tangent at *P*
 $\therefore \cos\theta = \frac{1}{\sqrt{2}}$ and $\sin\theta = \frac{1}{\sqrt{2}} \Rightarrow \theta = \frac{\pi}{4}$

We have,

 $5x^2 + 9y^2 = 45 \Rightarrow \frac{x^2}{9} + \frac{y^2}{5} = 1$ Here $a^2 = 9, b^2 = 5$ and the major axis is along x –axis $\therefore L.R. = \frac{2b^2}{a} = \frac{2(5)}{3} = \frac{10}{3}$ 616 (c) : The intersection of two diameter is the centre of circle, is (1, -1)Let *r* be the radius of circle, then \Rightarrow Area of circle $\pi r^2 = 49\pi \Rightarrow r = 7$ unit ∴ Equation of required circle is $(x-1)^2 + (y+1)^2 = 49$ $\Rightarrow x^2 + y^2 - 2x + 2y - 47 = 0$

617 (b)

Given equation of parabola is $y^2 = 4ax$. Since, AB = 8a, it means ordinate of A and B respectively 4a and -4a. General point on this parabola is $(at^2, 2at) \Rightarrow t = \pm 2$

So, $at^2 = 4a$ $\therefore OM = 4a, AM = 4a$ So, $\angle AOM = 45^{\circ}$ \therefore The angle *AOB* is 90°

618 (d)

It is clear from the figure, that only one common tangent is possible

620 (a)

The chord of contact of (α, β) is $\frac{x\alpha}{a^2} + \frac{y\beta}{b^2} = 1$. It touches the circle $x^2 + y^2 = c^2$

$$\therefore \frac{1}{\sqrt{\frac{\alpha^2}{a^4} + \frac{\beta^2}{b^4}}} = c$$

$$\Rightarrow \frac{\alpha^2}{a^4} + \frac{\beta^2}{b^4} = \frac{1}{c^2}$$

Thus, the locus of (α, β) is
$$\frac{x^2}{a^4} + \frac{y^2}{b^4} = \frac{1}{c^2}$$

621 **(c)**

Since, asymptotes 3x + 4y = 2 and 4x - 3y + 5 = 0 are perpendicular to each other. Hence, hyperbola is rectangular hyperbola but we know that the eccentricity of rectangular hyperbola is $\sqrt{2}$.

622 (d)

If the normal at $(at_1^2, 2 at_1)$ on $y^2 = 4 ax$ meets the curve again at $(at_2^2, 2 at_2)$, then

$$t_2 = -t_1 - \frac{1}{t}$$

The values of parameter t_1 for the point (a, 2a) is given by $a t_1^2 = a$ and $2 a t_1 = 2 a$ $\Rightarrow t_1 = 1$

$$\therefore t_2 = -t_1 - \frac{2}{t_1}$$
$$\Rightarrow t_2 = -1 - \frac{2}{-1} = -3$$
Hence, $t = -3$

623 (a)

We have, $\frac{x}{a} \times \frac{y}{b} = (\cosh \theta + \sinh \theta)(\cosh \theta - \sinh \theta)$ $\Rightarrow \frac{xy}{ab} = \cosh^2 \theta - \sinh^2 \theta = 1$ $\Rightarrow xy = ab, \text{ which is a hyperbola}$ 624 (c) Clearly, x - 2y - a = 0 is a focal chord of slope 1/2

: Length of the chord = $4a \operatorname{cosec}^2 \theta = 4a(1+4) = 20 a$

625 **(c)**

The equation of the normal to $y^2 = 4 ax$ at (x_1, y_1) is

 $y - y_1 = -\frac{y_1}{2a}(x - x_1)$ So, the equation of the normal at $\left(\frac{a}{m^2}, \frac{2a}{m}\right)$ is $y - \frac{2a}{m} = -\frac{1}{m} \left(x - \frac{a}{m^2} \right)$ $\Rightarrow m^3 y - 2 am^2 = -m^2 x + a \Rightarrow m^3 y$ $= 2 am^2 - m^2 x + a$ 626 (c) The tangent at the point of shortest distance from the line x + y = 7 parallel to the given line Any point on the given ellipse is $(\sqrt{6}\cos\theta,\sqrt{3}\sin\theta)$ Equation of the tangent is $\frac{x\cos\theta}{\sqrt{6}} + \frac{y\sin\theta}{\sqrt{3}} = 1$. It is parallel to x + y = 7 $\Rightarrow \frac{\cos \theta}{\sqrt{6}} = \frac{\sin \theta}{\sqrt{3}}$ $\Rightarrow \frac{\cos \theta}{\sqrt{2}} = \frac{\sin \theta}{1} = \frac{1}{\sqrt{3}}$ The required point is (2, 1)627 (a) We have, $x^2 + y^2 - 2x + 4y - 4 = 0$ $\Rightarrow (x^2 - 2x + 1) + (y^2 + 4y + 4) = 3^2$ $\Rightarrow (x-1)^2 + (y+2)^2 = 3^2$ The equation of any tangent of slope m is given by $y + 2 = m(x - 1) \pm 3\sqrt{1 + m^2}$ 628 (b) We know that the limit points other than the origin of the coaxial system of circles $x^2 + y^2 + y^2$ 2 gx + 2 fy + c = 0 are given by $\left(-\frac{gc}{q^2+f^2},-\frac{fc}{q^2+f^2}\right)$ Here, g = -3, f = -4, c = 1Hence, other limiting point is (3/25, 4/25)629 (b) We have, m = Slope of the tangent $= -\frac{5}{12}$ If a line of slope *m* is tangent to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$, then the coordinates of the point of contact are $\left(\pm \frac{a^2m}{\sqrt{a^2m^2-b^2}}, \frac{b^2}{\sqrt{a^2m^2-b^2}}\right)$ Here, $a^2 = 9$, $b^2 = 1$ and m = -5/12So, points of contact are $(\mp 5, \pm 4/3)$ *i.e* (-5, 4/3)and (5, -4/3). Out of these two points (5, -4/3)lies on the line 5x + 12y = 9. Hence, (5, -4/3) is the required point 630 (a) We know that, if two perpendicular tangents to

the circle $x^2 + y^2 = a^2$ meet at *P*, then the point *P* lies on a director circle

Thus, the equation of director circle to the circle $x^2 + y^2 = a^2$ is $x^2 + y^2 = 2a^2$ Which is the required locus of point *P*

631 **(b)**

Since, AP = PQ = QB. The coordinates of *P* are (a, 0) and of *Q* are (2a, 0) the centre of the circles on *AP*, *pQ* and *QB* asdiameters are respectively $C_1\left(\frac{a}{2}, 0\right), C_2\left(\frac{3a}{2}, 0\right)$ and $C_3\left(\frac{5a}{2}, 0\right)$ and the radius of each one of them is $\left(\frac{a}{2}\right)$

$$A + C_1 + P + C_2 + Q + C_3 + B \\ (0, 0) + (a, 0) + (a, 0) + (a, 0)$$

Hence, the equations of the circles with centre C_1 , C_2 and C_3 are respectively

$$\left(x - \frac{a}{2}\right)^2 + y^2 = \frac{a^2}{4}; \left(x - \frac{3a}{2}\right)^2 + y^2 = \frac{a^2}{4}$$

and $\left(x - \frac{5a}{2}\right)^2 + y^2 = \frac{a^2}{4}$

So that, if S(h, k) be any point on the locus, then

$$\left(h - \frac{a}{2}\right)^2 + \left(h - \frac{3a}{2}\right)^2 + \left(h - \frac{5a}{2}\right)^2 + 3\left(k^2 - \frac{a^2}{4}\right)$$

= b^2
 $\Rightarrow 3(h^2 + k^2) - 9ah + 8a^2 = b^2$
Hence, the locus of $S(h, k)$ is
 $3(x^2 + y^2) - 9ax + 8a^2 - b^2 = 0$

632 (d)

Since, The intersection of a line y = 2x + c and a parabola $y^2 = 4ax + 4a^2$ is

$$(2x+c)^2 = 4ax + 4a^2$$

 $\Rightarrow 4x^{2} + 4(c - a)x + (c^{2} - 4a^{2}) = 0$

Since, it is a tangent line

$$\therefore 16(c-a)^2 - 4 \times 4(c^2 - 4a^2) = 0 \quad [: D = 0] \Rightarrow c^2 + a^2 - 2ac - c^2 + 4a^2 = 0 \Rightarrow c = \frac{5a}{2}$$

633 **(c)**

The interesetion of line and circle is (0, 0) and (2, -2). Now, taking option (c),

ie $y^2 = 2x$

At point $(0,0) \Rightarrow 0 = 0$

and at point $(2, -2) \Rightarrow (-2)^2 = 2(2) \Rightarrow 4 = 4$

Hence, option (c) is the correct answer

634 (c)

We know, if lx + my + n = 0 is normal to the hyperbola

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

Then,
$$\frac{a^2}{l^2} - \frac{b^2}{m^2} = \frac{(a^2 + b^2)}{n^2}$$

Put,
$$n = -1$$
, therefore, $\frac{a^2}{l^2} - \frac{b^2}{m^2} = (a^2 + b^2)^2$

635 **(b)**

Let the equation of *AB* be $\frac{x}{a} + \frac{x}{b} = 1$ Since, the line *AB* touches the circle $x^{2} + y^{2} - 4x - 4y + 4 = 0$ $\therefore \quad \frac{\left|\frac{2}{a} + \frac{2}{b} - 1\right|}{\sqrt{\frac{1}{a^{2}} + \frac{1}{b^{2}}}} = 2$ y*B* (0, *b*) $2 = \frac{1}{2}$ *y a* (a. 0) *A x*

[Since, O(0, 0) and C(2, 2) lie on the same side of *AB*, therefore $\frac{2}{a} + \frac{2}{b} - 1 < 0$] $\Rightarrow \frac{-(2b) + 2a - ab}{\sqrt{a^2 + b^2}} = 2$ $\Rightarrow 2a + 2b - ab + 2\sqrt{a^2 + b^2} = 0$...(i)

Since, $\triangle OAB$ is a right angled triangle. So, its circumcentre is the mid point of AB $\therefore h = \frac{a}{2}$ and $k = \frac{b}{2} \Rightarrow a = 2h$ and b = 2k...(ii) From Eqs. (i) and (ii), we get $4h + 4k - 4hk + 2\sqrt{4h^2 + 4k^2} = 0$ $\Rightarrow h + k - hk + \sqrt{h^2 + k^2} = 0$ So, the locus of P(h, k) is $x + y - xy + \sqrt{x^2 + y^2} = 0 \quad \therefore k = 1$ 636 **(b)** Let $P(a \cos \theta b \sin \theta), Q(a \cos \theta, -b \sin \theta)$

Let a point R(h, k) divides the line joining the

points P and Q internally in the ration 1:2

Then , PR: RQ = 1: 2

Now, by division formula

$$h = a \cos \theta \Rightarrow \cos \theta = \frac{h}{a} \dots (i)$$

and $k = \frac{b}{3} \sin \theta$
 $\Rightarrow \sin \theta = \frac{3k}{b} \dots (ii)$

On squaring and adding Eqs. (i) and (ii), we get

$$\frac{h^2}{a^2} + \frac{9k^2}{b^2} = 1$$

Hence locus of *R* is

 $\frac{x^2}{a^2} + \frac{9y^2}{b^2} = 1$

637 **(c)**

Given vertex of parabola $(h, k) \equiv (1, 1)$ And its focus is $(a + h, k) \equiv (3, 1)$ Or a + h = 3 $\Rightarrow a = 2$ Since, *y*-coordinate of vertex and focus are same, therefore axis of parabola to *x*-axis. Thus, equation of parabola is $(y - k)^2 = 4a(x - h)$ $\Rightarrow (y - 1)^2 = 8(x - 1)$ **(b)**

638 **(b)**

Obviously, point (5, 5) lies only on the circle $x^2 + y^2 - 18x - 16y + 120 = 0$, also radius of this circle is 5 Hence, option (b) is correct

639 **(b)**

The equation of the chord of contact of tangent drawn from a point $P(x_1, y_1)$ to $x^2 + y^2 = a^2$ is $x x_1 + y y_1 = a^2$ It will touch $(x - a)^2 + y^2 = a^2$, if $\left|\frac{ax_1 + 0 y_1 - a^2}{\sqrt{x_1^2 + y_1^2}}\right| = a$ $\Rightarrow x_1 - a = \pm \sqrt{x_1^2 + y_1^2}$ $\Rightarrow (x_1 - a)^2 = x_1^2 + y_1^2 \Rightarrow y_1^2 = a^2 - 2ax_1$ Hence, the locus of (x_1, y_1) is $y^2 = a^2 - 2ax$, which is a parabola

640 **(d)**

Let the equation of the line be $\frac{x}{a} + \frac{y}{b} = 1$. This meets the coordinate axes at A(a, 0) and B(0, b)

Also, it is at a distance *c* from the origin

$$\therefore \frac{1}{\sqrt{\frac{1}{a^2} + \frac{1}{b^2}}} = c \Rightarrow \frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{c^2} \qquad \dots (i)$$

The equation of the circle passing through *OAB* is $x^2 + y^2 - ax - by = 0$ Let P(h, k) be the co-ordinates of its centre. Then, $h = \frac{a}{2}$ and $k = \frac{b}{2} \Rightarrow a = 2h$ and b = 2kSubstituting the values of a and b in (i), we get $h^{-2} + k^{-2} = 4c^{-2}$ Hence, the locus of P(h, k) is $x^{-2} + y^{-2} = 4c^{-2}$ 642 (d) Given, ae = 1 and $a = 2 \Rightarrow e = \frac{1}{2}$

$$\therefore \quad b = \sqrt{4\left(1 - \frac{1}{4}\right)} \Rightarrow \quad b = \sqrt{3}$$

Hence, minor axis is $2\sqrt{3}$

643 **(b)**

The equation of the common chord *AB* of the two circles is

2x + 1 = 0 [Using : $S_1 - S_2 = 0$] The equation of the required circle is $(x^2 + y^2 + 2x + 3y + 1) + \lambda(2x + 1) = 0$ [Using : $S_1 + \lambda(S_2 - S_1) = 0$] $\Rightarrow x^2 + y^2 + 2x(\lambda + 1) + 3y + \lambda + 1 = 0$ Since *AB* is a diameter of this circle. Therefore, centre of this circle lies on *AB* So, $-2\lambda - 2 + 1 = 0 \Rightarrow \lambda = -1/2$ So, the equation of the required circle is $x^2 + y^2 + x + 3y + 1/2 = 0$ $\Rightarrow 2x^2 + 2y^2 + 2x + 6y + 1 = 0$ (a)

644 **(a)**

In ∆POB,

$$(1-4, 0)P$$
 θ O O B B

$$\sin \theta = \frac{2}{4} = \frac{1}{2}$$

$$\Rightarrow \theta = 30^{\circ}$$

$$\therefore \operatorname{area}(\Lambda POA) = \frac{1}{2} \times 2 \times 4 \times \sin \theta$$

$$\therefore \text{ area}(\Delta POA) = \frac{1}{2} \times 2 \times 4 \times \sin 30^\circ = 2$$

Hence, area (quad *PAOB*)=2 area (ΔPOA)
= 2 × 2 = 4 sq units

645 (a)

Equation of tangent at $P(a\cos\theta, b\sin\theta)$ is

$$\frac{x}{a}\cos\theta + \frac{y}{b}\sin\theta = 1$$

$$x' \leftarrow O \qquad \begin{pmatrix} y \\ B \left(0, \frac{b}{\sin \theta}\right) \\ P \\ \left(\frac{a}{\cos \theta}, 0\right) \\ y' \end{pmatrix}$$

Whose point of intersection of axes are

$$A\left(\frac{a}{\cos\theta}, 0\right) \text{ and } B\left(0, \frac{b}{\sin\theta}\right)$$

$$\therefore \text{ Area of } \Delta AOB = \frac{1}{2} \left|\frac{a}{\cos\theta} \cdot \frac{b}{\sin\theta}\right|$$

$$\Delta = \frac{ab}{|\sin 2\theta|}$$

Now area is minimum when $|\sin 2\theta|$ is maximum *ie*, $|\sin 2\theta| = 1$

 $\therefore \Delta_{\min mum} = ab$

646 **(b)**

Given equation can be rewritten as

$$(x-4)^2 = -2\left(y-\frac{9}{2}\right)$$

: Vertex of the parabola is $\left(4, \frac{9}{2}\right)$

647 **(c)**

Let the coordinates of a point P be (h, k) which is mid point of the chord AB

Now,
$$OP = \sqrt{(h-0)^2 + (k-0)^2}$$

= $\sqrt{h^2 + k^2}$
In ΔAOP , $\cos \frac{\pi}{3} = \frac{OP}{OA}$
 $O(0, 0)$
 $3 \frac{\pi}{3} + \frac{\pi}{3} + \frac{\pi}{3}$
 P (h, k)
 B
 $\Rightarrow \frac{1}{2} = \frac{\sqrt{h^2 + k^2}}{2}$

$$\Rightarrow h^2 + k^2 = \frac{9}{4}$$

Hence, the required locus is

9

4

$$x^2 + y^2 =$$

648 **(b)**

The required equation of circle is

 $(x^{2} + y^{2} + 13x - 3y) + \lambda \left(11x + \frac{1}{2}y + \frac{25}{2}\right) = 0$...(i) It passes through (1, 1) $\therefore 12 + \lambda(24) = 0$ $\Rightarrow \lambda = -\frac{1}{2}$ On putting in Eq. (i), we get $x^{2} + y^{2} + 13x - 3y - \frac{11}{2}x - \frac{1}{4}y - \frac{25}{4} = 0$ $\Rightarrow 4x^2 + 4y^2 + 52x - 12y - 22x - y - 25 = 0$ $\Rightarrow 4x^2 + 4y^2 + 30x - 13y - 25 = 0$ 649 (d) The equation of any normal $\frac{x^2}{a^2} + \frac{y^2}{h^2} = 1$ is $ax \sec \phi - by \csc \phi = a^2 - b^2 \dots (i)$ The straight line $x \cos \alpha + y \sin \alpha = p$ will be a normal to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, then Eq. (i) and $x \cos \alpha + y \sin \alpha = p$ will represent the same line $\therefore \frac{a \sec \phi}{\cos \alpha} = \frac{-b \csc \phi}{\sin \alpha} = \frac{a^2 - b^2}{p}$ $\Rightarrow \cos \phi = \frac{ap}{(a^2 - b^2) \cos \alpha}$ And $\sin \phi = \frac{-bp}{(a^2 - b^2)\sin \alpha}$ $: \sin^2 \phi + \cos^2 \phi = 1$ $\Rightarrow \frac{b^2 p^2}{(a^2 - b^2)^2 \sin^2 \alpha} + \frac{a^2 p^2}{(a^2 - b^2)^2 \cos^2 \alpha} = 1$ $\Rightarrow p^2(b^2 \csc^2 \alpha + a^2 \sec^2 \alpha) = (a^2 - b^2)^2$ 650 (d) Given hyperbola is $\frac{x^2}{25} - \frac{y^2}{16} = 1$ Here, a = 5 and b = 4Asymptotes are $y = \pm \frac{4}{5}x$ 651 **(b)** If the line y = mx + c touches the parbola $y^2 =$ 4ax, then $y = mx + \frac{a}{m}$ $\Rightarrow my = m^2 x + a$ $\Rightarrow my = x + am^2 \left[\text{replacing } m \text{ by } \frac{1}{m} \right]$ $\Rightarrow x - my + am^2 = 0$ 652 (a)

The director circle of $16x^2 - 25y^2 = 400$ is $x^2 +$

 $y^2 = 9$

Clearly, $(2\sqrt{2}, 1)$ lies on it. So, angle between tangents drawn from $(2\sqrt{2}, 1)$ is a right angle 653 **(d)**

The centre of given circle is $(0, -\lambda)$ $\therefore r = \sqrt{0 + \lambda^2 - 4} = 0$ $\Rightarrow \lambda = \pm 2$

So, limiting points are $(0, \pm 2)$

654 **(b)**

Let the required equation of circle be $x^2 + y^2 + 2gx + 2fy = 0$. Since, the above circle cuts the given circles orthogonally

$$\therefore 2(-3g) + 2f(0) = 8 \implies 2g = -\frac{6}{3}$$

And $-2g - 2f = -7$
$$\Rightarrow 2f = -7 + \frac{8}{3} = \frac{29}{3}$$

$$\therefore \text{ required equation of circle is}$$
$$x^{2} + y^{2} - \frac{8}{3}x + \frac{29}{3}y = 0$$

or $3x^{2} + 3y^{2} - 8x + 29y = 0$
(d)

655 **(d)**

The equation of normal of slope *m* to the parabola $y^2 = 4ax$ is $y = mx - 2am - am^3$ This will touch the hyperbola $x^2 - y^2 = a^2$, if $(-2am - am^3)^2 = a^2m^2 - a^2$ $\Rightarrow 4m^2 + m^6 + 4m^4 = m^2 - 1$ $\Rightarrow m^6 + 4m^4 + 3m^2 + 1 = 0$

656 **(b)**

Let P(h, k) be the point from which two tangents are drawn to $y^2 = 4x$. Any tangent to the parabola $y^2 = 4x$ is $y = mx + \frac{1}{m}$ If it passes through P(h, k), then $k = mh + \frac{1}{m} \Rightarrow m^2h - mk + 1 = 0$ Let m_1, m_2 be the roots of this equation. Then, $m_1 + m_2 = \frac{k}{h}$ and $m_1 m_2 = \frac{1}{h}$ $\Rightarrow 3m_2 = \frac{k}{h} \text{ and } 2m_2^2 = \frac{1}{h} \quad [\because m_1]$ $= 2 m_2$ (given)] $\Rightarrow 2\left(\frac{k}{2h}\right)^2 = \frac{1}{h} \Rightarrow 2k^2 = 9h$ Hence, P(h, k) lies on $2y^2 = 9x$ 657 (c) Given circle is $x^2 + y^2 - 6x + 4y - 12 = 0$ Centre of this circle is (3, -2)Let other end of the diameter is (α, β) $\therefore \frac{\alpha - 1}{2} = 3, \frac{\beta + 1}{2} = -2$

 $\Rightarrow \alpha = 7, \beta = -5$: Other end of the diameter is (7, -5)658 (b) Equation of director circle of the ellipse $\frac{x^2}{25} + \frac{y^2}{16} =$ $x^2 + y^2 = 25 + 16$ $\Rightarrow x^2 + y^2 = 41$ \therefore The given point (5, 4) lies on the director circle, therefore the tangents are drawn from this points to the ellipse makes an angle 90° 659 (d) Let the equation of tangent to the circle $x^2 + y^2 =$ 16 is $y = mx + 4\sqrt{1 + m^2}$ (:: $y = mx + a\sqrt{1 + m^2}$) And let the equation of tangent to the ellipse $\frac{x^2}{40}$ + $\frac{y^2}{x} = 1$ is $y = mx + \sqrt{49m^2 + 4}$ (:: $y = mx + \sqrt{a^2m^2 + b^2}$) For common tangent $4\sqrt{1+m^2} = \sqrt{49m^2+4}$ $\Rightarrow 16 + 16m^2 = 49m^2 + 4$ $\Rightarrow 12 = 33m^2$ $\Rightarrow m^2 = \frac{12}{33} \Rightarrow m = \frac{2}{\sqrt{11}}$ $\therefore y = \frac{2}{\sqrt{11}}x + 4\sqrt{1 + \frac{4}{11}}$ $=\frac{2}{\sqrt{11}}x+4\sqrt{\frac{15}{11}}$ 661 (a) The coordinate of the point of intersection of line y = x and circle $x^{2} + y^{2} - 2x = 0$ is A(0, 0) and B(1,1) : Equation of circle with *AB* as its diameter is x(x-1) + y(y-1) = 0 $\Rightarrow x^2 + y^2 - x - y = 0$ 662 (c) Given, $(x + 5)^2 = 16y$ $\Rightarrow X^2 = 4AY$ where X = x + 5, A = 4, Y = v. The ends of the latusrectum are (2A, A) and (-2A, A) $\Rightarrow x + 5 = 2(4), y = 4 \Rightarrow x = 3, y = 4$ and x + 5 = -2(4), $y = 4 \Rightarrow x = -13$, y = 4Here required points are (3, 4) and (-13, 4)

663 (d)

The coordinates of points A and B are (3, 0) and (0, 4) respectively

Let the equation of circle is $x^{2} + y^{2} + 2gx + 2fy + c = 0$...(i) Since, this circle passes through (0, 0), (3, 0) and (0, 4) respectively, then $c = 0, g = -\frac{3}{2}$ and f = -2On putting these value in Eq. (i), we get $x^2 + y^2 - 3x - 4y = 0$ Which is required equation of circle Diameter of circle is diagonal of square

664 (b)

Radius of the circle =5or diameter of the circle=10 $(10)^2$

$$\therefore$$
 Area of square $=\frac{(10)}{2}=50$ sq unit

665 (b)

The given equation of rectangular hyperbola is xy = 18 ...(i)

On comparing Eq.(i), with general equation of rectangular hyperbola

$$xy = \frac{a^2}{2}$$

We get, $\frac{a^2}{2} = 18 \Rightarrow a^2 = 36$
 $\Rightarrow a = 6$

: Length of the transverse axis of rectangular hyperbola is $2a = 2 \times 6 = 12$

666 **(b)**

Clearly, circle $15x^2 + 15y^2 - 94x + 18y + 55 = 0$ passes through (1, -2) and (4, -3)Also, it touches 3x + 4y = 7

667 **(b)**

The equation of tangent to the given ellipse in parametric form is

$$\frac{x}{5}\cos\theta + \frac{y}{3}\sin\theta = 1 \quad \dots (i)$$

But, the given equation of tangent is $\frac{3x}{15\sqrt{2}} + \frac{3y}{15\sqrt{2}} =$ 1 ... (ii)

Since, Eqs. (i) and (ii) represent the same line

$$\therefore \frac{\cos \theta}{5} = \frac{3}{15\sqrt{2}} \text{ and } \frac{\sin \theta}{3} = \frac{5}{15\sqrt{2}}$$

$$\Rightarrow \cos \theta = \frac{1}{\sqrt{2}} \text{ and } \sin \theta = \frac{1}{\sqrt{2}}$$
$$\Rightarrow \theta = \frac{\pi}{4}$$

668 (d)

The smallest circle means that its radial is, distance from origin to the diameter is smallest.

Let equation of line perpendicular to y - x = 1 is $x + y = \lambda$ Also, it passes through (0, 0) $\therefore \lambda = 0$: Perpendicular line is x + y = 0The intersection point of lines are $\left(-\frac{1}{2},\frac{1}{2}\right)$ Which is the centre of circle. Alternate It is clear from the figure that centre lies on IInd quadrant. Hence, option (d) is correct 669 (c) The equation of the tangent at $(a \sec \alpha, b \tan \alpha)$ to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ is $\frac{x \sec \alpha}{a} - \frac{y \tan \alpha}{b} = 1$ This meets the transverse axis at $T(a \cos \alpha, 0)$ Let S'(-ae, 0) be the focus of the hyperbola. Then, $S'T = ae + a \cos \alpha = a(e + \cos \alpha)$ 670 (b) Given, $e = \frac{1}{2}$ and $\frac{a}{e} = 4 \Rightarrow a = 2$ $\therefore b^2 = a^2(1 - e^2)$ $\Rightarrow b^2 = 4\left(1 - \frac{1}{4}\right) = 3$: Equation of ellipse is $\frac{x^2}{4} + \frac{y^2}{3} = 1 \implies 3x^2 + 3x^2$ $4v^2 = 12$

671 **(b)**

Let the equation of the ellipse be $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, and let *e* be the eccentricity of the ellipse. It is given that distance between foci = 2h $\therefore 2 ae = 2 h \Rightarrow ae = h$(i) Focal distance of the one end of minor axis, say (0, *b*) is *k* $\therefore a + e(0) = k \Rightarrow a = k$ (ii) From (i) and (ii), we have $b^2 = a^2(1 - e^2) = a^2 - (ae)^2 = k^2 - h^2$ Hence, the equation of the ellipse is $\frac{x^2}{k^2} + \frac{y^2}{k^2 - h^2} = 1$ 672 (a) Required equation of circle is $x^{2} + y^{2} - 6x - 8y + \lambda(x + y - 1) = 0$ $\Rightarrow x^2 + y^2 - (6 - \lambda)x - (8 - \lambda)y - \lambda) = 0$ Whose centre is $\left(3 - \frac{\lambda}{2}, 4 - \frac{\lambda}{2}\right)$ Which lies on the line x + y - 1 = 0 $\Rightarrow 3 - \frac{\lambda}{2} + 4 - \frac{\lambda}{2} - 1 = 0$ $\Rightarrow \lambda = 6$ Hence, required equation is $x^2 + y^2 - 6x - 8y + 6x + 6y - 6 = 0$ $\Rightarrow x^2 + y^2 - 2y - 6 = 0$ 673 (a) Given, $x = 3 (\cos t + \sin t)$, $y = 4(\cos t - \sin t)$ $\Rightarrow \frac{x}{3} = \cos t + \sin t, \frac{y}{4} = \cos t - \sin t$ $\therefore \left(\frac{x}{2}\right)^2 + \left(\frac{y}{4}\right)^2 = (\cos t + \sin t)^2 + (\cos t - \sin t)^2$ $\Rightarrow \frac{x^2}{9} + \frac{y^2}{16} = 2$ $\Rightarrow \frac{x^2}{10} + \frac{y^2}{20} = 1$, which is an ellipse 674 (b) Equation of any circle through (0, 0) and (1, 0) is $(x-0)(x-1) + (y-0)(y-0) + \lambda \begin{vmatrix} x & y & 1 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \end{vmatrix}$ $\Rightarrow x^2 + v^2 - x + \lambda y = 0$ If it represents C_3 , its radius=1 $\Rightarrow 1 = \left(\frac{1}{4}\right) + \left(\frac{\lambda^2}{4}\right) \Rightarrow \lambda = \pm\sqrt{3}$

As the centre of C_3 , lies above the *x*-axis, we take $\lambda = -\sqrt{3}$ and thus, an equation of C_3 is $x^2 + y^2 - y^2$ $x - \sqrt{3}y = 0$ Since, C_1 and C_3 intersect and are of unit radius, their common tangents are parallel to the line joining their centres (0, 0) and $\left(\frac{1}{2}, \frac{\sqrt{3}}{4}\right)$ So, let the equation of a common tangent be $\sqrt{3}x - y + k = 0$ It will touch C_1 , if $\left|\frac{k}{\sqrt{3+1}}\right| = 1 \Rightarrow k = \pm 2$ From the figure, we observe that the required tangent makes positive intercept on the y-axis and negative on the *x*-axis and hence, its equation is $\sqrt{3}x - y + 2 = 0$ 675 (c) Given, $\frac{x^2}{16} + \frac{y^2}{4} = 1$

Here, a = 4, b = 2

Equation of normal

 $4x \sec \theta - 2y \csc \theta = 12$

Since, it passes through Q on x-axis

So, put
$$y = 0$$
, we get

 $x = 3\cos\theta$

$$\therefore Q(3\cos\theta, 0)$$

Now, mid point of PQ,

$$M\left(\frac{7\cos\theta}{2},\sin\theta\right) = (h,k) \quad (\text{say})$$
$$7\cos\theta \qquad 2h$$

$$h = \frac{7\cos\theta}{2} \Rightarrow \cos\theta = \frac{2\pi}{7}$$

and $k = \sin \theta$

$$\Rightarrow \frac{4h^2}{49} = k^2 = 1 \ (\because \cos^2 \theta + \sin^2 \theta = 1)$$

Here, locus of *M* is $\frac{4x^2}{49} + y^2 = 1$...(i)

$$x' \leftarrow \underbrace{(-4, 0)}_{(0, -2)} \underbrace{y'}_{y'} \underbrace{(0, 2)}_{(4\cos\theta, 2\sin\theta)} x$$

For given ellipse $e^2 = 1 - \frac{4}{16} = \frac{3}{4}$

$$\therefore e = \frac{\sqrt{3}}{2}$$

: Abscissa of focus is

$$x = \pm 4 \times \frac{\sqrt{3}}{2} = \pm 2\sqrt{3}$$
 (: $x = \pm ae$) ...(iii)

On solving Eqs. (i) and (ii), we get

$$\frac{4}{49} \times 12 + y^2 = 1$$

$$\Rightarrow y^2 = 1 - \frac{48}{49} = \frac{1}{49}$$

 \therefore Required points $\left(\pm 2\sqrt{3}, \pm \frac{1}{7}\right)$

676 (a)

Since, the focus and vertex of the parabola are on y-axis, therefore its axis of the parabola is y – axis

Let the equation of the directrix be y = k the directrix meets the axis of the parabola at (0, k). But vertex is the mid point of the line segment joining the focus to the point where directrix meets axis of the parabola

$$k + \frac{3}{2} = 6 \implies k = 9$$

Thus, the equation of directrix is y = 9

Equation of parabola is

$$(x-0)^2 + (y-3)^2 = (y-9)^2$$

 $\Rightarrow x^2 + 12y - 72 = 0$

677 **(a)**

The equation of tangent of slope *m* to the parabola $y^2 = 4x$ is $y = mx + \frac{1}{m}$ This will be a chord of the circle $x^2 + y^2 = 4$, if Length of the perpendicular from the centre (0,0) is less than the radius

i. e.
$$\left|\frac{1}{m\sqrt{m^2+1}}\right| < 2$$

 $\Rightarrow 4m^4 + 4m^2 - 1 > 0$
 $\Rightarrow \left(m^2 - \frac{\sqrt{2} - 1}{2}\right) \left(m^2 + \frac{1 + \sqrt{2}}{2}\right) > 0$
 $\Rightarrow \left(m^2 - \frac{\sqrt{2} - 1}{2}\right) > 0$
 $\Rightarrow \left(m - \sqrt{\frac{\sqrt{2} - 1}{2}}\right) \left(m + \sqrt{\frac{\sqrt{2} - 1}{2}}\right) > 0$
 $\Rightarrow m \in \left(-\infty, -\sqrt{\frac{\sqrt{2} - 1}{2}}\right) \cup \left(\sqrt{\frac{\sqrt{2} - 1}{2}}, \infty\right)$

678 (a)

It is given that $y^2 = 4ax$ passes through (2, -6) $\therefore 36 = 8a \Rightarrow a = \frac{9}{2}$ Hence, L. R. = $4a = 4 \times \frac{9}{2} = 18$ 679 (c)

The equation of the line y = x in distance form is $\frac{x}{\cos\theta} = \frac{y}{\sin\theta} = r$, where $\theta = \frac{\pi}{4}$ For point *P*, we have $r = 6\sqrt{2}$ Therefore, coordinates of *P* are given by $\frac{x}{\cos\frac{\pi}{4}} = \frac{y}{\sin\frac{\pi}{4}} = 6\sqrt{2} \Rightarrow x = 6, y = 6$ Since *P*(6,6) lies on $x^2 + y^2 + 2 gx + 2 fy + c =$ 0 $\therefore 72 + 12(g + f) + c = 0$...(i) Since y = x touches the circle. Therefore, the equation $2x^{2} + 2x(g + f) + c = 0$ has equal roots $\Rightarrow 4(g+f)^2 = 8 c \Rightarrow (g+f)^2 = 2 c \quad \dots (ii)$ From (i), we have $[12(q+f)]^2 = [-(c+72)]^2$ $\Rightarrow 144(g+f)^2 = (c+72)^2$ $\Rightarrow 144 (2 c) = (c + 72)^2$ [Using (ii)] $\Rightarrow (c - 72)^2 = 0 \Rightarrow c = 72$ 680 (c) Let *PQ* and *RP* be the two tangents and *P* be the point on the circle $x^2 + y^2 = a^2$ whose coordinates are $(a \cos t, a \sin t)$ and $\angle OPQ = \theta$

coordinates are $(a \cos t, a \sin t)$ and $\angle OPQ = \theta$ Now, PQ =length of tanget from P on the circle $x^2 + y^2 = a^2 \sin^2 \alpha$

$$ightharpoonup P$$

$$ightharpoo$$

(0, <u>±</u>ae)

The equation of tangent at any point

$$(a \cos \theta, b \sin \theta)$$
 on the ellipse is $\frac{x}{\cos \theta} + \frac{y}{\sin \theta} = 1$

 $\therefore \text{Required sum}$

$$= \left[\frac{\frac{ae\sin\theta}{b} - 1}{\sqrt{\frac{\cos^2\theta}{a^2} + \frac{\sin^2\theta}{b^2}}}\right]^2 + \left[\frac{\frac{-ae\sin\theta}{b} - 1}{\sqrt{\frac{\cos^2\theta}{a^2} + \frac{\sin^2\theta}{b^2}}}\right]^2$$
$$= \frac{(ae\sin\theta - b)^2 + (ae\sin\theta + b)^2}{(b^2\cos^2\theta + a^2\sin^2\theta)} \times a^2$$
$$= \frac{2a^2[(a^2 - b^2)\sin^2\theta + b^2]}{b^2\cos^2\theta + a^2\sin^2\theta} = 2a^2$$

682 **(b)**

Since, two chords bisect each other, it means both the chords passes through the centre of circle.

$$\therefore \text{ Length of chords are equal}$$

$$ie, a^{2} - 1 = 3(a + 1)$$

$$\Rightarrow a^{2} - 3a - 4 = 0$$

$$\Rightarrow (a - 4)(a + 1) = 0$$

$$\Rightarrow a = 4 \quad (\because a = -1 \text{ is not possible})$$

$$\therefore \text{ Radius of circle} = \frac{a^{2} - 1}{2} = \frac{16 - 1}{2}$$

$$= \frac{15}{2}$$

683 (a)

Let point is $(\sqrt{6}\cos\theta, \sqrt{2}\sin\theta)$ and let it's distance *d* from origin

$$\therefore d = \sqrt{\sqrt{6\cos^2 \theta + 2\sin^2 \theta}}$$

$$\Rightarrow 2 = \sqrt{2 + 4\cos^2 \theta}$$

$$\Rightarrow 2 + 4\cos^2 \theta = 4$$

$$\Rightarrow \cos^2 \theta = \frac{1}{2}$$

$$\Rightarrow \cos \theta = \pm \frac{1}{\sqrt{2}} \Rightarrow \theta = \frac{\pi}{4}$$

684 **(c)**

Given that focus is S(0, 0)

Let *A* is the vertex of parabola. Take any point *Z* on the directrix such that AS = AZ. Since, the given tangent x - y + 1 = 0 is parallel to the directrix

Equation of directrix is $x - y + \lambda = 0$ \therefore *A* is the mid point of *SZ*

$$\therefore SZ = 2SA$$

$$\Rightarrow \frac{|0 - 0 + \lambda|}{\sqrt{1^2 + 1^2}} = 2 \times \frac{|0 - 0 + 1|}{\sqrt{1^2 + 1^2}}$$

$$\Rightarrow |\lambda| = 2 \Rightarrow \lambda = 2$$

$$\therefore \text{ Equation of directrix is } x = y + 2 = 2$$

∴ Equation of directrix is x - y + 2 = 0Now, *P* be any point on the parabola ∴ $SP = PM \Rightarrow SP^2 = PM^2$

$$\Rightarrow (x - 0)^{2} + (y - 0)^{2} = \left(\frac{|x - y + 2|}{\sqrt{2}}\right)^{2}$$
$$\Rightarrow x^{2} + y^{2} + 2xy - 4x + 4y - 4 = 0$$

686 **(c)**

Given equation can be rewritten as

$$\frac{(x-3)^2}{16} + \frac{y^2}{25} = 1$$

Here,
$$a^2 = 16$$
 and $b^2 = 25$

$$\therefore e = \sqrt{1 - \frac{16}{25}} = \frac{3}{5}$$

Hence, the foci Basic Terms of Conics are $(0, \pm be)ie, (3, \pm 3)$

687 (c)

The equation of tangent at point (1, 2) to the circle $x^2 + y^2 - 4x - 6y + 9 = 0$, is x + 2y - 2(x + 1) - 3(y + 2) + 9 = 0 $\Rightarrow x + y - 1 = 0$ Since, the inverse of the point (1, 2) is the foot (α, β) of the perpendicular from the point (1, 2) to the line x + y - 1 $\therefore \quad \frac{\alpha - 1}{1} = \frac{\beta - 2}{1} = -\frac{(1.1 + 1.2 - 1)}{1^2 + 1^2}$ $\Rightarrow \alpha - 1 = \beta - 2 = -1$ $\Rightarrow \alpha = 0, \beta = 1$ Hence, required point is (0, 1)

688 (c)

Comparing $ax^2 + 2hxy + by^2 + 2gx + 2fy + c =$ 0 with $x^{2} + y^{2} + 2gx + 2fy + c = 0$, we find that the given equation will represent a circle if a = band h = 0

689 (c)

In an equilateral triangle, the circumcentre of a circle lies on the centroid of the triangle Here, radius of circle is 2a

: Required equation of circle is $x^2 + y^2 = 4a^2$

690 (a)

The given ellipse is $\frac{x^2}{4} + \frac{y^2}{3} = 1 \implies a = 2, b = \sqrt{3}$

1 2

θ

$$b^{2} = a^{2}(1 - e^{2})$$

$$\Rightarrow 3 = 4(1 - e^{2}) \Rightarrow e = 1$$

$$\therefore ae = 1$$

Hence, the eccentricity e_1 , of the required hyperbola is given by

$$1 = e_1 \sin \theta \implies e_1 = \csc \theta$$
$$\Rightarrow b^2 = \sin^2 \theta (\csc^2 \theta - 1) = \cos^2 \theta$$

Hence, the required hyperbola is

$$\frac{x^2}{\sin^2 \theta} - \frac{y^2}{\cos^2 \theta} = 1$$

or $x^2 \operatorname{cosec}^2 \theta - y^2 \sec^2 \theta = 1$
691 (c)

Two given tangents are parallel to each other. Therefore, the distance between them is equal to the diameter of the circle

$$\Rightarrow \text{ Radius} = \frac{1}{2} \times \left\{ \begin{array}{c} \text{Distance between } 3 \ x - 4 \ y + 4 = 0 \\ \text{and } 6 \ x - 8 \ y - 7 = 0 \end{array} \right\}$$
$$\Rightarrow \text{Radius} = \frac{1}{2} \left| \frac{4 + \frac{7}{2}}{\sqrt{9 + 16}} \right| = \frac{3}{4}$$

692 (d)

For the circle to lie inside the square of unit side length, we must have

Radius
$$\leq \frac{1}{2}$$

 $\Rightarrow \sqrt{\sin^2 \alpha + \cos^2 \alpha - \sin^2 \theta} \leq \frac{1}{2}$
 $\Rightarrow |\cos \theta| \leq \frac{1}{2}$
 $\Rightarrow -\frac{1}{2} \leq \cos \theta \frac{1}{2} \Rightarrow \theta \in [\pi/3, 2\pi/3]$
 $\cup [4\pi/3, 5\pi/3]$

693 (c)

y

The equation of any tangent to $y^2 = 4(x + 1)$ is

$$y = m(x + 1) + \frac{1}{m} \qquad ... (i)$$

The equation of any tangent to $y^2 = 8(x + 2)$ is

 $y = m'(x+2) + \frac{2}{m'}$ (ii) It is given that (i) and (ii) are perpendicular.

Therefore,

$$mm' = -1 \Rightarrow m' = -\frac{1}{m}$$

Putting $m' = -\frac{1}{m}$ in (ii), we get

$$y = -\frac{1}{m}(x+2) - 2m$$
 ... (iii)

The point of intersection of (i) and (iii) is given by solving (i) and (ii)

On subtracting (iii) from (i), we get

$$0 = \left(m + \frac{1}{m}\right)x + 3\left(m + \frac{1}{m}\right) \Rightarrow x + 3 = 0 \quad [$$
$$\therefore m + \frac{1}{m} \neq 0]$$

694 (a)

If P(x, y) b ea point on a parabola, then by the definition of parabola

$$(PS)^{2} = (PM)^{2}$$

$$\Rightarrow (x-3)^{2} + (y+4)^{2} = \left(\frac{6x-7y+5}{\sqrt{6^{2}+7^{2}}}\right)^{2}$$

$$\Rightarrow 85(x^{2}-6x+9+y^{2}+8y+16)$$

$$\Rightarrow 36x^{2} + 49y^{2} + 25 - 84xy - 70y + 60x$$
$$\Rightarrow (7x + 6y)^{2} - 570x + 750y + 2100 = 0$$

695 (c)

Since every diameter of an ellipse passes through the centre and is bisected by it.

Therefore, the coordinates of the other end are $(-\sqrt{3}, -2)$

696 **(b)**

The angle between the asymptotes of the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ is $2 \tan^{-1} \frac{b}{a}$ So, the angle between the asymptotes of $27x^2$ – $9y^2 = 24$ is

 $2 \tan^{-1}(\sqrt{3}) = \frac{2\pi}{3}$ $\left[:: a = \frac{2\sqrt{2}}{3} \text{ and } b\right]$ $=\frac{2\sqrt{2}}{\sqrt{3}}$

697 (c)

If the point $(\sin \theta, \cos \theta)$ lies inside the circle x^2 + $y^2 - 2x - 2y + \lambda = 0$, for all θ . Then, $1 - 2(\sin\theta + \cos\theta) + \lambda < 0$ for all θ $\Rightarrow 1 + \lambda < 2(\sin \theta + \cos \theta)$ for all θ $\Rightarrow 1 + \lambda < -2\sqrt{2}$ $\because -\sqrt{2} \le \sin\theta + \cos\theta \le \sqrt{2}$ $\left[\therefore \text{ Min. value of } \sin \theta + \cos \theta \text{ is } - \sqrt{2} \right]$ $\Rightarrow \lambda < -1 - 2\sqrt{2}$

698 (c)

Equation of tangent at (1,2) is

3x + 4y = 5

Joint equation of tangent is

 $(3x^{2} + 2y^{2} - 5)(3 + 8 - 5) = (3x + 4y - 5)^{2}$

 $\Rightarrow 9x^2 - 4y^2 - 24xy + 30x + 40y - 30 = 0$

Here, a = 9, b = -4, h = -12, g = 15

(Comparing it with $ax^2 + by^2 + 2hxy + 2gx + by^2$ 2fy + c = 0)

$$\theta = \tan^{-1} \left(\frac{2\sqrt{144 + 36}}{5} \right)$$
$$= \tan^{-1} \left(\frac{2 \cdot 2 \cdot 3\sqrt{5}}{5} \right)$$
$$\Rightarrow \theta = \tan^{-1} \left(\frac{12}{\sqrt{5}} \right)$$

699 (b)

Let *APQ* be an isosceles triangle of area Δ . Then,

$$\Delta = \frac{1}{2} (PQ \times AL)$$

$$\Rightarrow \Delta = \frac{1}{2} \times 2b \sin \theta \times (a - a \cos \theta)$$

$$\Rightarrow \Delta = b \sin \theta (a - a \cos \theta)$$

$$\Rightarrow \Delta = \frac{ab}{2} (2 \sin \theta - \sin 2\theta)$$

$$\Rightarrow \frac{d}{d\theta} = ab(\cos \theta - \cos 2\theta) \text{and } \frac{d^2 \Delta}{d\theta^2}$$

$$= ab(-\sin \theta + 2 \sin^2 \theta)$$
For maximum or minimum, we must have
$$\frac{d\Delta}{d\theta} = 0 \Rightarrow \cos \theta = \cos 2\theta$$

$$\Rightarrow \theta = 2\pi - 2\theta \Rightarrow \theta = \frac{2\pi}{3}$$
Clearly, $\frac{d^2\Delta}{d\theta^2} < 0$ for $\theta = 2\pi/3$
Hence, Δ is maximum for $\theta = 2\pi/3$
Hence, Δ is maximum for $\theta = 2\pi/3$

$$\frac{1}{2} (2 \sin \frac{2\pi}{3} - \sin \frac{4\pi}{3}) = \frac{3\sqrt{3}}{4} ab$$
(a)
Let BB'' be the minor axis of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$
Let $S(ae, o)$ and $S''(-ae, 0)$ be two foci of the ellipse. Then,
$$m_1 = \text{Slope of } SB = \frac{-b}{ae}, m_2 = \text{Slope of } SB'' = \frac{b}{ae}$$

Now,

700

b

ae

$$\angle BSB = 60^{\circ}$$

$$\Rightarrow \tan 60^{\circ} = \frac{m_{1} - m_{2}}{1 + m_{1}m_{2}}$$

$$\Rightarrow \sqrt{3} = \frac{-2b/ae}{1 - b^{2}/a^{2}e^{2}}$$

$$\Rightarrow \sqrt{3}(a^{2}e^{2} - a^{2}) = 2a^{2}e\sqrt{1 - e^{2}}$$

$$\Rightarrow \sqrt{3}(2a^{2}e^{2} - a^{2}) = 2a^{2}e\sqrt{1 - e^{2}}$$

$$\Rightarrow 3(2e^{2} - 1)^{2} = 4e^{2}(1 - e^{2})$$

$$\Rightarrow 16e^{4} - 16e^{2} + 3 = 0 \Rightarrow (4e^{2} - 3)(4e^{2} - 1)$$

$$= 0 \Rightarrow e = \frac{\sqrt{3}}{2}, \frac{1}{2}$$
ALITER In ΔSOB , we have tan $30^{\circ} = \frac{CB}{CS}$

$$\Rightarrow \frac{1}{\sqrt{3}} = \frac{b}{ae}$$

$$\Rightarrow \sqrt{3} b = ae$$

$$\Rightarrow 3b^{2} = a^{2}e^{2} \Rightarrow 3a^{2}(1 - e^{2}) = a^{2}e^{2} \Rightarrow 4e^{2} = 3$$

$$\Rightarrow e = \frac{\sqrt{3}}{2}$$
701 (a)
Let *P* is the position of man and *S*, *S'* are position of flags, then
 $SP + S'P = 10 = 2a \Rightarrow a = 5$

$$\therefore SS' = 2ae = 8 \Rightarrow e = \frac{4}{5}$$
Now, $e^{2} = 1 - \frac{b^{2}}{a^{2}} \Rightarrow \frac{16}{25} = 1 - \frac{b^{2}}{25}$

$$\Rightarrow b^{2} = 9 \Rightarrow b = 3$$
Area of ellipse= $\pi ab = 15\pi$ sq m
702 (d)
The point of intersection of $x + 3y = 2$ and $x^{2} + xy - y^{2} = 1$

$$\Rightarrow 4 + 9y^{2} - 12y + 2y - 3y^{2} - y^{2} = 1$$

$$\Rightarrow 5y^{2} - 10y + 3 = 0$$

$$\therefore y = \frac{10 \pm \sqrt{100 - 60}}{2 \times 5}$$

$$= \frac{10 \pm \sqrt{40}}{10}$$

$$\therefore x = 2 - 3\left(\frac{10 \pm \sqrt{40}}{10}\right)$$

: Points of intersection are

Page | 159

 $A\left(-1 - \frac{\sqrt{40}}{10}, 1 + \frac{\sqrt{40}}{10}\right)$ and $B\left(-1 + \frac{\sqrt{40}}{10}, 1 - \frac{\sqrt{40}}{10}\right)$

 \therefore Mid point of *AB* is (-1,1)

703 **(c)**

The centres and radii of given circles are $C_1(2,3), C_2(-2,-3)$ and $r_1 = \sqrt{4+9+12} = 5, r_2 = \sqrt{4+9-4} = 3$ Now, $C_1C_2 = \sqrt{(2+2)^2 + (3+3)^2} = \sqrt{52}$ Here, $C_1C_2 < r_1 + r_2$ Hence, given circles intersect at two points 704 (d) Equation of director circle of the parabola $x^2 y^2 = 1$

$$\frac{x}{16} - \frac{y}{4} = 1$$
$$x^2 + y^2 = 16 - 4$$

$$\Rightarrow x^2 + y^2 = 12$$

705 **(a)**

The intersection point of two given lines is the centre of circle *ie*, (1, -1)Circumference of circle = 10π (given) $\Rightarrow 2\pi r = 10\pi \Rightarrow r = 5$ \therefore equation of circle having centre (1, -1) and radius 5 is $(x-1)^2 + (y+1)^2 = 5^2$ $\Rightarrow x^2 + y^2 - 2x + 2y - 23 = 0$ 706 (c) Here, $g_1 = \lambda$, $f_1 = 3$, $c_1 = 1$ and $g_2 = 2$, $f_2 = 1$, $c_2 = 0$ since, they intersect orthogonally $\therefore 2g_1g_2 + 2f_1f_2 = c_1 + c_2$ $\Rightarrow 2\lambda \times 2 + 6 \times 1 = 1 + 0$ $\Rightarrow 4\lambda + 6 = 1$ $\Rightarrow \lambda = -\frac{5}{4}$ 707 (d) The equation of any tangent to $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ is $\frac{x}{a}\sec\theta - \frac{y}{b}\tan\theta = 1$... (i) The equations of the asymptotes of the hyperbola are $\frac{x}{a} - \frac{y}{b} = 0 \qquad \dots \text{ (ii)}$ and, $\frac{x}{a} + \frac{y}{b} = 0 \qquad \dots \text{ (iii)}$

The coordinates of the vertices of the triangle formed by the lines (i).(ii) and (iii) are

$$O(0,0), P\left(\frac{a}{\sec\theta - \tan\theta}, \frac{b}{\sec\theta - \tan\theta}\right)$$
And,

$$Q\left(\frac{a}{\sec\theta + \tan\theta}, \frac{-b}{\sec\theta + \tan\theta}\right)$$

$$\therefore \text{ Area of } \Delta OPQ$$

$$= \frac{1}{2} \left|\frac{-ab}{\sec^2\theta - \tan^2\theta}\right|$$

$$= ab$$
(c)

708 (c)

Let the coordinates of *P* be (h, k). The equations of the chords of contact of tangents drawn from *P* to the hyperbola $x^2 - y^2 = a^2$ and the circle $x^2 + y^2 = a^2$ are $hx - ky = a^2$ and $hx + ky = a^2$ respectively. These two are at right angle. $\therefore -\frac{h}{k} \times \frac{h}{k} = -1 \Rightarrow h^2 - k^2 = 0$ Hence, *P*(*h*, *k*) lies on $x^2 - y^2 = 0$

709 (c)

Let $P(a \cos \theta, b \sin \theta)$ be a point on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ of eccentricity *e*. Then, the coordinance of *A*, *A'*, *S* and *S'* are (a, 0), (-a, 0), (ae, 0) and (-ae, 0) respectively. then,

Area of
$$\triangle PSS' = \frac{1}{2} \begin{vmatrix} a \cos \theta & b \sin \theta & 1 \\ ae & 0 & 1 \\ -ae & 0 & 1 \end{vmatrix}$$

= $abe \sin \theta$
and, Area of $\triangle APA' = \frac{1}{2} \begin{vmatrix} a \cos \theta & b \sin \theta & 1 \\ a & 0 & 1 \\ -a & 0 & 1 \end{vmatrix}$
= $ab \sin \theta$
 \therefore Area of $\triangle PSS'$: Area of $\triangle APA' = e$: 1

710 (d)

Given equation of ellipse can be rewritten as

$$(3x - 3)^{2} + (5y - 10)^{2} = 225$$

$$\Rightarrow \frac{9(x - 1)^{2}}{225} + \frac{25(y - 2)^{2}}{225} = 1$$

 \therefore Centre of ellipse is (1, 2)

711 (c)

Given, $\frac{x^2}{7} + \frac{y^2}{9} = 1$ Here, $a^2 = 7$, $b^2 = 9$ Since, a < b Length of major axis = 2b = 6

712 (d)

Equation of given ellipse is $\frac{(x-1)^2}{9} + \frac{(y-2)^2}{4} = 1$ Equation of normal ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$ is $3X \sec \theta - 2Y \csc \theta = 5$ Slope of normal is $\frac{3}{2} \tan \theta$ Which is parallel to 3x - y = 1, then $\frac{3}{2} \tan \theta = 3$ $\Rightarrow \tan \theta = 2$ $\therefore \sin \theta = \frac{2}{\sqrt{5}}, \cos \theta = \frac{1}{\sqrt{5}}$ So, equation of normal is $3\sqrt{5}X - \sqrt{5}Y = 5$ $\therefore X = x - 1, Y = y - 2$ $\therefore 3\sqrt{5}(x - 1) - \sqrt{5}(y - 2) = 5$ $\Rightarrow \sqrt{5}(3x - y) = 5(\sqrt{5} + 1)$ $\Rightarrow 3x - y = \sqrt{5}(\sqrt{5} + 1)$ 713 **(b)**

Let the equation of hyperbola and conjugate hyperbola be

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
 and $\frac{x^2}{a^2} - \frac{y^2}{b^2} = -1$

Then, the eccentricities are

$$e^{2} = \frac{a^{2}+b^{2}}{a^{2}}$$
 and $e'^{2} = \frac{a^{2}+b^{2}}{b^{2}}$
$$\therefore \frac{1}{e^{2}} + \frac{1}{e'^{2}} = \frac{a^{2}}{a^{2}+b^{2}} + \frac{b^{2}}{a^{2}+b^{2}} = 1$$

714 (a)

Equation of line which is inclined to the axis at $\frac{\pi}{4}$ is y = x

The point of intersection of above line and given parabola is (0,0), (4a, 4a)

Length of the chord is =

$$\sqrt{(4a-0)^2 + (4a-0)^2} = 4a\sqrt{2}$$

715 (c)

$$e^2 = \frac{a^2 - b^2}{a^2}$$
 and $e'^2 = \frac{b^2 - a^2}{b^2}$
 $\Rightarrow \frac{1}{e^2} + \frac{1}{e'^2} = 1$
716 (d)
Since, given lines are parallel.
 $\therefore \quad d = \frac{15 - 5}{\sqrt{4^2 + 3^2}} = \frac{10}{5}$
 $\Rightarrow \quad d = 2$ =diameter of the circle
 \therefore Radius of circle= 1

Page | 160

: Area of circle = $\pi r^2 = \pi$ sq unit 717 (a) Sum of the coefficients in the expansion of $(\alpha^2 x^2 - 2 \alpha x + 1)^{51}$ is zero $\therefore (\alpha^2 - 2\alpha + 1)^{51} = 0 \Rightarrow \alpha = 1$ $\therefore (\alpha, 2 \alpha^2) = (1, 2)$ Now, $S_1 = 1 + 4 - 4 > 0$ So, the point $(\alpha, 2 \alpha^2)$ lies outside the circle 718 (c) The equation of the auxiliary circle of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is $x^2 + y^2 = a^2$ The equation of a tangent to the auxiliary circle is $x\cos\theta + y\sin\theta = a$... (i) Let (h, k) be the pole of (i) with respect to the ellipse. Then, $\frac{hx}{a^2} + \frac{ky}{h^2} = 1$... (ii) Clearly, (i) and (ii) represent the same line $\therefore \frac{\cos \theta}{h/a^2} = \frac{\sin \theta}{k/b^2} = \frac{a}{1}$ $\Rightarrow \cos \theta = \frac{h}{a}$ and $\sin \theta = \frac{ka}{h^2}$ $\Rightarrow \frac{h^2}{a^2} + \frac{k^2 a^2}{h^4} = 1$ Hence, the locus of (h, k) is $\frac{x^2}{a^2} + \frac{y^2 a^2}{b^4} = 1$ or, $\frac{x^2}{a^4} + \frac{y^2}{b^4} = \frac{1}{a^2}$ 719 (a) Let $S = x^2 + y^2 - 8x$ At point (5, -7) $S = 5^2 + (-7)^2 - 8(5) = 34 > 0$ So, point lies outside the circle 720 (b) In $\triangle CBF$; tan $30^\circ = \frac{F''C}{h} \Rightarrow F''C = \frac{b}{\sqrt{3}}$ $\Rightarrow ae = \frac{b}{\sqrt{3}} \Rightarrow a^2 e^2 = \frac{1}{3} [a^2(1-e^2)]$ $\Rightarrow 4e^2 = 1 \Rightarrow e = \frac{1}{2}$

721 **(c)**

Given equation of parabola are

 $x^2 = 4y$ and $y^2 = 4s$...(i) $\therefore \left(\frac{x^2}{4}\right)^2 = 4x \Rightarrow x^2 - 64x = 0$ $\Rightarrow x = 0, x = 4$ On putting the values of x in Eq. (i), we get y = 0 and y = 4Hence, points of intersection are (0, 0) and (4, 4)722 (d) As both the circles pass through the origin and so they must have the same tangent at (0, 0). The general equation of tangent of the given circles are $xx_1 + yy_1 + g(x + x_1) + f(y + y_1) = 0$ $xx_1 + yy_1 + g'(x + x_1) + f'(y + y_1) = 0$ On substituting $x_1 = 0$ and $y_1 = 0$, we get $gx + fy = 0 \Rightarrow g'x + f'y = 0$ or $\frac{f}{a} = \frac{f'}{a}$ or g'f = gf'723 (d) Let the coordinates of *P* and *Q* are $(at_1^2, 2at_1)$ and $(at_2^2, 2at_2)$ respectively. Then the coordinates of R are $\{2a + a(t_1^2 + t_2^2 + t_1t_2), -at_1t_2(t_1 + t_2)\}$ Since, R lies on the parabola $\therefore a^2 t_1^2 t_2^2 (t_1 + t_2)^2$ $= 4a[2a + a\{(t_1 + t_2)^2 - t_1t_2\}]$ $\Rightarrow (t_1 + t_2)^2 \{ t_1^2 t_2^2 - 4 \} + 4(t_1 t_2 - 2) = 0$ $\Rightarrow t_1 t_2 = 2$ $\Rightarrow y_1y_2 = (2at_1)(2at_2) = 4a^2t_1t_2$ $\therefore y_1 y_2 = 8a^2$ 724 (a) Let the equation of line be y = mx + c. Since, this is the tangent to the circle $x^2 + y^2 = 5$

$$c = \pm a\sqrt{1+m^2}$$
$$= \pm \sqrt{5}\sqrt{1+m^2} \qquad \dots (i)$$

Also, the above line is tangent to the parabola $y^2 = 40x$

$$\therefore \ c = \frac{a}{m} = \frac{10}{m}$$

From Eqs.(i) and (ii), we get

$$\frac{10}{m} = \pm \sqrt{5}\sqrt{1+m^2}$$

$$\Rightarrow m^4 + m^2 - 20 = 0$$

$$\Rightarrow (m^2 + 5)(m^2 - 4) = 0$$

$$\Rightarrow m^2 = 4, m^2 \neq -5$$

$$\Rightarrow m = \pm 2$$

$$\Rightarrow c = \pm 5$$

$$\therefore y = \pm 2x \pm 5$$

725 (b)

Let *A* be the vertex of the parabola and *AP* is chord of parabola such that slope of *AP* is $\cot \alpha$. Let coordinates of *P* be $(t^2, 2t)$, which is a point on the parabola.

Slope of $AP = \frac{2t}{t^2}$

 $\Rightarrow \tan \alpha = \frac{2}{t}$

 $t = 2 \cos t \alpha$

$$\ln \Delta APB, AP = \sqrt{4t^2 + t^4}$$

$$=t\sqrt{4+t^2}$$

 $= 2 \cot \alpha \sqrt{4(1 + \cot^2 \alpha)}$

 $= 4 \cot \alpha \ \text{cosec} \ \alpha$

 $= 4 \cos \alpha \operatorname{cosec}^2 \alpha$

726 **(b)**

We observe that the circle $x^2 + y^2 = 4$ is orthogonal to the circles given in options (a) and (b). The radical axis of this circle with the circle in option (a) is x = 1/2 where as with the circle in option (b) is x = 1

727 **(b)**

Given, $(x - x_1)(x - x_2) + (y - y_1)(y - y_2) = 0$ Whose extremities of diameter are (x_1, y_1) and (x_2, y_2)

: Coordinates of centre of circle is $\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$ 728 (d)

Given,
$$\cos \theta = \frac{x}{4} - 1$$
 and $\sin \theta = \frac{y}{3} - 1$
 $\therefore \cos^2 \theta + \sin^2 \theta = 1$
 $\Rightarrow \left(\frac{x}{4} - 1\right)^2 + \left(\frac{y}{3} - 1\right)^2 = 1$
 $\Rightarrow \frac{(x-4)^2}{16} + \frac{(y-3)^2}{9} = 1$

729 **(c)**

Chord of contact of tangents at any point $P(x_1, y_1)$ on the circle $x^2 + y^2 = r_1^2$ to the circle $x^2 + y^2 = r_2^2$ is $xx_1 + yy_1 = r_2^2$ which touches the circle $x^2 + y^2 = r_3^2$ $\therefore \frac{|0.x_1 + 0.y_1 - r_2^2|}{\sqrt{x^2 + y^2}} = r_3$

$$\Rightarrow r_2^2 = r_3. \sqrt{x_1^2 + y_1^2} = r_3. r_1 \ [\because r_1^2 = x_1^2 + y_1^2]$$

So, r_1, r_2, r_3 are in GP

730 **(b)**

Let P(h, k) be the pole of a tangent to the director circle $x^2 + y^2 = a^2 + b^2$ with respect to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ Then the equation of the polar is $\frac{hx}{a^2} + \frac{ky}{b^2} = 1 \Rightarrow y = \left(-\frac{b^2h}{a^2k}\right)x + \frac{b^2}{k}$ This touches $x^2 + y^2 = a^2 + b^2$ $\therefore \frac{b^4}{k^2} = (a^2 + b^2) \left(1 + \frac{b^4 h^2}{a^4 k^2} \right) \Rightarrow \frac{1}{a^2 + b^2}$ $=\frac{h^2}{a^4}+\frac{k^2}{h^4}$ Hence, the locus of (h, k) is $\frac{x^2}{a^4} + \frac{y^2}{h^4} = \frac{1}{a^2 + h^2}$ 731 (b) Equation of chord of hyperbola $x^2 - y^2 = a^2$ with mid point as (h, k) is give by $xh - yk = h^2 - k^2$ $\Rightarrow y = \frac{h}{k} \times \frac{(h^2 - k^2)}{k}$ This will touch the parabola $y^2 = 4ax$, if $-\left(\frac{h^2-k^2}{k}\right) = \frac{a}{h/k}$ $\Rightarrow ak^2 = -h^3 + k^2h$: Locus of the mid point is $x^3 = y^2(x - a)$ 732 **(b)** Since, point (1 - 2) lies on curve $y^2 = 4ax$

$$4 = 4a \Rightarrow a = 1$$

Equation of any tangent to the parabola is

$$y = mx + \frac{1}{m}$$

It also passes through $(1, -2)$.
$$-2 = m + \frac{1}{m}$$
$$\Rightarrow m^{2} + 2m + 1 = 0$$
$$(m + 1)^{2} = 0 \Rightarrow m = -1$$
$$\therefore y = -x - 1 \Rightarrow x + y + 1 = 0$$

733 (a)

Given equation of circles are $x^2 + y^2 + 2x + 2ky + 6 = 0$ and $x^2 + y^2 + 2ky + k = 0$. They intersect each other orthogonally $\therefore 2 \cdot 1 \cdot 0 + 2 \cdot k \cdot k = 6 + k$ $\Rightarrow 2k^2 - k - 6 = 0$ $\Rightarrow (2k + 3)(k - 2) = 0$ $\Rightarrow k = 2, -\frac{3}{2}$

734 **(a)**

The given equation is $2x^2 - 3y^2 = 5$, it can be rewritten as $\frac{x^2}{\frac{5}{2}} - \frac{y^2}{\frac{5}{3}} = 1$ Now, $b^2 = a^2(e^2 - 1)$ $\Rightarrow \frac{5}{3} = \frac{5}{2}(e^2 - 1)$ $e^2 = \frac{2}{5}\left(\frac{5}{3} + \frac{5}{2}\right) = \frac{2}{5}\left(\frac{25}{6}\right)$ $\Rightarrow e = \sqrt{\frac{5}{3}}$ \therefore Foci of hyperbola = $(\pm ae, 0)$

$$= \left(\pm\sqrt{\frac{5}{2}}\cdot\sqrt{\frac{5}{3}},0\right) = \left(\pm\frac{5}{\sqrt{6}},0\right)$$

735 **(b)**

Centres and radii of the given circles are : Centres : $C_1(1,0)$ $C_2(1,0)$ Radii : $r_1 = 3$ $r_2 = 5$ Clearly, $C_1 C_2 = \sqrt{2} < r_2 - r_1$ Therefore, one circle lies entirely inside the other 736 (a) The given circles cuts orthogonally, if $2g_1g_2 + 2f_1f_2 = c_1 + c_2$ $\therefore 2 \times \frac{g}{2} \times 0 + 2 \times 4 \times 0 = 4 - 4$ This is true for any real value of g. 737 (d)

Here, $a^2 = 36, b^2 = 16$

Since, a > b, so the sum of the focal distance of any point *P* on the ellipse is PS + PS' = 2a

$$\Rightarrow PS + PS' = 2 \times 6 = 12$$

Let $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ be the ellipse with centre *C* and eccentricity e. Then, $CS = ae, CA = a \text{ and } CZ = \frac{a}{a}$ Clearly, $CA^2 = CS \times CZ$ So, CS, CA and CZ are in G.P. 740 (c) Equation of common chord is $S_1 - S_2 = 0$ $\Rightarrow 6y + 6 = 0$ $\Rightarrow v = -1$ On putting y = -1 in first circle, $\therefore \ x^2 + 1 + 2x - 3 + 2 = 0$ $\Rightarrow x^2 + 2x = 0 \Rightarrow x = 0, -2$ \therefore End points of diameter are (0, -1) and (-2, -1)Equation of circle is (x-0)(x+2) + (y+1)(y+1) = 0 $\Rightarrow x^2 + 2x + y^2 + 2y + 1 = 0$ 741 (a) The equation of a system of circle with its centre on the axis of $xisx^2 + y^2 + 2gx + c = 0$. Any point on the radical axis is $(0, y_1)$ Putting $x = 0, y = \pm \sqrt{-c}$. If c is negative we have two real points on radical axis, then the circles are said to be intersecting circles 742 (d)

Condition for line lx + my + n = 0 is normal to the ellipse is

$$\frac{a^2}{l^2} + \frac{b^2}{m^2} = \frac{(a^2 - b^2)^2}{n^2}$$

Here,
$$l = 2, m = -\frac{8}{3} \lambda, n = 3, a^2 = 1, b^2 = 4$$

$$\therefore \frac{1}{2^2} + \frac{4}{\left(-\frac{8}{3}\lambda\right)^2} = \frac{(1-4)^2}{(3)^2}$$

$$\Rightarrow \frac{1}{4} + \frac{36}{64\lambda^2} = 1$$

$$\Rightarrow \lambda^2 = \frac{9 \times 4}{16 \times 3}, \lambda = \pm \frac{\sqrt{3}}{2}$$

743 (a) We have, $x^2 \tan^2 \theta + y^2 \sec^2 \theta = 1$

$$\Rightarrow \frac{x^2}{\cot^2 \theta} + \frac{y^2}{\cos^2 \theta} = 1$$
Now, length of the latusrectum $= \frac{1}{2}$

$$\Rightarrow 2 \frac{\cos^2 \theta}{\cot \theta} = \frac{1}{2} \text{ and } \cot \theta > \cos \theta$$

$$\Rightarrow \sin 2 \theta = \frac{1}{2} \text{ and } \cot \theta > \cos \theta$$

$$\Rightarrow 2 \theta = \frac{\pi}{6}, \frac{5 \pi}{6} \text{ and } \cot \theta > \cos \theta$$

$$\Rightarrow \theta = \frac{\pi}{12}, \frac{5 \pi}{12} \text{ and } \cot \theta > \cos \theta \Rightarrow \theta = \frac{\pi}{12}, \frac{5 \pi}{12}$$
744 (c)
Slope of $2y = x \text{ is } \frac{1}{2}(m_1, \text{say})$
and slope of $3y + 4x = 0$ is $-\frac{4}{3}(m_2, \text{say})$

$$m_1m_2 = -\frac{b^2}{a^2}$$

$$\Rightarrow \left(\frac{1}{2}\right)\left(-\frac{4}{3}\right) = -\frac{b^2}{a^2}$$

$$\Rightarrow \frac{b^2}{a^2} = \frac{2}{3}$$
Eccentricity, $e = \sqrt{1 - \frac{b^2}{a^2}}$

$$= \sqrt{1 - \frac{2}{3}} = \frac{1}{\sqrt{3}}$$
745 (b)
Give equation is $\frac{1}{r} = \frac{1}{8} + \frac{3}{8}\cos \theta$, it can be rewriter as $\frac{8}{r} = 1 + 3\cos \theta$, which is the form of $\frac{1}{r} = 1 + e\cos \theta$
On comparing, we get $e = 3 > 1$
 \therefore Given equation represents a hyperbola.
746 (b)
It is given that
 $L.R. = \frac{1}{3}(\text{Major axis}) \Rightarrow \frac{2b^2}{a} = \frac{2a}{3}$
 $\Rightarrow 3b^2 = a^2 \Rightarrow 3a^2(1 - e^2) = a^2 \Rightarrow 3 - 3e^2 = 1$
 $\Rightarrow e = \sqrt{\frac{2}{3}}$
747 (b)
Let centre of circle be $C(-g, -f)$, then equation of circle passing through origin be

 $x^2 + y^2 + 2gx + 2fy = 0$

$$\int_{y} \int_{y} \int_{y} \int_{x=3}^{y} \int_{x=3}^{y} \int_{x=3}^{y} \int_{y} \int_{x=3}^{y} \int_{x$$

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = \left(t + \frac{1}{t}\right)^2 - \left(t - \frac{1}{t}\right)^2 = 4$$
$$\Rightarrow \frac{x^2}{4a^2} - \frac{y^2}{4b^2} = 1$$

752 (b)

Given curves are $9x^2 - 16y^2 = 144$

and $x^2 + y^2 = 9$

Let the equation of common tangent be

y = mx + cSince, y = mx + c is a tangent to $\frac{x^2}{16} - \frac{y^2}{9} = 1$ $\therefore c^2 = 16m^2 - 9(\because c^2 = a^2m^2 - b^2)$... (i)

Similarly, y = mx + c, is a tangent to $x^2 + y^2 = 9$

$$c = 3\sqrt{m^2 + 1} \Rightarrow c^2 = 9(1 + m^2) \dots (ii)$$

From Eqs. (i) and (ii), we get

 $16m^2 - 9 = 9 + 9m^2 \Rightarrow m^2 = \frac{18}{7} \Rightarrow m = 3\sqrt{\frac{2}{7}}$ From Eq. (ii), $c^2 = 9\left(1 + \frac{18}{7}\right) \Rightarrow c^2 = 9\left(\frac{25}{7}\right)$ $\Rightarrow c = \frac{\pm 5}{\sqrt{7}}$ Hence, $y = 3\sqrt{\frac{2}{7}}x + \frac{15}{\sqrt{7}}$

753 (b)

Let *a* be the radius of the circle. Since the centre is on y-axis and passes through the origin. Therefore, coordinates of the centre are (0, a) and so the equation of the circle is $(x-0)^{2} + (y-a)^{2} = a^{2} \Rightarrow x^{2} + y^{2} - 2ay = 0$ This passes through (2,3) $\therefore 4 + 9 - 6 a = 0 \Rightarrow a = 13/6$ Hence, the required circle is $3x^2 + 3y^2 - 13y =$ 0 754 (a)

We know that the angles between the asymptotes of the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ are given by $\theta = 2 \tan^{-1} \frac{b}{a}$ and $\pi - \theta = \pi - 2 \tan^{-1} \frac{b}{a}$ Here, a = 4 and b = 3So, required angles are $2 \tan^{-1} \frac{3}{4}$ and $\pi - 2 \tan^{-1} \frac{3}{4}$

755 (b)

The point $\left(-5 + \frac{\lambda}{\sqrt{2}}, -3 + \frac{\lambda}{\sqrt{2}}\right)$ will be an interior point of the larger segment of the circle $x^2 + y^2 =$ 16 cut off by the line x + y = 2, if (i) it is an interior point of the circle (ii) the centre of the circle and the point lies on the same side of x + y = 2 $\therefore \left(-5 + \frac{\lambda}{\sqrt{2}}\right)^2 + \left(-3 + \frac{\lambda}{\sqrt{2}}\right)^2 - 16 < 0$ and. $(0+0-2)\left(-5+\frac{\lambda}{\sqrt{2}}-3+\frac{\lambda}{\sqrt{2}}-2\right)>0$ $\Rightarrow 18 - 8\sqrt{2} \lambda + \lambda^2 < 0 \text{ and } \sqrt{2} \lambda - 10 < 0$ $\Rightarrow 4\sqrt{2} - \sqrt{14} < \lambda < 4\sqrt{2} + \sqrt{14}$ and $\lambda < 5\sqrt{2}$ $\Rightarrow 4\sqrt{2} - \sqrt{14} < \lambda < 5\sqrt{2}$ $\Rightarrow \lambda \in (4\sqrt{2} - \sqrt{14}, 5\sqrt{2}) \ 3(x^2 + y^2) - 25x = 0$ 756 (d) Equation of the common chord is $S_1 - S_2 = 0$ $\therefore (x^2 + y^2 + 6x - 2y + k)$ $-(x^{2} + y^{2} + 2x - 6y - 15) = 0$ $\Rightarrow 4x + 4y + k + 15 = 0$ Centre of second circle is $C_2(-1,3)$ Since, equation of the chord passes through the centre (-1, 3) of second circle \therefore 4(-1) + 4(3) + k + 15 = 0 \Rightarrow k = -23 757 (b) Let (h, k) be the point whose chord of contact w.r.t. hyperbola $x^2 - y^2 = 9$ is x = 9. We know that chord of (h, k) w.r.t. hyperbola $x^2 - y^2 = 9$ is T = 0. $\Rightarrow hx - ky - 9 = 0$ But it is the equation of line x = 9. This is possible only when h = 1, k = 0. Again equation of pair of tangents is $T^2 = SS_1$ $\Rightarrow (x-9)^2 = (x^2 - y^2 - 9)(1-9)$ $\Rightarrow x^2 - 18x + 81 = (x^2 - y^2 - 9)(-8)$ $\Rightarrow 9x^2 - 8y^2 - 18x + 9 = 0$ 758 (a) Let the given lines be $L_1 = a_1x + b_1y + c_1 = 0$ and $L_2 = a_2 x + b_2 y + c_2 = 0$. Suppose L_1 meets the coordinate axes at P and Q and L_2 meets at R and S. Then, coordinates of P, Q, R and S are respectively. $P(-c_1/a_1, 0), Q(0, -c_1/b_1), R(-c_2)$ $(a_2, 0)$ and $S(0, -c_2/b_2)$

Let the equation of the circle be $x^{2} + y^{2} + 2gx + 2fy + c = 0$ This passes through (-3,4) and (5,4) $\therefore -6 g + 8 f + c + 25 = 0$...(i) and, 10 g + 8 f + c + 41 = 0...(ii) Subtracting (ii) from (i), we get g = -1Since the centre (-g, -f) lies on 4y = x + 7 $\therefore -4f = -g + 7 \Rightarrow$ $[\because g = -1]$ So, centre of the circle is at (1,2)Now, AD = 2 GM \Rightarrow AD = 2 (Length of the \perp from G on AB whose eqn. is y = 4) $\Rightarrow AD = 2 \times 2 = 4$ Also, AB = 8Hence, area of rectangle $ABCD = 4 \times 8 = 32$ sq. units

760 (b)

The equation of the circle passing through the intersection of the circle $x^2 + y^2 - 2x = 0$ and the line *AB* (whose equation is y = x), is $x^{2} + y^{2} - 2x + \lambda(y - x) = 0$ $\Rightarrow x^2 + y^2 - x(2 + \lambda) + \lambda y = 0$...(i) Line y = x will be a diameter of this circle, if it passes through the centre $\left(\frac{2+\lambda}{2}, -\frac{\lambda}{2}\right)$ $\therefore -\frac{\lambda}{2} = \frac{2+\lambda}{2} \Rightarrow \lambda = -1.$ Putting $\lambda = -1$ in (i), we get $x^{2} + y^{2} - x - y = 0$ as the equation of the required circle

Let *e* be the eccentricity of the ellipse. It is given that $\Delta SLL'$ is equilateral

$$\therefore SL = SL' = LL'$$

$$\Rightarrow a + e \times ae = \frac{2b^2}{a} \qquad \begin{bmatrix} \because SL = \text{Focal distance of} \\ L(e, b^2/a) = a + e \times ae \end{bmatrix}$$

$$\Rightarrow a^{2}(1+e^{2}) = 2 a^{2}(1-e^{2}) \Rightarrow e = \frac{1}{3}$$

762 (c) We have, $r^2 - 2\sqrt{2}r(\cos\theta + \sin\theta) - 5 = 0$ $\Rightarrow x^{2} + y^{2} - 2\sqrt{2}(x + y) - 5 = 0$ $[\because x = r \cos \theta, y = r \sin \theta \text{ and } x^2 + y^2 = r^2]$ Clearly, radius of this circle is $R = \sqrt{2 + 2 + 5} = 3$ 763 (c) We have, $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \Rightarrow \frac{dy}{dx} = -\frac{b^2x}{a^2y}$ $x^2 - y^2 = c^2 \Rightarrow \frac{dy}{dx} = \frac{x}{v}$ The two curves will cut at right angles, if $\left(\frac{dy}{dx}\right)_{C_{1}} \times \left(\frac{dy}{dx}\right)_{C_{2}} = -1$ $\Rightarrow -\frac{b^2 x}{a^2 y} \times \frac{x}{y} = -1$ $\Rightarrow \frac{x^2}{a^2} = \frac{y^2}{b^2} \Rightarrow \frac{x^2}{a^2} = \frac{y^2}{b^2}$ $=\frac{1}{2}$ [Using: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$] Substituting these values in $x^2 - y^2 = c^2$, we get $\frac{a^2}{2} - \frac{b^2}{2} = c^2 \Rightarrow a^2 - b^2 = 2 c^2$ 764 (c) Chord of contact are $\frac{xx_1}{a^2} + \frac{yy_1}{b^2} = 1$ and $\frac{xx_2}{a^2} + \frac{yy_2}{b^2} = 1$ Product of slopes = -3 $\Rightarrow \left(-\frac{x_1}{a^2} \cdot \frac{b^2}{v_1}\right) \left(-\frac{x_2}{a^2} \cdot \frac{b^2}{v_2}\right) = -1$ $\Rightarrow \frac{x_1 x_2}{y_1 y_2} = -\frac{a^4}{b^4}$ 765 (b) Let the equation of the hyperbola be $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$...(i) The coordinates of its centre *C*, vertex *A* and the corresponding focus S are (0,0)(a,0) and (ae,0)respectively. It is given that A is mid-way between C and S $\therefore a = \frac{ae+0}{2} \Rightarrow e = 2$ $\therefore b^2 = a^2(4-1) = 3a^2$

Hence, the equation of the hyperbola is
$$x^2 + y^2 = 0$$

$$\frac{x}{a^2} - \frac{y}{3a^2} = 1 \text{ or, } 3x^2 - y^2 = 3a^2$$
767 (d)

The equation of a tangent of slope (-4/3) to the ellipse $\frac{x^2}{18} + \frac{y^2}{22} = 1$ is $y = -\frac{4}{3}x + \sqrt{18 \times \frac{16}{9} + 32}$ [Using : y $= mx + \sqrt{a^2m^2 + b^2}$ $\Rightarrow 4x + 3y = 24$ This cuts the co-ordinate axes at A(6,0) and B(0,8) respectively : Area of $\triangle OAB = \frac{1}{2} \times OA \times OB$ \Rightarrow Area of $\triangle OAB = \frac{1}{2} \times 6 \times 8$ sq. units = 24 sq. units 768 (c) The point of intersection between the curves $x^2 =$ 4(y + 1) and $x^2 = -4(y + 1)$ is (0, 1) The slopes of curve first and curve second at the point (0, -1) are respectively $m_1 = \frac{2x}{4} = 0$ and $m_2 = \frac{-2x}{4} = 0$ $\therefore \tan \theta = \frac{m_1 - m_2}{1 + m_1 m_2} = 0 \Rightarrow \theta = 0^\circ$ 769 (a) $\sqrt{x^2 + (y-1)^2} = k\sqrt{x^2 + (y+1)^2}$ $x^{2} + y^{2} - 2y + 1 = k^{2} + (x^{2} + y^{2} + 2y + 1)$ $+2k\sqrt{x^2+(y+1)^2}$ $\Rightarrow -4v - k^2 = 2k\sqrt{x^2 + (v+1)^2}$ $\Rightarrow 16y^2 + k^4 + 8yk^2 = 4k^2(x^2 + y^2 + 2k + 1)$ [squaring] $\Rightarrow 4x^2k^2 + (4k^2 - 16)v^2 = k^4 - 4k^2$ To represent an equation of hyperbola, the coefficient of either x^2 or y^2 is negative But coefficient of x^2 cannot be negative, so we take the coefficient of v^2 $4k^2 - 16 < 0$ $\Rightarrow k^2 < 4$

 $\Rightarrow -2 < k < 2$

As the given equation k cannot be negative

0 < k < 2

770 (a)

Let $S = x^2 + y^2 - 20$ At point (6, 2); $S_1 = 6^2 + 2^2 - 20 = 20$ $\therefore \theta = 2 \tan^{-1} \frac{r}{\sqrt{S_1}} = 2 \tan^{-1} \frac{\sqrt{20}}{\sqrt{20}} = \frac{\pi}{2}$

771 **(c)**

Given equation of hyperbola can be rewritten as

$$\frac{x^2}{\left(\frac{12}{5}\right)^2} - \frac{y^2}{\left(\frac{9}{5}\right)^2} = 1$$

$$\therefore \text{ Eccentricity given by } e'^2 = 1 + \frac{b'^2}{a'^2}$$

$$\Rightarrow e'^{2} = 1 + \frac{9}{16} = \frac{25}{16} \Rightarrow e' = \frac{5}{4}$$

The foci of a hyperbola are

$$(\pm a'e', 0) = \left(\pm \frac{12}{5} \times \frac{5}{4}, 0\right) = (\pm 3, 0)$$

Given equation of ellipse is $\frac{x^2}{16} + \frac{y^2}{b^2} = 1$

Foci of an ellipse are $(\pm ae, o) = (\pm 4e, o)$. But given focus of ellipse and

hyperbola coincide, then

$$4e = 3 \Rightarrow e = \frac{3}{4}$$

Also,
$$b^2 = a^2(1 - e^2)$$

$$= 16\left(1 - \frac{9}{16}\right) = 16 - 9 = 7$$

72 (c)
Given,
$$\frac{x^2}{36} - \frac{y^2}{k^2} = 1 \implies k^2 = \frac{36y^2}{x^2 - 36}$$

 $k^2 > 0 \text{ if } x^2 - 36 > 0$
 $\implies x^2 > 36$

This is true only for point (10, 4). So, (10,4) lies on the hyperbola

773 **(b)**

7

Since the locus of the point of intersection of perpendicular tangents to a parabola is its directrix. Therefore, the required locus is y = -a

774 **(c)**

The equation of any normal to $y^2 = 4 ax$ is $y = mx - 2 am - am^3$ (i) The combined equation of the lines joining the

origin (vertex) to the points of intersection of (i) and $y^2 = 4 ax = 0$ $y^2 = 4 ax \left(\frac{y - mx}{-2 am - am^3}\right)$ $\Rightarrow y^2(2 am + am^3) + 4 axy - 4 amx^2 = 0$ This represents a pair of perpendicular lines : Coeff. of x^2 + Coeff. of $y^2 = 0$ $\Rightarrow 2 am + am^3 - 4 am = 0$ $\Rightarrow m^2 = 2 \Rightarrow m = \sqrt{2}$ 775 (c) The equation of the common chord of the circles $(x-a)^2 + y^2 = a^2$ and $x^2 + (y+b)^2 = b^2$ is $I \equiv S_1 - S_2 = 0$ $\Rightarrow x^{2} + a^{2} - 2ax + y^{2} - a^{2} - x^{2} - y^{2} - b^{2} - 2by$ $+b^{2}=0$ $\Rightarrow ax + by = 0$...(i) Now, the equation of required circle is $S_1 + \lambda L = 0$ $\therefore \{(x-a)^2 + y^2 - a^2\} + \lambda \{ax + by\} = 0$ $\Rightarrow x^2 + y^2 + x(a\lambda - 2a) + \lambda by = 0 \quad \dots (ii)$ Since, Eq. (i) is a diameter of Eq. (ii), then $a\left(-\frac{a\lambda-2a}{2}\right)+b\left(-\frac{\lambda b}{2}\right)=0$ $\Rightarrow \lambda = \frac{2a^2}{a^2 + b^2}$ On putting the value of λ in Eq. (ii), we get $(a^{2} + b^{2})(x^{2} + y^{2}) = 2ab(bx - ay)$ Which is the required equation of circle 776 (a) We know that, $\frac{a}{2\sin A} = R(\operatorname{circum} - \operatorname{radius} \operatorname{of} \Delta ABC)$ $\therefore a \le \sin A \Rightarrow 2R \sin A \le \sin A \Rightarrow R \le \frac{1}{2}$ The equation of the circum-circle is $x^2 + y^2 = R^2$. Therefore, for any point (x, y) inside the circumcircle. we have $x^{2} + y^{2} < R^{2} < \frac{1}{4}$ $\left[:: R \leq \frac{1}{2}\right]$ Now. $\frac{1}{4} > x^2 + y^2 \ge 2\sqrt{x^2 y^2}$ [Using : A. M. $\geq G.M.$] $\Rightarrow |xy| < \frac{1}{8}$ 777 (b) Let mid point of the chord *AB* is $C(x_1, y_1)$ In $\triangle COB$, $\sin\frac{\pi}{4} = \frac{BC}{OB}$

if (0, 0) if (0, 0) if (0, 0) if (2, 0) if (

$$X = 1 \implies x + \frac{3}{4} = 1$$
$$\implies x - \frac{1}{4} = 0$$

779 **(d)**

Any point on the parabola $y^2 = 4 ax$ is $(at^2, 2at)$

$$\therefore at^{2} = \frac{9}{2}$$

and $2at = 6 \Rightarrow t = \frac{3}{a}$...(i)

$$\therefore \ a\left(\frac{3}{a}\right)^2 = \frac{9}{2} \Rightarrow \ a = 2$$

On putting the value of *a* in Eq. (i), we get

$$t = \frac{3}{2}$$

: Parameter of the point P is $\frac{3}{2}$

780 **(a)**

Since the distance between the focus and directrix of a parabola is half of the length of the latusrectum.

:. *L*. *R*. = 2(Length of the

$$\perp$$
 from (3,3) on 3 *x* - 4 *y* - 2 = 0)
 $\Rightarrow L. R. = 2 \left| \frac{9 - 12 - 2}{\sqrt{9 + 16}} \right| = 2$

781 (c)

We know that the general equation of second degree represents a rectangular hyperbola, if $\Delta \neq 0, h^2 > ab$ and Coeff. of x^2 + Coeff. of $y^2 = 0$ Therefore, the given equation represents a rectangular hyperbola, if $\lambda + 5 = 0$ i.e. $\lambda = -5$

782 (c)

The coordinates of *R* are $(at_1 t_2, a(t_1 + t_2))$ As it lies on *x*-axis. $\therefore a(t_1 + t_2) = 0 \Rightarrow t_2 = -t_1$ Now, Area of $\triangle PQR$

$$= \text{Absolute value of} \frac{1}{2} \begin{vmatrix} at_1t_2 & 0 & 1 \\ at_1^2 & 2at_1 & 1 \\ at_2^2 & 2at_2 & 1 \end{vmatrix}$$
$$= \frac{1}{2} |2a^2t_1t_2(t_1 - t_2) + 2a^2t_1t_2(t_1 - t_2)|$$
$$= 2a^2|t_1t_2(t_1 - t_2)|$$
$$= 2a^2|t_1t_2(-t_2 - t_2)| \quad [\because t_2 = -t_1]$$
$$= 4a^2t_1t_2^2$$

In a circle *AB* is as a diameter where the coordinates of A are (p,q) and let the coordinates of B are (x_1, y_1) Equation of circle in diameter form is $(x-p)(x-x_1) + (y-q)(y-y_1) = 0$ $\Rightarrow x^{2} - (p + x_{1})x + y^{2} - (y_{1} - q)y + px_{1} + qy_{1}$ = 0Since, the circle touches *x*-axis $\therefore y = 0$ $\Rightarrow x^2 - (p + x_1)x + px_1 + qy_1 = 0$ Also, the discriminant of above equation will be equal to zero because circle touches x-axis $\therefore (p + x_1)^2 = 4(px_1 + qy_1)$ $\Rightarrow (x_1 - p)^2 = 4qy_1$ Therefore, the locus of point *B* is $(x - p)^2 = 4qy$ 784 (b) The given equation can be written as $(x-2)^2 = 3(y-2)$ The directrix of this parabola is given by $y - 2 = -3/4 \Rightarrow y = 5/4$ 785 (c) We know that angle between two asymptotes of

the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ is $2 \tan^{-1} \left(\frac{b}{a}\right)$. Equation of given hyperbola is $\frac{x^2}{16} - \frac{y^2}{9} = 1$. Here, a = 4 and b = 3 \therefore Required angle $= 2 \tan^{-1} \left(\frac{3}{4}\right)$ 786 **(b)**

It is given that ae = 4 and $e = \frac{4}{5}$ $\therefore a = 5$ Now, $b^2 = a^2(1 - e^2) \Rightarrow b^2 = 25\left(1 - \frac{16}{25}\right) = 9$ Hence, the equation of the ellipse is $\frac{x^2}{25} + \frac{y^2}{9} = 1$ 787 (d) Let the family of circles passing through origin be $x^2 + y^2 + 2gx + 2fy = 0$ They intersect circle $x^2 + y^2 + 4x - 6y - 13 = 0$ Orthogonally So, 2g(2) - 2f(3) = -13Hence, locus of (-g, -f) is -4x + 6y + 13 = 0 $\Rightarrow 4x - 6y - 13 = 0$ 788 (d) We know that the angle of intersection of two circles of radii r_1 and r_2 is given by $\cos \theta = \frac{r_1^2 + r_2^2 - d^2}{2r_1 r_2}$, where *d* is the distance between their centres. Here, $r_1 = 2, r_2 = \sqrt{2}$ and $d = \sqrt{2}$ $\therefore \cos \theta = \frac{4+2-2}{2\times 2\times \sqrt{2}} = \frac{1}{\sqrt{2}} \Rightarrow \theta = \frac{\pi}{4}$ 789 (d) Equation of the tangents at $P(a \sec \theta, b \tan \theta)$ is $\frac{x}{a}\sec\theta - \frac{y}{b}\tan\theta = 1$ ∴ Equation of the normal at *P* is $ax + b \operatorname{cosec} \theta y = (a^2 + b^2) \operatorname{sec} \theta$...(i) Similarly, the equation of normal at $Q(a \sec \phi, b \tan \phi)$ is $ax + b \operatorname{cosec} \phi y = (a^2 + b^2) \operatorname{sec} \phi$...(ii) On subtracting Eq. (ii) from Eq. (i), we get $y = \frac{a^2 + b^2}{b} \cdot \frac{\sec \theta - \sec \phi}{\csc \theta - \csc \phi}$ So that $k = y = \frac{a^2 + b^2}{b} \cdot \frac{\sec \theta - \sec(\frac{\pi}{2} - \theta)}{\csc \theta - \csc(\frac{\pi}{2} - \theta)}$ $=\frac{a^2+b^2}{b}\cdot\frac{\sec\theta-\csc\theta}{\csc\theta-\sec\theta}$ $= -\left[\frac{a^2+b^2}{b}\right]$ 790 (a) Centre of circle must on negative *x*-axis for that λ must be positive as centre of circle is $(-\lambda, 0)$

 \therefore Option (a) is correct 796 (d) 791 (a) Let $S_1 \equiv x^2 + y^2 - 2x - 2y - 7 = 0$ and $S_2 \equiv x^2 + y^2 + 4x + 2y + k = 0$ here, $g_1 = -1$, $f_1 = -1$, $c_1 = -7$, $r_1 = 3$ *Q* lie incide *C* $g_2 = 2$, $f_2 = 1$, $c_2 = k$ Equation of common chord is $S_1 - S_2 = 0$ $\Rightarrow 6x + 4y + 7 + k = 0$...(i) $\therefore 2(g_1g_2 + f_1f_2) = c_1 + c_2$ 798 (a) $\therefore \quad 2(-2-1) = -7 + k \implies k = 1$: From Eq. (i), 6x + 4y + 8 = 0Let $C_1 M$ = Perpendicular distance from centre $C_1(1, 1)$ to the common chord 6x + 4y +8 = 0. $\therefore C_1 M = \frac{|6+4+8|}{\sqrt{6^2+4^2}} = \frac{9}{\sqrt{13}}$ Now, $PQ = 2PM = 2\sqrt{(C_1P)^2 - (C_1M)^2}$ 799 (c) $=2\sqrt{9-\left(\frac{9}{\sqrt{13}}\right)^2}=\frac{12}{\sqrt{13}}$ 792 (b) the ellipse = pGiven limiting points are (1, 2), (-2, 1)The mid point is $\left(-\frac{1}{2}, \frac{3}{2}\right)$ $= \left| \frac{e \cos \theta - 1}{\sqrt{\frac{\cos^2 \theta}{\sigma^2} + \frac{\sin^2 \theta}{b^2}}} \right|$ Now, slope = $\frac{1-2}{-2-1} = \frac{1}{3}$ \therefore required equation, $y - \frac{3}{2} = -3\left(x + \frac{1}{2}\right)$ $\Rightarrow 3x + y = 0$ 793 (c) Clearly, P(1, 1/2) is the internal centre of similitude. Thus, if PT_1 and PT_2 are the lengths of tangents drawn from P to the given circles, then Length of the common tangent = $PT_1 + PT_2 = \frac{3}{2} + \frac{3}{2}$ $\frac{1}{2} = 2$ 794 (c) Let $S \equiv \frac{x^2}{16} + \frac{y^2}{25} - 1 = 0$ At point (7, 6), $S_1 > 0$. So two tangents can be drawn from this point 795 (c) Let $S_1 \equiv x^2 + y^2 - 6x - 12y + 37 = 0$ and $S_2 \equiv x^2 + y^2 - 6y + 7 = 0$ 800 (b) the equation of common tangent of the two circles is $S_1 - S_2 = 0$ $\Rightarrow x^2 + y^2 - 6x - 12y + 37$ $-(x^2 + y^2 - 6y + 7) = 0$ $\Rightarrow x - y - 5 = 0$

The position of the points (1, 2) and (2, 1) with respect to the circle $x^2 + y^2 = 9$ is given by $1^2 + 1^2$ $2^2 = 5 < 9$ and $2^2 + 1^2 = 5 < 9$. Thus, both *P* and The position of the points (1, 2) and (2, 1) with respect to the ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$ is given by $::\frac{1^2}{9} + \frac{2^2}{4} = \frac{1}{9} + 1 > 1$ And $\frac{2^2}{9} + \frac{1}{4} = \frac{16+9}{36} = \frac{25}{36} < 1$, P lies outside E and Q lies inside E. Thus, P lies inside C but outside E Let $P(x_1, y_1)$ be the point, then the chord of contact of tangents drawn from p to the circle $x^{2} + y^{2} = a^{2}$ is $xx_{1} + yy_{1} = a^{2}$ $\therefore x^2 + y^2 = a^2 \left(\frac{xx_1 + yy_1}{a^2} \right)$ $\Rightarrow x^2 + y^2 - xx_1 - yy_1 = 0$ Which is the equation of required locus The equation of the tangent at $P(a \cos \theta, b \sin \theta)$ to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is $\frac{x}{a} \cos \theta + \frac{y}{b} \sin \theta = 1$ Length of perpendicular from the focus (ae, 0) on $= \left| \frac{ab(e\cos\theta - 1)}{\sqrt{b^2\cos^2\theta + a^2(1 - \cos^2\theta)}} \right|$ $= \left| \frac{ab(e\cos\theta - 1)}{\sqrt{a^2 - a^2 e^2 \cos^2\theta}} \right|$

$$\Rightarrow b \sqrt{\frac{1-e\cos\theta}{1+e\cos\theta}} = p$$

$$\Rightarrow \frac{b^2}{p^2} = \frac{1+e\cos\theta}{1-e\cos\theta}$$

Now, $r^2 = (ae - a\cos\theta)^2 + b^2\sin^2\theta$

$$= a^2[(e-\cos\theta)^2 + (1-e)^2\sin^2\theta]$$

$$= a^2[e^2\cos^2\theta - 2e\cos\theta + 1] = a^2(1-e\cos\theta)^2$$

$$\Rightarrow r = a(1-e\cos\theta)$$

$$\therefore \frac{2a}{r} - \frac{b^2}{p^2} = \frac{2}{1-e\cos\theta} - \frac{1+e\cos\theta}{1-e\cos\theta} = 1$$

Now, $b^2 = a^2(1-e^2) = 2^2\left(1-\frac{1}{4}\right) = 4\left(\frac{3}{4}\right) = 3$ \therefore The equation of ellipse is $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \Rightarrow \frac{x^2}{4} + \frac{y^2}{3} = 1$ 801 (d) The equation of a tangent to $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ at $P(a \sec \theta, b \tan \theta)$ is $\frac{x}{a} \sec \theta - \frac{y}{b} \tan \theta = 1$ It cuts the directrix x = $\frac{a}{e} at Q\left(\frac{a}{e}, b\left(\frac{\csc \theta - e \cot \theta}{e}\right)\right)$ $\therefore m_1 = \text{Slope of } SP = \frac{b \tan \theta - 0}{a \sec \theta - ae}$ $= \frac{b \sin \theta}{a(1 - e \cos \theta)}$ and, m_2 = Slope of $SQ = \frac{b(\csc \theta - e \cot \theta)}{e(a/e - ae)}$ Clearly, $m_1 m_2 = -1$ Hence, *PQ* subtends a right angle at the focus *S*. 802 (a) The equation of any tangent to $y^2 = 4 ax$ is y = $mx + \frac{a}{m}$ If it touches $x^2 = 4 ay$, then the equation $x^2 = 4 a \left(mx + \frac{a}{m} \right)$ must have equal roots $\Rightarrow mx^2 - 4 am^2x - 4 a^2 = 0$ must have equal roots $\Rightarrow 16 a^2 m^4 = -16 a^2 m \Rightarrow m = -1 \quad [:: m \neq 0]$ Putting m = -1 in $y = mx + \frac{a}{m}$, we get y = -x - a or, x + y + a = 0 as the common tangent 803 (c) The given equation can be written as $(x+2)^2 = -2(y-2)$ The equation of the tangent at the vertex is [:: y = 0 is tangent to $x^2 =$ y - 2 = 0-4ay] 804 (b) Equation of ellipse $\frac{x^2}{14} + \frac{y^2}{5} = 1$ Any point on the ellipse is $(\sqrt{14}\cos\theta, \sqrt{5}\sin\theta)$ \therefore Equation of normal at $(\sqrt{14}\cos\theta, \sqrt{5}\sin\theta)$ is $\sqrt{14}x \sec \theta - \sqrt{5}y \csc \theta = 9$ It passes through $(a \cos 2\theta, b \sin 2\theta)$ $\Rightarrow \sqrt{14}\sqrt{14} \cos 2\theta \sec \theta - \sqrt{5}\sqrt{5} \sin 2\theta \csc \theta = 9$ $\Rightarrow 14 \frac{\cos 2\theta}{\cos \theta} - 5 \frac{\sin 2\theta}{\sin \theta} = 9$ $\Rightarrow 14(2\cos^2\theta - 1) - 10\cos^2\theta = 9\cos\theta$ $\Rightarrow 18\cos^2\theta - 9\cos\theta - 14 = 0$ $\Rightarrow 18\cos^2\theta - 21\cos\theta + 12\cos\theta - 14 = 0$ $\Rightarrow (3\cos\theta + 2)(6\cos\theta - 7) = 0$

$$\Rightarrow \cos \theta = -\frac{2}{3}, \cos \theta \neq -\frac{7}{6}$$

805 (b) We have, $y^2 + 6x - 2y + 13 = 0$ $\Rightarrow y^2 - 2y = -6x - 13 \Rightarrow (y - 1)^2 = -6(x + 2)$ Clearly, the vertex of this parabola is at (-2,1)806 **(b)** Given, e = 2, 2ae = 8 $ae = 4 \Rightarrow a = 2$ $b^2 = a^2(e^2 - 1) \Rightarrow b^2 = 4(4 - 1)$ $\Rightarrow h^2 = 12$: Equation of hyperbola is $\frac{x^2}{4} - \frac{y^2}{12} = 1$ 807 (b) Since, $\frac{S_1}{S_2} = \frac{x_1^2 + y_1^2 + 2x_1 - 4y_1 - 20}{x_1^2 + y_1^2 - 4x_1 + 2y_1 - 44} = \frac{2}{3}$ $\Rightarrow x_1^2 + y_1^2 + 14x_1 - 16y_1 + 28 = 0$ \therefore Locus of point *P* is $x^2 + y^2 + 14x - 16y + 28 = 0$ Centre of the circle is (-7, 8)

808 (c)

The coordinates of the centres and radii of the circles are:

Centre $C_1(3,4)$ $C_2(1/2,4)$ Radius $r_1 = 6$ $r_2 = \frac{1}{2}\sqrt{65}$ We observe that $r_1 - r_2 < C_1C_2 < r_1 + r_2$ So, the circles intersect at two points 809 **(a)**

The given equation may be written as $\frac{x^2}{\frac{32}{3}} - \frac{y^2}{8} = 1$ $\Rightarrow \frac{x^2}{\left(\frac{4\sqrt{2}}{\sqrt{2}}\right)^2} - \frac{y^2}{\left(2\sqrt{2}\right)^2} = 1$

On comparing the given equation with the standard equation $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$, we get $a^2 = \left(\frac{4\sqrt{2}}{\sqrt{3}}\right)^2$ and $b^2 = (2\sqrt{2})^2$ \therefore Length of transverse axis of a hyperbola $= 2a = 2 \times \frac{4\sqrt{2}}{\sqrt{3}} = \frac{8\sqrt{2}}{\sqrt{3}}$ 810 (a) Given, $(3x - 1)^2 = -4(9y + 2)$

Hence, the vertex is $\left(\frac{1}{3}, \frac{-2}{9}\right)$

811 **(b)**

Let LSL'' be a latusrectum through the focus S(ae, 0) of the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$. It subtends 60° angle at the other focus S''(-ae, 0)We have, $\angle LS''L'' = 60^{\circ}$ $\therefore \angle LS''S = 30^{\circ}$ $L\left(ae, \frac{b^2}{a}\right)$ S(ae, 0)<u>5</u>30° C(0, 0)S' (-ae, 0) A(a, 0)A'(-a, 0)In $\Delta LS''L$, we have $\tan 30^\circ = \frac{LS}{S''S}$ $\Rightarrow \frac{1}{\sqrt{3}} = \frac{b^2/a}{2ae}$ $\Rightarrow \frac{1}{\sqrt{3}} = \frac{b^2}{2a^2e}$ $\Rightarrow \frac{1}{\sqrt{3}} = \frac{e^2 - 1}{2e}$ $\Rightarrow \sqrt{3}e^2 - 2e - \sqrt{3} = 0 \Rightarrow (e - \sqrt{3})(\sqrt{2}e + 1)$ $= 0 \Rightarrow e = \sqrt{3}$ 812 (a) Using the result $a_1a_2 = b_1b_2$, we get $\lambda . 1 = -1. -2$ $\Rightarrow \lambda = 2$ 813 (b) Given equation of circle is $x^2 + y^2 = r^2$. Let any point on the circle is $P(r \cos \theta, r \sin \theta)$ and let the coordinates of centriod of the triangle be (α, β)

$$B(0, r)$$

$$P(r \cos \theta, r \sin \theta)$$

$$A(r, 0)$$

$$A(r, 0)$$

$$X$$
Then, $\alpha = \frac{r+r \cos \theta}{3}$

$$\Rightarrow \frac{r}{3} \cos \theta = \alpha - \frac{r}{3}$$

and $\beta = \frac{r+r\sin\theta}{3}$ $\Rightarrow \frac{r}{3}\sin\theta = \beta - \frac{r}{3}$ Now, $\left(\alpha - \frac{r}{3}\right)^2 + \left(\beta - \frac{r}{3}\right)^2 = \frac{r^2}{9}$ \therefore The locus is $\left(x - \frac{r}{3}\right)^2 + \left(y - \frac{r}{3}\right)^2 = \left(\frac{r}{3}\right)^2$ which is a circle 814 (d) Let the general equation of circle be $x^2 + y^2 + 2gx + 2fy + c = 0$...(i) It cuts the circle $x^2 + y^2 - 20x + 4 = 0$ orthogonally, then By the condition, $2(g_1g_2 + f_1f_2) = c_1 + c_2$ $2(-10g + 0 \times f) = c + 4 \Rightarrow -20g = c + 4$...(ii) \therefore Circle (i) touches the line x = 2 or x + 0y - 2 = 2

0

 \therefore Perpendicular distance from centre to the tangent=radius

$$\Rightarrow \left| \frac{-g + 0 - 2}{\sqrt{1^2 + 0^2}} \right| = \sqrt{g^2 + f^2 - c}$$

$$\Rightarrow (g + 2)^2 = g^2 + f^2 - c$$

$$\Rightarrow g^2 + 4 + 4g = g^2 + f^2 - c$$

$$\Rightarrow 4g + 4 = f^2 - c \dots (iii)$$

On eliminating *c* from Eqs. (ii) and (iii), we get $-16g + 4 = f^2 + 4 \Rightarrow f^2 + 16g = 0$ Hence, the locus of (-g, -f) is $y^2 - 16x = 0$ (replacing – *f* and – g by *x* and *y*)

815 **(b)**

Let $P(x_1, y_2)$ be a point on the circle $x^2 + y^2 + 2gx + 2fy + c = 0$. Then, the length of the tangents drawn from $P(x_1, y_1)$ to the circle $x^2 + y^2 + 2gx + 2fy + c\sin^2 \alpha + (g^2 + f^2)\cos^2 \alpha = 0$ is given by PQ = PR $\Rightarrow PQ$ $= \sqrt{x_1^2 + y_1^2 + 2gx_1 + 2fy_1 + c\sin^2 \alpha + (g^2 + f^2)}$ $\Rightarrow PQ = \sqrt{-c + c\sin^2 \alpha + (g^2 + f^2)\cos^2 \alpha}$ $\Rightarrow PQ = \sqrt{g^2 + f^2 - c}\cos \alpha$ The radius of the circle $x^2 + y^2 + 2gx + 2fy + c\sin^2 \alpha + (g^2 + f^2)\cos^2 \alpha = 0$, is $\sqrt{(c_1, y_1)}$

$$CQ = CR$$

$$\Rightarrow CQ = \sqrt{g^2 + f^2 - c \sin^2 \alpha - (g^2 + f^2) \cos^2 \alpha}$$

$$\Rightarrow CQ = \left\{ \sqrt{g^2 + f^2 - c} \right\} \sin \alpha$$

In ΔCPQ , we have

$$\tan \theta = \frac{CQ}{PQ} = \frac{\left\{ \sqrt{g^2 + f^2 - c} \right\} \sin \alpha}{\left\{ \sqrt{g^2 + f^2 - c} \right\} \cos \alpha}$$

$$= \tan \alpha \Rightarrow \theta = \alpha$$

Hence, $\angle QPR = 2 \alpha$

816 (a)

The mid point of the chord is $\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$. The equation of the chord in terms of its mid point is

$$x\left(\frac{y_1+y_2}{2}\right) + y\left(\frac{x_1+x_2}{2}\right) = 2\left(\frac{x_1+x_2}{2}\right)\left(\frac{y_1+y_2}{2}\right)$$

[: $T = S_1$]
 $\Rightarrow \frac{x}{x_1+x_2} + \frac{y}{y_{1+y_2}} = 1$

817 **(b)**

Given, $y = a \tan \alpha + a$ Condition for tangency is $a^2 = a^2(1 + \tan^2 \alpha)$ [:: $c^2 = a^2(1 + m^2)$] $\Rightarrow \sec^2 \alpha = 1$ $\Rightarrow \cos^2 \alpha = 1$

818 **(c)**

Let $P(x_1, y_1)$ be a point on $x^2 + y^2 = 4$. Then, the equation of the tangent at *P* is $x x_1 + y y_1 = 4$ This meets the coordinate axes at $A(4/x_1, 0)$ and $B(0, 4/y_1)$ Obviously (a) and (b) are not true Let (h, k) be the mid-point of *AB*. Then,

$$h = \frac{1}{x_1}, k = \frac{1}{y_1} \Rightarrow x_1 = \frac{1}{5}, y_1 = \frac{1}{k}$$

since, (x_1, y_1) lies on $x^2 + y^2 = 4$
 $\therefore \frac{4}{h^2} + \frac{4}{k^2} = 4 \Rightarrow \frac{1}{h^2} + \frac{1}{k^2} = 1$
Hence, the locus of (h, k) is $\frac{1}{x^2} + \frac{1}{y^2} = 1$, i.e. $x^2 + y^2 = x^2y^2$

819 (a)

Since the circle touches both the axes and the straight line 4x + 3y = 6 in first quadrant. Therefore, coordinates of its centre are (a, a) and radius = a, where a > 0Since 4x + 3y - 6 = 0 touches the circle 7a - 6

$$\therefore \frac{1}{\sqrt{16+9}} = \pm a \Rightarrow 7 \ a - 6 = \pm 5 \ a \Rightarrow a = 3, \frac{1}{2}$$

Since (0,0) and (1/2, 1/2) lie on the same side of

the line 4x + 3y = 6 whereas (0,0) and (3,3) lie

on the opposite side of the origin. Therefore, for the required circle, we have a = 1/2. Hence, equation of the required circle is

$$\left(x - \frac{1}{2}\right)^{2} + \left(y - \frac{1}{2}\right)^{2}$$
$$= \left(\frac{1}{2}\right)^{2} \text{ or, } 4x^{2} + 4y^{2} - 4x - 4y$$
$$+ 1 = 0$$

820 **(d)**

Since circle touches the *x*-axis and *y*-axis at points (1, 0) respectively.So, centre of circle is (1, 1) and radius is 1

$$x' \underbrace{(0, 1)}_{(1, 1)}^{(0, 1)} x'$$

Hence, equation of circle is $(x-1)^2 + (y-1)^2 = 1^2$ $\Rightarrow x^2 + y^2 - 2x - 2y + 1 = 0$ 821 **(b)** Shortest distance between two curves occured along the common normal Normal to $y^2 = 4x$ at $(m^2, 2m)$ is

$$y + mx - 2m - m^{3} = 0$$

Normal to $y^{2} = 2(x - 3)$ at $\left(\frac{m^{2}}{2} + 3, m\right)$ is
$$y + m(x - 3) - m - \frac{m^{3}}{2} = 0$$

Both normals are same, if $-2m - m^{3} = -4m - \frac{1}{2}m^{3}$
 $\Rightarrow m = 0, \pm 2$
So, points will be (4, 4) and (5, 2) or (4, -4) and (5, -2)
Hence shortest distance will be

Hence, shortest distance will b $\sqrt{1+4} = \sqrt{5}$

$$\sqrt{1+4} = \sqrt{822}$$
 (b)

Given equation can be rewritten as

$$\frac{x^2}{5} + \frac{(y-3)^2}{9} = 1$$

$$\therefore e = \sqrt{1 - \frac{a^2}{b^2}} = \sqrt{1 - \frac{5}{9}}$$

$$\Rightarrow e = \frac{2}{3}$$

823 **(c)**

Given equation of circle can be rewritten as $x^2 + y^2 - \frac{3}{2}x + 3y + 1 = 0$ Whose centre is $\left(\frac{3}{4}, -\frac{3}{2}\right)$ and radius, $r = \sqrt{\frac{9}{16} + \frac{9}{4} - 1} = \sqrt{\frac{29}{16}}$ Area of circle = $\pi r^2 = \frac{29\pi}{16}$ \Rightarrow Area of required circle = $2 \times \frac{29\pi}{16} = \frac{29\pi}{8}$ Let *R* be the radius of required circle $\therefore R^2 = \frac{29}{9}$ Now, equation of circle is $\left(x - \frac{3}{4}\right)^2 + \left(y + \frac{3}{2}\right)^2 =$ 29 $\Rightarrow 16x^2 + 16y^2 - 24x + 48y - 13 = 0$ 824 (a) Equation of normal to the hyperbola at the point $(5 \sec \theta, 4 \tan \theta)$ is $5x \cos \theta + 4y \cot \theta = 25 + 16$...(i) This line is perpendicular to the lie 2x + y = 1. $\therefore m_1 m_2 = -1$ $\Rightarrow \left(\frac{-5\cos\theta}{4\cot\theta}\right)(-2) = -1$ $\Rightarrow \sin \theta = -\frac{2}{5}$ $\therefore \cos \theta = \sqrt{1 - \frac{4}{25}} = \mp \frac{\sqrt{21}}{5}$ and $\cot \theta = \mp \frac{\sqrt{21}}{2}$ from Eq.(i) $5x\frac{\sqrt{21}}{5} - \frac{4y\sqrt{21}}{2} = 41$ $\Rightarrow \sqrt{21}(x - 2y) = 41$ 825 (d) Given, $y^2 = 18x$...(i) According to the given condition y = 3xFrom Eqs, (i) and (ii), $(3x)^2 = 18x$ [form Eq.(i)] $\Rightarrow x^2 = 2x \Rightarrow x = 0.2$ $\Rightarrow v = 0, \pm 6$ 827 (c) Using the result $(C_1C_2)^2 = r_1^2 + r_2^2$, we get $(2-5)^2 + (3-6)^2 = r^2 + r^2$

 $\Rightarrow 2r^2 = 18$

$$\Rightarrow r^2 = 9$$
$$\Rightarrow r = 3$$

828 **(c)**

Let R(h, k) be the point of intersection of tangents drawn at P and Q to the given circle. Then, PQ is the chord of contact of tangents drawn from R to $x^2 + y^2 = 25$. So its equation is hx + ky - 25 = 0 ...(i) it is given that the equation of PQ is x - 2y + 1 = 0 ...(ii) Since (i) and (ii) represent the same line

$$\therefore \frac{h}{1} = \frac{k}{-2} = \frac{-25}{1} \Rightarrow h = -25, k = 50$$

Hence, the required point is (-25,50)

830 **(b)**

Since, the coordinates of foci of hyperbola are (-5,3) and (7,3)

$$\therefore 2ae = 7 - (-5) = 12$$
$$\Rightarrow a = \frac{12 \times 2}{3 \times 2} = 4 \quad [\because e = 3/2]$$

$$e = \sqrt{1 + \frac{b^2}{a^2}} \Rightarrow \frac{9}{4} - 1 = \frac{b^2}{16}$$
$$\Rightarrow b^2 = 20$$

Hence, length of latusrectum =
$$\frac{2b^2}{a} = \frac{2 \times 20}{4} = 10$$

$$A \equiv (a \cos \theta, b \sin \theta)$$

$$B \equiv (a \cos(\theta + \alpha), b \sin(\theta + \alpha))$$

$$C \equiv (a \cos(\theta + 2\alpha), b \sin(\theta + 2\alpha))$$

$$\Delta \equiv \text{Area of } \Delta ABC$$

$$= \frac{1}{2} \begin{vmatrix} 1 & a \cos \theta & b \sin \theta \\ 1 & a \cos(\theta + \alpha) & b \sin(\theta + \alpha) \\ 1 & a \cos(\theta + 2\alpha) & b \sin(\theta + 2\alpha) \end{vmatrix}$$

$$= 2ab \sin^2 \left(\frac{\alpha}{2}\right) \sin \alpha$$

$$\Delta(\alpha) = ab \sin \alpha (1 - \cos \alpha)$$

$$= \frac{ab}{2} (2 \sin \alpha - \sin 2\alpha)$$

$$\Delta'(\alpha) = 0$$

$$\Rightarrow \cos \alpha = 1$$

$$Or \cos \alpha = -\frac{1}{2}$$

$$\cos \alpha = 1 \text{ gives } \Delta = 0$$

$$\cos \alpha = -\frac{1}{2} \text{ gives maximum value of } \Delta = \frac{3\sqrt{3}}{4} ab$$
832 (c)
$$Given, vertex of parabola (h, k) = (1,1) \text{ and its focus } (a + h, k) = (3,1) \text{ or } a + h = 3$$

 $\Rightarrow a = 2$

Since, *y*-coordinate of vertex and focus are same, therefore axis of parabola is parallel to *x*-axis. Thus, equation of parabola is $(y - k)^2 = 4a(x - h) \Rightarrow (y - 1)^2 = 8(x - 1)$

833 (c)

The equation of the tangent at $\left(4\cos\phi,\frac{16}{\sqrt{11}}\sin\phi\right)$ to the ellipse $16x^2 + 11y^2 = 256$ is $16(4\cos\phi)x + 11\left(\frac{16}{\sqrt{11}}\sin\phi\right)y = 256$ $\Rightarrow 4x \cos \phi + \sqrt{11}y \sin \phi = 16$ This touches the circle $(x - 1)^2 + y^2 = 4^2$ $\therefore \left| \frac{4\cos \phi - 16}{\sqrt{16\cos^2 \phi + 11\sin^2 \phi}} \right| = 4$ $\Rightarrow (\cos \phi - 4)^2 = 16 \cos^2 \phi + 11 \sin^2 \phi$ $\Rightarrow 4\cos^2 \phi + 8\cos \phi - 5 = 0$ $\Rightarrow (2\cos\phi - 1)(2\cos\phi + 5) = 0$ $\Rightarrow \cos \phi = \frac{1}{2} \Rightarrow \phi = \pm \frac{\pi}{2}$ (:: $\cos \phi \neq \frac{5}{2}$) 834 (c) Here, $g_1 = 1$, $f_1 = k$, $c_1 = 6$ and $g_2 = 0$, $f_2 = k$, $c_2 = k$ Since, circles intersects orthogonally $\therefore 2g_1g_2 + 2f_1f_2 = c_1 + c_2$ $\Rightarrow 0 + 2k^2 = 6 + k$ $\Rightarrow 2k^2 - k - 6 = 0$ $\Rightarrow k = 2, -\frac{3}{2}$ 835 (a) The equation of the asymptotes of the hyperbola $3x^2 + 4y^2 + 8xy - 8x - 4y - 6 = 0$ is $3x^2 + 4y^2 + 8xy - 8x - 4y + \lambda = 0$. It should represent a pair of straight lines. $\therefore abc + 2fgh - af^2 - bg^2 - ch^2 = 0$ $3 \cdot 4 \cdot \lambda + 2 \cdot (-2)(-4)4 - 3(-2)^2 - 4(-4)^2$ $-\lambda(4)^2 = 0$ $\Rightarrow 12\lambda + 56 - 12 - 56 - 16\lambda = 0$ $\Rightarrow -4\lambda - 12 = 0$ $\Rightarrow \lambda = -3$ ∴ Required equation is $3x^2 + 4y^2 + 8xy - 8x - 4y - 3 = 0$ 836 (d)

If (x_1, y_1) is the mid point of the chord of the circle, $x^2 + y^2 - 4x = 0$, then its equation is

 $xx_1 + yy_1 - 2(x + x_1) = x_1^2 + y_1^2 - 4x_1$

Put $x_{1} = 1, y_1 = 0$, we get

 $x + 0 - 2(x + 1) = 1^2 + 0 - 4$

$$\Rightarrow x = 1$$

837 (c) The required circle is $x^{2} + y^{2} - a^{2} + \lambda \left(x - \frac{a}{2} \right) = 0$ [Using: $S + \lambda L$ = 01This passes through (2a, 0) $\therefore 4 a^2 - a^2 + \left(\frac{3 a}{2}\right)\lambda = 0 \Rightarrow \lambda = -2 a$ Hence, the required circle is $x^{2} + y^{2} - a^{2} - 2a\left(x - \frac{a}{2}\right) = 0$ $\Rightarrow x^{2} + y^{2} - a^{2} - 2 ax + a^{2} = 0$ $\Rightarrow x^2 + v^2 - 2 ax = 0$ 838 (d) The point $(1 + \cos \theta, \sin \theta)$ is an interior point of the circle $x^2 + y^2 = 1$ $\therefore (1 + \cos \theta)^2 + (\sin \theta)^2 - 1 < 0$ $\Rightarrow 1 + 2\cos\theta < 0$ $\Rightarrow \cos \theta < -\frac{1}{2} \Rightarrow \theta \in (2 \pi/3, 4 \pi/3)$ 839 (a) (x, y) is the set of points equidistant from point (2, 3) and the line 3x + 4y - 2 = 0. So the given equation represents a parabola 840 (a) Given, $x^2 + y^2 - 2x - 6y - \frac{7}{2} = 0$ The centre of this circle is (1, 3)Also, two diameter of this circle are along the lines $3x + y = c_1$ and $x - 3y = c_2$ These two diameters should be passed from (1, 3) \therefore $c_1 = 6$ and $c_2 = -8$ Hence, $c_1 c_2 = 6 \times (-8) = -48$ 841 (c) We have, $e_1^2 = 1 - \frac{4}{18} = \frac{14}{18} = \frac{7}{9}$ and $e_2^2 = 1 + \frac{4}{9} = \frac{13}{9}$ $\therefore 2 e_1^2 + e_2^2 = 3$ 842 (c) Now, radical axis of circles S_1 and S_2 is $S_1 - S_2 = 0$ $\Rightarrow x^{2} + y^{2} - 6x - 6y + 4 - x^{2} - y^{2} + 2x + 4y$ -3 = 0 \Rightarrow 4x + 2y - 1 = 0 ...(i) Radical axis of circle S_2 and S_3 is $S_2 - S_3 = 0$ $\Rightarrow x^{2} + y^{2} - 2x - 4y + 3 - x^{2} - y^{2} - 2ky - 2y$ -1 = 0(2+2k)x + 6y - 2 = 0 ...(ii) For existence of radical centre

$$\begin{vmatrix} 4 & 2 \\ 2 + 2k & 6 \end{vmatrix} \neq 0$$

$$\Rightarrow 24 - 2(2 + 2k) \neq 0 \Rightarrow k \neq 5$$

843 (d)

Given equation of ellipse is

$$\frac{x^2}{\frac{5}{3}} + \frac{y^2}{\frac{5}{4}} = 1$$

The equation of tangents in slope from is

$$y = mx \pm \sqrt{\frac{5}{3}}m^2 + \frac{5}{4}$$

Slope of tangents are $\frac{1}{\sqrt{3}}$ or $-\frac{1}{\sqrt{3}}$
 $\therefore y = \pm \frac{1}{\sqrt{3}}x \pm \sqrt{\frac{5}{9} + \frac{5}{4}}$
 $\Rightarrow y = \pm \frac{1}{\sqrt{3}}x \pm \frac{\sqrt{65}}{6}$

844 (c)

Given circle is $x^2 + y^2 = a^2$ and point is (h, h) \therefore Equation of tangent at (h, h) is $xh + yh = a^2 \implies y = -x + \frac{a^2}{h}$ \therefore Slope of the tangent is -1

845 (a)

The equation of ellipse can be rewritten as

$$\frac{(x+1)^2}{9} + \frac{(y-2)^2}{5} = 1$$

$$\therefore \ e = \sqrt{1 - \frac{5}{9}} = \frac{2}{3} \quad [\because a > b]$$

Foci are $\left\{ \left(-1 \pm 3 \cdot \frac{2}{3} \right), 2 \right\}$ *ie*, (1,2) and (-3,2)

846 **(c)**

If $x = a \sin^2 t \Rightarrow y^2 = 4a(a \sin^2 t)$ $\Rightarrow y = \pm 2a \sin t$ \therefore Option (c) is correct

847 (a)

Since, the semi-latusrectum of a parabola is HM of segments of a focal chord

 $\therefore \text{Semi-latusrectum} = \frac{2SP \cdot SQ}{SP + SQ} = \frac{2 \times 3 \times 2}{3 + 2} = \frac{12}{5}$ $\Rightarrow \text{Latusrectum of the parabola} = 2 \times \text{semi-latusrectum}$ 24

$$=\frac{24}{5}$$

848 (d)

In given options $x^2 - y^2 = 0$, does not represent a hyperbola

849 (a) Given parabola is $2x^2 = 14y$ $\Rightarrow x^2 = 7y$ Here, $a = \frac{7}{4}$ ∴ Equation of dierctrix is $y = -\frac{7}{4}$ 850 (c) We know that the angle between the asymptotes of the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ is $2 \tan^{-1} \left(\frac{b}{a}\right)$ Here, a = 1 and $b = \sqrt{3}$ \therefore Required angle = 2 tan⁻¹($\sqrt{3}$) = 2 $\pi/3$ 851 (b) It is given that $e = \frac{1}{2}ae = 2$ Therefore, a = 4 $b^2 = a^2(1 - e^2)$ $\Rightarrow h^2 = 12$ Thus, the required ellipse is $\frac{x^2}{16} + \frac{y^2}{12} = 1$ 852 (c) The equation of the tangent at P(3, 4) to the circle $x^{2} + y^{2} = 25$ is3x + 4y = 25, which meets the coordinate axes at $A\left(\frac{25}{3}, 0\right)$ and $B\left(0, \frac{25}{4}\right)$. If O be the origin, then the $\triangle OAB$ is a right angled triangle with $OA = \frac{25}{3}$ and $OB = \frac{25}{4}$ Area of the $\triangle OAB = \frac{1}{2} \times OA \times OB = \frac{1}{2} \times \frac{25}{3} \times \frac{25}{4} =$

²⁴ 853 (d)

625

The equation of the circle passing through the points of intersection of the lines 2x + 3y - 6 = 0and 9x + 6y - 18 = 0 with the coordinate axes is $(2x + 3y - 6)(9x + 6y - 18) - (2 \times 6 + 9 \times 3)xy$ = 0 $\Rightarrow x^2 + y^2 - 5x - 5y + 6 = 0$ The coordinates of the centre are (5/2, 5/2)854 **(c)** Let the slopes of the two tangents to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ be *cm* and $\frac{c}{m}$.

The equations of tangents are $y = cmx + \sqrt{a^2c^2m^2 - b^2}$...(i) And $my - cx = \sqrt{a^2c^2 - b^2m^2}$...(ii) On squaring and subtracting Eq. (ii) from Eq. (i), we get $(y - cmx)^2 - (my - cx)^2$ $= a^2c^2m^2 - b^2 - a^2c^2 + b^2m^2$ $\Rightarrow (1 - m^2)(y^2 - c^2x^2) = -(1 - m^2)(a^2c^2 + b^2)$ $\Rightarrow y^2 + b^2 = c^2(x^2 - a^2)$

154

855 **(c)**

Given equation can be rewritten as.

 $(y-2)^2 = 12x$

Here, vertex and focus are (0, 2) and (3, 2)

:. Vertex of the required parabola is (3, 2) and focus is (3, 4). The axis of symmetry is x = 3 and latusrectum= $4 \times 2 = 8$

Hence, required equation is

$$(x-3)^2 = 8(y-2)$$

 $\Rightarrow x^2 - 6x - 8y + 25 = 0$

856 (d)

The equation of tangent to the parabola

$$y^2 = 4x \text{ is } y = mx + \frac{1}{m}$$

This is also the tangent to parabola $x^2 = -8y$

$$\therefore x^2 = -8\left(mx + \frac{1}{m}\right)$$

- $\Rightarrow mx^2 + 8m^2x + 8 = 0$ has equal roots
- $\Rightarrow 64 m^4 = 32m [\therefore D = 0]$

$$\Rightarrow m = \frac{1}{\sqrt[3]{2}}$$

: Equation of tangent is $y = \frac{1}{\sqrt[3]{2}}x + \sqrt[3]{2}$

857 **(c)**

Here centre (-2, 2) and radius is 2 Hence, both coordinates and radius is same, so it touches both axes

858 (c)

The centre of the circle is the point of intersection of the given diameters 2x - 3y = 5 and 3x - 4y = 7Which is (1, -1) and the radius is r, where $\pi r^2 =$

 $\Rightarrow r^2 = 154 \times \frac{7}{22} \Rightarrow r = 7$ and hence, the required equation of the circle is $(x-1)^2 + (y+1)^2 = 7^2$ $\Rightarrow x^2 + y^2 - 2x + 2y = 47$ 859 (c) Equation of an ellipse is $16x^2 + 25y^2 = 400$ $\Rightarrow \frac{x^2}{25} + \frac{y^2}{16} = 1$ Here, $a^2 = 25$ and $b^2 = 16$ But $b^2 = a^2(1 - e^2)$ $\Rightarrow 16 = 25(1 - e^2) \Rightarrow \frac{16}{25} = 1 - e^2$ $\Rightarrow e^2 = \frac{9}{25} \Rightarrow e = \frac{3}{5}$ Now, foci of the ellipse are (3, 0)Now, $PF_1 + PF_2 = 2a = 2 \times 5 = 10$ 860 (c) Given equation of ellipse is $\frac{x^2}{4} + \frac{y^2}{9} = 1$ Here, $a^2 = 4$, $b^2 = 9 \Rightarrow b > a$ $\therefore 4 = 9(1 - e^2) \Rightarrow e = \frac{\sqrt{5}}{2}$ Distance between the directrices $=\frac{2b}{c}$ $=\frac{2\times3\times3}{\sqrt{5}}=\frac{18}{\sqrt{5}}$ 861 (b) Any point on the ellipse is $P(3 \cos \theta, 2 \sin \theta)$ Equation of the tangent at *P* is $\frac{x}{3}\cos\theta + \frac{y}{2}\sin\theta = 1$ Which meets the tangents x = 3 and y = -3 at the extremities of the major axis at $T\left(3, \frac{2(1-\cos\theta)}{\sin\theta}\right)$ and $T'\left(-3, \frac{2(1+\cos\theta)}{\sin\theta}\right)$ Equation of circle on TT' as diameter is $(x-3)(x+3) + \left(y - \frac{2(1-\cos\theta)}{\sin\theta}\right)\left(y\right)$ $-\frac{2(1+\cos\theta)}{\sin\theta} = 0$ $\Rightarrow x^2 + y^2 - \frac{4}{\sin\theta}y - 5 = 0$ Which passes through $(\sqrt{5}, 0)$ 862 (a) Let $y = m_1 x$ and $y = m_2 x$ be a pair of conjugate diameters of an ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and let $P(a \cos \theta, b \sin \theta)$ and $Q(a \cos \phi, b \sin \phi)$ be ends

of these two diameters. Then,

$$m_1 m_2 = -\frac{b^2}{a^2}$$

$$\Rightarrow \frac{b \sin \theta - 0}{a \cos \theta - 0} \times \frac{b \sin \phi - 0}{a \cos \phi - 0} = -\frac{b^2}{a^2}$$

$$\Rightarrow \sin \theta \sin \phi = -\cos \theta \cos \phi$$

$$\Rightarrow \cos(\theta - \phi) = 0$$

$$\Rightarrow \theta - \phi = \pm \frac{\pi}{2}$$

863 (b)

Given lines are 3x - 4y + 5 = 0 and 3x - 4y - 4y = 0 $\frac{9}{2} = 0$, which are parallel to each other $\therefore \text{ Perpendicular distance, } d = \left| \frac{5 + \frac{9}{2}}{\sqrt{3^2 + 4^2}} \right| = \frac{19}{10}$: Radius of circle = $\frac{d}{2} = \frac{19}{20} = 0.95$ 864 (c) The equation of the tangent at $(2 \sec \theta, 3 \tan \theta)$ is $\frac{x}{2}\sec\theta - \frac{y}{3}\tan\theta = 1$ It is parallel to the line 3x - y + 4 = 0 $\therefore \frac{3 \sec \theta}{2 \tan \theta} = 3 \Rightarrow \sin \theta = \frac{1}{2} \Rightarrow \theta = 30^{\circ}$ 865 (b) Circle through the points (0, 0), (a, 0) and (0, b) is $x^2 + y^2 - ax - by = 0$ Its centre is $\left(\frac{a}{2}, \frac{b}{2}\right)$ 866 (c) In centre of circle is (c, α) and radius is *a*, then equation of circle is $r^2 - 2cr\cos(\theta - \alpha) = a^2 - c^2$ Here, centre $\left(2, \frac{\pi}{2}\right)$ and radius 3 : Equation of circle is $r^2 - 2 \times 2r \cos\left(\theta - \frac{\pi}{2}\right) =$ $3^2 - 2^2$ $\Rightarrow r^2 - 4r \sin \theta = 5$ 867 (c) Let the equation of circle be $x^{2} + y^{2} + 2hx + 2ky + c = 0$...(i) The locus of whose centre is to be obtained, since the circle cuts $x^{2} + y^{2} + 4x - 6y + 9 = 0$...(ii) And $x^2 + y^2 - 4x + 6y + 4 = 0$...(iii) Orthogonally, then 2h(2) + 2k(-3) = c + 9 $\Rightarrow 4h - 6k = c + 9$ And 2h(-2) + 2k(3) = c + 4 $\Rightarrow -4h + 6k = c + 4$ On solving Eqs. (iv) and (v), we get c + 9 = -c - 4 $\Rightarrow 2c = -13 \dots (vi)$

On putting the value of *c* in Eq. (iv)

 $\Rightarrow 8h - 12k = 5$...(vii) Centre of the given circle is (-h, -k): Locus of (-h, -k) from Eq. (vii) is 8(-x) - 12(-y) = 5 $\Rightarrow 8x - 12y + 5 = 0$ 868 (b) Given common tangents are 2x - 4y - 9 = 0 and $2x - 4y + \frac{7}{2} = 0$ which are parallel : Diameter=distance between tangents = distance between parallel lines $=\frac{|c_1-c_2|}{\sqrt{a^2+b^2}}=\frac{\left|-9-\frac{7}{3}\right|}{\sqrt{2^2+(4)^2}}$ $\Rightarrow d = \frac{34}{3.2\sqrt{5}}$ \therefore Radius= $\frac{17}{6\sqrt{5}}$ 869 (a) Given, $x^2 + 2x - 3 = 0$ $\Rightarrow x_1 = -3, x_2 = 1$ and $y^2 + 4y - 12 = 0$ $\Rightarrow y_1 = -6, \quad y_2 = 2$ \therefore Points are P(-3, -6) and Q(1, 2)Since, *P* and *Q* are end points of a diameter ∴ Centre=mid point of PQ $=\left(\frac{-3+1}{2},\frac{-6+2}{2}\right)=(-1,-2)$ 870 (d) Since, the line y = x - 1 passes through focus (1,0) \Rightarrow *y* = *x* - 1 is a focal chord So, angle between tangent is $\frac{n}{2}$ 871 (b) We have, $x^2 - 4x - 8y - 4$ $\Rightarrow (x-2)^2 = 8(y+1)$ Thus, the coordinates of the focus are given by x-2 = 0, y+1 = 2 $\begin{bmatrix} \because x^2 = 4ay \text{ has its focus} \\ at (0, a). \text{ Here, } a = 2 \end{bmatrix}$ $\Rightarrow x = 2, y = 1$ Hence, the coordinates of the focus are (2,1) 872 (b) Let the equation of line be y = mx + c. If this line touch the parabola $y^2 = 8x$, then $y = mx + \frac{2}{m}$ This line also touches the circle $x^2 + y^2 = 2$, then radius = perpendicular distance from centre (0,0)

to the line

$$\Rightarrow \sqrt{2} = \left| \frac{0 + 0 - \frac{2}{m}}{\sqrt{1 + m^2}} \right|$$
$$\Rightarrow m^2(1 + m^2) = 2 \Rightarrow m = 1$$

 \therefore This required equation of tangent be

y = x + 2

873 (a)

Let (h, k) is mid point of chord. Then, its equation is 3hx - 2ky + 2(x + h) - 3(y + k) $= 3h^2 - 2k^2 + 4h - 6k$ $\Rightarrow x(3h + 2) + y(-2k - 3)$ $= 3h^2 - 2k^2 + 2h - 3k$ Since, this line is parallel to y = 2x. $\therefore \frac{3h + 2}{2k + 3} = 2$ $\Rightarrow 3h + 2 = 4k + 6 \Rightarrow 3h - 4k = 4$ Thus, locus of mid point is 3x - 4y = 4.

874 (b)

The centre of given circle is (-g, -f)If the given line ax + by + c = 0 is normal to the circle, then it passes through the centre of circle. $\therefore a (-g) + b(-f) + c = 0 \Rightarrow ag + bf - c = 0$

875 (a)

Clearly, *C*, being the mid-point of AA'', has the coordinates (1,1). Also, slope of AA'' is 0. So, AA'' is parallel to *x*-axis. Thus, the axes of the ellipse are parallel to the coordinate axes. Let the equation of the ellipse be

Now,

 $AA'' = 10 \Rightarrow 2a = 10 \Rightarrow a = 5$ Since x - 2y - 2 = 0 is a focal chord. Therefore, $ae - 2 - 2 = 0 \Rightarrow ae = 4$ Now, $b^2 = a^2(1 - e^2) = 25 - 16 = 9$ Hence, the equation of the ellipse is $\frac{(x-1)^2}{25} + \frac{(y-1)^2}{2} = 1$

876 **(c)**

Given equation can be written as

$$24\left(x^{2} - 5x + \frac{25}{4}\right) + 9(y^{2} - 10y + 25)$$
$$+225 - 150 - 225 = 0$$
$$\Rightarrow \frac{\left(x - \frac{5}{2}\right)^{2}}{\frac{150}{24}} + \frac{(y - 5)^{2}}{\frac{150}{9}} = 1$$

 $\therefore e = \sqrt{1 - \frac{a^2}{b^2}} = \sqrt{1 - \frac{9}{24}} = \sqrt{\frac{15}{24}}$

877 **(b)**

Any normal to the parabola $y^2 = 12x$ is $y + tx = 6t + 3t^3$. It is similar to the line y + x = k $\Rightarrow t = 1, 6t + 3t^3 = k$ $\therefore 6(1) + 3(1)^3 = k$ or $k \Rightarrow 9$

878 **(b)**

Given equation of circles are $x^{2} + y^{2} + 4x + 8y = 0$...(i) and $x^2 + y^2 + 8x + 2ky = 0$...(ii) for circle (i), centre, $C_1 = (-2, -4)$ and radius $r_1 = \sqrt{4 + 16 - 0} = \sqrt{20} = 2\sqrt{5}$ for circle (ii), centre, $C_2 = (-4, -k)$ and radius, $r_2 = \sqrt{16 + k^2 - 0} = \sqrt{16 + k^2}$ given circles touch each other externally $\therefore |C_1 C_2| = r_1 + r_2$ $\Rightarrow \sqrt{(-2+4)^2 + (-4+k)^2} = 2\sqrt{5} + \sqrt{16+k^2}$ \Rightarrow 4 + 16 + k^2 - 8k $= 20 + 16 + k^2 + 4\sqrt{5}\sqrt{16 + k^2}$ $\Rightarrow -16 - 8k = 4\sqrt{5}\sqrt{16 + k^2}$ $\Rightarrow -4 - 2k = \sqrt{5}\sqrt{16 + k^2}$ $\Rightarrow (4+2k) = \left(\sqrt{5}\sqrt{16+k^2}\right)^2$ $\Rightarrow 16 + 4k^2 + 16k = 5(16 + k^2)$ $\Rightarrow k^2 - 16k + 64 = 0$ $\Rightarrow (k-8)^2 = 0$ $\Rightarrow k = 8$ 879 (b)

The circles will touch each other if the length of the common chord is zero i.e.

$$\sqrt{4 c^2 - 2(a-b)^2} = 0 \Rightarrow 2 c^2 = (a-b)^2$$
$$\Rightarrow a-b = \pm \sqrt{2} c$$

880 (a)

We know , if *P* is any point on the curve, then sum of focal distances=length of major axis

$$= SP + S'P = 2a = 2(5) = 10$$

881 (a)

If y = mx + 1, touches the parabola $y = 2^2 = 4x$,

then
$$c = \frac{a}{m} \Rightarrow 1 = \frac{1}{m} \Rightarrow m = 1$$

882 **(b)**

Given, 2a = 8 and 2ae = 10

$$\Rightarrow e = \frac{10}{8} = \frac{5}{4}$$

Now,
$$b^2 = a^2 (e^2 - 1) = 16 \left(\frac{25}{16} - 1\right) = 9$$

 $\Rightarrow b = \pm 3$

Hence, length of latusrectum = $\frac{2b^2}{a} = \frac{2 \times 9}{4} = \frac{9}{2}$

883 **(b)**

The equation of the circumcircle of the rectangle is r(r-4) + v(v-3) = 0

$$x(x-4) + y(y-3) = 0$$

$$\Rightarrow x^{2} + y^{2} - 4x - 3y = 0 \Rightarrow (x-2)^{2} + \left(y - \frac{3}{2}\right)^{2}$$

$$= \left(\frac{5}{2}\right)^{2}$$

The equations of the tangents to this circle which are parallel to the diagonal joining (0,0) and (4,3) are

$$y - \frac{3}{2} = \frac{3}{4}(x - 2)$$

$$\pm \frac{5}{2}\sqrt{1 + \frac{9}{16}} \qquad \begin{bmatrix} \because \text{ Slope the} \\ \text{tangent} = 3/4 \end{bmatrix}$$

i.e. $6x - 8y \pm 25 = 0$

884 **(b)**

Given,
$$y = 4x + c$$
 and $\frac{x^2}{4} + y^2 = 1$

Condition for tangency,

$$c^{2} = a^{2}m^{2} + b^{2}$$

$$\therefore c^{2} = 4(4)^{2} + 1^{2}$$

$$\Rightarrow c^{2} = 65$$

 $\Rightarrow c = \pm \sqrt{65}$

Hence, for two values, of *c*, the line touches the curve

885 (a)

The equation of a tangent to the parabola $y^2 = 4x$ is $= mx + \frac{1}{m}$. If it passes through (-2, -1), then

$$-1 = -2m + \frac{1}{m} \Rightarrow 2m^{2} - m - 1 = 0$$

$$m_{1} + m_{2} = \frac{1}{2}, m_{1} + m_{2} = -\frac{1}{2}$$
Now, $\tan \alpha = \pm \frac{m_{1} - m_{2}}{1 + m_{1}m_{2}}$

$$= \pm \frac{\sqrt{(m_{1} + m_{2})^{2} - 4m_{1}m_{2}}}{1 + m_{1}m_{2}}$$

$$= \pm \frac{\sqrt{1/4 + 4/2}}{1 - 1/2} = 3$$

886 **(c)**

We know that, the locus of point of intersection of two perpendicular tangents drawn on the ellipse is $x^2 + y^2 = a^2 + b^2$, which is called director circle

Given equation of ellipse is $\frac{x^2}{9} + \frac{y^2}{4} = 1$ Here, $a^2 = 9$, $b^2 = 4$ \therefore Locus is $x^2 + y^2 = a^2 + b^2$ $\Rightarrow x^2 + y^2 = 9 + 4$ $\Rightarrow x^2 + y^2 = 13$

887 (c)

Centre of required circle = (3, -4)Radius of required circle = 5 + 1 = 6

: Locus of circle is $(x-3)^2 + (y+4)^2 = 36$ $\Rightarrow x^2 - 6x + 9 + y^2 + 16 + 8y = 36$ $\Rightarrow x^2 + y^2 - 6x + 8y - 11 = 0$

888 (a)

The equation of a line passing through (5,0) and perpendicular to x + y = 0, is x - y = 5Clearly, it cuts *y*-axis at B(0, -5) $\therefore AB = \sqrt{5^2 + 5^2} = 5\sqrt{2}$

889 (a)

Let y = x + c is parallel to the given line. Since, it is a tangent to the given hyperbola

 $c^2 = 3 - 2 \implies c = \pm 1$

So, required tangents are $y = x \pm 1$

890 (c)

Any tangent to $x^2 = 4y$ is of the form $x = my + \frac{1}{m}$ Therefore, y = 2x + k or, $x = \frac{1}{2}y - \frac{k}{2}$ will be a tangent to $x^2 = 4y$, if $m = \frac{1}{2}$ and $\frac{1}{m} = -\frac{k}{2} \Rightarrow 1 = -\frac{k}{4} \Rightarrow k = -4$

891 **(b)**

Equation of line is

$$\frac{x}{a} + \frac{y}{b} = 1$$
 ...(i)

Let *P* be the foot of the perpendicular drawn from the origin to the line whose coordinates are (x_1, y_1)

Since,
$$OP \perp AB$$

$$y$$

 $B(0, b)$
 $P(x_1, y_1)$
 $A(a, 0)$

(0, 0)O

 \therefore Slope of $OP \times$ Slope of AB = -1

$$\Rightarrow \left(\frac{y_1}{x_1}\right) \left(\frac{b}{-a}\right) = -1$$
$$\Rightarrow by_1 = ax_1 \quad \dots \text{(ii)}$$

Since, *P* lies on the line *AB*, then

892 (d)

Let $P(a \cos \theta, b \sin \theta)$ be any point on the ellipse. The equation of the tangent at P is $\frac{x}{a}\cos \theta + \frac{y}{b}\sin \theta = 1$ It cuts the lines x = a and x = -a at

$$\frac{x_1}{a} + \frac{y_1}{b} = 1$$

$$\Rightarrow bx_1 + ay_1 = ab ...(iii)$$
From Eq. (ii) and (iii), we get

$$x_1 = \frac{ab^2}{a^2 + b^2} \text{ and } y_1 = \frac{a^2b}{a^2 + b^2}$$
Now, $x_1^2 + y_1^2 = \left(\frac{ab^2}{a^2 + b^2}\right)^2 + \left(\frac{a^2b}{a^2 + b^2}\right)^2$

$$\Rightarrow x_1^2 + y_1^2 = \frac{a^2b^4}{(a^2 + b^2)^2} + \frac{a^4b^2}{(a^2 + b^2)^2}$$

$$\Rightarrow x_1^2 + y_1^2 = \frac{a^2b^2(a^2 + b^2)}{(a^2 + b^2)^2}$$

$$\Rightarrow x_1^2 + y_1^2 = \frac{a^2b^2}{(a^2 + b^2)}$$

$$\Rightarrow x_1^2 + y_1^2 = \frac{1}{\frac{1}{a^2} + \frac{1}{b^2}}$$
But $\frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{c^2}$ (given)

$$\therefore x_1^2 + y_1^2 = c^2$$
Thus, the locus of $P(x_1, y_1)$ is

$$x^2 + y^2 = c^2$$
Which is the equation of circle

$$L\left(a, \frac{b(1 - \cos \theta)}{\sin \theta}\right) \text{ and } L'\left(-a, \frac{b(1 + \cos \theta)}{\sin \theta}\right) \text{ respectively}$$
$$\therefore AL = \frac{b(1 - \cos \theta)}{\sin \theta} \text{ and } AL' = \frac{b(1 + \cos \theta)}{\sin \theta}$$
$$\Rightarrow AL \cdot AL' = b^2$$

893 (c)

The equation of the normal at $(at^2, 2 at)$ is $tx + y = 2 at + at^3$ Clearly, its slope is -t

894 (c)

Let C(h, k) be the centre of the circle passing through the end points of the rod AB and PQ of lengths a and b respectively. CL and CM be perpendicular drawn from C on AB and PQrespectively. Then, CA = CP (radii of the same circle)

$$\Rightarrow k + \frac{a^2}{4} = h^2 + \frac{b^2}{4} \quad \left(:: AL = \frac{a}{2} \text{ and } MP = \frac{b}{2}\right)$$
$$\Rightarrow 4(h^2 - k^2) = a^2 - b^2$$

Hence, locus of (h, k) is $4(x^2 - y^2) = a^2 - b^2$ 895 (d)

Given circles are $x^2 + y^2 - 2x + 8y + 13 = 0$ and $x^2 + y^2 - 4x + 6y + 11 = 0$ Here, $C_1 = (1, -4), C_2 = (2, -3)$ $\Rightarrow r_1 = \sqrt{1 + 16 - 13} = 2$ And $r_2 = \sqrt{4 + 9 - 11} = \sqrt{2}$ Now, $d = C_1 C_2 = \sqrt{(2 - 1)^2 + (-3 + 4)^2} = \sqrt{2}$ $\therefore \cos \theta = \frac{|d^2 - r_1^2 - r_2^2|}{2r_1 r_2} = \frac{|2 - 4 - 2|}{2 \times 2 \times \sqrt{2}} = \frac{1}{\sqrt{2}}$ $\Rightarrow \theta = 45^\circ$

896 **(b)**

We know that the equation of the normal at (x_1, y_1) to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is given by $\frac{a^2x}{x_1} - \frac{b^2y}{y_1} = a^2 - b^2$ The equation of the ellipse is $9x^2 + 16y^2 = 180 \Rightarrow \frac{x^2}{20} + \frac{y^2}{\frac{45}{4}} = 1$ The equation of the normal to this ellipse at (2,3) is

$$\frac{20}{2}x - \frac{45}{12}y = 20$$

$$-\frac{45}{4} \left[\text{Using} : \frac{a^2x}{x_1} - \frac{b^2y}{y_1} \right]$$

$$= a^2 - b^2 \right]$$

$$\Rightarrow 10x - \frac{15}{4}y = \frac{35}{4} \Rightarrow 8x - 3y = 7$$

897 (c)

Given equation of parabola is $y^2 = 4ax$ Let the coordinates of *B* are $(at^2, 2at)$

Slope of
$$AB = \frac{1}{t}$$

Since, *BC* is perpendicular to *AB*
So, slope of $BC = -\frac{t}{2}$
Equation of *BC* is $y - 2at = -\frac{t}{2}(x - at^2)$
This line meets to the *x*-axis at point *C*
Put $y = 0 \Rightarrow x = 4a + at^2$
So, distance *CD* = $4a + at^2 - at^2 = 4a$
898 (c)
Focal distance of any point $P(x, y)$ on the ellipse is
equal to $a + ex$
Here, $x = a \cos \theta$. Hence, $SP = a + ae \cos \theta = a(1 + e \cos \theta)$
899 (c)
Given equation of curve is $y^2 + 2xy + x^2 + 2x + 3y + 1 = 0$
Here $h^2 = ab$, therefore the given curve is a
parabola. The position of the point $(1, -2)$ with
respect to the parabola is obtained as $(-2)^2 + 2(1)(-2) + (1)^2 + 2(1) + 3(-2) + 1 = -2 < 0$
Since, point is inside the parabola therefore no
tangent can be drawn to the parabola
900 (c)
Now taking option (c).
Let $x = a \frac{e^t + e^{-t}}{2} \Rightarrow \frac{2x}{a} = e^t + e^{-t} ...(i)$
And $\frac{2y}{a} = e^t - e^{-t} ...(ii)$

On squaring and subtracting Eq. (ii) from Eq. (i),

we get

$$\frac{4x^2}{a^2} - \frac{4y^2}{b^2} = 4$$

$$\Rightarrow \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

901 (c)

Let the other end be (t, 3 - t)So, the equation of the variable circle is (x - 1)(x - t) + (y - 1)(y - 3 + t) = 0 $\Rightarrow x^2 + y^2 - (1 + t)x - (4 - t)y + 3 = 0$ \therefore The centre (α, β) is given by $\alpha = \frac{1 + t}{2}, \beta = \frac{4 - t}{2} \Rightarrow 2\alpha + 2\beta = 5$ Hence, the locus is 2x + 2y = 5

902 **(b)**

Let the points be A = (2, 2) and B = (3, 3). Since the circle passing through these points, so they satisfy the equation of the circle.

Now, taking option (b),

Let
$$S \equiv x^2 + y^2 - 5x - 5y + 12 = 0$$

At $A = (2, 2)$
 $2^2 + 2^2 - 5(2) - 5(2) + 12 = 0$
At $B = (3, 3)$
 $3^2 + 3^3 - 5(3) - 5(3) + 12 = 0$
(d)

903 (d)

The equation of parabola can be written as

$$(y+2)^2 = -4\left(x - \frac{1}{2}\right)$$

 $\Rightarrow Y^2 = -4X$ where $X = x - \frac{1}{2}, Y = y + \frac{1}{2}$

An equation of its directrix is X = 1

 \therefore Required directrix is $x = \frac{3}{2}$

904 **(b)**

Here, a = 5, b = 4

 \therefore Required sum= a + b

= 9

905 **(d)**

Given parabola $y^2 = ax$ $ie, y^2 = 4\left(\frac{a}{4}\right)x$...(i) let point of contact is (x_1, y_1) , then equation of tangent is $yy_1 = \frac{a}{2}(x + x_1)$ Here, $m = \frac{a}{2y_1} = \tan 45^\circ$

$$\Rightarrow \frac{a}{2y_1} = 1 \Rightarrow y_1 = \frac{a}{2}$$

From Eq. (i), $x_1 = \frac{a}{4}$
 \therefore Point of contact is $\left(\frac{a}{4}, \frac{a}{2}\right)$

906 **(b)**

 $y = mx + c \text{ is tangent to } x^2 + y^2 = a^2, \text{ if}$ $c = \pm \sqrt{1 + m^2}$ Since, $y = -\frac{lx}{m} + \frac{1}{m}$ is tangent to $x^2 + y^2 = a^2$, if $\frac{1}{m} = \pm \frac{a}{m} \sqrt{l^2 + m^2} \left[\because c = a \sqrt{(1 + m^2)} \right]$ $\Rightarrow \quad l^2 = m^2 = \frac{1}{a^2}$

Hence, locus of point (l, m) is $x^2 + y^2 = \frac{1}{a^2}$

907 **(b)**

Given equation can be rewritten as

$$\frac{(x-1)^2}{16} - \frac{(y+2)^2}{9} = 1$$
$$\therefore \ e = \sqrt{\frac{16+9}{16}} = \frac{5}{4}$$

908 **(d)**

Since, the semi latusrectum of a parabola is the harmonic mean between the segments of any focal chord of the parabola.

 \therefore *l* is the harmonic mean between *b* and *c*.

Hence,
$$l = \frac{2bc}{b+c}$$

909 **(b)**

2

Given ellipse is $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ whose are is π *ab*. The auxiliary circle to the given ellipse is $x^2 + y^2 = a^2$ whose area is πa^2

Given that, $\pi a^2 = 2\pi ab \Rightarrow a = 2b$

Now, eccentricity of ellipse

$$= \sqrt{1 - \frac{b^2}{a^2}} = \sqrt{1 - \frac{b^2}{4b^2}} = \frac{\sqrt{3}}{2}$$

910 **(b)**

Mid point of (4, 0) and (0, 4) is (2, 2) Required distance= $\sqrt{(2-0)^2 + (2-0)^2}$

$$=\sqrt{8}$$

 $=2\sqrt{2}$

911 (c)

If mid point is given, then equation of chord is $T = S_1$

 $\therefore xx_1 + yy_1 - a^2 = x_1^2 + y_1^2 - a^2$ $\Rightarrow xx_1 + yy_1 = x_1^2 + y_1^2$

912 (c)

The equation of any tangent to $y^2 = 8x$ is

 $y = mx + \frac{2}{m}$ If it passes through (1,3), then 2

 $3 = m + \frac{2}{m} \Rightarrow m^2 - 3m + 2 = 0 \Rightarrow m = 1,2$

Let θ be the angle between the tangents drawn from (1,3). Then,

$$\tan \theta = \left|\frac{2-1}{1+2\times 1}\right| = \frac{1}{3} \Rightarrow \theta = \tan^{-1}\frac{1}{3}$$

913 (c)

The centre and radius of given circle are (3, -2)and 5 respectively The equation of a line parallel to 4x + 3y + 5 = 0

is
$$4x + 3y + \lambda = 0$$

$$\therefore \quad \left| \frac{4 \times 3 + 3 \times (-2) + \lambda}{\sqrt{4^2 + 3^2}} \right| = 5$$

$$\Rightarrow \quad \lambda = 19, -31$$

 \therefore Equation of tangents are

$$4x + 3y + 19 = 0$$
 and $4x + 3y - 31 = 0$

914 **(a)**

Since, asymptotes 3x - 4y = 7 and 4x + 3y = 8 are perpendicular, therefore it is a rectangular hyperbola, so eccentricity is $\sqrt{2}$.

915 (d)

The length of tangent from the point (1, 2) to the circle $x^2 + y^2 + x + y - 4 = 0$ is

$$\sqrt{1+4+1+2-4}$$
, ie,

And the length of tangent from the point (1, 2) to the circle

$$3x^{2} + 3y^{2} - x - y - k = 0$$
 is

$$\sqrt{3} + 12 - 1 - 2 - k \quad ie, \quad \sqrt{12 - k}$$

$$\therefore \quad \frac{2}{\sqrt{12 - k}} = \frac{4}{3}$$

$$\Rightarrow \quad \frac{3}{2} = \sqrt{12 - k}$$

$$\Rightarrow \quad \frac{9}{4} = 12 - k \quad \Rightarrow \quad k = \frac{39}{4}$$

916 (a)

The coordinates of *P* and *Q* are $(a \cos \theta, b \sin \theta)$ and $(-a \sin \theta, b \cos \theta)$ respectively. Let (h, k) be the co-ordinates of the mid-point of *PQ*. Then, $2h = a(\cos \theta - \sin \theta)$ and $2k = b(\sin \theta + \cos \theta)$

 $\Rightarrow \frac{4h^2}{a^2} + \frac{4k^2}{b^2} = 2$ Hence, the locus of (h, k) is $\frac{4x^2}{a^2} + \frac{4y^2}{b^2} = 2 \text{ or, } \frac{2x^2}{a^2} + \frac{2y^2}{b^2} = 1$ 917 (b) Given circles can be rewritten as $x^{2} + y^{2} + \frac{2g_{1}}{a} + \frac{2f_{1}}{a}y + \frac{c_{1}}{a} = 0$ And $x^2 + y^2 + \frac{2g_2}{h}x + \frac{2f_2}{h}y + \frac{c_2}{h} = 0$ Centres of circles are $C_1\left(-\frac{g_1}{a}, -\frac{f_1}{a}\right)$ and $C_2\left(-\frac{g_2}{h},-\frac{f_2}{h}\right)$ respectively We know, if two circles cut orthogonally, then $2(G_1 + G_2 + F_1F_2) = C_1 + C_2$ $\therefore 2\left(\frac{g_1g_2}{ab} + \frac{f_1f_2}{ab}\right) = \frac{c_1}{a} + \frac{c_2}{b}$ $\Rightarrow 2(g_1g_2 + f_1f_2) = bc_1 + ac_2$ 918 (d) Given equation can be rewritten as

$$\frac{(x-3)^2}{16} + \frac{(y-1)^2}{4} = 1$$

This represents an ellipse

$$e = \sqrt{1 - \frac{4}{16}} = \frac{\sqrt{3}}{2}$$

919 **(d)**

The equation of the chord of contact of tangents drawn from the point (h, k) to the circle $x^2 + y^2 = a^2$ is $hx + ky = a^2$. The combined equation of *OQ* and *OR* is

$$x^2 + y^2 = a^2 \left(\frac{hx + ky}{a^2}\right)^2$$

Since *OQ* is perpendicular to *OR*. Therefore, Coeff. off x^2 + Coeff. of $y^2 = 0 \Rightarrow 2 a^2 = h^2 + k^2$

920 **(a)**

The equation of a tangent parallel to *y*-axis is x = c.

This touches $x^2 + y^2 = 9$. Therefore $c = \pm 3$

Thus, the equation of the tangents are $x = \pm 3$ Clearly, x = 3 is the tangent not lying in the third quadrant and it meets the circle at (3,0)

921 (d)

Let (-h, -k) be the centre of the circle

Circle touches the coordinate axes in IIIrd quadrant \therefore Radius = -h = -k $\Rightarrow h = k = -5$

∴ The required equation of circle is $(x + 5)^2 + (y + 5)^2 = 25$

922 **(d)**

Given equation of hyperbola is $\frac{x^2}{9} - \frac{y^2}{4} = 1$ Here, $a^2 = 9, b^2 = 4$ and equation of line is $y = -x + \sqrt{2}p$...(i) If the line y = mx + c touches the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$, then $c^2 = a^2m^2 - b^2$...(ii) From Eq.(i), we get $m = -1, c = \sqrt{2}p$ On putting these values in Eq. (ii), we get $(\sqrt{2}p)^2 = 9(1) - 4$ $\Rightarrow 2p^2 = 5$

923 **(b)**

Let $P(x_1, y_2)$ be the point outside the circle. From the given condition

 $\frac{x_1^2 + y_1^2 + 2x_1 - 4y_1 - 20}{x_1^2 + y_1^2 - 4x_1 + 2y_1 - 44} = \frac{2}{3}$ $\Rightarrow 3x_1^2 + 3y_1^2 + 6x_1 - 12y_1 - 60$ $= 2x_1^2 + 2y_1^2 - 8x_1 + 4y_1 - 88$ $\Rightarrow x_1^2 + y_1^2 + 14x_1 - 16y_1 + 28 = 0$ Thus, the locus of point is $x^2 + y^2 + 14x - 16y + 28 = 0$ $\therefore \text{ Coordinates of centre of circle are } (-7, 8)$ 924 **(b)** We have, $a^2 = 36, b^2 = 49$ $\therefore \text{ Length of the latusrectum} = \frac{2a^2}{b} = 2 \times \frac{36}{7} = \frac{72}{7}$ 925 **(b)**

Given equation can be rewritten as

$$\frac{x^2}{2-\lambda} + \frac{y^2}{-\lambda+5} = 1$$

To represent an ellipse,

 $2 - \lambda > 0 \text{ and } -\lambda + 5 > 0$ $\Rightarrow \lambda < 2 \text{ and } \lambda < 5$ $\Rightarrow \lambda < 2$

927 **(d)**

The quadrilateral formed by the tangents at the end points of latusrectum is a rhombus. It is symmetrical about the axes.

So, total area is four times the area of the right angled triangle formed by the tangent and axes in the Ist quadrant

Now, $ae = \sqrt{a^2 - b^2} \Rightarrow ae = 2$

: Coordinates of one end point of latusrectum are $\left(2, \frac{5}{2}\right)$

The equation of tangent at that point is $\frac{x}{\frac{9}{2}} + \frac{y}{3} = 1$.

This equation meets the coordinate axes at a point $A\left(0,\frac{9}{2}\right)$ and B(3,0)

In $\triangle AOB$, Area = $\frac{1}{2} \times \frac{9}{2} \times 3 = \frac{27}{4}$ Total area of rhombus $ABCD = 4 \times \text{area of } \triangle AOB$ = $4 \times \frac{27}{4} = 27$ sq unit

928 **(a)**

Let (h, k) be the mid-point of the chord 2x + y - y4 = 0 of the parabola $y^2 = 4x$. Then, its equation is $ky - 2(x+h) = k^2 - 4h$ [Using T = S'] $\Rightarrow 2x - ky + k^2 - 2h = 0 \qquad \dots (i)$ Equations (i) and 2x + y - 4 = 0 represent the same line :. -k = 1 and $k^2 - 2h = -4 \Rightarrow k = -1, h = 5/2$ Hence, the required point is (5/2, -1)929 (c) Distance from centre (2, 1) to the line 3x + 4y - 4y = 3x + 4y5 = radius of circle $\Rightarrow \frac{|3(2) + 4(1) - 5|}{\sqrt{3^2 + 4^2}} = r \quad \Rightarrow \quad r = 1$: Equation of circle is $(x-2)^2 + (y-1)^2 = 1^2$ $\Rightarrow x^2 + y^2 - 4x - 2y + 4 = 0$ 930 (c)

Given $y^2 = -8x$

Here, a = -2

We know that if one end of a focal chord is $(at^2, 2at)$, then the other end will be $\left(\frac{a}{t^2}, -\frac{2a}{t}\right)$

Here, one end is $(-1, 2\sqrt{2})$

$$\therefore at^2 = -1 \Rightarrow t = \frac{1}{\sqrt{2}} \quad [\because a = -2]$$

So, other end = $\left(\frac{-2}{1/2}, \frac{-2 \times -2}{1/\sqrt{2}}\right) = (-4, 4\sqrt{2})$

931 (a)

Length of the chord $= \sqrt{[4\cos(\theta + 60^\circ) - 4\cos\theta]^2 + [4\sin(\theta + 60^\circ) - 4\cos^2\theta]^2 + [4\sin(\theta + 60^\circ) - 4\cos^2\theta]^2 + (4\sin^2(\theta + 60^\circ) + \sin^2\theta - 2\cos(\theta + 60^\circ)]^2 + (2\sin^2(\theta + 60^\circ) + \sin^2\theta - 2\cos(\theta + 60^\circ)]^2 + (2\sin^2(\theta + 60^\circ) + \sin^2\theta - 2\sin(\theta + 60^\circ)]^2 + (2\sin^2(\theta + 60^\circ) + \sin^2\theta - 2\cos(\theta + 60^\circ)]^2 + (2\sin^2(\theta + 60^\circ) + \sin^2\theta - 2\cos(\theta + 60^\circ)]^2 + (2\sin^2(\theta + 60^\circ) + \sin^2\theta - 2\cos(\theta + 60^\circ)]^2 + (2\sin^2(\theta + 60^\circ) + \sin^2\theta - 2\cos^2(\theta + 60^\circ)]^2 + (2\sin^2(\theta + 60^\circ) + \sin^2\theta - 2\cos^2(\theta + 60^\circ)]^2 + (2\sin^2(\theta + 60^\circ) + \sin^2\theta - 2\cos^2(\theta + 60^\circ)]^2 + (2\sin^2(\theta + 60^\circ) + \sin^2\theta - 2\cos^2(\theta + 60^\circ)]^2 + (2\sin^2(\theta + 60^\circ) + (2\sin^2(\theta + 60^\circ) + 60^\circ)]^2 + (2\sin^2(\theta + 60^\circ) + (2\sin^2(\theta + 60^\circ) + 60^\circ)]^2 + (2\sin^2(\theta + 60^\circ) + (2\sin^2(\theta + 60^\circ) + 60^\circ)]^2 + (2\sin^2(\theta + 60^\circ) + (2\sin^2(\theta + 60^\circ) + 60^\circ)]^2 + (2\sin^2(\theta + 60^\circ) + (2\sin^2(\theta + 60^\circ) + 60^\circ)]^2 + (2\sin^2(\theta + 60^\circ) + (2\sin^2(\theta + 60^\circ) + 60^\circ)]^2 + (2\sin^2(\theta + 60^\circ) + (2\sin^2(\theta + 60^\circ) + 60^\circ)]^2 + (2\sin^2(\theta + 60^\circ) + (2\sin^2(\theta + 60^\circ) + 60^\circ)]^2 + (2\sin^2(\theta + 60^\circ) + (2\sin^2(\theta + 60^\circ) + (2\sin^2(\theta + 60^\circ))]^2 + (2\sin^2(\theta + 60^\circ) + (2\sin^2(\theta + 60^\circ) + (2\sin^2(\theta + 60^\circ) + (2\sin^2(\theta + 60^\circ) + (2\sin^2(\theta + 60^\circ))]^2 + (2\sin^2(\theta + 60^\circ) + (2\sin^2(\theta + 60^\circ) + (2\sin^2(\theta + 60^\circ) + (2\sin^2(\theta + 60^\circ))]^2 + (2\sin^2(\theta + 60^\circ) + (2\sin^2(\theta + 60^\circ) + (2\sin^2(\theta + 60^\circ))]^2 + (2\sin^2(\theta + 60^\circ) + (2\sin^2(\theta + 60^\circ))]^2 + (2\sin^2(\theta + 60^\circ) + (2\sin^2(\theta + 60^\circ))]^2 + (2\sin^2(\theta + 60$

932 (c)

Given equation can be rewritten as

$$\frac{(x-2)^2}{12} - \frac{(y-1)^2}{4} = 1$$

Now, $e = \sqrt{1 + \frac{4}{14}} = \frac{2}{\sqrt{3}}$

: Distance between foci = $2ae = 2 \times \sqrt{12} \times \frac{2}{\sqrt{3}} = 8$

933 **(b)**

Let the circle be $x^2 + y^2 + 2 gx + 2 fy + c = 0$ This cuts the two given circles orthogonally $\therefore 2(gg_1 - ff_1) = c + c_1$...(i) and, $2(gg_2 + ff_2) = c + c_2$...(ii) Subtracting (ii) from (i), we get $2 g(g_1 - g_2) + 2f(f_1 - f_2) = c_1 - c_2$ Hence, the locus of (-g, -f) is $-2 x(g_1 - g_2) - 2 y(f_1 - f_2) = c_1 - c_2$ $\Rightarrow 2 x(g_1 - g_2) - 2 y(f_1 - f_2) + c_1 - c_2 = 0$, Which is the radical axis of the given circles 934 **(b)**

Given, $r^2 - 8(\sqrt{3}\cos\theta + \sin\theta) + 15 = 0$ Where $r\cos\theta = x$ and $y = r\sin\theta$ It can be rewritten in Cartesian form as $x^2 + y^2 - (8\sqrt{3x} + y) + 15 = 0$ $\Rightarrow x^2 + y^2 - 8\sqrt{3} + 8y + 15 = 0$

Now, radius=
$$\sqrt{(4\sqrt{3})^2 + (4)^2 - 15} = 7$$

The equation of a circle passing through (0,0), (a, 0) and (0, b) is $x^2 + y^2 - ax - by = 0$. So, the coordinates its centre are (a/2, b/2)<u>ALITER</u> The circle passing through O(0,0), A(a, 0) and B(0, b) is the circumcentre of right triangle *OAB* with *AB* as diagonal. So, its centre is the midpoint of diagonal *AB*

936 **(b)**

Let (x_1, y_1) be the mid-point of the line joining the common points of the given line and the given parabola. Then, the equation of the line is $y y_1 - 4(x + x_1) = y_1^2 - 8x_1$ [Using T = S'] $\Rightarrow 4x - yy_1 + y_1^2 - 4x_1 = 0$...(i) Clearly, equation (i) and 2x - 3y + 8 = 0represent the same line.

$$\therefore \frac{4}{2} = \frac{-y_1}{-3} = \frac{y_1^2 - 4x_1}{8}$$

$$\Rightarrow y_1 = 6 \text{ and } y_1^2 - 4x_1 = 16$$

$$\Rightarrow y_1 = 6 \text{ and } 36 - 4x_1 = 16 \Rightarrow y_1 = 6 \text{ and } x_1 = 5$$

Hence, the required point is (5, 6)

937 **(a)**

We have, m = Slope of the tangent = -3So, the equation of the tangent is

$$y = -3x + \left(\frac{2}{-3}\right) \Rightarrow 9x + 3y + 2$$
$$= 0 \left[\text{Using} : y = mx + \frac{a}{m}\right]$$

938 **(b)**

The equation of a chord passing through the vertex (0,0) of the parabola $y^2 = 4 ax$ and making an angle θ with *x*-axis, is $y = x \tan \theta$. This meets the parabola $y^2 = 4 ax$ at a point whose abscissa is given by $x^2 \tan^2 \theta = 4 ax \Rightarrow x = 4 a \cot^2 \theta$ $\therefore y = x \tan \theta \Rightarrow y = 4 a \cot^2 \theta \tan \theta = 4 a \cot \theta$ Hence, Length of the chord $= \sqrt{16 a^2 \cot^2 \theta + 16 a^2 \cot^4 \theta}$ $= 4 a \cot \theta \csc \theta = 4 a \cos \theta \csc^2 \theta$ <u>ALITER Let $P(at^2, 2at)$ be one end of the chord OP of the parabola $y^2 = 4ax$, where O(0,0) is the vertex of the parabola. Then,</u>

 $OP = \sqrt{a^2t^4 + 4a^2t^2} = at\sqrt{t^2 + 4}$ Since *OP* makes an angle θ with the axis of the parabola

$$\therefore \tan \theta = \text{Slope of } OP = \frac{2at}{at^2} = \frac{2}{t} \Rightarrow t = 2 \cot \theta$$

$$\therefore OP = 2a \cot \theta \sqrt{4 \cot^2 \theta + 4}$$

$$= 4a \cos \theta \csc^2 \theta = 4a \cos \theta \csc^2 \theta$$

939 (b)
The equation of the ellipse is $\frac{x^2}{9} + \frac{y^2}{5} = 1$
Let *e* be the eccentricity of the ellipse. Then,
 $e = \sqrt{1 - \frac{b^2}{a^2}} = \sqrt{1 - \frac{5}{9}} = \frac{2}{3}$
Hence, distance between foci = $2ae = 4$
940 (a)
We know, $SP = PM \Rightarrow SP^2 = PM^2$

$$\therefore (x - 0)^2 + (y - 0)^2 = \left(\frac{x + y - 4}{\sqrt{1^2 + 1^2}}\right)^2$$

$$\Rightarrow x^2 + y^2 = \left(\frac{x + y - 4}{\sqrt{2}}\right)^2$$

$$\Rightarrow 2x^2 + 2y^2 = x^2 + y^2 + 16 + 2xy - 8y - 8x$$

$$\Rightarrow x^2 + y^2 - 2xy + 8x + 8y - 16 = 0$$

941 (c)
We have,
 $OM = \text{Length of the perpendicular from (0,0) on
 $y = 2x + 1$

$$\Rightarrow OM = \frac{1}{\sqrt{5}}$$$

and, OP = Radius of the given circle = $\sqrt{2}$

$$\therefore PQ = 2 PM = 2\sqrt{OP^2 - OM^2} = 2\sqrt{2 - \frac{1}{5}} = \frac{6}{\sqrt{5}}$$

942 **(b)**

The centre and radii of two circles are

$$C_{1}(1,-3), C_{2}\left(\frac{5}{2},-3\right)$$
And $r_{1} = \sqrt{1+9-6} = 2$,

$$r_{2} = \sqrt{\frac{25}{4}+9-15} = \frac{1}{2}$$
Now, $C_{1}C_{2} = \sqrt{\left(1-\frac{5}{2}\right)+(-3+3)^{2}} = \frac{3}{2}$
And different of radii= $2-\frac{1}{2}=\frac{3}{2}$
Since, the distance between their centres is equal to the difference of their radii.
 \therefore The circles touch each other internally.

943 (d)

Here, $a^2 = 16, b^2 = 9$

The equation of normal at the point (-4, 0) is

$$\frac{16x}{-4} + \frac{9y}{0} = 16 + 9 \left[\because \frac{a^2x}{x_1} + \frac{b^2y}{y_1} = a^2 + b^2 \right]$$

$$\Rightarrow \frac{9y}{0} = 25 + \frac{16x}{4} \Rightarrow y = 0$$

944 (c)

Let the centre of circle be(g, f). If one end of a diameter is (1, 1), then the other end of a diameter is (2g - 1, 2f - 1)Since, this end is lie on the line x + y = 3 $\Rightarrow 2g - 1 + 2f - 1 = 30$ $\Rightarrow 2g + 2f = 5$: Locus of centre of circle is 2x + 2y = 5945 (d) Let (x_1, y_1) be the mid-point of the chord intercepted by the hyperbola $9x^2 - 16y^2 = 144$ on the line 9x - 8y - 10 = 0. Then, the equation of the chord is $9xx_1 - 16yy_1 = 9x_1^2 - 16y_1^2$ This equation and 9x - 8y - 10 = 0 represent the same line $\therefore \frac{x_1}{1} = \frac{-2y_1}{-1} = \frac{9x_1^2 - 16y_1^2}{10} = \lambda \text{ (say)}$ $\Rightarrow x_1 = \lambda, y_1 = \frac{\lambda}{2}$ and $9x_1^2 - 16y_1^2 = 10 \lambda$ $\Rightarrow 9 \lambda^2 - 4 \lambda^2 = 10 \lambda \Rightarrow \lambda = 2$ $\therefore x_1 = 2, y_1 = 1$ Hence, the mid-point is (2,1)946 (c) Since, CA is perpendicular to the tangent v r N1(h, 0)

$$\therefore r = \frac{|h - 0|}{\sqrt{1^2 + 1^2}}$$

$$\Rightarrow h^2 = 2r \dots (i)$$

Since, *CN* is perpendicular to the chord of line,

$$y = \frac{x}{\sqrt{3}}$$

$$\therefore CN = \frac{\left|\frac{h}{\sqrt{3}} - 0\right|}{\sqrt{\frac{1}{3} + 1}} = \frac{h}{2}$$

In $\triangle BNC$, $r^2 = 1^2 + \left(\frac{h}{2}\right)^2$
 $r^2 = 1 + \frac{h^2}{4}$...(ii)
From Eqs. (i) and (ii), we get
 $r^2 = 1 + \frac{2r^2}{4}$
 $\Rightarrow r = \sqrt{2}$

947 (a)

Given equation of parabola is $y^2 = ax$,

Whose focus is $\left(\frac{a}{4}, 0\right)$

Since, the equation of focal chord 2x - y - 8 = 0 is passes through the focus $\left(\frac{a}{4}, 0\right)$

- $2\left(\frac{a}{4}\right) 0 8 = 0$ $\Rightarrow a = 16$
- : Equation of directrix is $x = -\frac{a}{4}$

 $\Rightarrow x = -4$

948 (a)

Given equation can be rewritten as

$$(x+3)^{2} = -2\left(y - \frac{9}{2}\right)$$

$$\Rightarrow X^{2} = 4AY$$

where $X = x + 3, A = -\frac{1}{2}, Y = y - \frac{9}{2}$

$$\therefore \text{ Focus is } \left(0, \frac{-1}{2}\right)$$

But $X = x + 3 = 0$ and $Y = y - \frac{9}{2} = -\frac{1}{2}$
 $x = -3, y = 4$

 \therefore Required focus is (-3, 4)

950 **(d)**

Tangent and normal are at90°.

The point should lies on the opposite side of the origin of the line x + y - 1 = 0

Then,
$$\alpha + \alpha - 1 > 0$$

 $\Rightarrow 2\alpha > 1 \Rightarrow \alpha > \frac{1}{2}$...(i)
Also, $(\alpha^2 + \alpha^2 < 1)$
 $\Rightarrow \left(-\frac{1}{\sqrt{2}}\right) < \alpha < \left(\frac{1}{\sqrt{2}}\right)$
From relation (i) and (ii), we
 $\frac{1}{2} < \alpha < \frac{1}{\sqrt{2}}$

952 **(b)**

The normal at P(3,4) cuts the circle again at Q(-1,-2). Therefore, PQ is a diameter of the circle. Hence, its equation is (x-3)(x+1) + (y-4)(y+2) = 0 or, $x^2 + y^2 - 2x - 2y - 11 = 0$

get

953 (a)

Given equation of circle is $(x - 6)^2 + y^2 = (\sqrt{2})^2$

 $BC = \text{radius} = \sqrt{2}$ The length of the tangent from *S* to *B* $\therefore SB = \sqrt{(4-6)^2 + 0 - 2} = \sqrt{2^2 - 2} = \sqrt{2}$ From figure, $\triangle CBS$ is an isosceles triangle $\Rightarrow \theta = 45^\circ \Rightarrow m = 1$ ($\because BC = BS$) Similarly, for $\triangle CSD, m = -1$

954 **(c)**

Given that, the axis of parabola is *y*-axis and vertex is origin \therefore Equation of parabola is $x^2 = 4ay$ Since, it passes through (6, -3) \therefore (6)² = 4*a*(-3) \Rightarrow 36 = -12*a* \Rightarrow *a* = -3 \therefore Equation of parabola is $x^2 = -12y$

955 **(a)**

We know that sum of focal distance of any point on the ellipse always equal to the length of major axis, *ie*, it is equal to 2a

956 **(b)**

Let there be three points on the circle with rational coordinates. Then, centre of the circle will be the circumcentre of the triangle formed by the points. The coordinates of the circumcentre will be rational as the same are obtained by solving two linear equations with rational coeficients. But, the point ($\sqrt{3}$, 0) does not have rational coordinates. So, there cannot be three points on the circle with rational coordinates. Let *r* be the radius of the circle. Then, its equation is

$$(x - \sqrt{3})^2 + y^2 = r^2 \Rightarrow x = \sqrt{3} \pm \sqrt{r^2 - y^2}$$

We observe that $x = 0, r = 2, y = \pm 1$ satisfy this equation. Thus, $(0, \pm 1)$ are two points with rational coordinates on the circle

957 **(b)**

Given, 2b = 10, 2a = 8

$$\Rightarrow b = 5 \text{ and } a = 4$$

Required equation of ellipse is

$$\frac{x^2}{16} + \frac{y^2}{25} = 1$$

958 **(a)**

The equation of a circle touching the coordinate axes is

 $(x-a)^{2} + (y-a)^{2} = a^{2}$ This touches $\frac{x}{3} + \frac{y}{4} = 1$. i.e. 4x + 3y - 12 = 0 $\therefore \left|\frac{4a + 3a - 12}{\sqrt{4^{2} + 3^{2}}}\right| = a \Rightarrow |7a - 12| = 5a \Rightarrow a$ = 6, 1

Thus, the equation of the required circle is $x^2 + y^2 - 2 ax - 2 ay + a^2 = 0$, where a = 1, 6 959 **(c)**

We have,

Required area = $\frac{1}{2} \begin{vmatrix} a \cos \alpha & b \sin \alpha & 1 \\ a \cos \beta & b \sin \beta & 1 \\ a \cos \gamma & b \sin \gamma & 1 \end{vmatrix}$

$$= \frac{1}{2}ab \begin{vmatrix} \cos \alpha - \cos \gamma & \sin \alpha - \sin \gamma & 0 \\ \cos \beta - \cos \gamma & \sin \beta - \sin \gamma & 0 \\ \cos \gamma & \sin \gamma & 1 \end{vmatrix}$$
$$= 2ab \sin \frac{\alpha - \gamma}{2} \sin \frac{\beta - \gamma}{2} \begin{vmatrix} -\sin \frac{\alpha + \gamma}{2} & \cos \frac{\alpha + \gamma}{2} \\ -\sin \frac{\beta + \gamma}{2} & \cos \frac{\beta + \gamma}{2} \\ -\sin \frac{\beta + \gamma}{2} & \cos \frac{\beta + \gamma}{2} \end{vmatrix}$$
$$= 2ab \sin \left(\frac{\alpha - \gamma}{2}\right) \sin \left(\frac{\beta - \gamma}{2}\right) \sin \left(\frac{\beta - \alpha}{2}\right)$$
$$= 2ab \sin \left(\frac{\alpha - \beta}{2}\right) \sin \left(\frac{\beta - \gamma}{2}\right) \sin \left(\frac{\gamma - \alpha}{2}\right)$$
$$= 2ab \sin \left(\frac{\alpha - \beta}{2}\right) \sin \left(\frac{\beta - \gamma}{2}\right) \sin \left(\frac{\gamma - \alpha}{2}\right)$$
We have, $4x^2 + 16y^2 - 24x - 32y = 1$
$$\Rightarrow 4(x^2 - 6x) + 16(y^2 - 2y) = 1$$
$$\Rightarrow 4(x^2 - 6x + 9) + 16(y^2 - 2y + 1) - 36 - 16$$
$$= 1$$
$$\Rightarrow 4(x - 3)^2 + 16(y - 1)^2 = 53$$
$$\Rightarrow \frac{(x - 3)^2}{\frac{53}{4}} + \frac{(y - 1)^2}{\frac{53}{16}} = 1$$
On comparing with $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, we get
$$a^2 = \frac{53}{4} \text{ and } b^2 = \frac{53}{16}$$
$$\therefore \text{ Eccentricity of ellipse is } e = \sqrt{\frac{a^2 - b^2}{a^2}}$$
$$\Rightarrow e = \sqrt{\frac{(53/4) - (53/16)}{(53/4)}}$$
$$\Rightarrow e = \frac{\sqrt{3}}{2}$$

961 **(b)**

The vertices and foci of an ellipse are $(\pm 5, 0)$ and $(\pm 4, 0)$ respectively

$$\therefore a = 5 \text{ and } ae = 4$$

$$\Rightarrow e = \frac{4}{5}$$

$$\therefore e = \sqrt{1 - \frac{b^2}{a^2}}$$

$$\Rightarrow \frac{16}{25} = 1 - \frac{b^2}{25}$$

$$\Rightarrow b^2 = 9$$

Hence, equation of an ellipse is

$$\frac{x^2}{25} + \frac{y^2}{9} = 1 \implies 9x^2 + 25y^2 = 225$$

962 **(b)** The two circle are

 $S_1 = (x - a_1)^2 + (y - b_1)^2 = r_1^2$...(i) $S_2 = (x - a_2)^2 + (y - b_2)^2 = r_2^2$...(ii) The equation of the common tangent of these two circles is given by $S_1 - S_2 = 0$ i.e. $2x(a_1 - a_2) + 2y(b_1 - b_2) + (a_2^2 + b_2^2)$ $-(a_1^2+b_1^2)+r_1^2-r_2^2=0$ If this passes through the origin, then $(a_2^2 + b_2^2) - (a_1^2 + b_1^2) + r_1^2 - r_2^2 = 0$ $\Rightarrow (a_2^2 - a_1^2) + (b_2^2 - b_1^2) = r_2^2 - r_1^2$ 963 (c) Given equation of hyperbola is $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ and equation of conjugate hyperbola is $\frac{x^2}{h^2} - \frac{y^2}{a^2} = 1$. Since, e and e' are the eccentricities of the respective hyperbola, then $e^2 = 1 + \frac{b^2}{a^2}, (e')^2 = 1 + \frac{a^2}{b^2}$ $\therefore \frac{1}{e^2} + \frac{1}{e'^2} = \frac{a^2}{a^2 + b^2} + \frac{b^2}{a^2 + b^2}$ 964 (a) The centre and radius of given circle are (1, -3)and 4 respectively : Length of perpendicular from centre (1, -3) to 3x - 4y + k = 0 is equal to radius 4 $\Rightarrow \left|\frac{3+12+k}{\sqrt{9+16}}\right| = 4$ $\Rightarrow 15 + k = \pm 20$ $\Rightarrow k = 5, -35$ 965 (b) Given equation of circle is $x^{2} + y^{2} + 2gx + 2fy + k = 0$...(i) And equation of hyperbola is $xy = c^2$...(ii) From Eqs.(i) and (ii), we get $x^{2} + \left(\frac{c^{2}}{x}\right) + 2gx + 2f\left(\frac{c^{2}}{x}\right) + k = 0$ $\Rightarrow x^4 + 2gx^3 + kx^2 + 2fc^2x + c^4 = 0$: Sum of roots = $x_1 + x_2 + x_3 + x_4 = -\frac{2g}{1} = -2g$ 966 (a) Let the point be $P(\sqrt{2}\cos\theta,\sin\theta)$ on $\frac{x^2}{2} + \frac{y^2}{1} = 1$ $(0, \csc \theta) B = P(\sqrt{2} \cos \theta, \sin \theta)$ $O = (\sqrt{2} \sec \theta, 0)$ \therefore Equation of tangent at *P* is $\frac{x\sqrt{2}}{2}\cos\theta + y\sin\theta =$ 1

Whose intercept on coordinate axes are

 $A(\sqrt{2} \sec \theta, 0)$ and $B(0, \csc \theta)$: Mid point of its intercept between axes is $\left(\frac{\sqrt{2}}{2}\sec\theta,\frac{1}{2}\csc\theta\right) = (h,k)$ $\Rightarrow \cos \theta = \frac{1}{\sqrt{2}h} \text{ and } \sin \theta = \frac{1}{2k}$ Now, $\cos^2 \theta + \sin^2 \theta = 1 \Rightarrow \frac{1}{2h^2} + \frac{1}{4k^2} = 1$ The locus of mid point *M* is $\frac{1}{2x^2} + \frac{1}{4v^2} = 1$ 967 (d) The given equation can be rewritten as $4x^2 - 24x + 36 + 16y^2 - 32y + 16 - 36 - 16$ -12 = 0 $\Rightarrow (2x-6)^2 + (4y-4)^2 = 64$ $\Rightarrow \frac{(x-3)^2}{16} + \frac{(y-1)^2}{4} = 1$ The represents an ellipse and $a^2 = 16$, $b^2 = 4$ $\therefore e = \sqrt{1 - \frac{4}{16}} = \frac{\sqrt{3}}{2}$ 968 (c) Equation of the ellipse are $\frac{x^2}{13^2} + \frac{y^2}{5^2} = 1$ and $\frac{x^2}{a^2} + \frac{y^2}{5^2} = 1$ $\frac{y^2}{h^2} = 1$ and their eccentricity are $e = \sqrt{1 - \frac{25}{169}}$ and $e' = \sqrt{1 - \frac{b^2}{a^2}}$ According to given condition, e' = e $\Rightarrow \left| 1 - \left(\frac{b^2}{a^2}\right) = \left| 1 - \left(\frac{25}{169}\right) \right| \right|$ $\Rightarrow \frac{b}{a} = \frac{5}{13} \quad (\because a > 0, b > 0)$ $\Rightarrow \frac{a}{b} = \frac{13}{5}$ 969 (a) Given, $x^2 = 64 \sec^2 \theta$, $v^2 = 64 \tan^2 \theta$ $\therefore x^2 - y^2 = 64 (\sec^2 \theta - \tan^2 \theta)$ $\Rightarrow x^2 - v^2 = 64$: It is a rectangular hyperbola whose eccentricity is $\sqrt{2}$ The distance between directrices $=\frac{2a}{e}=\frac{2\times 8}{\sqrt{2}}=$ $8\sqrt{2}$ 970 (d) The equation of any tangent to the parabola $y^2 =$ 4x is

$$y = mx + \frac{1}{m} \quad \dots (i)$$

This touches the parabola $x^2 = -32y$, therefore the equation $x^2 = -32\left(mx + \frac{1}{m}\right)$ has equal roots.

$$\therefore (32 m)^2 = 4 \left(\frac{32}{m}\right) \quad [\therefore D^2 = 4ac]$$
$$\Rightarrow 8m^3 = 1 \Rightarrow m = \frac{1}{2}$$

On putting the value of m is Eq. (i). we get

x - 2y + 4 = 0

971 (c)

The coordinates of the centre and radius of given circle are (1, 1) and 2 respectively. Let *AB* be the chord subtending an angle of 120° at the centre. Let *M* be the mid point of *AB* and let its coordinates be (h, k)

In $\triangle OAM$,

$$AM = 0A \sin 60^{\circ}$$

$$= 2.\frac{\sqrt{3}}{2} = \sqrt{3}$$

$$\therefore 0M^{2} = 0A^{2} - AM^{2}$$

$$= 4 - (\sqrt{3})^{2} = 1$$
But $0M^{2} = (h - 1)^{2} + (k - 1)^{2}$

$$\therefore (h - 1)^{2} + (k - 1)^{2} = 1$$
Hence, locus of (h, k) is $(x - 1)^{2} + (y - 1)^{2} = 1$
or $x^{2} + y^{2} - 2x - 2y + 1 = 0$
972 **(b)**

Since, the perpendicular distance from centre (0, 0) to be tangent =radius of the circle

$$\Rightarrow \frac{|-1|}{\sqrt{\frac{1}{\alpha^2} + \frac{1}{\beta^2}}} = a$$

$$\Rightarrow \frac{1}{a^2} = \frac{1}{\alpha^2} + \frac{1}{\beta^2}$$

The locus of $\left(\frac{1}{\alpha}, \frac{1}{\beta}\right)$ is $\frac{1}{\alpha^2} = \frac{1}{x^2} + \frac{1}{\beta^2}$

973 **(b)**

Eliminating t from $y = 2 \cos t$ and $x = \sin^2 t$, we get

 $y^2 + 4x = 4$, which is a parabola

974 (d)

Equation of tangent to the ellipse

$$x^{2} + 4y^{2} = 5$$
 at the point (-1,1) is
 $-x + 4y = 5$
 $\Rightarrow x - 4y + 5 = 0$

975 (c)

Clearly, (1,1) is the mid-point of the line segment joining the centres of the circles and centres lie on the line passing through (1,1) and perpendicular to 3x + 4y - 7 = 0 i.e. 4x - 3y - 1 = 0Clearly, coordinates of points given in option (c) satisfy these two conditions

976 (a)

The equation of a circle passing through the intersection of the two given circles is

$$(x^{2} + y^{2} - 2x - 4y + 1) + \lambda(x^{2} + y^{2} - 4x - 2y + 4) = 0$$

$$\Rightarrow x^{2} + y^{2} - 2x\left(\frac{1 + 2\lambda}{1 + \lambda}\right) - 2y\frac{(2 + \lambda)}{1 + \lambda} + \left(\frac{1 + 4\lambda}{1 + \lambda}\right) = 0 \quad \dots (i)$$

The co-ordinates of its centre are $\left(\frac{1+2\lambda}{1+\lambda}, \frac{2+\lambda}{1+\lambda}\right)$ Since the centre lies on x + 2y - 3 = 0 $\therefore 1 + 2\lambda + 4 + 2\lambda - 3 - 3\lambda = 0 \Rightarrow \lambda = -2$ Putting $\lambda = -2$ in (i), we obtain that the required circle is $x^2 + y^2 - 6x + 7 = 0$

977 **(b)**

Let $y = mx + \frac{1}{m}$ is a tangent to $y^2 = 4ax$ Equation of normal to the parabola $x^2 = 4by$ at (x_1, y_1) is $y - y_1 = -\frac{2b}{x_1}(x - x_1)$ and $x_1^2 = 4by_1$ $\Rightarrow y - \frac{x_1^2}{4b} = -\frac{2b}{x_1}(x - x_1)$ $\Rightarrow y = -\frac{2b}{x_1}x + \frac{x_1^2}{4b} + 2b$ On comparing with $y = mx + \frac{1}{m}$, we get $m = -\frac{2b}{x_1} \qquad \dots (i)$ $\frac{x_1^2}{4b} + 2b = \frac{1}{m}$...(ii) From Eqs. (i) and (ii), we get $\frac{4b^2}{m^2 4b} + 2b = \frac{1}{m}$ $\Rightarrow b + 2bm^2 = m$ $\Rightarrow 2bm^2 - m + b = 0$ For real values of m, D > 0 $\Rightarrow 1 - 8b^2 > 0 \Rightarrow b^2 < \frac{1}{8} \Rightarrow |b| < \frac{1}{2\sqrt{2}}$ 978 (b)

Given equation of line is 3x - 2y = k ...(i) And equation of circle is $x^2 + y^2 = 4r^2$...(ii) Eq. (i) can be rewritten as $y = \frac{3}{2}x - \frac{k}{2}$ $\Rightarrow m = \frac{3}{2}, c = -\frac{k}{2}$ The line will meet the circle in one point, if $c = a\sqrt{1 + m^2}$ $\Rightarrow -\frac{k}{2} = (2r)\sqrt{1 + (\frac{3}{2})^2}$ On squaring, we get $\frac{k^2}{4} = 4r^2 \times \frac{13}{4}$

$$\Rightarrow k^2 = 52 r^2$$

979 (a)

Given equation of hyperbola is

$$\frac{x^2}{9} - \frac{y^2}{7} = 1$$

Distance between foci = $2ae = 2\sqrt{2a^2 + b^2}$

$$= 2\sqrt{9+7}$$
$$= 8$$

980 (a)

Given, $x^2y^2 = c^4$

$$\Rightarrow y^2(a^2 - y^2) = c^4$$
$$\Rightarrow y^4 - a^2y^2 + c^4 = 0$$

Let y_1, y_2, y_3 and y_4 are the roots

 $\therefore y_1 + y_2 + y_3 + y_4 = 0$

981 (c)

(1) Given equation of parabola is

$$y^2 = 4a(x+a)$$
 or $Y^2 = 4aX$

 \therefore focus is (a, 0)

 $\Rightarrow x + a = a, y = 0$

 $\Rightarrow x = 0, y = 0$

 \therefore Focus is at origin (0, 0)

(2) Given equation of line is $y = -\frac{lx}{m} - \frac{n}{m}$

It will touch the parabola $y^2 = 4ax$, if

$$-\frac{n}{m} = \frac{a}{-\frac{l}{m}} \Rightarrow nl = am^2$$

 \div Both statements are true

982 (a)

We know that the product of perpendiculars drawn from two foci S_1 and S_2 of an ellipse $\frac{x^2}{9} + \frac{y^2}{16} = 1$ on the tangent at any point *P* on the ellipse is equal to the square of the semiminor axis. $\therefore (S_1M_1) \cdot (S_2M_2) = 16$ 983 (a) Given, equation of circle touch the *y*-axis at (0, 3). In $\triangle OAB$, $r = \sqrt{3^2 + 4^2} = 5$ The point (0, 3) and radius 5 satisfies the equation $x^2 + y^2 \pm 10x - 6y + 9 = 0$

984 **(d)**

There is no *xy* term so we can make perfect square in *x* and *y*, from there it is clear that it's axes are parallel to coordinates axes, but whether major axis is parallel to *x* axis or parallel to *y*-axis depend on values of coefficients

985 **(c)**

Let
$$S_1 = x^2 + y^2 + 2x - 3y + 6 = 0$$

 $S_2 = x^2 + y^2 + x - 8y - 13 = 0$

So, the common chord is given by

$$S_1 - S_2 = 0$$

∴ Common chord is

x + 5y + 19 = 0

and this equation of common chord is satisfied by (1, -4)

only

986 **(b)**

Let the eccentric angle of *B* be θ . The co-ordinates of *A* and *B* are $\left(5\cos\frac{\pi}{6}, \frac{5}{3}\sin\frac{\pi}{6}\right)$ and

 $\left(5\cos\theta,\frac{5}{3}\sin\theta\right)$

The mid-point of AB is at the origin

$$\therefore \frac{5\cos\frac{\pi}{6} + 5\cos\theta}{2} = 0 \text{ and } \frac{\frac{5}{3}\sin\frac{\pi}{6} + \frac{5}{3}\sin\theta}{2} = 0$$
$$\Rightarrow \cos\theta = -\cos\frac{\pi}{6} \text{ and } \sin\theta = -\sin\frac{\pi}{6}$$
$$\Rightarrow \theta = \frac{7\pi}{6} \text{ or, } \theta = -\frac{5\pi}{6}$$

987 (c)

Any point on the given parabola is $(t^2, 2t)$. The equation of the tangent at (1, 2) is x - y + 1 = 0The image (h, k) of the point $(t^2, 2t)$ in x - y +1 = 0 is given by $\frac{h-t^2}{1} = \frac{k-2t}{-1} = \frac{-2(t^2-2t+1)}{1+1}$ $\therefore h = t^2 - t^2 + 2t - 1 = 2t - 1$ And $k = 2t + t^2 - 2t + 1 = t^2 + 1$ On eliminating *t* from h = 2t - 1 and $k = t^2 + 1$ We get, $(h + 1)^2 = 4(k - 1)$ The required equation of reflection is $(x+1)^2 = 4(y-1)$ 988 (c) Given, $x^2 + y^2 = \frac{1}{5}$ Centre of the circle is (0, 0)4y - 1 = 0 is $3x + 4y + \lambda = 0 \quad \dots(i)$ $\therefore \frac{3 \times 0 + 4 \times 0 + \lambda}{\sqrt{(3)^2 + (4)^2}} = \pm \frac{1}{\sqrt{5}}$ $\Rightarrow \lambda = \pm \sqrt{5}$ On putting the value of λ in Eq. (i), we get $3x + 4y = \pm \sqrt{5}$ 989 (c) The intersection point of diameter lines is (2, 3)which is the centre of circle Now, radius = $\sqrt{(5-2)^2 + (7-3)^2}$ $=\sqrt{9+16}=5$ ∴Required equation of circle is $(x-2)^2 + (v-3)^2 = 5^2$ $\Rightarrow x^2 + y^2 - 4x - 6y - 12 = 0$ 991 (a) If y = mx + c tpuches $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$, then $c^2 =$ $a^2m^2 - b^2$ Here, c = 6, $a^2 = 100$, $b^2 = 49$ 17

$$\therefore 36 = 100 \ m^2 - 49 \Rightarrow 100 \ m^2 = 85 \Rightarrow m = \sqrt{\frac{1}{2}}$$

992 **(a)**

Given parametric equation of parabola is $x = t^2 + 1, y = 2t + 1$

 $\Rightarrow x = \left(\frac{y-1}{2}\right)^2 + 1$ $\Rightarrow (y-1)^2 = 4(x-1)$ $\Rightarrow Y^2 = 4X$ Vertex is (1, 1), length of latusrectum = 4 Clearly, equation of directrix is $X = -1 \Rightarrow x - 1 = -1 \Rightarrow x = 0$ 993 (c) The length of the subtangent at a point to the parabola is twice the abscissa of the point. Therefore, the required length is 8 994 (a) Equation of asymptotes of the hyperbola are $x^2 + 2xy - 3y^2 = 0$ The angle between asymptotes is $\theta = \tan^{-1} \left(\frac{1 - 1(-3)}{1 - 3} \right)$ $= \tan^{-1}\left(\frac{1+3}{-2}\right) = \tan^{-1}(\pm 2)$ 995 (b) The equation of the circle passing through (2, 0), (0, 1) and (4, 5) is $3(x^2 + y^2) - 13x - 17y + 14 = 0$ This passes through (0, c) $\therefore \quad 3c^2 - 17c + 14 = 0 \quad \Rightarrow \quad c = 1, \frac{14}{3}$ Since, c = 1 is already there, for point (0, 1)Therefore, we take $c = \frac{14}{3}$ 996 (a) Since, x + y - 1 = 0 is a tangent to the parabola $y^2 - y + x = 0$, then point of contact is satisfied by both of these equations. The point (0, 1)satisfies it 997 (a) If line 4x - 3y + k = 0 touches the ellipse $\frac{x^2}{9}$ + $\frac{y^2}{5} = 1$, then $\frac{k}{3} = \sqrt{9 \times \left(\frac{4}{3}\right)^2 + 5} = \pm\sqrt{21}$ $\Rightarrow k = \pm 3\sqrt{21}$ 998 (d) Let *x* be any point on the parabola, then y = 3x, putting this value in the given equation $y^2 = 18x$, we get

$$(3x)^2 = 18x \Rightarrow x = 2 \text{ and } y = 6$$

999 (a)

As we know that distance from vertex to the

parabola is equal to the focus and directrix

: The tangent at the vertex divide in the ratio 1:1

100 (c)

- Let $S \equiv 4x^2 + 5y^2 1 = 0$ 0
 - At (4, -3),

$$S_1 = 4(4)^2 + 5(-3)^2 - 1 = 108 > 0$$

Hence, point lies outside the curve

100 (a)

The intersection points of line and circle are 1 $A\left(-\frac{1}{2},\frac{1}{2}\right)$ and B(-1,0)These are the end points of a diameter

∴ The equation of circle is

$$\begin{pmatrix} x + \frac{1}{2} \end{pmatrix} (x + 1) + \begin{pmatrix} y - \frac{1}{2} \end{pmatrix} (y - 0) = 0 \Rightarrow (2x + 1)(x + 1) + (2y - 1)y = 0 \Rightarrow 2(x^2 + y^2) + 3x - y + 1 = 0$$

100 **(b)**

2 : Radius of circle =perpendicular distance of tangent x + y - 5 = 0 from the centre (1, 2)

$$r = \frac{|1+2-5|}{\sqrt{1+1}} = \sqrt{2}$$
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1,

Hence, the required equation of the circle is

$$(x-1)^{2} + (y-2)^{2} = (\sqrt{2})^{2}$$

$$\Rightarrow x^{2} + 1 - 2x + y^{2} + 4 - 4y = 2$$

$$\Rightarrow x^{2} + y^{2} - 2x - 4y + 3 = 0$$

100 **(b)**

We know that, if (x_1, y_1) is the mid point of the 3 chord, then equation of chord is

$$T = S_1 \Rightarrow \frac{xx_1}{25} + \frac{yy_1}{9} = \frac{x_1^2}{25} + \frac{y_1^2}{9}$$

: Point is (1, 1), then

$$\frac{x}{25} + \frac{y}{9} = \frac{1}{25} + \frac{1}{9}$$

$$\Rightarrow 9x + 25y = 34$$

100 (a)

4 Since, the semi latusrectum of a parabola is the HM of segments of a focal chord.

$$\therefore \text{ Semilatus rectum} = \frac{2SP \cdot SQ}{SP + SQ}$$
$$= \frac{2 \times 3 \times 2}{3 + 2} = \frac{12}{5}$$
$$\therefore \text{ Latus rectum of the parabola} = \frac{24}{5}$$

100 (d)

The condition for a circle bisecting the 6 circumference of the second circle is $2g_2(g_1 - g_2) + 2f_2(f_1 - f_2) = c_1 - c_2$ $\Rightarrow 2(1)(3-1) + 2(-3)(-1+3) = k + 15$ $\Rightarrow 2(2) + (-6)(2) = k + 15$ $\Rightarrow 4 - 12 = k + 15$ $\Rightarrow -8 = k + 15$ $\Rightarrow k = -23$ 100 (c) 7 The given equation can be rewritten as $\frac{x^2}{20} + \frac{y^2}{\frac{45}{2}} = 1$ On comparing the given equation with the standard equation, we get $a^2 = 20, b^2 = \frac{45}{4}$ \therefore The equation of normal at the point (2, 3) is $\frac{x-2}{\frac{2}{20}} = \frac{y-3}{\left(\frac{12}{45}\right)}$ $\Rightarrow 40(x-2) = 15(y-3)$ $\Rightarrow 8x - 3y = 7 \Rightarrow 3y - 8x + 7 = 0$ 100 (d) 9 It is given that $\angle PAQ = \pi/2$ $\therefore \frac{\bar{b}\sin\alpha}{a\cos\alpha - a} \times \frac{b\sin\beta}{a\cos\beta - a} = -1$ $\Rightarrow \frac{\sin \alpha \sin \beta}{(\cos \alpha - 1)(\cos \beta - 1)} = -\frac{a^2}{b^2}$ $\Rightarrow \frac{4\sin\alpha/2\sin\beta/2\cos\alpha/2\,\cos\beta/2}{4\sin^2\alpha/2\sin^2\beta/2} = -\frac{a^2}{b^2}$ $\Rightarrow \tan \frac{\alpha}{2} \tan \frac{\beta}{2} = -\frac{b^2}{a^2}$ 101 **(b)** 0 We have, xy = 7x + 5yx(y-7) - 5y = 0x(y-7) = 5(y-7) + 35(x-5)(y-7) = 35

Now, asymptotes of xy = c are x = 0, y = 0

 $\therefore x - 5 = 0, y \Rightarrow -7 = 0$

ie, x = 5, y = 7 are asymptotes

101 (d)

1 Given equation can be rewritten as $(x + 1)^2 + (y + 2)^2 = (2\sqrt{2})^2$

Let required point be $Q(\alpha, \beta)$ Then. Mid point of P(1, 0) and $Q(\alpha, \beta)$ is the centre of the circle. *ie* $\frac{\alpha+1}{\alpha+1} = -1$ and $\frac{\beta+0}{\alpha+1} = -2$

$$\alpha = -3$$
 and $\beta = -4$
 \therefore required point is $(-3, -4)$

101 **(b)**

2 Circles having (3,1) and (-1,5) as limiting points are $S_1 \equiv (x-3)^2 + (y-1)^2 = 0$ and, $S_2 \equiv (x+1)^2 + (y-5)^2 = 0$ The equation of the family of circles is $S_1 + \lambda(S_1 - S_2) = 0$ $\Rightarrow (x-3)^2 + (y-1)^2 + \lambda(-8x + 8y - 16) = 0$...(i) It passes through (0,0) $\therefore 10 - 16 \lambda = 0 \Rightarrow \lambda = \frac{5}{8}$

Substituting the value of λ in (i), we get $x^2 + y^2 - 11x + 3y = 0$ as the equation of the required circle

101 **(c)**

3 Equation of tangent to $y^2 = 4x$ is $y = mx + \frac{1}{m}$

Since, tangent passes through (1, 4)

$$\therefore 4 = m + \frac{1}{m} \Rightarrow m^2 - 4m + 1 = 0$$

$$\therefore m_1 + m_2 = 4 \text{ and } m_1 m_2 = 1$$

Now,
$$|m_1 - m_2| = \sqrt{(m_1 + m_2)^2 - 4m_1m_2}$$

$$=\sqrt{16-4}=2\sqrt{3}$$

Thus, the angle between tangent

$$\tan \theta = \left| \frac{m_2 - m_1}{1 + m_1 m_2} \right| = \left| \frac{2\sqrt{3}}{1 + 1} \right| = \sqrt{3}$$
$$\Rightarrow \theta = \frac{\pi}{3}$$

101 (a)

4 In $\triangle OAC$, $OC^2 = 2^2 + 4^2 = 20$

x'
$$O$$
 $2 A 2$ x'

∴ Required equation of circle is $(x \pm 2)^2 + (y \pm 4)^2 = 20$ ⇒ $x^2 + y^2 \pm 4x \pm 8y = 0$

101 (a)

5

The equation of the tangent to $4y^2 = x^2 - 1$ at (1,0) is

$$4(y \times 0) = x \times 1 - 1 \Rightarrow x - 1 = 0 \Rightarrow x = 1$$

6 Distance between two foci, 2ae = 7 + 1 = 8

$$\therefore ae = 4 \Rightarrow a = 8 \left[\therefore e = \frac{1}{2}, \text{given} \right]$$
$$\therefore b^2 = a^2(1 - e^2) = 64 \left(1 - \frac{1}{4} \right)$$
$$\Rightarrow b = 4\sqrt{3}$$

Since, the centre of the ellipse is the mid point of the line joining two foci, therefore the coordinates of the centre the (3, 0)

∴ *I*ts equation is

$$\frac{(x-3)^2}{8^2} + \frac{(y-0)^2}{(4\sqrt{3})^2} = 1 \dots (i)$$

Hence, the parametric coordinates of a point on Eq.(i) are $(3 + 8 \cos \theta, 4\sqrt{3} \sin \theta)$

101 (a)

7 Since, focal chord of parabola $y^2 = ax$ is 2x - y - 8 = 0 \therefore This chord passes through focus $ie, \left(\frac{a}{4}, 0\right)$ $\therefore 2 \cdot \frac{a}{4} - 0 - 8 = 0$ $\Rightarrow a = 16$ \therefore Directrix is $x = -4 \Rightarrow x + 4 = 0$ 101 (c) 8 Here a = 2, m = -1 \therefore Required point is $(am^2, -2am) = (2,4)$

101 **(a)**

9 Here, the focal chord to $y^2 = 16x$ is tangent to circle $(x - 6)^2 + y^2 = 2$

 \Rightarrow focus of parabola is (4, 0)

Now, tangent are drawn from (4, 0) to $(x - 6)^2 + y^2 = 2$

Since, *PA* is tangent to circle

 $\tan \theta = \text{slope of tangent} = \frac{AC}{AP} = \frac{\sqrt{2}}{\sqrt{2}} = 1$ or $\tan \theta = \frac{BC}{BP} = -1$

 \therefore Slope of focal chord as tangent to circle= ± 1

102 **(c)**

Let (h, k) be the mid point of the chord drawn 0 through the origin. Then the equation of the chord is $hx + ky - (x + h) = h^2 + k^2 - 2h$ [Using: T =*S*′1 This passes through (0,0) $\therefore -h = h^2 + k^2 - 2 h \Rightarrow h^2 + k^2 - h = 0$ Hence, the locus of (h, k) is $x^2 + y^2 - x = 0$ 102 (d) The equation of the circle passing through the 1 point (1,0), (0,1) and (0,0) is $x^2 + y^2 - x - y = 0$. This passes through (2 k, 3 k) $4k^{2} + 9k^{2} - 2k - 3k = 0 \Rightarrow k = 0, k = 5/13$ 102 (a) Given focus for parabola is S(0,0) and equation of 2 directrix is x + y = 4Let P(x, y) be any point on the parabola Then, $SP^2 = PM^2$ $(x-0)^{2} + (y-0)^{2} = \left[\frac{x+y-4}{\sqrt{1+1}}\right]^{2}$ $\Rightarrow x^{2} + y^{2} = \frac{x^{2} + y^{2} + 16 + 2xy - 8y - 8x}{2}$ $\Rightarrow x^2 + y^2 - 2xy + 8x + 8y - 16 = 0$

102 **(b)** Let the point is 3 $(3t^2, 6t)$: Focal distance = $3t^2 + 3$ $\Rightarrow 3t^2 + 3 = 12$ $\Rightarrow 3t^2 = 9$ $\Rightarrow t^2 = 3$ $\Rightarrow t = \sqrt{3}$ Hence, the required point is $(9, 6\sqrt{3})$ 102 (b) Required equation is 4 $(x-h)^2 + (y-k)^2 = k^2$ $\Rightarrow x^2 + y^2 - 2hx - 2ky + h^2 = 0$ 102 (a) 5 Let P(x, y) be any point on the parabola. By definition of parabola PM = PS $\frac{x+2y-1}{\sqrt{1+4}} = \sqrt{(x-1)^2 + y^2}$ $\Rightarrow x^{2} + 4y^{2} + 1 + 4xy - 4y - 2x$ $= 5(x^{2} + 1 - 2x + y^{2})$ $\Rightarrow 4x^{2} + y^{2} - 8x + 4y - 4xy + 4 = 0$ 102 (c) 6 Required length of tangent from the point (3, -4)to the circle $x^2 + y^2 - 4x - 6y + 3 = 0$ $=\sqrt{3^2+4^2-4(3)-6(-4)+3}=\sqrt{40}$ \therefore Square of length of tangent =40 102 (c) Let $P(t_1^2, 2t_1), Q(t_2^2, 2t_2)$ and $R(t_3^3, 2t_3)$ be three 7 points on $y^2 = 4x$ such that normal at *P* and *R* intersect at O. Then, $t_1 t_3 = 2$ Let *S*(*h*, *k*) be the mid-point of *PR*. Then, $2h = t_1^2 + t_3^2$ and $k = t_1 + t_3$ Now, $2h = t_1^2 + t_3^2$ $\Rightarrow 2h = (t_1 + t_3)^2 - 2t_1t_3 \Rightarrow 2h = k^2 - 4$ So, the locus of (h, k) is $2x = y^2 - 4$ or, $y^2 = 2(x + 2)$

Clearly, it represents a parabola having vertex at

8 The equation of the ellipse is

$$4(x-3)^2 + 9(y+2)^2 = 144 \text{ or, } \frac{(x-3)^2}{36} + \frac{(y+2)^2}{16} = 1$$

Let *e* be its eccentricity. Then,

$$e = \sqrt{1 - \frac{16}{36}} = \frac{\sqrt{5}}{3}$$

So, equations of the directrices are

$$x - 3 = \pm \frac{6 \times 3}{\sqrt{5}} = \pm \frac{18}{\sqrt{5}}$$
 or, $5x - 15 \pm 18\sqrt{5} = 0$

102 **(b)**

9 We have, $a^2 = 25, b^2 = 16$ $\therefore e = \sqrt{1 - \frac{b^2}{1 - \frac{b^2}{1 - \frac{16}{1 - \frac{16}{1 - \frac{3}{1 - \frac{16}{1 - \frac{3}{1 - \frac{3$

$$\therefore e = \sqrt{1 - \frac{1}{a^2}} = \sqrt{1 - \frac{1}{25}} = \frac{1}{5}$$

So, the coordinates of foci *S* and *S'* are (3,0) and (-3,0) respectively.

Let $P(5 \cos \theta, 4 \sin \theta)$ be a variable point on the ellipse. Then,

 $A = \text{Area of } \Delta PSS' = 12\sin\theta$

Clearly, maximum value of *A* is 12 sq. units 103 **(b)**

- 0 Given curve is $y^2 = 16x$ Let any point be (h, k) But 2h = k, then $k^2 = 16h$
 - $\Rightarrow 4h^2 = 16h$
 - \Rightarrow h = 0, h = 4

$$\Rightarrow k = 0, k = 8$$

: Points are(0, 0), (4, 8)

Hence, focal distance are respectively

0 + 4 = 4, 4 + 4 = 8 [: focal distance = h + a]

103 **(a)**

1 We have, $x = a(\sin \theta + \cos \theta), y = b(\sin \theta - \cos \theta)$ $\Rightarrow \frac{x^2}{a^2} = \frac{y^2}{b^2} = 2, \text{ which represents an ellipse}$ 103 **(b)** 3 Here $C_1(-7,3), r_1 = 6$ and $C_2(5,-2), r_2 = 7$ \therefore Required point of contact is $\left(\frac{r_1x_2 + r_2x_1}{r_1 + r_2}, \frac{r_1y_2 + r_2y_1}{r_1 + r_2}\right)$ $\equiv \left(\frac{6 \times 5 + 7 \times -7}{6 + 7}, \frac{6 \times -2 + 7 \times 3}{6 + 7}\right)$ $\equiv \left(-\frac{19}{13}, \frac{9}{13}\right)$ 103 **(b)**

Let the coordinates of *P* and *Q* be $(at_1^2, 2at_1)$ and 4 $(at_2^2, 2 at_2)$ respectively. Then, $y_1 = 2 at_1$ and $y_2 = 2 a t_2.$ The coordinates of the point of intersection of the tangents at P and Q are $(at_1 t_2, a (t_1 + t_2))$ $\therefore y_3 = a(t_1 + t_2)$ $\Rightarrow y_3 = \frac{y_1 + y_2}{2} \Rightarrow y_1, y_3, y_2 \text{ are in A. P.}$ 103 (a) Equation of circle is $x^2 + y^2 - 2x + 4y - 4 = 0$ 5 \therefore Centre is (1, -2)As we know the equation of diameter is passing through centre Now, taking option (a) ie, x - y - 3 = 0 $\Rightarrow 1 + 2 - 3 = 0 \Rightarrow 0 = 0$: It is a required equation of diameter 103 (a) 6 Given that, 5x - 12y + 10 = 0 ...(i) And -5x + 12y + 16 = 0 ...(ii) Slope of Eq. (i), $=\frac{5}{12}$ Slope of Eq. (ii) = $\frac{5}{12}$ Thus, Eqs. (i) and (ii) are parallel Therefore, distance between parallel lines = diameter of the circle $\frac{|10+16|}{\sqrt{25+144}} = 2 \times \text{radius of the circle}$ \Rightarrow 2 radius of circle = $\frac{26}{12}$ \Rightarrow Radius of circle=1 103 (d) Let *P* be image of the origin in the line x + y = 17 Since, OA = OB, therefore Q is the mid point of AB \therefore Coordinates of Q are $\left(\frac{1}{2}, \frac{1}{2}\right)$ $\mathcal{D} = \left\{ \begin{array}{c} B \left(0, 1 \right) \\ P \left(x_1, y_1 \right) \\ \mathcal{D} \\ \mathbf{x} + \mathbf{y} = \\ \mathbf{x} \\ \mathbf{x} + \mathbf{y} = \\ \mathbf{y} \\ \mathbf{x} \\ \mathbf{y} \\ \mathbf{y$ Let the coordinates of *P* be (x_1, y_1) Since, Q is the mid point of OP $\therefore \quad \frac{0+x_1}{2} = \frac{1}{2} \text{ and } \frac{0+y_1}{2} = \frac{1}{2} \implies x_1 = 1, y_1 = 1$ \therefore The coordinates of *P* are (1, 1) 103 (d) 8

Given equation of ellipse can be rewritten as

$$\frac{(x-3)^2}{16} + \frac{y^2}{25} = 0$$

The major axis of ellipse is a line parallel to y-axis therefore eccentricity of ellipse is given by

$$e = \sqrt{1 - \frac{16}{25}} = \frac{3}{5}$$

103 (c)

9

- Let k = 64 $\therefore v = x^2 - 2 \times 8x + 64$
 - $\Rightarrow y = (x 8)^2$
 - \Rightarrow It has vertex on *x* –axis

104 (a)

Given equation can be rewritten as 0

 $9[(x + 4)^2 - 16] - 16[(y + 1)^2 - 1] - 16 = 0$ $\Rightarrow \frac{(x+4)^2}{16} - \frac{(y+1)^2}{9} = 1$ Length of latusrectum $=\frac{2b^2}{a}=\frac{2\times 9}{4}=\frac{9}{2}$

104 (d)

Given that, $x^2 + y^2 + 2gx + 2fy + c = 0$ 2 and $g^2 + f^2 = c$ \therefore Radius of circle = $\sqrt{g^2 + f^2 - c}$ \Rightarrow Radius = 0 (:: g² + f² = c) Thus given equation represents a circles of radius 0

104 (a)

By definition of parabola $PM^2 = PS^2$ 3 $\left[\frac{3x - 4y + 1}{\sqrt{3^2 + (-4)^2}}\right]^2 = (x - 5)^2 + (y - 3)^2$ $P(\mathbf{x}, y)$ M3x - 4y + 1 =S(5, 3) $\Rightarrow 9x^{2} + 16y^{2} + 1^{2} - 24xy - 8y + 6x$ $= 25(x^{2} + 25 - 10x + y^{2} + 9 - 6y)$ $\Rightarrow 16x^2 + 9y^2 - 256x - 142y + 24xy + 849 = 0$ $\Rightarrow (4x + 3y)^2 - 256x - 142y + 849 = 0$ 104 (c)

4 The radial axis of the Two given circles is

$$2x\left(g-\frac{3}{4}\right) + 2y(f-2) = 0 \quad [\because S_1 - S_2 = 0]$$

$$\Rightarrow x\left(g-\frac{3}{4}\right) + y(f-2) = 0$$
It touches the circle

$$x^2 + y^2 + 2x + 2y + 1 = 0$$

$$\therefore \left|\frac{-\left(g-\frac{3}{4}\right) - (f-2)}{\sqrt{\left(g-\frac{3}{4}\right)^2 + (f-2)^2}}\right| = 1$$

$$\Rightarrow \left(g-\frac{3}{4}\right)^2 + (f-2)^2 + 2\left(g-\frac{3}{4}\right)(f-2)$$

$$= \left(g-\frac{3}{4}\right)^2 + (f-2)^2$$

$$\Rightarrow \left(g-\frac{3}{4}\right)(f-2) = 0$$

$$\Rightarrow g = \frac{3}{4} \text{ or } f = 2$$
104 (c)
5 The equation of normal at point $P(a \cos \theta, b \sin \theta)$ is

 $ax \sec \theta - by \operatorname{coese} \theta = a^2 - b^2$ The point of intersection with coordinate axes are $R\left(\frac{a^2-b^2}{a}\cos\theta,0\right)$ and $\left(0,\frac{a^2-b^2}{a}\sin\theta\right)$ Now, $RP^2 = \left[a\cos\theta - \left(\frac{a^2 - b^2}{a}\right)\cos\theta\right]^2 + b^2\sin^2\theta$ $=\frac{b^2}{a^2}(b^2\cos^2\theta+a^2\sin^2\theta)$ And $RS^2 = \frac{a^2}{b^2} (b^2 \cos^2 \theta + a^2 \sin^2 \theta)$ $\therefore RP^2: RS^2 = b^4: a^4$ \Rightarrow RP: PS = b^2 : a^2

104 **(b)**

6

5

4

Let mid point of chord of the hyperbola

$$\frac{x^2}{6} - \frac{y^2}{4} = 1$$
 is

 (x_1, y_1) . Therefore equation of chord is

$$T = S_{1}$$

$$\Rightarrow \frac{xx_{1}}{6} - \frac{yy_{1}}{4} - 1$$

$$= \frac{x_{1}^{2}}{6} - \frac{y_{1}^{2}}{4} - 1$$

$$\Rightarrow \frac{x_{1}}{6}x - \frac{y_{1}}{4}y$$

$$= \frac{x_{1}^{2}}{6} - \frac{y_{1}^{2}}{4}$$

Comparing it with 4x - 3y = 5, we get

 $x_1 = 2, y_1 = 1$

104 (c)

Let $P(at^2, 2at)$ be a point on the parabola $y^2 =$ 7 4ax having S(a, 0) as focus. The equation of the circle described on PQ as diameter is $(x-at^{2})(x-a) + (y-2at)(y-0) = 0$ Clearly, it touches *y*-axis i.e. x = 0 as (y - x) $(2at)y + a^2t^2 = 0$ has equal roots 104 (c) 8 We have,

Distance of the point from y-axis = 3(Distance of *P* from (4,0)) Distance of *P* from (4,0) $\Rightarrow \frac{1}{\text{Distance of } P \text{ from } y - \text{axis}} = \frac{1}{3}$ \Rightarrow Locus of *P* is an ellipse with eccentricity e =1/3

104 (b)

9 The centers and radii of given circles are $C_1(4,-1), C_2(1,8)$ and $r_1 = \sqrt{16 + 1 + 0} = \sqrt{17}$ $r_2 = \sqrt{1 + 64 - 25} = \sqrt{40}$ Now, $C_1 C_2 = \sqrt{(1-4)^2 + (8+1)^2} = \sqrt{90}$ and $r_1 + r_2 = \sqrt{17} + \sqrt{40}$ $\therefore \quad C_1 C_2 < r_1 + r_2$ Hence, the number of common tangents are2

105 **(b)**

0 Since, transverse and conjugate axes are equal

ie,
$$a = b$$

$$\therefore \frac{x^2}{a^2} - \frac{y^2}{a^2} = 1$$
Hence, $e = \sqrt{1 + \frac{a^2}{a^2}} = \sqrt{1 + 1} = \sqrt{2}$

105 (b)

1

Given,
$$2ae = 8$$
 and $\frac{2a}{e} = 6 \Rightarrow 2a = 6e$
 $\therefore e^2 = \frac{8}{6} \Rightarrow e = \frac{2}{\sqrt{3}}$
 $\Rightarrow \frac{4}{\sqrt{3}}a = 8 \Rightarrow a = 2\sqrt{3}$
and $b^2 = a^2(e^2 - 1) = 12\left(\frac{4}{3} - 1\right) = 4$
 \therefore Length of latusrectum $= \frac{2b^2}{a} = \frac{2 \times 4}{2\sqrt{3}} = \frac{4}{\sqrt{3}}$

105 **(b)**

Given hyperbola can be rewritten as 2

$$\frac{(x+2)^2}{4} - \frac{(y-1)^2}{5} = 1$$

$$\therefore \ e = \sqrt{\frac{4+5}{4}} = \sqrt{\frac{9}{4}} = \frac{3}{2}$$

105 **(b)**
3 Let
$$S_1 \equiv x^2 + y^2 = 9$$

$$PA.PB = \left(\sqrt{S_1}\right)^2$$
$$= \left(\sqrt{(3)^2 + (11)^2 - 9}\right)^2 = 121$$

105 **(b)**

5

6

 $\therefore xy = 4$...(i) and xy = 9 ...(ii) Eqs.(i) and (ii) are the equations of rectangular hyperbolas. $\therefore e_1 = \sqrt{2}$ and $e_2 = \sqrt{2}$, then $e_1 - e_2 = 0$ 105 **(b)** Let equation of tangent to hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ is $y = mx + \sqrt{a^2m^2 - b^2}$ $ie, mx - y + \sqrt{a^2m^2 - b^2} = 0$ ∴ Required product $= \left| \frac{mae + \sqrt{a^2m^2 - b^2}}{\sqrt{m^2 + 1}} \right| \left| \frac{-mae + \sqrt{a^2m^2 - b^2}}{\sqrt{m^2 + 1}} \right|$ $= \left| \frac{a^2m^2 - b^2 - m^2a^2e^2}{m^2 + 1} \right|$ $= \frac{\left|\frac{m^{2} + 1}{m^{2} + 1}\right|}{\left|\frac{-m^{2} b^{2} - b^{2}}{m^{2} + 1}\right|}$ $= \frac{\left|\frac{-m^{2} b^{2} - b^{2}}{m^{2} + 1}\right| \quad [\because b^{2} = a^{2}(e^{2} - 1)]$ $= h^{2}$ 105 (a)

Let the point be $(2, y_1)$, then 7 $2^2 + y_1^2 = 13$ $\Rightarrow y_1 = \pm 3$ Hence, the required tangents are $2x \pm 3y = 13$ 105 (c) 8 Let the equation of tangent parallel to x + 2y +3 = 0 be $x + 2y + \lambda = 0$ Condition for tangency $\left(-\frac{\lambda}{2}\right)^2 = 4\left(1+\frac{1}{4}\right) \quad [\because \ c^2 = a^2(1+m^2)]$

 $\Rightarrow \lambda^2 = 20 \Rightarrow \lambda = +2\sqrt{5}$

∴Required equation of tangent is $x + 2y = \pm 2\sqrt{5}$ 105 (c) 9 The given equation of circle is $x^2 + y^2 - 6x + 4y - 12 = 0$ The centre and radius of circle are (3, -2) and 5 respectively : Length of perpendicular from (3, -2) to 4x + $3y + \lambda = 0$ is equal to radius 5 $\therefore \left| \frac{12 - 6 + \lambda}{\sqrt{16 + 9}} \right| = 5$ $\Rightarrow 6 + \lambda = \pm 25$ $\Rightarrow \lambda = 19, -31$ Then, equations of tangents are 4x + 3y + 19 = 0and 4x + 3y - 31 = 0106 (d) The tangent at (1, 7) to the parabola $x^2 = y - 6$ is 0 $x(1) = \frac{1}{2}(y+7) - 6$ [replacing $x^2 \rightarrow xx_1$ and $2y \rightarrow y + y_1$] $\Rightarrow 2x = y + 7 - 12$ $\Rightarrow y = 2x + 5$...(i) Which is also tangent to the circle $x^{2} + v^{2} + 16x + 12v + c = 0$ $ie_{x}x^{2} + (2x + 5)^{2} + 16x + 12(2x + 5) + c = 0$ or $5x^2 + 60x + 85 + c = 0$ Must have equal roots $\Rightarrow \alpha = \beta$ for above equation *ie*, $\Rightarrow \alpha + \beta = -\frac{60}{r}$ or $\alpha = -6$ (as $\alpha = \beta$) $\therefore x = -6$ and y = 2x + 5 = -7 \Rightarrow Point of contact is (-6, -7)106 **(b)** 1 y = a, then length of the perpendicular from centre=radius

$$\therefore \quad \left| \frac{-2 + 2 - a}{\sqrt{a}} \right| = 2 \quad \Rightarrow \quad a = 2\sqrt{2}$$

Hence, the equation of tangent is $x + y = 2\sqrt{2}$ 106 (d) 2 Given equation of circle is $x^2 + y^2 - 2x - 4y - 20 = 0$ P (16, 7) \therefore centre is (1, 2) and Radius, $r = \sqrt{1^2 + 2^2 + 20} = 5$ Now, $PC = \sqrt{(16-1)^2 + (7-2)^2} = \sqrt{250}$ In ΔPCQ , $PQ = \sqrt{PC^2 - QC^2}$ $=\sqrt{\left(\sqrt{250}\right)^2 - (5)^2} = 15$ ∴ area of quadrilateral PQCR = 2 area of ΔPCQ $=\frac{2.1}{2}PQ.QC$ = 1.15.5 = 75 sq unit 106 (b) Any point on hyperbola $\frac{(x+1)^2}{16} - \frac{(y-2)^2}{4} = 1$ is of 3 the form $(4 \sec \theta - 1, 2 \tan \theta + 2)$. 106 **(b)** 4 Given parameter equation are $\cos \theta = \frac{x-2}{3}$ and $\sin \theta = \frac{y+1}{3}$ Since, $\cos^2 \theta + \sin^2 \theta = 1$ $\Rightarrow \left(\frac{x-2}{3}\right)^2 + \left(\frac{y+1}{3}\right)^2 = 1$ $\Rightarrow (x-2)^2 + (y+1)^2 = 3^2$: Centre of circle is (2, -1)106 (a) 5 Given that, xy = hx + ky $\Rightarrow (x-k)(y-h) = hk$ On shifting origin to (k, h) the above equation reduces to $XY = hk = c^2$ (say) Where, x = X + k and y = Y + hThen, the equation of the asymptotes are X = 0and Y = 0 ie, x = k, y = h106 (c) Given equation is 6 $\lambda x^2 + (2\lambda - 3)y^2 - 4x - 1 = 0$ Here, $a = \lambda$, $b = (2\lambda - 3)$ It represents a circle, if a = b $\Rightarrow \lambda = 2\lambda - 3$

⇒
$$\lambda = 3$$

Also, $h = 0$
Then, equation becomes
 $3x^2 + 3y^2 - 4x - 1 = 0$
⇒ $x^2 + y^2 - \frac{4}{3}x - \frac{1}{3} = 0$
Here, $g = -\frac{2}{3}, c = -\frac{1}{3}, f = 0$
 \therefore Radius= $\sqrt{\left(-\frac{2}{3}\right)^2 + 0 - \left(-\frac{1}{3}\right)} = \sqrt{\frac{4}{9} + \frac{1}{3}}$
 $= \frac{\sqrt{7}}{3}$
106 (d)
7 Since, y-axis is major axis
⇒ $f(4a) < f(a^2 - 5)$
⇒ $4a > a^2 - 5$ ($\because f$ is decreasing)
⇒ $a^2 - 4a - 5 < 0$
⇒ $a \in (-1, 5)$
106 (a)
8 The centres and radii of two circles are
 $C_1(1, 3), C_2(4, -1)$
and $r_1 = r, r_2 = \sqrt{16 + 1 - 8} = 3$
two circles intersect in two distinct points, then
 $r_1 - r_2 < C_1C_2 < r_1 + r_2$
⇒ $r - 3 < \sqrt{(4 - 1)^2 + (-1 - 3)^2} < r + 3$
⇒ $r < 8$ and $2 < r$
⇒ $2 < r < 8$
106 (d)
9 Since, both the points lie on the circle. At (5, 12),
equation of tangent is
 $5x + 12y = 169 \dots(1)$
At (12, -5), equation of tangent is
 $12x - 5y = 169 \dots(1)$
It is clear that Eqs. (i) and (ii) are perpendicular
to each other.
Hence, angle between them is 90°
107 (c)
0 If the point ($\lambda, \lambda + 1$) lies in the interior of the
region bounded by $y = \sqrt{25 - x^2}$ and *x*-axis, then
 $\lambda + 1 > 0$ and the point ($\lambda, \lambda + 1$) must be an
interior point of the circle $x^2 + y^2 = 25$
 $\therefore \lambda + (\lambda + 1)^2 < 25$
⇒ $2\lambda^2 + 2\lambda + 1 < 25$
 $\Rightarrow 2\lambda^2 + 2\lambda + 1 < 25$
 $\Rightarrow 2\lambda^2 + \lambda - 12 < 0 \Rightarrow (\lambda + 4)(\lambda - 3) < 0 \Rightarrow -4$
 $< \lambda < 3$
Also, $\lambda + 1 > 0$ i.e. $\lambda > -1$
 $\therefore -1 < \lambda < 3$ i.e. $\lambda \in (-1,3)$

107 (d)

1

2

3

Any point on parabola $y^2 = 8x$ is $(2t^2, 4t)$. The equation of tangent at that point is $yt = x + 2t^2$...(i) Given that, xy = -1 ...(ii) On solving Eqs.(i) and (ii), we get $y(yt - 2t^2) = -1$ $\Rightarrow ty^2 - 2t^2y + 1 = 0$ \because It is common tangent. It means they are intersect only at one point and the value of discriminant is equal to zero. $ie, 4t^4 - 4t = 0$ $\Rightarrow t = 0,1$ \therefore The common tangent is y = x + 2, (when t = 0, it is x = 0 which can touch xy = -1 at infinity only) 107 (a) Given points lie on a circle $x^2 + y^2 = a^2$ and in case of an equilateral triangle centroid is same as circumcentre. Circumcentre of given triangle is at origin or centroid is at origin $\frac{a\cos\theta_1 + a\cos\theta_2 + a\cos\theta_3}{a\cos\theta_1 + a\cos\theta_2 + a\cos\theta_3} = 0,$ and $\frac{a\sin\theta_1 + a\sin\theta_2 + a\sin\theta_3}{a\sin\theta_1 + a\sin\theta_2} = 0$ and $\frac{\operatorname{dom} \theta_1 + \operatorname{dom} \theta_2}{2} = \sum_{n=1}^{3} \sin \theta_1 = 0$ 107 (b) We have, equation of circle is $x^2 + y^2 - 8x + 4y + 4 = 0$ On comparing with standard equation of circle $x^{2} + y^{2} + 2gx + 2fy + c = 0$, we get g = -4, f = 2 and c = 4: Coordinates of the centre = (-g, -f)= (4, -2) \therefore Radius of the circle = $\sqrt{g^2 + f^2 - c}$ $=\sqrt{(4)^2 + (-2)^2 - 4}$ $=\sqrt{16+4-4}=4$ Here, radius of circle is equal to *x*-coordinate of the centre \therefore Circle touches *y*-axis 107 (a)

4 We know that maximum four normals can be drawn from a point to the ellipse

107 (d)

5 Directrix of parabola is y = 2

 $\Rightarrow a = -2$

 \therefore Required equation of parabola is

 $x^2 = -4.2, y \Rightarrow x^2 = -8y$

107 (c)

6 The required equation is $x - 2y - 9 = 1 + 4 - 9 \Rightarrow x - 2y - 5$ = 0 [Using S' = T]

107 **(a)**

Let (*t*, *t*) be the coordinates of the centre of the circle. Then, its equation is

 $(x-t)^{2} + (y-t)^{2} = (2\sqrt{2})^{2} \quad \dots \text{(i)}$ In touches the line x + y = 4. Therefore, $\left|\frac{t+t-4}{\sqrt{2}}\right| = 2\sqrt{2} \Rightarrow |t-2| = 2 \Rightarrow t-2 = \pm 2$ $\Rightarrow t = 0.4$

So, the coordinates of the centre are (0,0) and (4,4)

Clearly, (4,4) satisfies the inequation x + y > 4Hence, the equation of the circle is

 $(x-4)^{2} + (y-4)^{2} = (2\sqrt{2})^{2}$ $\Rightarrow x^{2} + y^{2} - 8x - 8y + 24 = 0$

107 **(b)**

8 Let
$$S = x^{2} + y^{2} - 4x - 2y - 20$$
,
 $S_{1} = 10^{2} + 7^{2} - 4 \times 10 - 2 \times 7 - 20 > 0$
 $B \underbrace{(2, 1)}_{C} A P(10, 7)$

So, *P* lies outside the circle Now, $PC = \sqrt{(10-2)^2 + (7-1)^2} = 10$ Radius $BC = \sqrt{4+1+20} = 5$ \therefore Greatest distance, PB = PC + CB = 10 + 5= 15

107 **(c)**

9 We have, $g_1 = -1, f_1 = -1, c_1 = -7$ and, $g_2 = -4/3, f_2 = 29/6, c_2 = 0$ Clearly, $2(g_1g_2 + f_1f_2) = c_1 + c_2$ Hence, the two circles intersect orthogonally

108 **(d)**

0 Equation of the common chord of the given circles is

 $2 x - 2 y = 0 \Rightarrow x - y = 0 \quad [\text{Using}: S_1 - S_2 = 0]$ The equation of any circle passing through the intersection of the given circles $x^2 + y^2 + 2 x + \lambda(2 x - 2 y) = 0 \quad [\text{Using}: S_1 + \lambda(S_1 - S_2) = 0]$ $\Rightarrow x^2 + y^2 + 2 x(1 + \lambda) - 2 \lambda y = 0 \quad ...(i)$ Centre circle (i) is $(-\lambda - 1, \lambda)$ If x - y = 0 is a diameter of circle (i), then centre of (i) lies on x - y = 0 $\therefore -\lambda - 1 - \lambda = 0 \Rightarrow \lambda = -1/2$ Putting $\lambda = -1/2$ in equation (i), we obtain $x^2 + y^2 + x + y = 0$ 108 (a)

1 Let the equation of hyperbola be $\frac{x^2}{a} - \frac{y^2}{b^2} = 1$

Let (x_1, y_1) be any point on the hyperbola.

$$\frac{x_1^2}{a_1^2} - \frac{y_1^2}{b^2} = 1 \Rightarrow b^2 x_1^2 - a^2 y_1^2 = a^2 b^2 \quad \dots (i)$$

The asymptotes of given hyperbola are

$$\frac{X^2}{a^2} - \frac{y^2}{b^2} = 0$$

: Product of perpendicular form (x_1, y_1) to pair of lines $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$ is

$$\frac{|Ax_1^2 + 2Hx_1y_1 + By_1^2|}{\sqrt{(A-B)^2} + 4H^2} = \frac{b^2x_1^2 - a^2y_1^2}{\sqrt{(b^2 + a^2)^2}}$$
$$= \frac{a^2b^2}{a^2 + b^2} \quad \text{[from Eq. (i)]}$$

108 **(c)**

2 Director circle is set of points from where drawn tangents are perpendicular, in this case $x^2 + y^2 = a^2 - b^2$ (equation of director circle) *ie*, $x^2 + y^2 = -9$ is not a real circle, so there is no point from where tangents are perpendicular.

108 **(b)**

4 The equation of the ellipse is

$$3(x^{2} + 2x) + 4(y^{2} - 2y) = 5$$

$$\Rightarrow 3(x + 1)^{2} + 4(y - 1)^{2} = 12$$

$$\Rightarrow \frac{(x + 1)^{2}}{4} + \frac{(y - 1)^{2}}{3} = 1$$

$$\therefore a^{2} = 4 \text{ and } b^{2} = 3$$
Clearly, $a > b$
So, the eccentricity *e* is given by

$$e = \sqrt{1 - \frac{b^2}{a^2}} = \sqrt{1 - \frac{3}{4}} = \frac{1}{2}$$

108 (c) 5 The equation of any normal to the ellipse is $ax \sec \theta - by \csc \theta = a^2 - b^2$...(i) Let P(h, k) be the pole of this normal chord of the ellipse. Then, the equation of the polar is $\frac{hx}{a^2} + \frac{ky}{h^2} = 1$... (ii) Clearly, (i) and (ii) represent the same line $\therefore \frac{h}{a^3 \sec \theta} = \frac{k}{-b^3 \csc \theta} = \frac{1}{a^2 - b^2}$ $\Rightarrow \cos \theta = \frac{a^3}{h(a^2 - b^2)} \text{ and } \sin \theta = -\frac{b^3}{k(a^2 - b^2)}$ $\Rightarrow \cos^2 \theta + \sin^2 \theta = \frac{a^6}{h^2(a^2 - b^2)} + \frac{b^6}{k^2(a^2 - b^2)^2}$ $\Rightarrow \frac{a^6}{h^2} + \frac{b^6}{k^2} = (a^2 - b^2)^2$ Hence, the locus of the (h, k) is $\frac{a^{\circ}}{x^2} + \frac{b^{\circ}}{y^2} =$ $(a^2 - b^2)^2$ 108 **(b)** Given equation is $x^2 - 2y^2 - 2 = 0$, it can be 6 rewritten as $\frac{x^2}{2} - \frac{y^2}{1} = 1$ Here, $a^2 = 2, b^2 = 1$ We know that equation of hyperbola is $\frac{x^2}{a^2} - \frac{y^2}{b^2} =$ 1, then the product of length of perpendicular drawn from any point on the hyperbola to the asymptotes is $\frac{a^2b^2}{a^2+b^2} = \frac{2(1)}{2+1} = \frac{2}{3}$ 108 (b) Given, $x^2 - y^2 = \frac{25}{3}$ 7 $\therefore e_1 = \sqrt{1 + \frac{b^2}{a^2}} = \sqrt{1 + 1} = \sqrt{2}$ The equation of conjugate hyperbola is $-x^2 + y^2 = \frac{25}{2}$

$$\therefore e_2 = \sqrt{1 + \frac{b^2}{a^2}} = \sqrt{1 + 1} = \sqrt{2}$$
$$\therefore e_1^2 + e_2^2 = (\sqrt{2})^2 + (\sqrt{2})^2 = 4$$

108 **(c)**

8 For the given line to touch the given parabola, the

roots of the equation $k - x = x - x^2$ i.e. of $x^2 - 2x + k = 0$ must be equal

$$\therefore 4 - 4k = 0 \Rightarrow k = 1$$

108 **(c)**

9 Equation of asymptotes are x + 2y = 3 ...(i) and x - y = 0On solving Eqs.(i) and (ii), we get x = 1, y = 1

 \therefore Centre of hyperbola is (1,1) because asymptotes passes through the centre of the hyperbola.

109 **(c)**

0

Centre is (7, -1) and radius is 5 Let y = mx be the tangent on the circle \therefore length of perpendicular from centre is equal to the radius of circle 7m + 1

$$\Rightarrow \frac{7m+1}{\sqrt{1+m^2}} = \pm 5$$

$$\Rightarrow 49m^2 + 1 + 14m = 25(1+m^2)$$

$$\Rightarrow 12m^2 + 7m - 12 = 0$$

$$\Rightarrow (3m+4)(4m-3) = 0$$

$$\Rightarrow m_1 = -\frac{4}{3} \text{ and } m_2 = \frac{3}{4}$$

$$\therefore m_1m_2 = -\frac{4}{3} \cdot \frac{3}{4} = -1$$

Hence, tangents are perpendicular to each other **Alternate** $\theta = 2 \tan^{-1} \frac{r}{\sqrt{S_1}}$

$$= 2 \tan^{-1} \frac{5}{5} = \frac{\pi}{2}$$

109 (b)
1 Given equation of hyperbola can be rewritten as

$$x(y-3) - 3(y-3) = 2 \Rightarrow (x-3)(y-3) = 2$$

Let $x - 3 = X$ and $y - 3 = Y$
Equation of hyperbola is of the form $XY = 2$
(rectangular hyperbola). In rectangular hyperbola
 $a = b$, so length of latusrectum $= \frac{2b^2}{a} = 2a$
(distance between vertices)
and $xy = c^2 \Rightarrow 2 = \frac{a^2}{2} \Rightarrow a = 2$
 \therefore Length of latusrectum is $2a = 4$
109 (d)
2 The circle $x^2 + y^2 = 4$ cuts the circle $x^2 + y^2 - 2x - 4 = 0$ at $A(0,2)$ and $B(0,-2)$.
The circle $x^2 + y^2 - 4x - k = 0$ passes through A
and B . Therefore,
 $0 + 4 - 0 - k = 0 \Rightarrow k = 4$
109 (d)
3 Given, $2ae = 8$ and $\frac{2a}{e} = 18$
 $\Rightarrow a = \sqrt{4 \times 9} = 6$

$$\therefore e = \frac{2}{3}$$

Therefore, $b = 6\sqrt{\left(1 - \frac{4}{9}\right)} = 2\sqrt{5}$ Hence, the required equation is $\frac{x^2}{36} + \frac{y^2}{20} = 1$ $\Rightarrow 5x^2 + 9y^2 = 180$

109 (a)

4

In $\triangle ABC$, we have $\sin \theta = \frac{BC}{AB}$ and $\cos \theta = \frac{AC}{AB}$ $\Rightarrow BC = AB \sin \theta$ and $AC = AB \cos \theta$ Let \triangle be the area of $\triangle ABC$. Then, $\Delta = \frac{1}{2}BC \times AC = \frac{1}{2}(AB)^2 \sin \theta \cos \theta$ $= \frac{1}{4}(AB)^2 \sin 2\theta$

Clearly, it is maximum when $\sin 2\theta$ is maximum i.e. $\sin 2\theta = 1$. In that case, $\theta = \pi/4$

$$\therefore BC = AC = \frac{AB}{\sqrt{2}}$$

Hence, the triangle is isosceles

109 **(c)**

5 Since, the centre of circle is (1, 2) and this circle

$$= \sqrt{(4-1)^2 + (6-2)^2} = \sqrt{9+16} = \sqrt{25} = 5 Hence area of circle = $\pi r^2 = \pi 5^2 = 25\pi$ sq units$$

109 (c)

6 Radius of circle=Perpendicular distance from (3,-2) to the line 4x + 3y + 19 = 0 $= \frac{4(3) + 3(-2) + 19}{\sqrt{16 + 9}} = 5$

: Required equation of circle is $(x-3)^2 + (y+2)^2 = 5^2$

$$\Rightarrow x^{2} + y^{2} - 6x + 4y - 12 = 0$$

