Single Correct Answer Type

1. The modulus of $\frac{1-i}{3+i}+\frac{4 i}{5}$ is
a) $\sqrt{5}$ unit
b) $\frac{\sqrt{11}}{5}$ unit
c) $\frac{\sqrt{5}}{5}$ unit
d) $\frac{\sqrt{12}}{5}$ unit
2. If $\frac{\log x}{a-b}=\frac{\log y}{b-c}=\frac{\log z}{c-a}$ then $x y z$ is equal to
a) 0
b) 1
c) -1
d) 2
3. The area of the triangle formed by the points representing $-z, i z$ and $z-i z$ in the Argand plane is
a) $\frac{1}{2}|z|^{2}$
b) $|z|^{2}$
c) $\frac{3}{2}|z|^{2}$
d) $\frac{1}{4}|z|^{2}$
4. $\quad \mathrm{If} \frac{(1+i)^{2}}{2-i}=x+i y$, then $x+y$ is equal to
a) $-\frac{2}{5}$
b) $\frac{6}{5}$
c) $\frac{2}{5}$
d) $-\frac{6}{5}$
5. Let $3-i$ and $2+i$ be affixes of two points A and B the argand plane and P represents the complex number $z=x+i y$. Then, the locus of P if $|z-3+i|=|z-2-i|$ is
a) Circle on $A B$ as diameter
b) The line $A B$
c) The perpendicular bisector of $A B$
d) None of these
6. If $x^{2}-2 x \cos \theta+1=0$, then $x^{2 n}-2 x^{n} \cos n \theta+1$ is equal to
a) $\cos 2 n \theta$
b) $\sin 2 n \theta$
c) 0
d) None of these
7. Given $z=\frac{q+i r}{1+p}$, then $\frac{p+i q}{1+r}=\frac{1+i z}{1-i z}$ if
a) $p^{2}+q^{2}+r^{2}=1$
b) $p^{2}+q^{2}+r^{2}=2$
c) $p^{2}+q^{2}-r^{2}=1$
d) None of these
8. The expression $(1+i)^{n_{1}}+\left(1+i^{3}\right)^{n_{2}}$ is real iff
a) $n_{1}=-n_{2}$
b) $n_{1}=4 r+(-1)^{r} n_{2}$
c) $n_{1}=2 r+(-1)^{r} n_{2}$
d) None of these
9. If p, q, r are positive and are in AP , then roots of the quadratic equation $p x^{2}+q x+r=0$ are complex for
a) $\left|\frac{r}{p}-7\right| \geq 4 \sqrt{3}$
b) $\left|\frac{p}{r}-7\right|<4 \sqrt{3}$
c) All p and r
d) No p and r
10. If the roots of the equation $\frac{1}{x+p}+\frac{1}{x+q}=\frac{1}{r},(x \neq-p, x \neq-q, r \neq 0)$ are equal in magnitude but opposite in sign, then $p+q$ is equal to
a) r
b) $2 r$
c) r^{2}
d) $\frac{1}{r}$
11. The solution set of the inequation $|2 x-3|<|x+2|$, is
a) $(-\infty, 1 / 3)$
b) $(1 / 3,5)$
c) $(5, \infty)$
d) $(-\infty, 1 / 3) \cup(5, \infty)$
12. In writing an equation of the form $a x^{2}+b x+c=0$; the coefficient of x is written incorrectly and roots are found to be equal. Again in writing the same equation the constant term is written incorrectly and it is found that one root is equal to those of the previous wrong equation while the other is double of it. If α and β be the roots of correct equation, then $(\alpha-\beta)^{2}$ is equal to
a) 5
b) $5 \alpha \beta$
c) $-4 \alpha \beta$
d) -4
13. If x is complex, the expression $\frac{x^{2}+34 x-71}{x^{2}+2 x-7}$ takes all which lie in the interval (a, b) where
a) $a=-1, b=1$
b) $a=1, b=-1$
c) $a=5, b=9$
d) $a=9, b=5$
14. Let a, b, c be real, if $a x^{2}+b x+c=0$ has two real roots α and β, where $\alpha<-2$ and $\beta>2$, then
a) $4-\frac{2 b}{a}+\frac{c}{a}<0$
b) $4+\frac{2 b}{a}-\frac{c}{a}<0$
c) $4-\frac{2 b}{a}+\frac{c}{a}=0$
d) $4+\frac{2 b}{a}+\frac{c}{a}=0$
15. Two students while solving a quadratic equation in x, one copied the constant term incorrectly and got the roots 3 and 2 . The other copied the constant term coefficient of x^{2} correctly as -6 and 1 respectively the correct roots are
a) $3,-2$
b) $-3,2$
c) $-6,-1$
d) $6,-1$
16. $E_{1}: a+b+c=0$, if l is a root of $a x^{2}+b x+c=0, E_{2}: b^{2}-a^{2}=2 a c$, if $\sin \theta, \cos \theta$ are the roots of $a x^{2}+b x+c=0$.
Which of the following is true?
a) E_{1} is true, E_{2} is true
b) E_{1} is true, E_{2} is false
c) E_{1} is false E_{2} is true
d) E_{1} is false, E_{2} is false
17. If $\omega=\frac{-1+\sqrt{3} i}{2}$, then $\left(3+\omega+3 \omega^{2}\right)^{4}$ is
a) 16
b) -16
c) 16ω
d) $16 \omega^{2}$
18. If $i z^{3}+z^{2}-z+i=0$, then $|z|$ is equal to
a) 1
b) i
c) -1
d) $-i$
19. The least value of $|a|$ for which $\tan \theta$ and $\cot \theta$ are roots of the equation $x^{2}+a x+1=0$, is
a) 2
b) 1
c) $1 / 2$
d) 0
20. If $1,2,3$ and 4 are the roots of the equation $x^{4}+a x^{3}+b x^{2}+c x+d=0$, then $a+2 b+c$ is equal to
a) -25
b) 0
c) 10
d) 24
21. The number of integral solutions of $2(x+2)>x^{2}+1$, is
a) 2
b) 3
c) 4
d) 5
22. If one root of the equation $(a-b) x^{2}+a x+1=0$ be double the other and if $a \in R$, then the greatest value of b is
a) $9 / 8$
b) $7 / 8$
c) $8 / 9$
d) $8 / 7$
23. The argument of $(1-i \sqrt{3})(1+i \sqrt{3})$ is
a) 60°
b) 120°
c) 210°
d) 240°
24. If the area of the triangle on the complex plane formed by the points $z, z+i z$, and $i z$ is 200 , then the value of $|3 z|$ must be equal to
a) 20
b) 40
c) 60
d) 80
25. If the roots of the equation $b x^{2}+c x+a=0$ be imaginary, then for all real values of x, the expression $3 b^{2} x^{2}+6 b c x+2 c^{2}$ is
a) Greater than $4 a b$
b) Less than $4 a b$
c) Greater than $-4 a b$
d) Less than $-4 a b$
26. If $\left(a x^{2}+c\right) y+\left(d x^{2}+c^{\prime}\right)=0$ and x is a rational function of y and $a c$ is negative, then
a) $a c^{\prime}+a^{\prime} c=0$
b) $\frac{a}{a^{\prime}}=\frac{c}{c^{\prime}}$
c) $a^{2}+c^{2}=a^{\prime 2}+c^{\prime 2}$
d) $a a^{\prime}+c c^{\prime}=1$
27. If n is a positive integer, then $(1+i \sqrt{3})^{n}+(1-i \sqrt{3})^{n}$ is equal to
a) $2^{n-1} \cos \frac{n \pi}{3}$
b) $2^{n} \cos \frac{n \pi}{3}$
c) $2^{n+1} \cos \frac{n \pi}{3}$
d) None of these
28. The points represented by the complex numbers $1+i,-2+3 i, \frac{5}{3} i$ on the argand diagram are
a) Vertices of an equilateral triangle
b) Vertices of an isosceles triangle
c) Collinear
d) None of the above
29. If the amplitude of $z-2-3 i$ is $\frac{\pi}{4}$, then the locus of $z=x+i y$, is
a) $x+y-1=0$
b) $x-y-1=0$
c) $x+y+1=0$
d) $x-y+1=0$
30. The value of
$\frac{\left[\left(\cos 20^{\circ}+i \sin 20^{\circ}\right)\left(\cos 75^{\circ}+i \sin 75^{\circ}\right)\left(\cos 10^{\circ}+i \sin 10^{\circ}\right)\right]}{\sin 15^{\circ}-i \cos 15^{\circ}}$ is
a) 0
b) -1
c) i
d) 1
31. Let α, β be the roots of $x^{2}+b x+1=0$. Then the equation whose roots are $-\left(\alpha+\frac{1}{\beta}\right)$ and $-\left(\beta+\frac{1}{\alpha}\right)$, is
a) $x^{2}=0$
b) $x^{2}+2 b+4=0$
c) $x^{2}-2 b x+4=0$
d) $x^{2}-b x+1=0$
32. The vector $z=-4+5 i$ is turned counterclockwise through an angle of 180° and stretched $1 \frac{1}{2}$ times. The complex number corresponding to newly obtained vector is
a) $6-\frac{15}{2} i$
b) $-6+\frac{15}{2} i$
c) $6+\frac{15}{2} i$
d) None of these
33. If $(3-i) z=(3-i) \bar{z}$, then the complex number z is
a) $a(3-i), a \in R$
b) $\frac{a}{(3+i)}, a \in R$
c) $a(3+i), a \in R$
d) $a(-3+i), a \in R$
34. For real values of x, the expression $\frac{(x-b)(x-c)}{(x-a)}$ will assume all real values provided
a) $a \leq c \leq b$
b) $b \geq a \geq c$
c) $b \leq c \leq a$
d) $a \geq b \geq c$
35. If $(x-1)^{3}$ is a factor of $x^{4}+a x^{3}+b x^{2}+c x-1$, then the other factor is
a) $x-3$
b) $x+1$
c) $x+2$
d) $x-1$
36. The centre of a square is at the origin and $1+i$ is one of its vertices. The extremities of its diagonals which does not pass through this vertex are
a) $1-i,-1+i$
b) $1-i,-1-i$
c) $-1+i,-1-i$
d) None of these
37. If $p(x)=a x^{2}+b x+c$ and $Q(x)=-a x^{2}+d x+c$, where $a c \neq 0$, then $P(x) Q(x)=0$ has at least
a) Four real roots
b) Two real roots
c) Four imaginary roots
d) None of these
38. If $a=\cos \theta+i \sin \theta$, then $\frac{1+a}{1-a}$ is equal to
a) $\cot \frac{\theta}{2}$
b) $\cot \theta$
c) $i \cot \frac{\theta}{2}$
d) $i \tan \frac{\theta}{2}$
39. If $x^{2}+2 a x+b \geq c, \forall x \in R$, then
a) $a-c \geq a^{2}$
b) $c-a \geq b^{2}$
c) $a-b \geq c^{2}$
d) None of these
40. Let A, B, C be three collinear points which are such that $A B . A C=1$ and the points are represented in the Argand plane by the complex numbers $0, z_{1}$ and z_{2} respectively, Then,
a) $z_{1} z_{2}=1$
b) $z_{1} \bar{z}_{2}=1$
c) $\left|z_{1}\right|\left|z_{2}\right|=1$
d) None of these
41. If $z^{2}+z|z|+|z|^{2}=0$, then the locus of z is
a) A circle
b) A straight line
c) A pair of straight lines
d) None of these
42. If $|z-i|=1$ and $\arg (z)=\theta$, where $0<\theta<\frac{\pi}{2}$, then $\cot \theta-\frac{2}{z}$ equals
a) $2 i$
b) $-i$
c) i
d) $1+i$
43. If for complex numbers z_{1} and $z_{2}, \arg \left(z_{1}\right)-\arg \left(z_{2}\right)=0$, then $\left|z_{1}-z_{2}\right|$ is equal to
a) $\left|z_{1}\right|+\left|z_{2}\right|$
b) $\left|z_{1}\right|-\left|z_{2}\right|$
c) $\left|\left|z_{1}\right|-\left|z_{2}\right|\right|$
d) 0
44. If x, y, z are real and distinct, then $x^{2}+4 y^{2}+9 z^{2}-6 y z-3 z x-2 x y$ is always
a) Non-negative
b) Non-positive
c) Zero
d) None of these
45. The locus of the centre of the circle which touches the circles $\left|z-z_{1}\right|=a$ and $\left|z-z_{2}\right|=b$ externally (z, z_{1} and z_{2} are complex numbers) will be
a) An ellipse
b) A hyperbola
c) A circle
d) None of these
46. The modulus and amplitude of $(1+i \sqrt{3})^{8}$ are respectively
a) 256 and $\frac{\pi}{3}$
b) 256 and $\frac{2 \pi}{3}$
c) 2 and $\frac{2 \pi}{3}$
d) 256 and $\frac{8 \pi}{3}$
47. The solution set of the inequation $x^{2}+(a+b) x+a b<0, a<b$, is
a) (a, b)
b) $(-\infty, a) \cup(b, \infty)$
c) $(-b,-a)$
d) $(-\infty,-b) \cup(-a, \infty)$
48. If ω is an imaginary cube root of unity and $x=a+b, y=a \omega+b \omega^{2}, z=a \omega^{2}+b \omega$, then $x^{2}+y^{2}+z^{2}$ is equal to
a) $6 a b$
b) $3 a b$
c) $6 a^{2} b^{2}$
d) $3 a^{2} b^{2}$
49. The square roots of $-7,-24 \sqrt{-1}$ are
a) $\pm(4+3 \sqrt{-1})$
b) $\pm(3+4 \sqrt{-1})$
c) $\pm(3-4 \sqrt{-1})$
d) $\pm(4-3 \sqrt{-1})$
50. A real value of x will satisfy the equation $\left(\frac{3-4 i x}{3+4 i x}\right)=\alpha-i \beta$ (α, β are real), if
a) $\alpha^{2}-\beta^{2}=-1$
b) $\alpha^{2}-\beta^{2}=1$
c) $\alpha^{2}+\beta^{2}=1$
d) $\alpha^{2}-\beta^{2}=2$
51. If $\omega(\neq 1)$ is a cube root of unity and $(1+\omega)^{7}=A+B \omega$, then A and B are respectively
a) 0,1
b) 1,1
c) 1,0
d) $-1,1$
52. If the equation $x^{2}+9 y^{2}-4 x+3=0$ is satisfied values of x and y, then
a) $1 \leq x \leq 3$
b) $2 \leq x \leq 3$
c) $-\frac{1}{3}<y<1$
d) $0<y<\frac{2}{3}$
53. If the sum of the roots of the equation $(a+1) x^{2}+(2 a+3) x+(3 a+4)=0$ is -1 , then the product of the roots is
a) 0
b) 1
c) 2
d) 3
54. The roots of the equation $2^{x+2} 3^{3 x /(x-1)}=9$ are given by
a) $1-\log _{2} 3,2$
b) $\log _{2}\left(\frac{2}{3}\right), 1$
c) $2,-2$
d) $-2,1-\frac{\log 3}{\log 2}$
55. If $a+b+c=0$ and $a \neq c$ then the roots of the equation $(b+c-a) x^{2}+(c+a-b) x+(a+b-c)=0$, are
a) Real and unequal
b) Real and equal
c) Imaginary
d) None of these
56. If α, β are the roots of the equation $x^{2}+\sqrt{\alpha} x+\beta=0$, then the values of α and β are
a) $\alpha=1, \beta=-1$
b) $\alpha=1, \beta=-2$
c) $\alpha=2, \beta=1$
d) $\alpha=2, \beta=-2$
57. If $b>a$, then the equation $(x-a)(x-b)-1=0$ has
a) Both roots in $[a, b]$
b) Both roots in $(-\infty, a)$
c) Roots in $(-\infty, a)$ and other in (b, ∞)
d) Both roots in (b, ∞)
58. The value of $\left(\cos \frac{\pi}{2}+i \sin \frac{\pi}{2}\right)\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)\left(\cos \frac{\pi}{8}+i \sin \frac{\pi}{8}\right) \ldots \infty$ is
a) 1
b) 0
c) -1
d) None of these
59. The value of the expression $2\left(1+\frac{1}{\omega}\right)\left(1+\frac{1}{\omega^{2}}\right)+3\left(2+\frac{1}{\omega}\right)\left(2+\frac{1}{\omega^{2}}\right)+\cdots+(n+1)\left(n+\frac{1}{\omega}\right)\left(n+\frac{1}{\omega^{2}}\right)$ is
a) $\left[\frac{n(n+1)}{2}\right]^{2}$
b) $\left[\frac{n(n+1)}{2}\right]^{2}-n$
c) $\left[\frac{n(n+1)}{2}\right]^{2}+n$
d) None of these
60. One of the square root of $6+4 \sqrt{3}$ is
a) $\sqrt{3}(\sqrt{3}+1)$
b) $-\sqrt{3}(\sqrt{3}-1)$
c) $\sqrt{3}(-\sqrt{3}+1)$
d) None of these
61. The solution set of the inequation $|x|-1<1-x$, is
a) $(-1,1)$
b) $(0, \infty)$
c) $(-1, \infty)$
d) None of these
62. If $(\sqrt{3}+i)^{10}=a+i b$, then a and b are respectively
a) $128 \& 128 \sqrt{3}$
b) $64 \&-64 \sqrt{3}$
c) $512 \&-512 \sqrt{3}$
d) None of these
63. The number of real solutions of the equation $(5+2 \sqrt{6})^{x^{2}-3}+(5-2 \sqrt{6})^{x^{2}-3}=10$, is
a) 2
b) 4
c) 6
d) None of these
64. Number of roots of the equation $x-\frac{2}{x-1}=1-\frac{2}{x-1}$ is
a) One
b) Two
c) Infinite
d) None of these
65. The smallest positive integer n for which $(1+i)^{2 n}=(1-i)^{2 n}$ is
a) 1
b) 2
c) 3
d) 4
66. If $\frac{z-1}{z+1}$ is purely imaginary number $(z \neq-1)$, then $|z|$ is equal to
a) 1
b) 2
c) 3
d) 4
67. If one vertex of a square whose diagonals intersect at the origin is $3(\cos \theta+i \sin \theta)$, then the two adjacent vertices are
a) $\pm 3(\sin \theta-i \cos \theta)$
b) $\pm(\sin \theta+i \cos \theta)$
c) $\pm(\cos \theta-i \sin \theta)$
d) None of these
68. If the sum of the roots of the equation $a x^{2}+b x+c=0$ is equal to the sum of the squares of their reciprocals of their reciprocals, then
a) $c^{2} b, a^{2} c, b^{2} a$ are in A.P.
b) $c^{2} b, a^{2} c, b^{2} a$ are in G.P.
c) $\frac{b}{c}, \frac{a}{b}, \frac{c}{a}$ are in G.P.
d) $\frac{a}{b}, \frac{b}{c}, \frac{c}{a}$ are in G.P.
69. In the argand plane, if O, P and Q represent respectively the origin O and the complex numbers z and $z+i z$ respectively, then $\angle O P Q$ is
a) $\frac{\pi}{4}$
b) $\frac{\pi}{3}$
c) $\frac{\pi}{2}$
d) $\frac{2 \pi}{3}$
70. If $n \in Z$, then $\frac{2^{n}}{(1-i)^{2 n}}+\frac{(1+i)^{2 n}}{2^{n}}$ is equal to
a) 0
b) 2
c) $\left[1+(-1)^{n]} i^{n}\right.$
d) None of these
71. Let α, β be the roots of the equation $x^{2}-p x+r=0$ and $\frac{\alpha}{2}, 2 \beta$ be the roots of the equation $x^{2}-q x+r=$ 0 . Then the value of r is
a) $\frac{2}{9}(p-q)(2 q-p)$
b) $\frac{2}{9}(q-p)(2 p-q)$
c) $\frac{2}{9}(q-2 p)(2 q-p)$
d) $\frac{2}{9}(2 p-q)(2 q-p)$
72. If ω is an imaginary cube root of unity, then $\left(1+\omega-\omega^{2}\right)^{7}$ equals
a) 128ω
b) -128ω
c) 128ω
d) $-128 \omega^{2}$
73. If $z+z^{-1}=1$, then $z^{100}+z^{-100}$ is equal to
a) i
b) $-i$
c) 1
d) -1
74. $\frac{3+2 i \sin \theta}{1-2 i \sin \theta}$ will be purely imaginary, if θ is equal to
a) $2 n \pi \pm \frac{\pi}{3}$
b) $n \pi+\frac{\pi}{3}$
c) $n \pi \pm \frac{\pi}{3}$
d) None of these
75. If $x^{2}+2 a x+10-3 a>0$ for all $x \in R$, then
a) $-5<a<2$
b) $a<-5$
c) $a>5$
d) $2<a<5$
76. Let z_{1}, z_{2} be two complex numbers such that $z_{1}+z_{2}$ and $z_{1} z_{2}$ both are real, then
a) $z_{1}=-z_{2}$
b) $z_{1}=\overline{z_{2}}$
c) $z_{1}=-\overline{z_{2}}$
d) $z_{1}=z_{2}$
77. If $\operatorname{Im}\left(\frac{2 z+1}{i z+1}\right)=-2$, then locus of z is
a) A circle
b) A parabola
c) A straight line
d) None of these
78. Let ' z ' be a complex number and ' a ' be a real parameter such that $z^{2}+a x+a^{2}=0$, then
a) Locus of z is a pair of straight lines
b) Locus of z is a circle
c) $\arg (z)= \pm \frac{5 \pi}{3}$
d) $|z|=-2|a|$
79. The points $z_{1}, z_{2}, z_{3}, z_{4}$ in the complex plane are the vertices of a parallelogram taken in order, iff
a) $z_{1}+z_{4}=z_{2}+z_{3}$
b) $z_{1}+z_{3}=z_{2}+z_{4}$
c) $z_{1}+z_{2}=z_{3}+z_{4}$
d) None of these
80. If a real valued function f of a real variable x is such that $\frac{1}{(1+x)\left(1+x^{2}\right)}=\frac{A}{1+x}+\frac{f(x)}{1+x^{2}}$, then $f(x)$ is equal to
a) $\frac{1-x}{2}$
b) $\frac{x^{2}+1}{2}$
c) $1-x$
d) None of these
81. If $a+b+c=0$, then the roots of the equation $4 a x^{2}+3 b x+2 c=0$ are
a) Equal
b) Imaginary
c) Real
d) None of these
82. For how many values of $k, x^{2}+x+1+2 k\left(x^{2}-x-1\right)=0$ is a perfect square?
a) 2
b) 0
c) 1
d) 3
83. The number of solutions of $\frac{\log 5+\log \left(x^{2}+1\right)}{\log (x-2)}=2$ is
a) 2
b) 3
c) 1
d) None of these
84. The number of real roots of the equation $|x|^{2}-3|x|+2=0$ is
a) 4
b) 3
c) 2
d) 1
85. If the difference between the roots of $x^{2}+a x+b=0$ and $x^{2}+b x+a=0$ is same and $a \neq b$, then
a) $a+b+4=0$
b) $a+b-4=0$
c) $a-b-4=0$
d) $a-b+4=0$
86. The equation $\frac{3}{4}\left(\log _{2} x\right)^{2}+\log _{2} x-\frac{5}{4}=\log _{x} \sqrt{2}$ has
a) At least one real solutions
b) Exactly three real solutions
c) Exactly one irrational solution
d) Complex roots
87. If z_{1}, z_{2}, z_{3} be three complex numbers such that $\left|z_{1}+1\right| \leq 1,\left|z_{2}+2\right| \leq 2$ and $\left|z_{3}+4\right| \leq 4$, then the maximum value of $\left|z_{1}\right|+\left|z_{2}\right|+\left|z_{3}\right|$ is
a) 7
b) 10
c) 12
d) 14
88. If $\log _{\sqrt{3}} 5=a$ and $\log _{\sqrt{3}} 2=b$, then $\log _{\sqrt{3}} 300$ is equal to
a) $2(a+b)$
b) $2(a+b+1)$
c) $2(a+b+2)$
d) $a+b+4$
89. If p, q, r, s, t are numbers such that $p+q<r+s, q+r<s+t, r+s<t+p, s+t<p+q$, then the largest and smallest numbers are
a) p and q respectively
b) r and t respectively
c) r and q respectively
d) q and p respectively
90. The number of integral solutions of $\frac{x+2}{x^{2}+1}>\frac{1}{2}$ is
a) 4
b) 5
c) 3
d) None of these
91. Let α, β be the roots of the equation $x^{2}-x+p=0$ and γ, δ be the roots of $x^{2}-4 x+q=0$. If $\alpha, \beta, \gamma, \delta$ are in GP, then integral values of p, q are respectively
a) $-2,-32$
b) $-2,3$
c) $-6,3$
d) $-6,-32$
92. If the complex numbers z_{1}, z_{2}, z_{3} satisfying $\frac{z_{1}+z_{3}}{z_{2}-z_{3}}=\frac{1-i \sqrt{3}}{2}$, then triangle is
a) An equilateral triangle
b) A right angled triangle
c) A acute angled triangle
d) An obtuse angled isosceles triangle
93. If ω is a complex cube root of unity, then $225+\left(3 \omega+8 \omega^{2}\right)^{2}+\left(3 \omega^{2}+8 \omega\right)^{2}$ is equal to
a) 72
b) 192
c) 200
d) 248
94. The locus of z satisying the inequality $\left|\frac{z+2 i}{2 z+i}\right|<1$ where $z=x+i y$, is
a) $x^{2}+y^{2}<1$
b) $x^{2}-y^{2}<1$
c) $x^{2}+y^{2}>1$
d) $2 x^{2}+3 y^{2}<1$
95. If the roots of $x^{3}-12 x^{2}+39 x-28=0$ are in A.P., then their common difference is
a) ± 1
b) ± 2
c) ± 3
d) ± 4
96. The solution set of the inequation $\frac{2}{|x-4|}>1, x \neq 4$, is
a) $(2,6)$
b) $(2,4) \cup(4,6)$
c) $(-\infty, 2) \cup(6, \infty)$
d) None of these
97. The value of sum $\sum_{n=1}^{13}\left(i^{n}+i^{n+1}\right)$, where $i=\sqrt{-1}$, equals
a) i
b) $i-1$
c) $-i$
d) 0
98. If α and β are imaginary cube roots of unity, then $\alpha^{4}+\beta^{4}+\frac{1}{\alpha \beta}$ is equal to
a) 3
b) 0
c) 1
d) 2
99. If a, b, c are all positive and in H.P., then the roots of $a x^{2}+2 b x+c=0$ are
a) Real
b) Imaginary
c) Rational
d) Equal
100. For all complex numbers z_{1}, z_{2} satisfying $\left|z_{1}\right|=12$ and $\left|z_{2}-3-4 i\right|=5$, the minimum value of $\left|z_{1}-z_{2}\right|$ is
a) 4
b) 3
c) 1
d) 2
101. If α and β be the roots of the equation $x^{2}+x \sqrt{\alpha}+\beta=0$, then
a) $\alpha=1$ and $\beta=-1$
b) $\alpha=1$ and $\beta=-2$
c) $\alpha=2$ and $\beta=1$
d) $\alpha=2$ and $\beta=-2$
102. The number of real roots of the equation $(x-1)^{2}+(x-2)^{2}+(x-3)^{2}=0$ is
a) 1
b) 2
c) 3
d) None of these
103. If $z(\neq-1)$ is a complex number such that $\frac{z-1}{z+1}$ is purely imaginary, then $|z|=$
a) 1
b) 2
c) 3
d) 5
104. If $z_{,}, z_{2}$ and z_{3} are any three complex numbers, then the fourth vertex of the parallelogram whose three vertices are z_{1}, z_{2} and z_{3} taken in order is
a) $z_{1}-z_{2}+z_{3}$
b) $z_{1}+z_{2}+z_{3}$
c) $\frac{1}{3}\left(z_{1}-z_{2}+z_{3}\right)$
d) $\frac{1}{3}\left(z_{1}+z_{2}-z_{3}\right)$
105. If z is a complex number such that $\operatorname{Re}(z)=\operatorname{Im}(z)$, then
a) $\operatorname{Re}\left(z^{2}\right)=0$
b) $\operatorname{Im}\left(z^{2}\right)=0$
c) $\operatorname{Re}\left(z^{2}\right)=\operatorname{Im}\left(z^{2}\right)$
d) $\operatorname{Re}\left(z^{2}\right)=-\operatorname{Im}\left(z^{2}\right)$
106. $\sqrt{-1-\sqrt{1-\sqrt{1-\ldots \infty}}}$ is equal to
a) 1
b) -1
c) ω^{2}
d) $-\omega$
107. Let a be a complex number such that $|a|<1$ and z_{1}, z_{2}, \ldots be vertices of a polygon such that $z_{k}=1+a+$ $a^{2}+\ldots+a^{k-1}$. Then the vertices of the polygon lie within a circle is
a) $|z-a|=a$
b) $\left|z-\frac{1}{1-a}\right|=|1-a|$
c) $\left|z-\frac{1}{1-a}\right|=\frac{1}{|1-a|}$
d) $|z-(1-a)|=|1-a|$
108. If α, β, γ are the roots of the equation $x^{3}-7 x+7=0$, then $\frac{1}{\alpha^{4}}+\frac{1}{\beta^{4}}+\frac{1}{\gamma^{4}}$ is
a) $7 / 3$
b) $3 / 7$
c) $4 / 7$
d) $7 / 4$
109. If $\sin \theta+\cos \theta=h$, then the quadratic equation having $\sin \theta$ and $\cos \theta$ as its roots, is
a) $x^{2}-h x+\left(h^{2}-1\right)=0$
b) $2 x^{2}-2 h x+\left(h^{2}-1\right)=0$
c) $x^{2}-h x+2\left(h^{2}-1\right)=0$
d) $x^{2}-2 h x+\left(h^{2}-1\right)=0$
110. If α and β are the roots of the equation $a x^{2}+b x+c=0,(c \neq 0)$, then the equation whose roots are $\frac{1}{a \alpha+b}$ and $\frac{1}{a \beta+b}$ is
a) $a c x^{2}-b x+1=0$
b) $x^{2}-a c x+b c+1=0$
c) $a c x^{2}+b x-1=0$
d) $x^{2}+a c x-b c+11=0$
111. The value of \sqrt{i} is
a) $1-i$
b) $1+i$
c) $i-1$
d) $\pm \frac{1}{\sqrt{2}}(1+i)$
112. If one root of the quadratic equation $a x^{2}+b x+c=0$ is equal to nth power of the other root, then the value of $\left(a c^{n}\right)^{1 /(n+1)}+\left(a^{n} c\right)^{1 /(n+1)}$ is equal to
a) b
b) $-b$
c) $\frac{1}{b^{n+1}}$
d) $-\frac{1}{b^{n+1}}$
113. The modulus of the complex number z such that $|z+3-i|=1$ and $\arg (z)=\pi$ is equal to
a) 1
b) 2
c) 9
d) 3
114. The product of cube roots of -1 is equal to
a) -1
b) 0
c) -2
d) 4
115. If the roots of $x^{3}-3 x^{2}-6 x+8=0$ are in arithmetic progression, then the roots of the equation are
a) $3,4,5$
b) $4,7,10$
c) $-2,1,4$
d) $1,4,7$
116. The number of values of a for which $\left(a^{2}-3 a+2\right) x^{2}+\left(a^{2}-5 a+6\right) x+a^{2}-4=0$ is an identity in x, is
a) 0
b) 2
c) 1
d) 3
117. If z_{1}, z_{2}, z_{3} are vertices of an equilateral triangle inscribed in the circle $|z|=2$ and if $z_{1}=1+i \sqrt{3}$, then
a) $z_{1}=-2, z_{3}=1-i \sqrt{3}$
b) $z_{2}=2, z_{3}=1-i \sqrt{3}$
c) $z_{2}=-2, z_{3}=-1-i \sqrt{3}$
d) $z_{2}=1-i \sqrt{3}, z_{3}=-1-i \sqrt{3}$
118. The solution set of the inequation $\frac{x^{2}-3 x+4}{x+1}>, x \in R$, is
a) $(3, \infty)$
b) $(-1,1) \cup(3, \infty)$
c) $[-1,1] \cup[3, \infty)$
d) None of these
119. The number of real solutions of the equation $\left(\frac{9}{10}\right)^{x}=-3+x-x^{2}$ is
a) None
b) One
c) Two
d) More than two
120. The quadratic equation whose roots are three times the roots of $3 a x^{2}+3 b x+c=0$ is
a) $a x^{2}+3 b x+3 c=0$
b) $a x^{2}+3 b x+c=0$
c) $9 a x^{2}+9 b x+c=0$
d) $a x^{2}+b x+3 c=0$
121. The values of x satisfying $\left|x^{2}+4 x+3\right|+(2 x+5)=0$ are
a) $-4,-1-\sqrt{3}$
b) $4,1+\sqrt{3}$
c) $-4,1-\sqrt{3}$
d) $-4,1+\sqrt{3}$
122. If $x=\sqrt{\frac{2+\sqrt{3}}{2-\sqrt{3}}}$, then $x^{2}(x-4)^{2}$ is equal to
a) 7
b) 4
c) 2
d) 1
123. If $\left|a_{k}\right|<1, \lambda_{k} \geq 0$ for $k=1,2, \ldots, n$ and $\lambda_{1}+\lambda_{2}+\ldots \lambda_{n}=1$, then the value of $\left|\lambda_{1} a_{1}+\lambda_{2} a_{2}+\ldots+\lambda_{n} a_{n}\right|$ is
a) Equal to one
b) Greater than one
c) Zero
d) Less than one
124. If $\tan \alpha$ and $\tan \beta$ are roots of the equation $x^{2}+p x+q=0$ with $p \neq 0$, then
a) $\sin ^{2}(\alpha+\beta)+p \sin (\alpha+\beta) \cos (\alpha+\beta)+q \cos ^{2}(\alpha+\beta)=q$
b) $\tan (\alpha+\beta)=\frac{p}{q+1}$
c) $\cos (\alpha+\beta)=-p$
d) $\sin (\alpha+\beta)=1-q$
125. The amplitude of $\sin \frac{\pi}{5}+i\left(1-\cos \frac{\pi}{5}\right)$ is
a) $\frac{2 \pi}{5}$
b) $\frac{\pi}{15}$
c) $\frac{\pi}{10}$
d) $\frac{\pi}{5}$
126. The value of sum $\sum_{n=1}^{13}\left(i^{n}+i^{n+1}\right)$, where $i=\sqrt{-1}$, equals
a) $-i$
b) $i-1$
c) $-i$
d) 0
127. If $x>0$ and $\log _{3} x+\log _{3}(\sqrt{3})+\log _{3}(\sqrt[4]{x})+\log _{3}(\sqrt[8]{x})+\log _{3}(\sqrt[16]{x})+\ldots=4$, then x equals
a) 9
b) 81
c) 1
d) 27
128. Is S is the set of all real x such that $\frac{2 x}{2 x^{2}+5 x+2}>\frac{1}{x+1}$, then S is equal to
a) $(-2,-1)$
b) $(-2 / 3,0)$
c) $(-2 / 3,-1 / 2)$
d) $(-2,-1) \cup(-2 / 3,-1 / 2)$
129. The value of p for which the difference between the roots of the equation $x^{2}+p x+8=0$ is 2 are
a) ± 2
b) ± 4
c) ± 6
d) ± 8
130. If $x^{2}+a x+10=0$ and $x^{2}+b x-10=0$ have a common root, then $a^{2}-b^{2}$ is equal to
a) 10
b) 20
c) 30
d) 40
131. If $\left|z_{1}\right|=\left|z_{2}\right|=\left|z_{3}\right|=1$ and z_{1}, z_{2}, z_{3} represent the vertices of an equilateral triangle, then
a) $z_{1}+z_{2}+z_{3}=0$ and $z_{1} z_{2} z_{3}=1$
b) $z_{1}+z_{2}+z_{3}=1$ and $z_{1} z_{2} z_{3}=1$
c) $z_{!} z_{2}+z_{2} z_{3}+z_{3} z_{1}=0$ and $z_{1}+z_{2}+z_{3}=0$
d) $z_{1} z_{2}+z_{2} z_{3}+z_{3} z_{1}=0$ and $z_{1} z_{2} z_{3}=1$
132. If $\sqrt{x+i y}= \pm(a+i b)$, then $\sqrt{-x-i y}$ is equal to
a) $\pm(b+i a)$
b) $\pm(a-i b)$
c) $\pm(b-i a)$
d) None of these
133. If the roots of the equation $x^{2}+p x+q=0$ are α and β and roots of the equation $x^{2}-x r+s=$ 0 are α^{4}, β^{4}, then the roots of the equation $x^{2}-4 q x+2 q^{2}=0$ are
a) Both negative
b) Both positive
c) Both real
d) One negative and one positive
134. If a, b, c are the sides of the triangle $A B C$ such that $a \neq b \neq c$ and $x^{2}-2(a+b+c) x+3 \lambda(a b+b c+$ $c a=0$ has real roots, then
a) $\lambda<\frac{4}{3}$
b) $\lambda>\frac{5}{3}$
c) $\lambda \in\left(\frac{4}{3}, \frac{5}{3}\right)$
d) $\lambda \in\left(\frac{1}{3}, \frac{5}{3}\right)$
135. The centre of a regular polygon of n sides is located at the point $z=0$ and one of its vertex z_{1} is known. If z_{2} be the vertex adjacent to z_{1}, then z_{2} is equal to
a) $z_{1}\left(\cos \frac{2 \pi}{n} \pm i \sin \frac{2 \pi}{n}\right)$
b) $z_{1}\left(\cos \frac{\pi}{n} \pm i \sin \frac{\pi}{n}\right)$
c) $z_{1}\left(\cos \frac{\pi}{2 n} \pm i \sin \frac{\pi}{2 n}\right)$
d) None of these
136. Let $z=\cos \theta+i \sin \theta$. Then, the value of $\sum_{m=1}^{15} \operatorname{Im}\left(z^{2 m-1}\right)$ at $\theta=2^{\circ}$ is
a) $\frac{1}{\sin 2^{\circ}}$
b) $\frac{1}{3 \sin 2^{\circ}}$
c) $\frac{1}{2 \sin 2^{\circ}}$
d) $\frac{1}{4 \sin 2^{\circ}}$
137. Let $a \in R$. If the origin and the non-real roots of $2 z^{2}+2 z+a=0$ form the three vertices of an equilateral triangle in the argand plane, then $a=$
a) 1
b) 2
c) -1
d) None of these
138. The region of the Argand diagram defined by $|z-1|+|z+1| \leq 4$ is
a) Interior of an ellipse
b) Exterior of a circle
c) Interior and boundary of an ellipse
d) None of the above
139. The radius of the circle $\left|\frac{z-i}{z+i}\right|=5$ is given by
a) $\frac{13}{12}$
b) $\frac{5}{12}$
c) 5
d) 625
140. The roots of the cubic equation $(z+\alpha \beta)^{3}=\alpha^{3}, \alpha \neq 0$
a) Represent sides of an equilateral triangle
b) Represent the sides of an isosceles triangle
c) Represent the sides of a triangle whose one side is of length $\sqrt{3} \alpha$
d) None of these
141. If $(\sqrt{5}+\sqrt{3} i)^{33}=2^{49} z$, then modulus of the complex number z is equal to
a) 1
b) $\sqrt{2}$
c) $2 \sqrt{2}$
d) 4
142. If centre of a regular hexagon is at origin and one of the vertex on argand diagram is $1+2 i$, then its perimeter is
a) $2 \sqrt{5}$
b) $6 \sqrt{2}$
c) $4 \sqrt{5}$
d) $6 \sqrt{5}$
143. The value of $\sum_{k=1}^{6}\left(\sin \frac{2 \pi k}{7}-i \cos \frac{2 \pi k}{7}\right)$ is
a) -1
b) 0
c) $-i$
d) i
144. The cubic equation whose roots are thrice to each of the roots of $x^{3}+2 x^{2}-4 x+1=0$ is
a) $x^{3}-6 x^{2}+36 x+27=0$
b) $x^{3}+6 x^{2}+36 x+27=0$
c) $x^{3}-6 x^{2}-36 x+27=0$
d) $x^{3}+6 x^{2}-36 x+27=0$
145. Let $(\sin a) x^{2}+(\sin a) x+(1-\cos a=0)$. The value of a for which roots of this equation are real and distinct, is
a) $\left(0,2 \tan ^{-1} 1 / 4\right)$
b) $(0,2 \pi / 3)$
c) $(0, \pi)$
d) $(0,2 \pi)$
146. If α and $\beta(\alpha<\beta)$ are the roots of the equation $x^{2}+b x+c=0$ where $c<0<b$, then
a) $0<\alpha<\beta$
b) $\alpha<0<\beta<|\alpha|$
c) $\alpha<\beta<0$
d) $\alpha<0<|\alpha|<\beta \mid$
147. If $1+x^{2}=\sqrt{3} x$, then $\sum_{n=1}^{24}\left(x^{n}-\frac{1}{x^{n}}\right)^{2}$ is equal to
a) 0
b) 48
c) -24
d) -48
148. The roots of the equation $\left|x^{2}-x-6\right|=x+2$ are
a) $-2,1,4$
b) $0,2,4$
c) $0,1,4$
d) $-2,2,4$
149. Let α, β be the roots of the equation $a x^{2}+b x+c=0$, and let $\alpha^{n}+\beta^{n}=S_{n}$ for $n \geq 1$. Then, the value of the determinant
$\left|\begin{array}{ccc}3 & 1+S_{1} & 1+S_{2} \\ 1+S_{1} & 1+S_{2} & 1+S_{3} \\ 1+S_{2} & 1+S_{3} & 1+S_{4}\end{array}\right|$ is
a) $\frac{b^{2}-4 a c}{a^{4}}$
b) $\frac{(a+b+c)\left(b^{2}+4 a c\right)}{a^{4}}$
c) $\frac{(a+b+c)\left(b^{2}-4 a c\right)}{a^{4}}$
d) $\frac{(a+b+c)^{2}\left(b^{2}-4 a c\right)}{a^{4}}$
150. If $z_{1}, z_{2}, z_{3}, \ldots, z_{n}$ are $n n$th roots of unity, then for $k=1,2, \ldots, n$
a) $\left|z_{k}\right|=k\left|z_{n+1}\right|$
b) $\left|z_{k+1}\right|=k\left|z_{k}\right|$
c) $\left|z_{k+1}\right|=\left|z_{k}\right|+\left|z_{k+1}\right|$
d) $\left|z_{k}\right|=\left|z_{k+1}\right|$
151. If α, β are the roots of the equation $x^{2}-\left(1+n^{2}\right) x+\frac{1}{2}\left(1+n^{2}+n^{4}\right)=0$, then $\alpha^{2}+\beta^{2}$ is
a) n^{2}
b) $-n^{2}$
c) n^{4}
d) $-n^{4}$
152. If one root of equation $x^{2}+a x+12=0$ is 4 while the equation $x^{2}+a x+b=0$ has equal roots, then the value of b is
a) $\frac{4}{49}$
b) $\frac{49}{4}$
c) $\frac{7}{4}$
d) $\frac{4}{7}$
153. If $a=\log _{2} 3, b=\log _{2} 5, c=\log _{7} 2$, then $\log _{140} 63$ in terms of a, b, c is
a) $\frac{2 a c+1}{2 c+a b c+1}$
b) $\frac{2 a c+1}{2 a+c+a}$
c) $\frac{2 a c+1}{2 c+a b+a}$
d) None of these
154. Number of non-zero integral solutions of the equation $(1-i)^{n}=2^{n}$ is
a) 1
b) 2
c) Infinite
d) None of these
155. The number of non-zero solutions of the equation $x^{2}-5 x-(\operatorname{sgn}(x)) 6=0$, is
a) 1
b) 2
c) 3
d) 4
156. If n is a positive integer greater than unity and z is a complex number satisfying the equation $z^{n}=$ $(z+1)^{n}$, then
a) $\operatorname{Re}(z)<0$
b) $\operatorname{Re}(z)>0$
c) $\operatorname{Re}(z)=0$
d) None of these
157. If $1, \omega, \omega^{2}$ are the cube roots of unity, then $(1+\omega)\left(1+\omega^{2}\right)\left(1+\omega^{4}\right)\left(1+\omega^{8}\right)$ is equal to
a) 1
b) 0
c) ω^{2}
d) ω
158. If $\left|\begin{array}{ccc}6 i & -3 i & 1 \\ 4 & 3 i & -1 \\ 20 & 3 & i\end{array}\right|=x+i y$, then
a) $x=3, y=1$
b) $x=13, y=3$
c) $x=0, y=3$
d) $x=0, y=0$
159. If z_{1}, z_{2}, z_{3} are vertices of an equilateral triangle with z_{0} its centroid, then $z_{1}^{2}+z_{2}^{2}+z_{3}^{2}=$
a) z_{0}^{2}
b) $9 z_{0}^{2}$
c) $3 z_{0}^{2}$
d) $2 z_{0}^{2}$
160. For all ' $x^{\prime}, x^{2}+2 a x+(10-3 a)>0$, then the interval in which ' a^{\prime} lies, is
a) $a<-5$
b) $-5<a<2$
c) $a>5$
d) $2<a<5$
161. If α_{1}, α_{2} and β_{1}, β_{2} are the roots of the equation $a x^{2}+b x+c=0$ and $p x^{2}+q x+r=0$ respectively and system of equations $\alpha_{1} y+\alpha_{2} z=0$ and $\beta_{1} y+\beta_{2} z=0$ has a non-zero solution, then
a) $a^{2} q c=p^{2} b r$
b) $b^{2}=p r=q^{2} a c$
c) $c^{2}=a r=r^{2} p b$
d) None of these
162. If $1, \omega, \omega^{2}$ are the cube roots of unity, then $\left(1-\omega+\omega^{2}\right)\left(1-\omega^{2}+\omega^{4}\right)\left(1-\omega^{4}+\omega^{8}\right)\left(1-\omega^{8}+\omega^{16}\right) \ldots$ upto $2 n$ factors is
a) $2 n$
b) $2^{2 n}$
c) 1
d) $-2^{2 n}$
163. If α and β are different complex numbers with $|\beta|=1$, then $\left|\frac{\beta-\alpha}{1-\bar{\alpha} \beta}\right|$ is
a) 0
b) $3 / 2$
c) $1 / 2$
d) 1
164. In a right-angled triangle, the sides are a, b and c, with c as hypotenuse, and $c-b \neq 1, c+b \neq 1$. Then the value of $\left(\log _{c+b} a+\log _{c-b} a\right) /\left(2 \log _{c+b} a \times \log _{c-b} a\right)$ will be
a) 2
b) -1
c) $\frac{1}{2}$
d) 1
165. The set of real values of x for which $\frac{10 x^{2}+17 x-34}{x^{2}+2 x-3}<8$, is
a) $(-5 / 2,2)$
b) $(-3,-5 / 2) \cup(1,2)$
c) $(-3,1)$
d) None of these
166. If $\left(\frac{1+\cos \phi+i \sin \phi}{1+\cos \phi-i \sin \phi}\right)=u+i v$, where u and v all real numbers, then u is
a) $n \cos \phi$
b) $\cos n \phi$
c) $\cos \left(\frac{n \phi}{2}\right)$
d) $\sin \left(\frac{n \phi}{2}\right)$
167. The number of real roots of the equation $2 x^{4}+5 x^{2}+3=0$, is
a) 4
b) 1
c) 0
d) 3
168. If α and β are the roots of $x^{2}-2 x+4=0$, then the value of $\alpha^{6}+\beta^{6}$ is
a) 32
b) 64
c) 128
d) 256
169. If $|z+4| \leq 3$, then the greatest and the least value of $|z+1|$ are
a) $6,-6$
b) 6,0
c) 7,2
d) $0,-1$
170. If P, P^{\prime} represent the complex number z_{1} and its additive inverse respectively, then the equation of the circle with $P P^{\prime}$ as a diameter is
a) $\frac{Z}{Z_{1}}=\frac{\bar{z}_{1}}{Z}$
b) $z \bar{Z}=z_{1} \bar{z}_{1}=0$
c) $z \bar{z}_{1}+\bar{z} z_{1}=0$
d) None of these
171. If $x+1$ is a factor of $x^{4}+(p-3) x^{3}-(3 p-5) x^{2}+(2 p-9) x+6$, then the value of p is
a) -4
b) 0
c) 4
d) 2
172. If $A=\{x: f(x)=0\}$ and $B=\{x: g(x)=0\}$, then $A \cap B$ will be the set of roots of the equation
a) $\{f(x)\}^{2}+\{g(x)\}^{2}=0$
b) $\frac{f(x)}{g(x)}$
c) $\frac{g(x)}{f(x)}$
d) None of these
173. If α and β are the roots of the equation $x^{2}+p x+q=0$ and if the sum $(\alpha+\beta) x-\frac{\alpha^{2}+\beta^{2}}{2} \cdot x^{2}+\frac{\alpha^{3}+\beta^{3}}{3} \cdot x^{3}-\ldots$ exists then it is equal to
a) $\log \left(x^{2}+p x+q\right)$
b) $\log \left(x^{2}-p x+q\right)$
c) $\log \left(1+p x+q x^{2}\right)$
d) $\log \left(1-p x+q x^{2}\right)$
174. Let z be a complex number satisfying $|z-5 i| \leq 1$ such that $\operatorname{amp}(z)$ is minimum. Then z is equal to
a) $\frac{2 \sqrt{6}}{5}+\frac{24 i}{5}$
b) $\frac{24}{5}+\frac{2 \sqrt{6} i}{5}$
c) $\frac{2 \sqrt{6}}{5}-\frac{24 i}{5}$
d) None of these
175. If α and β are the roots of $x^{2}+p x+1=0$ and γ and δ are the roots of $x^{2}+q x+1=0$, then the value of $(\alpha-\gamma)(\beta-\gamma)(\alpha+\delta)(\beta+\delta)$, is
a) $p^{2}-q^{2}$
b) $q^{2}-p^{2}$
c) p^{2}
d) q^{2}
176. For two complex numbers z_{1}, z_{2} the relation $\left|z_{1}+z_{2}\right|=\left|z_{1}\right|+\left|z_{2}\right|$ holds, if
a) $\arg \left(z_{1}\right)=\arg \left(z_{2}\right)$
b) $\arg \left(z_{1}\right)+\arg \left(z_{2}\right)=\frac{\pi}{2}$
c) $z_{1} z_{2}=1$
d) $\left|z_{1}\right|=\left|z_{2}\right|$
177. If ω is a complex cube root of unity, then $\sin \left\{\left(\omega^{10}+\omega^{23} \pi-\frac{\pi}{4}\right)\right\}$ is equal to
a) $\frac{1}{\sqrt{2}}$
b) $\frac{1}{2}$
c) 1
d) $\frac{\sqrt{3}}{2}$
178. If the equation $x^{3}-3 x+a=0$ has distinct roots between 0 and 1 , then the value of a is
a) 2
b) $1 / 2$
c) 3
d) None of these
179. If α, β are roots of the equation $375 x^{2}-25 x-2=0$ and $S_{n}=a^{n}+\beta^{n}$, then $\lim _{n \rightarrow \infty} \sum_{r=1}^{n} S_{r}$ is equal to
a) $7 / 116$
b) $1 / 12$
c) $29 / 348$
d) None of these
180. If $y=\tan x \cot 3 x, x \in R$, then
a) $\frac{1}{3}<y<1$
b) $\frac{1}{3} \leq y \leq 1$
c) $\frac{1}{3} \leq y \leq 3$
d) None of these
181. If α is a root of the equation $2 x(2 x+1)=1$, then the other roots is
a) $3 \alpha^{3}-4 \alpha$
b) $-2 \alpha(\alpha+1)$
c) $4 \alpha^{3}-3 \alpha$
d) None of these
182. If the roots of the equation $x^{2}-b x+c=0$ be two consecutive integers, then $b^{2}-4 c$ equals
a) 1
b) 2
c) 3
d) -2
183. If x, y, z are in GP and $a^{x}=b^{y}=c^{z}$, then
a) $\log _{a} c=\log _{b} a$
b) $\log _{b} a=\log _{c} b$
c) $\log _{c} b=\log _{a} c$
d) None of the above
184. If the complex numbers $z_{1}=a+i, z_{2}=1++i b, z_{3}=0$ form the vertices of equilateral triangle (a, b are real numbers between 0 and 1), then
a) $a=\sqrt{3}-1, b=\frac{\sqrt{3}}{2}$
b) $a=2-\sqrt{3}, b=2-\sqrt{3}$
c) $a=1 / 2, b=3 / 4$
d) None of these
185. Sum of the series $\sum_{r=0}^{n}(-1)^{r}{ }^{n} C_{r}\left\{i^{5 r}+i^{6 r}+i^{7 r}+i^{8 r}\right\}$, is
a) 2^{n}
b) $2^{n / 2+1}$
c) $n^{n}+2^{n / 2+1}$
d) $2^{n}+2^{n / 2+1} \cos \frac{n \pi}{4}$
186. If a, b and c are distinct positive real numbers in AP, then the roots of the equation $a x^{2}+2 b x+c=0$ are
a) Imaginary
b) Rational and equal
c) Rational and distinct
d) Irrational
187. Let $z(\neq 2)$ be a complex number such that $\log _{1 / 2}|z-2|>\log _{1 / 2}|z|$, then
a) $\operatorname{Re}(z)>1$
b) $\operatorname{Im}(z)>1$
c) $\operatorname{Re}(z)=1$
d) $\operatorname{Im}(z)=1$
188. The equation $z^{5}+z^{4}+z^{3}+z^{2}+z+1=0$ is satisfied by
a) $z= \pm 1$
b) $z=-1$
c) $z= \pm \frac{1}{2}+\frac{i \sqrt{3}}{2}$
d) None of the above
189. The equation $x^{2}-3|x|+2=0$ has
a) No real root
b) One real root
c) Two real roots
d) Four real roots
190. If one root of the equation $x^{2}+p x+12=0$ is 4 , while the equation $x^{2}+p x+q=0$ has equal roots, then the value of q is
a) 4
b) 12
c) 3
d) $\frac{49}{4}$
191. If $[x]^{2}=[x+2]$, where $[x]=$ the greatest integer less than or equal to x, then x must be such that
a) $x=2,-1$
b) $[-1,0] \cup[2,3]$
c) $x \in[-1,0]$
d) None of these
192. If α, β are the roots of $a x^{2}+b x+c=0$ the equation whose roots are $2+\alpha, 2+\beta$ is
a) $a x^{2}+x(4 a-b)+4 a-2 b+c=0$
b) $a x^{2}+x(4 a-b)+4 a+2 b+c=0$
c) $a x^{2}+x(b-4 a)+4 a+2 b+c=0$
d) $a x^{2}+x(b-4 a)+4 a-2 b+c=0$
193. If α, β and γ are angles such that $\tan \alpha+\tan \beta+\tan \gamma=\tan \alpha \tan \beta \tan \gamma$ and $x=\cos \alpha+i \sin \alpha, y=$ $\cos \beta+i \sin \beta$ and $z=\cos \gamma+i \sin \gamma$, then $x y z$ is equal to
a) 1 , but not -1
b) -1, but not 1
c) +1 or -1
d) 0
194. If $\arg \left(z_{1} z_{2}\right)=0$ and $\left|z_{1}\right|=\left|z_{2}\right|=1$, then
a) $z_{1}+z_{2}=0$
b) $z_{1} \overline{Z_{2}}=1$
c) $z_{1}=\overline{z_{2}}$
d) None of these
195. If the equation $2 x^{2}-7 x+1=0$ and $a x^{2}+b x+2=0$ have a common root, then
a) $a=2, b=-7$
b) $a=-\frac{7}{2}, b=1$
c) $a=4, b=-14$
d) None of these
196. The polynomial $x^{3 m}+x^{3 n+1}+x^{3 k+2}$ is exactly divisible by $x^{2}+x+1$ if
a) m, n, k are rational
b) m, n, k are integers
c) m, n, k are positive integers
d) None of these
197. If $a, b, c \neq 0$ and belongs to the set $\{0,1,2,3, \ldots \ldots, 9\}$,

Then $\log _{10}\left(\frac{a+10 b+10^{2} c}{10^{-4} a+10^{-3} b+10^{-2} c}\right)$ is equal to
a) 1
b) 2
c) 3
d) 4
198. If the roots of the equation $x^{2}+p x+q=0$ are $\tan 30^{\circ}$ and $\tan 15^{\circ}$ respectively, then the value of $2+q-p$ is
a) 3
b) 0
c) 1
d) 2
199. If $z=x-i y$ and $z^{1 / 3}=p+i q$, then $\left(\frac{x}{p}+\frac{y}{q}\right) /\left(p^{2}+q^{2}\right)$ is equal to
a) 1
b) -1
c) 2
d) -2
200. If $\sec \alpha$ and $\operatorname{cosec} \alpha$ are the roots of the equation $x^{2}-p x+q=0$, then
a) $p^{2}=p+2 q$
b) $q^{2}=p+2 q$
c) $p^{2}=q(q+2)$
d) $q^{2}=p(p+2)$
201. The number of real roots of the equation $\left(x+\frac{1}{x}\right)^{3}+x+\frac{1}{x}=0$ is
a) 0
b) 2
c) 4
d) 6
202. If $a, b, c \in R$ and $a+b+c=0$, then the quadratic equation $4 a x^{2}+3 b x+2 c=0$ has
a) One positive and one negative root
b) Imaginary roots
c) Real roots
d) None of these
203. If $\alpha, \beta \gamma$ and δ are the roots of the equation $x^{4}-1=0$, then the value of
$\frac{a \alpha+b \beta+c \gamma+d \delta}{a \gamma+b \delta+c \alpha+d \beta}+\frac{a \gamma+b \delta+c \alpha+d \beta}{a \alpha+b \beta+c \gamma+d \delta}$, is
a) 3β
b) 0
c) 2γ
d) None of these
204. If $\log _{5} \log _{5} \log _{2} x=0$, then the value of x is
a) 32
b) 125
c) 625
d) 25
205. $\left(\frac{1}{1+2 i}+\frac{3}{1+i}\right)\left(\frac{3+4 i}{2-4 i}\right)$ is equal to
a) $\frac{1}{2}+\frac{9}{2} i$
b) $\frac{1}{2}-\frac{9}{2} i$
c) $\frac{1}{4}-\frac{9}{4} i$
d) $\frac{1}{4}+\frac{9}{4} i$
206. If α, β are the roots of the equation $x^{2}+p x+q=0$ and α^{4}, β^{4} are the roots of $x^{2}-r x+s=0$, then the equation $x^{2}-4 q x+2 q^{2}-r=0$ has always (p, q, r, s are real numbers)
a) Two real roots
b) Two negative roots
c) Two positive roots
d) One positive and one negative roots
207. If x is real, then the minimum value of $\frac{x^{2}-x+1}{x^{2}+x+1}$, is
a) $\frac{1}{3}$
b) 3
c) $\frac{1}{2}$
d) 1
208. In the equation $a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}=0$ roots of the equation are $\alpha_{i}, i=1,2,3,4$. Now, x is replaced by $x-1$, now roots of new equation are
a) $\frac{1}{\alpha_{i}+1}, i=1,2,3,4$
b) $\alpha_{i}+1, i=1,2,3,4$
c) $\alpha_{i}-1, i=1,2,3,4$
d) None of these
209. The closest distance of the origin from a curve given as $a \bar{z}+\bar{a} z+|a|^{2}=0$ is
a) 1
b) $\frac{\operatorname{Re}(|a|)}{|a|}$
c) $\frac{\operatorname{Im}(|a|)}{|a|}$
d) $\frac{|a|}{2}$
210. Let a, b and c be such that $\frac{1}{(1-x)(1-2 x)(1-3 x)}=\frac{a}{1-x}+\frac{b}{1-2 x}+\frac{c}{1-3 x}$ then $\frac{a}{1}+\frac{b}{3}+\frac{c}{5}$ is equal to
a) $1 / 15$
b) $1 / 6$
c) $1 / 5$
d) $1 / 3$
211. The root of the equation $2(1+i) x^{2}-4(2-i) x-5-3 i=0$, where $i=\sqrt{-1}$, which has greater modulus, is
a) $\frac{3-5 i}{2}$
b) $\frac{5-3 i}{2}$
c) $\frac{3+i}{2}$
d) $\frac{3 i+1}{2}$
212. For any complex number z, the minimum value of $|z|+|z-2 i|$, is
a) 0
b) 1
c) 2
d) 4
213. The value of expression $2(1+\omega)\left(1+\omega^{2}\right)+3(2+\omega)\left(2+\omega^{2}\right)+4(3+\omega)\left(3+\omega^{2}\right)+\cdots+(n+1)(n+$ $\omega n+\omega 2$, where ω is an imaginary cube root of unity is
a) $\left\{\frac{n(n+1)}{2}\right\}^{2}$
b) $\left\{\frac{n(n+1)}{2}\right\}^{2}-n$
c) $\left\{\frac{n(n+1)}{2}\right\}^{2}+n$
d) None of these
214. For the equation $x^{\frac{3}{4}}\left(\log _{2} x\right)^{2}+\log _{2}(x)-\frac{5}{4}=\sqrt{2}$ which one of the following is not true?
a) Has at least one real solution
b) Has exactly three real solutions
c) Has exactly one irrational solution
d) All of these
215. If $\left(x^{2}-3 x+2\right)$ is a factor of $x^{4}-p x^{2}+q=0$, then the values of p and q are
a) $-5,4$
b) 5, 4
c) $5,-4$
d) $-5,-4$
216. If the ratio of the equation $x^{2}+p x+q=0$ be equal to the ratio of the roots of $x^{2}+l x+m=0$, then
a) $p^{2} m=q^{2} l$
b) $p m^{2}=q^{2} l$
c) $p^{2} l=q^{2} m$
d) $p^{2} m=l^{2} q$
217. If $x_{1}, x_{2}, x_{3}, x_{4}$ are roots of the equation $x^{4}-x^{3} \sin 2 \beta+x^{2} \cos 2 \beta-x \cos \beta-\sin \beta=0$, then $\tan ^{-1} x_{1}+$ $\tan -1 x 2+\tan -1 x 3+\tan -1 x 4$ is equal to
a) β
b) $\frac{\pi}{2}-\beta$
c) $\pi-\beta$
d) $-\beta$
218. If the roots of the equation $a(b-c) x^{2}+b(c-a) x+c(a-b)=0$ are equal, then a, b, c are in
a) H.P.
b) G.P.
c) A.P.
d) None of these
219. If the sum of the squares of the roots of the equation $x^{2}-(a-2) x-(a+1)=0$ is least, then the value of a is
a) 0
b) 2
c) -1
d) 1
220. If $a+b+c \neq 0$, then $\left(a+b \omega+c \omega^{2}\right)^{3}+\left(a+b \omega^{2}+c \omega^{2}\right)=$
a) $(2 a-b-c)(2 b-c-a)(2 c-a-b)$
b) $a b c$
c) $(2 a+b+c)(2 b+c+a)(2 c+a+b)$
d) None of these
221. The roots of the equation $\log _{2}\left(x^{2}-4 x+5\right)=(x-2)$ are
a) 4,5
b) $2,-3$
c) 2,3
d) 3,5
222. If $\cos \alpha$ is a root of $25 x^{2}+5 x-12=0,-1<x<0$. Then, the value of $\sin 2 \alpha$ is
a) $\frac{12}{25}$
b) $\frac{-12}{25}$
c) $\frac{-24}{25}$
d) $\frac{20}{25}$
223. If α, β, γ are the roots of the equation $2 x^{3}-3 x^{2}+6 x+1=0$, then $\alpha^{2}+\beta^{2}+\gamma^{2}$ is equal to
a) $-\frac{15}{4}$
b) $\frac{15}{4}$
c) $\frac{9}{4}$
d) 4
224. If $2 z_{1}-3 z_{2}+z_{3}=0$, then z_{1}, z_{2}, z_{3} are represented by
a) Three vertices of a triangle
b) Three collinear points
c) Three vertices of a rhombus
d) None of these
225. The condition that one root of the equation $a x^{2}+b x+c=0$ may be double of the other, is
a) $b^{2}=9 a c$
b) $2 b^{2}=9 a c$
c) $2 b^{2}=a c$
d) $b^{2}=a c$
226. The locus of $z=i+2 \exp \left\{i\left(\theta+\frac{\pi}{4}\right)\right\}$, where θ is parameter, is
a) A circle
b) An ellipse
c) A parabola
d) Hyperbola
227. If $\alpha \neq \beta$ and $\alpha^{2}=5 \alpha-3, \beta^{2}=5 \beta-3$, then the equation having α / β and β / α as its roots is
a) $3 x^{2}+19 x+3=0$
b) $3 x^{2}-19 x+3=0$
c) $3 x^{2}-19 x-3=0$
d) $x^{2}-16 x+1=0$
228. If $2-3 x-2 x^{2} \geq 0$, then
a) $x \leq-2$
b) $-2 \leq x \leq \frac{1}{2}$
c) $x \geq-2$
d) $x \leq \frac{1}{2}$
229. If $f(x)=a x^{2}+b x+c, g(x)=-a x^{2}+b x+c$ where $a c \neq 0$, then $f(x) g(x)=0$ has
a) At least three real roots
b) No real roots
c) At least two real roots
d) Two real roots and two imaginary roots
230. If $|z+4| \leq 3$, then the maximum value of $|z+1|$ is
a) 4
b) 10
c) 6
d) 0
231. If $x=\sqrt{7}-\sqrt{5}$ and $y=\sqrt{13}-\sqrt{11}$, then
a) $x>y$
b) $x<y$
c) $x=y$
d) None of these
232. If α, β are the roots of the equation $a x^{2}+b x+c=0$ such that $\beta<\alpha<0$, then the quadratic equation whose roots are $|\alpha|,|\beta|$, is given by
a) $|\alpha| x^{2}+|b| x+|c|=0$
b) $a x^{2}-|b| x+c=0$
c) $|a| x^{2}-|b| x+|c|=0$
d) $a|x|^{2}+b|x|+c=0$
233. If magnitude of a complex number $4-3 i$ is tripled and is rotated anti-clockwise by an angle π, then resulting complex number world be
a) $-12+9 i$
b) $12+9 i$
c) $7-6 i$
d) $7+6 i$
234. If $z=r e^{i \theta}$, then $\left|e^{i z}\right|$ is equal to
a) $e^{-r \sin \theta}$
b) $r e^{-r \sin \theta}$
c) $e^{-r \cos \theta}$
d) $r e^{-r \cos \theta}$
235. The roots of the equation $|2 x-1|^{2}-3|2 x-1|+2=0$ are
a) $\left\{-\frac{1}{2}, 0, \frac{1}{2}\right\}$
b) $\left\{-\frac{1}{2}, 0, \frac{3}{2}\right\}$
c) $\left\{-\frac{3}{2}, \frac{1}{2}, 0,1\right\}$
d) $\left\{-\frac{1}{2}, 0,1, \frac{3}{2}\right\}$
236. If $|3 x+2|<1$, then x belongs to the interval
a) $(-1,-1 / 3)$
b) $[-1,-1 / 3]$
c) $(-\infty,-1)$
d) $(-1 / 3, \infty)$
237. The set $C=\left\{z: z \bar{z}+a \bar{z}+\bar{a} z+b=0, b \in R\right.$ and $\left.b<|a|^{2}\right\}$ is
a) A finite set
b) An infinite set
c) An empty set
d) None of these
238. The equation $\bar{z}=\bar{a}+\frac{r^{2}}{(z-a)}, r>0$ represents
a) An ellipse
b) A parabola
c) A circle
d) A straight line through point \bar{a}
239. If ω is a complex cube root of unity, then $\frac{a+b \omega+c \omega^{2}}{c+a \omega+b \omega^{2}}+\frac{c+a \omega+b \omega^{2}}{a+b \omega+c \omega^{2}}+\frac{b+c \omega+a \omega^{2}}{b+c \omega^{4}+a \omega^{5}}$ is equal to
a) 1
b) ω
c) ω^{2}
d) 0
240. If the roots of the equation $3 x^{2}-6 x+5=0$ are α and β, then the equation whose roots are $\alpha+\beta$ and $\frac{2}{\alpha+\beta}$ will be
a) $x^{2}+3 x-1=0$
b) $x^{2}+3 x-2=0$
c) $x^{2}+3 x+2=0$
d) $x^{2}-3 x+2=0$
241. The roots of $a x^{2}+2 b x+c=0$ and $b x^{2}-2 \sqrt{a c} x+b=0$ are simultaneously real, then
a) $a=b, c=0$
b) $a c=b^{2}$
c) $4 b^{2}=a c$
d) None of these
242. The solution set of the inequation $\left|\frac{3}{x}+1\right|>2$, is
a) $(0,3]$
b) $[-1,0)$
c) $(-1,0) \cup(0,3)$
d) None of these
243. The number of real solutions of the equation $\left|x^{2}+4 x+3\right|+2 x+5=0$ are
a) 1
b) 2
c) 3
d) 4
244. The region of the complex plane for which $\left|\frac{z-a}{z+\bar{a}}\right|=1[\operatorname{Re}(a) \neq 0]$, is
a) x-axis
b) y-axis
c) The straight line $x=a$
d) None of these
245. The locus of point z satisfying $\operatorname{Re}\left(z^{2}\right)=0$, is
a) A pair of straight lines
b) A circle
c) A rectangular hyperbola
d) None of these
246. The co0mplex number $z=x+i y$ which satisfy the equation $\left|\frac{z-5 i}{z+5 i}\right|=1$ lies on
a) The axis of x
b) The straight line $y=5$
c) The circle passing through the origin
d) None of the above
247. If $2+i \sqrt{3}$ is a root of $x^{2}+p x+q=0$ where $p, q \in R$, then
a) $p=-4, q=7$
b) $p=4, q=7$
c) $p=4, q=-7$
d) $p=-4, q=-7$
248. If $\sqrt{3 x^{2}-7 x-30}+\sqrt{2 x^{2}-7 x-5}=x+5$, then x is equal to
a) 2
b) 3
c) 6
d) 5
249. if $\sqrt{x+i y}= \pm(a+i b)$, then $\sqrt{-x-i y}$ is equal to
a) $\pm(b+i a)$
b) $\pm(a-i b)$
c) $(a i+b)$
d) $\pm(b-i a)$
250. If roots of $x^{2}-a x+b=0$ are prime numbers, then
a) ' b ' is a prime number
b) ' a ' is a composite number
c) $1+a+b$ is a prime number
d) None of the above
251. Let z_{1} and z_{2} be complex numbers, then $\left|z_{1}+z_{2}\right|^{2}+\left|z_{1}-z_{2}\right|^{2}$ is equal to
a) $\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}$
b) $2\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right)$
c) $2\left(z_{1}^{2}+z_{2}^{2}\right)$
d) $4 z_{1} z_{2}$
252. If $f(x)=x^{2}+2 b x+2 c^{2}$ and $g(x)=-x^{2}-2 c x+b^{2}$ such that $\min f(x)>\max g(x)$, then the relation between b and c is
a) $|c|<|b| \sqrt{2}$
b) $0<c<b \sqrt{2}$
c) $|c|<|b| \sqrt{2}$
d) $|c|>|b| \sqrt{2}$
253. The number of complex numbers z such that $|z-1|=|z+1|=|z-i|$ equals
a) 0
b) 1
c) 2
d) ∞
254. If $a x^{2}+b x+c=0$ and $2 x^{2}+3 x+4=0$ have a common root where $a, b, c \in N$ (set of natural numbers), the least value of $a+b+c$ is
a) 13
b) 11
c) 7
d) 9
255. The solution set of the inequation $\frac{x+4}{x-3} \leq 2$, is
a) $(-\infty, 3) \cup(10, \infty)$
b) $(3,10]$
c) $(-\infty, 3) \cup[10, \infty)$
d) None of these
256. Let $f(x)=x^{2}+a x+b$, where $a, b \in R$. If $f(x)=0$ has all its roots imaginary, then the roots of $f(x)+f^{\prime}(x)+f^{\prime \prime}(x)=0$ are
a) Real and distinct
b) Imaginary
c) Equal
d) Rational and equal
257. If $\log _{10} 7=0.8451$, then the position of the first significant figure of 7^{-20} is
a) 16
b) 17
c) 20
d) 15
258. If z and w are two non-zero complex numbers such that $|z w|=1$ and $\arg (z)-\arg (w)=\frac{\pi}{2}$, then \bar{z} is equal to
a) 1
b) -1
c) i
d) $-i$
259. If the sum of the roots of the equation $a x^{2}+2 x+3 a=0$ is equal to their products, then the value of a is
a) $-\frac{2}{3}$
b) -3
c) 4
d) $-\frac{1}{2}$
260. If α, β, γ are the roots of $x^{3}+2 x^{2}-3 x-1=0$, then $\alpha^{-2}+\beta^{-2}+\gamma^{-2}$ is equal to
a) 12
b) 13
c) 14
d) 15
261. If $x^{2}+2 x+2 x y+m y-3=0$ has two rational factors, then the values of m will be
a) $-6,-2$
b) $-6,2$
c) $6,-2$
d) 6,2
262. If α and β are the roots of the equation $a x^{2}+b x+c=0, \alpha \beta=3$ and a, b, c are in AP, then $\alpha+\beta$ is equal to
a) -4
b) 1
c) 4
d) -2
263. If the difference between the roots of $x^{2}+a x-b=0$ is equal to the difference between the roots of $x^{2}-p x+q=0$, then $a^{2}-p^{2}$ in terms of b and q is
a) $-4(b+q)$
b) $4(b+q)$
c) $4(b-q)$
d) $4(q-b)$
264. The value of $\frac{a+b \omega+c \omega^{2}}{b+c \omega+a \omega^{2}}+\frac{a+b \omega+c \omega^{2}}{c+a \omega+b \omega^{2}}$ will be
a) 1
b) -1
c) 2
d) -2
265. The imaginary part of $(z-1)(\cos \alpha-i \sin \alpha)+(z-1)^{-1} \times(\cos \alpha+i \sin \alpha)$ zero, if
a) $|z-1|=2$
b) $\arg (z-1)=2 \alpha$
c) $\arg (z-1)=\alpha$
d) $|z|=1$
266. If $z=x+i y$ and $\left|\frac{1-i z}{z-i}\right|=1$, the locus of z is
a) x-axis
b) y-axis
c) Circle with unity radius
d) None of the above
267. If p and q are roots of the quadratic equation $x^{2}+m x+m^{2}+a=0$, then the value of $p^{2}+q^{2}+p q$ is
a) 0
b) a
c) $-a$
d) $\pm m^{2}$
268. For the equation $|x|^{2}+|x|-6=0$
a) There is only one root
b) There are only two distinct roots
c) There are only three distinct roots
d) There are four distinct roots
269. Let z_{1} and z_{2} be two complex numbers such that $\frac{z_{1}}{z_{2}}+\frac{z_{2}}{z_{1}}=1$. Then,
a) z_{1}, z_{2} are collinear
b) z_{1}, z_{2} and the origin from a right angled triangle
c) z_{1}, z_{2} and the origin from an equilateral triangle
d) None of these
270. If x, a, b, c are real and $(x-a+b)^{2}+(x-b+c)^{2}=0$, then a, b, c are in
a) H.P.
b) G.P.
c) A.P.
d) None of these
271. If $z=i \log (2-\sqrt{3})$, then $\cos z=$
a) i
b) $2 i$
c) 1
d) 2
272. If $x=3+i$, then $x^{3}-3 x^{2}-8 x+15$ is equal to
a) 45
b) -15
c) 10
d) 6
273. If z_{1}, z_{2} are any two complex numbers, then
a) $\left|z_{1}+z_{2}\right| \geq\left|z_{1}\right|+\left|z_{2}\right|$
b) $\left|z_{1}+z_{2}\right|>\left|z_{1}\right|+\left|z_{2}\right|$
c) $\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|$
d) $\left|z_{1}+z_{2}\right|=\left|z_{1}\right|+\left|z_{2}\right|$
274. The value of a for which the equation $2 x^{2}+2 \sqrt{6} x+a=0$ has equal root, is
a) 3
b) 4
c) 2
d) $\sqrt{3}$
275. If $a=\cos \left(\frac{2 \pi}{7}\right)+i \sin \left(\frac{2 \pi}{7}\right)$, then the quadratic equation whose roots are $\alpha=a+a^{2}+a^{4}$ and $\beta=a^{3}+$ $a^{5}+a^{6}$ is
a) $x^{2}-x+2=0$
b) $x^{2}+x-2=0$
c) $x^{2}-x-2=0$
d) $x^{2}+x+2=0$
276. If $\left|z_{1}\right|=\left|z_{2}\right|$ and $\arg \left(z_{1}\right)+\arg \left(z_{2}\right)=0$, then
a) $z_{1}=z_{2}$
b) $z_{1}=\overline{z_{2}}$
c) $z_{1} z_{2}=1$
d) None of these
277. For any complex number z, the minimum value of $|z|+|z-1|$ is
a) 1
b) 0
c) $1 / 2$
d) $3 / 2$
278. The equation $z \bar{z}+a \bar{z}+\bar{a} z+b=0, b \in R$ represents a circle, if
a) $|a|^{2}=b$
b) $|a|^{2}>b$
c) $|a|^{2}<b$
d) None of these
279. If $z_{1}, z_{2}, z_{3}, z_{4}$ are the affixes of four points in the argand plane and z is the affix of a point such that $\left|z-z_{1}\right|=\left|z-z_{2}\right|=\left|z-z_{3}\right|=\left|z-z_{4}\right|$, then $z_{1}, z_{2}, z_{3}, z_{4}$ are
a) Concyclic
b) Vertices of a parallelogram
c) Vertices of a rhombus
d) In a straight line
280. Let α, β be the roots of the equation $a x^{2}+2 b x+c=0$ and γ, δ be the roots of the equation $p x^{2}+2 q x+$ $r=0$. If $\alpha, \beta, \gamma, \delta$ are in GP, then
a) $q^{2} a c=b^{2} p r$
b) $q a c=b p r$
c) $c^{2} p q=r^{2} a b$
d) $p^{2} a b=a^{2} q r$
281. If α, β, γ are such that $\alpha+\beta+\gamma=2, \alpha^{2}+\beta^{2}+\gamma^{2}=6, \alpha^{3}+\beta^{3}+\gamma^{3}=8$, then $\alpha^{4}+\beta^{4}+\gamma^{4}$ is equal to
a) 7
b) 12
c) 18
d) 36
282. If the roots of the equation $x^{2}-2 a x+a^{2}+a-3=0$ are real and less than 3 , then
a) $a<2$
b) $2 \leq a \leq 3$
c) $3 \leq a \leq 4$
d) $a>4$
283. For any two complex numbers z_{1} and z_{2} and any real numbers a and $b,\left|a z_{1}-b z_{2}\right|^{2}+\left|b z_{1}+a z_{2}\right|^{2}$ is equal to
a) $\left(a^{2}+b^{2}\right)\left(\left|z_{1}\right|+\left|z_{2}\right|\right)$
b) $\left(a^{2}+b^{2}\right)\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right)$
c) $\left(a^{2}+b^{2}\right)\left(\left|z_{1}\right|^{2}-\left|z_{2}\right|^{2}\right)$
d) None of the above
${ }^{284}$. If ω is the complex cube root of unity, then the value of $\omega+\omega^{\left(\frac{1}{2}+\frac{3}{8}+\frac{9}{32}+\frac{27}{128}+\cdots\right)}$
a) -1
b) 1
c) $-i$
d) i
285. If α and β are the roots of the equation $a x^{2}+b x+c=0$ and, if $p x^{2}+q x+r=0$ has roots $\frac{1-\alpha}{\alpha}$ and $\frac{1-\beta}{\beta}$, then r is equal to
a) $a+2 b$
b) $a+b+c$
c) $a b+b c+c a$
d) $a b c$
286. If $1+x^{2}=\sqrt{3} x$, then $\sum_{n=1}^{24}\left(x^{n}-\frac{1}{x^{n}}\right)^{2}$ is equal to
a) 48
b) -48
c) $\pm 48\left(\omega-\omega^{2}\right)$
d) None of these
287. If α, β are the roots of $x^{2}+b x-c=0$, then the equation whose roots are b and c is
a) $x^{2}+a x-\beta=0$
b) $x^{2}-x(\alpha+\beta+\alpha \beta)-\alpha \beta(\alpha+\beta)=0$
c) $x^{2}+(\alpha+\beta-\alpha \beta) x-\alpha \beta(\alpha+\beta)=0$
d) $x^{2}+x(\alpha+\beta+\alpha \beta)+\alpha \beta(\alpha+\beta)=0$
288. Let α, β be the roots of the equation $x^{2}-a x+b=0$ and $A_{n}=\alpha^{n}+\beta^{n}$. Then, $A_{n+1}-a A_{n}+b A_{n-1}$ is
equal to
a) $-a$
b) b
c) 0
d) $a-b$
289. The quadratic equations $x^{2}+\left(a^{2}-2\right) x-2 a^{2}=0$ and $x^{2}-3 x+2=0$ have
a) No common root for all $a \in R$
b) Exactly one common root for all $a \in R$
c) Two common roots for some $a \in R$
d) None of these
290. If a, b, c are distinct positive numbers each being different from 1 such that $\left(\log _{b} a \cdot \log _{c} a-\log _{a} a\right)+\left(\log _{a} b \cdot \log _{c} b-\log _{b} b\right)+\left(\log _{a} c \cdot \log _{b} c-\log _{c} c\right)=0$, then $a b c$ is
a) 0
b) e
c) 1
d) 2
291. Suppose that two persons A and B solve the equation $x^{2}+a x+b=0$. While solving A commits a mistake in the coefficient of x was taken as 15 in place of -9 and finds the roots as -7 and -2 . Then the equation is
a) $x^{2}+9 x+14=0$
b) $x^{2}-9 x+14=0$
c) $x^{2}+9 x-14=0$
d) $x^{2}-9 x-14=0$
292. The values of ' a ' for which the roots of the equation $x^{2}+x+a=0$ are real and exceed 'a' are
a) $0<a<1 / 4$
b) $a<1 / 4$
c) $a<-2$
d) $-2<a<0$
293. If a, b, c are positive real numbers, then the number of real roots of the equation $a x^{2}+b|x|+c=0$ is
a) 2
b) 4
c) 0
d) None of these
294. If a and b are two distinct real roots of the polynomial $f(x)$ such that $a<b$, then there exists a real number c lying between a and b, such that
a) $f(c)=0$
b) $f^{\prime}(c)=0$
c) $f^{\prime \prime}(c)=0$
d) None of these
295. If the cube root of unity are $1, \omega, \omega^{2}$, then the roots of the equation $(x-1)^{3}+8=0$, are
a) $-1,1+2 \omega, 1+2 \omega^{2}$
b) $-1,1-2 \omega, 1-2 \omega^{2}$
c) $-1,-1,-1$
d) $-1,-1+2 \omega,-1-2 \omega^{2}$
296. A value of k for which the quadratic equation $x^{2}-2 x(l+3 k)+7(2 k+3)=0$ has equal roots, is
a) 1
b) 2
c) 3
d) 4
297. $7^{2 \log _{7} 5}$ is equal to
a) $\log _{7} 35$
b) 5
c) 25
d) $\log _{7} 25$
298. The expression $\tan \left\{i \log \left(\frac{a-i b}{a+i b}\right)\right\}$ reduces to
a) $\frac{a b}{a^{2}+b^{2}}$
b) $\frac{2 a b}{a^{2}-b^{2}}$
c) $\frac{a b}{a^{2}-b^{2}}$
d) $\frac{2 a b}{a^{2}+b^{2}}$
299. The common roots of the equations $x^{3}+2 x^{2}+2 x+1=0$ and $1+x^{2002}+x^{2003}=0$ are (where ω is a complex cube root of unity)
a) ω, ω^{2}
b) $1, \omega^{2}$
c) $-1,-\omega$
d) $\omega,-\omega^{2}$
300. If α, β, γ are the cube roots of a negative number p, then for any three real numbers x, y, z the value of $\frac{x \alpha+y \beta+z \gamma}{x \beta+y \gamma+z \alpha}$ is
a) $\frac{1-i \sqrt{3}}{2}$
b) $\frac{-1-i \sqrt{3}}{2}$
c) $(x+y+z) i$
d) π
301. $\sin x+\cos x=y^{2}-y+a$ has no value of x for any y, if ' a^{\prime} belongs to
a) $(0, \sqrt{3})$
b) $(-\sqrt{3}, 0)$
c) $(-\infty,-\sqrt{3})$
d) $(\sqrt{3}, \infty)$
302. The value of $\sqrt{42+\sqrt{42+\sqrt{42+\ldots}}}$ is equal to
a) 7
b) -6
c) 5
d) 4
303. The quadratic equation in x such that the arithmetic mean of its roots is 5 and geometric mean of the roots is 4 , is given by
a) $x^{2}+20 x+16=0$
b) $x^{2}-10 x+16=0$
c) $x^{2}+10 x+16=0$
d) $x^{2}-10 x-16=0$
304. The shaded region, where
$P \equiv(-1,0), Q \equiv(-1+\sqrt{2}, \sqrt{2})$
$R \equiv(-1+\sqrt{2},-\sqrt{2}), S \equiv(1,0)$ is represented by

a) $|z+1|>2,\left|\arg (z+1)<\frac{\pi}{4}\right|$
b) $|z+1|<2, \arg (z+1)<\frac{\pi}{2}$
c) $|z-1|>2, \arg (z+1)>\frac{\pi}{4}$
d) $|z-1|<2, \left\lvert\, \arg (z+1)>\frac{\pi}{4}\right.$
305. If ω and ω^{2} are the two imaginary cube roots of unity, then the equation whose roots are $a \omega^{317}$ and $a \omega^{382}$, is
a) $x^{2}+a x+a^{2}=0$
b) $x^{2}+a^{2} x+a=0$
c) $x^{2}-a x+a^{2}=0$
d) $x^{2}-a^{2} x+a=0$
306. If x is real, then expression $\frac{x+2}{2 x^{2}+3 x+6}$ takes all values in the interval
a) $\left(\frac{1}{13}, \frac{1}{3}\right)$
b) $\left[-\frac{1}{13}, \frac{1}{3}\right]$
c) $\left(-\frac{1}{3}, \frac{1}{13}\right)$
d) None of these
307. If $z(\overline{z+\alpha})+\bar{z}(z+\alpha)=0$ where α is a complex constant, then z is represented by a point on
a) A circle
b) A straight line
c) A parabola
d) None of these
308. The value of a for which the equations $x^{3}+a x+1=0$ and $x^{4}+a x^{2}+1=0$ have a common root, is
a) -2
b) -1
c) 1
d) 2
309. If $2 x=-1+\sqrt{3} i$, then the value of $\left(1-x^{2}+x\right)^{6}-\left(1-x+x^{2}\right)^{6}$ is equal to
a) 32
b) -64
c) 64
d) 0
310. If α, β are roots of $x^{2}+p x-q=0$ and γ, δ are root of $x^{2}+p x+r=0$, then the value of $(\alpha-\gamma)(\alpha-\delta)$ is
a) $p+q$
b) $q-r$
c) $r-q$
d) $q+r$
311. The roots α, β and γ of an equation $x^{3}-3 a x^{2}+3 b x-c=0$ are in H.P. Then,
a) $\beta=\frac{1}{a}$
b) $\beta=b$
c) $\beta=\frac{b}{c}$
d) $\beta=\frac{c}{b}$
312. The value of $1+i^{2}+i^{4}+i^{6}+\cdots+i^{2 n}$ is
a) Positive
b) Negative
c) Zero
d) Cannot be determined
313.

If $1, \omega, \omega^{2}$ are the cube roots of unity, then $\left|\begin{array}{ccc}1+\omega & \omega^{2} & -\omega \\ 1+\omega^{2} & \omega & -\omega^{2} \\ \omega^{2}+\omega & \omega & -\omega^{2}\end{array}\right|$
a) ω^{2}
b) 0
c) 1
d) ω
314. The value of $1+\sum_{k=0}^{14}\left\{\cos \frac{(2 k+1)}{15} \pi+i \sin \frac{(2 k+1)}{15} \pi\right\}$ is
a) 0
b) -1
c) 1
d) i
315. If $a z_{1}+b z_{2}+c z_{3}=0$ for complex numbers z_{1}, z_{2}, z_{3} and real numbers a, b, c, then z_{1}, z_{2}, z_{3} lie on a
a) Straight line
b) Circle
c) Depends on the choice of a, b, c
d) None of these
316. If $\omega(\neq 1)$ be a cube root of unity and $(1+\omega)^{7}=A+B \omega$, then A and B are respectively the numbers:
a) 0,1
b) 1,1
c) 1,0
d) $-1,1$
317. If $x \in R$, then the expression $9^{x}-3^{x}+1$ assumes
a) All real values
b) All real values greater than 0
c) All real values greater than $3 / 4$
d) All real values greater than $1 / 4$
318. The locus represented by the equation $|z-1|=|z-i|$ is
a) A circle of radius 1
b) An ellipse with foci at 1 and $-i$
c) A line through the origin
d) A circle on the line joining 1 and $-i$ as diameter
319. The number of real roots of the equation $x^{4}+\sqrt{x^{4}+20}=20$ is
a) 4
b) 2
c) 0
d) 1
320. If the roots of the quadratic equation $x^{2}-4 x-\log _{3} a=0$ are real, then the least value of a is
a) 81
b) $1 / 81$
c) $1 / 64$
d) None of these
321. For the equation $\frac{1}{x+a}-\frac{1}{x+b}=\frac{1}{x+c^{\prime}}$, if the product of the roots is zero, then the sum of the roots is
a) 0
b) $\frac{2 a b}{b+c}$
c) $\frac{2 b c}{b+c}$
d) $-\frac{2 b c}{b+c}$
322. If $\frac{3 x+2}{(x+1)\left(2 x^{2}+3\right)}=\frac{A}{x+1}+\frac{B x+C}{2 x^{2}+3^{\prime}}$, then $A+C-B$ is equal to
a) 0
b) 2
c) 3
d) 5
323. If $z^{2}+(p+i q) z+(r+i s)=0$, where, p, q, r, s are non-zero has real roots, then
a) $p q s=s^{2}+q^{2} r$
b) $p q r=r^{2}+p^{2} s$
c) $p r s=q^{2}+r^{2} p$
d) $q r s=p^{2}+s^{2} q$
324. The values of p for which the difference between the roots of the equation $x^{2}+p x+8=0$ is 2 , are
a) ± 2
b) ± 4
c) ± 6
d) ± 8
325. If $\cos \alpha+2 \cos \beta+3 \cos \gamma=\sin \alpha+2 \sin \beta+3 \sin \gamma=0$ and $\alpha+\beta+\gamma=n \pi$, then $\sin 3 \alpha+8 \sin 3 \beta+$ $27 \sin 3 \gamma=$
a) 0
b) 3
c) 8
d) -18
326. If $\frac{3}{2}+\frac{7}{2} i$ is a solution of the equation $a x^{2}-6 x+b=0$, where a and b are real numbers, then the value of $a+b$ is equal to
a) 10
b) 22
c) 30
d) 31
327. $\operatorname{Re}\left(z^{2}\right)=1$ is represented by
a) The circle $x^{2}+y^{2}=1$
b) The hyperbola $x^{2}-y^{2}=1$
c) Parabola or a circle
d) All of the above
328. If $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}$ are the roots of the equation $x^{4}+(2-\sqrt{3}) x^{2}+2+\sqrt{3}=0$, then the value of $\left(1-\alpha_{1}\right)(1-$ $\alpha 21-\alpha 3(1-\alpha 4)$ is
a) 1
b) 4
c) $2+\sqrt{3}$
d) 5
329. If $x=8+3 \sqrt{7}$ and $x y=1$, then the value of $\frac{1}{x^{2}}+\frac{1}{y^{2}}$ is
a) 254
b) 192
c) 292
d) 66
330. The complex numbers z having positive argument and satisfying $|2-3 i|<|z|$, is
a) $\frac{12}{5}+\frac{16}{5} i$
b) $\frac{4}{5}+\frac{6}{5} i$
c) $\frac{6}{5}-\frac{5}{2} i$
d) None of these
331. Let S denote the set of all values of S for which the equation $2 x^{2}-2(2 a+1) x+a(a+1)=0$ has one root less than a and other root greater than a, then S equals
a) $(0,1)$
b) $(-1,0)$
c) $(0,1 / 2)$
d) None of these
332. If $a \leq 0$, then one of the roots of $x^{2}-2 a|x-a|-3 a^{2}=0$ is
a) $(-1+\sqrt{6}) a$
b) $(\sqrt{6}-1) a$
c) a
d) None of these
333. If $A\left(z_{1}\right), B\left(z_{2}\right)$ and $C\left(z_{3}\right)$ be the vertices of a triangle $A B C$ in which $\angle A B C=\frac{\pi}{4}$ and $\frac{A B}{B C}=\sqrt{2}$, then the value of z_{2} is equal to
a) $z_{3}+i\left(z_{1}+z_{3}\right)$
b) $z_{3}-i\left(z_{1}-z_{3}\right)$
c) $z_{3}+i\left(z_{1}-z_{3}\right)$
d) None of these
334. When $\frac{z+i}{z+2}$ is purely imaginary, the locus described by the point z in the argand diagram is a
a) Circle of radius $\frac{\sqrt{5}}{2}$
b) Circle of radius $\frac{5}{4}$
c) Straight line
d) Parabola
335. Area of the triangle formed by 3 complex numbers $1+i, i-1,2 i$ in the Argand plane is
a) $1 / 2$
b) 1
c) $\sqrt{2}$
d) 2
336. The value of $x^{4}+9 x^{3}+35 x^{2}-x+4$ for $x=-5+2 \sqrt{-4}$ is
a) 0
b) -160
c) 160
d) -164
337. The locus of the point z satisfying $\arg \left(\frac{z-1}{z+1}\right)=k$, where k is non-zero real, is
a) A circle with centre on y-axis
b) A circle with centre on x-axis
c) A straight line parallel to x-axis
d) A straight line making an angle of 60° with the x-axis
338. The product of the real roots of the equation
$|2 x+3|^{2}-3|2 x+3|+2=0$, is
a) $5 / 4$
b) $5 / 2$
c) 5
d) 2
339. If α, β be the roots of the quadratic equation $x^{2}+x+1=0$, then the equation whose roots are α^{19}, β^{7} is
a) $x^{2}-x+1=0$
b) $x^{2}-x-1=0$
c) $x^{2}+x-1=0$
d) $x^{2}+x+1=0$
340. In the argand plane, the complex number $z=4-3 i$ is turned in the clockwise sense through 180° and stretched three times. The complex number represented by the new number is
a) $12+9 i$
b) $12-9 i$
c) $-12-9 i$
d) $-12+9 i$
341. If A is the A.M. of the roots of the equation $x^{2}-2 a x+b=0$ and G is the G.M. of the roots of the equation $x^{2}-2 b x+a^{2}=0$, then
a) $A>G$
b) $A \neq G$
c) $A=G$
d) None of these
342. The maximum value of $|z|$ where z satisfies the condition $\left|z+\frac{2}{z}\right|=2$, is
a) $\sqrt{3}-1$
b) $\sqrt{3}+1$
c) $\sqrt{3}$
d) $\sqrt{2}+\sqrt{3}$
343. Let α, β are the roots of equation $2 x^{2}-(p+1) x+(p-1)=0$. If $\alpha-\beta=\alpha \beta$, then what is the value of p ?
a) 1
b) 2
c) 3
d) -2
344. Let $a=e^{i \frac{2 \pi}{3}}$. Then, the equation whose roots are $a+a^{-2}$ and $a^{2}+a^{-4}$ is
a) $x^{2}-2 x+4+0$
b) $x^{2}-x+1=0$
c) $x^{2}+x+4=0$
d) $x^{2}+2 x+4=0$
345. The coefficients of x in the quadratic equation $x^{2}+b x+c=0$ was taken as 17 in place of 13 , its roots were found to be -2 and -15 . The correct root of the original equation are
a) $-10,-3$
b) $-9,-4$
c) $-8,-5$
d) $-7,-6$
346. If x, y, z are real and distinct, then $u=x^{2}+4 y^{2}+9 z^{2}-6 y z-3 z x-2 x y$ is always
a) Non-negative
b) Non-positive
c) Zero
d) None of these
347. If α, β are the roots of the equation $6 x^{2}-5 x+1=0$, then the value of $\tan ^{-1} \alpha+\tan ^{-1} \beta$ is
a) 0
b) $\pi / 4$
c) 1
d) $\pi / 2$
348. If $a^{x}=b^{y}=c^{z}=d^{w}$, then the value of $x\left(\frac{1}{y}+\frac{1}{z}+\frac{1}{w}\right)$ is
a) $\log _{a}(a b c)$
b) $\log _{a}(b c d)$
c) $\log _{b}(c d a)$
d) $\log _{e}(d a b)$
349. The locus of z satisfying the inequality $\log _{1 / 3}|z+1|>\log _{1 / 3}|z-1|$ is
a) $\operatorname{Re}(z)<0$
b) $\operatorname{Re}(z)>0$
c) $\operatorname{Im}(z)<0$
d) None of these
350. If a, b, c are real numbers in G.P. such that a and c are positive, then the roots of the equation $a x^{2}+b x+$ $c=0$
a) Are real and are in ratio $b: a c$
b) Are real
c) Are imaginary and are in ratio $1: \omega$, where ω is a complex cube root of unity
d) Are imaginary and are in ratio $-1: \omega$
351. $\tan \alpha$ and $\tan \beta$ are the roots of the equation $x^{2}+a x+b=0$, then the value of $\sin ^{2}(\alpha+\beta)+a \sin (\alpha+$ $\beta \cos \alpha+\beta+b \cos 2(\alpha+\beta)$ is equal to
a) $a b$
b) b
c) $\frac{a}{b}$
d) a
352. If ω is an imaginary cube root of unity, then the value of $\sin \left\{\left(\omega^{10}+\omega^{23}\right) \pi-\frac{\pi}{4}\right\}$ is
a) $\frac{1}{\sqrt{2}}$
b) $\frac{\sqrt{3}}{2}$
c) $\frac{-1}{\sqrt{3}}$
d) $-\frac{\sqrt{3}}{2}$
353. The equation formed by decreasing each root of $a x^{2}+b x+c=0$ by 1 is $2 x^{2}+8 x+2=0$, then
a) $a=-b$
b) $b=-c$
c) $c=-a$
d) $b=a+c$
354. If $|z-2|=\min \{|z-1|,|z-5|\}$, where z is a complex number, then
a) $\operatorname{Re}(z)=\frac{3}{2}$
b) $\operatorname{Re}(z)=\frac{7}{2}$
c) $\operatorname{Re}(z) \in\left\{\frac{3}{2}, \frac{7}{2}\right\}$
d) None of these
355. If a, b are odd integers, then the roots of the equation $2 a x^{2}+(2 a+b) x+b=0, a \neq 0$ are
a) Rational
b) Irrational
c) Non-real
d) None of these
356. If α, β are the roots of the equation $l x^{2}+m x+n=0$, then the equation whose roots are $\alpha^{3} \beta$ and $\alpha \beta^{3}$, is
a) $l^{4} x^{2}-n l\left(m^{2}-2 n l\right) x+n^{4}=0$
b) $l^{4} x^{2}+n l\left(m^{2}-2 n l\right) x+n^{4}=0$
c) $l^{4} x^{2}+n l\left(m^{2}-2 n l\right) x-n^{4}=0$
d) $l^{4} x^{2}-n l\left(m^{2}+2 n l\right) x+n^{4}=0$
357. If α, β, γ are the roots of the equation $x^{3}-7 x+7=0$, then $\frac{1}{\alpha^{4}}+\frac{1}{\beta^{4}}+\frac{1}{\gamma^{4}}$ is
a) $7 / 3$
b) $3 / 7$
c) $4 / 7$
d) $7 / 4$
358. If $x^{2}-2 r a_{r} x+r=0 ; r=1,2,3$ are three quadratic equations of which each pair has exactly one root common, then the number of solutions of the triplet $\left(a_{1}, a_{2}, a_{3}\right)$ is
a) 1
b) 2
c) 9
d) 27
359. Let $z=\frac{11-3 i}{1+i}$. If α is a real number such that $z-i \alpha$ is real, then the value of α is
a) 4
b) -4
c) 7
d) -7
360. The coefficient of x in the equation $x^{2}+p x+q=0$ was taken as 17 in place of 13 its roots were found to be -2 and -15 . The roots of the original equation are
a) 3,10
b) $-3,-10$
c) $-5,-8$
d) None of these
361. If $z^{2}+z+1=0$, where z is a complex number, then the value of $\left(z+\frac{1}{z}\right)^{2}+\left(z^{2}+\frac{1}{z^{2}}\right)^{2}+\left(z^{3}+\right.$ $1 z 3+\ldots+z 6+1 z 62$ is
a) 6
b) 12
c) 18
d) 24
362. The set of possible values of a for which $x^{2}-\left(a^{2}-5 a+5\right) x+\left(2 a^{2}-3 a-4\right)=0$ has roots whose sum and product are both less than 1 is
a) $(-1,5 / 2)$
b) $(1,4)$
c) $[1,5 / 2]$
d) $(1,5 / 2)$
363. If $(x-2)$ is a common factor of the expressions $x^{2}+a x+b$ and $x^{2}+c x+d$, then $\frac{b-d}{c-a}$ is equal to
a) -2
b) -1
c) 1
d) 2
364. The value of $\log _{2} 20 \log _{2} 80-\log _{2} 5 \log _{2} 320$ is equal to
a) 5
b) 6
c) 7
d) 8
365. The greatest number among $\sqrt[3]{9}, \sqrt[4]{11}, \sqrt[6]{17}$ is
a) $\sqrt[3]{9}$
b) $\sqrt[4]{11}$
c) $\sqrt[6]{17}$
d) Cannot be determined
366. The value of $\left(-\frac{1}{2}+\frac{\sqrt{3} i}{2}\right)^{1000}$ is
a) ω^{3}
b) ω^{2}
c) $\omega^{3}-\omega$
d) ω
367. If each pair of the equation $x^{2}+a x+b=0, x^{2}+b x+c=0$ and $x^{2}+c x+a=0$ has a common root, then product of all common roots is
a) $\sqrt{a b c}$
b) $2 \sqrt{a b c}$
c) $\sqrt{a b+b c+c a}$
d) $2 \sqrt{a b+b c+c a}$
368. The value of $\sum_{k=1}^{10}\left(\sin \frac{2 k \pi}{11}+i \cos \frac{2 k \pi}{11}\right)$ is
a) 1
b) -1
c) $-i$
d) i
369. If z is a complex number such that $z \neq 0$ and $\operatorname{Re}(z)=0$, then
a) $\operatorname{Re}\left(z^{2}\right)=0$
b) $\operatorname{Im}\left(z^{2}\right)=0$
c) $\operatorname{Re}\left(z^{2}\right)=\operatorname{Im}\left(z^{2}\right)$
d) None of these
370. If $z_{1}, z_{2}, z_{3}, z_{4}$ are four complex numbers represented by the vertices of a quadrilateral taken in order such that $z_{1}-z_{4}=z_{2}-z_{3}$ and $\arg \left(\frac{z_{4}-z_{1}}{z_{2}-z_{1}}\right)=\frac{\pi}{2}$, then the quadrilateral is
a) A square
b) A rectangle
c) A rhombus
d) A cyclic quadrilateral
371. The real root of the equation $x^{3}-6 x+9=0$ is
a) -6
b) -9
c) 6
d) -3
372. The value of the expression

1. $(2-\omega)\left(2-\omega^{2}\right)+2(3-\omega)\left(3-\omega^{2}\right)+\ldots \ldots+\ldots+(n-1)(n-\omega)\left(n-\omega^{2}\right)$

Where ω is an imaginary cube root of unit is
a) $(n-1) n\left(n^{2}+3 n+4\right) / 4$
b) $(n-1) n\left(n^{2}+3 n+4\right) / 2$
c) $(n+1) n\left(n^{2}+3 n+4\right) / 2$
d) None of the above
373. If $\left|z_{1}\right|=\left|z_{2}\right|=\left|z_{3}\right|$ and $z_{1}+z_{2}+z_{3}=0$, then z_{1}, z_{2}, z_{3} are vertices of
a) A right angled triangle
b) An equilateral triangle
c) Isosceles triangle
d) Scalene triangle
374. If x is real, then the value of $\frac{x+2}{2 x^{2}+3 x+6}$ is equal to
a) $\left(\frac{1}{13}, \frac{1}{3}\right)$
b) $\left(-\frac{1}{13}, \frac{1}{3}\right)$
c) $\left(-\frac{1}{3}, \frac{1}{13}\right)$
d) None of these
375. Which of the following is correct?
a) $1+i>2-i$
b) $2+i>1+i$
c) $2-i>1+i$
d) None of these
376. If n is an integer which leaves remainder one when divided by three, then $(1+\sqrt{3} i)^{n}+(1-\sqrt{3} i)^{n}$ equals
a) -2^{n+1}
b) 2^{n+1}
c) $-(-2)^{n}$
d) -2^{n}

a) $p=\cos 20^{\circ}, q=\sin 20^{\circ}$
b) $p=-\cos 20^{\circ}, q=-\sin 20^{\circ}$
c) $p=\cos 20^{\circ}, q=-\sin 20^{\circ}$
d) $p=1, q=0$
378. The roots of $|x-2|^{2}+|x-2|-6=0$ are
a) 4,2
b) 0,4
c) $-1,3$
d) 5,1
379. The greatest negative integer satisfying $x^{2}-4 x-77<0$ and $x^{2}>4$, is
a) -4
b) -6
c) -7
d) None of these
380. The values of x and y satisfying the equation $\frac{(1+i) x-2 i}{3+i}+\frac{(2-3 i) y+i}{3-i}=i$ are
a) $x=-1, y=3$
b) $x=3, y=-1$
c) $x=0, y=1$
d) $x=1, y=0$
381. If α and β are roots of the quadratic equation $x^{2}+4 x+3=0$, then the equation whose roots are $2 \alpha+\beta$ and $\alpha+2 \beta$ is
a) $x^{2}-12 x+35=0$
b) $x^{2}+12 x-33=0$
c) $x^{2}-12 x-33=0$
d) $x^{2}+12 x+35=0$
382. In a triangle $P Q R, \angle R=\frac{\pi}{2}$. If $\tan \left(\frac{P}{2}\right)$ and $\tan \left(\frac{Q}{2}\right)$ are the roots of $a x^{2}+b x+c=0, a \neq 0$, then
a) $b=a+c$
b) $b=c$
c) $c=a+b$
d) $a=b+c$
383. The set of values of ' a 'for which $x^{2}+a x+\sin ^{-1}\left(x^{2}-4 x+5\right)+\cos ^{-1}\left(x^{2}-4 x+5=0\right)$
has at least one real root is given by
a) $(-\infty,-\sqrt{2} \pi] \cup[\sqrt{2 \pi}, \infty)$
b) $(-\infty,-\sqrt{2 \pi}) \cup(\sqrt{2 \pi}, \infty)$
c) R
d) None of these
384. If z lies on the circle $|z-1|=1$, then $\frac{z-2}{z}$ is
a) Purely real
b) Purely imaginary
c) Positive real
d) None of these
385. If α, β be the roots of $x^{2}-a(x-1)+b=0$, then the value of $\frac{1}{\alpha^{2}-a \alpha}+\frac{1}{\beta^{2}+a \beta}+\frac{2}{a+b}$ is
a) $\frac{4}{a+b}$
b) $\frac{1}{a+b}$
c) 0
d) -1
386. If $x=\log _{b} a, y=\log _{c} b, z=\log _{a} c$, then $x y z$ is
a) 0
b) 1
c) 3
d) None of the above
387. If $\log _{4} 2+\log _{4} 4+\log _{4} x+\log _{4} 16=6$, then the value of x is
a) 64
b) 4
c) 8
d) 32
388. If $\frac{\pi}{2}<\alpha<\frac{3 \pi}{2}$, the modulus and argument form of $(1+\cos 2 \alpha)+i \sin 2 \alpha$ is
a) $-2 \cos \alpha\{\cos (\pi+\alpha)+i \sin (\pi+\alpha)\}$
b) $2 \cos \alpha\{\cos \alpha+i \sin \alpha\}$
c) $2 \cos \alpha\{\cos (-\alpha)+i \sin (-\alpha)\}$
d) $-2 \cos \alpha\{\cos (\pi-\alpha)+i \sin (\pi-\alpha)\}$
389. Let α and β be the roots of $x^{2}-2 x \cos \emptyset+1=0$. Then the equation whose roots are α^{n}, β^{n} is
a) $x^{2}-2 x \cos n \emptyset-1=0$
b) $x^{2}-2 x \cos n \emptyset+1=0$
c) $x^{2}-2 x \sin n \emptyset+1=0$
d) $x^{2}+2 x \sin n \emptyset-1=0$
390. $\sqrt{1-c^{2}}=n c-1$ and $z=e^{i \theta}$, then $\frac{c}{2 n}\left(1+n z\left(1+\frac{n}{z}\right)\right.$ is equal to
a) $1-c \cos \theta$
b) $1+2 c \cos \theta$
c) $1+c \cos \theta$
d) $1-2 c \cos \theta$
391. The number of solutions of the system of equations $\operatorname{Re}\left(z^{2}\right)=0 ;|z|=2$ is
a) 4
b) 3
c) 2
d) 1
392. If $|z-25 i| \leq 15$, then
\mid maximum amp (z) - minimum amp (z)| $=$
a) $\cos ^{-1}\left(\frac{3}{5}\right)$
b) $\pi-2 \cos ^{-1}\left(-\frac{3}{5}\right)$
c) $\frac{\pi}{2}+\cos ^{-1}\left(\frac{3}{5}\right)$
d) $\sin ^{-1}\left(\frac{3}{5}\right)-\cos ^{-1}\left(\frac{3}{5}\right)$
393. If α, β be the roots of the equation $x^{2}-p x+q=0$ and α_{1}, β_{1} be the roots of the equation $x^{2}-q x+p=0$, then the equation whose roots are $\frac{1}{\alpha_{1} \beta}+\frac{1}{\alpha \beta_{1}}$ and $\frac{1}{\alpha \alpha_{1}}+\frac{1}{\beta \beta_{1}}$, is
a) $p q x^{2}-p q x+p^{2}+q^{2}+4 q p=0$
b) $p^{2} q^{2} x^{2}-p^{2} q^{2} x+p^{3}+q^{3}-4 p q=0$
c) $p^{3} q^{3} x^{2}-p^{3} q^{3} x+p^{4}+q^{4}-4 p^{2} q^{2}=0$
d) $(p+q) x^{2}-(p+q) x+p^{2}+q^{2}=0$
394. If $i z^{4}+1=0$, then z can be take the value
a) $\frac{1+i}{\sqrt{2}}$
b) $\cos \frac{\pi}{8}+i \sin \frac{\pi}{8}$
c) $\frac{1}{4 i}$
d) i
395. If P is the point in the Agrand diagram corresponding to the complex number $\sqrt{3}+i$

And if $O P Q$ is an isosceles right angled triangle, right angled at ' O ' then Q represents the complex number
a) $-1 i \sqrt{3}$ or $1-i \sqrt{3}$
b) $1 \pm i \sqrt{3}$
c) $\sqrt{3}-i$ or $1-i \sqrt{3}$
d) $-1 \pm i \sqrt{3}$
396. The solution of equation $|z|-z=1+2 i$ is
a) $\frac{3}{2}+2 i$
b) $\frac{3}{2}-2 i$
c) $3-2 i$
d) None of these
397. If $\alpha+\beta=4$ and $\alpha^{3}+\beta^{3}=44$, then α, β are the roots of the equation
a) $2 x^{2}-7 x+6=0$
b) $3 x^{2}+9 x+11=0$
c) $9 x^{2}-27 x+20=0$
d) $3 x^{2}-12 x+5=0$
398. The number of non-zero integer solutions of the equation $|1-i|^{x}=2^{x}$ is
a) Infinite
b) 1
c) 2
d) None of these
399. If α and β are the roots of the equation $x^{2}-7 x+1=0$, then the value of $\frac{1}{(\alpha-7)^{2}}+\frac{1}{(\beta-7)^{2}}$ is
a) 45
b) 47
c) 49
d) 50
400. If the equations $x^{2}+p x+q=0$ and $x^{2}+p^{\prime} x+q^{\prime}=0$ have a common root, then it is equal to
а) $\frac{p-p^{\prime}}{q-q^{\prime}}$
b) $\frac{p+p^{\prime}}{q+q^{\prime}}$
c) $\frac{q^{\prime}-q}{p-p^{\prime}}$
d) $\frac{q+q^{\prime}}{p+p^{\prime}}$
401. The area of the triangle whose vertices are i, ω and ω^{2}, where $i=\sqrt{-1}$ and ω, ω^{2} are complex cube roots of unity, is
a) $\frac{3 \sqrt{3}}{2}$ sq. units
b) $\frac{3 \sqrt{3}}{4}$ sq. units
c) 0
d) $\frac{\sqrt{3}}{4}$
402. If n is a positive integer greater than unity and z is a complex number satisfying the equation $z^{n}=$ $(z+1)^{n}$, then
a) $\operatorname{Im}(z)<0$
b) $\operatorname{Im}(z)>0$
c) $\operatorname{Im}(z)=0$
d) None of these
403. The complex numbers $z_{1}, z_{2}, z_{3}, z_{4}$ taken in that order in the Argand plane represent the vertices of a
parallelogram iff
a) $z_{1}+z_{4}=z_{2}+z_{3}$
b) $z_{1}+z_{3}=z_{2}+z_{4}$
c) $z_{1}+z_{2}=z_{3}+z_{4}$
d) None of these
404. If α, β are the roots of the equation $x^{2}-2 x \cos \phi+1=0$, then the equation whose roots are α^{n}, β^{n}, is
a) $x^{2}-2 x \cos n \phi-1=0$
b) $x^{2}-2 x \cos n \phi+1=0$
c) $x^{2}-2 x \sin n \phi+1=0$
d) $x^{2}+2 x \sin n \phi-1=0$
405. If $a<c<b$, then the roots of the equation $(a-b)^{2} x^{2}+2(a+b-2 c) x+1=0$ are
a) Imaginary
b) Real
c) One real and one imaginary
d) Equal and imaginary
406. If the equations $a x^{2}+b x+c=0$ and $x^{3}+3 x^{2}+3 x+2=0$ have to common roots, then
a) $a=b \neq c$
b) $a=-b=c$
c) $a=b=c$
d) None of these
407. If roots of the equation $(a-b) x^{2}+(c-a) x+(b-c)=0$ are equal, then a, b, c are in
a) AP
b) HP
c) GP
d) None of these
408. The smallest positive integer n for which $\left(\frac{1+i}{1-i}\right)^{n}=1$ is
a) 3
b) 2
c) 4
d) None of these
409. If $x^{2}+p x+q=0$ is the quadratic equation whose roots are $a-2$ and $b-2$ where a, b are the roots of $x^{2}-3 x+1=0$, then
a) $p=1, q=5$
b) $p=1, q=-5$
c) $p=-1, q=1$
d) $p=1, q=-1$
410. If $\sec \alpha$ and $\tan \alpha$ are the roots of $a x^{2}+b x+c=0$, then
a) $a^{2}-b^{2}+2 a c=0$
b) $a^{3}+b^{3}+c^{3}-2 a b c=0$
c) $a^{4}+4 a b^{2} c=b^{4}$
d) None of these
411. The points represents the complex numbers z, for which $|z-a|^{2}+|z+a|^{2}=b^{2}$ lie on
a) A straight line
b) A circle
c) A parabola
d) A hyperbola
412. The solution of $\log _{99}\left\{\log _{2}\left(\log _{3} x\right)\right\}=0$ is
a) 4
b) 9
c) 44
d) 99
413. If the roots of the equation $x^{2}-b x+c=0$ are two consecutive integers, then $b^{2}-4 c$ is
a) -1
b) 0
c) 1
d) 2
414. For $a \neq b$, if the equation $x^{2}+a x+b=0$ and $x^{2}+b x+a=0$ have a common root, then the value of $a+b$ equals
a) -1
b) 0
c) 1
d) 2
415. Let $f(x)$ be a quadratic expression which is positive for all real x and $g(x)=f(x)+f^{\prime}(x)+f^{\prime \prime}(x)$, then for any real x,
a) $g(x)<0$
b) $g(x)>0$
c) $g(x)=0$
d) $g(x) \geq 0$
416. If $a=\cos \alpha+i \sin \alpha, \quad b=\cos \beta+i \sin \beta, c=\cos \gamma+i \sin \gamma$ and $b / c+c / a+a / b=1$, then $\cos (\beta-\gamma)+$ $\cos \gamma-\alpha+\cos (\alpha-\beta)$ is equal to
a) 0
b) 1
c) -1
d) None of these
417. The value of $\frac{\cos 30^{\circ}+i \sin 30^{\circ}}{\cos 60^{\circ}-i \sin 60^{\circ}}$ is equal to
a) i
b) $-i$
c) $\frac{1+\sqrt{3} i}{2}$
d) $\frac{1-\sqrt{3} i}{2}$
418. If α, β are the roots of the equation $a x^{2}+b x+c=0$, then $\frac{\alpha}{a \beta+b}+\frac{\beta}{a \alpha+b}$ is equal to
a) $\frac{2}{a}$
b) $\frac{2}{b}$
c) $\frac{2}{c}$
d) $-\frac{2}{a}$
419. If the difference of the roots of the equation $x^{2}-b x+c=0$ be 1 , then
a) $b^{2}-4 c-1=0$
b) $b^{2}-4 c=0$
c) $b^{2}-4 c+1=0$
d) $b^{2}+4 c-1=0$
420. The graph of the function $y=16 x^{2}+8(a+5) x-7 a-5$ is strictly above the x-axis, then ' a ' must satisfy the inequality
a) $-15<a<-2$
b) $-2<a<-1$
c) $5<a<7$
d) None of these
421. If α, β are the roots of $x^{2}-3 x+a=0, a \in R$ and $\alpha<1<\beta$, then
a) $a \in(-\infty, 2)$
b) $a \in(-\infty, 9 / 4)$
c) $a \in(2,9 / 4]$
d) None of these
422. One of the values of $\left(\frac{1+i}{\sqrt{2}}\right)^{2 / 3}$ is
a) $\sqrt{3}+i$
b) $-i$
c) i
d) $-\sqrt{3}+i$
423. If the equation $x^{2}+p x+q=0$ has roots u and v where p, q are non-zero constants. Then,
a) $q x^{2}+p x+1=0$ has roots $\frac{1}{u}$ and $\frac{1}{v}$
b) $(x-p)(x+q)=0$ has roots $u+v$ and $u v$
c) $x^{2}+p^{2} x+q^{2}=0$ has roots u^{2} and v^{2}
d) $x^{2}+q x+p=0$ has roots $\frac{u}{v}$ and $\frac{v}{u}$
424. If a, b, c are in GP, then the equation $a x^{2}+2 b x+c=0$ and $d x^{2}+2 e x+f=0$ have a common root, if $\frac{d}{a}, \frac{e}{b}, \frac{f}{c}$ are in
a) AP
b) HP
c) GP
d) None of these
425. If ω is a complex cube root of unity, then the equation $|z-\omega|^{2}+\left|z-\omega^{2}\right|^{2}=\lambda$ will represent a circle, if
a) $\lambda \in(0,3 / 2)$
b) $\lambda \in[3 / 2, \infty)$
c) $\lambda \in(0,3)$
d) $\lambda \in[3, \infty)$
426. The real roots of the equation $x^{2 / 3}-x^{1 / 3}-2=0$ are
a) 1,8
b) $-1,-8$
c) $-1,8$
d) $1,-8$
427. Let $A\left(z_{1}\right), B\left(z_{2}\right), C\left(z_{3}\right)$ be the vertices of an equilateral triangle $A B C$ in the Argand plne, then the number $\left(\frac{z_{2}-z_{3}}{2 z_{1}-z_{2}-z_{3}}\right)$ is
a) Purely real
b) Purely imaginary
c) A complex number with non-zero real and imaginary parts
d) None of these
428. If \bar{z} be the conjugate of the complex number z, then which of the following relations is false?
a) $|z|=|\bar{z}|$
b) $z \cdot \bar{z}=|\bar{z}|^{2}$
c) $\overline{z_{1}+z_{2}}=\bar{z}_{1}+\bar{z}_{2}$
d) $\arg (z)=\arg (\bar{z})$
429. If $\left(a_{1}+i b_{1}\right)\left(a_{2}+i b_{2}\right) \ldots\left(a_{n}+i b_{n}\right)=A+i B$, then $\sum_{i=1}^{n} \tan ^{-1}\left(\frac{b_{i}}{a_{i}}\right)$ is equal to
a) $\frac{B}{A}$
b) $\tan \left(\frac{B}{A}\right)$
c) $\tan ^{-1}\left(\frac{B}{A}\right)$
d) $\tan ^{-1}\left(\frac{A}{B}\right)$
430. The values of ' a ' for which $\left(a^{2}-1\right) x^{2}+2(a-1) x+2$ is positive for any x, are
a) $a \geq 1$
b) $a \leq 1$
c) $a>-3$
d) $a<-3$ or $a>1$
431. The roots of the equation $x^{4}-2 x^{3}+x=380$ are
a) $5,-4, \frac{1 \pm 5 \sqrt{-3}}{2}$
b) $-5,4, \frac{-1 \pm 5 \sqrt{-3}}{2}$
c) $5,4, \frac{-1 \pm 5 \sqrt{-3}}{2}$
d) $-5,-4, \frac{1 \pm 5 \sqrt{3}}{2}$
432. The value of $(2-\omega)\left(2-\omega^{2}\right)\left(2-\omega^{10}\right)\left(2-\omega^{11}\right)$, where ω is the complex cube root of unity, is
a) 49
b) 50
c) 48
d) 47
433. The number of solutions for the equations $|z-1|=|z-2|=|z-i|$ is
a) One solution
b) 3 solutions
c) 2 solutions
d) No solution
434. If α, β and γ are the roots of $x^{3}+8=0$, then the equation whose roots are α^{2}, β^{2} and γ^{2} is
a) $x^{3}-8=0$
b) $x^{3}-16=0$
c) $x^{3}+64=0$
d) $x^{3}-64=0$
435. The quadratic equation whose roots are $\sin ^{2} 18^{\circ}$ and $\cos ^{2} 36^{\circ}$ is
a) $16 x^{2}-12 x+1=0$
b) $16 x^{2}+12 x+1=0$
c) $16 x^{2}-12 x-1=0$
d) $16 x^{2}+10 x+1=0$
436.

If $z=\left(\frac{\sqrt{3}}{2}+\frac{i}{2}\right)^{5}+\left(\frac{\sqrt{3}}{2}-\frac{i}{2}\right)^{5}$, then
a) $\operatorname{Re}(z)=0$
b) $\operatorname{IM}(z)=0$
c) $\operatorname{Re}(z)=>0, \operatorname{Im}(z)>0$
d) $\operatorname{Re}(z)>0, \operatorname{Im}(z)<0$
437. If one root of the equation $l x^{2}+m x+n=0$ is $\frac{9}{2}(l, m$ and n are positive integers $)$ and $\frac{m}{4 n}=\frac{1}{m}$, then $I+n$ is equal to
a) 80
b) 85
c) 90
d) 95
438. If $\frac{x^{3}}{(2 x-1)(x+2)(x-3)}=A+\frac{B}{2 x-1}+\frac{C}{x+2}+\frac{D}{x-3}$, then A is equal to
a) $\frac{1}{2}$
b) $-\frac{1}{50}$
c) $-\frac{8}{25}$
d) $\frac{27}{25}$
439. If α, β, γ are the roots of $x^{3}+4 x+1=0$, then the equation whose roots are $\frac{\alpha^{2}}{\beta+\gamma}, \frac{\beta^{2}}{\alpha+\gamma}, \frac{\gamma^{2}}{\alpha+\beta}$ is
a) $x^{3}-4 x-1=0$
b) $x^{3}-4 x+1=0$
c) $x^{3}+4 x-1=0$
d) $x^{3}+4 x+1=0$
440. The solution set of the equation $p q x^{2}-(p+q)^{2} x+(p+q)^{2}=0$ is
a) $\left\{\frac{p}{q}, \frac{q}{p}\right\}$
b) $\left\{p q, \frac{p}{q}\right\}$
c) $\left\{\frac{q}{p}, p q\right\}$
d) $\left\{\frac{p+q}{p}, \frac{p+q}{q}\right\}$
441. The system of equation $|z+1-i|=\sqrt{2}$ and $|z|=3$ has
a) No solution
b) One solution
c) Two solutions
d) None of these
442. If $x=a+b, y+a \alpha+b \beta$ and $z=a \beta+b \alpha$, where α and β are complex cube roots of unity, then $x y z$ is equal to
a) $a^{2}+b^{2}$
b) $a^{3}+b^{3}$
c) $a^{3} b^{3}$
d) $a^{3}-b^{3}$
443. If α, β are the roots of equation $a x^{2}+b x+c=0$, then the value of the determinant
$\left|\begin{array}{ccc}1 & \cos (\beta-\alpha) & \cos \alpha \\ \cos (\alpha-\beta) & 1 & \cos \beta \\ \cos \alpha & \cos \beta & 1\end{array}\right|$, is
a) $\sin (\alpha+\beta)$
b) $\sin \alpha \sin \beta$
c) $1+\cos (\alpha+\beta)$
d) None of these
444. The least positive integer n for which $\left(\frac{1+i}{1-i}\right)^{n}$ is real, is
a) 2
b) 4
c) 8
d) None of these
445. Let $[x]$ denote the greatest integer less than or equal to x. Then, in $[0,3]$ the number of solutions of the equation $x^{2}-3 x+[x]=0$, is
a) 6
b) 4
c) 2
d) 0
446. If at least one root of $2 x^{2}+3 x+5=0$ and $a x^{2}+b x+c=0, a, b, c \in N$ is common, then the maximum value of $a+b+c$ is
a) 10
b) 0
c) Does not exist
d) None of these
447. If $x=\sqrt{1+\sqrt{1+\sqrt{1+\cdots \infty}}}$, then x is equal to
a) $\frac{1+\sqrt{5}}{2}$
b) $\frac{1-\sqrt{5}}{2}$
c) $\frac{1 \pm \sqrt{5}}{2}$
d) None of these
448. If $a>0$ and the equation $\left|z-a^{2}\right|+|z-2 a|=3$ represents an ellipse, then a belongs to the interval
a) $(1,3)$
b) $(\sqrt{2}, \sqrt{3})$
c) $(0,3)$
d) $(1, \sqrt{3})$
449. If x is real, the function $\frac{(x-a)(x-b)}{(x-c)}$ will assume all real values, provided
a) $a>b>c$
b) $a \leq b \leq c$
c) $a>c>b$
d) $a \leq c \leq b$
450. The value of the expression
$1 .(2-\omega)\left(2-\omega^{2}\right)+2 .(3-\omega)\left(3-\omega^{2}\right)+\ldots \ldots+(n-1) .(n-\omega)\left(n-\omega^{2}\right)$
Where ω is an imaginary cube root of unity, is
a) $\frac{1}{2}(n-1) n\left(n^{2}+3 n+4\right)$
b) $\frac{1}{4}(n-1) n\left(n^{2}+3 n+4\right)$
c) $\frac{1}{2}(n+1) n\left(n^{2}+3 n+4\right)$
d) $\frac{1}{4}(n+1) n\left(n^{2}+3 n+4\right)$
451. The points representing cube roots of unity
a) Are collinear
b) Lie on a circle of radius $\sqrt{3}$
c) From an equilateral triangle
d) None of these
452. If the equations $a x^{2}+b c+c=0$ and $2 x^{2}+3 x+4=0$ have a common root, then $a: b: c$
a) $2: 3: 4$
b) $1: 2: 3$
c) $4: 3: 2$
d) None of these
453. Consider the following statements:

1. The equation $x^{2}-c x+d=0$ and $x^{2}-a x+b=0$ have common root and second equation has equal roots if $a c=2(b+d)$.
2. If α is a root of the equation $4 x^{2}+2 x-1=0$, then the other root is $4 \alpha^{3}-3 \alpha$.
3. The expression $(x-1)(x-3)(x-4)(x-6)+10$ is positive for all real values of x.

Which of these is/are correct?
a) Only (3)
b) Only (2)
c) All of these
d) None of these
454. The equation $x^{2}-3|x|+2=0$ has
a) No real roots
b) One real root
c) Two real roots
d) Four real roots
455. The solution set of the inequation $0<|3 x+1|<\frac{1}{3}$, is
a) $(-4 / 9,-2 / 9)$
b) $[-4 / 9,-2 / 9]$
c) $(-4 / 9,-2 / 9)-\{-1 / 3\}$
d) $[-4 / 9,-2 / 9]-\{-1 / 3\}$
456. The solution set of the equation $x^{\log _{x}(1-x)^{2}}=9$ is
a) $\{-2,4\}$
b) $\{4\}$
c) $\{0,-2,4\}$
d) None of these
457. If $x^{2}+a x+1$ is a factor of $a x^{3}+b x+c$, then
a) $b+a+a^{2}=0, a=c$
b) $b-a+a^{2}=0, a=c$
c) $b+a-a^{2}=0, a=0$
d) None of these
458. If the complex numbers z_{1}, z_{2} and the origin form an equilateral triangle, then $z_{1}^{2}+z_{2}^{2}$ is equal to
a) $z_{1} z_{2}$
b) $z_{1} \bar{z}_{2}$
c) $\bar{z}_{2} z_{1}$
d) $\left|z_{1}\right|^{2}=\left|z_{2}\right|^{2}$
459. If two equations $x^{2}+a^{2}=1-2 a x$ and $x^{2}+b^{2}=1-2 b x$ have only one common root, then
a) $a-b=1$
b) $a-b=1$
c) $a-b=2$
d) $|a-b|=1$
460. If α, β are the roots of $x^{2}-a x+b=0$ and if $\alpha^{n}+\beta^{n}=V_{n}$, then
a) $V_{n+1}=a V_{n}+b V_{n-1}$
b) $V_{n+1}=a V_{n}+a V_{n-1}$
c) $V_{n+1}=a V_{n}-b V_{n-1}$
d) $V_{n+1}=a V_{n-1}-b V_{n}$
461. $z^{2}+\alpha z+\beta=0(\alpha, \beta$ are complex numbers) has a real root, then
a) $(\alpha+\bar{\alpha})(\alpha \bar{\beta}+\bar{\alpha} \beta)+(\beta-\bar{\beta})^{2}=0$
b) $(\alpha-\bar{\alpha})(\beta-\bar{\beta})^{2}=0$
c) $(\bar{\alpha}-\alpha)(\alpha \bar{\beta}-\bar{\alpha} \beta)=(\beta-\bar{\beta})^{2}$
d) None of these
462. If $2^{x} \cdot 3^{x+4}=7^{x}$, then x is equal to
a) $\frac{4 \log _{e} 3}{\log _{e} 7-\log _{e} 6}$
b) $\frac{4 \log _{e} 3}{\log _{e} 6-\log _{e} 7}$
c) $\frac{2 \log _{e} 3}{\log _{e} 7-\log _{e} 6}$
d) $\frac{3 \log _{e} 4}{\log _{e} 6-\log _{e} 7}$
463. If α, β and γ are the roots of the equation $x^{3}-8 x+8=0$, then $\sum \alpha^{2}$ and $\sum \frac{1}{\alpha \beta}$ are respectively
a) 0 and - 16
b) 16 and 18
c) -16 and 0
d) 16 and 0
464. If x is real, then $\frac{x^{2}-2 x+4}{x^{2}+2 x+4}$ takes values in the interval
a) $\left[\frac{1}{3}, 3\right]$
b) $\left(\frac{1}{3}, 3\right)$
c) $(3,3)$
d) $\left(-\frac{1}{3}, 3\right)$
465. The value of $2+\frac{1}{2+\frac{1}{2+\ldots \infty}}$ is
a) $1-\sqrt{2}$
b) $1+\sqrt{2}$
c) $1 \pm \sqrt{2}$
d) None of these
466. Let z_{1} be a complex number with $\left|z_{1}\right|=1$ and z_{2} be any complex number, then $\left|\frac{z_{1}-z_{2}}{1-z_{1} z_{2}}\right|$ is equal to
a) 0
b) 1
c) -1
d) 2
467. If α, β are the roots of $x^{2}+p x+q=0$ and also of $x^{2 n}+p^{n} x^{n}+q^{n}=0$ and if $\frac{\alpha}{\beta}, \frac{\beta}{\alpha}$ are the roots of $x^{n}+1+(x+1)^{n}=0$, then n is
a) An odd integer
b) An even integer
c) Any integer
d) None of these
468. If $x=\left(\frac{1+i}{2}\right)$, (where $\left.i=\sqrt{-1}\right)$, then the expression $2 x^{4}-2 x^{2}+x+3$ equals
a) $3-\left(\frac{i}{2}\right)$
b) $3+\left(\frac{i}{2}\right)$
c) $\frac{(3+i)}{2}$
d) $\frac{(3-i)}{2}$
469. Let α, α^{2} be the roots of $x^{2}+x+1=0$, then the equation whose roots are α^{31}, α^{62}, is
a) $x^{2}-x+1=0$
b) $x^{2}+x-1=0$
c) $x^{2}+x+1=0$
d) $x^{60}+x^{30}+1=0$
470. If one root of the equation $8 x^{2}-6 x-a-3=0$ is the square of the other, then the values of a are
a) $4,-24$
b) 4,24
c) $-4,-24$
d) $-4,24$
471. If $x_{n}=\cos \frac{\pi}{3^{n}}+i \sin \frac{\pi}{3^{n}}$, then $x_{1}, x_{2}, x_{3}, \ldots x_{\infty}$ is equal to
a) 1
b) -1
c) i
d) $-i$
472. The centre of a regular hexagon is at the point $z=i$. If one of its vertices is at $2+i$, then the adjacent vertices of $2+i$ are at the points
a) $1 \pm 2 i$
b) $i+1 \pm \sqrt{3}$
c) $2+i(1 \pm \sqrt{3})$
d) $1+i(1 \pm \sqrt{3})$
473. If the real part of $\frac{\bar{z}+2}{\bar{z}-1}$ is 4 , then the locus of the point representing z in the complex plane is
a) a circle
b) a parabola
c) a hyperbola
d) an ellipse
474. Given that $a x^{2}+b x+c=0$ has no real roots and $a+b+c<0$, then
a) $c=0$
b) $c>0$
c) $c<0$
d) $c=0$
475. If $2 \sin ^{2} \frac{\pi}{8}$ is a root of the equation $x^{2}+a x+b=0$, where a and b are rational numbers, then $a-b$ is equal to
a) $-\frac{5}{2}$
b) $-\frac{3}{2}$
c) $-\frac{1}{2}$
d) $\frac{1}{2}$
476. If α is a complex number satisfying the equation $\alpha^{2}+\alpha+1=0$, then α^{31} is equal to
a) α
b) α^{2}
c) 1
d) i
477. If $z_{r}=\cos \left(\frac{\pi}{2^{r}}\right)+i \sin \left(\frac{\pi}{2^{r}}\right)$, then $z_{1} \cdot z_{2} \cdot z_{3} \ldots$ upto ∞ equals
a) -3
b) -2
c) 1
d) -1
478. If $\alpha_{1}, \alpha_{2}, \alpha_{3}$ respectively denote the moduli of the complex numbers $-i, \frac{1}{3}(1+i)$ and $-1+i$, then their increasing order is
a) $\alpha_{1}, \alpha_{2}, \alpha_{3}$
b) $\alpha_{3}, \alpha_{2}, \alpha_{1}$
c) $\alpha_{2}, \alpha_{1}, \alpha_{3}$
d) $\alpha_{3}, \alpha_{1}, \alpha_{2}$
479. The solution set of the inequation $\frac{2 x+4}{x-1} \geq 5$, is
a) $(1,3)$
b) $(1,3]$
c) $(-\infty, 1) \cup[3, \infty)$
d) None of these
480. If the equation $\frac{a}{x-a}+\frac{b}{x-b}=1$ has roots equal in magnitude but opposite in sign, then the value of $a+b$ is
a) -1
b) 0
c) 1
d) None of these
481. The roots of the equation $x^{3}-3 x-2=0$ are
a) $-1,-1,2$
b) $-1,1,-2$
c) $-1,2,-3$
d) $-1,-1,-2$
482. If the sum of the squares of the roots of the equation $x^{2}-(\sin \alpha-2) x-(1+\sin \alpha)=0$ is least, then $\alpha=$
a) $\pi / 4$
b) $\pi / 3$
c) $\pi / 2$
d) $\pi / 6$
483. $\left(\frac{-1+\sqrt{-3}}{2}\right)^{100}+\left(\frac{-1-\sqrt{-3}}{2}\right)^{100}$ is equal to
a) 2
b) Zero
c) -1
d) 1
484. The set of values of p for which the roots of the equation $3 x^{2}+2 x+p(p-1)=0$ are of opposite signs is
a) $(-\infty, 0)$
b) $(0,1)$
c) $(1, \infty)$
d) $(0, \infty)$
485. The roots of $(x-a)(x-a-1)+(x-a-1)(x-a-2)+(x-a)(x-a-2)=0, a \in R$ are always
a) Equal
b) Imaginary
c) Real and distinct
d) Rational and equal
486. If z is a complex number satisfying $z+z^{-1}=1$, then $z^{n}+z^{-n}, n \in N$ has the value
a) $2(-1)^{n}$, when n is a multiple of 3
b) $(-1)^{n}$ when n is not a multiple of 3
c) $(-1)^{n+1}$ when n is a multiple of 3
d) 0 when n is not a multiple of 3
487. If α, β, γ be the roots of $x^{3}+a^{3}=0(a \in R)$, then the number of equation(s) whose roots are $\left(\frac{\alpha}{\beta}\right)^{2}$ and $\left(\frac{\alpha}{\gamma}\right)^{2}$, is
a) 1
b) 2
c) 3
d) 6
488. If $\left|z-\frac{4}{z}\right|=2$, then the maximum value of $|z|$ is equal to
a) $\sqrt{3}+1$
b) $\sqrt{5}+1$
c) 2
d) $2+\sqrt{2}$
489. If $z \bar{z}=0$, iff
a) $\operatorname{Re}(z)=0$
b) $\operatorname{Im}(z)=0$
c) $z=0$
d) None of these
490. Let z, w be complex numbers such that $\bar{z}+\overline{l w}=0$ and $\arg (z w)=\pi$. Then $\arg (z)$ equals
a) $\frac{\pi}{4}$
b) $\frac{\pi}{2}$
c) $\frac{3 \pi}{4}$
d) $\frac{5 \pi}{4}$
491. If ω is an imaginary cube root of unity, n is a positive integer but not a multiple of 3 , then the value of $1+\omega^{n}+\omega^{2 n}$ is
a) 3
b) $\omega+2$
c) 0
d) $\omega^{2}+1$
492. The quadratic equations
$x^{2}-6 x+a=0$
And $x^{2}-c x+6=0$
Have one root in common. The other roots of the first and second equations are integers in the ratio 4:3. Then the common root is
a) 2
b) 1
c) 4
d) 3
493. If $\left|\frac{z+i}{z-i}\right|=\sqrt{3}$, then radius of the circle is
а) $\frac{2}{\sqrt{21}}$
b) $\frac{1}{\sqrt{21}}$
c) $\sqrt{3}$
d) $\sqrt{21}$
494. If $\sin \alpha$ and $\cos \alpha$ are roots of the equation $p x^{2}+q x+r=0$, then
a) $p^{2}+q^{2}+2 p r=0$
b) $(p+r)^{2}=q^{2}-r^{2}$
c) $p^{2}+q^{2}-2 p r=0$
d) $(p-r)^{2}=q^{2}+r^{2}$
495. The number of real roots of the equation $\frac{2 x-3}{x-1}+1=\frac{6 x^{2}-x-6}{x-1}$, is
a) 0
b) 1
c) 2
d) None of these
496. If $\alpha \neq 1$ is any nth root of unity, then $S=1+3 \alpha+5 \alpha^{2} \ldots$ upon n terms, is equal to
a) $\frac{2 n}{1-\alpha}$
b) $-\frac{2 n}{1-\alpha}$
c) $\frac{n}{1-\alpha}$
d) $-\frac{n}{1-\alpha}$
497. $\frac{3+2 i \sin \theta}{1-2 i \sin \theta}$ will be real, if θ is
a) $2 n \pi$
b) $n \pi+\frac{\pi}{2}$
c) $n \pi$
d) None of these
498. The number of positive integral roots of $x^{4}+x^{3}-4 x^{2}+x+1=0$ is
a) 0
b) 1
c) 12
d) 4
499. If the area of triangle on the argand place formed by the complex numbers $-z, i z, z-i z$ is 600 sq. unit, then $|z|$ is equal to
a) 10
b) 20
c) 30
d) 40
500. $\frac{3 x^{2}+1}{x^{2}-6 x+8}$ is equal to
a) $3+\frac{49}{2(x-4)}-\frac{13}{2(x-2)}$
b) $\frac{49}{2(x-4)}-\frac{13}{2(x-2)}$
c) $\frac{-49}{2(x-4)}+\frac{13}{2(x-2)}$
d) $\frac{49}{2(x-4)}+\frac{13}{2(x-2)}$
501. If $x-c$ is a factor of order m of the polynomial $f(x)$ of degree $n(1<m<n)$, then $x=c$ is a root of the polynomial
a) $f^{m}(x)$
b) $f^{m-1}(x)$
c) $f^{n}(x)$
d) None of these
502. The polynomial $\left(a x^{2}+b x+c\right)\left(a x^{2}-d x-c\right), a c \neq 0$ has
a) Four real roots
b) At least two real roots
c) At most two real roots
d) No real roots
503. The roots of the quadratic equation
$(a+b-2 c) x^{2}-(2 a-b-c) x+(a-2 b+c)=0$ are
a) $a+b+c$ and $a-b+c$
b) $\frac{1}{2}$ and $a-2 b+c$
c) $a-2 b+c$ and $\frac{1}{a+b-c}$
d) None of these
504. The roots of the equation $\left|x^{2}-x-6\right|=x+2$ are
a) $-2,1,4$
b) $0,2,4$
c) $0,1,4$
d) $-2,2,4$
505. If z_{1}, z_{2}, z_{3} be vertices of an equilateral triangle occurring in the anticlockwise sense, then
a) $z_{1}^{2}+z_{2}^{2}+z_{3}^{2}=2\left(z_{1} z_{2}+z_{2} z_{3}+z_{3} z_{1}\right)$
b) $\frac{1}{z_{1}+z_{2}}+\frac{1}{z_{2}+z_{3}}+\frac{1}{z_{3}+z_{1}}=0$
c) $z_{1}+\omega z_{2}+\omega^{2} z_{3}=0$
d) None of these
506. The values of k for which the equations $x^{2}-k x-21=0$ and $x^{2}-3 k x+35=0$ will have a common roots are
a) $k= \pm 4$
b) $k= \pm 1$
c) $k= \pm 3$
d) $k=0$
507. The real part of $(1-\cos \theta+2 i \sin \theta)^{-1}$ is
a) $\frac{1}{3+5 \cos \theta}$
b) $\frac{1}{5-3 \cos \theta}$
c) $\frac{1}{3-5 \cos \theta}$
d) $\frac{1}{5+3 \cos \theta}$
508. If $x=\frac{1}{2}\left(\sqrt{7}+\frac{1}{\sqrt{7}}\right)$, then $\frac{\sqrt{x^{2}-1}}{x-\sqrt{x^{2}-1}}$ is equal to
a) 1
b) 2
c) 3
d) 4
509. If the sum of the roots of the equation $a x^{2}+b x+c=0$ be equal to the sum of the reciprocal of their squares, then $b c^{2}, c a^{2}, a b^{2}$ will be in
a) AP
b) GP
c) HP
d) None of these
510. The equation whose roots are reciprocal of the roots of the equation $a x^{2}+b x+c=0$ is
a) $b x^{2}+c x+a=0$
b) $b x^{2}+a x+c=0$
c) $c x^{2}+a x+b=0$
d) $c x^{2}+b x+a=0$
511. If one root of the equation $a x^{2}+b x+c=0$ is reciprocal of the one root of the equation $a_{1} x^{2}+b_{1} x+c_{1}=$ 0 , then
a) $\left(a a_{1}-c c_{1}\right)^{2}=\left(b c_{1}-b_{1} a\right)\left(b_{1} c-a_{1} b\right)$
b) $\left(a b_{1}-a_{1} b\right)^{2}=\left(b c_{1}-b_{1} c\right)\left(c a_{1}-c_{1} a\right)$
c) $\left(b c_{1}-b_{1} c\right)^{2}=\left(c a_{1}-a_{1} c\right)\left(a b_{1}-a_{1} b\right)$
d) None of these
512. If z is a non-real $7^{t h}$ root of -1 , then $z^{86}+z^{175}+z^{289}$ is equal to
a) 0
b) -1
c) 3
d) 1
513. If α and β the roots of $x^{2}-x-1=0$ and $A_{n}=\alpha^{n}+\beta^{n}$, then AM of A_{n-1} and A_{n} is
a) $2 A_{n+1}$
b) $\frac{A_{n+1}}{2}$
c) $2 A_{n-2}$
d) None of these
514. If $\omega(\neq 1)$ is a cube root of unity, then
$\left|\begin{array}{ccc}1 & 1+i+\omega^{2} & \omega^{2} \\ 1-i & -1 & \omega^{2}-1 \\ -i & -i+\omega-1 & -1\end{array}\right|$ equals
a) 0
b) 1
c) i
d) ω
515. If a complex number z lies in the interior or on the boundary of a circle or radius 3 and centre at $(-4,0)$, then the greatest and least values of $|z+1|$ are
a) 5,0
b) 6,1
c) 6,0
d) None of these
516. If $\operatorname{Im}\left(\frac{z-1}{2 z+1}\right)=-4$, then locus of z is
a) An ellipse
b) A parabola
c) A straight line
d) A circle
517. If $w=\alpha+i \beta$, where $\beta \neq 0$ and $z \neq 1$, satisfies the condition that $\left(\frac{w-\bar{w} z}{1-z}\right)$ is purely real, then the set of values of z is
a) $|z|=1, z \neq 2$
b) $|z|=1$ and $z \neq 1$
c) $z=\bar{z}$
d) None of these
518. If $(x-2)$ is a common factor of the expressions $x^{2}+a x+b$ and $x^{2}+c x+d$, then $\frac{b-d}{c-a}$ is equal to
a) -2
b) -1
c) 1
d) 2
519. If $\alpha_{0}, \alpha_{1}, \alpha_{2}, \ldots, \alpha_{n-1}$ be the $n^{\text {th }}$ roots of unity, then the value of $\sum_{i=0}^{n-1} \frac{\alpha_{i}}{3-\alpha_{i}}$ is equal to
a) $\frac{n}{3^{n}-1}$
b) $\frac{n+1}{3^{n}-1}$
c) $\frac{n-1}{3^{n}-1}$
d) None of these
520. p, q, r and s are integers. If the A.M. of the roots of $x^{2}-p x+q^{2}=0$ and GM of the roots of $x^{2}-r x+s^{2}=$ 0 are equal, then
a) q is an odd integer
b) r is an even integer
c) p is an even integer
d) s is an odd integer
521. The condition that $x^{3}-p x^{2}+q x-r=0$ may have two of its roots equal in magnitude but of opposite sign, is
a) $r=p q$
b) $r=2 p^{3}+p q$
c) $r=p^{2} q$
d) None of the above
522. If α and β are the solutions of the quadratic equation $a x^{2}+b x+c=0$ such that $\beta=\alpha^{1 / 3}$, then
a) $(a c)^{1 / 3}+(a b)^{1 / 3}+c=0$
b) $\left(a^{3} b\right)^{1 / 4}+\left(a b^{3}\right)^{1 / 4}+c=0$
c) $\left(a^{3} c\right)^{1 / 4}+\left(a c^{3}\right)^{1 / 4}+b=0$
d) $\left(a^{4} c\right)^{1 / 3}+\left(a c^{4}\right)^{1 / 3}+b=0$
523. Let a, b, c be real. If $a x^{2}+b x+c=0$ has two real roots α and β, where $\alpha<-1$ and $\beta>1$, then $1+\frac{c}{a}+\left|\frac{b}{a}\right|$ is
a) <0
b) >0
c) ≤ 0
d) None of these
524. If $z_{1}, z_{2}, z_{3}, z_{4}$ represent the vertices of a rhombus taken in the anticlockwise order, then
a) $z_{1}+z_{2}+z_{3}+z_{4}=0$
b) $z_{1}+z_{2}=z_{3}+z_{4}$
c) $\mathrm{amp} \frac{z_{2}-z_{4}}{z_{1}-z_{3}}=\frac{\pi}{2}$
d) $\mathrm{amp} \frac{z_{1}-z_{2}}{z_{3}-z_{4}}=\frac{\pi}{2}$
525. If $7 \log _{7}\left(x^{2}-4 x+5\right)=x-1, x$ may have values
a) 2,3
b) 7
c) $-2,-3$
d) $2,-3$
526. The solution set of the inequation $\frac{1}{|x|-3}<\frac{1}{2}$, is
a) $(-\infty,-5) \cup(5, \infty)$
b) $(-3,3)$
c) $(-\infty,-5) \cup(-3,3) \cup(5, \infty)$
d) None of these
527. If $z=\sqrt{3}+i$, then the argument of $z^{2} e^{z-i}$ is equal to
a) $\frac{\pi}{2}$
b) $\frac{\pi}{6}$
c) $e^{\pi / 6}$
d) $\pi / 3$
528. If two equations
$a_{1} x^{2}+b_{1} x+c_{1}=0$ and, $a_{2} x^{2}+b_{2} x+c_{2}=0$ have a common root, then the value of $\left(a_{1} b_{2}-\right.$ $a 2 b 1 b 1 c 2-b 2 c 1$, is
a) $-\left(a_{1} c_{2}-a_{2} c_{1}\right)^{2}$
b) $\left(a_{1} a_{2}-c_{1} c_{2}\right)^{2}$
c) $\left(a_{1} c_{1}-a_{2} c_{2}\right)^{2}$
d) $\left(a_{1} c_{2}-c_{1} a_{2}\right)^{2}$
529. The value of expression $\left(1+\frac{1}{\omega}\right)\left(1+\frac{1}{\omega^{2}}\right)+\left(2+\frac{1}{\omega}\right)\left(2+\frac{1}{\omega^{2}}\right)+\left(3+\frac{1}{\omega}\right)\left(3+\frac{1}{\omega^{2}}\right)+\cdots+\left(n+\frac{1}{\omega}\right)\left(n+\frac{1}{\omega^{2}}\right)$, where ω is an imaginary cube root of unity is
a) $\frac{n\left(n^{2}+2\right)}{3}$
b) $\frac{n\left(n^{2}-2\right)}{3}$
c) $\frac{n\left(n^{2}+1\right)}{3}$
d) None of these
530. If $(x+i y)^{1 / 3}=2+3 i$, then $3 x+2 y$ is equal to
a) -20
b) -60
c) -120
d) 60
531. If the roots of the equation $\frac{1}{x+p}+\frac{1}{x+q}=\frac{1}{r}$ are equal in magnitude but opposite in sign, then the product of the roots will be
a) $\frac{p^{2}+q^{2}}{2}$
b) $-\frac{\left(p^{2}+q^{2}\right)}{2}$
c) $\frac{p^{2}-q^{2}}{2}$
d) $-\frac{\left(p^{2}-q^{2}\right)}{2}$
532. $(1+i)^{8}+(1-i)^{8}=$
a) 2^{8}
b) 2^{5}
c) $2^{4} \cos \frac{\pi}{4}$
d) $z^{8} \cos \frac{\pi}{8}$
533. If $\frac{x^{2}-b x}{a x-c}=\frac{\lambda-1}{\lambda+1}$ has roots equal in magnitude and opposite in sign then the value of λ is
a) $\frac{a-b}{a+b}$
b) $\frac{a+b}{a-b}$
c) c
d) $\frac{1}{c}$
534. Real roots of the equation $x^{2}+5|x|+4=0$ are
a) $-1,-4$
b) 1,4
c) $-4,4$
d) None of these
535. If $z_{r}(r=0,1,2, \ldots, 6)$ be the roots of the equation $(z+1)^{7}+z^{7}=0$, then $\sum_{r=0}^{6} \operatorname{Re}\left(z_{r}\right)=$
a) 0
b) $3 / 2$
c) $7 / 2$
d) $-7 / 2$
536. Given that the equation $z^{2}+(p+i q) z+r+i s=0$, where p, q, r, s are real and non-zero roots, then
a) $p q r=r^{2}+p^{2} s$
b) $p r s=q^{2}+r^{2} p$
c) $q r s=p^{2}+s^{2} q$
d) $p q s=s^{2}+q^{2} r$
537. The values of a for which $2 x^{2}-2(2 a+1) x+a(a+1)=0$ may have one root less than a and other root greater than a are given by
a) $1>a>0$
b) $-1<a<0$
c) $a \geq 0$
d) $a>0$ or $a<-1$
538. If $a=\cos \alpha+i \sin \alpha, b=\cos \beta+i \sin \beta, c=\cos \gamma+i \sin \gamma$ and $\frac{b}{c}+\frac{c}{a}+\frac{a}{b}=1$, then $\cos (\beta-\gamma)+$ $\cos \gamma-\alpha+\cos (\alpha-\beta)$ is equal to
a) $3 / 2$
b) $-3 / 2$
c) 0
d) 1
539. If α, β are the roots of the equation $(x-a)(x-b)=5$, then the roots of the equation $(x-\alpha)(x-\beta)+$ $5=0$ are
a) $a, 5$
b) $b, 5$
c) a, α
d) a, b
540. If α, β, γ are the roots of $x^{3}+b x+c=0$, then $\alpha^{2} \beta+\alpha \beta^{2}+\beta^{2} \gamma+\beta \gamma^{2}+\gamma^{2} \alpha+\gamma \alpha^{2}$ is equal to
a) c
b) $-c$
c) $-3 c$
d) $3 c$
541. $\left|\frac{1}{2}\left(z_{1}+z_{2}\right)+\sqrt{z_{1} Z_{2}}\right|+\left|\frac{1}{2}\left(z_{1}+z_{2}\right)-\sqrt{z_{1} z_{2}}\right|$ is equal to
a) $\left|z_{1}+z_{2}\right|$
b) $\left|z_{1}-z_{2}\right|$
c) $\left|z_{1}\right|+\left|z_{2}\right|$
d) $\left|z_{1}\right|-\left|z_{2}\right|$
542. Let $p, q \in\{1,2,3,4\}$.The number of equations of the form $p x^{2}+q x+1=0$ having real roots, is
a) 15
b) 9
c) 7
d) 8
543. The locus of the points representing the complex numbers z for which $|z|-2=|z-i|-|z+5 i|=0$ is
a) A circle with centre at the origin
b) A straight line passing through the origin
c) The single point $(0,-2)$
d) None of these
544. If $a \leq 0$, then the real values of x satisfying $x^{2}-2 a|x-a|-3 a^{2}=0$ are
a) $a(1-\sqrt{2}), a(-1+\sqrt{6})$
b) $a(1+\sqrt{2}), a(1-\sqrt{6})$
c) $a(1-\sqrt{2}), a(1-\sqrt{6})$
d) None of these
545. If the roots of the equation $a x^{2}-4 x+a^{2}=0$ are imaginary and the sum of the roots is equal to their product, then $a=$
a) -2
b) 4
c) 2
d) None of these
546. If the roots of the equation $4 x^{3}-12 x^{2}+11 x+k=0$ are in arithmetic progression, then k is equal to
a) -3
b) 1
c) 2
d) 3
547. If at least one value of the complex number $z=x+i y$ satisfy the condition $|z+\sqrt{2}|=\sqrt{a^{2}-3 a+2}$ and the inequality $|z+i \sqrt{2}|<a$, then
a) $a>2$
b) $a=2$
c) $a<2$
d) None of these
548. If the roots of $a x^{2}-b x-c=0$ change by the same quantity, then the expression in a, b, c that does not change is
a) $\frac{b^{2}-4 a c}{a^{2}}$
b) $\frac{b-4 c}{a}$
c) $\frac{b^{2}+4 a c}{a^{2}}$
d) $\frac{b^{2}-4 a c}{a}$
549. The solution of set of the equation $x^{\log _{x}(1-x)^{2}}=9$ is
a) $\{-2,4\}$
b) $\{4\}$
c) $\{0,-2,4\}$
d) None of these
550.

If ω is a complex cube root of unity, then the value of $\left|\begin{array}{ccc}x+1 & \omega & \omega^{2} \\ \omega & x+\omega^{2} & 1 \\ \omega^{2} & 1 & x+\omega\end{array}\right|$ is
a) x^{3}
b) $2 x^{3}$
c) $3 x^{3}$
d) None of these
551. The value of $\left[\sqrt{2}\left\{\cos \left(56^{\circ} 15^{\prime}\right)+i \sin \left(56^{\circ} 15^{\prime}\right)\right\}\right]^{8}$ is
a) $4 i$
b) $8 i$
c) $16 i$
d) $-16 i$
552. The real part of $(1-\cos \theta+2 i \sin \theta)^{-1}$ is
a) $\frac{1}{3+5 \cos \theta}$
b) $\frac{1}{5-3 \cos \theta}$
c) $\frac{1}{3-5 \cos \theta}$
d) $\frac{1}{5+3 \cos \theta}$
553. Suppose the quadratic equations $x^{2}+p x+q=0$ and $x^{2}+r x+s=0$ are such that p, q, r, s are real and $p r=2(q+s)$. Then
a) Both the equations always have real roots
b) At least one equation always has real roots
c) Both the equation always have non-real roots
d) At least one equation always has real and equal roots
554. If $i=\sqrt{-1}$, then
$4+5\left(-\frac{1}{2}+\frac{i \sqrt{3}}{2}\right)^{334}+3\left(-\frac{1}{2}+\frac{i \sqrt{3}}{2}\right)^{365}$ is equal to
a) $1-i \sqrt{3}$
b) $-1+i \sqrt{3}$
c) $i \sqrt{3}$
d) $-i \sqrt{3}$
555. The values of $(16)^{1 / 4}$ are
a) $\pm 2, \pm 2 i$
b) $\pm 4, \pm 4 i$
c) $\pm 1, \pm i$
d) None of these
556. Let z_{1}, z_{2}, z_{3} be three vertices of an equilateral triangle circumscribing the circle $|z|=\frac{1}{2}$. If $z_{1}=\frac{1}{2}+i \frac{\sqrt{3}}{2}$ and z_{1}, z_{2}, z_{3} were in anticlockwise sense, then z_{2} is
a) $1+i \sqrt{3}$
b) $1-i \sqrt{3}$
c) 1
d) -1
557. The value of $\frac{4\left(\cos 75^{\circ}+i \sin 75^{\circ}\right)}{0.4\left(\cos 30^{\circ}+i \sin 30^{\circ}\right)}$ is
a) $\frac{\sqrt{2}}{10}(1+i)$
b) $\frac{\sqrt{2}}{10}(1-i)$
c) $\frac{10}{\sqrt{2}}(1-i)$
d) $\frac{10}{\sqrt{2}}(1+i)$
558. The value of a for which the sum of the squares of the roots of the equation $x^{2}-(a-2) x-a-1=0$ assumes the least value, is
a) 0
b) 1
c) 2
d) 3
559. The amplitude of $\frac{1+i \sqrt{3}}{\sqrt{3}+i}$ is
a) $\frac{\pi}{3}$
b) $\frac{\pi}{4}$
c) $\frac{2 \pi}{3}$
d) $\frac{\pi}{6}$
560. The value of p for which both the roots of the equation $4 x^{2}-20 p x+\left(25 p^{2}+15 p-66\right)=0$ are less than 2 , lies in
a) $4 / 5,2$
b) $-1,-4 / 5$
c) $2, \infty$
d) $(-\infty,-1)$
561. If ω is acomplex cube root of unity, then the value of $\sin \left\{\left(\omega^{10}+\omega^{23}\right) \pi-\frac{\pi}{6}\right\}$ is
a) $\frac{1}{\sqrt{2}}$
b) $\frac{\sqrt{3}}{2}$
c) $-\frac{1}{\sqrt{2}}$
d) $\frac{1}{2}$
562. The modulus and amplitude of $\frac{1+2 i}{1-(1-i)^{2}}$ are
a) $\sqrt{2}$ and $\frac{\pi}{6}$
b) 1 and 0
c) 1 and $\frac{\pi}{3}$
d) 1 and $\frac{\pi}{4}$
563. If both the roots of the quadratic equation $x^{2}-2 k x+k^{2}+k-5=0$ are less than 5 , then k lies in the interval
a) $[4,5]$
b) $(-\infty, 4)$
c) $(6, \infty)$
d) $(5,6]$
564. If $z=\frac{7-i}{3-4 i}$, then z^{14} is equal to
a) 2^{7}
b) $2^{7} i$
c) $2^{14} i$
d) $-2^{7} i$
565. If the roots of the equation $x^{3}+b x^{2}+3 x-1=0$ from a non-decreasing H.P., then
a) $b \in(-3, \infty)$
b) $b=-3$
c) $b \in(-\infty,-3)$
d) None of these
566. Rational roots of the equation $2 x^{4}+x^{3}-11 x^{2}+x+2=0$ are
a) $\frac{1}{2}$ and 2
b) $\frac{1}{2}, 2, \frac{1}{4},-2$
c) $\frac{1}{2}, 2,3,4$
d) $\frac{1}{2}, 2, \frac{3}{4},-2$
567. The expression $y=a x^{2}+b x+c$ has always the same sign as, c if
a) $4 a c<b^{2}$
b) $4 a c>b^{2}$
c) $a c<b^{2}$
d) $a c>b^{2}$
568. Let a, b, c be real number $a \neq 0$. If α is a root of $a^{2} x^{2}+b x+c=0, \beta$ is a root of $a^{2} x^{2}-b x-c=0$ and $0<\alpha<\beta$, then the equation $a^{2} x^{2}+2 b x+2 c=0$ has a root of γ that always satisfies
a) $\gamma=\frac{\alpha+\beta}{2}$
b) $\gamma=\alpha+\frac{\beta}{2}$
c) $\gamma=\alpha$
d) $\alpha<\gamma<\beta$
569. The smallest positive integer n for which $(1+i)^{2 n}=(1-i)^{2 n}$ is
a) 4
b) 8
c) 2
d) 12
570. If $2 \alpha=-1-i \sqrt{3}$ and $2 \beta=-1+i \sqrt{3}$, then $5 \alpha^{4}+5 \beta^{4}+7 \alpha^{-1} \beta^{-1}$ is equal to
a) -1
b) -2
c) 0
d) 2
571. The solution set of the equation $\left[4\left(1-\frac{1}{3}+\frac{1}{9}-\frac{1}{27}+\ldots\right)\right]^{\log _{2} x}=\left[54\left(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\ldots\right)\right]^{\log _{x} 2}$ is
a) $\left\{4, \frac{1}{4}\right\}$
b) $\left\{2, \frac{1}{2}\right\}$
c) $\{1,2\}$
d) $\left\{8, \frac{1}{8}\right\}$
572. The maximum distance from the origin of coordinates to the point z satisfying the equation $\left|z+\frac{1}{z}\right|=a$ is
a) $\frac{1}{2}\left(\sqrt{a^{2}+1}+a\right)$
b) $\frac{1}{2}\left(\sqrt{a^{2}+2}+a\right)$
c) $\frac{1}{2}\left(\sqrt{a^{2}+4}+a\right)$
d) None of these
573. The solution of $6+x-x^{2}>0$, is
a) $-1<x<2$
b) $-2<x<3$
c) $-2<x<-1$
d) None of these
574. If $(\cos \theta+i \sin \theta)(\cos 2 \theta+i \sin 2 \theta) \ldots(\cos n \theta+i \sin n \theta)=1$, then the value of θ is
a) $4 m \pi$
b) $\frac{2 m \pi}{n(n+1)}$
c) $\frac{4 m \pi}{n(n+1)}$
d) $\frac{m \pi}{n(n+1)}$
575. If α, β, γ are the roots of the equation $x^{3}-6 x^{2}+11 x+6=0$, then $\sum \alpha^{2} \beta+\sum \alpha \beta^{2}$ is equal to
a) 80
b) 84
c) 90
d) -84
576. Let z_{1}, z_{2}, z_{3} be three complex numbers satisfying $\frac{1}{z_{1}}+\frac{1}{z_{2}}+\frac{1}{z_{3}}=0$. Let $z_{k}=r_{k}\left(\cos \alpha_{k}+i \sin \alpha_{k}\right)$ and $\omega_{k}=\frac{\cos 2 \alpha_{k}+i \sin 2 \alpha_{k}}{z_{k}}$ for $k=1,2,3$. If ω_{1}, ω_{2} and ω_{3} are the affixes of points A_{1}, A_{2} and A_{3} respectively in the Argand plane, then $\triangle A_{1} A_{2} A_{3}$ has its
a) Incentre at the origin
b) Centroid at the origin
c) Circumcentre at the origin
d) Orthocentre at the origin
577. If $\left|\frac{z-25}{z-1}\right|=5$, find the value of $|z|$
a) 3
b) 4
c) 5
d) 6
578. If α and β are the roots of $a x^{2}+b x+c=0$, then the equation $a x^{2}-b x(x-1)+c(x-1)^{2}=0$ has roots
a) $\frac{\alpha}{1-\alpha}, \frac{\beta}{1-\beta}$
b) $\frac{1-\alpha}{\alpha}, \frac{1-\beta}{\beta}$
c) $\frac{\alpha}{\alpha+1}, \frac{\beta}{\beta+1}$
d) $\frac{\alpha+1}{\alpha}, \frac{\beta+1}{\beta}$
579. The argument of the complex number $\frac{13-5 i}{4-9 i}$ is
a) $\pi / 3$
b) $\pi / 4$
c) $\pi / 5$
d) $\pi / 6$
580. If $\sin \theta, \sin \alpha \cos \theta$ are in G.P., then the roots of $x^{2}+2 x \cot \alpha+1=0$ are always
a) Equal
b) Real
c) Imaginary
d) Greater than 1
581. If $f(x)$ is a polynomial of degree n with rational coefficients and $1+2 i, 2-\sqrt{3}$ and 5 are three roots of $f(x)=0$, then the least value of n is
a) 5
b) 4
c) 3
d) 6
582. If $\frac{3 x}{(x-a)(x-b)}=\frac{2}{x-a}+\frac{1}{x-b}$, then $a: b$ is equal to
a) $1: 2$
b) $-2: 1$
c) $1: 3$
d) 3: 1
583. If $(x+i y)=\sqrt{\frac{1+2 i}{3+4 i}}$, then $\left(x^{2}+y^{2}\right)^{2}$ is equal to
a) 5
b) $1 / 5$
c) $2 / 5$
d) $5 / 2$
584. The number of real roots of $f(x)=0$, where $f(x)=(x-1)(x-2)(x-3)(x-4)$ lying in the interval (1, 3) is
a) 1
b) 2
c) 3
d) 4
585. If z is a complex number, then $|3 z-1|=3|z-2|$ represents
a) y-axis
b) A circle
c) x-axis
d) A line parallel to y-axis
586. The triangle with vertices at the points $z_{1}, z_{2},(1-i) z_{1}+i z_{2}$ is
a) Right angled but not isosceles
b) Isosceles but not right angled
c) Right angled and isosceles
d) Equilateral
587. If $x=\frac{1}{x}=2 \sin \alpha, y=y+\frac{1}{y}=2 \cos \beta$, then $x^{3} y^{3}+\frac{1}{x^{3} y^{3}}$ is
a) $2 \cos 3(\beta-\alpha)$
b) $2 \cos 3(\beta+\alpha)$
c) $2 \sin 3(\beta-\alpha)$
d) $2 \sin 3(\beta+\alpha)$
588. If α, β, γ are the cube roots of $p, p<0$ then for any x, y and z the values of $\frac{x \alpha+y \beta+z \gamma}{x \beta+y \gamma+z \alpha}$ are
a) ω, ω^{2}
b) $-\omega,-\omega^{2}$
c) $1,-1$
d) None of these
589. If $p^{2}-p+1=0$, then the value of $p^{3 n}$ can be
a) 1
b) -1
c) 0
d) None of these
590. If $a=\cos \theta+i \sin \theta$, then $\frac{1+a}{1-a}$ is equal to
a) $\cot \frac{\theta}{2}$
b) $\cot \theta$
c) $i \cot \frac{\theta}{2}$
d) $i \tan \frac{\theta}{2}$
591. If $z=r(\cos \theta+i \sin \theta)$, then the value of $\frac{z}{\bar{z}}+\frac{\bar{z}}{z}$ is
a) $\cos 2 \theta$
b) $2 \cos 2 \theta$
c) $2 \cos \theta$
d) $2 \sin \theta$
592. In a give parallelogram, if the points P_{1} and P_{2} represent two complex numbers z_{1} and z_{2}, then the point P_{3} represents the number

a) $z_{1}+z_{2}$
b) $z_{1}-z_{2}$
c) $z_{1} \times z_{2}$
d) $z_{1} \div z_{2}$
593. If $\arg (z)=\theta$ then $\arg (\bar{z})$ is equal to
a) $\theta-\pi$
b) $\pi-\theta$
c) θ
d) $-\theta$
594. If z is a complex number, then the minimum value of $|z|+|z-1|$ is
a) 1
b) 0
c) $\frac{1}{2}$
d) None of these
595. The complex numbers $\sin x+i \cos 2 x$ and $\cos x-i \sin 2 x$ are conjugate to each other for
a) $x=n \pi$
b) $x=\left(n+\frac{1}{2}\right) \pi$
c) $x=0$
d) No value of x
596. If the equations $x^{2}+a x+b=0$ and $x^{2}+b x+a=0$ have a common root, then the numerical value of $a+b$ is
a) 1
b) 0
c) -1
d) None of these
597. If $S=\left\{z \in C: \arg \left(\frac{z-2}{z+2}\right)=\frac{\pi}{3}\right\}$, then S is
a) An ellipse
b) A straight line
c) A circle
d) A parabola
598. If $b^{2} \geq 4 a c$ for the equation $a x^{4}+b x^{2}+c=0$, then all the roots of the equation will be real positive of
a) $b>0, a<0, c>0$
b) $b<0, a>0, c>0$
c) $b>0, a>0, c>0$
d) $b>0, a>0, c<0$
599. Let z_{1} and z_{2} be two complex numbers with α and β as their principle arguments such that $\alpha+\beta>\pi$, then principal $\arg \left(z_{1} z_{2}\right)$ is given by
a) $\alpha+\beta+\pi$
b) $\alpha+\beta-\pi$
c) $\alpha+\beta+2 \pi$
d) $\alpha+\beta$
600. Let ω be a complex cube root of unity. If the equation $|z-\omega|^{2}+\left|z-\omega^{2}\right|^{2}=\lambda$ represents a circle with points representing ω and ω^{2} as the end points of a diameter, then $\lambda=$
a) 4
b) 3
c) 2
d) $\sqrt{2}$
601. Let $2 \sin ^{2} x+3 \sin x-2>0$ and $x^{2}-x-2<0,(x$ is measured in radians $)$. Then x lies in the interval
a) $\left(\frac{\pi}{6}, \frac{5 \pi}{6}\right)$
b) $\left(-1, \frac{5 \pi}{6}\right)$
c) $(-1,2)$
d) $\left(\frac{\pi}{6}, 2\right)$
602. One root of $(1)^{1 / 3}$ is
a) $\frac{\sqrt{3} i}{2}$
b) $\frac{1+\sqrt{3} i}{2}$
c) $\frac{1-\sqrt{3} i}{4}$
d) $\frac{-1-\sqrt{3} i}{2}$
603. If one of the root of the equation $x^{2}+a x+3=0$ is 3 and one of the roots of the equation $x^{2}+a x+b=0$ is three times the other root, then the value of b is equal to
a) 3
b) 4
c) 2
d) 1
604. If $|z-4-3 i| \leq 1$ and m and n are the least and greatest value of $|z|$ and λ is the least value of $\frac{x^{4}+x^{2}+4}{x}$ in the interval $(0, \infty)$ then λ is equal to
a) m
b) n
c) $m+n$
d) None of these
605. The harmonic mean of the roots of the equation $(5+\sqrt{2}) x^{2}-(4+\sqrt{5}) x+8+2 \sqrt{5}=0$ is
a) 2
b) 4
c) 6
d) 8
606. If a, b, c and u, v, ω are complex numbers representing the vertices of two triangles such that $c=$ $(1-r) a+r b$ and $\omega=(1-r) u+r v$, where r is a complex number, then the two triangles
a) Have the same area
b) Are similar
c) Are congurent
d) None of these
607. The value of k for which the equation
$3 x^{2}+2 x\left(k^{2}+1\right)+k^{2}-3 k+2=0$
has roots of opposite signs, lies in the interval
a) $(-\infty, 0)$
b) $(-\infty,-1)$
c) $(1,2)$
d) $(3 / 2,2)$
608. The locus of point z satisfying $\operatorname{Re}\left(\frac{1}{z}\right)=k$, where k is a non-zero real number, is
a) A straight line
b) A circle
c) An ellipse
d) A hyperbola
609. If $z \neq 0$ be a complex number and $\arg (z)=\pi / 4$, then
a) $\operatorname{Re}(z)=\operatorname{Im}(z)$ only
b) $\operatorname{Re}(z)=\operatorname{Im}(z)>0$
c) $\operatorname{Re}\left(z^{2}\right)=\operatorname{Im}\left(z^{2}\right)$
d) None of these
610. If $z_{1}, z_{2}, \ldots, z_{n}$ are complex numbers such that $\left|z_{1}\right|=\left|z_{2}\right|=\ldots=\left|z_{n}\right|=1$, then $\left|z_{1}+z_{2}+\ldots+z_{n}\right|$ is equal to
a) $\left|z_{1} z_{2} z_{3} \ldots z_{n}\right|$
b) $\left|z_{1}\right|+\left|z_{2}\right|+\ldots+\left|z_{n}\right|$
c) $\left|\frac{1}{z_{1}}+\frac{1}{z_{2}}+\ldots+\frac{1}{z_{n}}\right|$
d) n
611. If $z_{r}=\cos \frac{r \alpha}{n^{2}}+i \sin \frac{r \alpha}{n^{2}}$, where $r=1,2,3 \ldots, n$, then $\lim _{n \rightarrow \infty} z_{1} z_{2} z_{3} \ldots z_{n}$ is equal to
a) $\cos \alpha+i \sin \alpha$
b) $\cos \left(\frac{\alpha}{2}\right)-i \sin \left(\frac{\alpha}{2}\right)$
c) $e^{i \alpha / 2}$
d) $\sqrt[3]{e^{i \alpha}}$
612. If α, β and γ are the roots of equation $x^{3}-3 x^{2}+x+5=0$, then $y=\sum \alpha^{2}+\alpha \beta \gamma$ satisfies the equation
a) $y^{3}+y+2=0$
b) $y^{3}-y^{2}-y-2=0$
c) $y^{3}+3 y^{2}-y-3=0$
d) $y^{2}+4 y^{2}+5 y+20=0$
613. If the roots of $(z-1)^{n}=i(z+1)^{n}$ are plotted in the Argand plane, they are
a) On a parabola
b) Concyclic
c) Collinear
d) The vertices of a triangle
614. If n is a positive integer, then $(1+i)^{n}+(1-i)^{n}$ is equal to
a) $(\sqrt{2})^{n-2} \cos \left(\frac{n \pi}{4}\right)$
b) $(\sqrt{2})^{n-2} \sin \left(\frac{n \pi}{4}\right)$
c) $(\sqrt{2})^{n+2} \cos \left(\frac{n \pi}{4}\right)$
d) $(\sqrt{2})^{n+2} \sin \left(\frac{n \pi}{4}\right)$
615. The roots of the equation $(3-x)^{4}+(2-x)^{4}=(5-2 x)^{4}$ are
a) All real
b) All imaginary
c) Two real and two imaginary
d) None of these
616. In which quadrant of the complex plane, the point $\frac{1+2 i}{1-i}$ lies?
a) Fourth
b) First
c) Second
d) Third
617. If α, β are roots of $a x^{2}+b x+c=0$, then the equation $a x^{2}-b x(x-1)+c(x-1)^{2}=0$ has roots
a) $\frac{\alpha}{1-\alpha}, \frac{\beta}{1-\beta}$
b) $\frac{1-\alpha}{\alpha}, \frac{1-\beta}{\beta}$
c) $\frac{\alpha}{\alpha+1}, \frac{\beta}{\beta+1}$
d) $\frac{\alpha+1}{\alpha}, \frac{\beta+1}{\beta}$
618. If the expression $\frac{\left[\sin \left(\frac{x}{2}\right)+\cos \left(\frac{x}{2}\right)-i \tan (x)\right]}{\left[1+2 i \sin \left(\frac{x}{2}\right)\right]}$ is real then the set of all possible value of x is
a) $n \pi+\alpha$
b) $2 n \pi$
c) $\frac{n \pi}{2}+\alpha$
d) None of these
619. If x is an integer satisfying $x^{2}-6 x+5 \leq 0$ and $x^{2}-2 x>0$, then the number of positive values of x, is
a) 3
b) 4
c) 2
d) Infinite
620. For any two complex numbers z_{1} and z_{2} and any real numbers a and $b ;\left|a z_{1}-b z_{2}\right|^{2}+\left|\left(b z_{1}+a z_{2}\right)\right|^{2}$ is equal to
a) $\left(a^{2}+b^{2}\right)\left(\left|z_{1}\right|+\left|z_{2}\right|\right)$
b) $\left(a^{2}+b^{2}\right)\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right)$
c) $\left(a^{2}+b^{2}\right)\left(\left|z_{1}\right|^{2}-\left|z_{2}\right|^{2}\right)$
d) None of the above
621. If α, β are roots of the equation $6 x^{2}-5 x+1=0$, then the value of $\tan ^{-1} \alpha+\tan ^{-1} \beta$ is
a) 0
b) $\frac{\pi}{4}$
c) 1
d) $\frac{\pi}{2}$
622. If $\left|z_{1}\right|=\left|z_{2}\right|=\cdots=\left|z_{n}\right|=1$, then the value of $\left|z_{1}+z_{2}+z_{3}+\ldots+z_{n}\right|$ is
a) 1
b) $\left|z_{1}\right|+\left|z_{2}\right|+\ldots+\left|z_{n}\right|$
c) $\left|\frac{1}{z_{1}}+\frac{1}{z_{2}}+\ldots+\frac{1}{z_{n}}\right|$
d) None of these
623. The value of $\sum_{k=1}^{6}\left(\sin \frac{2 \pi k}{7}-i \cos \frac{2 \pi k}{7}\right)$, is
a) -1
b) 0
c) $-i$
d) i
624. The solution set of $x^{2}+x+|x|+1<0$, is
a) $(0, \infty)$
b) $(-\infty, 0)$
c) R
d) ϕ
625. Let $\omega_{n}=\cos \left(\frac{2 \pi}{n}\right)+i \sin \left(\frac{2 \pi}{n}\right), i^{2}=-1$, then $\left(x+y \omega_{3}+z \omega_{3}^{2}\right)\left(x+y \omega_{3}^{2}+z \omega_{3}\right)$ is equal to
a) 0
b) $x^{2}+y^{2}+z^{2}$
c) $x^{2}+y^{2}+z^{2}-y z-z x-x y$
d) $x^{2}+y^{2}+z^{2}+y z+z x+x y$
626. The quadratic equation $x^{2}+15|x|+14=0$ has
a) Only positive solutions
b) Only negative solutions
c) No solution
d) Both positive and negative solution
627. If α, β, γ are the roots of the equation $x^{3}+a x^{2}+b x+c=0$, then $\alpha^{-1}+\beta^{-1}+\gamma^{-1}=$
a) $\frac{a}{c}$
b) $-\frac{b}{c}$
c) $\frac{b}{a}$
d) $\frac{c}{a}$
628. The solution of the quadratic equation $(3|x|-3)^{2}=|x|+7$ which belongs to the domain of definition of the function $y=\sqrt{x(x-3)}$ are given by
a) $\pm \frac{1}{9}, \pm 2$
b) $-\frac{1}{9}, 2$
c) $\frac{1}{9},-2$
d) $-\frac{1}{9},-2$
629. If α is a cube root of unit and is not real, then $\alpha^{3 n+1}+\alpha^{3 n+3}+\alpha^{3 n+5}$ has the value
a) -1
b) 0
c) 1
d) 3
630. The number of solutions of the equation $z^{2}+\bar{z}=0$ is
a) 2
b) 4
c) 6
d) 8
631. If $\log _{\sqrt{3}}\left(\frac{|z|^{2}-|z|+1}{2+|z|}\right)<2$, then the locus of z is
a) $|z|=5$
b) $|z|<5$
c) $|z|>5$
d) None of these
632. If $f(x)=2 x^{3}+m x^{2}-13 x+n$ and 2,3 are roots of the equation $f(x)=0$, then the values of m and n are
a) $-5,-30$
b) $-5,30$
c) 5,30
d) None of these
633. Let A, B and C represent the complex numbers z_{1}, z_{2}, z_{3} respectively on the complex plane. If the circumcenter of the triangle $A B C$ lies at the origin, then the orthocentre is represented by the complex number
a) $z_{1}+z_{2}-z_{3}$
b) $z_{2}+z_{3}-z_{1}$
c) $z_{3}+z_{1}-z_{2}$
d) $z_{1}+z_{2}+z_{3}$
634. Let $x=\alpha+\beta, y=\alpha \omega+\beta \omega^{2}, z=\alpha \omega^{2}+\beta \omega, \omega$ is an imaginary cube root of unity. The value of $x y z$ is
a) $\alpha^{2}+\beta^{2}$
b) $\alpha^{2}-\beta^{2}$
c) $\alpha^{3}+\beta^{3}$
d) $\alpha^{3}-\beta^{3}$
635. Let $n=2006$!. Then $\frac{1}{\log _{2} n}+\frac{1}{\log _{3} n}+\ldots+\frac{1}{\log _{2006} n}$ is equal to
a) 2006
b) 2005
c) 2005 !
d) 1
636. If $a(p+q)^{2}+2 b p q+c=0$ and $a(p+r)^{2}+2 b p r+c=0$, then $q r=$
a) $p^{2}+\frac{c}{a}$
b) $p^{2}+\frac{a}{c}$
c) $p^{2}+\frac{a}{b}$
d) $p^{2}+\frac{b}{a}$
637. If $\frac{2 z_{1}}{3 z_{2}}$ is purely imaginary number, then $\left|\frac{z_{1}-z_{2}}{z_{1}+z_{2}}\right|^{4}$ is equal to
a) $3 / 2$
b) 1
c) $2 / 3$
d) $4 / 9$
638. $\sqrt{4}, \sqrt[4]{4}, \sqrt[8]{4}, \sqrt[16]{4}, \ldots$ to ∞ are root of equation
a) $x^{2}-4=0$
b) $x^{2}-4 x+6=0$
c) $x^{2}-5 x+4=0$
d) $x^{2}-3 x+2=0$
639. Let x_{1}, x_{2} be the roots of the equation $x^{2}-3 x+p=0$ and let x_{3}, x_{4} be the roots of the equation $x^{2}-12 x+q=0$. If the numbers $x_{1}, x_{2}, x_{3}, x_{4}$ (in order) form an increasing G.P., then
a) $p=2, q=16$
b) $p=2, q=32$
c) $p=4, q=16$
d) $p=4, q=32$
640. If the equation $x^{2}-3 k x+2 e^{2 \log k}-1=0$ has real roots such that the product of roots is 7 , then the value of k is
a) ± 1
b) 2
c) ± 3
d) None of these
641. If the product of the roots of the equation $(a+1) x^{2}+(2 a+3) x+(3 a+4)=0$ is 2 , then the sum of roots is
a) 1
b) -1
c) 2
d) -2
642. Value of $\sum_{k=1}^{6}\left[\sin \left(\frac{2 k \pi}{7}\right)-i \cos \left(\frac{2 k \pi}{7}\right)\right]$ is equal to
a) -1
b) 1
c) 0
d) None of these
643. If $\sin \alpha, \sin \beta$ and $\cos \alpha$ are in GP, then roots of $x^{2}+2 x \cot \beta+1=0$ are always
a) Real
b) Real and negative
c) Greater than one
d) Non-real
644. Let z_{1} and z_{2} be the roots of the equation $z^{2}+p z+q=0$ where p, q are real. The points represented by z_{1}, z_{2} and the origin form an equilateral triangle, if
a) $p^{2}=3 q$
b) $p^{2}>3 q$
c) $p^{2}<3 q$
d) $p^{2}=2 q$
645. If $1, \omega, \omega^{2}$ are the cube roots of unity, then $\left(3+\omega^{2}+\omega^{4}\right)^{6}$ is equal to
a) 64
b) 729
c) 2
d) 0
646. If $z=x+i y$ and $w=\frac{1-i z}{z-i}$, then $|w|=1$ implies that in the complex plane
a) z lies on imaginary axis
b) z lies on real axis
c) z lies on unit circle
d) None of these
647. The number of real roots of the equation $(x+3)^{4}+(x+5)^{4}=16$, is
a) 0
b) 2
c) 3
d) 4
648. The solution set of the inequation $\left|x+\frac{1}{x}\right|>2$, is
a) $R-\{0\}$
b) $R-\{-1,0,1\}$
c) $R-\{1\}$
d) $R-\{-1,1\}$
649. If $\operatorname{Re}\left(\frac{z+4}{2 z-i}\right)=\frac{1}{2}$, then z is represented by a point lying on
a) A circle
b) An ellipse
c) A straight line
d) None of these
650. $\sin A, \sin B, \cos A$ are in GP. Roots of $x^{2}+2 x \cot B+1=0$ are always
a) Real
b) Imaginary
c) Greater than 1
d) Equal
651. If α, β are the roots of the equation $a x^{2}+b x+c=0$, then the value of $\frac{1}{a \alpha+b}+\frac{1}{a \beta+b}$ is equal to
a) $\frac{a c}{b}$
b) 1
c) $\frac{a b}{c}$
d) $\frac{b}{a c}$
652. A And B are two points on the Argand plane such that the segment $A B$ is bisected at the point $(0,0)$. If the point A, which is in the third quadrant has principle amplitude θ, then the principle amplitude of the point B is
a) $-\theta$
b) $\pi-\theta$
c) $\theta-\pi$
d) $\pi+\theta$
653. If $\frac{2 z_{1}}{3 z_{2}}$ is purely imaginary, then $\left|\frac{z_{1}-z_{2}}{z_{1}+z_{2}}\right|$ is
a) $\frac{2}{3}$
b) $\frac{3}{2}$
c) $\frac{4}{9}$
d) 1
654. If $(1+k) \tan ^{2} x-4 \tan x-1+k=0$ has real roots $\tan x_{1}$ and $\tan x_{2}$, then
a) $k^{2} \leq 5$
b) $k^{2} \geq 6$
c) $k=3$
d) None of these
655. If m_{1}, m_{2}, m_{3} and m_{4} respectively denote the moduli of the complex numbers $1+4 i, 3+i, 1-i$ and $2-3 i$, then the correct one, among the following is
a) $m_{1}<m_{2}<m_{3}<m_{4}$
b) $m_{4}<m_{3}<m_{2}<m_{1}$
c) $m_{3}<m_{2}<m_{4}<m_{1}$
d) $m_{3}<m_{1}<m_{2}<m_{4}$
656. If $(\cos \theta+i \sin \theta)(\cos 2 \theta+i \sin 2 \theta) \ldots(\cos n \theta+i \sin n \theta)=1$, then the value of θ is
a) $\frac{2 m \pi}{n(n+1)}$
b) $4 m \pi$
c) $\frac{4 m \pi}{n(n+1)}$
d) $\frac{m \pi}{n(n+1)}$
657. Let z_{1}, z_{2}, z_{3} be the affixes of the vertices of a triangle having the circumcentre at the origin. If z is the affix of it's orthocentre, then z is equal to
a) $\frac{z_{1}+z_{2}+z_{3}}{3}$
b) $\frac{z_{1}+z_{2}+z_{3}}{2}$
c) $z_{1}+z_{2}+z_{3}$
d) None of these
658. If A, B, C are three points in the Argand plane representing the complex numbers z_{1}, z_{2}, z_{3} such that $z_{1}=\frac{\lambda z_{2}+z_{3}}{\lambda+1}$, where $\lambda \in \mathrm{R}$, then the distance of A from the line $B C$ is
a) λ
b) $\frac{\lambda}{\lambda+1}$
c) 1
d) 0
659. If the vertices of a quadrilateral be $A=1+2 i, B=-3+i, C=-2-3 i$ and $D=2-2 i$, then the quadrilateral is
a) Parallelogram
b) Rectangle
c) Square
d) Rhombus
660. If the roots of the equation $\left(p^{2}+q^{2}\right) x^{2}-2 q(p+r) x+\left(q^{2}+r^{2}\right)=0$ be real and equal, then p, q, r will be in
a) AP
b) GP
c) HP
d) None of these
661. The equation of the locus of z such that $\left|\frac{z-i}{z+i}\right|=2$, where $z=x+i y$ is a complex number, is
a) $3 x^{2}+3 y^{2}+10 y-3=0$
b) $3 x^{2}+3 y^{2}+10 y+3=0$
c) $3 x^{2}-3 y^{2}-10 y-3=0$
d) $x^{2}+y^{2}-5 y+3=0$
662. If $z_{1}=\sqrt{2}\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)$

And $z_{2}=\sqrt{3}\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right)$, then $\left|z_{1} z_{2}\right|$ is
a) 6
b) $\sqrt{2}$
c) $\sqrt{6}$
d) $\sqrt{3}$
663. If $\operatorname{Re}(z)<0$, then the value of $\left|1+z+z^{2}+\cdots+z^{n}\right|$ cannot exceed
a) n
b) $n|z|^{n}+1$
c) $\left|z^{n}\right|-\frac{1}{|z|}$
d) $|z|^{n}+\frac{1}{|z|}$
664. Let a, b be the solutions of $x^{2}+p x+1=0$ and c, d be the solutions of $x^{2}+q x+1=0$. If $(a-c)(b-c)$ and $(a+d)(b+d)$ are the solutions of $x^{2}+a x+\beta=0$, then β equals
a) $p+q$
b) $p-q$
c) $p^{2}+q^{2}$
d) $q^{2}-p^{2}$
665. The number of integral solutions of $x^{2}-3 x-4<0$, is
a) 3
b) 4
c) 6
d) None of these
666. All the values of m for which both roots of the equation $x^{2}-2 m x+m^{2}-1=0$ are greater than -2 but less than 4 lie in the interval
a) $m>3$
b) $-1<m<3$
c) $1<m<4$
d) $-2<m<0$
667. The roots of the given equation $(p-q) x^{2}+(q-r) x+(r-p)=0$ are
a) $\frac{p-q}{r-p}, 1$
b) $\frac{q-r}{p-q}, 1$
c) $\frac{r-p}{p-q}, 1$
d) $1, \frac{q-r}{p-q}$
668. Let α, β, δ be the roots of $x^{4}+x^{2}+1=0$. Then, the equation whose roots are $\alpha^{2}, \beta^{2}, \gamma^{2}, \delta^{2}$ is
a) $\left(x^{2}-x+1\right)^{2}=0$
b) $\left(x^{2}+x+1\right)^{2}=0$
c) $x^{4}-x^{2}+1=0$
d) $x^{2}+x+1=0$
669. The solution set of $\left|x^{2}-10\right| \leq 6$, is
a) $(2,4)$
b) $(-4,-2)$
c) $(-4,-2) \cup(2,4)$
d) $[-4,-2] \cup[2,4]$
670.

If $x=\sqrt{3018+\sqrt{36+\sqrt{169}}}$, then the value of x is
a) 55
b) 44
c) 63
d) 42
671. If the roots of the given equation $(\cos p-1) x^{2}+(\cos p) x+\sin p=0$ are real, then
a) $p \in(-\pi, 0)$
b) $p \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
c) $p \in(0, \pi)$
d) $p \in(0,2 \pi)$
672. Let the two numbers have arithmetic mean 9 and geometric mean 4 . Then, these numbers are the roots of the quadratic equation
a) $x^{2}-18 x-16=0$
b) $x^{2}-18 x+16=0$
c) $x^{2}+18 x-16=0$
d) $x^{2}+18 x+16=0$
673. If α and β are the roots of the equation $x^{2}-x+1=0$ then $\alpha^{2009}+\beta^{2009}$ is equal to
a) -2
b) -1
c) 1
d) 2
674. If $x^{2}+p x+q=0$ has the roots α and β, then the value of $(\alpha-\beta)^{2}$ is equal to
a) $p^{2}-4 q$
b) $\left(p^{2}-4 q\right)^{2}$
c) $p^{2}+4 q$
d) $\left(p^{2}+4 q\right)^{2}$
675. The conjugate of complex number $\frac{2-3 i}{4-i}$ is
a) $\frac{3 i}{4}$
b) $\frac{11+10 i}{17}$
c) $\frac{11-10 i}{17}$
d) $\frac{2+3 i}{4 i}$
676. If p, q, r are real and $p \neq q$, then the roots of the equation $(p-q) x^{2}+5(p+q) x-2(p-q)=r$, are
a) Real and equal
b) Unequal and rational
c) Unequal and irrational
d) Nothing can be said
677. Let $y=\sqrt{\frac{(x+1)(x-3)}{(x-2)}}$, then all real values of x for which y takes real values, are
a) $-1 \leq x<2$ or $x \geq 3$
b) $-1 \leq x<3$ or $x>2$
c) $1 \leq x<2$ or $x \geq 3$
d) None of these
678. If $x^{2 / 3}-7 x^{1 / 3}+10=0$, then the value of x is
a) $\{125\}$
b) $\{8\}$
c) \varnothing
d) $\{125,8\}$
679. If one root of the equation $x^{2}-\lambda x+12=0$ is even prime while $x^{2}+\lambda x+\mu=0$ has equal roots, then μ is
a) 8
b) 16
c) 24
d) 32
680. The locus of the points z which satisfy the condition $\arg \left(\frac{z-1}{z+1}\right)=\frac{\pi}{3}$ is
a) A straight line
b) A circle
c) A parabola
d) None of these
681.

The value of $\left|\begin{array}{ccc}1+\omega & \omega^{2} & -\omega \\ 1+\omega^{2} & \omega & -\omega^{2} \\ \omega^{2}+\omega & \omega & -\omega^{2}\end{array}\right|$ is equal to (ω is an imaginary cube root of unity)
a) 0
b) 2ω
c) $2 \omega^{2}$
d) $-3 \omega^{2}$
682. If the absolute value of the difference of the roots of the equation $x^{2}+a x+1=0$ exceeds $\sqrt{3 a}$, then
a) $a \in(-\infty,-1) \cup(4, \infty)$
b) $a \in[0,4)$
c) $a \in(-1,4)$
d) $a \in[0,4)$
683. Consider the following statements:

1. If the quadratic equation is $a x^{2}+b x+c=0$ such that $a+b+c=0$, then roots of the equation $a x^{2}+b x+c=0$ will be $1, \frac{c}{a}$.
2. If $a x^{2}+b x+c=0$ is quadratic equation such that $a-b+c=0$, then roots of the equation will be, $-1, \frac{c}{a}$.
Which of the statements given above are correct?
a) Only (1)
b) Only (2)
c) Both (1) and (2)
d) Neither (1) nor (2)
3. The equation $(x-b)(x-c)+(x-a)(x-b)+(x-a)(x-c)=0$ has all its roots
a) Positive
b) Real
c) Imaginary
d) Negative
4. Let p and q be real numbers such that $p \neq 0, p^{3} \neq q$ and $p^{3} \neq-q$. If α and β are non-zero complex numbers satisfying $\alpha+\beta=-p$ and $\alpha^{3}+\beta^{3}=q$, then a quadratic equation having $\frac{\alpha}{\beta}$ and $\frac{\beta}{\alpha}$ as its roots is
a) $\left(p^{3}+q\right) x^{2}-\left(p^{3}+2 q\right) x+\left(p^{3}+q\right)=0$
b) $\left(p^{3}+q\right) x^{2}-\left(p^{3}-2 q\right) x+\left(p^{3}+q\right)=0$
c) $\left(p^{3}-q\right) x^{2}-\left(5 p^{3}-2 q\right) x+\left(p^{3}-q\right)=0$
d) $\left(p^{3}-q\right) x^{2}-\left(5 p^{3}+2 q\right) x+\left(p^{3}-q\right)=0$
5. If α and β be the roots of the equation $2 x^{2}+2(a+b) x+a^{2}+b^{2}=0$, then the equation whose roots are $(\alpha+\beta)^{2}$ and $(\alpha-\beta)^{2}$, is
a) $x^{2}-2 a b x-\left(a^{2}-b^{2}\right)^{2}=0$
b) $x^{2}-4 a b x-\left(a^{2}-b^{2}\right)^{2}=0$
c) $x^{2}-4 a b x+\left(a^{2}-b^{2}\right)^{2}=0$
d) None of these
6. The equation $\bar{b} z+b \bar{z}=c$, where b is a non-zero complex constant and c is a real number, represents
a) A circle
b) A straight line
c) A pair of straight lines
d) None of these
7. The equation $z \bar{z}+(2-3 i) z+(2+3 i) \bar{z}+4=0$ represents a circle of radius
a) 2
b) 3
c) 4
d) 6
8. The value of $i \log (x-i)+i^{2} \pi+i^{3} \log (x+i)+i^{4}\left(2 \tan ^{-1} x\right)$, (where, $x>0$ and $\left.i=\sqrt{-1}\right)$, is
a) 0
b) 1
c) 2
d) 3
9. If $x=\log _{a} b c, y=\log _{b} c a, z=\log _{a} a b$, then the value of $\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}$ will be
a) $x+y+z$
b) 1
c) $a b+b c+c a$
d) $a b c$
10. If z_{1} and z_{2} are two complex numbers such that $\left|\frac{z_{1}-z_{2}}{1-\overline{z_{1}} z_{2}}\right|=1$, then which one of the following is not true?
a) $\left|z_{1}\right|=1,\left|z_{2}\right|=1$
b) $z_{1}=e^{i \theta}, \theta \in R$
c) $z_{2}=e^{i \theta}, \theta \in R$
d) All of these
11. The principle amplitude of $\left(\sin 40^{\circ}+i \cos 40^{\circ}\right)^{5}$ is
a) 70°
b) -110°
c) 110°
d) -70°
12. If x satisfies $\left|x^{2}-3 x+2\right|+|x-1|=x-3$, then
a) $x \in \emptyset$
b) $x \in[1,2]$
c) $x \in[3, \infty]$
d) $x \in(-\infty, \infty)$
13. The value of $\sum_{r=1}^{8}\left(\sin \frac{2 r \pi}{9}+i \cos \frac{2 r \pi}{9}\right)$, is
a) -1
b) 1
c) i
d) $-i$
14. The centre and the radius of the circle $z \bar{z}+(2+3 i) \bar{z}+(2-3 i) z+12=0$ are respectively
a) $-(2+3 i),(1)$
b) $(3+2 i),(1)$
c) $(3+6 i),(3)$
d) None of these
15. If α, β are roots of the equation $a x^{2}+b x+c=0$, then the equation whose roots are $2 \alpha+3 \beta$ and $3 \alpha+2 \beta$ is
a) $a b x^{2}-(a+b) c x+(a+b)^{2}=0$
b) $a c x^{2}-(a+c) b x+(a+c)^{2}=0$
c) $a c x^{2}+(a+c) b x-(a+c) b x-(a+c)^{2}=0$
d) None of these
16. The sum of the real roots of the equation $|x-2|^{2}+|x-2|-2=0$, is
a) 4
b) 3
c) 2
d) 10
17. The values of x and y such that y satisfy the equation $\left(x, y \in\right.$ real number) $x^{2}-x y+y^{2}-4 x-4 y+$ $16=0$ is
a) 4,4
b) 3,3
c) 2,2
d) None of these
18. If $\log _{0.3}(x-1)<\log _{0.09}(x-1)$, then x lies in the interval
a) $2, \infty$
b) $(1,2)$
c) $-2,-1$
d) None of these
19. If $\frac{2 x}{2 x^{2}+5 x+2}>\frac{1}{x+1}$, then
a) $-2>x>-1$
b) $-2 \geq x \geq-1$
c) $-2<x<-1$
d) $-2<x \leq-1$
20. The approximate value of $\sqrt[3]{28}$ is
a) 3.0037
b) 3.037
c) 3.0086
d) 3.37
21. If $\left|\frac{z-2}{z+2}\right|=\frac{\pi}{6}$, then the locus of z is
a) A straight line
b) A circle
c) A parabola
d) An ellipse
22. If $z=x+i y$, then area of the triangle whose vertices are points $z, i z, z+i z$ is
a) $\frac{1}{2}|z|^{2}$
b) $\frac{1}{4}|z|^{2}$
c) $|z|^{2}$
d) $\frac{3}{2}|z|^{2}$
23. If roots of the equation $a x^{2}+b x+c=0 ;(a, b, c \in N)$ are rational numbers, then which of the following cannot be true?
a) All a, b, c are even
b) All a, b and c are odd
c) b is even while ' a ' and ' c ' are odd
d) None of the above
24. If $\left|a_{i}\right|<1, \lambda_{i} \geq 0$ for $i=1,2, \ldots, n$ and $\lambda_{1}+\lambda_{2}+\cdots+\lambda_{n}=1$, then the value of $\left|\lambda_{1} a_{1}+\lambda_{2} a_{2}+\cdots+\lambda_{n} a_{n}\right|$ is
a) Equal to 1
b) Less than 1
c) Greater than 1
d) None of these
25. If α, β be the roots of the quadratic equation $a x^{2}+b x+c=0$ and k be a real number, then the condition so that $\alpha<k<\beta$ is given by
a) $a c>0$
b) $a k^{2}+b k+c=0$
c) $a c<0$
d) $a^{2} k^{2}+a b k+a c<0$
26. If $x=2+2^{2 / 3}+2^{1 / 3}$, then the value of $x^{3}-6 x^{2}+6 x$ is
a) 3
b) 2
c) 1
d) None of these
27. If the complex numbers z_{1}, z_{2}, z_{3} are in AP, then they lie on
a) A circle
b) A parabola
c) A straight line
d) An ellipse
28. If z be a complex number, then $|z-3-4 i|^{2}+|z+4+2 i|^{2}=k$ represents a circle, if k is equal to
a) 30
b) 40
c) 55
d) 35
29. If $\left|\begin{array}{ccc}6 i & -3 i & 1 \\ 4 & 3 i & -1 \\ 20 & 3 & i\end{array}\right|=x+i y$, then
a) $x=3, y=1$
b) $x=1, y=3$
c) $x=0, y=3$
d) None of these
30. If the roots of the equation $a x^{2}+b x+c=0$ of the form $\frac{k+1}{k}$ and $\frac{k+2}{k+1}$, then $(a+b+c)^{2}$ is equal to
a) $2 b^{2}-a c$
b) $\sum a^{2}$
c) $b^{2}-4 a c$
d) $b^{2}-2 a c$
31. The smallest positive integral value of $n \operatorname{such}$ that $\left[\frac{1+\sin \frac{\pi}{8}+i \cos \frac{\pi}{8}}{1+\sin \frac{\pi}{8}-i \cos \frac{\pi}{8}}\right]^{n}$ is purely imaginary, is equal to
a) 4
b) 3
c) 2
d) 8
32. The locus of the point $z=x+i y$ satisfying $\left|\frac{z-2 i}{z+2 i}\right|=1$ is
a) x-axis
b) y-axis
c) $y=2$
d) $x=2$
33. If the roots of the equation $q x^{2}+p x+q=0$ are complex, where p, q are real, then the roots of the equation $x^{2}-4 q x+p^{2}=0$ are
a) Real and unequal
b) Real and equal
c) Imaginary
d) None of these
34. If $e^{\cos x}-e^{-\cos x}=4$, then the value of $\cos x$ is
a) $\log _{e}(2+\sqrt{5})$
b) $-\log _{e}(2+\sqrt{5})$
c) $\log _{e}(-2+\sqrt{5})$
d) None of these
35. $\sqrt{12-\sqrt{68+48 \sqrt{2}}}$ is equal to
a) $\sqrt{2}-3$
b) $2+\sqrt{2}$
c) $2-\sqrt{2}$
d) $6-2 \sqrt{8}$
36. The area of the triangle whose vertices are represented by the complex number $0, z, z e^{i \alpha},(0<\alpha<\pi)$ equals
a) $\frac{1}{2}|z|^{2} \cos \alpha$
b) $\frac{1}{2}|z|^{2} \sin \alpha$
c) $\frac{1}{2}|z|^{2} \sin \alpha \cos \alpha$
d) $\frac{1}{2}|z|^{2}$
37. The general value of θ which satisfies the equation $(\cos \theta+i \sin \theta)(\cos 3 \theta+i \sin 3 \theta)(\cos 5 \theta+i \sin 5 \theta) \ldots$ $(\cos (2 n-1) \theta+i \sin (2 n-1) \theta=1)$ is
a) $\frac{r \pi}{n^{2}}$
b) $\frac{(r-1) \pi}{n^{2}}$
c) $\frac{(2 r+1)}{n^{3}}$
d) $\frac{2 r \pi}{n^{2}}$
38. The solution set of the inequation $|x-1|+|x-2|+|x-3| \geq 6$, is
a) $[0,4]$
b) $(-\infty,-2) \cup[4, \infty)$
c) $(-\infty, 0] \cup[4, \infty)$
d) None of these
39. If the centre of a regular hexagon is at the origin and one of its vertices on argand diagram is $1+2 i$, then its perimeter is
a) $2 \sqrt{5}$
b) $6 \sqrt{2}$
c) $4 \sqrt{5}$
d) $6 \sqrt{5}$
40. If α and β are different complex numbers with $|\beta|=1$ then $\left|\frac{\beta-\alpha}{1-\bar{\alpha} \beta}\right|$ is equal to
a) 0
b) $1 / 2$
c) 1
d) 2
41. If α, β, γ are the roots of the equation $x^{3}+4 x-1=0$, then $(\alpha+\beta)^{-1}+(\beta+\gamma)^{-1}+(\gamma+\alpha)^{-1}$ is equal to
a) 2
b) 3
c) -4
d) 5
42. Which of the following statement is true?
(i) The amplitude of the product of the two complex numbers is equal to product of their amplitudes
(ii) For any polynomial $f(x)$ with real coefficients imaginary rosts always occur in conjugate pairs
(iii) Order relation exists in complex numbers whereas it does not exist in real numbers
(iv) The values of ω used as a cube root of unity and as a fourth root of unity are different
a) (i) and (ii) only
b) (i) and (iv) only
c) (iii) and (ii) only
d) (i), (ii) and (iv) only
43. The solution of the equation
$(3+2 \sqrt{2})^{x^{2}-8}+(3+2 \sqrt{2})^{8-x^{2}}=6$ are
a) $3 \pm 2 \sqrt{2}$
b) ± 1
c) $\pm 3 \sqrt{3}, \pm 2 \sqrt{2}$
d) $\pm 3, \pm \sqrt{7}$
44. The value of a for which one root of the quadratic equation $\left(a^{2}-5 a+3\right) x^{2}+(3 a-1) x+2=0$ is twice as large as the other, is
a) $2 / 3$
b) $-2 / 3$
c) $1 / 3$
d) $-1 / 3$
45. Given that $\tan A$ and $\tan B$ are the roots of $x^{2}-p x+q=0$, then the value of $\sin ^{2}(A+B)$ is
a) $\frac{p^{2}}{p^{2}(1-q)^{2}}$
b) $\frac{q^{2}}{p^{2}+q^{2}}$
c) $\frac{q^{2}}{p^{2}-\left(1-q^{2}\right)}$
d) $\frac{p^{2}}{p^{2}+q^{2}}$
46. If square root of $-7+24 i$ is $x+i y$, then x is
a) ± 1
b) ± 2
c) ± 3
d) ± 4
47. If the points z_{1}, z_{2}, z_{3} are the vertices of an equilateral triangle in the Argand plane, then which one of the following is not correct?
a) $\frac{1}{z_{1}-z_{2}}+\frac{1}{z_{2}-z_{3}}+\frac{1}{z_{3}-z_{1}}=0$
b) $z_{1}^{2}+z_{2}^{2}+z_{3}^{2}=z_{1} z_{2}+z_{2} z_{3}+z_{3} z_{1}$
c) $\left(z_{1}-z_{2}\right)^{2}+\left(z_{2}-z_{3}\right)^{2}+\left(z_{3}-z_{1}\right)^{2}=0$
d) $z_{1}^{3}+z_{2}^{3}+z_{3}^{3}+3 z_{1} z_{2} z_{3}=0$
48. If $\left(\frac{1+i}{1-i}\right)^{x}=1$, then
a) $x=4 n$, where n is any positive integer
b) $x=2 n$, where n is any positive integer
c) $x=4 n+1$, where n is any positive integer
d) $x=2 n+1$, where n is any positive integer
49. If $z=x+i y$ is a variable complex number such that $\arg \frac{z-1}{z+1}=\frac{\pi}{4}$, then
a) $x^{2}-y^{2}-2 x=1$
b) $x^{2}+y^{2}-2 x=1$
c) $x^{2}+y^{2}-2 y=1$
d) $x^{2}+y^{2}+2 x=1$
50. If $\sin \alpha, \cos \alpha$ are the roots of the equation $a x^{2}+b x+c=0$, then
a) $a^{2}-b^{2}+2 a c=0$
b) $(a-c)^{2}=b^{2}+c^{2}$
c) $a^{2}+b^{2}-2 a c=0$
d) $a^{2}+b^{2}+2 a c=0$
51. Argument of the complex number $\left(\frac{-1-3 i}{2+i}\right)$ is
a) 45°
b) 135°
c) 225°
d) 240°
52. If the equation $a x^{2}+2 b x-3 c=0$ has no real roots and $\frac{3 c}{4}<a+b$, then
a) $c<0$
b) $c>0$
c) $c \geq 0$
d) $c=0$
53. If the roots of the equation $\frac{1}{x+a}+\frac{1}{x+b}=\frac{1}{c}$ are equal in magnitude but opposite in sign, then their product is
a) $\frac{1}{2}\left(a^{2}+b^{2}\right)$
b) $-\frac{1}{2}\left(a^{2}+b^{2}\right)$
c) $\frac{1}{2} a b$
d) $-\frac{1}{2} a b$
54. The conjugate of the complex number $\frac{(1+i)^{2}}{1-i}$ is
a) $1-i$
b) $1+i$
c) $-1+i$
d) $-1-i$
55. The complex number $z=x+i y$, which satisfy the equation $\left|\frac{z-5 i}{z+5 i}\right|=1$ lies on
a) Real axis
b) The line $y=5$
c) A Circle passing through the origin
d) None of the above
56. The equation $2 \cos ^{2}\left(\frac{x}{2}\right) \sin ^{2} x=x^{2}+\frac{1}{x^{2}}, 0 \leq x \leq \frac{\pi}{2}$ has
a) No real solution
b) One real solution
c) More than one real solution
d) None of these
57. If $z_{n}=\cos \left\{\frac{\pi}{n(n+1)(n+2)}\right\}+i \sin \left\{\frac{\pi}{n(n+1)(n+2)}\right\}$ for $n=1,2,3, \ldots$, then the valu of $\lim \left(z_{1} z_{2} \ldots, z_{n}\right)$ is
a) $\frac{1-i}{\sqrt{2}}$
b) $\frac{-1+i \sqrt{3}}{\sqrt{2}}$
c) $\frac{-1-i \sqrt{3}}{\sqrt{2}}$
d) $\frac{1+i}{\sqrt{2}}$
58. If $x+i y=\sqrt{\frac{a+i b}{c+i d}}$, then $x^{2}+y^{2}$ is equal to
a) $\frac{a^{2}-b^{2}}{c^{2}+d^{2}}$
b) $\frac{a^{2}+b^{2}}{c^{2}+d^{2}}$
c) $\frac{a^{2}+b^{2}}{c^{2}-d^{2}}$
d) None of these
59. $\arg (\bar{z})$ is equal to
a) $\pi-\arg (z)$
b) $2 \pi-\arg (z)$
c) $\pi+\arg (z)$
d) $2 \pi+\arg (z)$
60. Consider the following statements :
I. The points having affixes $]_{1}$, , 回 from an equilateral triangle, iff
$\frac{1}{\Omega_{1}-\square_{2}}+\frac{1}{\Omega_{2}-\sigma_{3}}+\frac{1}{\Omega_{3}-\sigma_{1}}=0$
II. If is a complex number, then is periodic.
III. If $\left|\square_{1}\right|=\left|\square_{2}\right|$ and $\arg \left(\frac{\square_{1}}{\square_{2}}\right)=$, then $]_{1}+\square_{2}=0$.

Which of the statements given above are correct?
a) (1) and (2)
b) (2) and (3)
c) (3) and (1)
d) All (1), (2) and (3)
742. The joint of $z_{1}=a+i b$ and $z_{2}=\frac{1}{-a+i b}$ passes through
a) Origin
b) $z=1+i 0$
c) $z=0+i$
d) $z=1+i$
743. The equation $(\cos p-1) x^{2}+\cos p x+\sin p=0$, in variable x, has real roots. Then, p belongs to the interval
a) $(0,2 \pi)$
b) $(-\pi, 0)$
c) $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
d) $(0, \pi)$
744. If the roots of the equation $x^{2}+a^{2}=8 x+6 a$ are real, then a belongs to the interval
a) $[2,8]$
b) $[-2,8]$
c) $[-8,2]$
d) None of these
745. If $z_{1}=1+2 i$ and $z_{2}=3+5 i$, then $\operatorname{Re}\left[\overline{z_{2}} z_{1} / z_{2}\right]$ is equal to
a) $-31 / 17$
b) $17 / 22$
c) $-17 / 31$
d) $22 / 17$
746.

The value of $\log _{2} \log _{3} \ldots \log _{100} 100^{99^{98}}{ }^{2^{1}}$ is equal to
a) 0
b) 1
c) 2
d) 100 !
747. If the difference between the roots of the equation $x^{2}+a x+1=0$ is less than $\sqrt{5}$, then the set of possible values of a is
a) $(-3,3)$
b) $(-3, \infty)$
c) $(3, \infty)$
d) $(-\infty,-3)$
748. If z_{1} and z_{2} are two complex numbers such that $\left|\frac{z_{1}-z_{2}}{z_{1}+z_{2}}\right|=1$, then
a) $z_{1}=k z_{2}, k \in R$
b) $z_{1}=i k z_{2}, k \in R$
c) $z_{1}=z_{2}$
d) None of these
749. Let α and β be two fixed non-zero complex numbers and ' z ' a variable complex number. If the lines $\alpha \bar{z}+\bar{\alpha} z+1=0$ and $\beta \bar{z}+\bar{\beta} z-1=0$ are mutually perpendicular, then
a) $\alpha \beta+\bar{\alpha} \bar{\beta}=0$
b) $\alpha \beta-\bar{\alpha} \bar{\beta}=0$
c) $\bar{\alpha} \beta-\alpha \bar{\beta}=0$
d) $\alpha \bar{\beta}+\bar{\alpha} \beta=0$
750. If b and c are odd integers, then the equation $x^{2}+b x+c=0$ has
a) Two odd roots
b) Two integer roots, one odd and one even
c) No integer roots
d) None of these
751. Consider the following statements:

1. If the ratio of roots of the quadratic equation $a x^{2}+b x+c=0$ be $p: q$, then $p q b^{2}=(p+q)^{2} a c$.
2. If the roots of $a x^{2}+b x+c=0$ are α and β, then the roots of $c x^{2}+b x+a=0$ will be $\frac{1}{\alpha}, \beta$.
3. The roots of the equation $a x^{2}+b x+c=0$ are reciprocal to $a^{\prime} x^{2}+b^{\prime} x+c^{\prime}=0$, if $\left(c c^{\prime}-a a^{\prime}\right)^{2}=$ $\left(b a^{\prime}-c b^{\prime}\right)\left(a b^{\prime}-b c^{\prime}\right)$.
Which of the statements given above are correct?
a) (1) and (2)
b) (2) and (3)
c) (1) and (3)
d) All (1), (2) and (3)
4. Locus of z, if $\arg \left(\frac{z-1}{z+1}\right)=\frac{\pi}{2}$, is
a) A circle
b) A semi circle
c) A straight line
d) None of these
5. If x_{1}, x_{2}, x_{3} are distinct roots of the equation $a x^{2}+b x+c=0$, then
a) $a=b=0, c \in R$
b) $a=c=0, b \in R$
c) $b^{2}-4 a c \geq 0$
d) $a=b=c=0$
6. If $(1-p)$ is a root of quadratic equation $x^{2}+p x+(1-p)=0$, then its roots are
a) 0,1
b) $-1,1$
c) $0,-1$
d) $-1,2$
7. If ω is a complex cube root of unity, then the value of $\omega^{99}+\omega^{100}+\omega^{101}$ is
a) 1
b) -1
c) 3
d) 0
8. The value of ${ }^{\prime} c^{\prime}$ for which $\left|\alpha^{2}-\beta^{2}\right|=7 / 4$, where α and β are the roots of $2 x^{2}+7 x+c=0$, is
a) 4
b) 0
c) 6
d) 2
9. If $\cos \alpha+\cos \beta+\cos \gamma=\sin \alpha+\sin \beta+\sin \gamma=0$, then $\cos 3 \alpha+\cos 3 \beta+\cos 3 \gamma$ equals
a) 0
b) $\cos (\alpha+\beta+\gamma)$
c) $3 \cos (\alpha+\beta+\gamma)$
d) $3 \sin (\alpha+\beta+\gamma)$
10. If z_{2} and z_{2} are two nth roots of unity, then $\arg \left(\frac{z_{1}}{z_{2}}\right)$ is a multiple of
a) $n \pi$
b) $\frac{3 \pi}{n}$
c) $\frac{2 \pi}{n}$
d) None of these
11. If the roots of $a_{1} x^{2}+b_{1} x+c_{1}=0$ are α_{1}, β_{1} and those of $a_{2} x^{2}+b_{2} x+c_{2}=0$ are $\alpha_{2} \beta_{2}$ such that $\alpha_{1} \alpha_{2}=\beta_{1} \beta_{2}=1$, then
a) $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
b) $\frac{a_{1}}{c_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{a_{2}}$
c) $a_{1} a_{2}=b_{1} b_{2}=c_{1} c_{2}$
d) None of these
12. If $a+b+c=0$, then the roots of the equation $4 a x^{2}+3 b x+2 c=0$ are
a) Equal
b) Imaginary
c) Real
d) None of these
13. If z is a complex number in the Argand plane such that $\arg \left(\frac{z-3 \sqrt{3}}{z+3 \sqrt{3}}\right)=\frac{\pi}{3}$ then the lous of z is
a) $|z-3 i|=6$
b) $|z-3 i|=6, \operatorname{Im}(z)>0$
c) $|z-3 i|=6, \operatorname{Im}(z)<0$
d) None of these
14. If $\sin \alpha$ and $\cos \alpha$ are the roots of the equation $p x^{2}+q x+r=0$, then
a) $p^{2}+q^{2}-2 p r=0$
b) $p^{2}-q^{2}+2 p r=0$
c) $p^{2}-q^{2}-2 p r=0$
d) $p^{2}+q^{2}+2 q r=0$
15. The equation $x^{\frac{3}{4}}\left(\log _{2} x\right)^{2}+\left(\log _{2} x\right)^{-\frac{5}{4}}=\sqrt{2}$ has
a) At least one real solution
b) Exactly three real solution
c) Exactly one irrational solution
d) All of the above
16. If $z=x+i y$, then the equation $\left|\frac{2 z-1}{z+1}\right|=m$ does not represent a circle when $m=$
a) $1 / 2$
b) 1
c) 2
d) 3
17. Let $z=x+i y$ be a complex number where x and y are integers. Then the area of the rectangle whose vertices are the roots of the equation $z \bar{z}^{3}+\bar{z} z^{3}=350$ is
a) 48
b) 32
c) 40
d) 80
18. If $\left(a_{1}+i b_{1}\right)\left(a_{2}+i b_{2}\right) \ldots\left(a_{n}+i b_{n}\right)=A+i B$, then $\left(a_{1}^{2}+b_{1}^{2}\right)\left(a_{2}^{2}+b_{2}^{2}\right) \ldots\left(a_{n}^{2}+b_{n}^{2}\right)$ is equal to
a) 1
b) $A^{2}+B^{2}$
c) $A+B$
d) $\frac{1}{A^{2}}+\frac{1}{B^{2}}$
19. The complex numbers $\sin x+i \cos 2 x$ and $\cos x-i \sin 2 x$ are conjugate to each other for
a) $x=n \pi$
b) $x=\left(n+\frac{1}{2}\right) \pi$
c) $x=0$
d) No value of x
20. The number which exceeds its positive square roots by 12 , is
a) 9
b) 16
c) 25
d) None of these
21. The solution set of the inequation $\frac{|x-2|}{x-2}<0$, is
a) $(2, \infty)$
b) $(-\infty, 2)$
c) R
d) $(-2,2)$
22. The product of all values of $\left(\cos \alpha+i \sin \alpha^{3 / 5}\right)$ is
a) 1
b) $\cos \alpha+i \sin \alpha$
c) $\cos 3 \alpha+i \sin 3 \alpha$
d) $\cos 5 \alpha+i \sin 5 \alpha$
23. If $a=\cos \alpha+i \sin \alpha, b=\cos \beta+i \sin \beta, c=\cos \gamma+i \sin \gamma$ and $\frac{b}{c}+\frac{c}{a}+\frac{a}{b}=1$, then $\cos (\beta-\gamma)+$ $\cos \gamma-\alpha+\cos (\alpha-\beta)$ is equal to
a) $\frac{3}{2}$
b) $-\frac{3}{2}$
c) 0
d) 1
24. If $\frac{x-4}{x^{2}-5 x+6}$ can be expanded in the ascending powers of x, then the coeficient of x^{3} is
a) $-\frac{73}{648}$
b) $\frac{73}{648}$
c) $\frac{71}{648}$
d) $-\frac{71}{648}$
25. If $a=\cos \theta+i \sin \theta$, then $\frac{1+a}{1-a}$ is equal to
a) $i \cot \frac{\theta}{2}$
b) $i \tan \frac{\theta}{2}$
c) $i \cos \frac{\theta}{2}$
d) $i \operatorname{cosec} \frac{\theta}{2}$
26. The points in the set $\left\{z \in C: \arg \left(\frac{z-2}{z-6 i}\right)=\frac{\pi}{2}\right\}$ (where C denotes the set of all complex numbers) lie on the curve which is a
a) Circle
b) Pair of lines
c) Parabola
d) Hyperbola
27. The number of solution of $\log _{4}(x-1)=\log _{2}(x-3)$ is
a) 3
b) 1
c) 2
d) 0
28. If $\cos \alpha+2 \cos \beta+3 \cos \gamma=\sin \alpha+2 \sin \beta+3 \sin \gamma=0$, then the value of $\sin 3 \alpha+8 \sin 3 \beta+27 \sin 3 \gamma$ is
a) $\sin (\alpha+\beta+\gamma)$
b) $3 \sin (\alpha+\beta+\gamma)$
c) $18 \sin (\alpha+\beta+\gamma)$
d) $\sin (\alpha+2 \beta+3 \gamma)$
29. If $f(x)=\sum_{k=2}^{n}\left(x-\frac{1}{k-1}\right)\left(x-\frac{1}{k}\right)$, then the product of roots of $f(x)=0$ as $n \rightarrow \infty$, is
a) -1
b) 0
c) 1
d) None of these
30. If $3 p^{2}=5 p+2$ and $3 q^{2}=5 q+2$ where $p \neq q$, then the equation whose roots are $3 p-2 q$ and $3 q-2 p$ is
a) $3 x^{2}-5 x-100=0$
b) $5 x^{2}+3 x+100=0$
c) $3 x^{2}-5 x+100=0$
d) $3 x^{2}+5 x-100=0$
31. If $a, b, c \in R$ and the equations $a x^{2}+b x+c=0$ and $x^{3}+3 x^{2}+3 x+2=0$ have two roots in common, then
a) $a=b \neq c$
b) $a=b=-c$
c) $a=b=c$
d) None of these
32. Which of the following is a fourth root of $\frac{1}{2}+i \frac{\sqrt{3}}{2} ?$
a) $\operatorname{cis} \frac{\pi}{12}$
b) $\operatorname{cis} \frac{\pi}{2}$
c) $\operatorname{cis} \frac{\pi}{6}$
d) $\operatorname{cis} \frac{\pi}{3}$
33. Number of integer roots of the equation $(x+2)(x+3)(x+8)(x+12)=4 x^{2}$ is
a) 0
b) 4
c) 2
d) None of these
34. If the roots of $a x^{2}+b x+c=0$ are α, β and the roots of $A x^{2}+B x+C=0$ are $\alpha-k, \beta-k$, then $\frac{B^{2}-4 A C}{b^{2}-4 a c}$ is equal to
a) 0
b) 1
c) $\left(\frac{A}{a}\right)^{2}$
d) $\left(\frac{a}{A}\right)^{2}$
35. If $\frac{5 z^{2}}{11 z_{1}}$ is purely imaginary, then the value of $\left|\frac{2 z_{1}+3 z_{2}}{2 z_{1}-3 z_{2}}\right|$ is
a) $37 / 33$
b) 2
c) 1
d) 3
36. If a root of the equation $a x^{2}+b x+c=0$ be reciprocal of a root of the equation $a^{\prime} x^{2}+b^{\prime} x+c^{\prime}=0$, then
a) $\left(c c^{\prime}-a a^{\prime}\right)^{2}=\left(b a^{\prime}-c b^{\prime}\right)\left(a b^{\prime}-b c^{\prime}\right)$
b) $\left(b b^{\prime}-a a^{\prime}\right)^{2}=\left(c a^{\prime}-b c^{\prime}\right)\left(a b^{\prime}-b c^{\prime}\right)$
c) $\left(c c^{\prime}-a a^{\prime}\right)^{2}=\left(b a^{\prime}+c b^{\prime}\right)\left(a b^{\prime}+b c^{\prime}\right)$
d) None of the above
37. If $|z+8|+|z-8|=16$, where z is a complex number, then the point z will lie on
a) A circle
b) An ellipse
c) A straight line
d) None of these
38. If one root of the equation $x^{2}+(1-3 i) x-2(1+i)=0$ is $-1+i$, then the other root is
a) $-1-i$
b) $\frac{-l-i}{2}$
c) i
d) $2 i$
39. The sum of non-real roots of the equation $\left(x^{2}+x-2\right)\left(x^{2}+x-3\right)=12$, is
a) 1
b) -1
c) -6
d) 6
40. If one root of the equation $x^{2}+p x+12=0$ is 4 , while the equation $x^{2}+p x+q=0$ has equal roots, then the value of q is
a) $49 / 4$
b) $4 / 49$
c) 4
d) None of these
41. If $\frac{3(x-2)}{5} \geq \frac{5(2-x)}{3}$, then x belongs to the interval
a) $(2, \infty)$
b) $[2, \infty)$
c) $(-\infty, 2]$
d) None of these
42. If $a x^{2}+b x-c$ is divisible by $x^{2}+b x+c$, then ' a^{\prime} is a root of the equation
a) $c x^{2}-b x-1=0$
b) $a x^{2}-b x-1=0$
c) $b x^{2}-a x-1=0$
d) None of these
43. If p and q are the roots of the equation $x^{2}+p x+q=0$, then
a) $p=1$
b) $p=1$ or 0
c) $p=-2$
d) $p=-2$ or 0
44. If $4 \leq x \leq 9$, then
a) $(x-4)(x-9) \leq 0$
b) $(x-4)(x-9) \geq 0$
c) $(x-4)(x-9)<0$
d) $(x-4)(x-9)>0$
45. The number of real solutions of the equation $\frac{6-x}{x^{2}-4}=2+\frac{x}{x+2}$, is
a) 1
b) 2
c) 0
d) None of these
46. For any complex number z, the minimum value of $|z|+|z-1|$ is
a) 0
b) 1
c) 2
d) -1
47. The difference between two roots of the equation $x^{3}-13 x^{2}+15 x+189=0$ is 2 . Then the roots of the equation are
a) $-3,7,9$
b) $-3,-7,-9$
c) $3,-5,7$
d) $-3,-7,9$
48. If $|z+4| \leq 3$, then the greatest and the least value of $|z+1|$ are respectively
a) $6,-6$
b) 6,0
c) 7,2
d) $0,-1$
49. The number of roots of the equation $x-\frac{2}{x-1}=1-\frac{2}{x-1}$ is
a) 1
b) 2
c) 0
d) Infinitely many
50. The equation $z \bar{z}+(4-3 i) z+(4+3 i) \bar{z}+5=0$ represents a circle of radius
a) 5
b) $2 \sqrt{5}$
c) $5 / 2$
d) None of these
51. The number of solutions for the equation $x^{2}-5|x|+6=0$ is
a) 4
b) 3
c) 2
d) 1
52. If one root is square of the root of the equation $x^{2}+p x+q=0$, then the relation between p and q is
a) $p^{3}-(3 p-1) q+q^{2}=0$
b) $p^{3}-q(3 p+1)+q^{2}=0$
c) $p^{3}+q(3 p-1)+q^{2}=0$
d) $p^{3}+q(3 p+1)+q^{2}=0$
53. If the roots of the equation $8 x^{3}-14 x^{2}+7 x-1=0$ are in GP , then the roots are
a) $1, \frac{1}{2}, \frac{1}{4}$
b) $2,4,8$
c) $3,6,12$
d) None of these
54. The values of x and y such that y satisfy the equation ($x, y \in$ real numbers) $x^{2}-x y+y^{2}-4 x-4 y+$ $16=0$ is
a) 4,4
b) 3,3
c) 2,2
d) None of these
55. If α, β are the roots of the equation $a x^{2}+b x+c=0$, then the equation whose roots are $\alpha+\frac{1}{\beta}$ and $\beta+\frac{1}{\alpha^{\prime}}$ is
a) $a c x^{2}+(a+c) b x+(a+c)^{2}=0$
b) $a b x^{2}+(a+c) b x+(a+c)^{2}=0$
c) $a c x^{2}+(a+b) c x+(a+c)^{2}=0$
d) None of these
56. The real part of $\left[1+\cos \left(\frac{\pi}{5}\right)+i \sin \left(\frac{\pi}{5}\right)\right]$ is
a) 1
b) $\frac{1}{2}$
c) $\frac{1}{2} \cos \left(\frac{\pi}{10}\right)$
d) $\frac{1}{2} \cos \left(\frac{\pi}{5}\right)$
57. If $1, \omega, \omega^{2}$ are the cube roots of unity, then $\Delta=\left|\begin{array}{ccc}1 & \omega^{n} & \omega^{2 n} \\ \omega^{n} & \omega^{2 n} & 1 \\ \omega^{2 n} & 1 & \omega^{n}\end{array}\right|$ is equal to
a) 0
b) 1
c) ω
d) ω^{2}
58. If both the roots of the equation $a x^{2}+b x+c=0$ are zero, then
a) $b=c=0$
b) $b=0, c \neq 0$
c) $b \neq 0, c=0$
d) $b \neq 0, c \neq 0$
59. If the roots of the equation $x^{2}-p x+q=0$ differ by unity, then
a) $p^{2}=4 q$
b) $p^{2}=4 q+1$
c) $p^{2}=4 q-1$
d) None of these
60. If $|z|=1$ and $w=\frac{z-1}{z+1}$ (where $z \neq-1$), then $\operatorname{Re}(w)$ is
a) 0
b) $\frac{1}{|z+1|^{2}}$
c) $\left|\frac{1}{z+1}\right| \cdot \frac{1}{|z+1|^{2}}$
d) $\frac{\sqrt{2}}{|z+1|^{2}}$
61. The least positive integer n for which $\left(\frac{1+i}{1-i}\right)^{n}=\frac{2}{\pi} \sin ^{-1}\left(\frac{1+x^{2}}{2 x}\right)$, where $x>0$, is
a) 2
b) 4
c) 8
d) 12
62. If α, β, γ are the roots of the equation $x^{3}+x+1=0$, then the value of $\alpha^{3}+\beta^{3}+\gamma^{3}$ is
a) 0
b) 3
c) -3
d) -1
63. Let z be a complex number (not lying on x-axis) of maximum modulus such $\left|z+\frac{1}{z}\right|=1$. Then,
a) $\operatorname{Im}(z)=0$
b) $\operatorname{Re}(z)=0$
c) $\mathrm{amp}(z)=\pi$
d) None of these
64. If $x=c$ is a root of order 2 of a polynomial $f(x)$, then $x=c$ is also a root of the polynomial
a) $f^{\prime}(x)$
b) $f^{\prime \prime}(x)$
c) $f^{\prime \prime \prime}(x)$
d) None of these
65. If $\cos \alpha+2 \cos \beta+3 \cos \gamma=\sin \alpha+2 \sin \beta+3 \sin \gamma=0$ and $\alpha+\beta+\gamma=0$, then $\cos 3 \alpha+8 \cos 3 \beta+$ $27 \cos 3 \gamma=$
a) 0
b) 3
c) 18
d) -18
66. If ω is a complex cube root of unity, then the value of $\frac{a+b \omega+c \omega^{2}}{c+a \omega+b \omega^{2}}+\frac{a+b \omega+c \omega^{2}}{b+c \omega+a \omega^{2}}$ is
a) 1
b) 0
c) 2
d) -1
67. Let $f(x)=a x^{2}+b x+c, a \neq 0$ and $\Delta=b^{2}-4 a c$. If $\alpha+\beta, \alpha^{2}+\beta^{2}$ and $\alpha^{3}+\beta^{3}$ are in GP, then
a) $\Delta \neq 0$
b) $b \Delta=0$
c) $c \Delta=0$
d) $b c \neq 0$
68. If $i=\sqrt{-1}$ and n is a positive integer, then $i^{n}+i^{n+1}+i^{n+2}+i^{n+3}$ is equal to
a) 1
b) i
c) i^{n}
d) 0
69. The additive inverse of $1-i$ is
a) $0+0 i$
b) $-1+i$
c) $-1+i$
d) None of these
70. The equation $x^{2}-2 \sqrt{2} k x+2 e^{2 \log k}-1=0$ has the product of roots equal to 31 , then for what value of k it has real roots?
a) 1
b) 2
c) 3
d) 4
71. The locus of the point z which satisfy the condition $\arg \left(\frac{z-1}{z+1}\right)=\frac{\pi}{3}$, is
a) A straight line
b) A circle
c) A parabola
d) None of these
72. The complex number $\frac{(-\sqrt{3}+3 i)(1-i)}{(3+\sqrt{3} i)(i)(\sqrt{3}+\sqrt{3} i)}$ when represented in the Argand daigram is
a) In the second quadrant
b) In the first quadrant
c) On the y-axis (imaginary axis)
d) On the x-axis (real axis)
73. If a, b, c are in G.P., then the equations $a x^{2}+2 b x+c=0$ and $d x^{2}+2 e x+f=0$ have a common root if $\frac{d}{a}, \frac{e}{b}, \frac{f}{c}$ are in
a) A.P.
b) G.P.
c) H.P.
d) None of these
74.

The value of $\sqrt{8+2 \sqrt{8+2 \sqrt{8+2 \sqrt{2}}}}$, is
a) 10
b) 6
c) 8
d) 4
823. Let α, β be the roots of $x^{2}-2 x \cos \phi+1=0$, then the equation whose roots are α^{n}, β^{n}, is
a) $x^{2}-2 x \cos n \phi-1=0$
b) $x^{2}-2 x \cos n \phi+1=0$
c) $x^{2}-2 x \sin n \phi+1=0$
d) $x^{2}+2 x \sin n \phi-1=0$
824. $\frac{(\cos \theta+i \sin \theta)^{4}}{(\sin \theta+i \cos \theta)^{5}}$ is equal to
a) $\cos \theta-i \sin \theta$
b) $\sin \theta-i \cos \theta$
c) $\cos 9 \theta-i \sin 9 \theta$
d) $\sin 9 \theta-i \cos 9 \theta$
825. The equations $a x^{2}+b x+a=0$ and $x^{3}-2 x^{2}+2 x-1=0$ have 2 roots in common. Then, $a+b$ must be equal to
a) 1
b) -1
c) 0
d) None of these
826. If the roots of the equation $\left(a^{2}+b^{2}\right) x^{2}-2 b(a+c) x+\left(b^{2}+c^{2}\right)=0$ are equal then a, b, c are in
a) G.P.
b) A.P.
c) H.P.
d) None of these
827. If at least one root of the equation $x^{3}+a x^{2}+b x+c=0$ remains unchanged, when a, b and c are decreased by one, then which one of the following is always a root of the given equation?
a) 1
b) -1
c) ω, an imaginary cube root of unity
d) i
828. If $\operatorname{Re}\left(\frac{z-8 i}{z+6}\right)=0$, then z lies on the curve
a) $x^{2}+y^{2}+6 x-8 y=0$
b) $4 x-3 y+24=0$
c) $x^{2}+y^{2}-8=0$
d) None of these
829. If $\alpha \neq \beta$ and $\alpha^{2}=5 \alpha-3, \beta^{2}=5 \beta-3$, then the equation having α / β and β / α as its roots is
a) $3 x^{2}+19 x+3=0$
b) $3 x^{2}-19 x+3=0$
c) $3 x^{2}-19 x-3=0$
d) $x^{2}-16 x+1=0$
830. If the cube roots of unity are $1, \omega, \omega^{2}$, then the roots of the equation $(x-2)^{3}+27=0$ are
a) $-1,-1,-1$
b) $-1,-\omega,-\omega^{2}$
c) $-1,2+3 \omega, 2+3 \omega^{2}$
d) $-1,2-3 \omega, 2-3 \omega^{2}$
831. If the equation $2 x^{2}+3 x+5 \lambda=0$ and $x^{2}+2 x+3 \lambda=0$ have a common root, then λ is equal to
a) 0
b) -1
c) $0,-1$
d) $2,-1$
832. If z is a complex number in the Argand plane, then the equation $|z-2|^{2}+|z+2|^{2}=8$ represents
a) A parabola
b) An ellipse
c) A hyperbola
d) A circle
833. Let α and β be the roots of the equation $x^{2}+x+1=0$. The equation whose roots are α^{19}, β^{7} is
a) $x^{2}-x-1=0$
b) $x^{2}-x+1=0$
c) $x^{2}+x-1=0$
d) $x^{2}+x+1=0$
834. If α and β are the roots of the equation $x^{2}-6 x+a=0$ and satisfy the relation $3 \alpha+2 \beta=16$, then the value of a is
a) -8
b) 8
c) -16
d) 9
835. The values of x satisfying $|x-4|+|x-9|=5$ is
a) $x=4,9$
b) $4 \leq x \leq 9$
c) $x \leq 4$ or $x \geq 9$
d) None of these
836. Let $a_{n}=i^{(n+1)^{2}}$, where $i=\sqrt{-1}$ and $n=1,2,3$, ...Then the value of $a_{1}+a_{3}+a_{5}+\ldots+a_{25}$ is
a) 13
b) $13+i$
c) $13-i$
d) 12
837. For $n=6 k, k \in Z,\left(\frac{1-i \sqrt{3}}{2}\right)^{n}+\left(\frac{-1-i-\sqrt{3}}{2}\right)^{n}$ has the value
a) -1
b) 0
c) 1
d) 2
838. A value of n such that $\left(\frac{\sqrt{3}}{2}+\frac{i}{2}\right)^{n}=1$ is
a) 12
b) 3
c) 2
d) 1
839. The number of integral solutions of $\frac{x+1}{x^{2}+2}>\frac{1}{4}$, is
a) 1
b) 2
c) 5
d) None of these
840. If α and β are the roots of $x^{2}+5 x+4=0$, then the equation whose roots are $\frac{\alpha+2}{3}, \frac{\beta+2}{3}$ is
a) $9 x^{2}+3 x+2=0$
b) $9 x^{2}-3 x-2=0$
c) $9 x^{2}+3 x-2=0$
d) $9 x^{2}-3 x+2=0$
841. Real roots of the equation $k, x^{2}+5|x|+4=0$ are
a) $1,-1$
b) 2,0
c) 0,1
d) None of these
842. If α and β are the roots of the equation $a x^{2}+b x+c=0$, then $\left(1+\alpha+\alpha^{2}\right)\left(1+\beta+\beta^{2}\right)$ is equal to
a) Zero
b) Positive
c) Negative
d) None of these
843. If $\alpha+i \beta=\tan ^{-1}(z), z=x+i y$ and α is constant, the locus of ' z ' is
a) $x^{2}+y^{2}+2 x \cot 2 \alpha=1$
b) $\cot 2 \alpha\left(x^{2}+y^{2}\right)=1+x$
c) $x^{2}+y^{2}+2 y \tan 2 \alpha=1$
d) $x^{2}+y^{2}+2 x \sin 2 \alpha=1$
844. Both the roots of the given equation $(x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)=0$ are always
a) Positive
b) Negative
c) Real
d) Imaginary
845. The roots of $4 x^{2}+6 p x+1=0$ are equal, then the value of p is
a) $4 / 5$
b) $1 / 3$
c) $\pm 2 / 3$
d) $4 / 3$
846. The complex number z satisfies the condition $\left|z-\frac{25}{z}\right|=24$. The maximum distance from the origin of coordinates to the point z is
a) 25
b) 30
c) 32
d) None of these
847. If $(x+1)$ is a factor of $x^{4}-(p-3) x^{3}-(3 p-5) x^{2}+(2 p-7) x+6$, then the value of p is
a) 4
b) 2
c) 1
d) None of these
848. If a, b, c are real and $x^{3}-3 b^{2} x+2 c^{3}$ is divisible by $x-a$ and $x-b$, then
a) $a=-b=-c$
b) $a=2 b=2 c$
c) $a=b=c$ or $a=-2 b=-2 c$
d) None of these
849. If a, b, c are in A.P. and if $(b-c) x^{2}+(c-a) x+a-b=0$ and $2(c+a) x^{2}+(b+c) x=0$ have a common root then
a) a^{2}, b^{2}, c^{2} are in A.P.
b) a^{2}, c^{2}, b^{2} are in A.P.
c) a^{2}, c^{2}, b^{2} are in G.P.
d) None of these
850. Let z and w be two complex numbers such that $|z| \leq 1,|w| \leq 1$ and $|z+i w|=|z-\overline{\omega w}|=2$. Then, z is equal to
a) 1 or i
b) i or $-i$
c) 1 or -1
d) i or -1
851. If $\log _{\tan 30^{\circ}}\left(\frac{2|z|^{2}+2|z|-3}{|z|+1}\right)<-2$, then
a) $|z|<3 / 2$
b) $|z|>3 / 2$
c) $|z|>2$
d) $|z|<2$
852. If $x^{2}+p x+1$ is a factor of the expression $a x^{3}+b x+c$, then
a) $a^{2}+c^{2}=-a b$
b) $a^{2}-c^{2}=-a b$
c) $a^{2}-c^{2}=a b$
d) None of these
853. If z_{1}, z_{2} are two complex numbers such that $\operatorname{Im}\left(z_{1}+z_{2}\right)=0, \operatorname{Im}\left(z_{1} z_{2}\right)=0$, then
a) $z_{1}=-z_{2}$
b) $z_{1}=z_{2}$
c) $z_{1}=\sqrt{z}_{2}$
d) None of these
854. The system $y^{\left(x^{2}+7 x+12\right)}=1$ and $x+y=6, y>0$ has
a) No solution
b) One solution
c) Two solution
d) More than 2 solutions
855. The set of all real values of x for which $\frac{8 x^{2}+16 x-51}{(2 x-3)(x+4)}<3$, is
a) $(3 / 2,5 / 2)$
b) $(-4,-3)$
c) $(-4,-3) \cup(3 / 2,5 / 2)$
d) None of these
856. If $\omega(\neq 1)$ be a cube root of unity and $\left(1+\omega^{2}\right)^{n}=\left(1+\omega^{4}\right)^{n}$, then the least positive value of n is
a) 2
b) 3
c) 5
d) 6
857. How many roots of the equation $x-\frac{1}{x-1}=1-\frac{2}{x-1}$ have?
a) One
b) Two
c) Infinite
d) None of these
858. If $\mathrm{g}(x)$ and $h(x)$ are two polynomials such that the polynomial $P(x)=\mathrm{g}\left(x^{3}\right)+x h\left(x^{3}\right)$ is divisible by $x^{2}+x+1$, then which one of the following is not true?
a) $g(1)=h(1)=0$
b) $g(1)=h(1) \neq 0$
c) $g(1)=-h(1)$
d) $g(1)+h(1)=0$
859. The maximum number of real roots of the equation $x^{2 n}-1=0$ is
a) 2
b) 3
c) n
d) $2 n$
860. Given that ' a ' is a fixed complex number, and λ^{\prime} ' is a scalar variable, the point z satisfying $z=a(1+i \lambda)$ traces out
a) A straight line through the point ' a '
b) A circle with centre at the point ' a '
c) A straight line through the point ' a ' and perpendicular to the join 0 and that point ' a '
d) None of these
861. The complex numbers z_{1}, z_{2}, z_{3} are the vertices of a triangle. Then the complex number z which makes the triangle into a parallelogram, is
a) $z_{1}+z_{2}-z_{3}$
b) $z_{1}-z_{2}+z_{3}$
c) $z_{2}+z_{3}-z_{1}$
d) All of these
862. If a and b are the non-zero distinct roots of $x^{2}+a x+b=0$, then the least value of $x^{2}+a x+b$ is
a) $\frac{2}{3}$
b) $\frac{9}{4}$
c) $-\frac{9}{4}$
d) 1
863. If z_{1}, z_{2} are two complex numbers satisfying $\left|\frac{z_{1}+3 z_{2}}{3-z_{1} \overline{z_{2}}}\right|=1,\left|z_{1}\right| \neq 3$, then $\left|z_{2}\right|$ is equal to
a) 1
b) 2
c) 3
d) 4
864.

The value of the determinant $\left|\begin{array}{ccc}1+i & 1-i & i \\ 1-i & i & 1+i \\ i & 1+i & 1-i\end{array}\right|$, where $i=\sqrt{-1}$ is
a) $7+4 i$
b) $7-4 i$
c) $4+7 i$
d) $4-7 i$
865. If $w=\frac{z}{z-\frac{1}{3} i}$ and $|w|=1$, then z lies on
a) A parabola
b) A straight line
c) A circle
d) An ellipse
866. The value of $\frac{\log _{3} 5 \times \log _{25} 27 \times \log _{49} 7}{\log _{81} 3}$ is
a) 1
b) 6
c) $\frac{2}{3}$
d) 3
867. The value of ' k ' for which one of the roots of $x^{2}-x+3 k=0$, is double of one of the roots of $x^{2}-x+k=$ 0 is
a) 1
b) -2
c) 2
d) None of these
868. If $a<b<c<d$, then the roots of the equation $(x-a)(x-c)+2(x-b)(x-d)=0$ are
a) Real and distinct
b) Real and equal
c) Imaginary
d) None of these
869. If $|z|=\max \{|z-2|,|z+2|\}$, then
a) $|z+\bar{z}|=1$
b) $|z+\bar{z}|=4$
c) $|z+\bar{z}|=2$
d) None of these
870. If α, β, γ are the roots of $x^{3}+2 x^{2}-3 x-1=0$, then $\alpha^{-2}+\beta^{-2}+\gamma^{-2}$ is equal to
a) 12
b) 13
c) 14
d) 15
871. The magnitude and amplitude of $\frac{(1+i \sqrt{3})(2+2 i)}{(\sqrt{3}-i)}$ are respectively
a) $2, \frac{3 \pi}{4}$
b) $2 \sqrt{2}, \frac{3 \pi}{4}$
c) $2 \sqrt{2}, \frac{\pi}{4}$
d) $2 \sqrt{2}, \frac{\pi}{2}$
872. If $m \in Z$ and the equation $m x^{2}+(2 m-1) x+(m-2)=0$ has rational roots, then m is of the form
a) $n(n+2), n \in Z$
b) $n(n+1), n \in Z$
c) $n(n-2), n \in Z$
d) None of these
873. For three complex numbers $1-i, i, 1+i$ which of the following is true?
a) They form a right triangle
b) They are collinear
c) They form an equilateral triangle
d) They form an isosceles triangle
874. The triangle formed by the points $1, \frac{1+i}{\sqrt{2}}$ and i as vertices in the Argand diagrams is
a) Scalene
b) Equilateral
c) Isosceles
d) Right-angled
875. The minimum value of $\left|a+b \omega+c \omega^{2}\right|$, where a, b and c are all not equal integers and $\omega(\neq 1)$ is a cube root of unity, is
a) $\sqrt{3}$
b) $1 / 2$
c) 1
d) 0
876. If ω is a complex cube root of unity, then for positive integral value of n, the product of $\omega . \omega^{2} . \omega^{3} \ldots \omega^{n}$ will be
a) $\frac{1-i \sqrt{3}}{2}$
b) $-\frac{1-i \sqrt{3}}{2}$
c) 1
d) Both (b) and (c)
877. If the equations $k\left(6 x^{2}+3\right)+r x+2 x^{2}-1=0$ and $6 k\left(2 x^{2}+1\right)+p x+4 x^{2}-2=0$ have both roots common, then the value of $(2 r-p)$ is
a) 0
b) $1 / 2$
c) 1
d) None of these
878. If $\frac{3}{2+\cos \theta+i \sin \theta}=a+i b$, then $\left[(a-2)^{2}+b^{2}\right]$ is equal to
a) 0
b) 1
c) -1
d) 2
879. The centre of a square $A B C D$ is at $z=0 . A$ is z_{1}, then the centroid of the triangle $A B C$ is
a) $z_{1}(\cos \pi \pm i \sin \pi)$
b) $\frac{z_{1}}{3}(\cos \pi \pm i \sin \pi)$
c) $z_{1}(\cos \pi / 2 \pm i \sin \pi / 2)$
d) $\frac{z_{1}}{3}(\cos \pi / 2 \pm i \sin \pi / 2)$
880. If z is a complex number, then $\left(\bar{z}^{-1}\right)(\bar{z})$ is equal to
a) 1
b) -1
c) 0
d) None of these
881. If $\left|z^{2}-1\right|=|z|^{2}+1$, then z lies on
a) The real axis
b) The imaginary axis
c) A circle
d) An ellipse
882. Let S denote the set of all real values of a for which the roots of the equation $x^{2}-2 a x+a^{2}-1=0$ lie between 5 and 10 , then S equals
a) $(-1,2)$
b) $(2,9)$
c) $(4,9)$
d) $(6,9)$
883. If $e^{\cos x}-e^{-\cos x}=4$ then the value of $\cos x$ is
a) $\log (2+\sqrt{5})$
b) $-\log (2+\sqrt{5})$
c) $\log (-2+\sqrt{5})$
d) None of these
884. If z is a comple number such that $z=-z$, then
a) z is purely real
b) z is purely imaginary
c) z is any complex number
d) Real part of z is the same as its imaginary part
885. The condition that $x^{n+1}-x^{n}+1$ shall be divisible by $x^{2}-x+1$ is that
a) $n=6 k+1$
b) $n=6 k-1$
c) $n=3 k+1$
d) $n=3 k-1$
886. The value of $\left(\frac{1+i \sqrt{3}}{1-i \sqrt{3}}\right)^{6}+\left(\frac{1-i \sqrt{3}}{1+i \sqrt{3}}\right)^{6}$ is
a) 2
b) -2
c) 1
d) 0
887. If α, β and γ are the roots of $x^{2}+q x+r=0$, then $\sum \frac{\alpha}{\beta+\gamma^{\prime}}$, is
a) 3
b) $q+r$
c) q / r
d) -3
888. Let α, α^{2} be the roots of $x^{2}+x+1=0$, then the equation whose roots are α^{31}, α^{62} is
a) $x^{2}-x+1=0$
b) $x^{2}+x-1=0$
c) $x^{2}+x+1=0$
d) $x^{60}+x^{30}+1=0$
889. If $-\pi<\arg (z)<-\frac{\pi}{2}$ then $\arg (\bar{z})-\arg (-\bar{z})$ is
a) π
b) $-\pi$
c) $\pi / 2$
d) $-\pi / 2$
890. If $A\left(z_{1}\right), B\left(z_{2}\right)$ and $C\left(z_{3}\right)$ be the vertices of a triangle $A B C$ in which $\angle A B C=\frac{\pi}{4}$ and $\frac{A B}{B C}=\sqrt{2}$, then the value of z_{2} is equal to
a) $z_{3}+i\left(z_{1}+z_{3}\right)$
b) $z_{3}-i\left(z_{1}-z_{3}\right)$
c) $z_{3}+i\left(z_{1}-z_{3}\right)$
d) None of these
891. The equation $z^{2}=\bar{z}$ has
a) No solution
b) Two solutions
c) Four solutions
d) An infinite number of solutions
892. The curve represented by $\operatorname{Im}\left(z^{2}\right)=k$, where k is a non-zero real number, is
a) A pair of straight lines
b) An ellipse
c) A parabola
d) A hyperbola
893. If $(3+i)(z+\bar{z})-(2+i)(z-\bar{z})+14 i=0$, then $z \bar{z}$ is equal to
a) 5
b) 8
c) 10
d) 40
894. If $\alpha+\beta=-2$ and $\alpha^{3}+\beta^{3}=-56$, then the quadratic equation whose roots are α and β is
a) $x^{2}+2 x-16=0$
b) $x^{2}+2 x+15=0$
c) $x^{2}+2 x-12=0$
d) $x^{2}+2 x-8=0$
895. The set of values of x satisfying inequations $|x-1| \leq 3$ and $|x-1| \geq 1$, is
a) $[2,4]$
b) $(-\infty, 2] \cup[4, \infty)$
c) $[-2,0] \cup[2,4]$
d) None of these
896. If z_{1}, z_{2} are two complex numbers such that $\left|\frac{z_{1}-z_{2}}{z_{1}+z_{2}}\right|=1$ and $i z_{1}=k z_{2}$ where $k \in R$, then the angle between $z_{1}-z_{2}$ and $z_{1}+z_{2}$ is
a) $\tan ^{-1}\left(\frac{2 k}{k^{2}+1}\right)$
b) $\tan ^{-1}\left(\frac{2 k}{1-k^{2}}\right)$
c) $-2 \tan ^{-1} k$
d) $2 \tan ^{-1} k$
897. If roots of $a x^{2}+b x+c=0, a, b, c \in R, a \neq 0$ are imaginary then
a) $a c>0$
b) $a b>0$
c) $b c>0$
d) Exactly two of $a b, b c$ and $c a$ are positive
898. If α and β be the roots of $x^{2}+p x+q=0$, then $\frac{\left(\omega \alpha+\omega^{2} \beta\right)\left(\omega^{2} \alpha+\omega \beta\right)}{\frac{\alpha^{2}}{\beta}+\frac{\beta^{2}}{\alpha}}$ is equal to
a) $-\frac{q}{p}$
b) $\alpha \beta$
c) $-\frac{p}{q}$
d) ω
899. If z_{1}, z_{2} and z_{3}, z_{4} are two pairs of conjugate complex numbers, then $\arg \left(\frac{z_{1}}{z_{4}}\right)+\arg \left(\frac{z_{2}}{z_{3}}\right)$ equals
a) 0
b) $\pi / 2$
c) $3 \pi / 2$
d) π
900. If $x=\frac{1}{2}\left(\sqrt{3}+\frac{1}{\sqrt{3}}\right)$, then $\frac{\sqrt{x^{2}-1}}{x-\sqrt{x^{2}-1}}$ is equal to
a) 1
b) 2
c) 3
d) $1 / 2$
901. If P, Q, R, S are represented by the complex numbers $4+i, 1+6 i,-4+3 i,-1-2 i$ respectively, then $P Q R S$ is a
a) A rectangle
b) A square
c) A rhombus
d) A parallelogram
902. If $x \in R$, the least value of the expression $\frac{x^{2}-6 x+5}{x^{2}+2 x+1}$, is
a) -1
b) $-1 / 2$
c) $-1 / 3$
d) None of these
903. If $x^{2}-3 x+2$ be a factor of $x^{4}-p x^{2}+q$, then (p, q) is equal to
a) $(3,4)$
b) $(4,5)$
c) $(4,3)$
d) $(5,4)$
904. The number of solutions of the equation $2 \sin \left(e^{x}\right)=5^{x}+5^{-x}$, is
a) 0
b) 1
c) 2
d) Infinitely many
905. The centre of a square is at $z=0 . A$ is z_{1}, then the centroid of the triangle $A B C$ is
a) $z_{1}(\cos \pi \pm i \sin \pi)$
b) $\frac{1}{3} z_{1}(\cos \pi \pm i \sin \pi)$
c) $z_{1}\left(\cos \frac{\pi}{2} \pm i \sin \frac{\pi}{2}\right)$
d) $\frac{1}{3} z_{1}\left(\cos \frac{\pi}{2} \pm i \sin \frac{\pi}{2}\right)$
906. If x is real, then the maximum and minimum values of the expression $\frac{x^{2}-3 x+4}{x^{2}+3 x+4}$ will be
a) 2,1
b) $5, \frac{1}{5}$
c) $7, \frac{1}{7}$
d) None of these
907. For positive integers n_{1}, n_{2} the value of the expression $(1+i)^{n_{1}}+\left(1+i^{3}\right)^{n_{1}}+\left(1+i^{5}\right)^{n_{2}}+\left(1+i^{7}\right)^{n_{2}}, i=$ $\sqrt{-1}$ is a real number if and only if
a) $n_{1}=n_{2}+1$
b) $n_{1}=n_{2}-1$
c) $n_{1}=n_{2}$
d) $n_{1}>0, n_{2}>0$
908. Let $a=\cos \frac{2 \pi}{7}+i \sin \frac{2 \pi}{7}, \alpha=a+a^{2}+a^{4}$ and $\beta=a^{3}+a^{5}+a^{6}$. Then, the equation whose roots are α, β is
a) $x^{2}-x+2=0$
b) $x^{2}+x-2=0$
c) $x^{2}-x-2=0$
d) $x^{2}+x+2=0$
909. If the roots of the given equation $(\cos p-1) x^{2}+(\cos p) x+\sin p=0$ are real, then
a) $p \in(-\pi, 0)$
b) $p \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
c) $p \in(0, \pi)$
d) $p \in(0,2 \pi)$
910. The set of all integral values of x for which $5 x-1<(x+1)^{2}<7 x-3$, is
a) Φ
b) $\{1\}$
c) $\{2\}$
d) $\{3\}$
911. If one root of the equation $5 x^{2}+13 x+k=0$ is reciprocal of other, then the value of k is
a) 0
b) 5
c) $1 / 6$
d) 6
912. The equation $(a+2) x^{2}+(a-3) x=2 a-1, a \neq-2$ has rational roots for
a) All rational values of a except $a=-2$
b) All real values of a except $a=-2$
c) Rational values of $a>1 / 2$
d) None of these
913. The value of k for which the equation $(k-2) x^{2}+8 x+k+4=0$ has both roots real, distinct and negative, is
a) 0
b) 2
c) 3
d) -4
914. If α, β are the roots of $a x^{2}+c=b x$, then the equation $(a+c y)^{2}=b^{2} y$ in y has the roots
a) α^{-1}, β^{-1}
b) α^{2}, β^{2}
c) $\alpha \beta^{-1}, \alpha^{-1} \beta$
d) $\sqrt{\alpha}, \sqrt{\beta}$
915. The number of real roots of $3^{2 x^{2}-7 x+7}=9$ is
a) 0
b) 2
c) 1
d) 4
916. If one of the roots of the equation $x^{2}+b x+3=0$ is thrice the other, then b is equal to
a) ± 3
b) ± 2
c) 0
d) ± 4
917.
$\sqrt{2+\sqrt{5}-\sqrt{6-3 \sqrt{5}+\sqrt{14-6 \sqrt{5}}}}$ is equal to
a) 1
b) 2
c) 3
d) 4
918. If $\cos A+\cos B+\cos C=0, \sin A+\sin B+\sin C=0$ and $A+B+C=180^{\circ}$, then the value of $\cos 3 A+\cos 3 B+\cos 3 C$ is
a) 3
b) -3
c) $\sqrt{3}$
d) 0
919. The vertices B and D of a parallelogram are $1-2 i$ and $4+2 i$. If the diagonals are at right angles and $A C=2 B D$, the complex number representing A is
a) $\frac{5}{2}$
b) $3 i-\frac{3}{2}$
c) $3 i-4$
d) $3 i+4$
920. One lies between the roots of the equation $-x^{2}+a x+a=0, a \in R$ if and only if a lies in the interval
a) $\left(\frac{1}{2}, \infty\right)$
b) $\left[-\frac{1}{2}, \infty\right)$
c) $\left(-\infty, \frac{1}{2}\right)$
d) $\left(-\infty, \frac{1}{2}\right]$
921. If the sum of the roots of the quadratic equation $a x^{2}+b x+c=0$ is equal to the sum of the square of their reciprocals, then $\frac{a}{c}, \frac{b}{a}$ and $\frac{c}{b}$ are in
a) Arithmetic progression
b) Geometric progression
c) Harmonic progression
d) Arithmetico-geometric progression
922. If the roots of $\left(a^{2}+b^{2}\right) x^{2}-2(b c+a d) x+c^{2}+d^{2}=0$ are equal, then
a) $\frac{a}{b}=\frac{c}{d}$
b) $\frac{a}{c}+\frac{b}{d}=0$
c) $\frac{a}{d}=\frac{b}{c}$
d) $a+b=c+d$
923. If ω is a cube root of unity, then the value of $\left(1-\omega+\omega^{2}\right)^{5}+\left(1+\omega-\omega^{2}\right)^{5}$ is
a) 30
b) 32
c) 2
d) None of these
924. The complex number satisfying $|z+1|=|z-1|$ and $\arg \left(\frac{z-1}{z+1}\right)=\frac{\pi}{4}$ is
a) $(\sqrt{2}+1)+0 i$
b) $0+(\sqrt{2}+1) i$
c) $0+(\sqrt{2}-1) i$
d) $(-\sqrt{2}+1)+0 i$
925. If α and β are the roots of the equation $x^{2}-a x+b=0$ and $A_{n}=\alpha^{n}+\beta^{n}$, then which one of the following is true?
a) $A_{n+1}=a A_{n}+b A_{n-1}$
b) $A_{n+1}=b A_{n}+a A_{n-1}$
c) $A_{n+1}=a A_{n}-b A_{n-1}$
d) $A_{n+1}=b A_{n}-a A_{n-1}$
926. If the sum of two of the roots of $x^{3}+p x^{2}-q x+r=0$ is zero, then $p q$ is equal to
a) $-r$
b) r
c) $2 r$
d) $-2 r$
927. The roots of the equation $x^{4}-8 x^{2}-9=0$ are
a) $\pm 1, \pm i$
b) $\pm 3, \pm i$
c) $\pm 2, \pm i$
d) None of these
928. If $a=\cos \frac{4 \pi}{3}+i \sin \frac{4 \pi}{3}$, then the value of $\left(\frac{1+a}{2}\right)^{3 n}$ is
a) $(-1)^{n}$
b) $\frac{(-1)^{n}}{2^{3 n}}$
c) $\frac{1}{2^{3 n}}$
d) $(-1)^{n}+1$
929. $\left(a^{2}-3 a+2\right) x^{2}+\left(a^{2}-5 a+6\right) x+a-2=r$ for three distinct values of x for some $r \in R$, if $a+r$ is equal to
a) 1
b) 2
c) 3
d) Does not exist
930. Given that $a, b \in\{0,1,2, \ldots, 9\}$ with $a+b \neq 0$ and that $\left(a+\frac{b}{10}\right)^{x}=\left(\frac{a}{10}+\frac{b}{100}\right)^{y}=1000$. Then, $\frac{1}{x}-\frac{1}{y}$ is equal to
a) 1
b) $\frac{1}{2}$
c) $\frac{1}{3}$
d) $\frac{1}{4}$
931. If $z_{1}, z_{2}, z_{3}, z_{4}$ are the four complex numbers represented by the vertices of a quadrilateral taken in order such that $z_{1}-z_{4}=z_{2}-z_{3}$ and $\arg \left(\frac{z_{4}-z_{1}}{z_{2}-z_{1}}\right)= \pm \frac{\pi}{2}$, then the quadrilateral is
a) A rhombus
b) A square
c) A rectangle
d) Not a cyclic quadrilateral
932. The solution set of $x^{2}+2 \leq 3 x \leq 2 x^{2}-5$, is
a) Φ
b) $[1,2]$
c) $(-\infty,-1] \cup[5 / 2, \infty)$
d) None of these
933. The number of real solution of the equation $\left(\frac{9}{10}\right)=-3+x-x^{2}$ is
a) 0
b) 1
c) 2
d) None of these
934. Solution of the equation $4.9^{x-1}=3 \sqrt{\left(2^{2 x+1}\right)}$ is
a) 3
b) 2
c) $\frac{3}{2}$
d) $\frac{2}{3}$
935. For what value of λ the sum of the squares of the roots of $x^{2}+(2+\lambda) x-\frac{1}{2}(1+\lambda)=0$ is minimum?
a) $\frac{3}{2}$
b) 1
c) $\frac{1}{2}$
d) $\frac{11}{4}$
936. If $2+i \sqrt{3}$ is a root of the equation $x^{2}+p x+q=0$, where p and q are real, then (p, q) is equal to
a) $(-4,7)$
b) $(4,-7)$
c) $(4,7)$
d) $(-4,-7)$
937. The value of x in the given equation $4^{x}-3^{x-\frac{1}{2}}=3^{x+\frac{1}{2}}-2^{2 x-1}$ is
a) $\frac{4}{3}$
b) $\frac{3}{2}$
c) $\frac{2}{1}$
d) $\frac{5}{3}$
938. If $x^{2 / 3}-7 x^{1 / 3}+10=0$ then the set of values of x, is
a) $\{12,5\}$
b) $\{8\}$
c) Φ
d) $\{8,125\}$
939. If $z_{0}=\frac{1-i}{z}$, then the value of the product $\left(1+z_{0}\right)\left(1+z_{0}^{2}\right)\left(1+z_{0}^{2^{2}}\right)\left(1+z_{0}^{2^{2}}\right) \ldots\left(1+z_{0}^{2^{2}}\right)$ must be
a) $(1-i)\left(1+\frac{1}{2^{n-1}}\right)$, if $n \geq 1$
b) $(1-i)\left(1-\frac{1}{2^{2^{n}}}\right)$, if $n>1$
c) $(1-i)\left(1-\frac{1}{2^{n-1}}\right)$, if $n \geq 1$
d) $(1-i)\left(1+\frac{1}{2^{2^{n}}}\right)$, if $n>1$
940. If complex numbers z_{1}, z_{2} and z_{3} represent the vertices A, B and C respectively of an isosceles triangle $A B C$ of which $\angle C$ is right angle, then correct statement is
a) $z_{1}^{2}+z_{2}^{2}+z_{3}^{2}=z_{1} z_{2} z_{3}$
b) $\left(z_{3}-z_{1}\right)^{2}=z_{3}-z_{2}$
c) $\left(z_{1}-z_{2}\right)^{2}=\left(z_{1}-z_{3}\right)\left(z_{3}-z_{2}\right)$
d) $\left(z_{1}-z_{2}\right)^{2}=2\left(z_{1}-z_{3}\right)\left(z_{3}-z_{2}\right)$
941. If the equation $(a+1) x^{2}-(a+2) x+(a+3)=0$ has roots equal in magnitude but opposite in sign, then the roots of the equation are
a) $\pm a$
b) $\pm \frac{1}{2} a$
c) $\pm \frac{3}{2} a$
d) $\pm 2 a$
942. If $\log _{27}\left(\log _{2} x\right)=\frac{1}{3}$, then the value of x is
a) 3
b) 6
c) 9
d) 27
943. The point of intersection of the curves $\arg (z-3 i)=\frac{3 \pi}{4}$ and $\arg (2 z+1-2 i)=\frac{\pi}{4}($ where $i=\sqrt{-1})$ is
a) $\frac{1}{4}(3+9 i)$
b) $\frac{1}{4}(3-9 i)$
c) $\frac{1}{2}(3+2 i)$
d) No point
944. The solution set of $x^{2}+2 \leq 3 x \leq 2 x^{2}-5$, is
a) ϕ
b) $[1,2]$
c) $(-\infty,-1] \cup[5 / 2, \infty)$
d) None of these
945. If a, b and c are in geometric progression and the roots of the equation $a x^{2}+2 b x+c=0$ are α and β and those of $c x^{2}+2 b x+a=0$ are γ and δ, then
a) $\alpha \neq \beta \neq \gamma \neq \delta$
b) $\alpha \neq \beta$ and $\gamma \neq \delta$
c) $a \alpha=a \beta=c \gamma=c \delta$
d) $\alpha=\beta$ and $\gamma \neq \delta$
946. Root(s) of the equation $9 x^{2}-18|x|+5=0$ belonging to the domain of definition of the function $f(x)=\log \left(x^{2}-x-2\right)$ is (are)
a) $\frac{-5}{3}, \frac{-1}{3}$
b) $\frac{5}{3}, \frac{1}{3}$
c) $\frac{-5}{3}$
d) $\frac{-1}{3}$
947. If α, β are the roots of the equation $\lambda\left(x^{2}-x\right)+x+5=0$ and if λ_{1} and λ_{2} are two values of λ obtained from $\frac{\alpha}{\beta}+\frac{\beta}{\alpha}=\frac{4}{5}$, then $\frac{\lambda_{1}}{\lambda_{2}^{2}}+\frac{\lambda_{2}}{\lambda_{1}^{2}}$ is equal to
a) 4192
b) 4144
c) 4096
d) 4048
948. If the roots of the equation $\frac{\alpha}{x-\alpha}+\frac{\beta}{x-\beta}=1$ be equal in magnitude but opposite in sign, then $\alpha+\beta$ is equal to
a) 0
b) 1
c) 2
d) None of these
949. If $C^{2}+S^{2}=1$, then $\frac{1+C+i S}{1+C-i S}$ is equal to
a) $C+i S$
b) $C-i S$
c) $S+i C$
d) $S-i C$
950. The points representing complex number z for which $|z-3|=|z-5|$ lie on the locus given by
a) An ellipse
b) A circle
c) A straight line
d) None of these
951. The solution set of the inequation $\frac{4 x+3}{2 x-5}<6$, is
a) $(5 / 2,33 / 8)$
b) $(-\infty, 5 / 2) \cup(33 / 8, \infty)$
c) $(5 / 2, \infty)$
d) $(33 / 8, \infty)$
952. The number of quadratic equations which are unchanged by squaring their roots is
a) 2
b) 4
c) 6
d) None of these
953. A point P which represents a complex number z moves such that $\left|z-z_{1}\right|=\left|z-z_{2}\right|$, then its locus is
a) A circle with centre z_{1}
b) A circle with centre z_{2}
c) A circle with centre z
d) Perpendicular bisector of line joining z_{1} and z_{2}
954. The α, β are the roots of the equation $x^{2}+a x+b=0$, then $\frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}$ is equal to
a) $\frac{a^{2}-2 b}{b^{2}}$
b) $\frac{b^{2}-2 a}{b^{2}}$
c) $\frac{a^{2}+2 b}{b^{2}}$
d) $\frac{b^{2}+2 a}{b^{2}}$
955. If $z=x+i y, z^{1 / 3}=a-i b$ and $\frac{x}{a}-\frac{y}{b}=k\left(a^{2}-b^{2}\right)$, then value of k equals
a) 2
b) 4
c) 6
d) 1
956. Let z_{1} and z_{2} be the non-real roots of the equation $3 z^{2}+3 z+b=0$. If the origin together with the points represented by z_{1} and z_{2} form an equilateral triangle, then the value of b is
a) 1
b) 2
c) 3
d) None of these
957. If correlation $n=2002$, evaluate $\frac{1}{\log _{2} n!}+\frac{1}{\log _{3} n!}+\frac{1}{\log _{4} n!}+\ldots+\frac{1}{\log _{2002} n!}$
a) 1
b) 2
c) 3
d) 4
958. If $x^{2}+p x+1$ is a factor of the cubic polynomial $a x^{3}+b x+c$, then
a) $a^{2}+c^{2}=-a b$
b) $a^{2}-c^{2}=-a b$
c) $a^{2}-c^{2}=a b$
d) None of these
959. Find the complex number z satisfying the equations $\left|\frac{z-12}{z-8 i}\right|=\frac{5}{3^{\prime}}\left|\frac{z-4}{z-8}\right|=1$
a) 6
b) $6 \pm 8 i$
c) $6 \pm 8 i, 6+17 i$
d) None of these
960. The number of real roots of the equation $e^{\sin x}-e^{-\sin x}-4=0$ are
a) 1
b) 2
c) Infinite
d) None of these
961. If $a=\sqrt{2} i$, then which of the following is correct?
a) $a=1+i$
b) $a=1-i$
c) $a=-(\sqrt{2}) i$
d) None of these
962. If $2+i \sqrt{3}$ is a root of the equation $x^{2}+p x+q=0$, then the value of (p, q) is
a) $(-7,4)$
b) $(-4,7)$
c) $(4,-7)$
d) $(7,-4)$
963. The equation of a circle whose radius and centre are r and z_{0} respectively, is
a) $z \bar{z}-z \bar{z}_{0}-\bar{z} z_{0}+z_{0} \bar{z}_{0}=r^{2}$
b) $z \bar{z}+z \bar{z}_{0}-\bar{z} z_{0}+z_{0} \bar{z}_{0}=r^{2}$
c) $z \bar{z}-z \bar{z}_{0}+\bar{z} z_{0}-z_{0} \bar{z}_{0}=r^{2}$
d) None of the above
964. The value of $\sum_{n=0}^{\infty}\left(\frac{2 i}{3}\right)^{n}$ is
a) $\frac{9+6 i}{13}$
b) $\frac{9-6 i}{13}$
c) $9+6 i$
d) $9-6 i$
965. If $y=2^{1 / \log _{x}(8)}$, then x is equal to
a) y
b) y^{2}
c) y^{3}
d) None of these
966. If $1, \alpha, \alpha^{2}, \ldots, a^{n-1}$ are the $n, n^{\text {th }}$ roots of unity and z_{1} and z_{2} are any two complex numbers, then $\sum_{r=0}^{n-1}\left|z_{1}+a^{r} z_{2}\right|^{2}=$
a) $n\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right)$
b) $(n-1)\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right)$
c) $(n+1)\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right)$
d) None of these
967. If 8,2 are the roots of $x^{2}+a x+\beta=0$, and 3,3 are the roots of $x^{2}+\alpha x+b=0$, then the roots of $x^{2}+a x+b=0$ are
a) $8,-1$
b) $-9,2$
c) $-8,-2$
d) 9,1
968. The modulus of $\sqrt{2 i}-\sqrt{-2 i}$ is
a) 2
b) $\sqrt{2}$
c) 0
d) $2 \sqrt{2}$
969. If a and b are the roots of the equation $x^{2}+a x+b=0, a \neq 0, b \neq 0$, then the values of a and b are respectively
a) 2 and -2
b) 2 and -1
c) 1 and -2
d) 1 and 2
970. The trigonometric form of $z=(1-i \cot 8)^{3}($ where $i=\sqrt{-1})$ is
a) $\operatorname{cosec}^{3} 8 \cdot e^{i\left(24-\frac{3 \pi}{2}\right)}$
b) $\operatorname{cosec}^{3} 8 \cdot e^{-i\left(2 u-\frac{3 \pi}{2}\right)}$
c) $\operatorname{cosec}^{3} 8 . e^{i\left(36-\frac{\pi}{2}\right)}$
d) $\operatorname{cosec}^{2} 8 . \mathrm{e}^{-i 24+\frac{\pi}{2}}$
971. If one root of the equation $x^{2}+p x+q=0$ is $2+\sqrt{3}$, then the value of the p and q respectively
a) $-4,1$
b) $4,-1$
c) $2, \sqrt{3}$
d) $-2,-\sqrt{3}$
972. The value of $7 \log _{2} \frac{16}{15}+5 \log _{2} \frac{25}{24}+3 \log _{2} \frac{81}{80}$ is
a) 1
b) $\log _{2}(105)$
c) $\log _{2}\left(\frac{9}{8}\right)$
d) $\log _{2}\left(\frac{8}{9}\right)$
973. The value of x which satisfy the equation $\sqrt{5 x^{2}-8 x+3}-\sqrt{5 x^{2}-9 x+4}=\sqrt{2 x^{2}-2 x}-\sqrt{2 x^{2}-3 x+1}$ is
a) 3
b) 2
c) 1
d) 0
974. If the expression $\left(m x-1+\frac{1}{x}\right)$ is always non-negative, then the minimum value of m must be
a) $-\frac{1}{2}$
b) 0
c) $\frac{1}{4}$
d) $\frac{1}{2}$
975. If $\log _{e}\left(\frac{a+b}{2}\right)=\frac{1}{2}\left(\log _{e} a+\log _{e} b\right)$, then
a) $a=b$
b) $a=\frac{b}{2}$
c) $2 a=b$
d) $a=\frac{b}{3}$
976. If the equations $a x^{2}+b x+c=0$ and $c x^{2}+b x+a=0, a \neq c$ have a negative common root, then $a-b+c=$
a) 0
b) 2
c) 1
d) None of these
977. If ω is a complex cube root of unity, then $\frac{(1+i)^{2 n}-(1-i)^{2 n}}{\left(1+\omega^{4}-\omega^{2}\right)\left(1-\omega^{4}+\omega^{2}\right)}$ is equal to
a) 0 , if n is an even integer
b) 0 for all $n \in Z$
c) $2^{n-1} i$ for all $n \in N$
d) None of these
978. The value of m for which the equation $x^{3}-m x^{2}+3 x-2=0$ has two roots equal in magnitude but opposite sign, is
a) $4 / 5$
b) $3 / 4$
c) $2 / 3$
d) $1 / 2$
979. If $\frac{(x+1)}{(2 x-1)(3 x+1)}=\frac{A}{(2 x-1)}+\frac{B}{(3 x+1)}$, then $16 A+9 B$ is equal to
a) 4
b) 5
c) 6
d) 8
980. If $x+i y=\frac{3}{2+\cos \theta+i \sin \theta}$, then $x^{2}+y^{2}$ is equal to
a) $3 x-4$
b) $4 x-3$
c) $4 x+3$
d) None of these
981. If $\left|z_{1}\right|=\left|z_{2}\right|=\cdots=\left|z_{n}\right|=1$, then the value of $\left|z_{1}+z_{2}+\cdots+z_{n}\right|$, is
a) n
b) $\left|\frac{1}{z_{1}}+\frac{1}{z_{2}}+\cdots+\frac{1}{z_{n}}\right|$
c) 0
d) None of these
982. If the equation $x^{3}+a x^{2}+b=0, b \neq 0$ has a root of order 2 , then
a) $a^{2}+2 b=0$
b) $a^{2}-2 b=0$
c) $4 a^{3}+27 b+1=0$
d) $4 a^{3}+27 b=0$
983. The solution of the equation $2 x^{3}-x^{2}-22 x-24=0$ when two of the roots in the ration $3: 4$, is
a) $3,4, \frac{1}{2}$
b) $-\frac{3}{2},-2,4$
c) $-\frac{1}{2}, \frac{3}{2}, 2$
d) $\frac{3}{2}, 2, \frac{5}{2}$
984. If z_{1} and z_{2} be complex numbers such that $z_{1} \neq z_{2}$ and $\left|z_{1}\right|=\left|z_{2}\right|$.If z_{1} has positive real part and z_{2} has negative imaginary part, then $\frac{\left(z_{1}+z_{2}\right)}{\left(z_{1}-z_{2}\right)}$ may be
a) Purely imaginary
b) Real and positive
c) Real and negative
d) None of these
985. If $a>0, b>0, c>0$, then both the roots of the equation $a x^{2}+b x+c=0$
a) Are real and negative
b) Have negative real part
c) Are rational numbers
d) None of the above
986. If α, β and γ are the roots of the equation $x^{3}-3 x+1=0$, then $[\alpha]+[\beta]+[\gamma]$ is $([\cdot]$ denotes the greatest integer function)
a) -3
b) -2
c) -1
d) Does not exist
987. If $\arg (z-a)=\frac{\pi}{4}$, where $a \in R$, then the locus of $z \in C$ is a
a) Hyperbola
b) Parabola
c) Ellipse
d) Straight line
988. Common roots of the equations $z^{3}+2 z^{2}+2 z+1=0$ and $z^{1985}+z^{100}+1=0$ are
a) ω, ω^{2}
b) ω, ω^{3}
c) ω^{2}, ω^{3}
d) None of these
989. The greatest and the least value of $\left|z_{1}+z_{2}\right|$, if $z_{1}=24+7 i$ and $\left|z_{2}\right|=6$, are respectively
a) 31,19
b) 25,19
c) 31,25
d) None of these
990. If $a, c \neq 0$ and α, β are the roots of the equation $a x^{2}+b x+c=0$, then the quadratic equation with $1 / \alpha$ and $1 / \beta$ as its root is
a) $x^{2} / a+x / b+1 / c=0$
b) $c x^{2}+b x+a=0$
c) $b x^{2}+c x+a=0$
d) $a x^{2}+c x+b=0$
991. The value of $\log _{2} \log _{2} \log _{4} 256+2 \log _{\sqrt{2}} 2$ is
a) 1
b) 2
c) 3
d) 5
992. If $z_{1}=1+2 i, z_{2}=2+3 i, z_{3}=3+4 i$, then z_{1}, z_{2}, z_{3} represents the vertices of a/an
a) Equilateral triangle
b) Isosceles triangle
c) Right angled triangle
d) None of these
993. The roots of the quadratic equation $x^{2}-2 \sqrt{3} x-22=0$ are
a) Imaginary
b) Real, rational and equal
c) Real irrational and unequal
d) Real, rational and unequal
994. If α, β, γ are the roots of $x^{3}-2 x^{2}+3 x-4=0$, then the value of $\alpha^{2} \beta^{2}+\beta^{2} \gamma^{2}+\gamma^{2} \alpha^{2}$ is
a) -7
b) -5
c) -3
d) 0
995. If $k>1,\left|z_{1}\right|<k$ and $\left|\frac{k-z_{1} \overline{1_{2}}}{z_{1}-k z_{2}}\right|=1$, then
a) $\left|z_{2}\right|<k$
b) $\left|z_{2}\right|=k$
c) $z_{2}=0$
d) $\left|z_{2}\right|=1$
996. The conjugate of a complex number is $\frac{1}{i-1}$. Then, that complex number is
a) $\frac{1}{i-1}$
b) $-\frac{1}{i-1}$
c) $\frac{1}{i+1}$
d) $-\frac{1}{i+1}$
997. If the roots of the equation $a x^{2}+b x+c=0$ be α and β, then the roots of the equation $c x^{2}+b x+a=0$ are
a) $-\alpha,-\beta$
b) $\alpha, \frac{1}{\beta}$
c) $\frac{1}{\alpha}, \frac{1}{\beta}$
d) None of these
998. If the points z_{1}, z_{2}, z_{3} are the vertices of an equilateral triangle in the complex plane, then the value of $z_{1}^{2}+z_{2}^{2}+z_{3}^{2}$ is equal to
a) $\frac{z_{1}}{z_{2}}+\frac{z_{2}}{z_{3}}+\frac{z_{3}}{z_{1}}$
b) $z_{1} z_{2}+z_{2} z_{3}+z_{3} z_{1}$
c) $z_{1} z_{2}-z_{2} z_{3}-z_{3} z_{1}$
d) $-\frac{z_{1}}{z_{2}}-\frac{z_{2}}{z_{3}}-\frac{z_{3}}{z_{1}}$
999. If the expressions $x^{2}-11 x+a$ and $x^{2}-14 x+2 a$ have a common root, then the values of ' a ' is
a) 0,24
b) $0,-24$
c) $1,-1$
d) $-2,1$

100 If $|x-1|+|x|+|x+1| \geq 6$, then x belongs to 0.
a) $(-\infty, 2]$
b) $(-\infty,-2] \cup[2, \infty)$
c) R
d) ϕ

100 Let z_{1}, z_{2} and z_{3} be the affixes of the vertices of a triangle having the circumcentre at the origin. If z is the

1. affix of its orthocentre, then z is equal to
a) $\frac{z_{1}+z_{2}+z_{3}}{3}$
b) $\frac{z_{1}+z_{2}+z_{3}}{2}$
c) $z_{1}+z_{2}+z_{3}$
d) None of these

100 If the equation $a x^{2}+2 b x-3 c=0$ has non-real roots and $(3 c / 4)<(a+b)$, then c is 2.
a) <0
b) >0
c) ≥ 0
d) $=0$

100 If $1, \omega, \omega^{2}$ are the cube roots of unity, then $\omega^{2}(1+\omega)^{3}-\left(1+\omega^{2}\right) \omega$ is equal to 3.
a) 1
b) -1
c) i
d) 0

100 If $b_{1} b_{2}=2\left(c_{1}+c_{2}\right)$, then the least one of the equation $x^{2}+b_{1} x+c_{1}=0$ and $x^{2}+b_{2} x+c_{2}=0$ has 4.
a) Real roots
b) Purely imaginary roots
c) Imaginary roots
d) None of the above

100 The imaginary part of $\frac{(1+i)^{2}}{i(2 i-1)}$ is
5.
a) $4 / 5$
b) 0
c) $2 / 5$
d) $-(4 / 5)$

100 The partial fraction of $\frac{3 x^{3}-8 x^{2}+10}{(x-1)^{4}}$ is
a) $\frac{3}{(x-1)}+\frac{1}{(x-1)^{2}}+\frac{7}{(x-1)^{3}}+\frac{5}{(x-1)^{4}}$
b) $\frac{3}{(x-1)}+\frac{1}{(x-1)^{2}}-\frac{7}{(x-1)^{3}}+\frac{5}{(x-1)^{4}}$
c) $\frac{3}{(x-1)}+\frac{1}{(x-1)^{2}}-\frac{7}{(x-1)^{3}}+\frac{5}{(x-1)^{4}}$
d) None of the above

100 If $|z-i \operatorname{Re}(z)=|z-\operatorname{Im}(z)|($ where $i=\sqrt{-1})$, then z lies on
7.
a) $\operatorname{Re}(z)=2$
b) $\operatorname{Im}(z)=2$
c) $\operatorname{Re}(z)+\operatorname{Im}(z)=2$
d) None of the above

100 if one of the roots of the equation $x^{2}+(1-3 i) x-2(1+i)=0$ is $-1+i$, then the other root is 8.
a) $-1-i$
b) $-\frac{1}{2}-\frac{i}{2}$
c) i
d) $2 i$

100 If the imaginary part of the expression $\frac{z-1}{e^{i \theta}}+\frac{e^{i \theta}}{z-1}$ be zero, then the locus of z is
9.
a) A straight line parallel to x-axis
b) A parabola
c) A circle of radius 1 and centre $(1,0)$
d) None of the above

101 The locus of the point $z=x+y-i y$ satisfying the equation $\left|\frac{z-1}{z+1}\right|=1$ is given by
a) $x=0$
b) $y=0$
c) $x=y$
d) $x+y=0$

101 Number of real roots of the equation $(6-x)^{4}+(8-x)^{4}=16$ is
1.
a) 4
b) 2
c) 0
d) None of these

101 If $\left|\frac{x^{2}+6}{5 x}\right| \geq 1$, then x belongs to
2.
a) $(-\infty,-3)$
b) $(-\infty,-3) \cup(3, \infty)$
c) $(-\infty,-3] \cup[-2,0) \cup(0,2] \cup[3, \infty)$
d) R
$101 P O Q$ is a straight line through the origin $O . P$ and Q represent the complex numbers $a+i b$ and $c+i d$
3. respectively and $O P=O Q$. Then which one of the following is not true?
a) $|a+i b|=|c+i d|$
b) $a+b=c+d$
c) $\arg (a+i b)=\arg (c+i d)$
d) None of these

101 If α, β are the roots of the equation $a x^{2}+b x+c=0$, then the equation whose roots are $2 \alpha+3 \beta$ and 4. $3 \alpha+2 \beta$, is
a) $a c x^{2}+(a+c) b x-(a+c)^{2}=0$
b) $a c x^{2}-(a+c) b x+(a+c)^{2}=0$
c) $a b x^{2}-(a+b) c x+(a+b)^{2}=0$
d) None of the above
5. The argument of $\frac{1+i \sqrt{3}}{1-i \sqrt{3}}$ is
5.
a) $2 \pi / 3$
b) $\pi / 3$
c) $-\pi / 3$
d) $-2 \pi / 3$

101 The number of non-zero integral solutions of the equation $|1-i|^{x}=2^{x}$ is 6.
a) Infinite
b) 1
c) 2
d) None of these

101 The smallest positive integer n for which $\left(\frac{1+i}{1-i}\right)^{n}=1$, is
a) $n=8$
b) $n=12$
c) $n=16$
d) None of these

101 If $\frac{x^{2}+x+1}{x^{2}+2 x+1}=A+\frac{B}{x+1}+\frac{C}{(x+1)^{2}}$, then $A-B$ is equal to
8.
a) $4 C$
b) $4 C+1$
c) $3 C$
d) $2 C$

101 The solution set of the inequation $\left|x+\frac{1}{x}\right|<4$, is 9.
a) $(2-\sqrt{3}, 2+\sqrt{3}) \cup(-2-\sqrt{3},-2+\sqrt{3})$
b) $R-(2-\sqrt{3}, 2+\sqrt{3})$
c) $R-(-2-\sqrt{3},-2+\sqrt{3})$
d) None of these

102 If α is a root of the quadratic equation $x^{2}+6 x-2=0$, then another $\operatorname{root} \beta$ is
0.
a) $\alpha^{2}+5 \alpha-8$
b) $\frac{\alpha}{3 \alpha-1}$
c) $\frac{2 \alpha^{2}+12 \alpha-6}{\alpha}$
d) All of these

102 If ω is a complex root of the equation $z^{3}=1$, then $\omega+\omega^{\left(\frac{1}{2}+\frac{3}{8}+\frac{9}{32}+\frac{27}{128}+\ldots\right)}$ is equal to 1.
a) -1
b) 0
c) 9
d) i

102 The solution set of the inequation $\left|\frac{2 x-1}{x-1}\right|>2$, is 2.
a) $(3 / 4,1) \cup(1, \infty)$
b) $(3 / 4, \infty)$
c) $(-\infty, 3 / 4)$
d) None of these

102 If $2-i$ is the root of the equation $a x^{2}+12 x+b=0$ (where a and b are real), then the value of $a b$ is 3. equal to
a) 45
b) 15
c) -15
d) -45

102 Let $f(x)=x^{2}+a x+b ; a, b \in R$. If $f(1)+f(2)+f(3)=0$, then the roots of the equation $f(x)=0$ 4.
a) Are imaginary
b) Are real and equal
c) Are from the set $\{1,2,3\}$
d) Real and distinct

102 Product of the real roots of the equation $t^{2} x^{2}+|x|+9=0,(t \neq 0)$
5.
a) Is always positive
b) Is always negative
c) Does not exist
d) None of these

102 The centre of a square $A B C D$ is at $z=0$. The affix of the vertex A is z_{1}. Then, the affix of the centroid of the
6. triangle $A B C$ is
a) $z_{1}(\cos \pi \pm i \sin \pi)$
b) $\frac{z_{1}}{3}(\cos \pi \pm i \sin \pi)$
c) $z_{1}\left(\cos \frac{\pi}{2} \pm i \sin \frac{\pi}{2}\right)$
d) $\frac{z_{1}}{3}\left(\cos \frac{\pi}{2} \pm i \sin \frac{\pi}{2}\right)$

102 The point $(4,1)$ undergoes the following three transformations successively
7. (i) Refletion about the line $y=x$
(ii) Translation through a distance of 2 unit along the positive direction of x-axis
(iii) Rotation through an angle of $\frac{\pi}{4}$ about the origin in the anti-clockwise direction

The final position of the point is
a) $\left(\frac{1}{\sqrt{2}}, \frac{7}{\sqrt{2}}\right)$
b) $\left(-\frac{1}{\sqrt{2}}, \frac{7}{\sqrt{2}}\right)$
c) $(-\sqrt{2}, 7 \sqrt{2})$
d) $(\sqrt{2}, 7 \sqrt{2})$

102 If c and d are roots of the equation $(x-a)(x-b)-k=0$, then a, b are roots of the equation 8.
a) $(x-c)(x-d)-k=0$
b) $(x-c)(x-d)+k=0$
c) $(x-a)(x-c)+k=0$
d) $(x-b)(x-d)+k=0$

102 The real roots of $|x|^{3}-3 x^{2}+3|x|-2=0$ are 9.
a) 0,2
b) ± 1
c) ± 2
d) 1,2

103 Number of solutions of the equation $z^{2}+|z|^{2}=0$, where $z \in C$ is 0.
a) 1
b) 2
c) 3
d) Infinity many

103 If the equation $a x^{2}+2 b x+3 c=0$ and $3 x^{2}+8 x+15=0$ have a common root, where a, b, c are the

1. lengths of the sides of a $\triangle A B C$, then $\sin ^{2} A+\sin ^{2} B+\sin ^{2} C$ is equal to
a) 1
b) $\frac{3}{2}$
c) $\sqrt{2}$
d) 2

103 If ω is a complex cube root of unity, then $\left(1-\omega+\omega^{2}\right)^{6}+\left(1-\omega^{2}+\omega\right)^{6}=$ 2.
a) 0
b) 6
c) 64
d) 128

103 If $\tan ^{-1}(\alpha+i \beta)=x+i y$, then x is equal to 3.
a) $\frac{1}{2} \tan ^{-1}\left(\frac{2 \alpha}{1-\alpha^{2}-\beta^{2}}\right)$
b) $\frac{1}{2} \tan ^{-1}\left(\frac{2 \alpha}{1+\alpha^{2}+\beta^{2}}\right)$
c) $\tan ^{-1}\left(\frac{2 \alpha}{1-\alpha^{2}-\beta^{2}}\right)$
d) None of these

103 Let a, b, c be positive numbers. The following system of equations in x, y and $z, \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1 ; \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}+$ $\frac{z^{2}}{c^{2}}=1$ and $\frac{-x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$ has
a) No solution
b) Unique solution
c) Infinitely many solutions
d) Finitely may solutions

103 If $\log _{2}\left[\log _{3}\left\{\log _{4}\left(\log _{5} x\right)\right\}\right]=0$, then the value of x is
5.
a) 5^{24}
b) 1
c) 2^{25}
d) 5^{64}

103 If $1, a_{1}, a_{2}, \ldots, a_{n-1}$ are the n roots of unity, then the value of $\left(1-a_{1}\right)\left(1-a_{2}\right)\left(1-a_{3}\right) \ldots\left(1-a_{n-1}\right)$ is 6. equal to
a) $\sqrt{3}$
b) $\frac{1}{2}$
c) n
d) 0

103 If $z=\frac{4}{1-i}$, then \bar{z} is (where \bar{z} is complex conjugate of z)
7.
a) $2(1+i)$
b) $(1+i)$
c) $\frac{2}{1-i}$
d) $\frac{4}{1+i}$

103 The roots of the equation
8. $(q-r) x^{2}+(r-p) x+(p-q)=0$ are
a) $\frac{r-p}{q-r}, 1$
b) $\frac{p-q}{q-r}, 1$
c) $\frac{p-r}{q-r}, 2$
d) $\frac{q-r}{p-q}, 2$

1)	c	2)	b	3)	c	4)	c	189)	d	190)	d	191)	b	192)
5)	c	6)	c	7)	a	8)	b	193)	c	194)	c	195)	c	196)
9)	b	10)	b	11)	b	12)	b	197)	d	198)	a	199)	d	200)
13)	c	14)	a	15)	d	16)	a	201)	a	202)	c	203)	d	204)
17)	c	18)	a	19)	a	20)	c	205)	d	206)	a	207)	a	208)
21)	b	22)	a	23)	d	24)	c	209)	d	210)	a	211)	a	212)
25)	c	26)	b	27)	c	28)	c	213)	c	214)	d	215)	b	216)
29)	d	30)	b	31)	c	32)	a	217)	b	218)	a	219)	d	220)
33)	a	34)	b	35)	b	36)	a	221)	c	222)	c	223)	a	224)
37)	b	38)	c	39)	a	40)	b	225)	b	226)	a	227)	b	228)
41)	c	42)	c	43)	c	44)	a	229)	c	230)	c	231)	a	232)
45)	b	46)	b	47)	c	48)	a	233)	a	234)	a	235)	d	236)
49)	c	50)	c	51)	b	52)	a	237)	b	238)	c	239)	d	240)
53)	c	54)	d	55)	a	56)	b	241)	b	242)	c	243)	b	244)
57)	c	58)	c	59)	c	60)	d	245)	a	246)	a	247)	a	248)
61)	d	62)	c	63)	b	64)	d	249)	d	250)	d	251)	b	252)
65)	b	66)	a	67)	a	68)	a	253)	b	254)	d	255)	c	256)
69)	c	70)	d	71)	d	72)	d	257)	b	258)	d	259)	a	260)
73)	d	74)	c	75)	a	76)	b	261)	c	262)	d	263)	a	264)
77)	a	78)	a	79)	b	80)	a	265)	c	266)	a	267)	c	268)
81)	c	82)	a	83)	d	84)	a	269)	c	270)	c	271)	d	272)
85)	a	86)	b	87)	d	88)	b	273)	c	274)	a	275)	d	276)
89)	a	90)	c	91)	a	92)	a	277)	a	278)	b	279)	a	280)
93)	d	94)	c	95)	c	96)	b	281)	c	282)	a	283)	b	284)
97)	b	98)	b	99)	b	100)	d	285)	b	286)	b	287)	d	288)
101)	b	102)	d	103)	a	104)	a	289)	b	290)	c	291)	b	292)
105)	a	106)	c	107)	c	108)	b	293)	c	294)	b	295)	b	296)
109)	b	110)	a	111)	d	112)	b	297)	c	298)	b	299)	a	300)
113)	d	114)	a	115)	c	116)	c	301)	d	302)	a	303)	b	304)
117)	a	118)	b	119)	a	120)	a	305)	a	306)	b	307)	a	308)
121)	a	122)	d	123)	d	124)	a	309)	d	310)	d	311)	d	312)
125)	c	126)	b	127)	a	128)	d	313)	b	314)	c	315)	c	316)
129)	c	130)	d	131)	a	132)	c	317)	c	318)	c	319)	b	320)
133)	c	134)	a	135)	a	136)	d	321)	d	322)	b	323)	a	324)
137)	d	138)	c	139)	b	140)	d	325)	a	326)	d	327)	b	328)
141)	b	142)	d	143)	d	144)	d	329)	a	330)	a	331)	d	332)
145)	a	146)	b	147)	d	148)	d	333)	c	334)	a	335)	b	336)
149)	d	150)	d	151)	a	152)	b	337)	a	338)	b	339)	d	340)
153)	d	154)	d	155)	a	156)	a	341)	c	342)	b	343)	b	344)
157)	a	158)	d	159)	c	160)	b	345)	a	346)	a	347)	b	348)
161)	b	162)	b	163)	d	164)	d	349)	a	350)	c	351)	b	352)
165)	b	166)	b	167)	c	168)	c	353)	b	354)	c	355)	a	356)
169)	b	170)	a	171)	c	172)	a	357)	b	358)	b	359)	d	360)
173)	d	174)	a	175)	b	176)	a	361)	b	362)	d	363)	d	364)
177)	a	178)	d	179)	c	180)	d	365)	a	366)	d	367)	a	368)
181)	c	182)	a	183)	b	184)	b	369)	b	370)	b	371)	d	372)
185)	d	186)	c	187)	a	188)	b	373)	b	374)	b	375)	d	376)

377)	d	378)	b	379)	d	380)	b	581)	a	582)	b	583)	b	584)
381)	d	382)	c	383)	a	384)	b	585)	d	586)	c	587)	c	588)
385)	c	386)	b	387)	d	388)	a	589)	d	590)	c	591)	b	592)
389)	b	390)	c	391)	a	392)	b	593)	d	594)	a	595)	d	596)
393)	b	394)	b	395)	a	396)	b	597)	c	598)	b	599)	b	600)
397)	d	398)	d	399)	b	400)	c	601)	d	602)	d	603)	a	604)
401)	d	402)	d	403)	b	404)	b	605)	b	606)	b	607)	c	608)
405)	a	406)	c	407)	a	408)	c	609)	b	610)	c	611)	c	612)
409)	d	410)	c	411)	b	412)	b	613)	b	614)	c	615)	c	616)
413)	c	414)	a	415)	b	416)	b	617)	c	618)	b	619)	a	620)
417)	a	418)	d	419)	a	420)	a	621)	b	622)	c	623)	d	624)
421)	a	422)	c	423)	a	424)	a	625)	c	626)	c	627)	b	628)
425)	b	426)	d	427)	b	428)	d	629)	b	630)	b	631)	b	632)
429)	c	430)	d	431)	a	432)	a	633)	d	634)	c	635)	d	636)
433)	a	434)	d	435)	a	436)	b	637)	b	638)	c	639)	b	640)
437)	b	438)	a	439)	c	440)	d	641)	b	642)	d	643)	a	644)
441)	a	442)	b	443)	d	444)	a	645)	a	646)	b	647)	b	648)
445)	c	446)	c	447)	a	448)	c	649)	c	650)	a	651)	d	652)
449)	d	450)	b	451)	c	452)	a	653)	d	654)	a	655)	c	656)
453)	c	454)	d	455)	c	456)	b	657)	c	658)	d	659)	c	660)
457)	d	458)	a	459)	c	460)	c	661)	b	662)	c	663)	d	664)
461)	d	462)	a	463)	d	464)	a	665)	b	666)	b	667)	c	668)
465)	b	466)	b	467)	b	468)	a	669)	d	670)	a	671)	c	672)
469)	c	470)	d	471)	c	472)	d	673)	c	674)	a	675)	b	676)
473)	a	474)	c	475)	a	476)	a	677)	a	678)	d	679)	b	680)
477)	d	478)	c	479)	b	480)	b	681)	d	682)	a	683)	a	684)
481)	a	482)	c	483)	c	484)	b	685)	b	686)	b	687)	b	688)
485)	c	486)	a	487)	a	488)	b	689)	a	690)	b	691)	d	692)
489)	c	490)	c	491)	c	492)	a	693)	a	694)	d	695)	a	696)
493)	c	494)	a	495)	b	496)	b	697)	a	698)	a	699)	a	700)
497)	c	498)	c	499)	b	500)	a	701)	b	702)	b	703)	a	704)
501)	b	502)	b	503)	d	504)	d	705)	b	706)	d	707)	b	708)
505)	c	506)	a	507)	d	508)	c	709)	c	710)	d	711)	c	712)
509)	a	510)	d	511)	a	512)	b	713)	a	714)	a	715)	d	716)
513)	b	514)	a	515)	c	516)	d	717)	b	718)	d	719)	c	720)
517)	b	518)	d	519)	c	520)	c	721)	c	722)	c	723)	b	724)
521)	a	522)	c	523)	a	524)	c	725)	a	726)	a	727)	c	728)
525)	a	526)	c	527)	d	528)	d	729)	a	730)	c	731)	a	732)
529)	a	530)	c	531)	b	532)	b	733)	a	734)	b	735)	d	736)
533)	a	534)	d	535)	d	536)	d	737)	a	738)	c	739)	d	740)
537)	d	538)	d	539)	d	540)	d	741)	d	742)	a	743)	d	744)
541)	c	542)	c	543)	c	544)	a	745)	d	746)	b	747)	a	748)
545)	c	546)	a	547)	a	548)	c	749)	d	750)	c	751)	c	752)
549)	b	550)	d	551)	c	552)	d	753)	d	754)	c	755)	d	756)
553)	b	554)	c	555)	a	556)	d	757)	c	758)	c	759)	b	760)
557)	d	558)	b	559)	d	560)	d	761)	b	762)	b	763)	c	764)
561)	d	562)	b	563)	b	564)	d	765)	a	766)	b	767)	d	768)
565)	b	566)	a	567)	b	568)	d	769)	b	770)	d	771)	d	772)
569)	c	570)	d	571)	a	572)	c	773)	a	774)	a	775)	b	776)
573)	b	574)	c	575)	b	576)	b	777)	b	778)	a	779)	c	780)
577)	c	578)	c	579)	b	580)	b	781)	c	782)	c	783)	c	784)

785)	c	786)	d	787)	b	788) a	989) a	990) b	991) d	992) d
789)	b	790)	a	791)	b	792) a	993) d	994) a	995) d	996) d
793)	a	794)	b	795)	a	796) b	997) c	998) b	999) a	1000) b
797)	C	798)	b	799)	a	800) a	1001) c	1002) a	1003) d	1004) d
801)	a	802)	a	803)	a	804) b	1005) d	1006) b	1007) c	1008) d
805)	a	806)	a	807)	b	808) a	1009) c	1010) a	1011) b	1012) c
809)	b	810)	C	811)	b	812) a	1013) a	1014) d	1015) a	1016) b
813)	C	814)	d	815)	C	816) d	1017) d	1018) d	1019) a	1020) d
817)	b	818)	d	819)	b	820) c	1021) a	1022) a	1023) a	1024) d
821)	a	822)	d	823)	b	824) d	1025) d	1026) d	1027) b	1028) b
825)	c	826)	a	827)	c	828) a	1029) c	1030) d	1031) d	1032) d
829)	b	830)	d	831)	c	832) d	1033) a	1034) d	1035) d	1036) c
833)	d	834)	b	835)	a	836) a	1037) d	1038) b		
837)	d	838)	a	839)	c	840) c				
841)	d	842)	b	843)	a	844) c				
845)	C	846)	a	847)	a	848) c				
849)	b	850)	c	851)	C	852) c				
853)	c	854)	d	855)	c	856) b				
857)	d	858)	b	859)	a	860) d				
861)	a	862)	c	863)	a	864) c				
865)	b	866)	d	867)	b	868) a				
869)	c	870)	b	871)	b	872) b				
873)	d	874)	c	875)	C	876) d				
877)	a	878)	b	879)	d	880) a				
881)	b	882)	d	883)	a	884) b				
885)	a	886)	a	887)	d	888) c				
889)	a	890)	c	891)	c	892) d				
893)	c	894)	d	895)	c	896) c				
897)	a	898)	a	899)	a	900) a				
901)	b	902)	c	903)	d	904) a				
905)	d	906)	c	907)	d	908) d				
909)	C	910)	d	911)	b	912) a				
913)	c	914)	b	915)	b	916) d				
917)	b	918)	b	919)	b	920) a				
921)	c	922)	a	923)	b	924) b				
925)	c	926)	a	927)	b	928) b				
929)	b	930)	c	931)	c	932) a				
933)	a	934)	c	935)	c	936) a				
937)	b	938)	d	939)	b	940) d				
941)	b	942)	d	943)	d	944) a				
945)	c	946)	c	947)	d	948) a				
949)	a	950)	c	951)	b	952) b				
953)	d	954)	a	955)	b	956) a				
957)	a	958)	c	959)	c	960) d				
961)	a	962)	b	963)	a	964) a				
965)	c	966)	a	967)	d	968) a				
969)	c	970)	a	971)	a	972) a				
973)	c	974)	c	975)	a	976) a				
977)	a	978)	c	979)	c	980) b				
981)	b	982)	d	983)	b	984) a				
985)	b	986)	c	987)	d	988) a				

: HINTS AND SOLUTIONS :

1 (c)
Let $z=\frac{1-i}{3+i}+\frac{4 i}{5}$
$=\frac{5-5 i+12 i-4}{5(3+i)}=\frac{1+7 i}{5(3+i)}$
$=\frac{(1+7 i)(3-i)}{5(9+1)}=\frac{10+20 i}{50}=\frac{1+2 i}{5}$
$\therefore \quad|z|=\sqrt{\left(\frac{1}{5}\right)^{2}+\left(\frac{2}{5}\right)^{2}}=\frac{1}{5} \sqrt{1+4}=\frac{\sqrt{5}}{5}$
2 (b)
Let each ratio be k and let $A=x y z$,
Then $\log x=k(a-b), \log y=k(b-c)$
And $\log z=k(c-a)$
$\therefore \quad \log A=\log x+\log y+\log z$
$=k(a-b)+k(b-c)+k(c-a)$
$=k[a-b+b-c+c-a]$
$=k[0]$
$\therefore \quad \log A=\log (x y z)=0 \quad[\because A=x y z]$
3 (c)
Let $z=x+i y$. Then, coordinates of the vertices of the triangle are $(-x,-y),(-y, x)$ and $(x+y, y-x)$
\therefore Area of the triangle
$=\frac{1}{2}\left|\begin{array}{ccc}-x & -y & 1 \\ -y & x & 1 \\ x+y & y-x & 1\end{array}\right|$
$=\frac{1}{2}\left|\begin{array}{ccc}-x & -y & 1 \\ x-y & x+y & 0 \\ 2 x+y & 2 y-x & 0\end{array}\right| \quad$ Applying $R_{2} \rightarrow R_{2} \rightarrow R_{1}$
$=-\frac{3}{2}\left(x^{2}+y^{2}\right)=-\frac{3}{2}|z|^{2}$
Hence, Area $=\frac{3}{2}|z|^{2}$

4 (c)
Given, $\frac{(1+i)^{2}}{2-i}=x+i y$
$\Rightarrow \quad \frac{2 i}{2-i} \times \frac{2+i}{2+i}=x+i y$
$\Rightarrow \quad \frac{4 i-2}{5}=x+i y$
$\Rightarrow x+i y=-\frac{2}{5}+\frac{4}{5} i$
$\therefore x+y=-\frac{2}{5}+\frac{4}{5}=\frac{2}{5}$
5 (c)
We have,
$|z-3+i|=|z-2-i|$
$\Rightarrow|z-(3-i)|=|z-(2+i)|$
$\Rightarrow A P=B P$
\Rightarrow locus of P is the perpendicular bisector of $A B$

We have, $z=\frac{1+i r}{1+p} \quad \therefore i z=\frac{-r+i q}{1+p}$
By componendo and dividendo
$\frac{1+i z}{1-i z}-\frac{1+p-r+i q}{1+p+r-i q}$
$\therefore \frac{p+i q}{1+r}=\frac{1+i z}{1-i z}$ if $\frac{p+i q}{1+r}=\frac{1+p-r+i q}{1+p+r-i q}$
or $p(1+p+r)+q^{2}+i\{q(1+p+r)-p q\}$
$=(1+r)(1+p-r)+i q(1+r)$
$\Rightarrow p(1+p+r)+q^{2}=(1+r)(1+p-r)$
and $q(1+p+r)-p q=q(1+r)$
[this is obviously true]
\therefore The condition is
$p(1+p+r)+q^{2}=(1+r)(1+p-r)$
or $p+p^{2}+p r+q^{2}=1+p-r+r+p r-r^{2}$
or $p^{2}+q^{2}+r^{2}=1$
$9 \quad$ (b)

Since, $2 q=p+r$
Given that, $p x^{2}+q x+r=0$ has complex roots
$\therefore \quad D<0$
$\Rightarrow q^{2}-4 p r<0$
$\Rightarrow\left(\frac{p+r}{2}\right)^{2}-4 p r<0$
$\Rightarrow p^{2}+r^{2}-14 p r<0$
$\Rightarrow \frac{p^{2}}{r^{2}}+1-\frac{14 p}{r}<0$
$\Rightarrow\left(\frac{p^{2}}{r^{2}}-\frac{14 p}{r}+49\right)-48<0$
$\Rightarrow\left(\frac{p}{r}-7\right)^{2}<48 \Rightarrow\left|\frac{p}{r}-7\right|<4 \sqrt{3}$
(b)

Given, $\frac{1}{x+p}+\frac{1}{x+q}=\frac{1}{r}$
$\Rightarrow r(2 x+p+q)=\left[x^{2}+(p+q) x+p q\right]$
$\Rightarrow x^{2}+(p+q-2 r) x+p q-r(p+q)=0$
As we know, if roots are equal in magnitude but opposite in sign, then coefficient of x will be zero
$\therefore \quad p+q-2 r=0 \Rightarrow p+q=2 r$
11 (b)
We have, $|2 x-3|<|x+2|$
Following cases arise:
CASE I When $x<-2$
In this case, we have
$|2 x-3|=-(2 x-3)$ and $|x+2|=-(x+2)$
$\therefore|2 x-3|<|x+2|$
$\Rightarrow-(2 x-3)<-(x+2)$
$\Rightarrow 2 x-3>x+2 \Rightarrow x-5>0 \Rightarrow x>5$
But, $x<-2$. So, there is no solution in this case
CASE II When $-2 \leq x<\frac{3}{2}$
In this case, we have
$|x+2|=x+2$ and $|2 x-3|=-(2 x-3)$
$\therefore|2 x-3|<|x+2|$
$\Rightarrow-(2 x-3)<x+2 \Rightarrow 3 x-1>0 \Rightarrow x>\frac{1}{3}$
But, $-2 \leq x<\frac{3}{2}$. Therefore, $x \in\left(\frac{1}{3}, \frac{3}{2}\right)$
CASE III When $x \geq \frac{3}{2}$
In this case, we have
$|x+2|=x+2$ and $|2 x-3|=2 x-3$
$\therefore|2 x-3|<|x+2| \Rightarrow 2 x-3<x+2 \Rightarrow x<5$
But, $x \geq \frac{3}{2}$. Therefore, $x \in[3 / 2,5)$
Hence, the solution set is $x \in(1 / 3,5)$
12
(b)

Let the correct equation is
$a x^{2}+b x+c=0$,
Then $\alpha+\beta=-\frac{b}{a}$ and $\alpha \beta=\frac{c}{a}$
When b is written incorrectly, then the roots are
equal.
Let these are γ and γ.
$\therefore \gamma \cdot \gamma=\frac{c}{a} \Rightarrow \gamma^{2}=\alpha \beta$
When c is written icorrectly, then the roots are γ and 2γ.
$\therefore \gamma+2 \gamma=-\frac{b}{a} \Rightarrow 3 \gamma=\alpha+\beta$
$\Rightarrow 9 \gamma^{2}=(\alpha+\beta)^{2} \Rightarrow 9 \alpha \beta=(\alpha-\beta)^{2}+4 \alpha \beta$
[from Eq. (i)]
$\therefore(\alpha-\beta)^{2}=5 \alpha \beta$
13 (c)
Let $y=\frac{x^{2}+34 x-71}{x^{2}+2 x-7}$
$\Rightarrow \quad x^{2}(y-1)+x(2 y-34)+71-7 y=0$
Since, x is complex number
$\therefore \quad D<0$
$\Rightarrow(2 y-34)^{2}-4(y-1)(71-7 y)<0$
$\Rightarrow(y-17)^{2}-\left(71 y-7 y^{2}-71+7 y\right)<0$
$\Rightarrow 8 y^{2}-112 y+360<0$
$\Rightarrow y^{2}-14 y+45<0$
$\Rightarrow(y-9)(y-5)<0$
$\Rightarrow 5<y<9$
$\therefore \quad a=5, b=9$
14 (a)
Given, a, b, c are real, $a x^{2}+b x+c=0$ has two real roots α and β, where $\alpha<-2$ and $\beta>2$
$\Rightarrow f(-2)<0$ and $f(2)>0$
$\Rightarrow \quad 4 a-2 b+c<0$ and $4 a+2 b+c>0$
$\Rightarrow \quad 4-\frac{2 b}{a}+\frac{c}{a}<0$ and $4+\frac{2 b}{a}+\frac{c}{a}>0$
15 (d)
Let the correct equation be $a x^{2}+b x+c=0$ and the correct roots are α and β. Taking c wrong, the roots are 3 and 2 .
$\therefore \alpha+\beta=3+2=5$
Also, $a=1$ and $c=-6$
$\therefore \alpha \beta=\frac{c}{a}=-6 \ldots$ (ii)
On solving Eqs.(i) and (ii), the correct roots are 6 and -1 .

(a)

Since, 1 is root of $a x^{2}+b x+c=0$
$\Rightarrow \quad a+b+c=0$
$\therefore E_{1}: a+b+c=0$ is true
Since, $\cos \theta, \sin \theta$ are the roots of $a x^{2}+b x+c=$ 0
$\therefore \quad \sin \theta+\cos \theta=-\frac{b}{a}$
And $\sin \theta \cos \theta=\frac{c}{a}$
$\Rightarrow \quad(\sin \theta+\cos \theta)^{2}=\frac{b^{2}}{a^{2}}$
$\Rightarrow \sin ^{2} \theta+\cos ^{2} \theta+2 \sin \theta \cos \theta=\frac{b^{2}}{a^{2}}$
$\Rightarrow 1+2\left(\frac{c}{a}\right)=\frac{b^{2}}{a^{2}}$
$\Rightarrow b^{2}-a^{2}=2 a c$
Hence, E_{1} and E_{2} both are true
17 (c)
$\left(3+\omega+3 \omega^{2}\right)^{4}=\left[3+\left(1+\omega^{2}\right)+\omega\right]^{4}$
$=[-3 \omega+\omega]^{4}$
$=(-2 \omega)^{4}$
$=16 \omega$
18 (a)
$z^{3}+\frac{1}{i} z^{2}-\frac{z}{i}+1=0$
$\Rightarrow z^{3}-i z^{2}+i z+1=0$
$\Rightarrow z^{2}(z-i)+i(z-i)=0$
$\Rightarrow(z-i)\left(z^{2}+i\right) \Rightarrow|z|=1$
19 (a)
Given equation $x^{2}+a x+1=0$.
Since, roots are $\tan \theta$ and $\cot \theta$.
\therefore Product of roots, $\tan \theta \cdot \cot \theta=a \Rightarrow a=1$
Again, since roots are real.
$\therefore a^{2}-4 \geq 0 \Rightarrow|a| \geq 2$
Thus, the least value of $|a|$ is 2 .
20 (c)
If $1,2,3,4$ are the roots of given equation, then

$$
\begin{aligned}
& (x-1)(x-2)(x-3)(x-4) \\
& \quad=x^{4}+a x^{3}+b x^{2}+c x+d \\
& \Rightarrow\left(x^{2}-3 x+2\right)\left(x^{2}-7 x+12\right) \\
& \quad=x^{4}+a x^{3}+b x^{2}+c x+d \\
& \Rightarrow x^{4}-10 x^{3}+35 x^{2}-50 x+24 \\
& =x^{4}+a x^{3}+b x^{2}+c x+d \\
& \Rightarrow a=-10, b=35, c=-50, d=24 \\
& \therefore a+2 b+c=-10+2 \times 35-50=10
\end{aligned}
$$

Alternate

Since, 1, 2, 3 and 4 are the roots of the equation
$x^{4}+a x^{3}+b x^{2}+c x+d=0$, then
$1+a+b+c+d=0$
$16+8 a+4 b+2 c+d=0$
$81+27 a+9 b+3 c+d=0$
And $256+64 a+16 b+4 c+d=0$
On solving Eqs. (i), (ii), (iii) and (iv), we get
$a=-10, b=35, c=-50, \quad d=24$
Now, $a+2 b+c=-10+2 \times 35+(-50)$
$=-10+70-50=10$
21 (b)
We have,
$2(x+2)>x^{2}+1$
$\Rightarrow x^{2}-2 x-3<0 \Rightarrow(x-3)(x+1)<0 \Rightarrow-1$

$$
<x<3
$$

So, there are three integral values viz. $0,1,2$

22 (a)
Let the roots be α and 2α. Then,
$\alpha+2 \alpha=-\frac{a}{a-b}$ and $2 \alpha^{2}=\frac{1}{a-b}$
$\Rightarrow \alpha=-\frac{a}{3(a-b)}$ and $\alpha^{2}=\frac{1}{2(a-b)}$
$\Rightarrow \frac{a^{2}}{9(a-b)^{2}}=\frac{1}{2(a-b)}$
$\Rightarrow 2 a^{2}=9 a-9 b$
$\Rightarrow 2 a^{2}-9 a+9 b=0$
$\Rightarrow 81-72 b \geq 0 \quad[\because a \in R]$
$\Rightarrow b \leq 9 / 8$
Hence, the greatest value of b is $\frac{9}{8}$
(d)

Let $Z=\frac{1-i \sqrt{3}}{1+i \sqrt{3}}=\frac{1-i \sqrt{3}}{1+i \sqrt{3}} \times \frac{1-i \sqrt{3}}{1-i \sqrt{3}}=-\frac{1}{2}-\frac{i \sqrt{3}}{2}$
$\Rightarrow \arg (z)=\theta=\tan ^{-1}\left(\frac{\sqrt{3} / 2}{1 / 2}\right)=\tan ^{-1}(\sqrt{3})$
$\Rightarrow \quad \theta=60^{\circ}$
Since, given number lies in IIIrd quadrant
$\therefore \quad \theta=180^{\circ}+60^{\circ}=240^{\circ}$
24 (c)
Let $z=x+i y$
Then, $z+i z=(x+i y)+i(x+i y)=(x-y)+$ $i(x+y)$
and $i z=i(x+i y)=-y+i x$
If Δ be the area of the triangle formed by $z, z+i z$ and $i z$, then
$\Delta=\frac{1}{2}| | \begin{array}{ccc}x & y & 1 \\ x-y & x+y & 1 \\ -y & x & 1\end{array}| |$
Applying $R_{2} \rightarrow R_{2}-\left(R_{1}+R_{3}\right)$
Then $\Delta=\frac{1}{2}\left\|\begin{array}{ccc}x & y & 1 \\ 0 & 0 & -1 \\ -y & x & 1\end{array}\right\|=\frac{1}{2}\left(x^{2}+y^{2}\right)$
$=\frac{1}{2}|z|^{2}=200$ (given)
$\Rightarrow|z|^{2}=400$
$\Rightarrow|z|=20$
$\therefore|3 z|=3|z|=60$
25 (c)
Given $b x+c x+a=0$ has imaginary roots
$\Rightarrow c^{2}-4 a b<0$
$\Rightarrow c^{2}<4 a b$
$\Rightarrow-c^{2}>-4 a b$
Let $f(x)=3 b^{2} x^{2}+6 b c x+2 c^{2}$
Here, $3 b^{2}>0$
So, the given expression has a minimum value
\therefore Minimum value $=\frac{-D}{4 a}$
$=\frac{4 a c-b^{2}}{4 a}$
$=\frac{4\left(3 b^{2}\right)\left(2 c^{2}\right)-36 b^{2} c^{2}}{4\left(3 b^{2}\right)}$
$=-\frac{12 b^{2} c^{2}}{12 b^{2}}=-c^{2}>-4 a b$
[from Eq. (i)]
26 (b)
Given, $\left(a x^{2}+c\right) y+\left(a^{\prime} x^{2}+c^{\prime}\right)=0$
or $x^{2}\left(a y+a^{\prime}\right)+\left(c y+c^{\prime}\right)=0$
Since, x is rational, then the discriminant of the above equation must be a perfect square.
$\therefore 0-4\left(a y+a^{\prime}\right)+\left(c y+c^{\prime}\right)=0$
$\Rightarrow-a c y^{2}-\left(a c^{\prime}+a^{\prime} c\right) y-a^{\prime} c^{\prime}$
Must be a perfect square
$\Rightarrow\left(a c^{\prime}-a^{\prime} c\right)^{2}-4 a c a^{\prime} c^{\prime}=0$
$\Rightarrow\left(a c^{\prime}-a^{\prime} c\right)^{2}=0$
$\Rightarrow a c^{\prime}=a^{\prime} c$
$\Rightarrow \frac{a}{a^{\prime}}=\frac{c}{c^{\prime}}$
27 (c)
$(1+i \sqrt{3})^{n}+(1-i \sqrt{3})^{n}$
$=2^{n}\left[\left(\frac{1}{2}+\frac{i \sqrt{3}}{2}\right)^{n}+\left(\frac{1}{2}-\frac{i \sqrt{3}}{2}\right)^{n}\right]$
$=2^{n}\left[\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right)^{n}+\left(\cos \frac{\pi}{3}-i \sin \frac{\pi}{3}\right)^{n}\right]$
$=2^{n}\left[2 \cos \frac{n \pi}{3}\right]=2^{n+1} \cos \frac{n \pi}{3}$
28 (c)
Let $z_{1}=1+i, z_{2}=-2+3 i$ and $z_{3}=0+\frac{5}{3} i$
Then, $\left|\begin{array}{lll}x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \\ x_{3} & y_{3} & 1\end{array}\right|=\left|\begin{array}{ccc}1 & 1 & 1 \\ -2 & 3 & 1 \\ 0 & \frac{5}{3} & 1\end{array}\right|$
$=1\left(3-\frac{5}{3}\right)+1(2)+1\left(\frac{-10}{3}\right)$
$=\frac{4}{3}+2-\frac{10}{3}$
$=\frac{4+6-10}{3}=0$
Hence, area of triangle is zero, therefore points are collinear
29 (d)
We have, $z-2-3 i=x+i y-2-3 i=$
$(x-2)+i(y-3)$
Given, $\tan ^{-1}\left(\frac{y-3}{x-2}\right)=\frac{\pi}{4}$
$\Rightarrow \quad y-3=x-2$
$\Rightarrow \quad x-y+1=0$
30
(b)
$\left[\left(\cos 20^{\circ}+i \sin 20^{\circ}\right)\left(\cos 75^{\circ}+i \sin 75^{\circ}\right)\left(\cos 10^{\circ}+\right.\right.$ $\sin 15^{\circ}-i \cos 15^{\circ}$
$=\frac{e^{i 20^{\circ}} e^{i 75^{\circ}} \cdot e^{i 10^{\circ}}}{-i\left(\cos 15^{\circ}+i \sin 15^{\circ}\right)}$
$=-\frac{e^{i 105^{\circ}}}{i e^{i 15^{\circ}}}$
$=-\frac{e^{i 90^{\circ}}}{i}=-1$
31 (c)
Since α, β are roots of $x^{2}+b x+1=0$
$\therefore \alpha+\beta=-b, \alpha \beta=1$
We have,
$\left(-\alpha-\frac{1}{\beta}\right)+\left(-\beta-\frac{1}{\alpha}\right)$
$=-(\alpha+\beta)-\left(\frac{1}{\beta}+\frac{1}{\alpha}\right)=-(\alpha+\beta)-\frac{(\alpha+\beta)}{\alpha \beta}$

$$
=b+b=2 b
$$

and, $\left(-\alpha-\frac{1}{\beta}\right)\left(-\beta-\frac{1}{\alpha}\right)=\alpha \beta+2+\frac{1}{\alpha \beta}$

$$
=1+2+1=4
$$

Thus, the equation whose roots are $-\alpha-\frac{1}{\beta}$ and -$\beta-\frac{1}{\alpha}$ is
$x^{2}-2 b x+4=0$
32 (a)
The required vector is given by
$\frac{3}{2}(z) e^{i \pi}=\frac{3}{2}(-4+5 i)(-1+0 i)=6-\frac{15}{2} i$
(a)

Given, $\frac{z}{\bar{z}}=\frac{3-i}{3+i} \quad[$ let $z=x+i y]$
$\Rightarrow \frac{x+i y}{x-i y}=\frac{3-i}{3+i} \Rightarrow x=3 a, \quad y=-a$
$\Rightarrow \quad z=a(3-i)$, where $a \in R$
34 (b)
Let $m=\frac{(x-b)(x-c)}{x-a}$
$\Rightarrow x^{2}-(b+c+m) x+(b c+a m)=0$
Since x is real, we must have
$(b+c+m)^{2}-4(b c+a m) \geq 0$
$\Rightarrow m^{2}+2(b+c-2 a) m+(b-c)^{2} \geq 0$ for all m
$\Rightarrow 4(b+c-2 a)^{2}-4(b-c)^{2} \leq 0$
$\Rightarrow(b+c-2 a)^{2}-(b-c)^{2} \leq 0$
$\Rightarrow(b+c-2 a+b-c)(b+c-2 a-b+c) \leq 0$
$\Rightarrow 2(b-a) 2(c-a) \leq 0$
$\Rightarrow(a-b)(a-c) \leq 0$
$\Rightarrow b \leq a \leq c$ or, $c \leq a \leq b$
35 (b)
Let $f(x)=x^{4}+a x^{3}+b x^{2}+c x-1$
Since $(x-1)^{3}$ is a factor of $f(x)$. Therefore,
$(x-1)^{2}$ is a factor of $f^{\prime}(x)$ and $(x-1)$ is a factor of $f^{\prime \prime}(x)$
$\therefore f(1)=0, f^{\prime}(1)=0$ and $f^{\prime \prime}(1)=0$
$\Rightarrow a+b+c=0,3 a+2 b+c=-4$ and
$6 a+2 b=-12$
$\Rightarrow a=-2, b=0, c=2$

$$
\begin{gathered}
\therefore f(x)=x^{4}-2 x^{3}+2 x-1 \\
=\left(x^{4}-1\right)-2 x\left(x^{2}-1\right) \\
\Rightarrow f(x)=\left(x^{2}-1\right)\left(x^{2}+1-2 x\right) \\
=(x+1)(x-1)^{3}
\end{gathered}
$$

Hence, $(x+1)$ is the other factor of $f(x)$
36 (a)
Required vertices are given by
$z=(1+i) e^{ \pm i \pi / 2}=(1+i)(\pm i)= \pm(-1+i)$
37 (b)
Let all four roots are imaginary. Then roots of both equation $P(x)=0$ and $Q(x)=0$ are imaginary.
Thus, $b^{2}-4 a c<0 ; d^{2}-4 a c<0$, so $b^{2}+d^{2}<$ 0 which is impossible unless $b=0, d=0$.
So, if $b \neq 0$ or $d \neq 0$ at least two roots must be real, if $b=0, d=0$ we have the equations
$P(x)=a x^{2}+c=0$
and $Q(x)=-a x^{2}+c=0$
or $x^{2}=-\frac{c}{a} ; x^{2}=\frac{c}{a}$ as one of $\frac{c}{a}$ and $-\frac{c}{a}$ must be positive so two roots must be real.
38 (c)
$\frac{1+a}{1-a}=\frac{e^{\frac{-i \theta}{2}}\left(1+\mathrm{e}^{i \theta}\right)}{e^{\frac{-i \theta}{2}}\left(1-\mathrm{e}^{i \theta}\right)}=\frac{e^{-i\left(\frac{\theta}{2}\right)}+e^{i \frac{\theta}{2}}}{e^{-i\left(\frac{\theta}{2}\right)}-e^{-i \frac{\theta}{2}}}$
$=\frac{2 \cos \frac{\theta}{2}}{-2 i \sin \frac{\theta}{2}}=i \cot \frac{\theta}{2}$
39 (a)
Let, $f(x)=x^{2}+2 a x+b$
$=(x+a)^{2}+b-a^{2}$
So, minimum value of $f(x)=b-a^{2}$.
Since, $f(x) \geq c, \forall x \in R$ hence $b-a^{2} \geq c$
$i e, b-c \geq a^{2}$
41 (c)
We have, $z^{2}+z|z|+|z|^{2}=0$
$\Rightarrow\left(\frac{z}{|z|}\right)^{2}+\frac{z}{|z|}+1=0$
This is a quadratic equation in $\frac{z}{|z|}$, therefore roots are $\frac{z}{|z|}=\omega, \omega^{2} \Rightarrow z=\omega|z|$ or $z=\omega^{2}|z|$
Let $z=x+i y$
$\Rightarrow x+i y=|z|\left(\frac{-1}{2}+\frac{i \sqrt{3}}{2}\right)$
or $x+i y=|z|\left(\frac{-1}{2}-\frac{i \sqrt{3}}{2}\right)$
$\Rightarrow x=-\frac{1}{2}|z|, y=|z| \frac{\sqrt{3}}{2}$
or $x=-\frac{|z|}{2}, y=-\frac{|z| \sqrt{3}}{2}$
$\Rightarrow y+\sqrt{3} x=0$
or $y-\sqrt{3} x=0$
$\Rightarrow y^{2}-3 x^{2}=0$
\Rightarrow It represents a pair of straight lines
$42 \quad$ (c)
Clearly, $|z-i|=1$ represeents a circle having centre C at $(0,1)$ and radius 1 . Let $P(z)$ be a point on the circle such that $z=r(\cos \theta+i \sin \theta)$
$\therefore \cot \theta-\frac{2}{z}=\cot \theta-\frac{2}{r}(\cot \theta-i \sin \theta)$
$\Rightarrow \cot \theta-\frac{2}{z}=\cot \theta-\frac{2}{r} \cos \theta+\left(\frac{2}{r} \sin \theta\right) i$
$\Rightarrow \cot \theta-\frac{2}{z}=\cot \theta-\cot \theta+i \quad\left[\because \sin \theta=\frac{r}{2}\right]$
$\Rightarrow \cot \theta-\frac{2}{Z}=i$
43 (c)
We have,
$\left|z_{1}-z_{2}\right|^{2}=\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}-2\left|z_{1}\right|\left|z_{2}\right| \cos \left(\theta_{1}-\theta_{2}\right)$,
Where $\theta_{1}=\arg \left(z_{1}\right)$ and $\theta_{2}=\arg \left(z_{2}\right)$
$\therefore \arg \left(z_{1}-z_{2}\right)=0$
$\Rightarrow\left|z_{1}-z_{2}\right|^{2}=\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}-2\left|z_{1}\right|\left|z_{2}\right|$
$\Rightarrow\left|z_{1}-z_{2}\right|^{2}=\left(\left|z_{1}\right|-\left|z_{2}\right|\right)^{2}$
$\Rightarrow\left|z_{1}-z_{2}\right|=\left|\left|z_{1}\right|-\left|z_{2}\right|\right|$
(a)

We have,
$x^{2}+4 y^{2}+9 z^{2}-6 y z-3 z x-2 x y$
$=x^{2}+(2 y)^{2}+(3 z)^{2}-(2 y)(3 z)-(3 z) x$

$$
-x(2 y)
$$

$=\frac{1}{2}\left\{(x-2 y)^{2}+(2 y-3 z)^{2}+(3 z-x)^{2}\right\} \geq 0$
Hence, the given expression is always non-
negative
45 (b)
Let A, B be the centres of circles $\left|z-z_{1}\right|=a$ and $\left|z-z_{2}\right|=b$ respectively. Let $P(\alpha)$ be the centre of the variable circle $|z-\alpha|=r$ which touches the given circles externally. Then,
$A P=r+a$ and $P B=r+b$
$\Rightarrow A P-B P=(r+a)-(r+b)$
$\Rightarrow A P-B P=a-b$
\Rightarrow Locus of P is a hyperbola having its foci at A and B respectively
(b)

Let $z=(1+i \sqrt{3})^{8}$
$=(-2)^{8}\left(\frac{1+i \sqrt{3}}{-2}\right)=(-2)^{8}\left(\omega^{2}\right)^{8} \quad\left[\because \omega^{3}=1\right]$
$=2^{8} \omega^{16}=2^{8} \omega$
$=2^{8}\left(\frac{-1+i \sqrt{3}}{2}\right)$
$=2^{8}\left(\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}\right)$
\therefore Modulus $=2^{8}=256$ and amplitude $=\frac{2 \pi}{3}$
47 (c)
We have,
$x^{2}+(a+b) x+a b<0$
$\Rightarrow(x+a)(x+b)<0 \Rightarrow-b<x<-a \Rightarrow x$

$$
\in(-b,-a)
$$

48 (a)

$$
\begin{gathered}
\begin{aligned}
& x^{2}+y^{2}+z^{2}=(a+b)^{2}+\omega^{2}(a+b \omega)^{2} \\
&+\left(a \omega^{2}+b \omega\right)^{2} \\
&=a^{2}+b^{2}+2 a b+a^{2} \omega^{2}+b^{2} \omega^{4}+2 a b \omega^{3} \\
&+a^{2} \omega^{4}+b^{2} \omega^{2}+2 a b \omega^{3} \\
&=a^{2}\left(1+\omega+\omega^{2}\right)+b^{2}\left(1+\omega+\omega^{2}\right) \\
& \quad+6 a b \quad\left[\because \omega^{4}=\omega\right] \\
&=6 a b \quad\left[\because 1+\omega+\omega^{2}=0\right]
\end{aligned}
\end{gathered}
$$

49 (c)
$\sqrt{-7-24 \sqrt{-1}}=\sqrt{-1} \sqrt{7+24 i}$
We know
$\sqrt{a+i b}= \pm\left[\sqrt{\frac{1}{2}\left(\sqrt{a^{2}+b^{2}}+a\right)}\right.$
$\left.+i \sqrt{\frac{1}{2}\left(\sqrt{a^{2}+b^{2}}-a\right)}\right]$
$\therefore i \sqrt{7+24 i}$
$=i\left[\pm\left\{\sqrt{\frac{1}{2}(\sqrt{49+576}+7)}\right.\right.$
$\left.\left.+i \sqrt{\frac{1}{2}(\sqrt{49+576}-7)}\right\}\right]$
$=i\left[\pm\left\{\sqrt{\frac{1}{2}(32)}+i \sqrt{\frac{1}{2}(18)}\right\}\right]$
$= \pm(3-4 \sqrt{-1})$
50 (c)
Given, $\alpha-i \beta=\left(\frac{3+i(-4 x)}{3+i(4 x)}\right)$
$\Rightarrow \quad|\alpha+i(-\beta)|=\left|\frac{3+i(-4 x)}{3+i(4 x)}\right|$
$=\frac{|3+i(-4 x)|}{|3+i(4 x)|}$
$\Rightarrow \alpha^{2}+\beta^{2}=\frac{9+16 x^{2}}{9+16 x^{2}}$
$\Rightarrow \quad \alpha^{2}+\beta^{2}=1$
51 (b)
$(1+\omega)^{7}=(1+\omega)(1+\omega)^{6}$
$=(1+\omega)\left(-\omega^{2}\right)^{6}=(1+\omega)$
$\Rightarrow A+B \omega=1+\omega$
$\Rightarrow A=1, B=1$

52 (a)
Given equation is $x^{2}+9 y^{2}-4 x+3=0 \quad . . .(i)$
or $x^{2}-4 x+9 y^{2}+3=0$
Since x is real.
$\therefore(-4)^{2}-4\left(9 y^{2}+3\right) \geq 0$
$\Rightarrow 16-4\left(9 y^{2}+3\right) \geq 0$
$\Rightarrow 4-9 y^{2}-3 \geq 0$
$\Rightarrow 9 y^{2}-1 \leq 0$
$\Rightarrow(3 y-1)(3 y+1) \leq 0$
$\Rightarrow \frac{-1}{3} \leq y \leq \frac{1}{3}$
Eq. (i) can also be written as
$9 y^{2}+0 y+x^{2}-4 x+3=0$
Since y is real.
$\left.\therefore 0^{2}-4.9\left(x^{2}-4 x+3\right)\right) \geq 0$
$\Rightarrow x^{2}-4 x+3 \leq 0$
$\Rightarrow(x-1)(x-3)) \leq 0$
$\Rightarrow 1 \leq x \leq 3$
53 (c)
Let α, β be the roots of the equation
$(a+1) x^{2}+(2 a+3) x+(3 a+4)=0$. Then,
$\alpha+\beta=-1 \Rightarrow-\left(\frac{2 a+3}{a+1}\right)=-1 \Rightarrow a=-2$
\therefore Product of the roots $=\frac{3 a+4}{a+1}=\frac{-6+4}{-2+1}=2$
54 (d)
We have, $2^{x+2} 3^{3 x /(x-1)}=9$
Taking log on both sides, we get
$(x+2) \log 2+\left(\frac{3 x}{x-1}\right) \log 3=2 \log 3$
$\Rightarrow(x+2)\left(\log 2+\frac{1}{x-1} \log 3\right)=0$
$\Rightarrow x=-2$ or $\frac{1}{1-x}=\frac{\log 2}{\log 3}$
$\Rightarrow 1-x=\frac{\log 3}{\log 2}$
$\Rightarrow x=1-\frac{\log 3}{\log 2}$
(a)

Using $a+b+c=0$, the given equation reduces to $a x^{2}+b x+c=0$
Clearly, $x=1$ is a root of this equation
Let D be its discriminant. Then,
$D=b^{2}-4 a c=(-a-c)^{2}-4 a c=(a-c)^{2}>0$
$[\because a \neq c]$
Hence, the roots are real and unequal
56 (b)
We have, $\alpha+\beta=-\sqrt{\alpha}$ and $\alpha \beta=\beta$
Now,
$\alpha \beta=\beta \Rightarrow \alpha=1$
$\therefore \alpha+\beta=-\sqrt{\alpha} \Rightarrow \beta=-2$
(c)

We have,
$(x-a)(x-b)-1=0$
$\Rightarrow x^{2}-x(a+b)+a b-1=0$
Let α, β be the roots of this equation. Then, $\alpha+\beta=a+b$ and $\alpha \beta=a b-1$
\Rightarrow If one root is less than a, then the other root is greater than b
\Rightarrow One root lies in $(-\infty, a)$ and the other is in (b, ∞)
ALITER Clearly, a and b are the roots of the equation $(x-a)(x-b)=0$
Therefore, the curve $y=(x-a)(x-b)$ opens upward and cuts x-axis at $(a, 0)$ and $(b, 0)$
The curve $y=(x-a)(x-b)-1$ is obtained by translating $y=(x-a)(x-b)$ through one unit in vertically downward direction. So, it will cross x-axis at two points one lying on the left of $(a, 0)$ and other one the right of $(b, 0)$
Hence, one of the roots lies in $(-\infty, a)$ and other in (b, ∞)
58 (c)

$$
\begin{aligned}
& \begin{aligned}
& \begin{aligned}
\left.\cos \frac{\pi}{2}+i \sin \frac{\pi}{2}\right) & \left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)\left(\cos \frac{\pi}{8}\right. \\
& \left.\quad+i \sin \frac{\pi}{8}\right) \ldots \infty
\end{aligned} \\
&=\cos \left(\frac{\pi}{2}+\frac{\pi}{4}\right.\left.+\frac{\pi}{8}+\ldots \infty\right) \\
&+i \sin \left(\frac{\pi}{2}+\frac{\pi}{4}+\frac{\pi}{8}+\ldots \infty\right)
\end{aligned} \\
& =\cos \left(\frac{\frac{\pi}{2}}{1-\frac{1}{2}}\right)+i \sin \left(\frac{\frac{\pi}{2}}{1-\frac{1}{2}}\right)
\end{aligned}
$$

59 (c)

$$
\begin{aligned}
& 2\left(1+\frac{1}{\omega}\right)\left(1+\frac{1}{\omega^{2}}\right)+3\left(2+\frac{1}{\omega}\right)\left(2+\frac{1}{\omega^{2}}\right)+\cdots \\
& +(n+1)\left(n+\frac{1}{\omega}\right)\left(n+\frac{1}{\omega^{2}}\right) \\
& =2(1+\omega)\left(1+\omega^{2}\right) \\
& +3(2+\omega)\left(2+\omega^{2}\right)+\ldots+(n \\
& +1)(n+\omega)\left(n+\omega^{2}\right) \\
& =\sum_{r=1}^{n}(r+1)(r+\omega)\left(r+\omega^{2}\right) \\
& =\sum_{r=1}^{n}(r+1)\left[r^{2}+\left(\omega+\omega^{2}\right) r+\omega^{3}\right] \\
& =\sum_{r=1}^{n}(r+1)\left(r^{2}-r+1\right) \\
& =\sum_{r=1}^{n}\left(r^{3}+1\right)
\end{aligned}
$$

$=\left[\frac{n(n+1)}{2}\right]^{2}+n$
(d)

Let $\sqrt{6+4 \sqrt{3}}=\sqrt{x}+\sqrt{y}$
$\Rightarrow 6+4 \sqrt{3}=x+y+2 \sqrt{x y}$
$\Rightarrow x+y=6, \quad \sqrt{x y}=2 \sqrt{3}$
Now, $(x-y)^{2}=(x+y)^{2}-4 x y$
$=36-4(4 \times 3)$
$=-12<0$
It is not possible
Hence, square root is not possible
61 (d)
We have, $|x|-1<1-x$
Two cases arise
CASE I When $x \geq 0$
In this case, we have $|x|=x$
$\therefore|x|-1<1-x \Rightarrow x-1<1-x \Rightarrow 2(x-1)$

$$
<0 \Rightarrow x<1
$$

But, $x \geq 0$. Therefore, $x \in[0,1)$

CASE II When $x<0$

In this case, we have $|x|=-x$
$\therefore|x|-1<1-x \Rightarrow-x-1<1-x \Rightarrow-1<1$
This is true for all $x<0$
Hence, $x \in(-\infty, 0) \cup[0,1)$ i.e. $x \in(-\infty, 1)$
ALITER Draw the graphs of $y=|x|-1$ and $y=1-x$
Clearly, $|x|-1<1-x$ for all $x \in(-\infty, 1)$

62 (c)
We have,
$(\sqrt{3}+i)^{10}=a+i b$
$\Rightarrow i^{10}(1-i \sqrt{3})^{10}=a+i b$
$\Rightarrow-(-2 \omega)^{10}=a+i b \quad\left[\because \omega=-\frac{1}{2}+i \frac{\sqrt{3}}{2}\right]$
$\Rightarrow-2^{10} \omega^{10}=a+i b$
$\Rightarrow-2^{10} \omega=a+i b$
$\Rightarrow-2^{10}\left(\frac{-1}{2}+i \frac{\sqrt{3}}{2}\right)=a+i b$
$\Rightarrow 2^{9}-2^{9} \sqrt{3} i=a+i b \Rightarrow a=2^{9}$ and
$b=-2^{9} \sqrt{3}$

63 (b)
We have,

$$
\begin{aligned}
&(5+2 \sqrt{6})^{x^{2}-3}+(5-2 \sqrt{5})^{x^{2}-3} \\
&=(5+2 \sqrt{6})+(5-2 \sqrt{6}) \\
& \Rightarrow x^{2}-3= \pm 1 \Rightarrow x= \pm 2, \pm \sqrt{2}
\end{aligned}
$$

64 (d)
If $x \neq 1$, multiplying each term by $(x-1)$ the given equation reduces to $x(x-1)=(x-1)$ or $(x-1)^{2}=0$ or $x=1$, which is not possible as considering $x \neq 1$, thus given equation has no roots
65 (b)
Given, $(1+i)^{2 n}=(1-i)^{2 n}$
$\Rightarrow 2^{n} i^{n}=2^{n}(-1)^{n} i^{n} \Rightarrow 1=(-1)^{n}$
\therefore The smallest value of n is 2
66 (a)
Since, $\frac{z-1}{z+1}$ is purely imaginary
$\therefore \frac{z-1}{z+1}=-\overline{\left(\frac{z-1}{z+1}\right)}$
$\Rightarrow \quad \frac{z-1}{z+1}=\frac{\bar{z}-1}{\bar{z}+1}$
$\Rightarrow \frac{2 z}{-2}=\frac{2}{-2 \bar{z}} \Rightarrow z \bar{z}=1$
$\Rightarrow \quad|z|^{2}=1 \quad \Rightarrow \quad|z|=1$
67 (a)
Let the vertex A be $3(\cos \theta+i \sin \theta)$, then $O B$ and $O D$ can be obtained by rotating $O A$ through $\frac{\pi}{2}$ and $-\frac{\pi}{2}$ respectively

Thus, $\overrightarrow{O B}=(\overrightarrow{O A}) e^{i \frac{\pi}{2}}$ and, $\overrightarrow{O D}=\overrightarrow{O A} e^{-i \frac{\pi}{2}}$
$\Rightarrow \overrightarrow{O B}=3(\cos \theta+i \sin \theta) i$ and, $\overrightarrow{O D}=3(\cos \theta+$ $i \sin)(-i)$
$\Rightarrow \overrightarrow{O B}=3(-\sin \theta+i \cos \theta)$ and, $\overrightarrow{O D}=3(\sin \theta-$ $i \cos \theta$)
Thus, vertices B and D are represented by $\pm 3(\sin \theta-i \cos \theta)$
68 (a)
Let α, β be the roots of the given quadratic equation. Then,
$\alpha+\beta=-b / a, \alpha \beta=c / a$
It is given that
$\alpha+\beta=\frac{1}{\alpha^{2}}+\frac{1}{b^{2}}$
$\Rightarrow \alpha^{2}+\beta^{2}=(\alpha+\beta) \alpha^{2} \beta^{2}$
$\Rightarrow(\alpha+\beta)^{2}-2 \alpha \beta=(\alpha+\beta)(\alpha \beta)^{2}$
$\Rightarrow \frac{b^{2}}{a^{2}}-\frac{2 c}{a}=\frac{-b c^{2}}{a^{3}}$
$\Rightarrow \frac{2 c}{a}=\frac{b^{2}}{a^{2}}+\frac{b c^{2}}{a^{3}}$
$\Rightarrow 2 a^{2} c=a b^{2}+b c^{2} \Rightarrow c^{2} b, a^{2} c, b^{2} a$ are in A.P.
Dividing both sides of $2 a^{2} c-a b^{2}+b c^{2}$ by $a b c$, we get
$2 \frac{a}{b}=\frac{b}{c}+\frac{c}{a} \Rightarrow \frac{b}{c}, \frac{a}{b}, \frac{c}{a}$ are in A.P.
69 (c)
Clearly, angle between z and $i z$ is a right angle
$\therefore \angle O P Q=\frac{\pi}{2}$
70 (d)
We have,
$\frac{2^{n}}{(1-i)^{2 n}}+\frac{(1+i)^{2 n}}{2^{n}}$
$=\frac{2^{n}}{\left\{(1-i)^{2}\right\} n}+\frac{\left\{(1+i)^{2}\right\}^{n}}{2^{n}}$
$=\frac{2^{n}}{\left(1-2 i+i^{2}\right)^{n}}+\frac{\left(1+2 i+i^{2}\right)^{n}}{2^{n}}$
$=\frac{2^{n}}{(-2 i)^{n}}+\frac{(2 i)^{n}}{2^{n}}=\left(-\frac{1}{i}\right)^{n}+i^{n}=i^{n}+i^{n}=2 i^{n}$
71 (d)
Since, the equation $x^{2}-p x+r=0$ has roots
(α, β) and the equation $x^{2}-q x+r=0$ has roots $\left(\frac{\alpha}{2}, 2 \beta\right)$
$\therefore \alpha+\beta=p$ and $r=\alpha \beta$ and $\frac{\alpha}{2}+2 \beta=q$
$\Rightarrow \beta=\frac{2 q-p}{3}$ and $\alpha=\frac{2(2 p-q)}{3}$
$\therefore \alpha \beta=r=\frac{2}{9}(2 q-p)(2 p-q)$
72 (d)
We have, $\left(1+\omega-\omega^{2}\right)^{7}=\left(-\omega^{2}-\omega^{2}\right)^{7}$
$=(-2)^{7}\left(\omega^{2}\right)^{7}=-128 \omega^{2}$
(d)

We have,
$z+z^{-1}=1 \Rightarrow z^{2}-z+1=0 \Rightarrow z=-\omega$ or $-\omega^{2}$
For $z=-\omega$, we have
$z^{100}+z^{-100}=(-\omega)^{100}+(-\omega)^{-100}=\omega+\frac{1}{\omega}$

$$
=\omega+\omega^{2}=-1
$$

For $z=-\omega^{2}$, we have

$$
z^{100}+z^{-100}=\left(-\omega^{2}\right)^{100}+\left(-\omega^{2}\right)^{-100}
$$

$$
=\omega^{200}+\frac{1}{\omega^{200}}
$$

$$
\Rightarrow z^{100}+z^{-100}=\omega^{2}+\frac{1}{\omega^{2}}=\omega^{2}+\omega=-1
$$

74 (c)
Let $z=\frac{3+2 i \sin \theta}{1-2 i \sin \theta}$
$\Rightarrow \quad z=\frac{3+2 i \sin \theta}{1-2 i \sin \theta} \times \frac{(1+2 i \sin \theta)}{1+2 i \sin \theta}$
$=\frac{3-4 \sin ^{2} \theta+8 \mathrm{i} \sin \theta}{1+4 \sin ^{2} \theta}$
For purely imaginary of z, put $\operatorname{Re}(z)=0$
ie, $\quad \frac{3-4 \sin ^{2} \theta}{1+4 \sin ^{2} \theta}=0$
$\Rightarrow \quad \sin \theta= \pm \frac{\sqrt{3}}{2}$
$\Rightarrow \quad \theta=\mathrm{n} \pi+(-1)^{\mathrm{n}}\left(+\frac{\pi}{3}\right)=\mathrm{n} \pi \pm \frac{\pi}{3}$
75 (a)
We have,
$x^{2}+2 a x+10-3 a>0$ for all $x \in R$
$\Rightarrow 4 a^{2}-40+12 a<0 \quad$ [Using: discriminant
$<0]$
$\Rightarrow a^{2}+3 a-10<0$
$\Rightarrow(a+5)(a-2)<0 \Rightarrow-5<a<2$
76 (b)
Let $a_{1}=a+i b, z_{2}=c+i d$. Then,
$z_{1}+z_{2}$ is real
$\Rightarrow(a+c)+i(b+d)$ is real
$\Rightarrow b+d=0 \Rightarrow d=-b$
$z_{1} z_{2}$ is real
$\Rightarrow(a c-b d)+i(a d+b c)$ is real
$\Rightarrow a d+b c=0$
$\Rightarrow a(-b)+b c=0$ Using (i)
$\Rightarrow a=c$
$\therefore z_{1}=a+i b=c-i d=\bar{z}_{2} \quad[\because a=c$ and b

$$
=-d]
$$

77 (a)
Let $z=z+i y$. Then,
$\frac{2 z+1}{i z+1}=\frac{(2 x+1)+2 i y}{(1-y)+i x}$
$=\frac{(1-y+2 x)+i\left(2 y-2 y^{2}-2 x^{2}-x\right)}{(1-y)^{2}+x^{2}}$
$\operatorname{Im}\left(\frac{2 z+1}{i z+1}\right)=3$
$\Rightarrow \frac{2 y-2 y^{2}-2 x^{2}-x}{(1-y)^{2}+x^{2}}=3$
$\Rightarrow 2 y-2 y^{2}-2 x^{2}-x=3 x^{2}+3(1-y)^{2}$
$\Rightarrow 5 x^{2}+5 y^{2}-8 y+x+3=0$, which is a circle
78 (a)
$z_{2}+a x+a^{2}=0 \Rightarrow z=a \omega, a \omega^{2}$
(where ' ω ' is a non-real root of unity)
\Rightarrow Locus of z is a pair of straight lines
and $\arg (z)=\arg (a)+\arg (\omega)$
or $\arg (z)=\arg (a)+\arg \left(\omega^{2}\right)$
$\Rightarrow \arg (z)= \pm \frac{2 \pi}{3}$
Also, $|z|=|a||\omega|$ or $|z|=|a|\left|\omega^{2}\right|$
$\Rightarrow|z|=|a|$
79 (b)
Diagonals of parallelogram $A B C D$ are bisected each other at a point ie,
$\frac{z_{1}+z_{3}}{2}=\frac{z_{2}+z_{4}}{2}$
$\Rightarrow \quad z_{1}+z_{2}=z_{2}+z_{4}$
80 (a)
Now, $\frac{1}{(1+x)\left(1+x^{2}\right)}=\frac{A}{1+x}+\frac{B x+C}{1+x^{2}}$
Where $B x+C=f(x)$
$\Rightarrow 1=A\left(1+x^{2}\right)+(B x+C)(1+x)$
On comparing the coefficient of x^{2}, x and constant terms, we get
$0=A+B, 0=B+C$ and $1=A+C$
$\Rightarrow \quad A=C=\frac{1}{2}$ and $B=-\frac{1}{2}$
$\therefore \frac{1}{(1+x)\left(1+x^{2}\right)}=\frac{1}{2(1+x)}+\frac{-\frac{x}{2}+\frac{1}{2}}{1+x^{2}}$
$\therefore f(x)=-\frac{x}{2}+\frac{1}{2}=\frac{1-x}{2}$
81 (c)
We have, $a+b+c=0$
Let $D=B^{2}+4 A C$
$=9 b^{2}-4(4 a)(2 c)=9 b^{2}-32 a c$
$=9(a+c)^{2}-32 a c \quad$ [from Eq. (i)]
$=9(a-c)^{2}+4 a c$
Hence, roots are real.
82 (a)
Given, $x^{2}(1+2 k)+x(1-2 k)+1(1-2 k)=0$
...(i)
Given, $D=0, b^{2}-4 a c=0$
$\Rightarrow(1-2 k)^{2}-4(1+2 k)(1-2 k)=0$
$\Rightarrow 20 k^{2}-4 k-3=0$
$\Rightarrow k=\frac{1}{2}, \frac{3}{10}$
83 (d)
We have, $\frac{\log 5+\log \left(x^{2}+1\right)}{\log (x-2)}=2$
$\Rightarrow \log \left\{5\left(x^{2}+1\right)\right\}=\log (x-2)^{2}$
$\Rightarrow 5\left(x^{2}+1\right)=(x-2)^{2}$
$\Rightarrow 4 x^{2}+4 x+1=0$
$\Rightarrow x=-\frac{1}{2}$
But for $x=-\frac{1}{2}, \log (x-2)$ is not meaningful.
\therefore It has no root.
84 (a)
We have,
$|x|^{2}-3|x|+2=0$
$\Rightarrow(|x|-1)(|x|-2)=0$
$\Rightarrow|x|=1,2 \Rightarrow x= \pm 1, \pm 2$
(a)

Let α_{1}, β_{1} be the roots of $x^{2}+a x+b=0$ and α_{2}, β_{2} be the roots of $x^{2}+b x+a=0$. Then, $\alpha_{1}+\beta_{1}=-a, \alpha_{1} \beta_{1}=b ; \alpha_{2}+\beta_{2}=-b, \alpha_{2} \beta_{2}=a$ It is given that
$\left|\alpha_{1}-\beta_{1}\right|=\left|\alpha_{2}-\beta_{2}\right|$
$\Rightarrow\left(\alpha_{1}-\beta_{1}\right)^{2}=\left(\alpha_{2}-\beta_{2}\right)^{2}$
$\Rightarrow\left(\alpha_{1}+\beta_{1}\right)^{2}-4 \alpha_{1} \beta_{1}=\left(\alpha_{2}+\beta_{2}\right)^{2}-4 \alpha_{2} \beta_{2}$
$\Rightarrow a^{2}-4 b=b^{2}-4 a$
$\Rightarrow\left(a^{2}-b^{2}\right)+4(a-b)=0 \Rightarrow a+b+4=0$
$[\because a \neq b]$
86 (b)
$\frac{3}{4}\left(\log _{2} x\right)^{2}+\log _{2} x-\frac{5}{4}=\log _{x} \sqrt{2}$
$\Rightarrow \frac{3}{4}\left(\log _{2} x\right)^{2}+\log _{2} x-\frac{5}{4}=\frac{1}{2 \log _{2} x}$
$\Rightarrow 3\left(\log _{2} x\right)^{3}+4\left(\log _{2} x\right)^{2}-5\left(\log _{2} x\right)-2=0$
Put $\log _{2} x=y$
$\therefore \quad 3 y^{2}+4 y^{2}-5 y-2=0$
$\Rightarrow \quad(y-1)(y+2)(3 y+1)=0$
$\Rightarrow y=1,-2, \frac{-1}{3}$
$\Rightarrow \log _{2} x=1,-2,-\frac{1}{3}$
$\Rightarrow x=2, \frac{1}{2^{1 / 3}}, \frac{1}{4}$
87 (d)
Since $|z+a| \leq a$ implies z lies on or inside a circle with centre $(-a, 0)$ and radius a, we have $\left|z_{1}\right|+\left|z_{2}\right|+\left|z_{3}\right| \leq 14$
88
(b)
$\log _{\sqrt{3}} 300=\log _{\sqrt{3}} 3+\log _{\sqrt{3}} 100$
$=2 \log _{\sqrt{3}} \sqrt{3}+2 \log _{\sqrt{3}} 5+2 \log _{\sqrt{3}} 2$
$=2(1+a+b) \quad\left[\because \log _{\sqrt{b}} 5=a, \log _{\sqrt{b}} 2=b\right]$
89 (a)
We have,
$p+q<r+s$
$q+r<s+t$
$r+s<t+p$
and, $s+t<p+q$
From (i) and (iii), we have
$p+q<r+s<t+p \Rightarrow q<t$
From (ii) and (iv), we have
$q+r<s+t<p+q \Rightarrow r<p$
From (i) and (iv), we have
$s+t<p+q<r+s \Rightarrow t<r$
$\therefore q<t<r<p$
From (i), we have $p+q<r+s$
Also, $r<p$
$\therefore p+q+r<r+s+p \Rightarrow q<s$
From (iv), we have $s+t<p+q$
Also, $q<t$
$\therefore s+t+q<p+q+t \Rightarrow s<p$
$\therefore q<s<p$
Hence, the largest and the smallest numbers are p and q respectively
(c)

We have,
$\frac{x+2}{x^{2}+1}>\frac{1}{2}$
$\Rightarrow 2 x+4>x^{2}+1$
$\Rightarrow x^{2}-2 x-3<0$
$\Rightarrow(x-3)(x+1)<0$
$\Rightarrow-1<x<3 \Rightarrow x=0,1,2[\because x$ is an integer $]$
91 (a)
Let r be the common ratio of the GP. Since $\alpha, \beta, \gamma, \delta$ are in GP, then $\beta=\alpha r, \gamma=\alpha r^{2}$ and $\delta=$ αr^{3}.
For equations, $x^{2}-x+p=0$
$\therefore \alpha+\beta=1$
$\Rightarrow \alpha+\alpha r=1$
$\Rightarrow \alpha(1+r)=1 \ldots .(\mathrm{i})$
and $\alpha \beta=p \Rightarrow \alpha(\alpha r)=p$
$\Rightarrow \alpha^{2} r=p \quad$...(ii)
For equation, $x^{2}-x+q=0$
$\gamma+\delta=4$
$\Rightarrow \alpha r^{2}+\alpha r^{3}=4$
$\Rightarrow \alpha r^{2}(1+r)=4$
and $\gamma \delta=q \Rightarrow \alpha r^{3} \cdot \alpha r^{2}=q$
$\Rightarrow \alpha^{2} r^{5}=q$
On dividing Eq. (iii) by Eq. (i), we get
$r^{2}=4 \Rightarrow r= \pm 2$
If we take $r=2$, then α is not integral, so we take $r=-2$.
Substituting $r=-2$ in Eq. (i), we get
$\alpha=-1$
Now, from Eq. (ii), we have
$p=\alpha^{2} r=(-1)^{2}(-2)=-2$
and from Eq. (iv), we have
$q=\alpha^{2} r^{5}=(-1)^{2}(-2)^{5}=-32$
$\Rightarrow(p, q)=(-2,-32)$
92 (a)
Let the vertices of triangle be
$A\left(z_{1}\right), B\left(z_{2}\right)$ and $C\left(z_{3}\right)$
Given, $\frac{z_{1}-z_{3}}{z_{2}-z_{3}}=\frac{1-i \sqrt{3}}{2}$
$\Rightarrow\left|\frac{z_{1}-z_{3}}{z_{2}-z_{3}}\right|=\frac{|2|}{|2|}=1$
$\therefore \quad\left|z_{1}-z_{3}\right|=\left|z_{2}-z_{3}\right|$
$\Rightarrow \quad|A C|=|B C|$
Now, $\quad \frac{z_{1}-z_{3}}{z_{2}-z_{3}}=e^{-i \pi / 3}$
$\Rightarrow \quad \arg \left(\frac{z_{1}-z_{3}}{z_{2}-z_{3}}\right)=-\frac{\pi}{3}$
$\therefore \quad \angle B C A=\frac{\pi}{3}$
$\Rightarrow \quad|A C|=|B C|$ and $\angle B C A=60^{\circ}$
$\Rightarrow \quad|A B|=|B C|=|C A|$
$\Rightarrow \quad \triangle A B C$ is an equilateral triangle.
93 (d)
We have, $225+\left(3 \omega+8 \omega^{2}\right)^{2}+\left(3 \omega^{2}+8 \omega\right)^{2}$
$=225+9 \omega^{2}+64 \omega^{4}+48 \omega^{3}+9 \omega^{4}+64 \omega^{2}$ $+48 \omega^{3}$
$=225+9 \omega^{2}+64 \omega+48+9 \omega+64 \omega^{2}+48$
$=225+73\left(\omega^{2}+\omega\right)+96=225-73+96$

$$
=248
$$

94 (c)
Let $z=x+i y$
Given, $\left|\frac{z+2 i}{2 z+i}\right|<1$
$\Rightarrow \quad \frac{\sqrt{(x)^{2}+(y+2)^{2}}}{(2 x)^{2}+(2 y+1)^{2}}<1$
$\Rightarrow \quad x^{2}+y^{2}+4+4 y<4 x^{2}+4 y^{2}+1+4 y$
$\Rightarrow \quad 3 x^{2}+3 y^{2}>3$
$\Rightarrow x^{2}+y^{2}>1$
95 (c)
Let $a-d, a, a+d$ be the roots of the equation
$x^{3}-12 x^{2}+39 x-28=0$. Then,
$a-d+a+a+d=12$ and, $(a-d)(a+d)=28$
$\Rightarrow 3 a=12$ and $a\left(a^{2}-d^{2}\right)=28$
$\Rightarrow a=4$ and $d= \pm 3$
96 (b)
We have,
$\frac{2}{|x-4|}>1$
$\Rightarrow 2>|x-4|$
$\Rightarrow|x-4|<2 \Rightarrow-2<x-4<2 \Rightarrow 2<x<6$
But $\frac{2}{|x-4|}>1$ is not defined at $x=4$
$\therefore x \in(2,4) \cup(4,6)$
97 (b)
As sum of any four consecutive powers of iota is zero

$$
\begin{aligned}
\therefore \sum_{n=1}^{13}\left(i^{n}+i^{n+1}\right. & \\
& =\left(i+i^{2}+\ldots+i^{13}\right)+\left(i^{2}\right. \\
& \left.+i^{3}+\ldots+i^{14}\right)
\end{aligned}
$$

$=i+i^{2}=i-1$
98
(b)

The complex cube roots of unity are $1, \omega, \omega^{2}$
Let $\alpha=\omega, \beta=\omega^{2}$
Then, $\alpha^{4}+\beta^{4}+\alpha^{-1} \beta^{-1}=\omega^{4}+\left(\omega^{2}\right)^{4}+$
$(\omega)^{-1}\left(\omega^{2}\right)^{-1}$
$=\omega+\omega^{2}+1=0$
(b)

Since a, b, c are in H.P.
$\therefore b=\frac{2 a c}{a+c}$
Now,
Disc $=4 b^{2}-4 a c=4\left\{\frac{4 a^{2} c^{2}}{(a+c)^{2}}-a c\right\}$

$$
=-4 a c \frac{(a-c)^{2}}{(a+c)^{2}}<0
$$

Hence, roots of the given equation are imaginary

The two circle whose centre and radius are $C_{1}(0,0), r_{1}=12, C_{2}(3,4), r_{2}=5$ and it passes through origin ie, the centre of C_{1}

Now, $C_{1} C_{2}=\sqrt{3^{2}+4^{2}}=5$
And $r_{1}-r_{2}=12-5=7$
$\therefore \quad C_{1} C_{2}<r_{1}-r_{2}$
Hence, circle C_{2} lies inside the circle C_{1}
From figure the minimum distance between them, is
$A B=C_{1} B-C_{1} A$
$=r_{1}-\left(C_{1} C_{2}+C_{2} A\right)$
$=12-10=2$
101 (b)
Since, α and β be the roots of the equation
$x^{2}+\sqrt{\alpha} x+\beta=0$, therefore
$\alpha+\beta=-\sqrt{\alpha}$ and $\alpha \beta=\beta$
From second relation $\beta \neq 0$
$\therefore \quad \alpha=1$
$\therefore 1+\beta=-1 \Rightarrow \beta=-2$
Hence, $\alpha=1$ and $\beta=-2$
102 (d)
The equation has no real root, because LHS is always positive while RHS is zero

103 (a)
Let $z=x+i y$. Then,
$\frac{z-1}{z+1}=\frac{\left(x^{2}+y^{2}-1\right)+2 i y}{(x+1)^{2}+y^{2}}$
Since $\frac{z-1}{z+1}$ is purely imaginary. Therefore,
$\operatorname{Re}\left(\frac{z-1}{z+1}\right)=0$
$\Rightarrow \frac{x^{2}+y^{2}-1}{(x+1)^{2}+y^{2}}=0$
$\Rightarrow x^{2}+y^{2}=1 \Rightarrow|z|^{2}=1 \Rightarrow|z|=1$
ALITER We have,
$\left(\frac{z-1}{z+1}\right)$ is purely imaginary
$\Rightarrow \arg \left(\frac{z-1}{z+1}\right)= \pm \frac{\pi}{2}$
$\Rightarrow z$ lies on the circle $|z|=1$
104 (a)
Let z be the fourth vertex of parallelogram, then $\frac{z_{1}+z_{3}}{2}=\frac{z_{2}+z}{2} \Rightarrow \quad z=z_{1}+z_{3}-z_{2}$
105 (a)
Let $z=x+i y$
$\Rightarrow z z=(x+i y)(x+i y)$
$=x^{2}-y^{2}+2 i x y$
$=0+2 i x y \quad[\because \operatorname{Re}(z)=\operatorname{Im}(z) \Rightarrow x=y]$
$\Rightarrow \operatorname{Re}\left(z^{2}\right)=0$
106 (c)
Let $x=\sqrt{-1-\sqrt{-1-\sqrt{-1-\ldots \infty}}}$
Then, $x=\sqrt{-1-x}$ or $x^{2}=-1-x$
or $x^{2}+x+1=0$
$\therefore \quad x=\frac{-1 \pm \sqrt{1-4.1 .1}}{2.1}=\frac{-1 \pm \sqrt{-3}}{2}$
$=\frac{-1 \pm \sqrt{3} i}{2}=\omega$ or ω^{2}
107 (c)
We have, $z_{k}=1+a+a^{2}+\ldots+a^{k-1}=\frac{1-a^{k}}{1-a}$
$\Rightarrow z_{k}-\frac{1}{1-a}=\frac{-a^{k}}{1-a}$
$\Rightarrow\left|z_{k}-\frac{1}{1-a}\right|=\frac{\left|a^{k}\right|}{|1-a|}$
$=\frac{\left|a^{k}\right|}{|1-a|}<\frac{1}{|1-a|} \quad(\because|a|<1)$
$\Rightarrow z_{k}$ lies within a circle $\left|z-\frac{1}{1-a}\right|=\frac{1}{|1-a|}$
108 (b)
Here, $\sum \alpha=0, \sum \alpha \beta=-7, \alpha \beta \gamma=-7$
$\therefore \frac{1}{\alpha^{4}}+\frac{1}{\beta^{4}}+\frac{1}{\gamma^{4}}=\frac{\alpha^{4} \beta^{4}+\beta^{4} \gamma^{4}+\gamma^{4} \alpha^{4}}{\alpha^{4} \beta^{4} \gamma^{4}}$
$=\frac{\sum \alpha^{4} \beta^{4}}{\alpha^{4} \beta^{4} \gamma^{4}}$

Now, $\sum \alpha \beta \sum \alpha \beta \sum \alpha \beta \sum \alpha \beta=\left(\sum \alpha \beta\right)^{2}\left(\sum \alpha \beta\right)^{2}$
$\Rightarrow(-7)^{4}=\left[\alpha^{2} \beta^{2}+\beta^{2} \gamma^{2}+\gamma^{2} \alpha^{2}\right.$

$$
+2 \alpha \beta \gamma(\alpha+\beta+\gamma)]
$$

$\left[\alpha^{2} \beta^{2}+\beta^{2} \gamma^{2}+\gamma^{2} \alpha^{2}+2 \alpha \beta \gamma(\alpha+\beta+\gamma)\right]$
$=\left(\alpha^{2} \beta^{2}+\beta^{2} \gamma^{2}+\gamma^{2} \alpha^{2}\right)\left(\alpha^{2} \beta^{2}+\beta^{2} \gamma^{2}+\gamma^{2} \alpha^{2}\right)$
$\left[\because \sum \alpha=\alpha+\beta+\gamma=0\right]$
$=\alpha^{4} \beta^{4}+\beta^{4} \gamma^{4}+\gamma^{4} \alpha^{4}+2 \alpha^{4} \beta^{2} \gamma^{2}+2 \alpha^{2} \beta^{4} \gamma^{2}$

$$
+2 \alpha^{2} \beta^{2} \gamma^{4}
$$

$=\sum \alpha^{4} \beta^{4}+2 \alpha^{2} \beta^{2} \gamma^{2}\left(\alpha^{2}+\beta^{2}+\gamma^{4}\right)$
$=\sum \alpha^{4} \beta^{4}+2 \alpha^{2} \beta^{2} \gamma^{2}\left[\left(\sum a\right)^{2}-2 \sum \alpha \beta\right]$
$=\sum \alpha^{4} \beta^{4}+2 \alpha^{2} \beta^{2} \gamma^{2}[0-2 \times(-7)]$
$=\sum \alpha^{4} \beta^{4}+2(-7)^{2}(2 \times 7)$
$\Rightarrow \sum \alpha^{4} \beta^{4}=(-7)^{4}+4(-7)^{3}$
$\Rightarrow \quad \sum \alpha^{4} \beta^{4}=(-7)^{3}(-7+4)=-3(-7)^{3}$
On putting this value in Eq. (i), we get
$\frac{1}{\alpha^{4}}+\frac{1}{\beta^{4}}+\frac{1}{\gamma^{4}}=\frac{-3(-7)^{3}}{(-7)^{4}}=\frac{-3}{-7}=\frac{3}{7}$
109 (b)
Given, $\sin \theta+\cos \theta=h$
$\Rightarrow \sin ^{2} \theta+\cos ^{2} \theta+2 \sin \theta \cos \theta=h^{2}$
[squaring]
$\Rightarrow \sin \theta \cos \theta=\frac{h^{2}-1}{2}$
The quadratic equation having the roots $\sin \theta$ and $\cos \theta$ is
$x^{2}-(\sin \theta+\cos \theta) x+\sin \theta \cos \theta=0$
$\therefore \quad 2 x^{2}-2 h x+\left(h^{2}-1\right)=0$
110 (a)
Replacing x by $\frac{1-b x}{a x}$ we get the required equation
$a\left(\frac{1-b x}{a x}\right)^{2}+b\left(\frac{1-b x}{a x}\right)+c=0$
$\Rightarrow a\left(1+b^{2} x^{2}-2 b x\right)+a x\left(b-b^{2} x\right)+c a^{2} x^{2}=0$
$\Rightarrow a+a b^{2} x^{2}-2 a b x+a b x-a b^{2} x^{2}+a^{2} c x^{2}=0$
$\Rightarrow a c x^{2}-b x+1=0$
111 (d)

$$
\begin{aligned}
& \sqrt{i}=\sqrt{\frac{2 i}{2}}=\frac{1}{\sqrt{2}} \sqrt{2 i+1+i^{2}} \\
& =\frac{1}{\sqrt{2}} \sqrt{(1+i)^{2}}= \pm \frac{1}{\sqrt{2}}(1+i)
\end{aligned}
$$

112 (b)
Let α and α^{n} be the roots of the equation, then $\alpha+\alpha^{n}=-\frac{b}{a}$ and $\alpha \cdot \alpha^{n}=\frac{c}{a} \Rightarrow \alpha^{n+1}=\frac{c}{a}$
On eliminating α, we get
$\left(\frac{c}{a}\right)^{\frac{1}{n+1}}+\left(\frac{c}{a}\right)^{\frac{1}{n+1}}=-\frac{b}{a}$
$\Rightarrow a \cdot a^{-\frac{1}{n+1}} c^{\frac{1}{n+1}}+a \cdot a^{-\frac{n}{n+1} c^{\frac{n}{n+1}}}=-b$
$\Rightarrow\left(a^{n} c\right)^{\frac{1}{n+1}}+\left(a c^{n}\right)^{\frac{1}{n+1}}=-b$
113 (d)
Let $z=x+i y$
$\therefore \quad|z+3-i|=|(x+3)+i(y-1)|=1$
$\Rightarrow \quad \sqrt{(x+3)^{2}+(y-1)^{2}}=1$
...(i)
$\because \arg z=\pi \quad \Rightarrow \quad \tan ^{-1} \frac{y}{x}=\pi$
$\Rightarrow \quad \frac{y}{x}=\tan \pi=0 \quad \Rightarrow y=0$
...(ii)
from Eqs.(i)and (ii)we get
$x=-3, y=0$
$\therefore \quad z=-3$
$\Rightarrow|z|=|-3|=3$
114 (a)
Let $x=(-1)^{1 / 3}$
$x=(\cos \pi+i \sin \pi)^{1 / 3}$
$x=\left[\cos \left(\frac{2 n+1}{3}\right) \pi+i \sin \left(\frac{2 n+1}{3}\right) \pi\right]$

$$
=e^{i(2 n+1) \pi / 3}
$$

Put $n=0,1,2$ we get
$x=e^{i \pi / 3}, e^{i \pi}, e^{5 i \pi / 3}$
\therefore Products of roots $=e^{i \pi / 3}, e^{\pi i} \cdot e^{5 \pi i / 3}=e^{3 \pi i}$
$=(\cos 3 \pi+i \sin 3 \pi)=-1$
Alternate Method
We know that the cube roots of -1 are $-1,-\omega,-\omega^{2}$
\therefore Their product $=(-1)(-\omega)\left(-\omega^{2}\right)=-1$
115 (c)
Sum of the roots
$=-\frac{b}{a}=-\frac{(-3)}{1}=3$
From the given options only (c) ie, $-2,1,4$ satisfies this condition
116 (c)
If $\left(a^{2}-3 a+2\right) x^{2}+\left(a^{2}-5 a+6\right) x+a^{2}-4=0$ is an identity in x, then
$a^{2}-3 a+2=0, a^{2}-5 a+6=0$ and $a^{2}-4=0$
must holdgood simultaneously.
Clearly, $a=2$ is the value of ' a ' which satisfies these equations
117 (a)
Since z_{2} and z_{3} can be obtained by rotating vector
representing z_{1} through $\frac{2 \pi}{3}$ and $\frac{4 \pi}{3}$ respectively
$\therefore z_{2}=z_{1} \omega$ and $z_{3}=z_{1} \omega^{2}$
$\Rightarrow z_{2}=(1+i \sqrt{3})\left(-\frac{1}{2}+i \frac{\sqrt{3}}{2}\right)$ and, z_{3}
$=(1+i \sqrt{3})\left(-\frac{1}{2}-i \frac{\sqrt{3}}{2}\right)$
$\Rightarrow z_{2}=-2+0 i$ and $z_{3}=1-i \sqrt{3}$
118 (b)
We have,
$\frac{x^{2}-3 x+4}{x+1}>1$

$\Rightarrow \frac{x^{2}-4 x+3}{x+1}>0$
$\Rightarrow \frac{(x-1)(x-3)}{x+1}>0 \Rightarrow x \in(-1,1) \cup(3, \infty)$
119 (a)
$\left(\frac{9}{10}\right)^{x}=-3+x-x^{2}$
$\Rightarrow\left(\frac{9}{10}\right)^{x}=-\left\{\left(x-\frac{1}{2}\right)^{2}+\frac{11}{4}\right\}$
\Rightarrow LHS is always positive while RHS is always negative. Hence, the given equation has no solution.
120 (a)
Let root of $3 a x^{2}+3 b x+c=0$ be α, then
$3 a \alpha^{2}+3 b \alpha+c=0$
According to the given condition,
$\Rightarrow \quad x=3 \alpha$
$\Rightarrow \quad \alpha=\frac{x}{3}$
$\therefore \quad 3 a \frac{x^{2}}{9}+3 b \frac{x}{3}+c=0$
$\Rightarrow a x^{2}+3 b x+3 c=0$
121 (a)
CASE I When $x^{2}+4 x+3 \geq 0$ i.e. $x \leq-3$ or $x \geq$ -1
In this case, we have
$\left|x^{2}+4 x+3\right|=x^{2}+4 x+3$
$\therefore\left|x^{2}+4 x+3\right|+(2 x+5)=0$
$\Rightarrow x^{2}+4 x+3+2 x+5=0$
$\Rightarrow x=-2,-4 \Rightarrow x=-4 \quad[\because x \leq-3$ or, $x \geq$ -1]
CASE II When $x^{2}+4 x+3<0$ i. e. $-3<x<-1$
In this case, we have
$\left|x^{2}+4 x+3\right|=-\left(x^{2}+4 x+3\right)$
$\therefore\left|x^{2}+4 x+3\right|+(2 x+5)=0$
$\Rightarrow-x^{2}-4 x-3+2 x+5=0$
$\Rightarrow-x^{2}-2 x+2=0$
$\Rightarrow x^{2}+2 x-2=0$
$\Rightarrow x=\frac{-2 \pm 2 \sqrt{3}}{2}=-1 \pm \sqrt{3}$
$\Rightarrow x=-1-\sqrt{3} \quad[\because-3<x<-1]$
122 (d)
Given, $x=\sqrt{\frac{2+\sqrt{3}}{2-\sqrt{3}}}=\sqrt{\frac{(2+\sqrt{3})(2+\sqrt{3})}{(2-\sqrt{3})(2+\sqrt{3})}}$
$=2+\sqrt{3}$
$\therefore \quad x^{2}(x-4)^{4}=(2+\sqrt{3})^{2}(2+\sqrt{3}-4)^{2}$
$=(\sqrt{3}+2)^{2}(\sqrt{3}-2)^{2}$
$=\left[(\sqrt{3})^{2}-(2)^{2}\right]^{2}$
$=(-1)^{2}=1$
123 (d)
We have, $\left|\lambda_{1} a_{1}+\lambda_{2} a_{2}+\ldots+\lambda_{n} a_{n}\right|$
$\leq\left|\lambda_{1} a_{1}\right|+\left|\lambda_{2} a_{2}\right|+\ldots+\left|\lambda_{n} a_{n}\right|$
$=\left|\lambda_{1}\right|\left|a_{1}\right|+\ldots+\left|\lambda_{n}\right|\left|a_{n}\right|$
$=\lambda_{1}\left|a_{1}\right|+\ldots+\lambda_{n}\left|a_{n}\right| \quad\left(\because\right.$ each $\left.\lambda_{k} \geq 0\right)$
$<\lambda_{1}+\ldots+\lambda_{n}$
$\left(\because\left|a_{k}\right|<1\right.$ and so $\lambda_{k}\left|a_{k}\right|<\lambda_{k}$ for all k

$$
=1,2, \ldots n)
$$

Hence, $\left|\lambda_{1} a_{1}+\lambda_{2} a_{2}+\ldots+\lambda_{n} a_{n}\right|<1$
124 (a)
It is given that $\tan \alpha$ and $\tan \beta$ are the roots of the equation $x^{2}+p x+q=0$
$\therefore \tan \alpha+\tan \beta=-p$ and $\tan \alpha \tan \beta=q$
$\Rightarrow \tan (\alpha+\beta)=\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta}=\frac{-p}{1-q}=\frac{p}{q-1}$
The LHS of choice (a) can be written as
$=\cos ^{2}(\alpha+\beta)\left\{\tan ^{2}(\alpha+\beta)+p \tan (\alpha+\beta)+q\right\}$
$=\frac{1}{1+\tan ^{2}(\alpha+\beta)}\left\{\tan ^{2}(\alpha+\beta)+p \tan (\alpha+\beta)\right.$ $+q\}$
$=\frac{1}{1+\frac{p^{2}}{(q-1)^{2}}}\left\{\frac{p^{2}}{(q-1)^{2}}+\frac{p^{2}}{q-1}+q\right\}=q$
So, option (a) is correct
125 (c)
$\sin \frac{\pi}{5}+i\left(1-\cos \frac{\pi}{5}\right)$
$=2 \sin \frac{\pi}{10} \cdot \cos \frac{\pi}{10}+i 2 \sin ^{2} \frac{\pi}{10}$
$=2 \sin \frac{\pi}{10}\left(\cos \frac{\pi}{10}+i \sin \frac{\pi}{10}\right)$
$\therefore \tan \theta=\frac{\sin \frac{\pi}{10}}{\cos \frac{\pi}{10}}=\tan \frac{\pi}{10} \Rightarrow \theta=\frac{\pi}{10}$

(b)

We know that, sum of any four consecutive powers of i is zero
$\therefore \quad \sum_{n=1}^{13}\left(i^{n}+i^{n+1}\right)$

$$
\begin{aligned}
& =\left(i+i^{2}+\ldots+i^{13}\right)+\left(i^{2}\right. \\
& \left.+i^{3}+\ldots+i^{14}\right)
\end{aligned}
$$

$=i^{13}+i^{14}$
$=i-1$
127
(a)
$\log _{3} x+\log _{3} \sqrt{x}+\log _{3} \sqrt[4]{x}+\log _{3} \sqrt[8]{x}+\ldots=4$
$\Rightarrow \log _{3} x+\frac{1}{2}+\log _{3} x+\frac{1}{4} \log _{3} x+\frac{1}{8} \log _{3} x+\ldots=4$
$\Rightarrow \log _{3} x\left[1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots\right]=4$
$\Rightarrow \log _{3} x\left[\frac{1}{1-\frac{1}{2}}\right]=4$
$\Rightarrow \log _{3} x=2$
$\Rightarrow x=3^{2}=9$
(d)

We have,
$\frac{2 x}{2 x^{2}+5 x+2}>\frac{1}{x+1}$
$\Rightarrow \frac{2 x}{2 x^{2}+5 x+2}-\frac{1}{x+1}>0$
$\Rightarrow \frac{2 x^{2}+2 x-2 x^{2}-5 x-2}{(x+1)(2 x+1)(x+2)}>0$

$\Rightarrow \frac{3 x+2}{(x+1)(2 x+1)(x+2)}<0$
$\Rightarrow x \in(-2,-1) \cup(-2 / 3,-1 / 2)$
129 (c)
Let α, β be the roots of the equation $x^{2}+p x+$ $8=0$
Then, $\alpha+\beta=-p$ and $\alpha \beta=8$
Now,
$\alpha-\beta=2$
$\Rightarrow(\alpha+\beta)^{2}-4 \alpha \beta=(2)^{2} \Rightarrow p^{2}-32=4 \Rightarrow p$
$= \pm 6$

130 (d)
Let α be a common root of the equations
$x^{2}+a x+10=0$ and $x^{2}+b x-10=0$. Then,
$\alpha^{2}+a \alpha+10=10$
and, $\alpha^{2}+b \alpha-10=0$
Adding and subtracting these two equations, we get
$2 \alpha^{2}+\alpha(a+b)=0$ and $(a-b) \alpha+20=0$
$\Rightarrow \alpha=-\frac{a+b}{2}$ and $\alpha=-\frac{20}{a-b}$
$\Rightarrow-\frac{a+b}{2}=-\frac{20}{a-b} \Rightarrow a^{2}-b^{2}=40$
131 (a)
We have,
$\left|z_{1}\right|=\left|z_{2}\right|=\left|z_{3}\right|$
$\Rightarrow O A=O B=O C$, where O is the origin

\Rightarrow Circumcentre of $\triangle A B C$ is at the origin But, the triangle is equilateral. Therefore, its centroid coincides with the circumcentre Thus,
$\frac{z_{1}+z_{2}+z_{3}}{3}=0 \Rightarrow z_{1}+z_{2}+z_{3}=0$
Clearly, $z_{2}=z_{1} e^{i 2 \pi / 3}=z_{1} \omega$ and $z_{3}=$ $z_{1} e^{i 4 \pi / 3}=z_{1} \omega^{2}$
Let $O A$ be along x-axis such that $O A=1$ unit.
Then, $z_{1}=1$
$\therefore z_{2}=\omega$ and $z_{3}=\omega^{2}$
Hence, $z_{1} z_{2} z_{3}=\omega^{2}=1$
Thus, we have
$z_{1}+z_{2}+z_{3}=0$ and $z_{1} z_{2} z_{3}=1$
132 (c)
We have,
$\sqrt{x+i y}= \pm(a+i b)$
$\Rightarrow x+i y=a^{2}-b^{2}+2 i a b$
$\Rightarrow x=a^{2}-b^{2}, y=2 a b$
$\therefore \sqrt{-x-i y}=\sqrt{-\left(a^{2}-b^{2}\right)-2 i a b}$
$\Rightarrow \sqrt{-x-i y}=\sqrt{b^{2}-a^{2}-2 i a b}=\sqrt{(b-i a)^{2}}$ $= \pm(b-i a)$
133 (c)
Since, α, β are the roots of the equation
$x^{2}+p x+q=0$, then
$\alpha+\beta=p, \alpha \beta=q \ldots(\mathrm{i})$
and α^{4}, β^{4} are the roots of $x^{2}-x r+s=0$.
Then, $\alpha^{4}+\beta^{4}=r$
and $\alpha^{4} \beta^{4}=s$
If D is discriminant of the equation $x^{2}-4 q x+$ $2 q^{2}-r=0$,
Then $D=16 q^{2}-4\left(2 q^{2}-r\right)=8 q^{2}+4 r$
$=8 \alpha^{2} \beta^{2}+4\left(\alpha^{4}+\beta^{4}\right)$ [from Eqs. (i) and (ii)]
$=4\left(\alpha^{2} \beta^{2}\right)^{2} \geq 0$
Hence, the equation $x^{2}-4 q x+2 q^{2}-r=0$ has always two real roots.
134 (a)
Since, a, b and c are the sides of a $\triangle A B C$, then
$|a-b|<|c| \Rightarrow a^{2}+b^{2}-2 a b<c^{2}$
Similarly, $b^{2}+c^{2}-2 b c<a^{2}, c^{2}+a^{2}-2 c a<$ b^{2}

On adding, we get
$\left(a^{2}+b^{2}+c^{2}\right)<2(a b+b c+c a)$
$\Rightarrow \frac{a^{2}+b^{2}+c^{2}}{a b+b c+c a}<2$
Also, $D \geq 0,(a+b+c)^{2}-3 \lambda(a b+b c+c a) \geq 0$
$\Rightarrow \frac{a^{2}+b^{2}+c^{2}}{a b+b c+c a}>3 \lambda-2$
From Eqs. (i) and (ii),
$3 \lambda-2<2 \Rightarrow \lambda<\frac{4}{3}$
135 (a)
Let A be the vertex with affix z_{1}. There are two possibilities of z_{2} ie, z_{2} can be obtained by rotating z_{1} through $\frac{2 \pi}{n}$ either in clockwise or in anti-clockwise direction.

$\therefore \frac{z_{2}}{z_{1}}=\left|\frac{z_{2}}{z_{1}}\right| e^{ \pm \frac{i 2 \pi}{n}}$
$\Rightarrow z_{2}=z_{1}\left(\cos \frac{2 \pi}{n} \pm i \sin \frac{2 \pi}{n}\right) \quad\left(\because\left|z_{2}\right|=\left|z_{1}\right|\right)$
136 (d)
Given, $z=\cos \theta+i \sin \theta=e^{i \theta}$

$$
\begin{aligned}
& \therefore \sum_{m=1}^{15} \operatorname{Im}\left(z^{2 m-1}\right)=\sum_{m=1}^{15} \operatorname{Im}\left(e^{i \theta}\right)^{2 m-1} \\
& =\sum_{m=1}^{15} \operatorname{Im} e^{i(2 m-1) \theta} \\
& =\sin \theta+\sin 3 \theta+\sin 5 \theta+\ldots+\sin 29 \theta \\
& =\frac{\sin \left(\frac{\theta+29 \theta}{2}\right) \sin \left(\frac{15 \times 2 \theta}{2}\right)}{\sin \left(\frac{2 \theta}{2}\right)}
\end{aligned}
$$

$=\frac{\sin (15 \theta) \sin (15 \theta)}{\sin \theta}=\frac{1}{4 \sin 2^{\circ}}$
137 (d)
We have,
$2 z^{2}+2 z+a=0 \Rightarrow z=\frac{-2 \pm \sqrt{4-8 a}}{4}$

$$
=\frac{-1 \pm \sqrt{1-2 a}}{2}
$$

For z to be non-real, we must have
$4-8 a<0 \Rightarrow a>\frac{1}{2}$
Let $z_{1}=\frac{-1+\sqrt{1-2 a}}{2}$ and $z_{2}=\frac{-1-\sqrt{1-2 a}}{2}$
Now, origin and points representing z_{1} and z_{2} will form an equilateral triangle in the argand plane, if
$z_{1}^{2}+z_{2}^{2}=z_{1} z_{2} \quad\left[\because z_{1}^{2}+z_{2}^{2}+z_{3}^{2}\right.$

$$
\left.=z_{1} z_{2}+z_{2} z_{3}+z_{3} z_{1}\right]
$$

$\Rightarrow\left(z_{1}+z_{2}\right)^{2}=3 z_{1} z_{2}$
$\Rightarrow 1=\frac{3 a}{2} \Rightarrow a=\frac{2}{3}$
Clearly, $a=2 / 3$ satisfies the condition $a>1 / 2$
Hence, $a=2 / 3$
138 (c)
Let P, A, B represent complex numbers
$z, 1+0 i,-1+0 i$ respectively, then
$|z-1|+|z+1| \leq 4 \Rightarrow P A+P B \leq 4$
$\Rightarrow \quad P$ moves in such a way that the sum of its
distance from two fixed points is always less than or equal to 4
\Rightarrow Locus of P is the interior and boundary of ellipse having foci at $(1,0)$ and $(-1,0)$
139 (b)
On comparing the given circle with $\left|\frac{z-\alpha}{z-\beta}\right|=k$, we get
$\alpha=i, \quad \beta=-i, \quad k=5$
\therefore Radius $=\left|\frac{k(\alpha-\beta)}{1-k^{2}}\right|=\left|\frac{5(i+i)}{1-25}\right|=\frac{5}{12}$
140 (d)
We have,
$(z+\alpha \beta)^{3}=\alpha^{3} \Rightarrow z=\alpha-\alpha \beta, z=\alpha \omega-\alpha \beta, z$

$$
=\alpha \omega^{2}-\alpha \beta
$$

Thus, the vertices A, B and C of $\triangle A B C$ are respectively, $\alpha-\alpha \beta, \alpha \omega-\alpha \beta$ and $\alpha \omega^{2}-\alpha \beta$
Clearly, $A B=B C=A C=|\alpha||1-\omega|=\sqrt{3}|\alpha|$
141

$$
\begin{aligned}
& \Rightarrow \quad(2 \sqrt{2})^{33}|\cos 33 \theta+i \sin 33 \theta|=2^{49}|z| \\
& \Rightarrow \quad 2^{\frac{99}{2}}(1)=2^{49}|z| \quad \Rightarrow \quad|z|=\sqrt{2}
\end{aligned}
$$

(d)

Let the vertices be $z_{0}, z_{1}, \ldots, z_{5}$ w.r.t. centre 0 at origin and $\left|z_{0}\right|=\sqrt{5}$

$\Rightarrow A_{0} A_{1}=\left|z_{1}-z_{0}\right|$
$=\left|z_{0} e^{i \theta}-z_{0}\right|$
$=\left|z_{0}\right||\cos \theta+i \sin \theta-1|$
$=\sqrt{5} \sqrt{(\cos \theta-1)^{2}+\sin ^{2} \theta}$
$=\sqrt{5} \sqrt{2(1-\cos \theta)}$
$=\sqrt{5} .2 \sin \frac{\theta}{2}$
$\Rightarrow A_{0} A_{1}=\sqrt{5} 2 \sin \left(\frac{\pi}{6}\right)=\sqrt{5}\left(\because \theta=\frac{2 \pi}{6}=\frac{\pi}{3}\right) \ldots$ (i)
Similarly, $A_{1} A_{2}=A_{2} A_{3}=A_{3} A_{4}=A_{4} A_{5}=A_{5} A_{0}=$ $\sqrt{5}$
Hence, the perimeter of regular hexagon
$=A_{0} A_{1}+A_{1} A_{2}+A_{2} A_{3}+A_{3} A_{4}+A_{4} A_{5}+A_{5} A_{0}$
$=6 \sqrt{5}$
143 (d)
Let $z=\cos \frac{2 \pi}{7}+i \sin \frac{2 \pi}{7}$, then by using De
Moivre's theorem
$\therefore z^{k}=\cos \frac{2 \pi k}{7}+i \sin \frac{2 \pi k}{7}$
Let $S=\sum_{k=1}^{6}\left(\sin \frac{2 \pi k}{7}-i \cos \frac{2 \pi k}{7}\right)$
$=\sum_{k=1}^{6}\left[(-i)\left(\cos \frac{2 \pi k}{7}+i \sin \frac{2 \pi k}{7}\right)\right]$
$=(-i) \sum_{k=1}^{6}\left(\cos \frac{2 \pi k}{7}+i \sin \frac{2 \pi k}{7}\right)$
$=(-i) \sum_{k=1}^{6} z^{k} \quad$ [from Eq.(i)]
$=(-i)\left[z+z^{2}+z^{3}+\ldots+z^{6}\right]$
It is GP of which the first term is z, number of terms is 6 and the common ratio is
$z=\cos \frac{2 \pi}{7}+i \sin \frac{2 \pi}{7} \neq 1$
$\therefore S=(-i) \frac{z\left(1-z^{6}\right)}{1-z}$
$=(-i) \frac{z-z^{7}}{1-z}$
$=(-i) \frac{z-z^{7}}{1-z}=i\left[\begin{array}{c}\because z^{7}=\left(\cos \frac{2 \pi}{7}+i \sin \frac{2 \pi}{7}\right)^{7} \\ =\cos 2 \pi+i \sin 2 \pi=1\end{array}\right]$
144 (d)
Let α, β and γ be the roots of the given equation
$\therefore \alpha+\beta+\gamma=-2, \alpha \beta+\beta \gamma+\gamma \alpha=-4$
And $\alpha \beta \gamma=-1$
Let the required cubic equation has the roots
$3 \alpha, 3 \beta$ and 3γ.
$\therefore 3 \alpha+3 \beta+3 \gamma=-6$
$3 \alpha .3 \beta+3 \beta .3 \gamma+3 \gamma .3 \alpha=-36$
And $3 \alpha .3 \beta .3 \gamma=-27$
\therefore Required equation is
$x^{3}-(-6) x^{2}+(-36) x-(-27)=0$
$\Rightarrow x^{3}+6 x^{2}-36 x+27=0$
145 (a)
Since, $D>0, \sin ^{2} a-4 \sin a(1-\cos a)>0$
$\Rightarrow \sin a>0$ or $(\sin a-4+4 \cos a)>0$
$\Rightarrow a \in(0, \pi)$ or $\frac{1-\cos a}{\sin a}<\frac{1}{4}$
$\Rightarrow a \in(0, \pi)$ or $a \in\left(0,2 \tan ^{-1}\left(\frac{1}{4}\right)\right)$
$\Rightarrow a \in\left(0,2 \tan ^{-1}\left(\frac{1}{4}\right)\right)$
146 (b)
Since, α, β are the roots of equation $x^{2}+b x+$ $c=0$.
Here, $D=b^{2}-4 c>0$ because $c<0<b$. So,
roots are real and unequal.
Now, $\alpha+\beta=-b<0$ and $\alpha \beta=c<0$
\therefore One root is positive and the other is negative, the negative root being numerically bigger. As $\alpha<\beta, \alpha$ is the negative root while β is the positive root. So, $|\alpha|>\beta$ and $\alpha<0<\beta$.
147 (d)
Given, $x^{2}-\sqrt{3} x+1=0$
$\Rightarrow \quad x=\frac{\sqrt{3} \pm \sqrt{3-4}}{2}=\frac{\sqrt{3} \pm i}{2}=\cos \frac{\pi}{6} \pm i \sin \frac{\pi}{6}$
$\Rightarrow \quad x^{n}=\cos \frac{n \pi}{6} \pm i \sin \frac{n \pi}{6}$
And $\frac{1}{x^{n}}=\cos \frac{n \pi}{6} \pm i \sin \frac{n \pi}{6}$
$\therefore \quad x^{n}-\frac{1}{x n}= \pm 2 i \sin \frac{n \pi}{6}$
$\Rightarrow\left(x^{n}-\frac{1}{x^{n}}\right)^{2}=-4 \sin ^{2} \frac{n \pi}{6}$
Hence, $\sum_{n=1}^{24}\left(x^{n}-\frac{1}{x^{n}}\right)^{2}$
$=-4\left[\sin ^{2} \frac{\pi}{6}+\sin ^{2} \frac{2 \pi}{6}+\ldots+\sin ^{2} \frac{24 \pi}{6}\right]$
$=-4(12)=-48$
148 (d)
We have,
$\left|x^{2}-x-6\right|=\left\{\begin{array}{l}x^{2}-x-6, \text { if } x \leq-2 \text { or } x \geq 3 \\ -\left(x^{2}-x-6\right), \text { if }-2<x<3\end{array}\right.$
CASE I When $x \leq-2$ or, $x \geq 3$
In this case, we have $\left|x^{2}-x-6\right|=x^{2}-x-6$
$\therefore\left|x^{2}-x-6\right|=x+2$
$\Rightarrow x^{2}-x-6=x+2$
$\Rightarrow x^{2}-2 x-8=0$
$\Rightarrow(x-4)(x+2)=0$
$\Rightarrow x=-2,4$
CASE II When $-2<x<3$
In this case, we have $\left|x^{2}-x-6\right|=-\left(x^{2}-x-\right.$ 6)
$\left|x^{2}-x-6\right|=x+2$
$\Rightarrow-\left(x^{2}-x-6\right)=x+2$
$\Rightarrow x^{2}-4=0$
$\Rightarrow x= \pm 2$
$\Rightarrow x=2 \quad[\because 2 \in(-2,3)]$
Hence, the roots are $-2,2,4$
149 (d)
We have,

$$
\left|\begin{array}{ccc}
3 & 1+S_{1} & 1+S_{2} \\
1+S_{1} & 1+S_{2} & 1+S_{3} \\
1+S_{2} & 1+S_{3} & 1+S_{4}
\end{array}\right|
$$

$$
=\left|\begin{array}{ccc}
1+1+1 & 1+\alpha+\beta & 1+\alpha^{2}+\beta^{2} \\
1+\alpha+\beta & 1+\alpha^{2}+\beta^{2} & 1+\alpha^{3}+\beta^{3} \\
1+\alpha^{2}+\beta^{2} & 1+\alpha^{3}+\beta^{3} & 1+\alpha^{4}+\beta^{4}
\end{array}\right|
$$

$$
=\left|\begin{array}{ccc}
1 & 1 & 1 \\
1 & \alpha & \beta \\
1 & \alpha^{2} & \beta^{2}
\end{array}\right|\left|\begin{array}{ccc}
1 & 1 & 1 \\
1 & \alpha & \beta \\
1 & \alpha^{2} & \beta^{2}
\end{array}\right|=\left|\begin{array}{ccc}
1 & 1 & 1 \\
1 & \alpha & \beta \\
1 & \alpha^{2} & \beta^{2}
\end{array}\right|^{2}
$$

Now,
$\left|\begin{array}{ccc}1 & 1 & 1 \\ 1 & \alpha & \beta \\ 1 & \alpha^{2} & \beta^{2}\end{array}\right|$
$=\left|\begin{array}{ccc}1 & 1 & 1 \\ 0 & \alpha-1 & \beta-1 \\ 0 & \alpha^{2}-1 & \beta^{2}-1\end{array}\right| \quad\left[\begin{array}{c}\text { Applying } R_{2} \rightarrow R_{2}-K \\ R_{3} \rightarrow R_{3}-R_{1}\end{array}\right.$
$=(\alpha-1)\left(\beta^{2}-1\right)-(\beta-1)\left(\alpha^{2}-1\right)$
$=\alpha \beta^{2}-\alpha-\beta^{2}-\alpha^{2} \beta+\beta+\alpha^{2}$
$=\left(\alpha^{2}-\beta^{2}\right)-(\alpha-\beta)-\alpha \beta(\alpha-\beta)$
$=(\alpha-\beta)[\alpha+\beta-1-\alpha \beta]$
$=\sqrt{(\alpha+\beta)^{2}-4 \alpha \beta}\{\alpha+\beta-1-\alpha \beta\}$
$=\sqrt{\frac{b^{2}-4 a c}{a^{2}}}\left\{-\frac{b}{a}-1-\frac{c}{a}\right\}$
$=-\sqrt{\frac{b^{2}-4 a c}{a^{2}}}\left(\frac{a+b+c}{a}\right)$
Hence,

$$
\begin{aligned}
& \left|\begin{array}{ccc}
3 & 1+S_{1} & 1+S_{2} \\
1+S_{1} & 1+S_{2} & 1+S_{3} \\
1+S_{2} & 1+S_{3} & 1+S_{4}
\end{array}\right| \\
& =\left\{-\sqrt{\frac{b^{2}-4 a c}{a^{2}}}\left(\frac{a+b+c}{a}\right)\right)^{2} \\
& =\frac{\left(b^{2}-4 a c\right)(a+b+c)^{2}}{a^{4}}
\end{aligned}
$$

150 (d)
We have,
$z_{k}=e^{\frac{i 2 \pi k}{n}}, \quad k=0,1,2, \ldots, n-1$
$\therefore\left|z_{k}\right|=\left|e^{\frac{i 2 \pi k}{n}}\right|=1$ for all $=0,1,2, \ldots n-1$
$\Rightarrow\left|z_{k}\right|=\left|z_{k+1}\right| \quad$ for all $k=0,1,2, \ldots, n-1$
151 (a)
Here, $\alpha+\beta=1+n^{2}$ and $\alpha \beta=\frac{1+n^{2}+n^{4}}{2}$
Now, $\alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta$
$=\left(1+n^{2}\right)^{2}-\left(1+n^{2}+n^{4}\right)=n^{2}$
152 (b)
Since, 4is a root of $x^{2}+a x+12=0$
$\therefore 16+4 a+12=0 \Rightarrow a=-7$
Let the roots of the equation $x^{2}+a x+b=0$ be α and α
$\therefore 2 \alpha=-a$
$\Rightarrow \alpha=\frac{7}{2}$
And $\alpha . \alpha=b$
$\Rightarrow\left(\frac{7}{2}\right)^{2}=b$
$\Rightarrow b=\frac{49}{4}$
153 (d)
$\log _{140} 63=\log _{2^{2} \times 5 \times 7}(3 \times 3 \times 7)$
$=\frac{\log _{2}(3 \times 3 \times 7)}{\log _{2}\left(2^{2} \times 5 \times 7\right)}$
$=\frac{2 \log _{2} 3+\log _{2} 7}{2 \log _{2} 2+\log _{2} 5+\log _{2} 7}$
$=\frac{2 a+\frac{1}{c}}{2+b+\frac{1}{c}}=\frac{2 a c+1}{2 c+b c+1}$
154 (d)
We have,
$(1-i)^{n}=2^{n}$
$\Rightarrow|1-i|^{n}=|2|^{n}$
$\Rightarrow(\sqrt{2})^{n}=2^{n} \Rightarrow 2^{n / 2}=2^{n} \Rightarrow 2^{n / 2}=1 \Rightarrow n=0$
So, there is no non-zero integral solution of the given equation
155 (a)
We have the following cases:
CASE I When $x<0$
In this case, we have $\operatorname{Sgn} x=-1$
$\therefore x^{2}-5 x-(\operatorname{Sgn} x) 6=0$
$\Rightarrow x^{2}-5 x+6=0 \Rightarrow x=2,3$
But, $x<0$. So, the equation has no solution in this case.
CASE II When $x>0$
In this case, we have $\operatorname{Sgn} x=1$
$\therefore x^{2}-5 x-(\operatorname{Sgn} x) 6=0$
$\Rightarrow x^{2}-5 x-6=0$
$\Rightarrow(x-6)(x+1)=0 \Rightarrow x=-1,6 \Rightarrow x$

$$
=6[\because x>0]
$$

Hence, the given equation has only one solution
(a)

We have,
$z^{n}=(1+z)^{n}$
$\Rightarrow\left|z^{n}\right|=\left|(1+z)^{n}\right|$
$\Rightarrow|z|^{n}=|1+z|^{n}$
$\Rightarrow|z|=|1+z|$
$\Rightarrow|z-0|=||z-(-1)|$
$\Rightarrow z$ lies on the perpendicular bisector of the
segment joing $(0,0)$ and $(0,-1)$
$\Rightarrow z=-\frac{1}{2} \Rightarrow \operatorname{Re}(z)<0$
157 (a)
Given, $(1+\omega)\left(1+\omega^{2}\right)\left(1+\omega^{4}\right)\left(1+\omega^{8}\right)$
$=(1+\omega)(-\omega)(1+\omega)\left(1+\omega^{2}\right)$
$\left[\because 1+\omega+\omega^{2}=0\right.$ and $\left.\omega^{4}=\omega\right]$
$=(1+\omega)^{2}\left(-\omega-\omega^{3}\right)$
$=\left(1+\omega^{2}+2 \omega\right)(-\omega-1)$
$=(\omega)\left(\omega^{2}\right)=1$
158 (d)
We have,
$\left|\begin{array}{ccc}6 i & -3 i & 1 \\ 4 & 3 i & -1 \\ 20 & 3 & i\end{array}\right|=\left|\begin{array}{ccc}6 i & 0 & 1 \\ 4 & 0 & -1 \\ 20 & 0 & i\end{array}\right|$ Applying C_{2}
$\rightarrow C_{2}+3 i C_{3}$
$=0=0+0 i$
$\therefore x=0, y=0$
159 (c)
Since z_{1}, z_{2}, z_{3} are vertices of an equilateral triangle
$\therefore z_{1}^{2}+z_{2}^{2}+z_{3}^{2}=z_{1} z_{2}+z_{2} z_{3}+z_{3} z_{1}$
$\Rightarrow\left(z_{1}+z_{2}+z_{3}\right)^{2}=3\left(z_{1}^{2}+z_{2}^{2}+z_{3}^{2}\right)$
$\Rightarrow\left(3 z_{0}\right)^{2}=3\left(z_{1}^{2}+z_{2}^{2}+z_{3}^{2}\right) \quad\left[\because \frac{z_{1}+z_{2}+z_{3}}{3}\right.$

$$
\left.=z_{0}\right]
$$

$\Rightarrow z_{1}^{2}+z_{2}^{2}+z_{3}^{2}=3 z_{0}^{2}$
160 (b)
As we know, $a x^{2}+b x+c>0$ for all $x \in R$, iff $a>$ 0 and $D<0$
$\therefore x^{2}+2 a x+(10-3 a)>0, \forall x \in R$
$\Rightarrow D<0$
$\Rightarrow 4 a^{2}-4(10-3 a)<0$
$\Rightarrow 4\left(a^{2}+3 a-10\right)<0$
$\Rightarrow(a+5)(a-2)<0$
Using number line rule

$a \in(-5,2)$
161 (b)
Given that α_{1}, α_{2} are the roots of the equation
$a x^{2}+b x+c=0$, then
$\alpha_{1}+\alpha_{2}=-\frac{b}{a}$ and $\alpha_{1} \alpha_{2}=\frac{c}{a}$
Now, β_{1}, β_{2} are the roots of $p x^{2}+q x+r=0$,
then
$\beta_{1}+\beta_{2}=-\frac{q}{p}$ and $\beta_{1} \beta_{2}=\frac{r}{p}$
Given system is $\alpha_{1} y+\alpha_{2} z=0$ and $\beta_{1} y+\beta_{2} z=$ 0.
$\Rightarrow \frac{\alpha_{1}}{\beta_{1}}=\frac{\alpha_{2}}{\beta_{2}}$
Now, $\frac{\alpha_{1 \alpha_{2}}}{\beta_{1} \beta_{2}}=\frac{\frac{c}{a}}{\frac{r}{p}}$
$\Rightarrow \frac{\alpha_{1}}{\beta_{1}} \cdot \frac{\alpha_{2}}{\beta_{2}}=\frac{c p}{a r}$
Since, $\frac{\alpha_{1}}{\beta_{1}}=\frac{\alpha_{2}}{\beta_{2}} \Rightarrow \frac{\alpha_{1}}{\alpha_{2}}=\frac{\beta_{1}}{\beta_{2}} \Rightarrow \frac{\alpha_{1}^{2}}{\alpha_{2}^{2}}=\frac{\beta_{1}^{2}}{\beta_{2}^{2}}$
$\Rightarrow \frac{\alpha_{1}^{2}+\alpha_{2}^{2}}{\alpha_{2}^{2}}=\frac{\beta_{1}^{2}+\beta_{2}^{2}}{\beta_{2}^{2}} \quad$ (on adding 1 on both sides)
$\Rightarrow \frac{\alpha_{2}^{2}}{\beta_{2}^{2}}=\frac{\alpha_{1}^{2}+\alpha_{2}^{2}}{\beta_{1}^{2}+\beta_{2}^{2}}$
$=\frac{\left(\alpha_{1}+\alpha_{2}\right)^{2}-2 \alpha_{1} \alpha_{2}}{\left(\beta_{1}+\beta_{2}\right)^{2}-2 \beta_{1} \beta_{2}}$
On substituting the values from Eqs. (i), (ii) and (iii), we get
$\frac{c p}{a r}=\frac{\frac{b^{2}}{a^{2}}-2\left(\frac{c}{a}\right)}{\frac{q^{2}}{p^{2}}-2\left(\frac{r}{p}\right)}=\frac{\left(b^{2}-2 a c\right) p^{2}}{\left(q^{2}-2 p r\right) a^{2}}$
$\Rightarrow \frac{c}{r}=\frac{p b^{2}-2 a c p}{q^{2} a-2 a p r}$
$\Rightarrow b^{2} r p-2 a c p r=q^{2} a c-p r 2 a c$
$\Rightarrow b^{2} p r=q^{2} a c$
162 (b)
$\left(1-\omega+\omega^{2}\right)\left(1-\omega^{2}+\omega^{3} \cdot \omega\right)$
$\left(1-\omega^{3} \cdot \omega+\omega^{6} \cdot \omega^{2}\right)\left(1-\omega^{6} \cdot \omega^{2}+\omega^{15} \cdot \omega\right) \ldots$ upto $2 n$
$=\left(1 \omega+\omega^{2}\right)\left(1-\omega^{2}+\omega\right)$
$\left(1-\omega+\omega^{2}\right)\left(1-\omega^{2}+\omega\right) \ldots$ upto $2 n$
$=\left[(-2 \omega)\left(-2 \omega^{2}\right)\right] \times\left[(-2 \omega)\left(-2 \omega^{2}\right)\right] \times \ldots$ upto $2 n$
$=\left(2^{2} \omega^{3}\right) \times\left(2^{2} \omega^{3}\right) \times \ldots$ upto n
$=\left[2^{2} \times 2^{2} \times 2^{2} \times \ldots\right.$ upto $\left.n\right]=2^{2 n}$
163 (d)
Given, α and β are different complex numbers and $|\beta|=1$
$\therefore \quad\left|\frac{\beta-\alpha}{1-\bar{\alpha} \beta}\right|=\frac{|\beta-\alpha|}{|\beta \bar{\beta}-\bar{\alpha} \beta|}=\frac{|\beta-\alpha|}{|\beta||\bar{\beta}-\bar{\alpha}|}=1$
164 (d)
$\frac{\log _{c+b} a+\log _{c-a} a}{2 \log _{c+b} a \cdot \log _{c-b} a}$
$=\frac{\frac{\log a}{\log (c+b)}+\frac{\log a}{\log (c-b)}}{2 \frac{\log a}{\log (c+b)} \cdot \frac{\log a}{\log (c-b)}}$
$=\frac{\log a\{\log (c-b)+\log (c+b)\}}{2(\log a)^{2}}=\frac{\log \left(c^{2}-b^{2}\right)}{2 \log a}$
$=\frac{\log a^{2}}{\log a^{2}} \quad\left(\because a^{2}+b^{2}=c^{2}\right)$
$=1$
165 (b)
We have,
$\frac{10 x^{2}+17 x-34}{x^{2}+2 x-3}<8$
$\Rightarrow \frac{10 x^{2}+17 x-34-8 x^{2}-16 x+24}{x^{2}+2 x-3}<0$
$\Rightarrow \frac{2 x^{2}+x-10}{x^{2}+2 x-3}<0$
$\Rightarrow \frac{(2 x+5)(x-2)}{(x+3)(x-1)}<0 \Rightarrow x \in(-3,-5 / 2) \cup$

166 (b)
$\left(\frac{1+\cos \phi+i \sin \phi}{1+\cos \phi-i \sin \phi}\right)^{n}=u+i v$
$\Rightarrow \quad\left(\frac{2 \cos ^{2} \frac{\phi}{2}+2 i \sin \frac{\phi}{2} \cos \frac{\phi}{2}}{2 \cos ^{2} \frac{\phi}{2}-2 \sin \frac{\phi}{2} \cos \frac{\phi}{2}}\right)^{n}=u+i v$
$\Rightarrow\left(\frac{e^{i \frac{\phi}{2}}}{e^{-i \frac{\phi}{2}}}\right)^{n}=u+i v \quad \Rightarrow \quad\left(e^{i n \phi}\right)=u+i v$
$\Rightarrow \cos n \phi+i \sin n \phi=u+i v$
$\Rightarrow u=\cos n \phi, v=\sin n \phi$
167 (c)
We have,
$2 x^{4}+5 x^{2}+3>0$ for all $x \in R$
So, $2 x^{4}+5 x^{2}+3=0$ has no real root
168 (c)
Given, α, β are the roots of $x^{2}-2 x+4=0$
$\therefore \alpha+\beta=2$
And $\alpha \beta=4$
Now, $\alpha-\beta=\sqrt{(\alpha+\beta)^{2}-4 \alpha \beta}$
$=\sqrt{4-4 \times 4}=\sqrt{-12}$
$\Rightarrow \alpha-\beta=2 \sqrt{3} i$
On solving Eqs. (i) and (ii0, we get
$\alpha=\frac{2+2 \sqrt{3} i}{2}=-2\left(\frac{-1-\sqrt{3} i}{2}\right)=-2 \omega^{2}$
And $\beta=\frac{2-2 \sqrt{3} i}{2}=-2\left(\frac{-1+\sqrt{3} i}{2}\right)=-2 \omega$
Now, $\alpha^{6}+\beta^{6}=\left(-2 \omega^{2}\right)^{6}+(-2 \omega)^{6}$
$=64\left(\omega^{3}\right)^{4}+64\left(\omega^{3}\right)^{2}$
$=128 \quad\left[\because \omega^{3}=1\right]$
169 (b)
We have, $|z+4| \leq 3 \Rightarrow-3 \leq z+4 \leq 3$
$\Rightarrow-6 \leq z+1 \leq 0 \Rightarrow 0 \leq-(z+1) \leq 6$
$\Rightarrow \quad 0 \leq|z+1| \leq 6$
Hence, greatest and least values of $|z+1|$ are 6 and 0 respectively
170 (a)
Let $P(z)$ be any point on the circle
$O P=O P^{\prime \prime}$
$\Rightarrow|z|=\left|z_{1}\right|$
$\Rightarrow|z|^{2}=\left|z_{1}\right|^{2} \Rightarrow z \bar{z}=z_{1} \overline{z_{1}} \Rightarrow \frac{Z}{z_{1}}=\frac{\overline{z_{1}}}{Z}$

171 (c)
It is given that $x+1$ be a factor of $f(x)$ given by
$f(x)=x^{4}+(p-3) x^{3}-(3 p-5) x^{2}+(2 p-9) x$ $+6$
$\therefore f(-1)=0$
$\Rightarrow 1-p+3-3 p+5-2 p+9+6=0$
$\Rightarrow 6 p=24 \Rightarrow p=4$
172 (a)
Let $\alpha \in A \cap B$. Then,
$\alpha \in A \cap B$
$\Rightarrow \alpha \in A$ and $\alpha \in B$
$\Rightarrow f(\alpha)=0$ and $g(\alpha)=0$
$\Rightarrow[f(\alpha)]^{2}+[g(\alpha)]^{2}=0$
$\Rightarrow \alpha$ is a root of $[f(x)]^{2}+[g(x)]^{2}=0$
173 (d)
Here, $\alpha+\beta=-p$ and $\alpha \beta=q$
Now, $(\alpha+\beta) x-\frac{\alpha^{2}+\beta^{2}}{2} x^{2}+\frac{\alpha^{3}+\beta^{3}}{3} x^{3}-\cdots$
$=\left(\alpha x-\frac{\alpha^{2} x^{2}}{2}+\frac{\alpha^{3} x^{3}}{3}-\ldots\right)$

$$
+\left(\beta x-\frac{\beta^{2} x^{2}}{2}+\frac{\beta^{3} x^{3}}{3}-\ldots\right)
$$

$=\log (1+\alpha x)+\log (1+\beta x)$
$=\log \left\{1+(\alpha+\beta) x+\alpha \beta x^{2}\right\}$
$=\log \left(1-p x+q x^{2}\right)$
174 (a
We have, $|z-5 i| \leq 1$

Let $\theta=\angle A O X=\min \cdot \operatorname{amp}(z)$,
$\therefore \angle A O C=90^{\circ}-\theta$
$\Rightarrow \sin \left(90^{\circ}-\theta\right)=\frac{1}{5}$
$\Rightarrow \cos \theta=\frac{1}{5}$
$\therefore z=O A \cos \theta+i O A \sin \theta$
$\Rightarrow z=\sqrt{5^{2}-1}\left(\frac{1}{5}\right)+i \sqrt{5^{2}-1} \sqrt{1-\frac{1}{5^{2}}}$
$=\frac{2 \sqrt{6}}{5}(1+i 2 \sqrt{6})$
175 (b)
Since α, β are the roots of the equation $x^{2}+p x+1$ and γ, δ are the roots of the equation $x^{2}+q x+1=0$
$\therefore \alpha^{2}+p \alpha+1=0, \beta^{2}+p \beta+1=0$,
$\gamma^{2}+q \gamma+1=0$ and $\delta^{2}+q \delta+1=0$
Also, $\alpha+\beta=-p, \alpha \beta=1, \gamma+\delta=-q$ and
$\gamma \delta=1$
$\therefore(\alpha-\gamma)(\beta-\gamma)(\alpha+\delta)(\beta+\delta)$
$=\left\{\alpha \beta-\gamma(\alpha+\beta)+\gamma^{2}\right\}\left\{\alpha \beta+\delta(\alpha+\beta)+\delta^{2}\right\}$
$=\left(\gamma^{2}+p \gamma+1\right)\left(\delta^{2}-p \delta+1\right)$
$=(p \gamma-q \gamma)(-q \delta-p \delta) \quad[$ Using (i)]
$=(p+q)(q-p) \gamma \delta=\left(q^{2}-p^{2}\right)$
176 (a)
Since, $\left|z_{1}+z_{2}\right|=\left|z_{1}\right|+\left|z_{2}\right|$
$\Rightarrow\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+2\left|z_{1}\right|\left|z_{2}\right| \cos \left(\theta_{1}-\theta_{2}\right)$
$=\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+2\left|z_{1}\right|\left|z_{2}\right|$
$\Rightarrow \cos \left(\theta_{1}-\theta_{2}\right)=1=\cos 0^{\circ}$
$\Rightarrow \quad \theta_{1}-\theta_{2}=0 \Rightarrow \theta_{1}=\theta_{2}$
$\Rightarrow \quad \arg \left(z_{1}\right)=\arg \left(z_{2}\right)$
177 (a)
$\sin \left\{\left(\omega^{10}+\omega^{23}\right) \pi-\frac{\pi}{4}\right\}=\sin \left\{\left(\omega+\omega^{2}\right) \pi-\frac{\pi}{4}\right\}$
$=\sin \left(-\pi-\frac{\pi}{4}\right)=\sin \frac{\pi}{4}=\frac{1}{\sqrt{2}}$
178 (d)
Let $f(x)=x^{3}-3 x+a$
If $f(x)$ has distinct roots between 0 and 1 . Then,
$f^{\prime}(x)=0$ has a root between 0 and 1
But, $f^{\prime}(x)=0 \Rightarrow 3 x^{2}-3=0 \Rightarrow x= \pm 1$
Clearly, $f^{\prime}(x)=0$ does not have any root between 0 and 1.
So, $f(x)$ does not have distinct roots between 0
and 1 for any value of a
179 (c)
It is given that α, β are the roots of the equation $375 x^{2}-25 x-2=0$
$\therefore \alpha+\beta=\frac{1}{15}$ and $\alpha \beta=\frac{-2}{375}$
$\therefore \lim _{n \rightarrow \infty} \sum_{r=1}^{n} S_{r}=\lim _{n \rightarrow \infty} \sum_{r=1}^{n}\left(\alpha^{r}+\beta^{r}\right)$
$\Rightarrow \lim _{n \rightarrow \infty} \sum_{r=1}^{n} S_{r}=\left(\alpha+\alpha^{2}+\alpha^{3}+\cdots \infty\right)+\left(\beta+\beta^{2}\right.$ $\left.+\beta^{3}+\cdots \infty\right)$
$\Rightarrow \lim _{n \rightarrow \infty} \sum_{r=1}^{n} S_{r}=\frac{\alpha}{1-\alpha}+\frac{\beta}{1-\beta} \quad[\because|\alpha|<1,|\beta|$
$<1]$
$\Rightarrow \lim _{n \rightarrow \infty} \sum_{r=1}^{n} S_{r}=\frac{\alpha+\beta-2 \alpha \beta}{1-(\alpha+\beta)+\alpha \beta}=\frac{\frac{1}{15}+\frac{4}{375}}{1-\frac{1}{15}-\frac{2}{375}}$

$$
=\frac{29}{348}
$$

180 (d)
We have,
$y=\tan x \cot 3 x$
$\Rightarrow y=\frac{\tan x}{\tan 3 x}$
$\Rightarrow y=\frac{\tan x\left(1-3 \tan ^{2} x\right)}{3 \tan x-\tan ^{3} x}$
$\Rightarrow y=\frac{1-3 \tan ^{2} x}{3-\tan ^{2} x}$
$\Rightarrow \tan ^{2} x=\frac{3 y-1}{y-3}$
$\Rightarrow \frac{3 y-1}{y-3} \geq 0 \quad\left[\because \tan ^{2} x \geq 0\right]$
$\Rightarrow y \leq \frac{1}{3}$ or $y>3$
181 (c)
Let α, β be the roots of the equation $2 x(2 x+1)=$ 1. Then,
$\alpha+\beta=-\frac{1}{2}$ and $\alpha \beta=-\frac{1}{4}$
$\Rightarrow 4 \alpha^{2}+2 \alpha-1=0$
Again,
$\alpha+\beta=-\frac{1}{2}$
$\Rightarrow \beta=-\frac{1}{2}-\alpha$
$\Rightarrow \beta=-\frac{1+2 \alpha}{2}$
$\Rightarrow \beta=-\frac{4 \alpha^{2}+2 \alpha+2 \alpha}{2}$
[Using (i)]
$\Rightarrow \beta=-2 \alpha(\alpha+1)$
$\Rightarrow \beta=-2 \alpha^{2}-2 \alpha$
$\Rightarrow \beta=-2 \alpha \times \alpha-2 \alpha$
$\Rightarrow \beta=\alpha\left(4 \alpha^{2}-1\right)-2 \alpha \quad[$ Using (i)]
$\Rightarrow \beta=4 \alpha^{3}-3 \alpha$
182 (a)
Let two consecutive integers n and $(n+1)$ be the roots of $x^{2}-b x+c=0$. Then, $n+(n+1)=b$ and $n(n+1)=c$
$\therefore b^{2}-4 c=(2 n+1)^{2}-4 n(n+1)=1$
183 (b)
Given, $a^{x}=b^{y}=c^{z}=m$ (say)
$\Rightarrow \quad x=\log _{a} m, y=\log _{b} m, z=\log _{c} m$
Again as, x, y, z are in GP, so
$\frac{y}{x}=\frac{z}{y}$
$\Rightarrow \frac{\log _{b} m}{\log _{a} m}=\frac{\log _{c} m}{\log _{b} m}$
$\Rightarrow \frac{\log _{m} a}{\log _{m} b}=\frac{\log _{m} b}{\log _{m} c}$
$\Rightarrow \log _{b} a=\log _{c} b$
184 (b)
Let $O, A\left(z_{1}\right)$ and $B\left(z_{2}\right)$ be the vertices of the triangle. The triangle is an equilateral triangle
$\therefore z_{2}=z_{1} e^{ \pm i \pi / 3}$
$\Rightarrow 1+i b=(a+i)(\cos \pi / 3 \pm \sin \pi / 3)$
$\Rightarrow 1+i b=(a+i)(1 / 2 \pm i \sqrt{3} / 2)$
$\Rightarrow 1+i b=\left(\frac{a}{2} \pm \frac{\sqrt{3}}{2}\right)+i\left(\frac{1}{2} \pm a \frac{\sqrt{3}}{2}\right)$
$\Rightarrow \frac{a}{2} \pm \frac{\sqrt{3}}{2}=1$ and $b=\frac{1}{2} \pm \frac{1}{2} a \sqrt{3}$
$\Rightarrow(a=2-\sqrt{3}$ or $a=2+\sqrt{3})$ and $b=\frac{1}{2} \pm \frac{a}{2} \sqrt{3}$
$\Rightarrow a=2-\sqrt{3}$ and $b=2-\sqrt{3} \quad[\because 0<a, b<1]$
185 (d)
We have,
$\sum_{r=0}^{n}(-1)^{r}{ }^{n} C_{r}\left\{i^{5 r}+i^{6 r}+i^{7 r}+i^{8 r}\right\}$
$=\sum_{r=0}^{n}(-1)^{r}{ }^{n} C_{r}\left\{i^{r}+i^{2 r}+i^{3 r}+1\right\}$
$=\sum_{r=0}^{n}(-1)^{r n} C_{r} i^{r}+\sum_{r=0}^{n}(-1)^{r}{ }^{n} C_{r}\left(i^{2}\right)^{r}$
$+\sum_{r=0}^{n}(-1)^{r}{ }^{n} C_{r}\left(i^{3}\right)^{r}$
$+\sum_{r=0}^{n}(-1)^{r}{ }^{n} C_{r}$
$=(1-i)^{n}+\left(1-i^{2}\right)^{n}+\left(1-i^{3}\right)^{n}+(1-1)^{n}$
$=(1-i)^{n}+2^{n}+(1+i)^{n}$

$$
\begin{aligned}
& =2^{n}+2^{n / 2}\left\{\cos \frac{\pi}{4}-i \sin \frac{\pi}{4}\right\}^{n} \\
& \quad+2^{n / 2}\left\{\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right\}^{n} \\
& =2^{n}+2^{n / 2+1} \cos \frac{n \pi}{4}
\end{aligned}
$$

186 (c)
Since, $b=\frac{a+c}{2}$
Now, discriminant, $D=B^{2}-4 A C$
$=4 b^{2}-4 a c$
$=4\left(\frac{a+c}{2}\right)^{2}-4 a c \quad$ [from Eq. (i)]
$=(a-c)^{2} \geq 0$
\therefore Roots of the given equation are rational and distinct

187 (a)
We have,
$\log _{1 / 2}|z-2|>\log _{1 / 2}|z|$
$\Rightarrow|z-2|<|z|$
$\Rightarrow z$ lies on the right side of the perpendicular bisector of the segment joining $(0,0)$ and $(2,0)$ $\Rightarrow \operatorname{Re}(z)>1$
189 (d)
Since, $\quad x^{2}-3|x|+2=0$
$\Rightarrow \quad(|x|-2)(|x|-1)=0$
$\Rightarrow|x|=2$ or $|x|=1$
$\Rightarrow x= \pm 2$ or $x= \pm 1$
\therefore The given equation has four real roots
190 (d)
Let 4 and α be roots of given equation
$\therefore 4 \alpha=12 \quad \Rightarrow \alpha=3$
And $4+3=-p \quad \Rightarrow \quad p=-7$
\therefore Equation $x^{2}+p x+q=0$ will reduce to
$x^{2}-7 x+q=0$
Let this equation have β, β as its roots
$\therefore 2 \beta=7 \Rightarrow \beta=\frac{7}{2}$ and $\beta^{2}=q$
$\Rightarrow \quad q=\left(\frac{7}{2}\right)^{2}=\frac{49}{4}$
191 (b)
$[x]^{2}-[x]-2=0$
$\Rightarrow([x]-2)([x]+1)=0$
$\Rightarrow[x]=2,-1$
$\Rightarrow x \in[-1,0] \cup[2,0]$
192 (d)
We have,
$\alpha+\beta=-b / a$ and $\alpha \beta=c / a$
Now,
Sum of the roots $=2+\alpha+2+\beta=4+$
$(\alpha+\beta)=4-b / a$
Product of the roots $=(2+\alpha)(2+\beta)$
$=4+\alpha \beta+2(\alpha+\beta)$
$=4+\frac{c}{a}-\frac{2 b}{a}=\frac{4 a+c-2 b}{a}$
Hence, required equation is
$x^{2}-x\left(4-\frac{b}{a}\right)+\frac{4 a+c-2 b}{a}=0$
or, $a x^{2}+(b-4 a) x+4 a-2 b+c=0$
ALITER Required equation can be obtained by replacing x by $x+2$ in the given equation
(c)

Given, $\tan \alpha+\tan \beta+\tan \gamma=\tan \alpha \tan \beta \tan \gamma$
...(i)
$\therefore \tan (\alpha+\beta+\gamma)$
$=\frac{\tan \alpha+\tan \beta+\tan \gamma-\tan \alpha \tan \beta \tan \gamma}{1-\tan \alpha \tan \beta-\tan \beta \tan \gamma-\tan \gamma \tan \alpha}$
$\Rightarrow \tan (\alpha+\beta+\gamma)$
$=\frac{0}{1-\tan \alpha \tan \beta-\tan \beta \tan \gamma-\tan \gamma \tan \alpha}$
[From Eq. (i)]
$\Rightarrow \tan (\alpha+\beta+\gamma)=0$
$\Rightarrow \alpha+\beta+\gamma=0^{\circ}$ or π
$\therefore x y z=(\cos \alpha+i \sin \alpha)(\cos \beta+i \sin \beta)(\cos \gamma$ $+i \sin \gamma)$
$=\cos (\alpha+\beta+\gamma)+i \sin (\alpha+\beta+\gamma)$
$=\cos 0^{\circ}+i \sin 0^{\circ}=1$
or $x y z=\cos \pi+i \sin \pi=-1$
194 (c)
We have,
$\arg \left(z_{1} z_{2}\right)=0$
$\Rightarrow \arg \left(z_{1}\right)+\arg \left(z_{2}\right)=0$
$\Rightarrow \arg \left(z_{1}\right)=-\arg \left(z_{2}\right)$
$\Rightarrow \arg \left(z_{1}\right)=\arg \left(\bar{z}_{2}\right)$
Since, $\left|z_{1}\right|=\left|z_{2}\right|=1$. Therefore, $\left|z_{1}\right|=\left|\bar{z}_{2}\right|=1$
Hence, $z_{1}=\bar{z}_{2}$
195 (c)
Let α be a common root of the two equations.
Then,
$2 \alpha^{2}-7 \alpha+1=0$
$a \alpha^{2}+b \alpha+2=0$
$\Rightarrow \frac{\alpha^{2}}{-14-b}=\frac{\alpha}{a-4}=\frac{1}{2 b+7 a}$
$\Rightarrow \frac{a-4}{2 b+7 a}=\frac{b+14}{4-a}$
$\Rightarrow(7 a+2 b)(b+14)+(a-4)^{2}=0$
Clearly, $a=4, b=-14$ satisfy this equation
196 (b)
We know that ω and ω^{2} are roots of $x^{2}+x+1=$
0 . Therefore, $x^{3 m}+3^{3 n+1}+x^{3 k+2}$ will be exactly divisible by $x^{2}+x+1$, if ω and ω^{2} are its roots
For $x=\omega$, we have
$x^{3 m}+x^{3 n+1}+x^{3 k+2}=\omega^{3 m}+\omega^{3 n+1}+\omega^{3 k+2}=$
$1+\omega+\omega^{2}=0$ provided that m, n, k are integers

Similarly, $x=\omega^{2}$ will be a root of $x^{3 m}+x^{3 n+1}+$ $x^{3 k+2}$ if m, n, k are integers
197 (d)
$\log _{10}\left(\frac{a+10 b+10^{2} c}{10^{-4} a+10^{-3} b+10^{-2} c}\right)$
$=\log _{10}\left(\frac{a+10 b+10^{2} c}{\frac{1}{10^{4}}\left(a+10 b+10^{2} c\right)}\right)$
$=\log _{10} 10^{4}=4$
198 (a)
Since, $\tan 30^{\circ}$ and $\tan 15^{\circ}$ are the roots of equation
$x^{2}+p x+q=0$
$\therefore \tan 30^{\circ}+\tan 15^{\circ}=-p$
And $\tan 30^{\circ} \tan 15^{\circ}=q$
Now, $2+q-p=2+\tan 30^{\circ}+\tan 15^{\circ}+$
$\tan 30^{\circ}+\tan 15^{\circ}$
$=2+\tan 30^{\circ}+\tan 15^{\circ}+1-\tan 30^{\circ} \tan 15^{\circ}$
$\left(\because \tan 45^{\circ}=\frac{\tan 30^{\circ}+\tan 15^{\circ}}{1-\tan 30^{\circ} \tan 15^{\circ}}\right)$
$\Rightarrow 2+q-p=3$
199 (d)
Given, $z^{1 / 3}=p+i q$
$\Rightarrow \quad(x-i y)=(p+i q)^{3} \quad[$ put $z=x-i y]$
$\Rightarrow \quad(x-i y)=p^{3}-i q^{3}+3 p^{2} q i-3 p q^{2}$
$\Rightarrow \quad(x-i y)=\left(p^{3}-3 p q^{2}\right)+i\left(3 p^{2} q-q^{3}\right)$
$\Rightarrow x=\left(p^{3}-3 p q^{2}\right)$ and $-y=3 p^{2} q-q^{3}$
$\Rightarrow \frac{x}{p}=\left(p^{2}-3 q^{2}\right)$ and $\frac{y}{q}=\left(q^{2}-3 p^{2}\right)$
$\therefore \frac{x}{p}+\frac{y}{q}=-2 p^{2}-2 q^{2}$
$\Rightarrow \frac{\frac{x}{p}+\frac{y}{q}}{\left(p^{2}+q^{2}\right)}=-2$
200 (c)
Here, $\sec \alpha+\operatorname{cosec} \alpha=p$ andsec $\alpha \cdot \operatorname{cosec} \alpha=q$
$\Rightarrow \frac{\sin \alpha+\cos \alpha}{\sin \alpha \cos \alpha}=p$ and $\sin \alpha \cos \alpha=\frac{1}{q}$
$\Rightarrow(\sin \alpha+\cos \alpha)^{2}=\left(\frac{p}{q}\right)^{2}$
$\Rightarrow \sin ^{2} \alpha+\cos ^{2} \alpha+2 \sin \alpha \cos \alpha=\frac{p^{2}}{q^{2}}$
$\Rightarrow q^{2}\left(1+\frac{2}{q}\right)=p^{2}$
$\Rightarrow q(q+2)=p^{2}$
201 (a)
$\left(x+\frac{1}{x}\right)^{3}+\left(x+\frac{1}{x}\right)=0$
$\Rightarrow\left(x+\frac{1}{x}\right)\left[\left(x+\frac{1}{x}\right)^{2}+1\right]=0$
$\Rightarrow x+\frac{1}{x}=0$
$\Rightarrow x^{2}=-1$ which is not possible
Hence, no real roots exist
202 (c)
Let D be the discriminant of the given quadratic.
Then,
$D=9 b^{2}-32 a c$
$\Rightarrow D=9(-a-c)^{2}-32 a c \quad[\because a+b+c=0]$
$\Rightarrow D=9 a^{2}+9 c^{2}-14 a c$
$\Rightarrow D=c^{2}\left\{9\left(\frac{a}{c}\right)^{2}-14\left(\frac{a}{c}\right)+9\right\}$
$=c^{2}\left\{\left(\frac{3 a}{c}-\frac{7}{3}\right)^{2}+\frac{32}{9}\right\}>0$
Hence, the roots are real
203 (d)
Let $\alpha=1, \beta=-1, \gamma=i$ and $\delta=-i$. Then,
$\frac{a \alpha+b \beta+c \gamma+d \delta}{a \gamma+b \delta+c \alpha+d \beta}+\frac{a \gamma+b \delta+c \alpha+d \beta}{a \alpha+b \beta+c \gamma+d \delta}$
$=\frac{a-b+i(c-d)}{(a-b) i+(c-d)}+\frac{(a-b) i+(c-d)}{a-b+i(c-d)}$
$=\frac{\{(a-b)+i(c-d)\}^{2}+\{(a-b) i+(c-d)\}^{2}}{i\{(a-b)+i(c-d)\}\{(a-b)-i(c-d)\}}$
$=\frac{4(a-b)(c-d)}{(a-b)^{2}+(c-d)^{2}}$
204 (a)
Given, $\log _{5} \log _{5} \log _{2} x=0$
$\Rightarrow \log _{5} \log _{2} x=5^{0}=1$
$\Rightarrow \log _{2} x=5 \Rightarrow x=2^{5} \Rightarrow x=32$
205 (d)
$\left(\frac{1}{1-2 i}+\frac{3}{1+i}\right)\left(\frac{3+4 i}{2-4 i}\right)$
$=\left[\frac{1+2 i}{1^{2}+2^{2}}+\frac{3-3 i}{1^{2}+1^{2}}\right]\left[\frac{6-16+12 i+8 i}{2^{2}+4^{2}}\right]$
$=\left[\frac{2+4 i+15-15 i}{10}\right]\left[\frac{-1+2 i}{2}\right]$
$=\frac{(17-11 i)(-1+2 i)}{20}$
$=\frac{5+45 i}{20}=\frac{1}{4}+\frac{9}{4} i$
206 (a)
Let α, β be the roots of $x^{2}+p x+q=0$
$\Rightarrow \alpha+\beta=-p, \alpha \beta=q$
α^{4}, β^{4} are roots of $x^{2}-r x+s=0$
$\Rightarrow \alpha^{4}+\beta^{4}=r, \alpha^{4} \beta^{4}=s$
Let D be the discriminant of $x^{2}-4 q x+2 q^{2}-$ $r=0$. Then,
$D=8 q^{2}+4 r$
$\Rightarrow D=8 \alpha^{2} \beta^{2}+4\left(\alpha^{4}+\beta^{4}\right)=4\left(\alpha^{2}+\beta^{2}\right)^{2}>0$
So, the given equation has real roots
207 (a)
Let $y=\frac{x^{2}-x+1}{x^{2}+x+1}$
$\Rightarrow \quad x^{2}(y-1)+x(y+1)+1(y-1)=0$

Here, $D \geq 0$ as x is real
$\therefore \quad(y+1)^{2}-4(y-1)^{2} \geq 0$
$\Rightarrow y^{2}+2 y+\left(1-4 y^{2}+1-2 y\right) \geq 0$
$\Rightarrow \quad-3 y^{2}-10 y+3 \geq 0$
$\Rightarrow 3 y^{2}-10 y+3 \leq 0$
$\Rightarrow(3 y-1)(y-3) \leq 0$
$\Rightarrow \frac{1}{3} \leq y \leq 3$
208 (b)
Now, $x-1=\alpha_{i} \Rightarrow x=\alpha_{i}+1$ for new equation, $i=1,2,3,4$
209 (d)
$d=\frac{a .0+0 . \bar{a}+|a|^{2}}{2|a|}=\frac{|a|}{2}$
210 (a)

We have

$1=a(1-2 x)(1-3 x)+b(1-x)(1-3 x)$

$$
+c(1-x)(1-2 x)
$$

On putting $x=\frac{1}{2}$, we get
$1=0+b\left(1-\frac{1}{2}\right)\left(1-\frac{3}{2}\right)+0$
$\Rightarrow 1=b\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)$
$\Rightarrow \quad b=-4$
On putting $x=1$, we get
$1=a(1-2)(1-3)+0+0$
$\Rightarrow 1=a(-1)(-2) \Rightarrow a=\frac{1}{2}$
On putting $x=\frac{1}{3}$, we get
$1=0+0+c\left(1-\frac{1}{3}\right)\left(1-\frac{2}{3}\right)$
$\Rightarrow 1=c\left(\frac{2}{3}\right)\left(\frac{1}{3}\right) \Rightarrow c=\frac{9}{2}$
Now, $\frac{a}{1}+\frac{b}{3}+\frac{c}{5}=\frac{1}{2}+\frac{(-4)}{3}+\frac{9}{5.2}=\frac{15-40+27}{30}=\frac{1}{15}$
211 (a)
The given equation is
$2(1+i) x^{2}-4(2-i) x-5-3 i=0$
$\Rightarrow x=\frac{4(2-i) \pm \sqrt{16(2-i)^{2}+8(1+i)(5+3 i)}}{4(1+i)}$
$=\frac{i}{1+i}$ or $\frac{4-i}{1+i}$
$=\frac{-1-i}{2}$ or $\frac{3-5 i}{2}$
Now, $\left|\frac{-1-i}{2}\right|=\sqrt{\frac{1}{4}+\frac{1}{4}}=\sqrt{\frac{1}{2}}$
and $\left|\frac{3-5 i}{2}\right|=\sqrt{\frac{9}{4}+\frac{25}{4}}=\sqrt{\frac{17}{2}}$
Also, $\sqrt{\frac{17}{2}}>\sqrt{\frac{1}{2}}$
Hence, required root is $\frac{3-5 i}{2}$.

Using triangle inequality, we have
$|z-2 i| \geq|2 i|-|z| \Rightarrow|z-2 i|+|z| \geq 2$
Hence, the minimum value of $|z-2 i|+|z|$ is 2

We have,
$x^{\frac{3}{4}\left(\log _{2} x\right)^{2}+\left(\log _{2} x\right)-\frac{5}{4}}=\sqrt{2}$
$\Rightarrow \frac{3}{4}\left(\log _{2} x\right)^{2}+\log _{2} x-\frac{5}{4}=\log _{x} \sqrt{2}$
$\Rightarrow \frac{3}{4}\left(\log _{2} x\right)^{2}+\log _{2} x-\frac{5}{4}=\frac{1}{2} \log _{x} 2=\frac{1}{2} \times \frac{1}{\log _{2} x}$
$\Rightarrow \frac{3}{4}(\log x)^{3}+\left(\log _{2} x\right)^{2}-\frac{5}{4}\left(\log _{2} x\right)=\frac{1}{2}$
$\Rightarrow 3\left(\log _{2} x\right)^{3}+4\left(\log _{2} x\right)^{2}-5\left(\log _{2} x\right)-2=0$
$\Rightarrow 3 y^{3}+4 y^{2}-5 y-2=0$, where $y=\log _{2} x$
$\Rightarrow(y-1)(3 y+1)(y+2)=0$
$\Rightarrow y=1,-\frac{1}{3},-2$
$\Rightarrow \log _{2} x=1,-\frac{1}{3},-2 \Rightarrow x=\frac{2,1}{2^{1 / 3}}, \frac{1}{4}$
215 (b)
We have, $x^{2}-3 x+2=0 \Rightarrow(x-1)(x-$ $2=0$
$\Rightarrow \quad x=1.2$
For $x=1, x^{4}-p x^{2}+q=0 \Rightarrow 1-p+q=0$
...(i)
For $x=2, \quad 16-4 p+q=0$
On solving Eqs. (i) and (ii), we get
$p=5, \quad q=4$
216 (d)
Let α, β be roots of $x^{2}+p x+q=0$ and a, b be roots of $x^{2}+l x+m=0$. Then,
$\alpha+\beta=-p, \alpha \beta=q, a+b=-l$ and $a b=m$
Now,
$\frac{\alpha}{\beta}=\frac{a}{b}$
[Given]
$\Rightarrow \frac{\alpha+\beta}{\alpha-\beta}=\frac{a+b}{a-b}$
$\Rightarrow \frac{(\alpha+\beta)^{2}}{(\alpha-\beta)^{2}}=\frac{(a+b)^{2}}{(a-b)^{2}}$
$\Rightarrow \frac{p^{2}}{p^{2}-2 q}=\frac{l^{2}}{l^{2}-2 m} \Rightarrow p^{2} m=l^{2} q$
217 (b)
We have, $\sum x_{1}=\sin 2 \beta, \sum x_{1} x_{2}=\cos 2 \beta$
$\sum x_{1} x_{2} x_{3}=\cos \beta$ and $x_{1} x_{2} x_{3} x_{4}=-\sin \beta$
$\tan ^{-1} x_{1}+\tan ^{-1} x_{2}+\tan ^{-1} x_{3}+\tan ^{-1} x_{4}$
$=\tan ^{-1}\left(\frac{\sum x_{1}-\sum x_{1} x_{2} x_{3}}{1-\sum x_{1} x_{2}+x_{1} x_{2} x_{3} x_{4}}\right)$
$=\tan ^{-1}\left(\frac{\sin 2 \beta-\cos \beta}{1-\cos 2 \beta-\sin \beta}\right)$
$=\tan ^{-1}\left(\frac{(2 \sin \beta-1) \cos \beta}{\sin \beta(2 \sin \beta-1)}\right)=\tan ^{-1}(\cot \beta)$
$=\tan ^{-1}\left[\tan \left(\frac{\pi}{2}-\beta\right)=\frac{\pi}{2}-\beta\right]$
218 (a)
We have,
$a(b-c) x^{2}+b(c-a) x+c(a-b)=0$
Clearly, $x=1$ is a root of this equation. It is given that the equation has equal roots. So, both the roots are equal to 1
\therefore Product of the roots $=1$
$\Rightarrow \frac{c(a-b)}{a(b-c)}=1$
$\Rightarrow 2 a c=a b+b c \Rightarrow b=\frac{2 a c}{a+c} \Rightarrow a, b, c$ are in H.P.
219 (d)
Let α, β be the roots of the equation $x^{2}-$
$(a-2) x-(a+1)=0$. Then,
$\alpha+\beta=a-2$ and $\alpha \beta=-(a+1)$
$\therefore \alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta$
$\Rightarrow \alpha^{2}+\beta^{2}=(a-2)^{2}+2(a+1)=a^{2}-2 a+6$

$$
=(a-1)^{2}+5
$$

Clearly, it is least when $a=1$
220 (c)
We know that
$x^{3}+y^{3}=(x+y)\left(x \omega+y \omega^{2}\right)\left(x \omega^{2}+y \omega\right)$
$\therefore\left(a+b \omega+c \omega^{2}\right)^{3}+\left(a+b \omega^{2}+c \omega\right)^{3}$
$=\left(a+b \omega+c \omega^{2}+a+b \omega^{2}+c \omega\right) \times(a \omega$ $\left.+b \omega^{2}+c+a \omega^{2}+b \omega^{4}+c \omega^{3}\right)$ $\times\left(a \omega^{2}+b \omega^{3}+c \omega^{4}+a \omega\right.$ $\left.+b \omega^{3}+c \omega^{2}\right)$
$=(2 a-b-c)(2 c-a-b)(2 b-c-a)$
221 (c)
We have,
$\log _{2}\left(x^{2}-4 x+5\right)=(x-2) \Rightarrow x^{2}-4 x+5$

$$
=2^{x-2}
$$

Clearly, $x=2$ and 3 satisfy this equation
222 (c)
Solving the given equation, we get
$x=3 / 5$ or, $x=-4 / 5$
$\Rightarrow x=-4 / 5 \quad[\because-1<x<0]$
$\Rightarrow \cos \alpha=-4 / 5 \Rightarrow \sin \alpha=-24 / 25$
223 (a)
Since, α, β, γ are the roots of the equation
$2 x^{3}-3 x^{2}+6 x+1=0$
Here, $\quad \alpha+\beta+\gamma=\frac{3}{2}$
$\alpha \beta+\beta \gamma+\gamma \alpha=3$
And $\quad \alpha \beta \gamma=-\frac{1}{2}$
On squaring Eq. (i), we get
$\alpha^{2}+\beta^{2}+\gamma^{2}+2(\alpha \beta+\beta \gamma+\gamma \alpha)=\frac{9}{4}$
$\Rightarrow \alpha^{2}+\beta^{2}+\gamma^{2}=\frac{9}{4}-2(3)=-\frac{15}{4} \quad$ [from Eq.
(ii)]

224 (b)
Here, $a=2, b=-3$ and $c= \pm 1$
Clearly $a+b+c=0$
Therefore, z_{1}, z_{2}, z_{3} are collinear points
ALITER We have,
$2 z_{1}-3 z_{2}+z_{3}=0$
$\Rightarrow z_{2}=\frac{2 z_{1}+z_{3}}{2+1}$
$\Rightarrow z_{2}$ divides the segment joining z_{1} and z_{3} in the ratio 1:2
$\Rightarrow z_{1}, z_{2}, z_{3}$ are collinear
225 (b)
Let the roots be α and 2α. Then,
$3 \alpha=-\frac{b}{a}$ and $2 \alpha^{2}=\frac{c}{a}$
$\Rightarrow \alpha=-\frac{b}{3 a}$ and $\alpha^{2}=\frac{c}{2 a} \Rightarrow\left(-\frac{b}{3 a}\right)^{2}=\frac{c}{2 a} \Rightarrow 2 b^{2}$

$$
=9 a c
$$

226 (a)
We have,
$z=i+2 i^{i\left(\theta+\frac{\pi}{4}\right)} \Rightarrow|z-i|=2$
\Rightarrow Locus of z is a circle
227 (b)
Given, $\alpha^{2}-5 \alpha+3=0$ and $\beta^{2}-5 \beta+3=0$
$\Rightarrow \alpha=\frac{5 \pm \sqrt{13}}{2}$ and $\beta=\frac{5 \pm \sqrt{13}}{2}$
Since, $\alpha \neq \beta$
$\therefore \alpha=\frac{5+\sqrt{13}}{2}$ and $\beta=\frac{5-\sqrt{13}}{2}$
$\alpha=\frac{5-\sqrt{13}}{2}$ and $\beta=\frac{5+\sqrt{13}}{2}$
Now, $\alpha^{2}+\beta^{2}=\frac{50+26}{4}=19$
And $\alpha \beta=\frac{1}{4}(25-13)=3$
\therefore Required equation is
$x^{2}-x\left(\frac{\alpha}{\beta}+\frac{\beta}{\alpha}\right)+\frac{\alpha \beta}{\alpha \beta}=0$
$\Rightarrow x^{2}-x\left(\frac{\alpha^{2}+\beta^{2}}{\alpha \beta}\right)+1=0$
$\Rightarrow 3 x^{2}-19 x+3=0$
228 (b)
We have,
$2-3 x-2 x^{2} \geq 0$
$\Rightarrow 2 x^{2}+3 x-2 \leq 0 \Rightarrow(2 x-1)(x+2) \leq 0$
$\Rightarrow-2 \leq x \leq \frac{1}{2}$
229 (c)
Let D_{1} and D_{2} be discriminates of $a x^{2}+b x+c=$ 0 and $-a x^{2}+b x+c=0$ respectively. Then,
$D_{1}=b^{2}-4 a c, D_{2}=b^{2}+4 a c$
Now, $a c \neq 0 \Rightarrow$ either $a c>0$ or $a c<0$

If $a c>0$, then $D_{2}>0$. Therefore, roots of $-a x^{2}+b x+c=0$ are real
If $a c<0$, then $D_{1}>0$. Therefore, roots of $a x^{2}+b x+c=0$ are real.
Thus, $f(x) g(x)$ has at least two real roots
230 (c)
$|z+4| \leq 3$ represents the interior and boundary of the circle with centre at $(-4,0)$ and radius $=3$. As -1 is an end point of a diameter of the circle, maximum possible value of $|z+1|$ is 6

Alternate

$|z+1|=|z+4-3| \leq|z+4|+|-3| \leq 6$
Hence, maximum value of $|z+1|$ is 6
231 (a)
Given, $x=\sqrt{7}-\sqrt{5}$ and $y=\sqrt{13}-\sqrt{11}$
$\therefore \quad x=2.64-2.23$
And $\quad y=3.60-3.31$
$\Rightarrow x=0.41$ and $y=0.29$
$\therefore x>y$
232 (c)
Since, α and β be the roots of the equation
$a x^{2}+b x+c=0$, then
$\alpha+\beta=-\frac{b}{a}$ and $\alpha \beta=\frac{c}{a}$
Now, sum of roots $=|\alpha|+|\beta|$
$=-\alpha-\beta \quad(\because \beta<\alpha<0)$
$=-\left(-\frac{b}{a}\right)=\left|\frac{b}{a}\right| \quad(\because|\alpha|+|\beta|>0)$
and product of roots $=|\alpha||\beta|=\left|\frac{b}{a}\right|$
Hence, required equation is
$x^{2}-\left|\frac{b}{a}\right| x+\left|\frac{c}{a}\right|=0$
$\Rightarrow|a| x^{2}-|b| x+|c|=0$
233 (a)
Here, $x=4, \quad y=-3$
Let $x=r \cos \theta, y=r \sin \theta=-3$
Now, $r=\sqrt{x^{2}+y^{2}}=\sqrt{16+9}=5$
and $\theta=\tan ^{-1}\left(-\frac{3}{4}\right)$
now, let R and ϕ be the magnitude and angle of resultant complex number.
\therefore According to question.
$R=3 r$ and $\phi=\pi+\theta$
$\Rightarrow \quad \phi=\pi+\tan ^{-1}\left(-\frac{3}{4}\right)$
$=\pi-\tan ^{-1}\left(\frac{3}{4}\right)=-\tan ^{-1}\left(\frac{3}{4}\right)$
$\therefore \quad \cos \phi=-\frac{4}{5}, \quad \sin \phi=\frac{3}{5} \quad$ [
$\because \phi$ lies in IInd quadrant]
Hence, new complex number will be
$R(\cos \phi+\mathrm{i} \sin \phi)=3.5\left(-\frac{4}{5}+i \frac{3}{5}\right)$
$=\frac{3.5}{5}(-4+3 i)=-12+9 i$
234 (a)
We have,
$z=r e^{i \theta}=r(\cos \theta+i \sin \theta)$
$\Rightarrow i z=r(-\sin \theta+i \cos \theta)$
$\Rightarrow e^{i z}=e^{-r \sin \theta} e^{i r \cos \theta}$
$\Rightarrow\left|e^{i z}\right|=e^{-r \sin \theta}\left|e^{i r \cos \theta}\right|=e^{-r \sin \theta}$
235 (d)
Given equation is
$|2 x-1|^{2}-3|2 x-1|+2=0$
Let $|2 x-1|=t$
$\therefore t^{2}-3 t+2=0$
$\Rightarrow(t-1)(t-2)=0 \Rightarrow t=1,2$
$\Rightarrow|2 x-1|=1$ and $|2 x-1|=2$
$\Rightarrow 2 x-1= \pm 1$ and $2 x-1= \pm 2$
$\Rightarrow x=1,0$ and $x=\frac{3}{2},-\frac{1}{2}$
236 (a)
We have,

$$
\begin{gathered}
|3 x+2|<1 \\
\Rightarrow\left|x+\frac{2}{3}\right|<\frac{1}{3} \Rightarrow-\frac{1}{3}<x+\frac{2}{3}<\frac{1}{3} \Rightarrow x \\
\in(-1,-1 / 3)
\end{gathered}
$$

237 (b)
Given, $C=\{z: z \bar{z}+a \bar{z}+\bar{a} z+b=0, \quad b \in R$ and $\left.b<|a|^{2}\right\}$
Since, $z \bar{z}+a \bar{z}+\bar{a} z+b=0, \quad b \in R$ represents circle having centre at $-a$ and radius $\sqrt{|a|^{2}-b}$ Then, z lies on the circle having infinite points Hence, C represents infinite sets
238 (c)
Given, $\bar{z}=\bar{a}+\frac{r^{2}}{z-a}, r>0$
$\Rightarrow \quad \bar{z}(z-a)=\bar{a}(z-a)+r^{2}$
$\Rightarrow \quad z \bar{z}-a \bar{z}-\bar{a} z+a \bar{a}+r^{2}=0$
This represents the equation of a circle

239 (d)
$\frac{a+b \omega+c \omega^{2}}{c+a \omega+b \omega^{2}}+\frac{c+a \omega+b \omega^{2}}{a+b \omega+c \omega^{2}}+\frac{b+c \omega+a \omega^{2}}{b+c \omega^{4}+a \omega^{5}}$ $=\frac{\omega^{2}\left(a+b \omega+c \omega^{2}\right)}{\left(a+b \omega+c \omega^{2}\right)}+\frac{\omega\left(a \omega+b \omega^{2}+c\right)}{\left(a \omega+b \omega^{2}+c\right)}$

$$
+\frac{\left(b+c \omega+a \omega^{2}\right)}{\left(b+c \omega+a \omega^{2}\right)}
$$

$=\omega^{2}+\omega+1=0$
240 (d)
Here, $\alpha+\beta=2$ and $\alpha \beta=\frac{5}{3}$
Now, $\alpha+\beta+\frac{2}{\alpha+\beta}=2+\frac{2}{2}=3$
And $(\alpha+\beta) \times \frac{2}{\alpha+\beta}=2$
\therefore Required equation is
$x^{2}-\left((\alpha+\beta)+\frac{2}{(\alpha+\beta)}\right) x$
$+\left((\alpha+\beta) \times \frac{2}{(\alpha+\beta)}\right)=0$
$\Rightarrow x^{2}-3 x+2=0$
241 (b)
It is given that the equations $a x^{2}+2 b x+c=0$ and $b x^{2}-2 \sqrt{a c} x+b=0$ have real roots
$\therefore b^{2} \geq a c$ and $b^{2} \leq a c \Rightarrow b^{2}=a c$
242 (c)
We have,
$\left|\frac{3}{x}+1\right|>2$
$\Rightarrow \frac{3}{x}+1<-2$ or, $\frac{3}{x}+1>2$
$\Rightarrow \frac{3}{x}<-3$ or, $\frac{3}{x}>1$
$\Rightarrow \frac{1}{x}<-1$ or, $\frac{3-x}{x}>0$
$\Rightarrow \frac{x+1}{x}<0$ or, $\frac{x-3}{x}<0$
$\Rightarrow x \in(-1,0)$ or, $x \in(0,3) \Rightarrow x \in(-1,0) \cup(0,3)$
243 (b)
We have,
$\left|x^{2}+4 x+3\right|+2 x+5=0$
Here two cases arise.
Case I When $x^{2}+4 x+3>0$
$\Rightarrow x^{2}+4 x+3+2 x+5=0$
$\Rightarrow x^{2}+6 x+8=0$
$\Rightarrow(x+2)(x+4)=0$
$\Rightarrow x=-2,-4$
$x=-2$ is not satisfying the condition
$x^{2}+4 x+3>0$. So $x=-4$ is the only solution of the given equation.
Case II When $x^{2}+4 x+3<0$
$\Rightarrow-\left(x^{2}+4 x+3\right)+2 x+5=0$
$\Rightarrow-x^{2}-2 x+2=0$
$\Rightarrow x^{2}+2 x-2=0$
$\Rightarrow(x+1+\sqrt{3})(x+1-\sqrt{3})=0$
$\Rightarrow x=-1+\sqrt{3},-1-\sqrt{3}$
Hence, $x=-(1+\sqrt{3})$ satisfy the given condition.
Since, $x^{2}+4 x+3<0$ while $x=-1+\sqrt{3}$ is not satisfying the condition. Thus, number of real solutions are two.
244 (b)
We have, $\left|\frac{z-a}{z+\bar{a}}\right|=1$
$\Rightarrow|z-a|=|z+\bar{a}| \Rightarrow|z+a|^{2}=|z+\bar{a}|^{2}$
$\Rightarrow \quad(z-a)(\overline{z-a})=(z+\bar{a})(\overline{z+\bar{a}})$
$\Rightarrow(z-a)(\bar{z}-\bar{a})=(z+\bar{a})(\bar{z}+a) \quad[\because(\overline{\bar{a}})=a]$
$\Rightarrow z \bar{z}-z \bar{a}-a \bar{z}+a \bar{a}=z \bar{z}+z a+\bar{a} \bar{z}+\bar{a} a$
$\Rightarrow z a+z \bar{a}+\bar{a} \bar{z}+a \bar{z}=0$
$\Rightarrow \quad(a+\bar{a})(z+\bar{z})=0$
$\Rightarrow \quad z+\bar{z}=0 \quad[\because a+\bar{a}=2 \operatorname{Re}(a) \neq 0]$
$\Rightarrow 2 \operatorname{Re}(z)=0 \Rightarrow 2 x=0$
$\Rightarrow x=0 \Rightarrow y$-axis
245 (a)
Let $z=x+i y$. Then, $z^{2}=x^{2}-y^{2}+2 i x y$
$\therefore \operatorname{Re}\left(z^{2}\right)=0 \Rightarrow x^{2}-y^{2}=0 \Rightarrow y= \pm x$
Thus, $\operatorname{Re}\left(z^{2}\right)=0$ represents a pair of straight lines
246 (a)
Given, $\frac{x+i y-5 i}{x+i y+5 i}=1$
$\Rightarrow \quad|x+i y-5 i|=|x+i y+5 i|$
$\Rightarrow \quad x^{2}+(y-5)^{2}$

$$
=x^{2}
$$

$$
+(5+y)^{2} \quad\left[\because \quad\left|\frac{z_{1}}{z_{2}}\right|=\frac{\left|z_{1}\right|}{\left|z_{2}\right|}\right]
$$

$\Rightarrow \quad y=0$
$\Rightarrow \quad z=x$ ie, then z lies on the axis of x.
247 (a)
Since $2+i \sqrt{3}$ is a root of $x^{2}+p x+q=0$.
Therefore, $2-i \sqrt{3}$ is also its root
Now,
Sum of the roots $=-p$
$\Rightarrow(2+i \sqrt{3})+(2-i \sqrt{3})=-p \Rightarrow p=-4$
and, Product of the roots $=q \Rightarrow 7=q$
248 (c)
We have,
$\sqrt{3 x^{2}-7 x-30}+\sqrt{2 x^{2}-7 x-5}=x+5$
$\Rightarrow \sqrt{3 x^{2}-7 x-30}=(x+5)-\sqrt{2 x^{2}-7 x-5}$
On squaring both sides, we get
$3 x^{2}-7 x-30=x^{2}+25+10 x+\left(2 x^{2}-7 x-5\right)$

$$
-2(x+5) \sqrt{2 x^{2}-7 x-5}
$$

$\Rightarrow \sqrt{2 x^{2}-7 x-5}=5$

Again on squaring both sides, we get
$2 x^{2}-7 x-30=0$
$\Rightarrow x=6$
249 (d)
Given, $\sqrt{x+i y}= \pm(a+i b)$
$\Rightarrow \quad x+i y=a^{2}-b^{2}+2 i a b$
$\Rightarrow \quad x=a^{2}-b^{2}, y=2 a b$
$\therefore \quad \sqrt{-x-i y}=\sqrt{-\left(a^{2}-b^{2}\right)-2 i a b}$
$=\sqrt{b^{2}-a^{2}-2 i a b}= \pm(b-i a)$
250 (d)
Let α, β are the roots of the equation
$x^{2}-a x+b=0$.
$\therefore \alpha+\beta=a$
and $\alpha \beta=b$
Roots are prime numbers, so clearly b cannot be a prime number as it is product of two prime numbers [from Eq. (ii)]. Sum of two prime numbers is always an even number except in one situation when one prime number is 2 . ' a ' can be a prime number and can be composite number.
Now, $1+a+b=1+\alpha \beta+\alpha+\beta=(1+\alpha)(1+$ β)
$(1+\alpha),(1+\beta)$ can be prime numbers, can be composite numbers, so $1+a+b$ is not certain. So, option (d) is correct.
251 (b)
Let $z_{1}=x_{1}+i y_{1}$ and $z_{2}=x_{2}+i y_{2}$
$\therefore\left|z_{1}+z_{2}\right|^{2}+\left|z_{1}-z_{2}\right|^{2}$
$=\left(x_{1}+x_{2}\right)^{2}+\left(y_{1}+y_{2}\right)^{2}+\left(x_{1}-x_{2}\right)^{2}$

$$
+\left(y_{1}-y_{2}\right)^{2}
$$

$=2\left(x_{1}^{2}+y_{1}^{2}+x_{2}^{2}+y_{2}^{2}\right)$
$=2\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right)$
252 (d)
Given that, $f(x)=x^{2}+2 b x+2 c^{2}$
and $\mathrm{g}(x)=-x^{2}-2 c x+b^{2}$
$\min f(x)=-\frac{D}{4 a}=-\frac{4 b^{2}-8 c^{2}}{4}$
$=-\left(b^{2}-2 c^{2}\right) \quad$ (upward parabola)
$\max \mathrm{g}(x)=-\frac{D}{4 a}=\frac{4 c^{2}+4 b^{2}}{4}$
$=b^{2}+c^{2} \quad$ (downward parabola)
Now, $2 c^{2}-b^{2}>b^{2}+c^{2}$
$\Rightarrow c^{2}>2 b^{2} \Rightarrow|c|>|b| \sqrt{2}$
253 (b)
$z=0$ is the only complex number which satisfies the given relations
254 (d)
Let α be the common root of the given equations
Then, $a \alpha^{2}+b \alpha+c=0$
And $2 \alpha^{2}+3 \alpha+4=0$
$\Rightarrow \quad \alpha^{2}+(a-2)+\alpha(b-3)+c-4=0$
$\Rightarrow a-2=0, b-3=0$ and $c-4=0$
$\Rightarrow a=2, b=3$ and $c=4$
$\therefore \quad a+b+c=2+3+4=9$
255 (c)
We have,
$\frac{x+4}{x-3} \leq 2$

$\Rightarrow \frac{x+4-2 x+6}{x-3} \leq 0$
$\Rightarrow-\frac{(x-10)}{x-3} \leq 0 \Rightarrow \frac{x-10}{x-3} \geq 0 \Rightarrow x$

$$
\in(-\infty, 3) \cup[10, \infty)
$$

Given, $f(x)=x^{2}-a x+b$ has imaginary roots
\therefore Discriminant, $\quad D<0 \Rightarrow a^{2}-4 b<0$
Now, $f^{\prime}(x)=2 x+a$
$f^{\prime \prime}(x)=2$
Also, $f(x)+f^{\prime}(x)+f^{\prime \prime}(x)=0$
$\Rightarrow x^{2}+a x+b+2 x+a+2=0$
$\Rightarrow \quad x^{2}+(a+2) x+b+a+2=0$
$\therefore \quad x=\frac{-(a+2) \pm \sqrt{(a+2)^{2}-4(a+b+2)}}{2}$
$=\frac{-(a+2) \pm \sqrt{a^{2}-4 b-4}}{2}$
Since, $a^{2}-4 b<0$
$\therefore a^{2}-4 b-4<0$
Hence, Eq. (i) has imaginary roots
257 (b)
Let $x=7^{-20}$
$\log _{10} x=-20 \log _{10} 7$
$=-20(0.8451)=-16.902$
Hence, the first significant figure is 17
258 (d)
Let $z=r_{1} e^{i \theta} \Rightarrow \bar{z}=r_{1} e^{-i \theta}$ and $w=r_{2} e^{i \emptyset}$ Given, $|z w|=1$
$\Rightarrow \quad\left|r_{1} e^{i \theta} \cdot r_{2} e^{i \phi}\right|=1 \quad \Rightarrow \quad r_{1} r_{2}=1$
And $\arg (z)-\arg (w)=\frac{\pi}{2} \quad \Rightarrow \quad \theta-\emptyset=\frac{\pi}{2}$
...(ii)
Now, $\bar{z} w=r_{1} e^{-i \theta} \cdot r_{2} e^{i \phi}=r_{1} r_{2} r^{-i(\theta-\varnothing)}$
$=1 . e^{-i \pi / 2}=\cos \frac{\pi}{2}-i \sin \frac{\pi}{2}$
[from Eqs. (i) and (ii)]
$\Rightarrow \quad \bar{z} w=-i$
259 (a)
Sum of roots $=\frac{-2}{a}$

And product of the roots $=\frac{3 a}{a}=3$
Given, $-\frac{2}{a}=3 \Rightarrow a=-\frac{2}{3}$
260 (b)
Here, $\alpha+\beta+\gamma=-2$
$\alpha \beta+\beta \gamma+\gamma \alpha=-3$
And $\alpha \beta \gamma=1$
On squaring Eq. (ii), we get
$\alpha^{2} \beta^{2}+\beta^{2} \gamma^{2}+\gamma^{2} \alpha^{2}+2 \alpha \beta \gamma(\alpha+\beta+\gamma)=9$
$\Rightarrow \alpha^{2} \beta^{2}+\beta^{2} \gamma^{2}+\gamma^{2} \alpha^{2}=9-2(1)(-2)=13$
Now, $\alpha^{-2}+\beta^{-2}+\gamma^{-2}=\frac{\beta^{2} \gamma^{2}+\gamma^{2} \alpha^{2}+\alpha^{2} \beta^{2}}{(\alpha \beta \gamma)^{2}}=\frac{13}{1}=$ 13
261 (c)
Given equation $x^{2}+2 x+2 x y+m y-3=0$ can be rewritten as $x^{2}+2 x(1+y)+(m y-3)=0$.
But factors are rational so discriminant $b^{2}-4 a c$ is a perfect square.
Now, $b^{2}-4 a c=4\left\{(1+y)^{2}-(m y-3)\right\} \geq 0$
$\Rightarrow 4\left\{y^{2}+1+2 y-m y+3\right\} \geq 0$
$\Rightarrow y^{2}+2 y-m y+4 \geq 0$
Hence, $2 y-m y= \pm 4 y$ (as it is perfect square).
$\Rightarrow 2 y-m y=4 y$
$\Rightarrow m=-2$
Now, taking (-)ve sign, we get $m=6$
262 (d)
Here, $\alpha+\beta=-\frac{b}{a}$ and $\alpha \beta=\frac{c}{a}$
But $\alpha \beta=3 \Rightarrow c=3 a$
Also, $b=\frac{a+c}{2} \Rightarrow b=\frac{a+3 a}{2}=2 a$
Hence, $\alpha+\beta=-\frac{2 a}{a}=-2$
263 (a)
Let α, β are the roots of the equation $x^{2}+a x-$ $b=0$
$\therefore \alpha+\beta=-a, \alpha \beta=-b$
And γ, δ are the roots of the equation
$x^{2}-p x+q=0$
$\therefore \gamma+\delta=p, \gamma \delta=q$
Given, $\alpha-\beta=\gamma-\delta \Rightarrow(\alpha-\beta)^{2}=(\alpha-\beta)^{2}$
$\Rightarrow(\alpha+\beta)^{2}-4 \alpha \beta=(\gamma+\delta)^{2}-4 \gamma \delta$
$\Rightarrow a^{2}+4 b=p^{2}-4 q$
$\Rightarrow a^{2}-p^{2}=-4(b+q)$
264 (b)
Multiplying the numerator and denominator by ω and ω^{2} respectively of I and II expression, we get
$\frac{\omega\left(a+b \omega+c \omega^{2}\right)}{b \omega+c \omega^{2}+a}+\frac{\omega^{2}\left(a+b \omega+c \omega^{2}\right)}{c \omega^{2}+a+b \omega}$
$=\omega+\omega^{2}=-1 \quad\left[\because 1+\omega+\omega^{2}=0\right]$
265 (c)
Let $z-1=r(\cos \theta+i \sin \theta)=r e^{i \theta}$
\therefore Given expression $=r e^{i \theta} \cdot e^{-i \alpha}+\frac{1}{r e^{i \theta}} \cdot e^{i \alpha}$
$=r e^{i(\theta-\alpha)}+\frac{1}{r} e^{-i(\theta-\alpha)}$
Since, imaginary part of given expression is zero,
we have
$r \sin (\theta-\alpha)-\frac{1}{r} \sin (\theta-\alpha)=0$
$r^{2}-1=0 \Rightarrow r^{2}=1$
$\Rightarrow r=1$
$\Rightarrow|z-1|=1$
or $\sin (\theta-\alpha)=0 \Rightarrow \theta-\alpha=0$
$\Rightarrow \theta=\alpha$
$\Rightarrow \arg (z-1)=\alpha$
266 (a)
Given, $\left|\frac{1-i z}{z-i}\right|=1$
$\Rightarrow\left|\frac{1-i(x+i y)}{x+i y-i}\right|=1 \Rightarrow\left|\frac{(1+y)-i x}{x+i(y-1)}\right|$
$\Rightarrow \quad \sqrt{ }=1$
$\Rightarrow \quad(1+y)^{2}+x^{2}=x^{2}+(y-1)^{2}$
$\Rightarrow \quad y=0$
\therefore Locus of z is x-axis
267 (c)
We have,
$p+q=-m, p q=m^{2}+a$
$\therefore p^{2}+p q+q^{2}=(p+q)^{2}-p q=m^{2}-\left(m^{2}+a\right)$

$$
=-a
$$

268 (b)
We have,
$|x|^{2}+|x|-6=0$
$\Rightarrow(|x|+3)(|x|-2)=0$
$\Rightarrow|x|=2$
$[\because|x|+3 \neq 0]$
$\Rightarrow x= \pm 2$
269 (c)
We have,
$\frac{z_{1}}{z_{2}}+\frac{z_{2}}{z_{1}}=1$
$\Rightarrow z_{1}^{2}+z_{2}^{2}=z_{1} z_{2}$
$\Rightarrow z_{1}^{2}+z_{2}^{2}+z_{3}^{2}=z_{1} z_{2}+z_{1} z_{3}+z_{2} z_{3}$, where
$z_{3}=0$
$\Rightarrow z_{1}, z_{2}$ and the origin form an equilateral
triangle
270 (c)
We have,
$(x-a+b)^{2}+(x-b+c)^{2}=0$
$\Rightarrow x-a+b=0$ and $x-b+c=0$
$\Rightarrow x=a-b$ and $x=b-c$
$\Rightarrow a-b=b-c \Rightarrow 2 b=a+c \Rightarrow a, b, c$ are in
A.P.

271 (d)

We have,
$z=i \log (2-\sqrt{3})$
$\Rightarrow e^{i z}=e^{i^{2}} \log (2-\sqrt{3})=e^{-\log (2-\sqrt{3})}$
$\Rightarrow e^{i z}=e^{\log (2-\sqrt{3})^{-1}}=e^{\log (2+\sqrt{3})}=(2+\sqrt{3})$
$\Rightarrow \cos z=\frac{e^{i z}+e^{-i z}}{2}=\frac{(2+\sqrt{3})+(2-\sqrt{3})}{2}=2$
272 (b)
Given, $x=3+i$
Now, $x^{3}-3 x^{2}-8 x+15$
$=(3+i)^{3}-3(3+i)^{2}-8(3+i)+15$
$=\left(27+i^{3}+27 i+9 i^{2}\right)-3\left(9+i^{2}+6 i\right)-24$
$-8 i+15$
$=-15$
273 (c)
If z_{1}, z_{2} are complex numbers, then
$\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right| \quad$ [by triangle inequality]
274 (a)
Since, roots are equal
$\therefore(2 \sqrt{6})^{2}=4.2 \cdot a$
$\Rightarrow 24=8 a$
$\Rightarrow a=3$
275 (d)
We have, $a=\cos \left(\frac{2 \pi}{7}\right)+i \sin \left(\frac{2 \pi}{7}\right)$
$\Rightarrow a^{7}=\left[\cos \left(\frac{2 \pi}{7}\right)+i \sin \left(\frac{2 \pi}{7}\right)\right]^{-7}$
$=\cos 2 \pi+i \sin 2 \pi=1$
Let $S=\alpha+\beta=\left(a+a^{2}+a^{4}\right)+\left(a^{3}+a^{5}+a^{6}\right)$
$\left[\because \alpha=a+a^{2}+a^{4}, \beta=a^{3}+a^{5}+a^{6}\right]$
$\Rightarrow S=a+a^{2}+a^{3}+a^{4}+a^{5}+a^{6}=\frac{a\left(1-a^{6}\right)}{1-a}$
$\Rightarrow S=\frac{a-a^{7}}{1-a}=\frac{a-1}{1-a}=-1$
Let $P=\alpha \beta=\left(a+a^{2}+a^{4}\right)\left(a^{3}+a^{5}+a^{6}\right)$
$=a^{4}+a^{6}+a^{7}+a^{5}+a^{7}+a^{8}+a^{7}+a^{9}+a^{10}$
$=a^{4}+a^{6}+1+a^{5}+1+a+1+a^{2}+a^{3} \quad[$ from
Eq. (i)]
$=3+\left(a+a^{2}+a^{3}+a^{4}+a^{5}+a^{6}\right)=3+S$
$=3-1=2$ [from Eq.(ii)]
Required equation is, $x^{2}-S x+P=0$
$\Rightarrow x^{2}+x+2=0$
276 (b)
Let $z_{1}=r_{1}\left(\cos \theta_{1}+i \sin \theta_{1}\right)$. Then,
$\left|z_{2}\right|=\left|z_{1}\right| \Rightarrow\left|z_{2}\right|=r_{1}$
And, $\arg \left(z_{1}\right)+\arg \left(z_{2}\right)=0 \Rightarrow \arg \left(z_{2}\right)=$
$-\arg z 1=-\theta 1$
$\therefore z_{2}=r_{1}\left\{\cos \left(-\theta_{1}\right)+i \sin \left(\theta_{1}\right)\right\}$

$$
=r_{1}\left(\cos \theta_{1}-i \sin \theta_{1}\right)=\bar{z}_{1}
$$

$\Rightarrow \bar{z}_{2}=\left(\bar{z}_{1}\right)=z_{1}$

We have,
$|z-(z-1)| \leq|z|+|z-1| \Rightarrow 1 \leq|z|+|z-1|$
Hence, the minimum value of $|z|+|z-1|$ is 1

(b)

Given, $z \bar{z}+a \bar{z}+\bar{a} z+b=0, \quad b \in R$
On adding $a \bar{a}$ on both sides in the given equation, we get
$z \bar{z}+a \bar{z}+\bar{a} z+a \bar{a}+b=a \bar{a}$
$\Rightarrow \quad(z-a)(\bar{z}+\bar{a})=a \bar{a}-b$
$\Rightarrow \quad|z+a|^{2}=|a|^{2}-b$
This equation will represent a circle, if
$|a|^{2}-b>0 \quad \Rightarrow|a|^{2}>b$
(a)

We have, $\left|z-z_{1}\right|=\left|z-z_{2}\right|=\left|z-z_{3}\right|=\mid z-$ z_{4}
Therefore, the point having affix z is equidistant from the four points having affixes $z_{1}, z_{2}, z_{3}, z_{4}$. Thus z is the affix of either the centre of a circle or the point of intersection of diagonals of a square (or rectangle). Therefore, $z_{1}, z_{2}, z_{3}, z_{4}$ are either concyclic or vertices of a square (of rectangle).
Hence, $z_{1}, z_{2}, z_{3}, z_{4}$ are concyclic
280 (a)
Since, α, β and γ, δ are the roots of the equation $a x^{2}+2 b x+c=0$ and $p x^{2}+2 q x+r=0$ respectively, then
$\alpha+\beta=-\frac{2 b}{a}, \alpha \beta=\frac{c}{a}, \gamma+\delta=-\frac{2 q}{p}, \gamma \delta=\frac{r}{p}$
As given α, β, γ and δ are in GP, therefore
$\frac{\alpha}{\gamma}=\frac{\beta}{\delta}$
But $\frac{\alpha \beta}{\gamma \delta}=\frac{p c}{a r} \Rightarrow\left(\frac{\beta}{\delta}\right)^{2}=\frac{p c}{a r} \quad$ [from Eq. (i)]
Also, $\frac{\alpha}{\beta}=\frac{\gamma}{\delta} \Rightarrow \frac{\alpha+\beta}{\beta}=\frac{\gamma+\delta}{\delta} \Rightarrow \frac{\alpha+\beta}{\gamma+\delta}=\frac{\beta}{\delta}$
$\Rightarrow \frac{b p}{a q}=\sqrt{\frac{p c}{a r}} \Rightarrow \frac{b^{2} p^{2}}{a^{2} q^{2}}=\frac{p c}{a r} \Rightarrow q^{2} a c=b^{2} p r$
281 (c)
Given, $\alpha+\beta+\gamma=2, \alpha^{2}+\beta^{2}+\gamma^{2}=6$,
$\alpha^{3}+\beta^{3}+\gamma^{2}=8$
Now, $(\alpha+\beta+\gamma)^{2}=2^{2}$
$\Rightarrow \alpha^{2}+\beta^{2}+\gamma^{2}+2(\alpha \beta+\beta \gamma+\gamma \alpha)=4$
$\Rightarrow 2(\alpha \beta+\beta \gamma+\gamma \alpha)=4-6=-2$
Also, $\alpha^{3}+\beta^{3}+\gamma^{3}-3 \alpha \beta \gamma$
$=(\alpha+\beta+\gamma)\left(\alpha^{2}+\beta^{2}+\gamma^{2}-\alpha \beta-\beta \gamma-\gamma \alpha\right)$
$\Rightarrow 8-3 \alpha \beta \gamma=2[6-(-1)]$
$\Rightarrow 8-3 \alpha \beta \gamma=14$
$\Rightarrow 3 \alpha \beta \gamma=8-14$
$\Rightarrow \alpha \beta \gamma=-2$
Now, $\alpha^{4}+\beta^{4}+\gamma^{4}=\left(\alpha^{2}+\beta^{2}+\gamma^{2}\right)^{2}-2 \sum \alpha^{2} \beta^{2}$
$=\left(\alpha^{2}+\beta^{2}+\gamma^{2}\right)^{2}-2\left[\left(\sum \beta \gamma\right)^{2}-2 \alpha \beta \gamma \sum \alpha\right]$
$=(6)^{2}-2\left[(-1)^{2}-2(-2) 2\right]$
$=36-2[9]$
$=36-18=18$
282 (a)
Given equation is $x^{2}-2 a x+a^{2}+a-3=0$.
If roots are real then $D \geq 0$
$\Rightarrow 4 a^{2}-4\left(a^{2}+a-3\right) \geq 0$
$\Rightarrow-a+3 \geq 0$
$\Rightarrow a-3 \leq 0 \Rightarrow a \leq 3$
As roots are less than 3 , hence $f(3)>0$
$9-6 a+a^{2}+a-3>0$
$\Rightarrow a^{2}-5 a+6>0$
$\Rightarrow(a-2)(a-3)>0$
\Rightarrow Either $a<2$ or $a>3$.
Hence, only $a<2$ satisfy.
283 (b)
$\left(\left|a z_{1}-b z_{2}\right|\right)^{2}+\left|\left(b z_{1}+a z_{2}\right)\right|^{2}$
$=a^{2}\left|z_{1}\right|^{2}+b^{2}\left|z_{2}\right|^{2}-2 a b \operatorname{Re}\left(\overline{z_{1}} z_{2}\right)+b^{2}\left|z_{1}\right|^{2}$ $+a^{2}\left|z_{2}\right|^{2}+2 a b \operatorname{Re}\left(\overline{z_{1}} z_{2}\right)$
$=\left(a^{2}+b^{2}\right)\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right)$
284 (a)
We have,
$\frac{1}{2}+\frac{3}{8}+\frac{9}{32}+\frac{27}{128}+\cdots$
$=\frac{1}{2}\left(1+\frac{3}{2^{2}}+\frac{3^{2}}{2^{4}}+3^{3}+2^{6}+\cdots\right)=\frac{1}{2}\left(\frac{1}{1-\frac{3}{4}}\right)$

$$
=2
$$

$\because \omega+\omega^{\left(\frac{1}{2}+\frac{3}{8}+\frac{9}{32}+\frac{27}{128} \cdots\right)}=\omega+\omega^{2}=-1$
285 (b)
Here, $\alpha+\beta=-\frac{b}{a}, \alpha \beta=\frac{c}{a}$
The quadratic equation whose roots are $\frac{1-\alpha}{\alpha}$ and $\frac{1-\beta}{\beta}$, is
$x^{2}-\left(\frac{1-\alpha}{\alpha}+\frac{1-\beta}{\beta}\right) x+\frac{1-\alpha}{\alpha} \cdot \frac{1-\beta}{\beta}=0$
$\Rightarrow x^{2}-\left(\frac{\beta-\alpha \beta+\alpha-\alpha \beta}{\alpha \beta}\right) x+\frac{1-\beta-\alpha+\alpha \beta}{\alpha \beta}$

$$
=0
$$

$\Rightarrow x^{2}-\left(\frac{-\frac{b}{a},-2 \cdot \frac{c}{a}}{\frac{c}{a}}\right) x+\frac{1-\left(-\frac{b}{a}\right)+\frac{c}{a}}{\frac{c}{a}}=0 \quad$ [from Eq. (i)]
$\Rightarrow x^{2}-\frac{(-b-2 c) x}{c}+\frac{a+b+c}{c}=0$
$\Rightarrow c x^{2}+(b+2 c) x+(a+b+c)=0$
On comparing with $p x^{2}+q x+r=0$, we get $r=q+b+c$
286 (b)
We have,
$1+x^{2}=\sqrt{3} x$
$\Rightarrow x^{2}-\sqrt{3} x+1=0 \Rightarrow x=\frac{\sqrt{3}+i}{2}=-i \omega, i \omega^{2}$ Clearly, $-i \omega$ and $i \omega^{2}$ are reciprocal of each other and the given expression does not alter by replacing x by $\frac{1}{x}$. So, we will compute its value for one of these two values of x
For $x=i \omega^{2}$, we have
$\sum_{n=1}^{24}\left(x^{n}-\frac{1}{x^{n}}\right)^{2}=\sum_{n=1}^{24}\left\{\left(i \omega^{2}\right)^{n}-(-i \omega)^{n}\right\}^{2}$
$\Rightarrow \sum_{n=1}^{24}\left(x^{n}-\frac{1}{x^{n}}\right)^{2}=\sum_{n=1}^{24}(-1)^{n}\left\{\omega^{2 n}-(-1)^{n} \omega^{n}\right\}^{2}$
$\Rightarrow \sum_{n=1}^{24}\left(x^{n}-\frac{1}{x^{n}}\right)^{2}$
$=\sum_{k=1}^{8}(-1)^{3 k}\left\{\omega^{6 k}-(-1)^{3 k} \omega^{3 k}\right\}^{2}$
$+\sum_{k=0}^{7}(-1)^{3 k+1}\left\{\omega^{6 k+2}-(-1)^{3 k+1} \omega^{3 k+1}\right\}$
$+\sum_{k=0}^{7}(-1)^{3 k+2}\left\{\omega^{6 k+4}-(-1)^{3 k+2} \omega^{3 k+2}\right\}$
$=\sum_{k=1}^{8}(-1)^{3 k}\left\{1-(-1)^{3 k}\right\}^{2}$
$+\sum_{k=0}^{7}(-1)^{3 k+1}\left\{\omega^{2}-(-1)^{3 k+1} \omega\right\}^{2}$
$+\sum_{k=0}^{7}\left\{\omega-(-1)^{3 k+2} \omega^{2}\right\}^{2}$
$=\sum_{k=1}^{8}(-1)^{3 k}\left\{2-2(-1)^{3 k}\right\}$
$+\sum_{k=0}^{7}(-1)^{3 k+1}\left\{\omega+\omega^{2}\right.$
$\left.-2(-1)^{3 k+1}\right\}$
$+\sum_{k=0}^{7}(-1)^{3 k+2}\left\{\omega^{2}+\omega\right.$
$\left.-2(-1)^{3 k+2}\right\}$
$=(-4) \times 4+\sum_{k=0}^{7}(-1)^{3 k-1}\left\{-1+2(-1)^{3 k+2}\right\}$
$+\sum_{k=0}^{7}(-1)^{3 k+2}\left\{-1+2(-1)^{3 k+3}\right\}$
$=-16+\{-1 \times 4+(-3) \times 4\}+\{-3 \times 4+4$ $\times-1\}$
(d)

Since α, β are roots of $x^{2}+b x-c=0$
$\therefore \alpha+\beta=-b, \alpha \beta=-c$
The equation whose roots are b, c is
$x^{2}-x(b+c)+b c=0$
$\Rightarrow x^{2}-x(-\alpha-\beta-\alpha \beta)+\alpha \beta(\alpha+\beta)=0$
$\Rightarrow x^{2}+x(\alpha+\beta+\alpha \beta)+\alpha \beta(\alpha+\beta)=0$
288 (c)
Here, $\alpha^{2}-a \alpha+b=0$ and $\beta^{2}+a \beta+b=0$
Now, $A_{n+1}-a A_{n}+b A_{n-1}$
$=\alpha^{n+1}+\beta^{n+1}-a\left(\alpha^{n}+\beta^{n}\right)+b\left(\alpha^{n-1}+\beta^{n-1}\right)$
$=\alpha^{n-1}\left(\alpha^{2}-a \alpha+b\right)+\beta^{n-1}\left(\beta^{2}-a \beta+b\right)$
$=0$
289 (b)
Let α be a common root of the equations
$x^{2}+\left(a^{2}-2\right) x-2 a^{2}=0$ and $x^{2}-3 x+2=0$
Then,
$\alpha^{2}+\left(a^{2}-2\right) \alpha-2 a^{2}=0$ and $\alpha^{2}-3 \alpha+2=0$
Now,
$\alpha^{2}-3 \alpha+2=0 \Rightarrow \alpha=1,2$
Putting, $\alpha=1$ in $\alpha^{2}+\left(a^{2}-2\right) \alpha-2 a^{2}=0$, we get
$\Rightarrow a^{2}+1=0$, which is not possible for any $a \in R$ Putting $\alpha=2$ in $\alpha^{2}+\left(a^{2}-2\right) \alpha-2 a^{2}=0$, we get
$4+2\left(a^{2}-2\right)-2 a^{2}=0$, which is true for all $a \in R$
Thus, the two equations have exactly one common root for all $a \in R$
290 (c)
$\left(\log _{b} a \cdot \log _{c} a-\log _{a} a\right)+\left(\log _{a} b \cdot \log _{c} b-\log _{b} b\right.$ $+\left(\log _{a} c \cdot \log _{b} c-\log _{c} c\right)=0$
$\Rightarrow\left(\frac{\log a}{\log b} \cdot \frac{\log a}{\log c}-\frac{\log a}{\log a}\right)+\left(\frac{\log b}{\log a} \cdot \frac{\log b}{\log c}-\frac{\log b}{\log b}\right)$ $+\left(\frac{\log c}{\log a} \cdot \frac{\log c}{\log b}-\frac{\log c}{\log c}\right)=0$
$\Rightarrow(\log a)^{3}+(\log b)^{3}+(\log c)^{3}$ $-3 \log a \log b \log c=0$
$\Rightarrow \quad(\log a+\log b+\log c)=0$
$\binom{\because$ if $a^{3}+b^{3}+c^{3}=3 a b c}{$, then $a+b+c=0}$
$\Rightarrow a b c=1$
291 (b)
Let the incorrect equation is
$x^{2}+15 x+b=0$
Since, roots are -7 and -2
\therefore Product of roots, $b=14$
So, correct equation is $x^{2}-9 x+14=0$
292 (c)
Let $f(x)=x^{2}+x+a$. Both the roots of $f(x)=0$
will exceed a, if
(i) Discriminant >0
(ii) A lies outside the roots i.e. $f(a)>0$
(iii) $a<x$-coordinate of vertex
$\therefore a<\frac{1}{4}, a^{2}+2 a>0$ and $a<-1 / 2$
$\Rightarrow a<-1 / 2$ and $a^{2}+2 a>0$
$\Rightarrow a<-1 / 2$ and $a(a+2)>0$
$\Rightarrow a<-\frac{1}{2}$ and $a+2<0 \quad[\because a<0]$
$\Rightarrow a<-1 / 2$ and $a<-2 \Rightarrow a<-2$
293 (c)
Since a, b, c are positive
$\therefore a x^{2}+b|x|+c>0$
Hence, the equation $a x^{2}+b|x|+c=0$ has no real roots
294 (b)
By Rolle's Theorem, between any two roots of a polynomial $f(x)$, there is a root of $f^{\prime}(x)$.
Therefore, $f^{\prime}(c)=0$ for same $c \in(a, b)$
295 (b)
Given, $(x-1)^{3}=(-2)^{3} \Rightarrow\left(\frac{x-1}{-2}\right)=(1)^{1 / 3}$
\therefore Cube roots of $\left(\frac{x-1}{-2}\right)$ are $1, \omega$ and ω^{2}
\Rightarrow Cube roots of $(x-1)$ are $-2,-2 \omega$ and $-2 \omega^{2}$
\Rightarrow Cube roots of x are $-1,1-2 \omega$ and $1-2 \omega^{2}$
296 (b)
Given equation is
$x^{2}-2 x(1+3 k)+7(2 k+3)=0$
For equal roots, discriminant $=0$
$\therefore \quad 4(1+3 k)^{2}=4 \times 7(2 k+3$
$\Rightarrow 9 k^{2}-8 k-20=0 \Rightarrow k=2, \frac{-10}{9}$
297 (c)
$7^{2 \log _{7} 5}=7^{\log _{7}(5)^{2}}$
$=(5)^{2}=25 \quad\left[\because a^{\log _{a} x}=x ; x>0, x \neq 0,1\right]$

(b)

We have,

$$
=\tan \left\{\tan ^{-1}\left(\frac{2 a b}{a^{2}-b^{2}}\right)\right\}=\frac{2 a b}{a^{2}-b^{2}}
$$

299 (a)
We have,
$x^{3}+2 x^{2}+2 x+1=0$
$\Rightarrow\left(x^{3}+1\right)+2 x(x+1)=0$
$\Rightarrow(x+1)\left(x^{2}+x+1\right)=0 \Rightarrow x=-1, \omega, \omega^{2}$
Let $f(x)=1+x^{2002}+x^{2003}$. Then,
$f(-1)=1+(-1)^{2002}+(-1)^{2003}=1+1-1$
$\neq 0$
$f(\omega)=1+(\omega)^{2002}+(\omega)^{2003}=1+\omega+\omega^{2}=0$
$f(\omega)=1+\left(\omega^{2}\right)^{2002}+\left(\omega^{2}\right)^{2003}=1+\omega^{2}+\omega$

$$
=0
$$

Hence, ω and ω^{2} are common roots of the two equations
300 (b)
As $p<0$, therefore $p=-q$, where $q>0$
$\therefore \quad p^{1 / 3}=(-q)^{1 / 3}=q^{1 / 3}(-1)^{1 / 3}$
$\Rightarrow \quad p^{1 / 3}=-q^{1 / 3},-q^{1 / 3} \omega,-q^{1 / 3} \omega^{2}$
Let $\alpha=-q^{1 / 3}, \beta=q^{1 / 3} \omega$, and $\gamma=-q^{1 / 3} \omega^{2}$
$\therefore \frac{x \alpha+y \beta+z \gamma}{x \beta+y \gamma+z \alpha}=\frac{x+y \omega+z \omega^{2}}{x \omega+y \omega^{2}+z}=\omega^{2}$

$$
=\frac{-1-i \sqrt{3}}{2}
$$

301 (d)
Since, $y^{2}-y+a=\left(y-\frac{1}{2}\right)^{2}+a-\frac{1}{4}$
and $-\sqrt{2} \leq \sin x+\cos x \leq \sqrt{2}$, given equation will have no real values of x for any y, if

$$
\begin{aligned}
& \log \left(\frac{a-i b}{a+i b}\right) \\
& =\log (a-i b)-\log (a+i b) \\
& =\left[\log \sqrt{a^{2}+b^{2}}+i \tan ^{-1}\left(\frac{-b}{a}\right)\right] \\
& -\left[\log \sqrt{a^{2}+b^{2}}+i \tan ^{-1}\left(\frac{b}{a}\right)\right] \\
& =-2 i \tan ^{-1}\left(\frac{b}{a}\right) \\
& \therefore i \log \left(\frac{a-i b}{a+i b}\right) \\
& =2 \tan ^{-1}\left(\frac{b}{a}\right) \\
& =\tan ^{-1}\left(\frac{2 \frac{b}{a}}{1-\frac{b^{2}}{a^{2}}}\right) \\
& =\tan ^{-1}\left(\frac{2 a b}{a^{2}-b^{2}}\right) \\
& \Rightarrow \tan \left\{i \log \left(\frac{a-i b}{a+i b}\right)\right\}
\end{aligned}
$$

$a-\frac{1}{4}>\sqrt{2}$
ie, $a \in\left(\sqrt{2}+\frac{1}{4}, \infty\right)$
$\Rightarrow a \in(\sqrt{3}, \infty) \quad\left(\right.$ as $\left.\sqrt{2}+\frac{1}{4}<\sqrt{3}\right)$
302 (a)
Let $y=\sqrt{42+\sqrt{42+\sqrt{42}+\cdots}}$
$\Rightarrow y=\sqrt{42+y}$
On squaring both sides, we get
$y^{2}=42+y$
$\Rightarrow y^{2}-y-42=0$
$\Rightarrow(y-7)(y+6)=0$
$\Rightarrow y=7,6$
Since, $y=-6$ does not satisfy the given equation \therefore The required solution is $y=7$
303 (b)
Let α and β be the roots of the given equation, then
$\alpha+\beta=10, \quad \alpha \beta=16$
\therefore Required equation is
$x^{2}-(\alpha+\beta) x+\alpha \beta=0$
$\Rightarrow x^{2}-10 x+16=0$
304 (a)
Here, $|P Q|=|P S|=|P R|=2$
\therefore Shaded part represents the external part of circle having centre $(-1,0)$ and radius 2

As we know equation of circle having centre z_{0} and radius r, is
$\left|z-z_{0}\right|=r$
$\therefore \quad|z-(-1+0 i)|>2$
$\Rightarrow|z+1|>2$
Also, argument of $z+1$ with represent to positive direction of x-axis is $\pi / 4$
$\therefore \arg (z+1) \leq \frac{\pi}{4}$
And argument of $z+1$ in anti-clockwise direction is $-\pi / 4$.

$$
\begin{array}{lr}
\therefore & -\frac{\pi}{4} \leq \arg (z+1) \\
\Rightarrow & |\arg (z+1)| \leq \frac{\pi}{4}
\end{array}
$$

305 (a)
If ω and ω^{2} are two imaginary cube roots of unity.
Then, $1+\omega+\omega^{2}=0$
$\Rightarrow \omega+\omega^{2}=-1$
Now, $a \omega^{317}+a \omega^{382}=a\left(\omega^{317}+\omega^{382}\right)$
$=a\left(\omega^{2}+\omega\right)=-a$
And $a \omega^{317} \times a \omega^{382}=a^{2} \omega^{699}=a^{2}$
Therefore, the required equation is
$x^{2}-\left(a \omega^{317}+a \omega^{382}\right)+\left(a \omega^{317} \times a \omega^{382}\right)=0$
$\Rightarrow x^{2}+a x+a^{2}=0$
306 (b)
Let the given expression by y.
$\therefore y=\frac{x+2}{2 x^{2}+3 x+6}$
$\Rightarrow 2 x^{2} y+(3 y-1) x+(6 y-2)=0$
If $y \neq 0$, then $\Delta \geq 0$ for real x.
$i e, b^{2}-4 a c \geq 0$
$\therefore(3 y-1)^{2}-8 y(6 y-2) \geq 0$
$\Rightarrow-39 y^{2}+10 y+1 \geq 0$
$\Rightarrow(13 y+1)(3 y-1) \leq 0$
$\Rightarrow-\frac{1}{13} \leq y \leq \frac{1}{3}$
If $y=0$, then $x=-2$ which is real and this value of y is included in the above range.
307 (a)
We have,
$z(\overline{z+\alpha})+\bar{z}(z+\alpha)=0$
$\Rightarrow z(\bar{z}+\bar{\alpha})+\bar{z}(z+\alpha)=0 \Rightarrow z \bar{z}+\frac{1}{2} z \bar{\alpha}+\frac{1}{2} \bar{z} \alpha$ $=0$
Clearly, it represents a circle having centre at $-\frac{1}{2} \alpha$ and radius $=\frac{1}{2}|\alpha|$
308 (a)
On multiplying first equation by x, we get
$x^{4}+a x^{2}+x=0$
and another given equation is
$x^{4}+a x^{2}+1=0$
On subtracting Eq. (ii) from Eq. (i), we get
$x-1=0 \Rightarrow x=1$
Which is a common root.
On putting this value in Eq. (ii), we get
$1+a+1=0$
$\Rightarrow a=-2$
309 (d)
Given, $x=\frac{-1+\sqrt{3} i}{2}=\omega$
$\therefore \quad\left(1-x^{2}+x\right)^{6}-\left(1-x+x^{2}\right)^{6}$
$=\left(1-\omega^{2}+\omega\right)^{6}-\left(1-\omega+\omega^{2}\right)^{6}$
$=\left(-2 \omega^{2}\right)^{6}-(-2 \omega)^{6} \quad\left[\because 1+\omega+\omega^{2}=0\right]$
$=2^{6} \omega^{12}-2^{6} \omega^{6}=0 \quad\left[\because \omega^{3}=1\right]$
310 (d)
We have,
$(\alpha-\gamma)(\alpha-\delta)=\alpha^{2}-\alpha(\gamma+\delta)+\gamma \delta$
$\Rightarrow(\alpha-\gamma)(\alpha-\delta)=\alpha^{2}+p \alpha+r[\because \gamma+\delta$

$$
=-p, \gamma \delta=r]
$$

$\Rightarrow(\alpha-\gamma)(\alpha-\delta)=q+r \quad\left[\begin{array}{c}\because x^{2}+p x-q=0 \\ \therefore \alpha^{2}+p \alpha=q\end{array}\right]$
311 (d)
Since the roots of the equation
$x^{3}-3 a x^{2}+3 b x-c=0$ are in H.P. Therefore,
the roots of the reciprocal equation i.e.
$c y^{3}-3 b y^{2}+3 b y^{2}+3 a y-1=0$ are in A.P.
i. e. $\frac{1}{\alpha}, \frac{1}{\beta}, \frac{1}{\gamma}$ are in A.P.
$\therefore \frac{2}{\beta}=\frac{1}{\alpha}+\frac{1}{\gamma}$
$\Rightarrow \frac{3}{\beta}=\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma} \Rightarrow \frac{3}{\beta}=\frac{3 b}{c} \Rightarrow \beta$

$$
=\frac{c}{b}\left[\because \frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}=\frac{3 b}{c}\right]
$$

312 (d)
Let $S=1+i^{2}+i^{4}+i^{6}+\ldots+i^{2 n}$
$=1-1+1-1+1-\ldots+(-1)^{n}$
The value of S depends on n
\therefore The value cannot be determined
313 (b)
Applying $C_{1} \rightarrow C_{1}+C_{2}+C_{3}$, we get
$\Delta=\left|\begin{array}{ccc}1+\omega^{n}+\omega^{2 n} & \omega^{n} & \omega^{2 n} \\ \omega^{n}+\omega^{2 n}+1 & \omega^{2 n} & 1 \\ \omega^{2 n}+1+\omega^{n} & 1 & \omega^{n}\end{array}\right|$
$=\left(1+\omega^{n}+\omega^{2 n}\right)\left|\begin{array}{ccc}1 & \omega^{n} & \omega^{2} n \\ 1 & \omega^{2 n} & 1 \\ 1 & 1 & \omega^{n}\end{array}\right|$
$=\left(1+\omega^{n}\right.$
$\left.+\omega^{2 n}\right)\left|\begin{array}{ccc}1 & \omega^{n} & \omega^{2 n} \\ 0 & \omega^{2 n}-\omega^{n} & \omega^{2 n}-1 \\ 0 & \omega^{n}-1 & \omega^{n}-\omega^{2 n}\end{array}\right| \begin{gathered}\text { Applying } \\ R_{2} \rightarrow R_{2}-R_{1} \\ R_{3} \rightarrow R_{3}-R_{1}\end{gathered}$
$=\left(1+\omega^{n}+\omega^{2 n}\right)\left\{\left(\omega^{2 n}-\omega^{n}\right)\left(\omega^{n}-\omega^{2 n}\right)\right.$
$\left.-\left(\omega^{2 n}-1\right)\left(\omega^{n}-1\right)\right\}$
$=\left(1+\omega^{n}+\omega^{2 n}\right)\left\{\omega^{3 n}-\omega^{4 n}-\omega^{2 n}+\omega^{3 n}-\omega^{3 n}\right.$
$\left.+\omega^{2 n}+\omega^{n}-1\right\}$
$=\left(1+\omega^{n}+\omega^{2 n}\right)\left(1-\omega^{n}-\omega^{2 n}+1-1+\omega^{2 n}\right.$ $\left.+\omega^{n}-1\right)=0$
314 (c)
$1+\sum_{k=0}^{14}\left\{\cos \frac{(2 k+1)}{15} \pi+i \sin \frac{(2 k+1)}{15} \pi\right\}$
$=1+\sum_{k=0}^{14} e^{i \frac{(2 k+1)}{15} \pi}$
$=1+\left(\alpha+\alpha^{3}+\alpha^{5}+\ldots+\alpha^{29}\right)\left(\right.$ where $\left.\alpha=e^{i \pi / 15}\right)$
$=1+\alpha\left(\frac{1-\alpha^{30}}{1-\alpha^{2}}\right)=1 \quad\left[\because \alpha^{30}=e^{i 2 \pi=1}\right]$
315 (c)
We know that, if $a z_{1}+b z_{2}+c z_{3}=0$ and $a+b+c=0$, then z_{1}, z_{2}, z_{3} lie on a line

316 (b)
We have,
$(1+\omega)^{7}=A+B \omega$
$\Rightarrow\left(-\omega^{2}\right)^{7}=A+B \omega \quad\left[\because 1+\omega+\omega^{2}=0\right]$
$\Rightarrow-\omega^{14}=A+B \omega$
$\Rightarrow-\omega^{2}=A+B \omega \Rightarrow 1+\omega=A+B \omega \Rightarrow A=B$ $=1$
317 (c)
Since the function $f(x)=9^{x}-3^{x}+1$ is continuous for all x and every continuous function attains every value between its maximum and minimum values. Therefore, $f(x)$ takes every value between its minimum and maximum values.
We have,
$f(x)=9^{x}-3^{x}+1=\left(3^{x}-\frac{1}{2}\right)^{2}+\frac{3}{4}>\frac{3}{4}$ for all x
Thus, $f(x)$ assumes all real values greater than 3/4
318 (c)
Given, $|z-1|=|z-i|$
$\Rightarrow \quad z$ lies on the perpendicular bisector of the line joining (1,0)
And $(0,1)$ and it is a straight line passing through origin.
319 (b)
Since, $x^{2}+20+\sqrt{x^{4}+20}=22+20$
Let $\sqrt{x^{4}+20}=y$
$\therefore y^{2}+y-42=0$
$\Rightarrow(y-6)(y+7)=0 \Rightarrow y=6 \quad(\because y \neq-7)$
$\Rightarrow \sqrt{x^{4}+20}=6 \Rightarrow x^{4}+20=36$
$\Rightarrow \quad x^{4}=16 \quad \Rightarrow \quad x= \pm 2$
Hence, the number of real roots of the equation is 2
320 (b)
Since, the roots of the given equation are real
\therefore Discriminant $>0 \Rightarrow 16+4 \log _{3} a \geq 0$
$\Rightarrow \log _{3} a \geq-4 \Rightarrow a \geq 3^{-4} \Rightarrow a \geq \frac{1}{81}$
Hence, the least value of a is $\frac{1}{81}$
321 (d)
Since, $\frac{b-a}{x^{2}+(a+b) x+a b}=\frac{1}{x+c}$
$\Rightarrow x^{2}+2 a x+a b+c a-b c=0$
Since, the product of roots is zero
Then, $a b+c a-b c=0 \Rightarrow a=\frac{b c}{b+c}$
\therefore Sum of roots $=-2 a=\frac{-2 b c}{b+c}$
322 (b)
Given, $\frac{3 x+2}{(x+1)\left(2 x^{2}+3\right)}=\frac{A}{(x+1)}+\frac{B x+C}{\left(2 x^{2}+3\right)}$
$\Rightarrow 3 x+2=A\left(2 x^{2}+3\right)+(B x+C)(x+1)$
On putting $x+1=0$ ie, $x=-1$
We get $3(-1)+2=A\left[2(-1)^{2}+3\right]$
$\Rightarrow A=-\frac{1}{5}$
Now, on comparing the coefficients of x^{2} and x, we get
$0=2 A+B$
$\Rightarrow \quad B=\frac{2}{5}$
And $3=B+C$
$\Rightarrow C=3-\frac{2}{5}=\frac{13}{5}$
$\therefore \quad A+C-B=-\frac{1}{5}+\frac{13}{5}-\frac{2}{5}=\frac{10}{5}=2$
323 (a)
Let $z=\alpha$ be a real root of
$z^{2}+(p+i q) z+(r+i s)=0$. Then,
$\alpha^{2}+(p+i q) \alpha+(r+i s)=0$
$\Rightarrow \alpha^{2}+p \alpha+r=0$ and $q \alpha+s=0$
$\Rightarrow \frac{s^{2}}{q^{2}}-\frac{p s}{q}+r=0 \Rightarrow p s q=s^{2}+q^{2} r$
324 (c)
Let α, β be the roots of the equation $x^{2}+p x+$
$8=0$
Then,
$\alpha+\beta=-p$ and $\alpha \beta=8$
It is given that
$|\alpha-\beta|=2$
$\Rightarrow|\alpha-\beta|^{2}=4$
$\Rightarrow(\alpha+\beta)^{2}-4 \alpha \beta=4 \Rightarrow p^{2}-32=4 \Rightarrow p= \pm 6$
(d)

Let $\alpha=\frac{3}{2}+\frac{7}{2} i$
$\beta=\frac{3}{2}-\frac{7}{2} i$
$\therefore \alpha+\beta=3, \alpha \beta=\frac{9}{4}+\frac{49}{4}=\frac{29}{2}$
$\Rightarrow \frac{6}{a}=3, \frac{b}{a}=\frac{29}{2}$
$\Rightarrow a=2, \quad b=29$
$\Rightarrow a+b=31$
327 (b)
Let $z=x+i y$
$\Rightarrow z^{2}=x^{2}-y^{2}+2 i x y$
$\Rightarrow \operatorname{Re}\left(z^{2}\right)=\operatorname{Re}\left(x^{2}-y^{2}+2 i x y\right)$
$\Rightarrow 1=\square^{2}-\square^{2} \quad\left[\because \operatorname{Re}\left(\mathbb{Q}^{2}\right)=1\right.$ (given) $]$
328 (d)
Here, $\sum \alpha_{1}=0, \quad \sum \alpha_{1} \alpha_{2}=(2-\sqrt{3})$,
$\sum \alpha_{1} \alpha_{2} \alpha_{3}=0, \quad \sum \alpha_{1} \alpha_{2} \alpha_{3} \alpha_{4}=2+\sqrt{3}$
$\left(1-\alpha_{1}\right)\left(1-\alpha_{2}\right)\left(1-\alpha_{3}\right)\left(1-\alpha_{4}\right)$
$=\left(1+\alpha_{1} \alpha_{2}-\alpha_{1}-\alpha_{2}\right)\left(1-\alpha_{3}\right)\left(1-\alpha_{4}\right)$
$=\left(1+\alpha_{1} \alpha_{2}-\alpha_{1}-\alpha_{2}-\alpha_{3}-\alpha_{1} \alpha_{2} \alpha_{3}+\alpha_{1} \alpha_{3}\right.$

$$
\left.+\alpha_{2} \alpha_{3}\right)\left(1-\alpha_{4}\right)
$$

$=1+\sum \alpha_{1} \alpha_{2}-\sum \alpha_{1} \alpha_{2} \alpha_{3}-\sum \alpha_{1}+\alpha_{1} \alpha_{2} \alpha_{3} \alpha_{4}$
$=1+2-\sqrt{3}-0-0+2+\sqrt{3}=5$
329 (a)
$\because \quad x=8+3 \sqrt{7}$
$\therefore y=\frac{1}{8+3 \sqrt{7}}=8-3 \sqrt{7}$
Now, $\frac{1}{x^{2}}+\frac{1}{y^{2}}=\frac{x^{2}+y^{2}}{(x y)^{2}}$
$=(x+y)^{2}-2 \quad[\because x y=1]$
$=(8+3 \sqrt{7}+8-3 \sqrt{7})^{2}-2$
$=(16)^{2}-2=254$
330 (a)
Let $z=\frac{12}{5}+\frac{16}{5} i$
$\because \tan \theta=\frac{16}{12}=\frac{4}{3}>0$
$\therefore \quad \theta>0$
And $|z|=\sqrt{\left(\frac{12}{5}\right)^{2}+\left(\frac{16}{5}\right)^{2}}=\frac{1}{5} \sqrt{144+256}=4$
Now, $|2-3 i|=\sqrt{4+9}=\sqrt{13}$
$\therefore \quad|2-3 i|<|z|$
331 (d)
Let $f(x)=2 x^{2}-2(2 a+1) x+a(a+1)$
Clearly, $y=f(x)$ is a parabola opening upward. It is given that a lies between its roots
\therefore Discriminant >0 and $f(a)<0$
$\Rightarrow 4(2 a+1)^{2}-8 a(a+1)>0$ and $2 a^{2}-$
$2 a(2 a+1)+a(a+1)<0$
$\Rightarrow 2 a^{2}+2 a+1>0$ and $a(a+1)>0$
$\Rightarrow a(a+1)>0 \quad\left[\because 2 a^{2}+2 a+1>0\right.$ for all $a \in$ R]
$\Rightarrow a<-1$ or $a>0$
332 (b)
Case I When $n \geq a$
$\therefore \quad x^{2}-2 a(x-a)-3 a^{2}=0$
$\Rightarrow x^{2}-2 a x-a^{2}=0 \Rightarrow x=a \pm \sqrt{2} a$
Now, for $x \geq a, a<0$
$\Rightarrow \quad x=a(1-\sqrt{2}) \quad[\because x=a(1+\sqrt{2})<a]$
Case II When $x<a$
$\therefore x^{2}+2 a(x-a)-3 a^{2}=0$
$\Rightarrow x^{2}+2 a x-5 a^{2}=0$
$\Rightarrow \quad x=-a \pm \sqrt{6} a$
Now, for $x<a, \quad a<0$

$$
\begin{align*}
\Rightarrow \quad x=a & (\sqrt{6}-1) \quad \ldots(\mathrm{ii}) \tag{ii}\\
& \quad[\because \quad x=-a(1+\sqrt{6})>a]
\end{align*}
$$

From Eqs. (i) and (ii),
$x=\{a(1-\sqrt{2}), a(\sqrt{6}-1)\}$
333 (c)
Since, $\frac{A B}{B C}=\sqrt{2}$
Considering the rotation about ' B^{\prime}, we get,
$\frac{z_{1}-z_{2}}{z_{3}-z_{2}}=\frac{\left|z_{1}-z_{2}\right|}{\left|z_{3}-z_{2}\right|} e^{i \pi / 4}$
$=\frac{A B}{B C} e^{i \pi / 4}$
$=\sqrt{2}\left(\frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}}\right)=1+i$
$\Rightarrow z_{1}-z_{2}=(1+i)\left(z_{3}-z_{2}\right)$
$\Rightarrow \quad z_{1}-(1+i) z_{3}=z_{2}(1-1-i)$
$\Rightarrow i z_{2}=-z_{1}+(1+i) z_{3}$
$\Rightarrow \quad z_{2}=i z_{1}-i(1+i) z_{3}$
$=z_{3}+i\left(z_{1}-z_{3}\right)$
334 (a)
Let $z=x+i y$
$\therefore \frac{z+i}{z+2}=\frac{x+i y+i}{x+i y+2}=\frac{x+i(y+1)}{(x+2)+i y}$
$=\frac{[x+i(y+1)] \times[(x+2)-i y]}{[(x+2)+i y] \times[(x+2)-i y]}$
$=\left[\frac{x^{2}+2 x+y^{2}+y}{(x+2)^{2}+y^{2}}\right]+i\left[\frac{(y+1)(x+2)-x y}{(x+2)^{2}+y^{2}}\right]$
Since, it is purely imaginary, therefore real part must be equal to zero
$\therefore \frac{x^{2}+y^{2}+2 x+y}{(x+2)^{2}+y^{2}}=0$
$\Rightarrow x^{2}+y^{2}+2 x+y=0$
It represents the equation of circle and its radius
$=\sqrt{1+\frac{1}{4}-0}=\frac{\sqrt{5}}{2}$
Therefore, locus of z in argand diagram is a circle of radius $\frac{\sqrt{5}}{2}$
335 (b)
The coordinates of the points representing $1+i, i-1$ and $2 i$ are $(1,1),(-1,1)$ and $(0,2)$
respectively
\therefore Required area $=\frac{1}{2}\left|\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 0 & 2 & 1\end{array}\right|=1$ sq. unit.
336 (b)
We have,
$x=-5+4 i$
$\Rightarrow(x+5)^{2}=-16 \Rightarrow x^{2}+10 x+41=0$
Now,
$x^{4}+9 x^{3}+35 x^{2}-x+4$
$=x^{2}\left(x^{2}+10 x+41\right)-x\left(x^{2}+10 x+41\right)$
$+4\left(x^{2}+10 x+41\right)-160$
$=0 x^{2}-0 x+4 \times 0-160=-160 \quad[$ Using

337 (a)
We have,
$\arg \left(\frac{z-1}{z+1}\right)=k$
$\Rightarrow \arg \left(\frac{z-1}{-z-1}\right)=k$
$\Rightarrow \angle B P A=k$
$\Rightarrow P$ lies on the circle passing through $A(1,0)$ and $B(-1,0)$. Clearly, the circle is symmetric about y axis.
Hence, P lies on the circle having its centre of y axis

338 (b)

We have,

$|2 x+3|^{2}-3|2 x+3|+2=0$
$\Rightarrow(|2 x+3|-2)(|2 x+3|-1)=0$
$\Rightarrow|2 x+3|=1,2$
$\Rightarrow 2 x+3= \pm 1, \pm 2 \Rightarrow x=-1,-2,-\frac{1}{2},-\frac{5}{2}$
\therefore Product of roots $=\frac{5}{2}$
339 (d)
$\alpha=\omega, \beta=\omega^{2}$ will satisfy the given equation
Now, $\alpha^{19}=\omega^{19}=\omega$
$\beta^{7}=\omega^{14}=\omega^{2}$
\Rightarrow Required equation is
$x^{2}-\left(\omega+\omega^{2}\right) x+\omega^{2}=0$
$\Rightarrow x^{2}+x+1=0$
340 (d)
We have, $z=4-3 i$
$\therefore|z|=\sqrt{4^{2}+(-3)^{2}}=5$
Let z_{1} be the new complex number obtained by rotating z in the clockwise sense through 180°, therefore
$z_{1}=-4+3 i$
Therefore required complex number is
$3(-4+3 i)=-12+9 i$
341 (c)
Sum of the roots of $x^{2}-2 a x+b^{2}=0$ is $2 a$
$\therefore A=$ A. M. of the roots $=a$
Product of the roots of $x^{2}-2 b x+a^{2}=0$ is a^{2}
$\therefore G=$ G. M. of the roots $=a$

Clearly, $A=G$
342 (b)
$\left|z+\frac{2}{z}\right|=2 \Rightarrow|z|-\frac{2}{|z|} \leq 2$
$\Rightarrow|z|^{2}-2|z|-2 \leq 0$
This is a quadratic equation in $|z|$
$\therefore|z| \leq \frac{2 \pm \sqrt{4+8}}{2} \leq 1 \pm \sqrt{3}$
Hence, maximum value of $|z|$ is $1+\sqrt{3}$
343 (b)
Here, $\alpha+\beta=\frac{p+1}{2}$ and $\alpha \beta=\frac{p-1}{2}$
Now, $(\alpha-\beta)^{2}=(\alpha+\beta)^{2}-4 \alpha \beta$
$\Rightarrow(\alpha \beta)^{2}=(\alpha+\beta)-4 \alpha \beta \quad[\because \alpha-\beta=\alpha \beta$ given $]$
$\Rightarrow\left(\frac{p-1}{2}\right)^{2}=\left(\frac{p+1}{2}\right)^{2}-4\left(\frac{p-1}{2}\right)$
$\Rightarrow p^{2}+1-2 p=p^{2}+1+2 p-8 p+8 \Rightarrow p=2$
344
(d)

Here, $a=e^{i 2 \pi / 3}=\omega$
$\therefore \quad a+\frac{1}{a^{2}}=\omega+\frac{1}{\omega^{2}}=\omega+\omega=2 \omega$
Similarly, $a^{2}+\frac{1}{a^{2}}=\omega^{2}+\frac{1}{\omega^{4}}=2 \omega^{2}$
$\therefore \quad a+\frac{1}{a^{2}}+a^{2}+\frac{1}{a^{4}}=2 \omega+2 \omega^{2}=-2$
And $\left(a+\frac{1}{a^{2}}\right)\left(a^{2}+\frac{1}{a^{4}}\right)=2 \omega .2 \omega^{2}=4$
\therefore required equation is $x^{2}+2 x+4=0$
345 (a)
Given that, $x^{2}+b x+c=0$ and $b=17$
Since, roots of this equation are -2 and -15
$\therefore \quad(x+2)(x+15)=x^{2}+17 x+30$
From Eqs. (i) and (ii), $c=30$
If $b=13$, then
$x^{2}+13 x+c=0 \Rightarrow x^{2}+13 x+30=0$
$\Rightarrow \quad x=-3,-10$
346 (a)
Given that $x, y, z \in R$ and distinct and
$u=x^{2}+4 y^{2}+9 z^{2}-6 y z-3 z x-2 x y$
$=\frac{1}{2}\left(2 x^{2}+8 y^{2}+18 z^{2}-12 y z-6 z x-4 x y\right)$
$=\frac{1}{2}\left\{\left(x^{2}-4 x y+4 y^{2}\right)+\left(x^{2}-6 x z+9 z^{2}\right)\right.$
$\left.+\left(4 y^{2}-12 y z+9 z^{2}\right)\right\}$
$=\frac{1}{2}\left\{(x-2 y)^{2}+(x-3 z)^{2}+(2 y-3 z)^{2}\right\}>0$
So, u is always non-negative.
347 (b)
Here, $\alpha+\beta=\frac{5}{6}$ and $\alpha \beta=\frac{1}{6}$
$\therefore \tan ^{-1} \alpha+\tan ^{1} \beta=\tan ^{-1}\left(\frac{\alpha+\beta}{1-\alpha \beta}\right)$
$=\tan ^{-1}\left(\frac{\frac{5}{6}}{1-\frac{1}{6}}\right)$
$=\tan ^{-1} 1=\frac{\pi}{4}$
348 (b)
Given, $a^{x}=b^{y}=c^{z}=d^{w}$
$\Rightarrow x=y \log _{a} b=z \log _{a} c=w \log _{a} d$
$\Rightarrow y=\frac{x}{\log _{a} b}, z=\frac{x}{\log _{a} c}, w=\frac{x}{\log _{a} d}$
Now, $x\left(\frac{1}{y}+\frac{1}{z}+\frac{1}{w}\right)$
$=x\left[\frac{\log _{a} b}{x}+\frac{\log _{a} c}{x}+\frac{\log _{a} d}{x}\right]$
$=\frac{x}{x}\left[\log _{a} b c d\right]=\log _{a}(b c d)$
349 (a)
We know that, if $\log _{a} m>\log _{a} n$
$\Rightarrow m>n$ or $m<n$ according as $a>1$ or $0<a<1$
$\therefore \log _{\left(\frac{1}{3}\right)}|z+1|>\log _{\left(\frac{1}{3}\right)}|z-1|$
$\Rightarrow|z+1|<|z-1| \quad\left(\because 0<\frac{1}{3}<1\right)$
Let $z=x+i y$
$|x+i y+1|<|x+i y-1|$
$\Rightarrow(x+1)^{2}+y^{2}<(x-1)^{2}+y^{2}$
$\Rightarrow 4 x<0 \Rightarrow x<0 \Rightarrow \operatorname{Re}(z)<0$
350 (c)
We have, $b^{2}=a c$
Let α, β be the roots of the equation $a x^{2}+b x+$ $c=0$. Then,
$\alpha, \beta=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$\Rightarrow \alpha, \beta=\frac{-\sqrt{a c}+i \sqrt{3 a c}}{2 a} \quad\left[\because b^{2}=a c\right]$
$\Rightarrow \alpha=\left(-\frac{1}{2}+i \frac{\sqrt{3}}{2}\right) \sqrt{\frac{c}{a}}$ and, $\beta=\left(-\frac{1}{2}-i \frac{\sqrt{3}}{2}\right) \sqrt{\frac{c}{a}}$
$\Rightarrow \alpha=\omega \sqrt{\frac{c}{a}}$ and, $\beta=\omega^{2} \sqrt{\frac{c}{a}} \Rightarrow \alpha: \beta=1: \omega$
351 (b)
Since, $\tan \alpha$ and $\tan \beta$ are the roots of the equation $x^{2}+a x+b=0$, then
$\tan \alpha+\tan \beta=-\frac{a}{1}$
and $\tan \alpha \cdot \tan \beta=b$
$\Rightarrow \frac{\sin \alpha}{\cos \alpha}+\frac{\sin \beta}{\cos \beta}=-\frac{a}{1}$
and $\frac{\sin \alpha \sin \beta}{\cos \alpha \cos \beta}=b$
$\therefore \sin ^{2}(\alpha+\beta)+a \sin (\alpha+\beta) \cos (\alpha+\beta)$

$$
+b \cos ^{2}(\alpha+\beta)
$$

$=\cos ^{2}\left((\alpha+\beta)\left[\tan ^{2}(\alpha+\beta)+b+a \tan (\alpha+\beta)\right]\right.$
$=\frac{\tan ^{2}(\alpha+\beta)+b+a \tan (\alpha+\beta)}{1+\tan ^{2}(\alpha+\beta)}$
$=\frac{\frac{a}{b-1}\left(a+\frac{a}{b-1}\right)}{1+\frac{a^{2}}{(b-1)^{2}}}=b$
352 (a)
We have, $\omega^{10}+\omega^{23}=\omega+\omega^{2}=-1$
$\therefore\left\{\left(\omega^{10}+\omega^{23}\right) \pi-\frac{\pi}{4}\right\}=\sin \left(\frac{-5 \pi}{4}\right)=\sin \frac{\pi}{4}=\frac{1}{\sqrt{2}}$
353 (b)
The equation formed by decreasing each root of
$a x^{2}+b x+c=0$ by 1 is
$a(x+1)^{2}+b(x+1)+c=0$
$\Rightarrow a x^{2}+x(2 a+b)+a+b+c=0$
This is identical to the equation $2 x^{2}+8 x+2=0$
$\therefore \frac{a}{2}=\frac{2 a+b}{8}=\frac{a+b+c}{2}$
$\Rightarrow 4 a=2 a+b, a=a+b+c$ and $2 a+b=4 a+$ $4 b+4 c$
$\Rightarrow 2 a=b, b+c=0$ and $2 a+3 b+4 c=0$
$\Rightarrow b=2 a, b=-c$ and $c=-2 a \Rightarrow 2 a=b=-c$
354 (c)
$|z-2|=\min \{|z-1|,|z-5|\}$
ie, $|z-2|=|z-1|$, where $|z-1|<|z-5|$
$\Rightarrow \operatorname{Re}(z)=\frac{3}{2}$ which satisfy $|z-1|<|z-5|$
Also, $|z-2|=|z-5|$, where $|z-5|<|z-1|$
$\Rightarrow \operatorname{Re}(z)=\frac{7}{2}$ which satisfy $|z-5|<|z-1|$
355 (a)
We have,
$2 a x^{2}+(2 a+b) x+b=0, a \neq 0$
$\Rightarrow x=\frac{-(2 a+b) \pm(2 a-b)}{4 a} \Rightarrow x=-1,-\frac{b}{2 a}$
Hence, the roots are rational
356 (a)
Here, $\alpha+\beta=-\frac{m}{l}, \alpha \beta=\frac{n}{l}$
Now, $\alpha^{3} \beta+\alpha \beta^{3}=\alpha \beta\left(\alpha^{2}+\beta^{2}\right)$
$=\alpha \beta\left[(\alpha+\beta)^{2}-2 \alpha \beta\right]$
$=\frac{n}{l}\left[\left(\frac{-m}{l}\right)^{2}-\frac{2 n}{l}\right]$
$=\frac{n}{l}\left(\frac{m^{2}}{l^{2}}-\frac{2 n}{l}\right)$
And $\quad \alpha^{3} \beta . \alpha \beta^{3}=(\alpha \beta)^{4}=\frac{n^{4}}{l^{4}}$
\therefore Required quadratic equation is
$x^{2}-\frac{n}{l}\left(\frac{m^{2}}{l^{2}}-\frac{2 n}{l}\right) x+\frac{n^{4}}{l^{4}}=0$
$\Rightarrow l^{4} x^{2}-n l\left(m^{2}-2 n l\right) x+n^{4}=0$
357 (b)
Here, $\sum \alpha=0, \quad \sum \alpha \beta=-7, \quad \alpha \beta \gamma=-7$
$\therefore \frac{1}{\alpha^{4}}+\frac{1}{\beta^{4}}+\frac{1}{\gamma^{4}}=\frac{\alpha^{4} \beta^{4}+\beta^{4} \gamma^{4}+\gamma^{4} \beta^{4}}{\alpha^{4} \beta^{4} \gamma^{4}}$
$=\frac{\sum \alpha^{4} \beta^{4}}{\alpha^{4} \beta^{4} \gamma^{4}}$
Now, $\sum \alpha \beta \sum \alpha \beta \sum \alpha \beta \sum \alpha \beta=\left(\sum \alpha \beta\right)^{2}\left(\sum \alpha \beta\right)^{2}$
$\Rightarrow(-7)^{2}=\left[\alpha^{2} \beta^{2}+\beta^{2} \gamma^{2}+\gamma^{2} \alpha^{2}\right.$

$$
\begin{aligned}
& +2 \alpha \beta \gamma(\alpha+\beta+\gamma)]\left[\alpha^{2} \beta^{2}+\beta^{2} \gamma^{2}\right. \\
& \left.+\gamma^{2} \alpha^{2}+2 \alpha \beta \gamma(\alpha+\beta+\gamma)\right]
\end{aligned}
$$

$=\left(\alpha^{4} \beta^{4}+\beta^{4} \gamma^{4}+\gamma^{4} \alpha^{4}\right)\left(\alpha^{4} \beta^{4}+\beta^{4} \gamma^{4}+\right.$
$\gamma 4 \alpha 4 \alpha=\alpha+\beta+\gamma=0$
$=\alpha^{4} \beta^{4}+\beta^{4} \gamma^{4}+\gamma^{4} \alpha^{4}+2 \alpha^{4} \beta^{2} \gamma^{2}+2 \alpha^{2} \beta^{4} \gamma^{2}$

$$
+2 \alpha^{2} \beta^{2} \gamma^{4}
$$

$=\sum \alpha^{4} \beta^{4}+2 \alpha^{2} \beta^{2} \gamma^{2}\left[\left(\sum \alpha\right)^{2}-2 \sum \alpha \beta\right]$
$=\sum \alpha^{4} \beta^{4}+2 \alpha^{2} \beta^{2} \gamma^{2}[0-2 \times(-7)]$
$=\sum \alpha^{4} \beta^{4}+2(-7)^{2}(2 \times 7)$
$\Rightarrow \sum \alpha^{4} \beta^{4}=(-7)^{4}+4(-7)^{3}$
$\Rightarrow \sum \alpha^{4} \beta^{4}=(-7)^{3}(-7+4)=-3(-7)^{3}$
On putting this value in Eq. (i), we get
$\frac{1}{\alpha^{2}}+\frac{1}{\beta^{4}}+\frac{1}{\gamma^{4}}=\frac{-3(-7)^{3}}{(-7)^{4}}=\frac{-3}{-7}=\frac{3}{7}$
(b)

We have,
$x^{2}-2 a_{1} x+1=0$
$x^{2}-6 a_{3} x+3=0$
Let $\alpha, \beta ; \beta, \gamma$ and γ, α be the pairs of roots of equations (i),(ii) and (iii) respectively. Then,
$\alpha+\beta=2 a_{1}, \alpha \beta=1$
$\beta+\gamma=4 a_{2}, \beta \gamma=2$
$\gamma+\alpha=6 a_{3}, \gamma \alpha=3$
Now,
$\alpha \beta=1, \beta \gamma=2$ and $\gamma \alpha=3$
$\Rightarrow(\alpha \beta)(\beta \gamma)(\gamma \alpha)=1 \times 2 \times 3 \Rightarrow \alpha, \beta \gamma= \pm \sqrt{6}$
$\therefore \alpha= \pm \sqrt{\frac{3}{2}}, \beta= \pm \sqrt{\frac{2}{3}}, \gamma= \pm \sqrt{6}$
and,
$\alpha+\beta-2 a_{1}, \beta+\gamma=4 a_{2}, \gamma+\alpha=6 a_{3}$
$\Rightarrow \alpha+\beta+\gamma=a_{1}+2 a_{2}+3 a_{3}$
$\therefore \alpha=a_{1}-2 a_{2}+3 a_{3}, \beta=a_{1}+2 a_{2}-3 a_{3}, \gamma$

$$
=-a_{1}+2 a_{2}+3 a_{3}
$$

Thus, we have the following sets of simultaneous linear equations:
$a_{1}-2 a_{2}+3 a_{3}=\sqrt{\frac{3}{2}} \quad a_{1}-2 a_{2}+3 a_{3}=-\sqrt{\frac{3}{2}}$

$$
\begin{aligned}
a_{1}+2 a_{2}-3 a_{3} & =\sqrt{\frac{2}{3}} \text { and, } a_{1}+2 a_{2}-3 a_{3}=-\sqrt{\frac{2}{3}} \\
-a_{1}+2 a_{2}+3 a_{3} & =\sqrt{6}-a_{1}+2 a_{2}+3 a_{3} \\
& =-\sqrt{6}
\end{aligned}
$$

Hence, there are two triplets $\left(a_{1}, a_{2}, a_{3}\right)$
359 (d)
Given,
$z=\frac{11-3 i}{1+i} \times \frac{1-i}{1-i}=\frac{8-14 i}{2}=4-7 i$
Since, $z=i \alpha$ is real, therefore $4-7 i-i \alpha$ is real, if $\alpha=-7$
360 (b)
Let the equation (incorrectly written form) be $x^{2}+17 x+q=0$
Since, roots are $-2,-15$.
$\therefore q=30$
So, correct equation is $x^{2}+13 x+30=0$
$\Rightarrow x^{2}+10 x+3 x+30=0$
$\Rightarrow(x+3)(x+10)=0$
$\Rightarrow x=-3,-10$
361 (b)
Given, $z^{2}+z+1=0$
$\Rightarrow \quad z=\omega, \omega^{2}$
Take $z=\omega$

$$
\begin{aligned}
\therefore \quad\left(z+\frac{1}{z}\right)^{2}+ & \left(z^{2}+\frac{1}{z^{2}}\right)^{2}+\left(z^{3}+\frac{1}{z^{3}}\right)^{2} \\
& +\left(z^{4}+\frac{1}{z^{4}}\right)^{2}+\left(z^{5}+\frac{1}{z^{5}}\right)^{2} \\
& +\left(z^{6}+\frac{1}{z^{6}}\right)^{2} \\
=\left(\omega+\frac{1}{\omega}\right)^{2}+ & \left(\omega^{2}+\frac{1}{\omega^{2}}\right)^{2}+\left(\omega^{3}+\frac{1}{\omega^{3}}\right)^{2} \\
& +\left(\omega^{4}+\frac{1}{\omega^{4}}\right)^{2}+\left(\omega^{5}+\frac{1}{\omega^{5}}\right)^{5} \\
& +\left(\omega^{6}+\frac{1}{\omega^{6}}\right)^{2} \\
=\left(\omega+\omega^{2}\right)^{2}+ & \left(\omega^{2}+\omega\right)^{2}+(1+1)^{2} \\
& +\left(\omega+\omega^{2}\right)^{2}+\left(\omega^{2}+\omega\right)^{2} \\
& +(1+1)^{2}
\end{aligned}
$$

$=1+1+4+1+1+4=12$
Similarly, for $z=\omega^{2}$, we get the same result

We have,
$a^{2}-5 a+5<1$ and $2 a^{2}-3 a-4<1$
$\Rightarrow a^{2}-5 a+4<0$ and $2 a^{2}-3 a-5<0$
$\Rightarrow(a-1)(a-4)<0$ and $(2 a-5)(a+1)<0$
$\Rightarrow 1<a<4$ and $-1<a<\frac{5}{2} \Rightarrow 1<a<\frac{5}{2}$

Since, $(x-2)$ is a commom factor of the
expressions $x^{2}+a x+b$ and $x^{2}+c x+d$
$\Rightarrow 4+2 a+b=0$
And $4+2 c+d=0$
$\Rightarrow \quad 2 a+b=2 c+d$
$\Rightarrow \quad b-d=2(c-a)$
$\Rightarrow \frac{b-d}{c-a}=2$
364 (d)
$\log _{2} 20 \log _{2} 80-\log _{2} 5 \log _{2} 320$
$=\log _{2}\left(2^{2} \times 5\right) \log _{2}\left(2^{4} \times 5\right)-\log _{2} 5 \log _{2}\left(2^{6} \times 5\right)$
$=\left(2+\log _{2} 5\right)\left(4+\log _{2} 5\right)-\log _{2} 5\left(6+\log _{2} 5\right)$
$=8+6 \log _{2} 5+\left(\log _{2} 5\right)^{2}$

$$
-6 \log _{2} 5-\left(\log _{2} 5\right)^{2}=8
$$

365 (a)
\because LCM of $3,4,6$ is 12 .
$\therefore \quad \sqrt[3]{9}=9^{1 / 3}=\left(9^{4}\right)^{1 / 12}=(6561)^{1 / 12}$
$\sqrt[4]{11}=(11)^{1 / 4}=\left(11^{3}\right)^{1 / 12}=(1331)^{1 / 12}$
$\sqrt[6]{17}=(17)^{1 / 6}=\left(17^{2}\right)^{1 / 2}=(289)^{1 / 12}$
Hence, $\sqrt[3]{9}$ is the greatest number.
366 (d)
We know, $\omega=\frac{-1+\sqrt{3} i}{2}$
$\therefore \quad\left(-\frac{1}{2}+\frac{\sqrt{3} i}{2}\right)^{1000}=(\omega)^{1000}=\omega \quad\left[\because \omega^{3}\right.$

$$
=1]
$$

367 (a)
Let the roots be $\alpha, \beta, \beta, \gamma$ and γ, α, then
$\alpha \beta=b, \beta \gamma=c$ and $\gamma \alpha=a$
$\Rightarrow \alpha \beta \gamma=\sqrt{a b c}$
368 (c)
of $\sum_{k=1}^{10}\left(\sin \frac{2 k \pi}{11}+i \cos \frac{2 k \pi}{11}\right)=i \sum_{k=1}^{10}\left(\cos \frac{2 k \pi}{11}-\right.$
$i \sin 2 k \pi 11$
$=i \sum_{k=1}^{10}\left(e^{-\frac{2 k \pi}{11} i}\right)$
$=i \sum_{k=1}^{10} r^{k}$ where $r=e^{\frac{-2 \pi i}{11}}$
$=i\left(r+r^{2}+r^{3}+\ldots r^{10}\right)$
$=\frac{i \cdot r\left(r^{10}-1\right)}{r-1}$
$=i\left(\frac{r^{11}-r}{r-1}\right)$
$=i\left(\frac{1-r}{r-1}\right) \quad \because r^{11}=e^{-2 i \pi}=1$
$=-i$
369 (b)
Let $z=x+i y$ be such that $\operatorname{Re}(z)=0$. Then, $z=i y \Rightarrow z^{2}=-y^{2} \Rightarrow \operatorname{Im}\left(z^{2}\right)=0$
(b)
$z_{1}-z_{4}=z_{2}-z_{3}$
$\Rightarrow \frac{z_{1}+z_{3}}{2}=\frac{z_{2}+z_{4}}{2}$
\Rightarrow Diagonals bisect each other
Given that, $\arg \left(\frac{z_{4}-z_{1}}{z_{2}-z_{1}}\right)=\frac{\pi}{2}$
\Rightarrow Angle at $z_{1}=\frac{\pi}{2}$
So, it form a rectangle
(d)

Given, $\quad x^{3}+6 x+9=0$
$\Rightarrow \quad(x+3)\left(x^{2}-3 x+3\right)=0$
$\Rightarrow x=-3$ or $x^{2}-3 x+3=0$
Now, Discriminant, $D=\sqrt{9-4 \times 3}=\sqrt{-3}$
imaginary
Hence, real roots of the given equation is -3
372 (a)
$T_{r}=r[(r+1)-\omega]\left[(r+1)-\omega^{2}\right]$
$=r\left[(r+1)^{2}-\left(\omega+\omega^{2}\right)(r+1)+\omega^{3}\right]$
$=r\left[(r+1)^{2}-(-1)(r+1)+1\right]=r^{3}+3 r^{2}+3 r$
$\therefore \quad \sum_{r=1}^{n-1} T_{r}=\sum_{r=1}^{n-1}\left(r^{3}+3 r^{2}+3 r\right)$
$=\frac{1}{4}(n-1)^{2}(n)^{2}+3 \cdot \frac{1}{6}(n-1) n(2 n-1)$
$+3 \cdot \frac{1}{2}(n-1) n$
$=\frac{1}{4}(n-1) n\left(n^{2}+3 n+4\right)$
373 (b)
We have,
$\left|z_{1}\right|=\left|z_{2}\right|=\left|z_{3}\right|=1$
\Rightarrow Origin is the circumcentre of the triangle with the circum radius 1
Also, $z_{1}+z_{2}+z_{3}=0$
$\Rightarrow \frac{z_{1}+z_{2}+z_{3}}{3}=0$
\Rightarrow Centroid coincides with the origin
Hence, the circumcenter and centroid coincides
Consequently the triangle is equilateral
374 (b)
Let $y=\frac{x+2}{2 x^{2}+3 x+6}$
$\Rightarrow 2 y x^{2}+(3 y-1) x+x+6 y-2=0$
But x is real, then
$(3 y-1)^{2}-4(2 y)(6 y-2) \geq 0 \quad[\because D \geq 0]$
$\Rightarrow(13 y+1)(3 y-1) \leq 0$
$\Rightarrow-\frac{1}{13} \leq y \leq \frac{1}{3}$
(d)

Since the field of complex numbers is not an ordered field. In other words, the order relation is not defined on the set of all complex numbers

Now, $(1+\sqrt{3} i)^{n}+(1-\sqrt{3} i)^{n}$
$=\left[2\left(\frac{1+\sqrt{3} i}{2}\right)\right]^{n}+\left[2\left(\frac{1-\sqrt{3} i}{2}\right)\right]^{n}$
$=\left(-2 \omega^{2}\right)^{n}+(-2 \omega)^{n}$
$=(-2)^{n}\left[\left(\omega^{2}\right)^{3 r+1}+(\omega)^{3 r+1}\right]$
$[\because n=3 r+1$, where r is an integer $]$
$=(-2)^{n}\left(\omega^{2}+\omega\right)=-(-2)^{n}$
377 (d)
We have,
$\left(\frac{\sqrt{3} / 2+(1 / 2) i}{\sqrt{3} / 2-(1 / 2) i}\right)^{120}=\left(\frac{1 / 2-i \sqrt{3} / 2}{-1 / 2-i \sqrt{3} / 2}\right)^{120}$
$=\left(\frac{-\omega}{\omega^{2}}\right)^{120}=\left(\frac{1}{\omega}\right)^{120}=\left(\omega^{2}\right)^{120}=\omega^{240}=1+o i$
Hence, $p=1, q=0 .=-48$
378 (b)
Let $|x-2|=y$
$\therefore \quad y^{2}+y-6=0$
$\Rightarrow y=-3,2$
$\Rightarrow|x-2|=-3,|x-2|=2$
$\Rightarrow \pm(x-2)=2 \quad[\because|x-2|$ cannot be negative $]$
$\therefore \quad x=4,0$
379 (d)
We have,
$x^{2}-4 x-77<0$ and $x^{2}>4$
$\Rightarrow(x-11)(x+7)<0$ and $(x-2)(x+2)>0$
$\Rightarrow x \in(-7,-2) \cup(2,11)$
Clearly, the largest negative integer belonging to this set is -3
380 (b)
Given, $\frac{(1+i) x-2 i}{3+i}+\frac{(2-3 i) y+i}{3-i}=i$
$\Rightarrow \quad(4+2 i) x+(9-7 i) y-3 i-3=10 i$
Equating real and imaginary parts, we get
$2 x-7 y=13$ and $4 x+9 y=3$, hence $x=3$ and $y=-1$
381 (d)
Given, α, β are the roots of equation $x^{2}+4 x+$ $3=0$
$\therefore \alpha+\beta=-4$ and $\alpha \beta=3$
Now, $2 \alpha+\beta+\alpha+2 \beta=3(\alpha+\beta)=-12$
And $(2 \alpha+\beta)(\alpha+2 \beta)=2 \alpha^{2}+4 \alpha \beta+\alpha \beta+2 \beta^{2}$
$=2(\alpha+\beta)^{2}+\alpha \beta$
$=2(-4)^{2}+3=35$
Hence, required equation is
$x^{2}-($ sum of roots $) x+($ product of roots $)=0$
$\Rightarrow \quad x^{2}+12 x+35=0$
382 (c)
Here, $\tan \frac{P}{2}+\tan \frac{Q}{2}=-\frac{b}{a}$
And $\tan \frac{P}{2} \tan \frac{Q}{2}=\frac{c}{a}$

Also, $\frac{P}{2}+\frac{Q}{2}+\frac{R}{2}=\frac{\pi}{2} \quad[\because P+\mathcal{Q}+R=\pi]$
$\Rightarrow \frac{P+Q}{2}=\frac{\pi}{4} \quad\left[\because \angle R=\frac{\pi}{2}\right.$, given $]$
$\tan \left(\frac{P}{2}+\frac{Q}{2}\right)=1 \Rightarrow \frac{\tan \frac{P}{2}+\tan \frac{Q}{2}}{1-\tan \frac{P}{2} \tan \frac{Q}{2}}=1$
$\Rightarrow \frac{-\frac{b}{a}}{1-\frac{c}{a}}=1 \Rightarrow-\frac{b}{a}=1-\frac{c}{a} \quad$ [from Eq. (i)]
$\Rightarrow c=a+b$
383 (a)
We have,
$x^{2}+a x+\sin ^{-1}\left(x^{2}-4 x+5\right)$

$$
+\cos ^{-1}\left(x^{2}-4 x+5\right)=0
$$

$\Rightarrow x^{2}+a x+\frac{\pi}{2}=0$
This equation will have real roots, if
$a^{2}-2 \pi \geq 0$
$\Rightarrow(a-\sqrt{2 \pi})(a+\sqrt{2 \pi}) \geq 0$
$\Rightarrow a \in(-\infty,-\sqrt{2 \pi}] \cup[\sqrt{2 \pi}, \infty)$
(b)

We have,
$|z-1|=1 \Rightarrow z-1=e^{i \theta} \Rightarrow z=1+e^{i \theta}$
$\therefore \frac{z-2}{z}=\frac{1+e^{i \theta}-2}{1+e^{i \theta}}=\frac{(\cos \theta-1)+i \sin \theta}{(\cos \theta+1)+i \sin \theta}$
$\Rightarrow \frac{z-2}{z}=\tan \frac{\theta}{2}\left\{\frac{-\sin \frac{\theta}{2}+i \cos \frac{\theta}{2}}{\cos \frac{\theta}{2}+i \sin \frac{\theta}{2}}\right\}=i \tan \frac{\theta}{2}$
$\Rightarrow \frac{z-2}{z}$ is purely imaginary
385 (c)
Since, α and β are the roots of $x^{2}-a x+a+b=$ 0 , then
$\alpha+\beta=a$ and $\alpha \beta=a+b$
$\Rightarrow \alpha^{2}+\alpha \beta=a \alpha$
$\Rightarrow \alpha^{2}-a \alpha=-(a+b)$
And $\alpha \beta+\beta^{2}=a \beta$
$\Rightarrow \beta^{2}-a \beta=-(a+b)$
$\therefore \frac{1}{\alpha^{2}-a \alpha}+\frac{1}{\beta^{2}-a \beta}+\frac{1}{a+b}$
$=\frac{1}{-(a+b)}+\frac{1}{-(a+b)}+\frac{2}{(a+b)}=0$
386 (b)
Given, $x=\log _{b} a=\frac{\log _{e} a}{\log _{e} b}$
$y=\log _{c} b=\frac{\log _{e} b}{\log _{e} c}$
And $z=\log _{a} c=\frac{\log _{e} c}{\log _{e} a}$
$\therefore \quad x y z=\frac{\log _{e} a}{\log _{e} b} \cdot \frac{\log _{e} b}{\log _{e} c} \cdot \frac{\log _{e} c}{\log _{e} a}=1$
387 (d

We have,
$\log _{4} 2+\log _{4} 4+\log _{4} x+\log _{4} 16=6$
$\Rightarrow \log _{4}(2 \times 4 \times x \times 16)=6$
$\Rightarrow 128 x=4^{6}$
$\Rightarrow x=\frac{4^{3}}{2}=32$
388 (a)
We have,
$(1+\cos 2 \alpha)+i \sin 2 \alpha$
$=2 \cos ^{2} \alpha+2 i \sin \alpha \cos \alpha$
$=2 \cos \alpha[\cos \alpha+i \sin \alpha]$
$=-2 \cos \alpha[-\cos \alpha-i \sin \alpha]$
$=-2 \cos \alpha[\cos (\pi+\alpha)$

$$
+i \sin (\pi+\alpha)] \quad\left[\begin{array}{l}
\because \frac{\pi}{2}<\alpha \\
<3 \pi / 2
\end{array}\right]
$$

389 (b)
The given equation is $x^{2}-2 x \cos \emptyset+1=0$
$\therefore x=\frac{2 \cos \emptyset \pm \sqrt{4 \cos ^{2} \emptyset-4}}{2}=\cos \emptyset \pm i \sin \emptyset$
Let $\alpha=\cos \emptyset+i \sin \emptyset$, then $\beta=\cos \emptyset-i \sin \emptyset$
$\therefore \quad \alpha^{n}+\beta^{n}=(\cos \emptyset+i \sin \emptyset)^{n}$

$$
+(\cos \emptyset-i \sin \emptyset)^{n}
$$

$=2 \cos n \emptyset$
And $\alpha^{n} \beta^{n}=(\cos n \emptyset+i \sin n \emptyset)(\cos n \emptyset-$
$i \sin n \emptyset)$
$=\cos ^{2} n \emptyset+\sin ^{2} n \emptyset=1$
\therefore Required equation is $x^{2}-2 x \cos n \emptyset+1=0$
390 (c)
Here, $\sqrt{1-c^{2}}=n c-1$
$\Rightarrow 1-c^{2}=n^{2} c^{2}-2 n c+1$
$\therefore \frac{c}{2 n}=\frac{1}{1+n^{2}}$
or $\quad \frac{c}{2 n}(1+n z)\left(1+\frac{n}{z}\right)=\frac{1}{1+n^{2}}\left\{1+n^{2}+\right.$
$n z+1 z$
$=\frac{1}{1+n^{2}}\left\{1+n^{2}+n(2 \cos \theta)\right\}$
$=\frac{\left(1+n^{2}\right)+2 n \cos \theta}{1+n^{2}}$
$=1+\left(\frac{2 n}{1+n^{2}}\right) \cos \theta$ [using Eq.(i)]
$=1+c \cos \theta$
391 (a)
Let $z=x+i y$. Then,
$\operatorname{Re}\left(z^{2}\right)=0$
$\Rightarrow \operatorname{Re}\left(x^{2}-y^{2}+2 i x y\right)=0$
$\Rightarrow x^{2}-y^{2}=0 \Rightarrow y= \pm x$
and, $|z|=2 \Rightarrow x^{2}+y^{2}=4$
Solving (i) and (ii), we get $x= \pm \sqrt{2}$
Thus, the solutions are
$(\sqrt{2}, \sqrt{2}),(-\sqrt{2}, \sqrt{2}),(\sqrt{2},-\sqrt{2}),(-\sqrt{2},-\sqrt{2})$

We have,
Max. $\operatorname{amp}(z)=\operatorname{amp}\left(z_{2}\right)$, and Min.amp
$(z)=\operatorname{amp}\left(z_{1}\right)$

Now,
$\operatorname{amp}\left(z_{1}\right)=\theta_{1}=\cos ^{-1}\left(\frac{15}{25}\right)=\cos ^{-1}\left(\frac{3}{5}\right)$
and,
$\operatorname{amp}\left(z_{2}\right)=\frac{\pi}{2}+\theta_{2}$

$$
=\frac{\pi}{2}+\sin ^{-1}\left(\frac{15}{25}\right)=\frac{\pi}{2}+\sin ^{-1}\left(\frac{3}{5}\right)
$$

$\therefore \mid$ Max. $\operatorname{amp}(z)-\operatorname{Min} . \operatorname{amp}(z) \mid$

$$
\begin{gathered}
=\left|\frac{\pi}{2}+\sin ^{-1} \frac{3}{5}-\cos ^{-1} \frac{3}{5}\right| \\
=\left|\frac{\pi}{2}+\frac{\pi}{2}-\cos ^{-1} \frac{3}{5}-\cos ^{-1} \frac{3}{5}\right|=\pi-2 \cos ^{-1} \frac{3}{5}
\end{gathered}
$$

393 (b)
Here, $\alpha+\beta=p$ and $\alpha \beta=q$
Also, $\alpha_{1}+\beta_{1}=q$ and $\alpha_{1} \beta_{1}=p$
\therefore Sum of given roots
$=\left(\frac{1}{\alpha_{1} \beta}+\frac{1}{\alpha \beta_{1}}\right)+\left(\frac{1}{\alpha \alpha_{1}}+\frac{1}{\beta \beta_{1}}\right)$
$=\frac{\alpha \beta_{1}+\alpha_{1} \beta+\beta \beta_{1}+\alpha \alpha_{1}}{\alpha \beta \alpha_{1} \beta_{1}}$
$=\frac{(\alpha+\beta)\left(\alpha_{1}+\beta_{1}\right)}{(\alpha \beta)\left(\alpha_{1} \beta_{1}\right)}=\frac{p q}{q p}=1$
and product of given roots
$=\left(\frac{1}{\alpha_{1} \beta}+\frac{1}{\alpha \beta_{1}}\right)\left(\frac{1}{\alpha \alpha_{1}}+\frac{1}{\beta \beta_{1}}\right)$
$=\frac{\left(\alpha \beta_{1}+\alpha_{1} \beta\right)\left(\alpha \alpha_{1}+\beta \beta_{1}\right)}{\alpha^{2} \beta^{2} \alpha_{1}^{2} \beta_{1}^{2}}$
$=\frac{\alpha \beta\left(\alpha_{1+}^{2} \beta_{1}^{2}\right)+\alpha_{1} \beta_{1}\left(\alpha^{2}+\beta^{2}\right)}{\alpha^{2} \beta^{2} \alpha_{1}^{2} \beta_{1}^{2}}$
$\alpha \beta\left[\left(\alpha_{1}+\beta_{1}\right)^{2}-2 \alpha_{1} \beta\right]+$
$=\frac{\alpha_{1} \beta_{1}\left[(\alpha+\beta)^{2}-2 \alpha \beta\right]}{(\alpha \beta)^{2}\left(\alpha_{1} \beta_{1}\right)^{2}}$
$=\frac{q\left(q^{2}-2 p\right)+p\left(p^{2}-2 q\right)}{q^{2} p^{2}}$
$=\frac{p^{3}+q^{3}-4 q p}{p^{2} q^{2}}$
Hence, the required equation is given by
$x^{2}-($ sum of roots $) x+($ product of roots $)=0$
$\Rightarrow\left(p^{2} q^{2}\right) x^{2}-\left(p^{2} q^{2}\right) x+p^{3}+q^{3}-4 q p=0$
394 (b)
Given, $i z^{4}+1=0$
$\Rightarrow \quad z^{4}=i$
$\Rightarrow z=\left(\cos \frac{\pi}{2}+i \sin \frac{\pi}{2}\right)^{1 / 4}$
By using De-Moivre's theorem, we get
$z=\cos \frac{\pi}{8}+i \sin \frac{\pi}{8}$
395 (a)
Let $z=\sqrt{3}+i$
$\therefore \quad \arg (z)=\tan ^{-1}\left(\frac{1}{\sqrt{3}}\right)=30^{\circ}$
For making a right angled $\triangle O P Q$, point Q either in
IInd quadrant or IVth quadrant
If the point Q is in Ind quadrant, then we take $\theta=120^{\circ}$
$\therefore \tan 120^{\circ}=-\cot 30^{\circ}=\frac{\sqrt{3}}{-1}$
\therefore Point Q is $(-1, \sqrt{3})$ and if the point Q is in IVth quadrant then we take
$\theta=-60^{\circ}$
$\therefore \quad \tan \left(-60^{\circ}\right)=-\tan 60^{\circ}=-\frac{1}{\sqrt{3}}$
\therefore Point Q is $(1, \sqrt{3})$
396 (b)
Let $z=x+i y$
Given, $|z|-z=1+2 i$
$\Rightarrow \quad \sqrt{x^{2}+y^{2}}-(x+i y)=1+2 i$
$\Rightarrow \sqrt{x^{2}+y^{2}}-x=1, y=-2$
$\Rightarrow \sqrt{x^{2}+4}-x=1$
$\Rightarrow x^{2}+4=(1+x)^{2}$
$\Rightarrow 2 x=3 \Rightarrow x=\frac{3}{2}$
$\therefore \quad z=\frac{3}{2}-2 i$
397 (d)
Given, $\alpha+\beta=4$ and $\alpha^{3}+\beta^{3}=44$
$\Rightarrow \quad(\alpha+\beta)^{2}-3 \alpha \beta(\alpha+\beta)=44$
$\Rightarrow 64-44=12 \alpha \beta \Rightarrow \alpha \beta=\frac{5}{3}$
\therefore Required equation is
$x^{2}-(\alpha+\beta) x+\alpha \beta=0 \Rightarrow x^{2}-4 x+\frac{5}{3}=0$
$\Rightarrow \quad 3 x^{2}-12 x+5=0$
398 (d)
Given, $|1-i|^{x}=2^{x}$
$\Rightarrow(\sqrt{1+1})^{x}=2^{x} \Rightarrow 2^{x / 2}=2^{x}$
$\Rightarrow \frac{x}{2}=x \quad \Rightarrow \quad \mathrm{x}=0$
Therefore, the number of non-zero integral solutions is zero
399 (b)
Here, $\alpha+\beta=7$ and $\alpha \beta=1$
$\therefore \alpha-7=-\beta, \quad \beta-7=-\alpha$
$\therefore \quad \frac{1}{(\alpha-7)^{2}}+\frac{1}{(\beta-7)^{2}}=\frac{1}{\beta^{2}}+\frac{1}{\alpha^{2}}=\frac{\alpha^{2}+\beta^{2}}{(\alpha \beta)^{2}}$
$=(\alpha+\beta)^{2}-2 \alpha \beta$
$=49-2=47$
400 (c)
Let α be a common root of $x^{2}+p x+q=0$ and $x^{2}+p^{\prime} x+q^{\prime}=0$. Then,
$\alpha^{2}+p \alpha+q=0$ and $\alpha^{2}+p^{\prime} \alpha+q^{\prime}=0$
$\Rightarrow \alpha=\frac{q-q^{\prime}}{p-p^{\prime}} \quad$ [On subtracting]
401 (d)
The vertices of the triangle are
$A(0,1), B\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ and $C\left(-\frac{1}{2},-\frac{\sqrt{3}}{2}\right)$
\therefore Area of $\triangle A B C=\frac{1}{2}\left|\begin{array}{ccc}0 & 1 & 1 \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} & 1 \\ -\frac{1}{2} & -\frac{\sqrt{3}}{2} & 1\end{array}\right|$
\Rightarrow Area of $\triangle A B C$

$$
=\frac{1}{2}\left[-\left(-\frac{1}{2}+\frac{1}{2}\right)+1\left(\frac{\sqrt{3}}{4}+\frac{\sqrt{3}}{4}\right)\right]
$$

\Rightarrow Area of $\triangle A B C=\frac{\sqrt{3}}{4}$ sq. units
403 (b)
Let $A B C D$ be a parallelogram such that affixes of A, B, C, D are $z_{1}, z_{2}, z_{3}, z_{4}$ respectively. Then,
$\overrightarrow{A B}=\overrightarrow{D C} \Rightarrow z_{2}-z_{1}=z_{3}-z_{4} \Rightarrow z_{2}+z_{4}$

$$
=z_{1}+z_{3}
$$

Conversely, if $z_{2}+z_{4}=z_{1}+z_{3}$, then
$z_{2}-z_{1}=z_{3}-z_{4}$
$\Rightarrow \overrightarrow{A B}=\overrightarrow{D C}$
$\Rightarrow A B C D$ is a parallelogram
Thus, $z_{2}+z_{4}=z_{1}+z_{3}$ is a necessary and sufficient condition for the figure $A B C D$ to be a parallelogram
404 (b)
We have, $(x+3)^{4}+(x+5)^{4}=16$
$\Rightarrow(y-1)^{4}+(y+1)^{4}=16$, where $y=$ $\frac{x+2+x+5}{2}=x+4$
$\Rightarrow\left(y^{2}+1-2 y\right)^{2}+\left(y^{2}+1+2 y\right)^{2}=16$
$\Rightarrow\left(y^{2}+1\right)^{2}-4 y^{2}=16$
$\Rightarrow\left(y^{2}-1\right)^{2}=16$
$\Rightarrow y^{2}-1= \pm 4 \Rightarrow y^{2}=5 \Rightarrow y= \pm \sqrt{5}$
405 (a)
The discriminant Δ of the given equation is given by
$\Delta=4(a+b-2 c)^{2}-4(a-b)^{2}$
$\Rightarrow \Delta=4(a-c+b-c)^{2}-4(a-c+c-b)^{2}$
$\Rightarrow \Delta=4[(a-c)+(b-c)]^{2}$ $-4[(a-c)-(b-c)]^{2}$
$\Rightarrow \Delta=16(a-c)(b-c)<0 \quad[\because a<c<b]$
Hence, roots of the given equation are imaginary
406 (c)
We have,
$x^{3}+3 x^{2}+3 x+2=0$
$\Rightarrow\left(x^{3}-1\right)+3\left(x^{2}+x+1\right)=0$
$\Rightarrow\left(x^{2}+x+1\right)(x-1+3)=0$
$\Rightarrow(x+2)\left(x^{2}+x+1\right)=0 \Rightarrow x=-2, \omega, \omega^{2}$
Since $x^{3}+3 x^{2}+3 x+2=0$ and $a x^{2}+b x+c=$
0 have two common roots. Therefore, ω and ω^{2} are common roots of the two equations.
Hence, $a=b=c=1$
407 (a)
Since, roots of the equation
$(a-b) x^{2}+(c-a) x+(b-c)=0$ are equal.
\therefore Discriminant, $B^{2}-4 A C=0$
$\Rightarrow(c-a)^{2}-4(a-b)(b-c)=0$
$\Rightarrow a^{2}+4 b^{2}+c^{2}+2 a c-4 a b-4 b c=0$
$\Rightarrow(a+c-2 b)^{2}=0$
$\Rightarrow a+c=2 b$
Hence, a, b, c are in AP.
408 (c)
We have,
$\frac{1+i}{1-i}=\frac{(1+i)^{2}}{(1+i)(1-i)}=\frac{2 i}{2}=i$
$\therefore\left(\frac{1+i}{1-i}\right)^{n}=1 \Rightarrow i^{n}=1 \Rightarrow n$ is a multiple of 4
Hence, the least positive integer n satisfying the above condition is 4
409 (d)
It is given that a, b are roots of the equation
$x^{2}-3 x+1=0$
$\therefore a+b=3$ and $a b=1$
It is also given that $a-2$ and $b-2$ are the roots of the equation $x^{2}+p x+q=0$
$\therefore a-2+b-2=-p$ and $(a-2)(b-2)=q$
$\Rightarrow a+b-4=--p$ and $a b-2(a+b)+4=q$
$\Rightarrow 3-4=-p$ and $1-6+4=q \Rightarrow p=1$ and $q=-1$
410 (c)
We have,
$\sec \alpha+\tan \alpha=-\frac{b}{a}$ and $\sec \alpha \tan \alpha=\frac{c}{a}$
$\therefore 1=\sec ^{2} \alpha-\tan ^{2} \alpha$
$\Rightarrow 1=(\sec \alpha+\tan \alpha)(\sec \alpha-\tan \alpha)$
$\Rightarrow 1=(\sec \alpha+\tan \alpha)^{2}\left\{(\sec \alpha+\tan \alpha)^{2}\right.$
$-4 \sec \alpha \tan \alpha\}$
$\Rightarrow 1=\frac{b^{2}}{a^{2}}\left(\frac{b^{2}-4 a c}{a^{2}}\right) \Rightarrow a^{4}+4 a b^{2} c=b^{4}$
411 (b)
Given, $|(x-a)+i y|^{2}+|(x+a)+i y|^{2}=b^{2}$
(where $z=x+i y$)
$\Rightarrow \quad(x-a)^{2}+y^{2}+(x+a)^{2}+y^{2}=b^{2}$
$\Rightarrow \quad x^{2}+y^{2}=\frac{b^{2}-2 a^{2}}{2}$
Hence, it represents a equation of circle
(b)

Given, $\log _{99}\left(\log _{2}\left(\log _{3} x\right)\right)=0$
$\Rightarrow \log _{2}\left(\log _{3} x\right)=(99)^{0}=1$
$\Rightarrow \log _{3} x=2$
$\Rightarrow x=3^{2}=9$
413 (c)
Let α and β are the roots then
$\alpha+\beta=b, \alpha \beta=c$
Given, $\quad|\alpha-\beta|=1$
$\Rightarrow(\alpha+\beta)^{2}-4 \alpha \beta=1$
$\Rightarrow b^{2}-4 c=1$

Let α be the common root for both the equations $x^{2}+a x+b=0$ and $x^{2}+b x+a=0$, then $\alpha^{2}+a \alpha+b=0$
And $\alpha^{2}+b \alpha+a=0$
$\Rightarrow \frac{\alpha^{2}}{\left(a^{2}-b^{2}\right)}=\frac{\alpha}{b-a}=\frac{1}{b-a}$
$\therefore \quad \alpha^{2}=-(a+b)$ and $\alpha=1$
Hence, $a+b=-1$
415 (b)
Let $f(x)=a x^{2}+b x+c$ be a quadratic
expression such that $f(x)>0$ for all $x \in R$. Then, $f(x)>0 \Rightarrow a<0$ and $b^{2}-4 a c<0$
Now,
$g(x)=f(x)+f^{\prime}(x)+f^{\prime \prime}(x)$
$\Rightarrow g(x)=a x^{2}+x(b+2 a)+(b+2 a+c)$
Let D be the discriminant of $g(x)$. Then,
$D=(b+2 a)^{2}-4 a(b+2 a+c)$
$\Rightarrow D=b^{2}-4 a^{2}-4 a c=\left(b^{2}-4 a c\right)-4 a^{2}<0[$

$$
\left.\therefore b^{2}-4 a c<0\right]
$$

Thus, we have
$D<0$ and $a>0 \Rightarrow g(x)>0$ for all $x \in R$
416 (b)
Given, $\frac{b}{c}+\frac{c}{a}+\frac{a}{b}=1$
$\Rightarrow \frac{\cos \beta+i \sin \beta}{\cos \gamma+i \sin \gamma}+\frac{\cos \gamma+i \sin \gamma}{\cos \alpha+i \sin \alpha}$

$$
+\frac{\cos \alpha+i \sin \alpha}{\cos \beta+i \sin \beta}=1
$$

$\Rightarrow \cos (\beta-\gamma)+i \sin (\beta-\gamma)$
$+\cos (\gamma-\alpha)$
$+i \sin (\gamma-\alpha)$
$+\cos (\alpha-\beta)+i \sin (\alpha-\beta)=1$
On equating real part on both sides, we get $\cos (\beta-\gamma)+\cos (\gamma-\alpha)+\cos (\alpha-\beta)=1$
417 (a)
$\cos 30^{\circ}+i \sin 30^{\circ}$
$\cos 60^{\circ}-i \sin 60^{\circ}$
$=\left(\cos 30^{\circ}+i \sin 30^{\circ}\right)\left(\cos 60^{\circ}+i \sin 60^{\circ}\right)$
$=\cos 90^{\circ}+i \sin 90^{\circ}=i$
418 (d)
Since, $\alpha+\beta=-\frac{b}{a}$ and $\alpha \beta=\frac{c}{a}$
Also $\alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta=\frac{b^{2}-2 a c}{a^{2}}$
Now, $\frac{\alpha}{a \beta+b}+\frac{\beta}{a \alpha+b}$
$=\frac{a\left(\alpha^{2}+\beta^{2}\right)+b(\alpha+\beta)}{\alpha \beta a^{2}+a b(\alpha+\beta)+b^{2}}$
$=\frac{a\left(\frac{b^{2}-2 a c}{a^{2}}\right)+b\left(-\frac{b}{a}\right)}{\left(\frac{c}{a}\right) a^{2}+a b\left(-\frac{b}{a}\right)+b^{2}}=-\frac{2}{a}$
419 (a)
Let α and β be the roots of the equation
$x^{2}-b x+c=0$.
$\Rightarrow \alpha+\beta=b$ and $\alpha \beta=c$
$\therefore \alpha-\beta=\sqrt{(\alpha+\beta)^{2}-4 \alpha \beta}$
$\Rightarrow 1=\sqrt{b^{2}-4 c}$
$\Rightarrow b^{2}-4 c-1=0$
420 (a)
Since the graph of $y=16 x^{2}+8(a+5) x-7 a-$
5 is strictly above the x-axis
$\therefore y>0$ for all x
$\Rightarrow 16 x^{2}+8(a+5) x-7 a-5>0$ for all x
$\Rightarrow 64(a+5)^{2}+64(7 a+5)<0 \quad[\because$ Disc $<0]$
$\Rightarrow a^{2}+10 a+25+7 a+5<0$
$\Rightarrow a^{2}+17 a+30<0 \Rightarrow-15<a<-2$
421 (a)
Let $f(x)=x^{2}-3 x+a$
Clearly, $y=f(x)$ represents a parabola opening upward
It is given that 1 lies between the roots of
$f(x)=0$
Discriminant >0 and $f(1)<0$
$\Rightarrow 9-4 a>0$ and $1-3+a<0$
$\Rightarrow a<\frac{9}{4}$ and $a<2 \Rightarrow a<2 \Rightarrow a \in(-\infty, 2)$
422 (c)
Let $Z=\left(\frac{1+i}{\sqrt{2}}\right)^{2 / 3}=\left(\frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}}\right)^{2 / 3}$
$=\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)^{2 / 3}$
$=e^{(i \pi / 4)^{2 / 3}}=e^{i \pi / 6}$
$=\cos (2 n+1) \frac{\pi}{6}+i \sin (2 n+1) \frac{\pi}{6}$
Put $n=1$,
$z=\cos \left(\frac{3 \pi}{6}\right)+i \sin \left(\frac{3 \pi}{6}\right)=0+i=i$
423 (a)
Since u, v are roots of $x^{2}+p x+q=0$. Therefore, the equation whose roots are $1 / u$ and $1 / v$ is
$\frac{1}{x^{2}}+\frac{p}{x}+q=0$ or, $q x^{2}+p x+1=0$
424 (a)
Since, a, b and c are in GP
$\therefore \quad b^{2}=a c$
Given, equation $a x^{2}+2 b x+c=0$ becomes
$a x^{2}+2 \sqrt{a c x}+c=0$
$\Rightarrow(a x+\sqrt{c})^{2}=0$
$\Rightarrow x=-\sqrt{\frac{c}{a}}$ (respected roots)
Since, this root satisfy the second equation
$d x^{2}+2 c x+f=0$
$\therefore \quad d \frac{c}{a}-2 e \sqrt{\frac{c}{a}}+f=0$
$\Rightarrow \quad \frac{d}{a}+\frac{f}{c}=\frac{2 e}{c} \sqrt{\frac{c}{a}}=\frac{2 e}{b} \quad(\because b=\sqrt{a c})$
$\Rightarrow \quad \frac{d}{a}, \frac{e}{b}, \frac{f}{c}$ are in GP
425 (b)
We know that for given z_{1}, z_{2}, the equation $\left|z-z_{1}\right|^{2}+\left|z-z_{2}\right|^{2}=\lambda$ represents a circle, if
$\lambda \geq \frac{1}{2}\left|z_{1}-z_{2}\right|^{2}$
Therefore, the equation
$|z-\omega|^{2}+\left|z-\omega^{2}\right|^{2}=\lambda$ will represent a circle, if $\lambda \geq \frac{1}{2}\left|\omega-\omega^{2}\right|^{2}$
$\Rightarrow \lambda \geq \frac{1}{2}|i \sqrt{3}|^{2} \Rightarrow \lambda \geq \frac{3}{2} \Rightarrow \lambda \in[3 / 2, \infty)$
426 (d)
Put $x^{1 / 3=}=y$, then
$y^{2}+y-2=0$
$\Rightarrow y=1$ or $y=-2$
$\Rightarrow x^{1 / 3}=1$ or $x^{1 / 3}=-2$
$\therefore \quad x=(1)^{3}$ or $x=(-2)^{3}=-8$
Hence, the real roots of the given equation are 1, -8
427 (b)
Let $A D$ be the attitude of $\triangle A B C$. Then, D is the mid-point of $B C$
Now,
$\angle A D C=90^{\circ}$
$\Rightarrow \arg \left(\frac{z_{1}-z_{3}}{z_{1}-\frac{z_{2}+z_{3}}{2}}\right)= \pm \frac{\pi}{2}$
$\Rightarrow \arg \left(\frac{z_{2}-z_{3}}{2 z_{1}-z_{2}-z_{3}}\right)= \pm \frac{\pi}{2}$
$\Rightarrow \frac{z_{2}-z_{3}}{2 z_{1}-z_{2}-z_{3}}$ is purely imaginary

428 (d)
Let $z=x+i y \Rightarrow \bar{z}=x-i y$
Since, $\arg (z)=\tan ^{-1} \frac{y}{x}$
and $\arg (\bar{z})=\tan ^{-1}\left(\frac{-y}{x}\right)$
$\Rightarrow \arg (z) \neq \arg (\bar{z})$
430 (d)
We know that the expression $a x^{2}+b x+c>0$
for all x, if $a>0$ and $b^{2}<4 a c$.
$\therefore\left(a^{2}-1\right) x^{2}+2(a-1) x+2$ is positive for all x, if
$a^{2}-1>0$ and $4(a-1)^{2}-8\left(a^{2}-1\right)<0$
$\Rightarrow a^{2}-1>0$ and $-4(a-1)(a+3)<0$
$\Rightarrow a^{2}-1>0$ and $(a-1)(a+3)>0$
$\Rightarrow a^{2}>1$ and $a<-3$ or $a>1$
$\Rightarrow a<-3$ or $a>1$
431 (a)
Given equation is $x^{4}-2 x^{3}+x-380=0$
$\Rightarrow(x-5)(x+4)\left(x^{2}-1+19\right)=0$
Now, roots of $x^{2}-x+19$ are
$\frac{1 \pm \sqrt{1-4 \times 19}}{2}=\frac{1 \pm 5 \sqrt{-3}}{2}$
\therefore Roots are $5,-4, \frac{1+5 \sqrt{-3}}{2}, \frac{1-5 \sqrt{-3}}{2}$
432 (a)
$(2-\omega)\left(2-\omega^{2}\right)\left(2-\omega^{10}\right)\left(2-\omega^{11}\right)$
$=(2-\omega)\left(2-\omega^{2}\right)(2-\omega)\left(2-\omega^{2}\right)$
$=\left[(2-\omega)\left(2-\omega^{2}\right)\right]^{2}$
$=\left[4-2\left(\omega+\omega^{2}\right)+1\right]^{2}=(4+2+1)^{2}=49$
433 (a)
Let $z=x+i y$
$\therefore \quad|z-1|=|z-2|=|z-i|$
$\Rightarrow \quad|(x-1) \pm i y|=|(x-2)+i y|$
$=|x+i(y-1)| \quad[$ put $z=x+i y]$
$\Rightarrow \quad x^{2}-2 x+1+y^{2}=x^{2}+4-4 x+y^{2}$
$=x^{2}+y^{2}+1-2 y$
Taking Ist and IInd terms
$-2 x+1=4-4 x \Rightarrow 2 x=3$
Taking IInd and IIIrd terms
$4-4 x=1-2 y \quad \Rightarrow \quad 4 x-2 y=3$
Taking Ist and IIIrd terms
$-2 x+1=1-2 y \quad \Rightarrow \quad x=y$
From Eq. (i), $\quad x=\frac{3}{2}$
From Eqs. (i) and (iii), $y=\frac{3}{2}$
On putting the value of x and y in Eq. (ii), we get $4\left(\frac{3}{2}\right)-2\left(\frac{3}{2}\right)=3 \Rightarrow 3=3$
\therefore One solution exists.
434 (d)
Let $y=x^{2}$. Then, $x=\sqrt{y}$
$\therefore x^{3}+8=0$
$\Rightarrow y^{3 / 2}+8=0 \Rightarrow y^{3}=64 \Rightarrow y^{3}-64=0$
Thus, the equation having roots α^{2}, β^{2} and γ^{2} is $x^{3}-64=0$
435 (a)
Here, $\sin 18^{\circ}+\cos ^{2} 36^{\circ}$
$=\left(\frac{\sqrt{5}-1}{4}\right)^{4}+\left(\frac{\sqrt{5}+1}{4}\right)^{2}$
$=\frac{5+1-2 \sqrt{5}}{16}+\frac{5+1+2 \sqrt{5}}{16}$
$=\frac{12}{16}=\frac{3}{4}$
And $\sin ^{2} 18^{\circ}$. $\cos ^{2} 36^{\circ}=\left(\frac{\sqrt{5}-1}{4}\right)^{2}\left(\frac{\sqrt{5+1}}{4}\right)^{2}$
$=\left(\frac{5-1}{4 \times 4}\right)^{2}=\frac{1}{16}$
Required equation is
$x^{2}-($ sum of roots $) x+($ products of roots $)=0$
$\Rightarrow x^{2}-\frac{3}{4} x+\frac{1}{16}=0$
$\Rightarrow 16 x^{2}-12 x+1=0$
436 (b)
We have,
$z=(-i \omega)^{5}+\left(i \omega^{2}\right)^{5}$
$\Rightarrow z=-i \omega^{5}+i \omega^{10}$
$\Rightarrow z=-i \omega^{2}+i \omega=-i\left(\omega^{2}-\omega\right)=i^{2} \sqrt{3}=-\sqrt{3}$
437 (b)
Given, $l x^{2}+m x+n=0$
Now,
$D=m^{2}-4 l n=0 \quad\left(\because m^{2}=4 l n\right.$ given $)$
It means roots of given equation are equal
$\therefore\left(x-\frac{9}{2}\right)^{2}=0$
$\Rightarrow 4 x^{2}+81-36 x=0$
On comparing Eqs. (i) and (ii), we get
$l=4, m=-36, n=81$
$\therefore l+n=4+81=85$

438 (a)
Given,

$$
\begin{aligned}
& \frac{x^{3}}{(2 x-1)(x+2)(x-3)} \\
& =A+\frac{B}{(2 x-1)}+\frac{C}{(x+2)} \\
& \quad+\frac{D}{(x-3)}
\end{aligned}
$$

Let $\quad f(x)=\frac{x^{3}}{(2 x-1)(x+2)(x-3)}$
$=\frac{x^{3}}{2 x^{3}-3 x^{2}-11 x+6}$
Here, the power of x are same in Nr and Dr
\therefore First we divide the numerator by denominator
$2 x^{3}-3 x^{2}-11 x+6 \frac{1 / 2}{x^{3}}$
$x^{3}-\frac{3}{2} x^{2}-\frac{11}{2} x+3$
$-\quad+\quad+$
$\frac{3}{2} x^{2}+\frac{11}{2} x-3$
$\therefore \quad \frac{x^{3}}{(2 x-1)(x+2)(x-3)}$
$=\frac{1}{2}+\frac{\frac{3}{2} x^{2}+\frac{11}{2} x-3}{(2 x-1)(x+2)(x-3)}$
$\Rightarrow A=\frac{1}{2}$
439 (c)
Given, α, β and γ are the roots of $x^{3}+4 x+1=0$
$\therefore \alpha+\beta+\gamma=0, \alpha \beta+\beta \gamma+\gamma \alpha=4, \alpha \beta \gamma=-1$
Now, $\frac{\alpha^{2}}{\beta+\gamma}+\frac{\beta^{2}}{\gamma+\alpha}+\frac{\gamma^{2}}{\alpha+\beta}=\frac{\alpha^{2}}{-\alpha}+\frac{\beta^{2}}{-\beta}+\frac{\gamma^{2}}{-\gamma}$
$=-(\alpha+\beta+\gamma)=0$
$\frac{\alpha^{2} \beta^{2}}{(\beta+\gamma)(\gamma+\alpha)}+\frac{\beta^{2} \gamma^{2}}{(\gamma+\alpha)(\alpha+\beta)}$

$$
+\frac{\gamma^{2} \alpha^{2}}{(\beta+\gamma)(\alpha+\beta)}
$$

$=\alpha \beta+\beta \gamma+\gamma \alpha=4$
And $\frac{\alpha^{2} \beta^{2} \gamma^{2}}{(\beta+\gamma)(\gamma+\alpha)(\alpha+\beta)}=-\alpha \beta \gamma=1 \quad(\because \alpha+\beta+\gamma=$
$0)$
\therefore Required equation is
$x^{3}+4 x-1=0$
440 (d)
The given equation is
$p q x^{2}-(p+q)^{2} x+(p+q)^{2}=0$
$\therefore \quad x=\frac{(p+q)^{2} \pm \sqrt{(p+q)^{4}-4 p q(p+q)^{2}}}{2 p q}$
$\Rightarrow x=\frac{(p+q)^{2} \pm\left(p^{2}-q^{2}\right)}{2 p q}$
$\Rightarrow \quad x=\frac{p+q}{q}, \frac{p+q}{p}$

442 (b)
$x=a+b, y=a \alpha+b \beta$ and $z=a \beta+b \alpha$ Now, $x y z=(a+b)\left(a \omega+b \omega^{2}\right)\left(a \omega^{2}+b \omega\right)$,
Where $\alpha=\omega$ and $\beta=\omega^{2}$
$\therefore x y z=(a+b)\left(a^{2}+a b \omega^{2}+a b \omega+b^{2}\right)$,
$=(a+b)\left(a^{2}-a b+b^{2}\right)=a^{3}+b^{3}$
443 (d)
We have,
$\left|\begin{array}{ccc}1 & \cos (\beta-\alpha) & \cos \alpha \\ \cos (\alpha-\beta) & 1 & \cos \beta \\ \cos \alpha & \cos \beta & 1\end{array}\right|$
$\left.=\left|\begin{array}{ccc}\cos \alpha & \sin \alpha & 0 \\ \cos \beta & \sin \beta & 0 \\ 1 & 0 & 0\end{array}\right| \begin{array}{ccc}\cos \alpha & \sin \alpha & 0 \\ \cos \beta & \sin \beta & 0 \\ 1 & 0 & 0\end{array} \right\rvert\,$
$=(0)(0)=0$ for all values of α, β
444 (a)
$\frac{1+i}{1-i}=\frac{(1+i)^{2}}{1-i^{2}}=\frac{2 i}{2}=i$
So, $\left(\frac{1+i}{1-i}\right)^{n}=(i)^{n} \Rightarrow n=2$
445 (c)
We have the following cases:
CASE I When $x \in[0,1)$
In this cases, we have $[x]=0$
$\therefore x^{2}-3 x+[x]=0$
$\Rightarrow x^{2}-3 x=0 \Rightarrow x=0,3 \Rightarrow x=0$
CASE II When $x \in[1,2)$
In this case, we have $[x]=1$
$\therefore x^{3}-3 x+[x]=0 \Rightarrow x^{2}-3 x+1=0 \Rightarrow x$

$$
=\frac{3 \pm \sqrt{5}}{2}
$$

Clearly, these values of x do not belong to [1, 2].
So, the equation has no solution in $[1,2)$
CASE III When $x \in[2,3)$
$\therefore x^{2}-3 x+[x]=0$
$\Rightarrow x^{2}-3 x+2=0 \Rightarrow x=1,2 \Rightarrow x=2$
Hence, the given equation has two solutions only
446 (c)
Roots of the equation $2 x^{2}+3 x+5=0$ are
$x=\frac{-3 \pm \sqrt{9-40}}{6}$ (imaginary roots)
Hence, both roots coincide, so on comparing
$\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=k$
$\Rightarrow a=2 k, b=3 k, c=5 k$
$\Rightarrow a+b+c=10 k$
So, maximum value does not exist.
447 (a)
We have, $x=\sqrt{1+\sqrt{1+\sqrt{1+\cdots \infty}}}$
$\Rightarrow x=\sqrt{1+x}$
$\Rightarrow x^{2}=1+x \Rightarrow x^{2}-x-1=0$
$\Rightarrow x=\frac{1 \pm \sqrt{1+4}}{2}=\frac{1 \pm \sqrt{5}}{2}$
As $x>0$, we take only $x=\frac{1+\sqrt{5}}{2}$.
448 (c)
The equation $\left|z-a^{2}\right|+|z-2 a|=3$ represents an ellipse having foci at $S\left(a^{2}, 0\right)$ and $S^{\prime}(2 a, 0)$ and major axis 3. If e is the eccentricity of this ellipse, then
$e=\frac{S S^{\prime}}{\text { Major axis }} \Rightarrow e=\frac{\left|a^{2}-2 a\right|}{3}$
But, $0<e<1$
$\therefore 0<\frac{\left|a^{2}-2 a\right|}{3}<1$
$\Rightarrow\left|a^{2}-2 a\right|<3$
$\Rightarrow-3<a^{2}-2 a<3$
$\Rightarrow a^{2}-2 a+3>0$ and $a^{2}-2 a-3<0$
$\Rightarrow a \in R$ and $a \in(-1,3) \Rightarrow a \in(-1,3)$
But, $a>0$. Therefore, $a \in(0,3)$
449 (d)
Let $y=\frac{(x-a)(x-b)}{(x-c)}$
$\Rightarrow y(x-c)=x^{2}-(a+b) x+a b$
$\Rightarrow x^{2}-(a+b+y) x+a b+c y=0$
Now, discriminant
$D=(a+b+y)^{2}-4(a b+c y)$
$=y^{2}+2 y(a+b-2 c)+(a-b)^{2}$
Since, x is real and y assumes all real values, we must have $D \geq 0$ for all real values of y.
$\Rightarrow 4(a+b-2 c)^{2}-4(a-b)^{2} \leq 0$
$\Rightarrow 4(a+b-2 c+a-b)(a+b-2 c-a+b) \leq 0$
$\Rightarrow 16(a-c)(b-c) \leq 0$
$\Rightarrow(c-a)(c-b) \leq 0$
450 (b)
r th term of the given series
$=r[(r+1)-\omega]\left[(r+1)-\omega^{2}\right]$
$=r\left[(r+1)^{2}-\left(\omega+\omega^{2}\right)(r+1)+\omega^{3}\right]$
$=r\left[(r+1)^{2}-(-1)(r+1)+1\right]$
$=r\left(r^{2}+3 r+3\right)=r^{3}+3 r^{2}+3 r$
Thus, sum of the give series

$$
\begin{aligned}
& \begin{array}{l}
=\sum_{r=1}^{(n-1)}\left(r^{3}+3 r^{2}+3 r\right) \\
= \\
\frac{1}{4}(n-1)^{2} n^{2} \\
\quad+3 \cdot \frac{1}{6}(n-1)(n)(2 n-1) \\
\quad \\
\quad+3 \cdot \frac{1}{2}(n-1) n
\end{array} \\
& =\frac{1}{4}(n-1) n\left(n^{2}+3 n+4\right)
\end{aligned}
$$

451 (c)
The cube roots or unity are $1, \omega, \omega^{2}$. Let P, Q and R represent $1, \omega$ and ω^{2} respectively. Clearly,
$P Q=|1-\omega|=\sqrt{\left(\frac{3}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}}=\sqrt{3}$
$Q R=\left|\omega-\omega^{2}\right|=\sqrt{3}$, and $R P=\left|1-\omega^{2}\right|=\sqrt{3}$
$\therefore P Q=Q R=R P$
Thus, points representing $1, \omega, \omega^{2}$ form an equilateral triangle.
ALITER Let $z_{i}=1, z_{2}=\omega$ and $z_{3}=\omega^{2}$. Then, $z_{1}^{2}+z_{2}^{2}+z_{2}^{3}=z_{1} z_{2}+z_{2} z_{3}+z_{3} z_{1}$
Hence, points representing $1, \omega, \omega^{2}$ form an equilateral triangle
452 (a)
The equation $2 x^{2}+3 x+4=0$ has complex roots which always occur in pairs. So, the two equations have both roots common
$\therefore \frac{a}{2}=\frac{b}{3}=\frac{c}{4} \Rightarrow a: b: c=2: 3: 4$
454 (d)
We have,
$x^{2}-3|x|+2=0$
$\Rightarrow(|x|-2)(|x|-1)=0 \Rightarrow|x|=1,2 \Rightarrow x$

$$
= \pm 1, \pm 2
$$

So, the given equation has four real roots
455 (c)
We have,
$0<|3 x+1|<\frac{1}{3}$
$\Rightarrow|3 x+1| \neq 0$ and $|3 x+1|<\frac{1}{3}$
$\Rightarrow x \neq-\frac{1}{3}$ and $-\frac{1}{3}<3 x+1<\frac{1}{3}$
$\Rightarrow-\frac{1}{3}<3 x+1<\frac{1}{3}$ and $x \neq-\frac{1}{3}$
$\Rightarrow-\frac{4}{3}<3 x<-\frac{2}{3}$ and $x \neq-\frac{1}{3}$
$\Rightarrow-\frac{4}{9}<x<-\frac{2}{9}$ and $x \neq-\frac{1}{3}$
$\Rightarrow x \in\left(-\frac{4}{9},-\frac{2}{9}\right)$ and $x \neq-\frac{1}{3} \Rightarrow x$

$$
\in\left(-\frac{4}{9},-\frac{2}{9}\right)-\left\{-\frac{1}{3}\right\}
$$

456 (b)
$x^{\log _{x}(1-x)^{2}}=9$
$\Rightarrow 9=(1-x)^{2}$
$\Rightarrow x^{2}-2 x-8=0$
$\Rightarrow(x+2)(x-4)=0$
$\Rightarrow x=4$

$$
[\because x \neq-2]
$$

457 (d)
$x^{2}+a x+1$ must divide $a x^{3}+b x+c$.
Now, $\frac{a x^{3}+b x+c}{x^{2}+a x+1}=\frac{a(x-a)+\left(b-a+a^{3}\right) x+c+a^{2}}{x^{2}+a x+1}$
Reminder must be zero
$\Rightarrow b-a+a^{3}=0, a^{2}+c=0$

458 (a)
Let $O A, O B$ be the sides of an equilateral $\triangle O A B$ and let $O A, O B$ represent the complex numbers z_{1}, z_{2} respectively

From the equilateral $\triangle O A B$,
$\overrightarrow{\mathbf{A B}}=z_{2}-z_{1}$
$\therefore \arg \left(\frac{z_{2}-z_{1}}{z_{2}}\right)=\arg \left(z_{2}-z_{1}\right)-\arg z_{2}=\frac{\pi}{3}$
and $\arg \left(\frac{z_{2}}{z_{1}}\right)=\arg \left(z_{2}\right)-\arg \left(z_{1}\right)=\frac{\pi}{3}$
Also, $\left|\frac{\mid z_{2}-z_{1}}{z_{2}}\right|=1=\left|\frac{z_{2}}{z_{1}}\right|$, since triangle is
equilateral. Thus, the complex numbers $\frac{z_{2}-z_{1}}{z_{2}}$ and $\frac{z_{2}}{z_{1}}$ have same modulus and same argument, which implies that the numbers are equal, that is

$$
\begin{aligned}
& \frac{z_{2}-z_{1}}{z_{2}}=\frac{z_{2}}{z_{1}} \Rightarrow z_{1} z_{2}-z_{1}^{2}=z_{2}^{2} \\
& \Rightarrow z_{1}^{2}+z_{2}^{2}=z_{1} z_{2}
\end{aligned}
$$

459 (c)
Given equations are comparing with $a x^{2}+b x+$ $c=0$
And $a^{\prime} x^{2}+b^{\prime} x+c^{\prime}=0$ respectively, we get
$a=1, \quad b=2 a, c=a^{2}-1$
And $a^{\prime}=1, \quad b^{\prime}=2 b, \quad c^{\prime}=b^{2}-1$
Condition for common roots is
$\left(a c^{\prime}-a^{\prime} c\right)^{2}=\left(b c^{\prime}-b^{\prime} c\right)\left(a b^{\prime}-a^{\prime} b\right)$
$\Rightarrow\left[1\left(b^{2}-1\right)-1\left(a^{2}-1\right)\right]^{2}$
$=\left[2 a\left(b^{2}-1\right)\right.$
$\left.-2 b\left(a^{2}-1\right)\right][1(2 b)-1(2 a)]$
$\Rightarrow \quad\left(b^{2}-a^{2}\right)^{2}=4(b-a)(b-a)(a b+1)$
$\Rightarrow(b+a)^{2}=4(a b)+4$
$\Rightarrow(b-a)^{2}=4$
$\Rightarrow a-b=2$
460 (c)
Multiplying $x^{2}-a x+b=0$ by x^{n-1}
$x^{n+1}-a x^{n}+b x^{n-1}=0$
α, β are the roots of $x^{2}-a x+b=0$, therefore they will satisfy Eq. (i)
Also, $\alpha^{n+1}-a \alpha^{n}+b \alpha^{n-1}=0$
and $\beta^{n+1}-\alpha \beta^{n}+b \beta^{n-1}=0$
Adding Eqs. (ii) and (iii), we get
$\left(\alpha^{n+1}+\beta^{n+1}\right)-a\left(\alpha^{n}+\beta^{n}\right)+b\left(\alpha^{n-1}+\beta^{n-1}\right)$

$$
=0
$$

or $V_{n+1}-a V_{n}+b V_{n-1}=0$
or $V_{n+1}=a V_{n}-b V_{n-1}=0 \quad\left(\right.$ Given $\alpha^{n}+\beta^{n}=$ V_{n})
461 (d)
Let $z=x+0 i$ be a real root of the given equation. Then,
$x^{2}+\alpha x+\beta=0$
$\Rightarrow x^{2}+(a+i b) x+(c+i d)=0$, where
$\alpha=a+i b, \beta=c+i d$
$\Rightarrow\left(x^{2}+a x+c\right)+i(b x+d)=0$
$\Rightarrow x^{2}+a x+c=0$ and $b x+d=0$
$\Rightarrow x^{2}+a x+c=0$ and $x=-\frac{d}{b}$
$\Rightarrow \frac{d^{2}}{b^{2}}-\frac{a d}{b}+c=0$
$\Rightarrow d^{2}-a b d+b^{2} c=0$
$\Rightarrow\left(\frac{\beta-\bar{\beta}}{2 i}\right)^{2}-\left(\frac{\alpha+\bar{\alpha}}{2}\right)\left(\frac{\alpha-\bar{\alpha}}{2 i}\right)\left(\frac{\beta-\bar{\beta}}{2 i}\right)$
$+\left(\frac{\alpha-\bar{\alpha}}{2 i}\right)^{2}\left(\frac{\beta+\bar{\beta}}{2}\right)=0$
$\Rightarrow-2(\beta-\bar{\beta})^{2}+(\alpha+\bar{\alpha})(\alpha-\bar{\alpha})(\beta-\bar{\beta})$
$-(\alpha-\bar{\alpha})^{2}(\beta+\bar{\beta})=0$
$\Rightarrow 2(\beta-\bar{\beta})^{2}=(\alpha-\bar{\alpha})\{(\alpha+\bar{\alpha})(\beta-\bar{\beta})$
$-(\alpha-\bar{\alpha})(\beta+\bar{\beta})\}=0$
$\Rightarrow 2(\beta-\bar{\beta})^{2}=(\alpha-\bar{\alpha})(-2 \alpha \bar{\beta}+2 \bar{\alpha} \beta)$
$\Rightarrow(\beta-\bar{\beta})^{2}=(\bar{\alpha}-\alpha)(\alpha \bar{\beta}-\bar{\alpha} \beta)$
462 (a)
Given, $2^{x} .3^{x+4}=7^{x}$
Taking log on both sides, we get
$x \log _{e} 2+(x+4) \log _{e} 3=x \log _{e} 7$
$\Rightarrow x\left(\log _{e} 2+\log _{e} 3-\log _{e} 7\right)=-4 \log _{e} 3$
$\Rightarrow x=\frac{4 \log _{e} 3}{\log _{e} 7-\log _{e} 6}$
463 (d)
Here, $\alpha+\beta+\gamma=0, \alpha \beta+\beta \gamma+\gamma \alpha=-8, \alpha \beta \gamma=$ -8 ...(i)
$\therefore(\alpha+\beta+\gamma)^{2}=0$
$\Rightarrow \alpha^{2}+\beta^{2}+\gamma^{2}+2(\alpha \beta+\beta \gamma+\gamma \alpha)=0$
$\Rightarrow \sum \alpha^{2}=-2(-8)=16 \quad$ [from Eq. (i)]
And $\frac{1}{\alpha \beta}+\frac{1}{\beta \gamma}+\frac{1}{\gamma \alpha}=\frac{\alpha+\beta+\gamma}{\alpha \beta \gamma}$
$\Rightarrow \frac{1}{\sum \alpha \beta}=\frac{0}{-8}=0$
[from Eq. (i)]
464 (a)
Let $y=\frac{x^{2}-2 x+4}{x^{2}+2 x+4}$
Then, $x^{2}(y-1)+2 x(y+1)+4(y-1)=0$
Since, x is real, therefore
Discriminant, $4(y+1)^{2}-16(y-1)^{2} \geq 0$
$\Rightarrow(y+1)^{2}-[2(y-1)]^{2} \geq 0$
$\Rightarrow(3-y)(3 y-1) \geq 0 \Rightarrow \frac{1}{3} \leq y \leq 3$

465 (b)
Let $x=2+\frac{1}{2+\frac{1}{2+\ldots \infty}}$
$\Rightarrow x=2+\frac{1}{x}$
$\Rightarrow x^{2}-2 x-1=0$
$\Rightarrow x=\frac{2 \pm \sqrt{4+4}}{2}$
$\Rightarrow x=1 \pm \sqrt{2}$
But the value of the given expression cannot be negative or less than 2 , therefore $1+\sqrt{2}$ is
required answer.
466 (b)
We have, $\left|z_{1}\right|=1$
$\therefore \quad\left|\frac{z_{1}-z_{2}}{1-z_{1} z_{2}}\right|=\frac{\left|z_{1}-z_{2}\right|}{\left|z_{1} \overline{z_{1}}-z_{1} z_{2}\right|} \quad\left[\begin{array}{ll}\because & 1\end{array}\right.$

$$
\left.=z_{1} \overline{\bar{L}_{1}}\right]
$$

$=\frac{\left|z_{1}-z_{2}\right|}{\left|z_{1}\right|\left|\overline{z_{1}}-z_{2}\right|}=\frac{1}{\left|z_{1}\right|}=1$
467 (b)
Since α, β are roots of $x^{2}+p x+q=0$
$\therefore \alpha+\beta=-p$ and $\alpha \beta=q$
Now,
α, β are roots of $x^{2 n}+p^{n} x^{n}+q^{n}=0$
$\Rightarrow \alpha^{2 n}+p^{n} \alpha^{n}+q^{n}=0$ and $\beta^{2 n}+p^{n} \beta^{n}+q^{n}=$ 0
$\Rightarrow \alpha^{2 n}-\beta^{2 n}+p^{n} \alpha^{n}-p^{n} \beta^{n}=0$
$\Rightarrow\left(\alpha^{n}+\beta^{n}\right)\left(\alpha^{n}-\beta^{n}\right)+P^{n}\left(\alpha^{n}-\beta^{n}\right)=0$
$\Rightarrow\left(\alpha^{n}-\beta^{n}\right)\left(\alpha^{n}+\beta^{n}+p^{n}\right)=0$
$\Rightarrow \alpha^{n}+\beta^{n}+p^{n}=0$
$\Rightarrow \alpha^{n}+\beta^{n}=-p^{n}$
Since $\frac{\alpha}{\beta}, \frac{\beta}{\alpha}$ are roots of $x^{n}+1+(x+1)^{n}=0$
$\therefore \alpha^{n}+\beta^{n}+(\alpha+\beta)^{n}=0$
$\Rightarrow \alpha^{n}+\beta^{n}=-(\alpha+\beta)^{n}$
$\Rightarrow-p^{n}=-(-p)^{n} \quad[\because \alpha+\beta$

$$
\left.=-p \text { and } \alpha^{n}+\beta^{n}=-p^{n}\right]
$$

$\Rightarrow p^{n}=\left(-p^{n}\right) \Rightarrow n$ is even
468 (a)
Given, $x=\left(\frac{1+i}{2}\right)$
$\Rightarrow 2 x-1=i \Rightarrow 4 x^{2}+1-4 x=-1$
$\Rightarrow 2 x^{2}-2 x+1=0$
Since, $2 x^{4}-2 x^{2}+x+3$
$=\left(2 x^{2}-2 x+1\right)\left(x^{2}+x\right)+\left(3-x^{2}\right)$
$=0+3-\left(\frac{1+i}{2}\right)^{2}$
$=3-\left(\frac{i}{2}\right)$
469 (c)
Since, α, α^{2} be the roots of $x^{2}+x+1=0$.
$\therefore \alpha+\alpha^{2}=-1$
and $\alpha^{3}=1 \quad$...(ii)
Now, $\alpha^{31}+\alpha^{62}=\alpha^{31}\left(1+\alpha^{31}\right)$
$\Rightarrow \alpha^{31}+\alpha^{62}=\alpha^{30}\left(1+\alpha^{30} \cdot \alpha\right)$
$\Rightarrow \alpha^{31}+\alpha^{62}=\left(\alpha^{3}\right)^{10} \cdot \alpha\left\{1+\left(\alpha^{3}\right)^{10} \cdot \alpha\right\}$
$\Rightarrow \alpha^{31}+\alpha^{62}=\alpha(1+\alpha) \quad$ [from Eq. (ii)]
$\Rightarrow \alpha^{31}+\alpha^{62}=-1 \quad$ [from Eq. (i)]
Again $\alpha^{31} \cdot \alpha^{62}=\alpha^{93}$
$\alpha^{31} \cdot \alpha^{62}=\left[\alpha^{3}\right]^{31}=1$
\therefore Required equation is
$x^{2}-\left(\alpha^{31}+\alpha^{62}\right) x+\alpha^{31} \cdot \alpha^{62}=0$
$\Rightarrow x^{2}+x+1=0$
470 (d)
Let the roots be α, α^{2}. Then,
$\alpha+\alpha^{2}=6 / 8 \Rightarrow \alpha=1 / 2,-3 / 2$
Now,
Product the roots $=-\frac{a+3}{8}$
$\Rightarrow \alpha^{3}=-\frac{a+3}{8}$
$\Rightarrow \frac{1}{8}=-\frac{a+3}{8}$ or, $-\frac{27}{8}=-\frac{a+3}{8}$
$\Rightarrow a=-4$ or, $a=24$
471 (c)
We have,
$x_{n}=\cos \left(\frac{\pi}{3^{n}}\right)+i \sin \left(\frac{\pi}{3^{n}}\right)$
$\therefore x_{1} x_{2} x_{3} \ldots x_{\infty}$
$=\cos \left(\frac{\pi}{3}+\frac{\pi}{3^{2}}+\cdots\right)+i \sin \left(\frac{\pi}{2}+\frac{\pi}{3^{2}}+\cdots\right)$
$=\cos \left(\frac{\pi / 3}{1-1 / 3}\right)+i \sin \left(\frac{\pi / 3}{1-1 / 3}\right)$
$=\cos \frac{\pi}{2}+i \sin \frac{\pi}{2}=0+i=i$
472 (d)
Given, $z=i$
Let $z_{1}=1+i(1 \pm \sqrt{3})$ and $z_{2}=2+i$
Now, $\left|z_{2}-z\right|=|1+i-i|=2$
As we know that the distance from the centre to every vertices is equal
Now, $\left|z_{1}-z\right|=|1+i(1 \pm \sqrt{3})-i|$
$=|1 \pm i \sqrt{3}|$
$=\sqrt{1^{2}+(\sqrt{3})^{2}}=2$
473 (a)
Let $z=x+i y$
$\therefore \operatorname{Re}\left(\frac{x-i y+2}{x-i y-1}\right)=4 \quad$ (given)
$\therefore \operatorname{Re}\left[\frac{(x+2)-i y}{(x-1)-i y} \times \frac{(x-1)+i y}{(x-1)+i y}\right]=4$
$\Rightarrow(x+2)(x-1)+y^{2}=4\left[(x-1)^{2}+y^{2}\right]$
$\Rightarrow x^{2}+y^{2}-3 x+2=0$, which represents a
circle
(c)

Since the equation $a x^{2}+b x+c=0$ has no real roots. Therefore, the curve $y=a x^{2}+b c+c$ does not intersect with x-axis. Consequently,
$\phi(x)=a x^{2}+b x+c$ has same sign for all values of x. It is given that
$a+b+c<0$
$\Rightarrow \phi(1)=a+b+c<0$
$\Rightarrow \phi(x)<0$ for all $x \Rightarrow \phi(0)<0 \Rightarrow c<0$
475 (a)
$\because 2 \sin ^{2} \frac{\pi}{8}=1-\cos \frac{\pi}{4}=1-\frac{1}{\sqrt{2}}=\frac{\sqrt{2}-1}{\sqrt{2}}$ (irrational root)
So, other root is $\frac{\sqrt{2}+1}{\sqrt{2}}$.
Sum of roots $=-a=1-\frac{1}{\sqrt{2}}+1+\frac{1}{\sqrt{2}}=2 \Rightarrow a=$ -2
Product of roots $=1-\frac{1}{2}=\frac{1}{2}=b$
So, $a-b=-2-\frac{1}{2}=-\frac{5}{2}$
476 (a)
Given equation is
$\alpha^{2}+\alpha+1=0$
$\therefore \quad \alpha=\frac{-1 \pm \sqrt{1-4}}{2}=\frac{-1 \pm \sqrt{3} i}{2}$
Let $\alpha=\omega, \omega^{2}$

1. If $\alpha=\omega$, then
$\alpha^{31}=(\omega)^{31}=\omega=\alpha$
2. If $\alpha=\omega^{2}$, then
$\alpha^{31}=\left(\omega^{2}\right)^{31}=\omega^{62}=\omega^{2}=\alpha$
Hence, α^{31} is equal to α
477 (d)

$$
\begin{aligned}
& z_{1} \cdot z_{2} \cdot z_{3}, \ldots \infty \\
& =\cos \left(\frac{\pi}{2}+\frac{\pi}{2^{2}}+\frac{\pi}{2^{3}}+\ldots\right) \\
& \quad+i \sin \left(\frac{\pi}{2}+\frac{\pi}{2^{2}}+\frac{\pi}{2^{3}}+\ldots\right) \\
& =\cos \left(\frac{\frac{\pi}{2}}{1-\frac{1}{2}}\right)+i \sin \left(\frac{\frac{\pi}{2}}{1-\frac{1}{2}}\right) \\
& =\cos \pi+i \sin \pi=-1
\end{aligned}
$$

478 (c)
Given, $\alpha_{1}=|-i|=1$
$\alpha_{2}=\left|\frac{1}{3}(1+i)\right|=\frac{1}{3} \sqrt{2}$
and $\alpha_{3}=|-1+i|=\sqrt{2}$
\therefore The increasing order is $\alpha_{2}, \alpha_{1}, \alpha_{3}$

We have,
$\frac{2 x+4}{x-1} \geq 5$
$\Rightarrow \frac{2 x+4-5 x+5}{x-1} \geq 0 \Rightarrow \frac{x-3}{x-1} \leq 0 \Rightarrow x \in(1,3]$
480 (b)
We have,
$x^{2}-x(a+b)+a b=a x+b x-2 a b$
$\Rightarrow x^{2}-2 x(a+b)+3 a b=0$
Since the roots are equal in magnitude but opposite in sign
\therefore Sum of the roots $=0 \Rightarrow 2(a+b)=0 \Rightarrow a+$ $b=0$
481 (a)
Given equation is
$x^{3}-3 x-2=0 \Rightarrow(x+1)\left(x^{2}-x-2\right)=0$
$\Rightarrow \quad(x+1)(x+1)(x-2)=0$
$\Rightarrow x=-1,-1,2$
482 (c)
Let p, q be the roots of the given equation. Then,
$p^{2}+q^{2}=(p+q)^{2}-2 p q$
$\Rightarrow p^{2}+q^{2}=(\sin \alpha-2)^{2}+2(1+\sin \alpha)$
$\Rightarrow p^{2}+q^{2}=\sin ^{2} \alpha-2 \sin \alpha+6=(\sin \alpha-1)^{2}$

$$
+5
$$

Clearly, $p^{2}+q^{2}$ is last when
$\sin \alpha-1=0 \Rightarrow \sin \alpha=1 \Rightarrow \alpha=\pi / 2$
483 (c)
$\left(\frac{-1+\sqrt{-3}}{2}\right)^{100}+\left(\frac{-1-\sqrt{-3}}{2}\right)^{100}$
$=\omega^{100}+\omega^{200}=\omega+\omega^{2}=-1$
484
(b)

Since roots of the given equation are of opposite
signs. Therefore,
Product of roots <0
$\Rightarrow \frac{p(p-1)}{3}<0 \Rightarrow p(p-1)<0 \Rightarrow p \in(0,1)$
485 (c)
Given, $(x-a)(x-a-1)+(x-a-1)(x-a-$
$2+x-a x-a-2=0$
Let $x-a=t$, then
$t(t-1)+(t-1)(t-2)+t(t-2)=0$
$\Rightarrow t^{2}-t+t^{2}-3 t+2+t^{2}-2 t=0$
$\Rightarrow 3 t^{2}-6 t+2=0$
$\Rightarrow t=\frac{6 \pm \sqrt{36-24}}{2(3)}=\frac{6 \pm 2 \sqrt{3}}{2(3)}$
$\Rightarrow x-a=\frac{3 \pm \sqrt{3}}{3}$
$\Rightarrow x=a+\frac{3 \pm \sqrt{3}}{3}$
Hence, x is real and distinct

486 (a)
We have,
$z+z^{-1}=1 \Rightarrow z^{2}-z+1=0 \Rightarrow z=-\omega,-\omega^{2}$
For $z=-\omega$, we have
$z^{n}+z^{-n}=(-\omega)^{n}+(-\omega)^{-n}$
$\Rightarrow z^{n}+z^{-n}=(-1)^{n}\left(\omega^{n}+\frac{1}{\omega^{n}}\right)$
$\Rightarrow z^{n}+z^{-n}=(-1)^{n}\left(\omega^{n}+\omega^{2 n}\right)$
$\Rightarrow z^{n}+z^{-n}$
$=\left\{\begin{array}{cl}(-1)^{n} \times-1, & \text { if, } n \text { is not a multiple of } 3 \\ 2(-1)^{n}, & \text { if } n \text { is a multiple of } 3\end{array}\right.$
$\Rightarrow z^{n}+z^{-n}$
$=\left\{\begin{array}{cc}(-1)^{n-1}, & \text { if } n \text { is not a multiple of } 3 \\ 2(-1)^{n}, & \text { if } n \text { is a multiple of } 3\end{array}\right.$
Since ω and ω^{2} are reciprocal of each other and $z^{n}+z^{-n}$ does not change when z is replaced by $\frac{1}{z}$. Therefore, the value of $z^{n}+z^{-n}$ remains same for $z=-\omega^{2}$
487 (a)
We have,
$x^{3}+a^{3}=0 \Rightarrow x^{3}=-a^{3} \Rightarrow-a,-a \omega,-a \omega^{2}$,
where ω is a complex cube root of unity
Let $\alpha=-\alpha, \beta=-a \omega$ and $\gamma=-a \omega^{2}$. Then,
$\left(\frac{\alpha}{\beta}\right)^{2}=\left(\frac{-a}{a \omega}\right)^{2}=\omega$ and, $\left(\frac{\alpha}{\gamma}\right)^{2}=\left(\frac{-a}{-a \omega^{2}}\right)^{2}=\omega^{2}$
The equation whose roots are $\left(\frac{\alpha}{\beta}\right)^{2}=\omega$ and
$\left(\frac{\alpha}{\gamma}\right)^{2}=\omega^{2}$ is
$x^{2}+x+1=0$
For other combinations of α, β and γ we obtain the same equation. Hence, there is only one equation
488 (b)
$|z|=\left|\left(z-\frac{4}{z}\right)+\frac{4}{z}\right|$
$\Rightarrow \quad|z| \leq\left|z-\frac{4}{z}\right|+\frac{4}{|z|}$
$\Rightarrow \quad|z| \leq 2+\frac{4}{|z|}$
$\Rightarrow \quad\left(|z|^{2}-(\sqrt{5}+1)\right)(|z|-(1-\sqrt{5})) \leq 0$
$\Rightarrow \quad 1-\sqrt{5} \leq|z| \leq \sqrt{5}+1$
489 (c)
$z \bar{z}=|z|^{2}=0$ (given)
$\Rightarrow|z|=0 \Rightarrow z=0$
490
Since, $\bar{z}+i \bar{w}=0 \quad \Rightarrow \quad \bar{z}=-i \bar{w}$
$\Rightarrow \quad z=-i w \quad \Rightarrow \quad w=-i z$
Also, $\arg (z w)=\pi \quad \Rightarrow \quad \arg \left(-i z^{2}\right)=\pi$
$\Rightarrow \quad \arg (-i)+2 \arg (z)=\pi$
$\Rightarrow-\frac{\pi}{2}$
$+2 \arg (z)$
$=\pi$

$$
\left[\because \arg (-i)=-\frac{\pi}{2}\right]
$$

$\Rightarrow \quad 2 \arg (z)=\frac{3 \pi}{2}$
$\Rightarrow \quad \arg (z)=\frac{3 \pi}{4}$
491 (c)
Since, n is not a multiple of 3 , therefore $n=3 m+$ $1, n=3 m+2$, where m is a positive integer.
For $n=3 m+1$,
$1+\omega^{n}+\omega^{2 n}=1+\omega^{3 m+1}+\omega^{2(3 m+1)}$
$=1+\omega^{3 m} \omega+\left(\omega^{3}\right)^{2 m} \omega^{2}=1+\omega+\omega^{2}=0$
Similarly, for $n=3 m+2$
$\therefore \quad 1+\omega^{n}+\omega^{2 n}=1+\omega^{3 m+2}+\omega^{2(3 m+2)}$
$=1+\omega^{3 m} \cdot \omega^{2}+\left(\omega^{3}\right)^{2 m} \cdot \omega^{3} \cdot \omega=0$
$\left[\because \quad \omega^{3}=1\right]$
492 (a)
Let the roots of $x^{2}-6 x+a=0$ be $\alpha, 4 \beta$ and that of $x^{2}-c x+6=0$ be $\alpha, 3 \beta$
$\therefore \alpha+4 \beta=6$ and $4 \alpha \beta=a$
And $\alpha+3 \beta=c$ and $3 \alpha \beta=6$
$\Rightarrow \frac{a}{6}=\frac{4}{3} \Rightarrow a=8$
$\therefore \quad x^{2}-6 x+8=0 \Rightarrow x=2,4$
And $x^{2}-c x+6=0 \Rightarrow 2^{2}-2 c+6=0 \Rightarrow$ $c=5$
$\therefore x^{2}-5 x+6=0$
$\Rightarrow x=2,3$
Hence, common root is 2
493 (c)
Given, $\frac{|x+(y+1) i|}{|x+(y-1) i|}=\sqrt{3}$
$\Rightarrow \quad x^{2}+(y+1)^{2}=3\left[x^{2}+(y-1)^{2}\right]$
$\Rightarrow \quad x^{2}+y^{2}-4 y+1=0$
On comparing with
$x^{2}+y^{2}+2 g x+2 f y+c=0$, we get
$g=0, f=-2, \quad c=1$
\therefore Radius of
circle $=\sqrt{g^{2}+f^{2}-c}=\sqrt{(-2)^{2}-1}=\sqrt{3}$
494 (a)
We have,
$\sin \alpha+\cos \alpha=-\frac{q}{p}$ and $\sin \alpha \cos \alpha=\frac{r}{p}$
$\Rightarrow(\sin \alpha+\cos \alpha)^{2}=\frac{q^{2}}{p^{2}}$ and $\sin \alpha \cos \alpha=\frac{r}{p}$
$\Rightarrow 1+2 \sin \alpha \cos \alpha=\frac{q^{2}}{p^{2}}$ and $\sin \alpha \cos \alpha=\frac{r}{p}$
$\Rightarrow 1+\frac{2 r}{p}=\frac{q^{2}}{p^{2}} \quad \Rightarrow p^{2}-q^{2}+2 p r=0$

(b)

The equation is meaningful for $x \neq 1$
When $x \neq 1$,we have,
$\frac{2 x-3}{x-1}+1=\frac{6 x^{2}-x-6}{x-1}$
$\Rightarrow 3 x-4=6 x^{2}-x-6$
$\Rightarrow 6 x^{2}-4 x-2=0$
$\Rightarrow 3 x^{2}-2 x-1=0$
$\Rightarrow(3 x+1)(x-1)=0 \Rightarrow x=-\frac{1}{3} \quad[\because x \neq 1]$
$S=1+3 \alpha+5 \alpha^{2}+\ldots+(2 n-1) \alpha^{n-1}$
$\Rightarrow \alpha S=\alpha+3 \alpha^{2}+5 \alpha^{3}+\ldots+(2 n-1) \alpha^{n}$
On subtracting Eq.(ii) from Eq. (i), we get
$(1-\alpha) S=1+2 \alpha+2 \alpha^{2}+\ldots+2 \alpha^{n-1}$

$$
-(2 n-1) \alpha^{n}
$$

$=2\left(1+\alpha+\alpha^{2}+\ldots+\alpha^{n-1}\right)-1-(2 n-1) \alpha^{n}$
$=\frac{2\left(1-\alpha^{n}\right)}{1-\alpha}-2 n=-2 n \quad\left(\because a^{n}=1\right)$
$\Rightarrow S=\frac{-2 n}{(1-\alpha)}$
497 (c)
We have, $\left(\frac{3+2 i \sin \theta}{1-2 i \sin \theta}\right)=\frac{(3+2 i \sin \theta)}{(1-2 i \sin \theta)} \frac{(1+2 i \sin \theta)}{(1+2 i \sin \theta)}$
$=\left(\frac{3-4 \sin ^{2} \theta}{1+4 \sin ^{2} \theta}\right)+i\left(\frac{8 \sin \theta}{1+4 \sin ^{2} \theta}\right)$
Since, it is real therefore $\operatorname{Im}(z)$ should be zero
$\Rightarrow \frac{8 \sin \theta}{1+4 \sin ^{2} \theta}=0 \Rightarrow \sin \theta=0$
$\therefore \theta=n \pi$, where $n=0,1,2,3, \ldots$
498 (c)
We have,
$x^{4}+x^{3}-4 x^{2}+x+1=0$
$\Rightarrow\left(x^{4}-2 x^{2}+1\right)+x\left(x^{2}-2 x+1\right)=0$
$\Rightarrow\left(x^{2}-1\right)^{2}+x(x-1)^{2}=1$
$\Rightarrow(x-1)^{2}\left((x+1)^{2}+x\right)=0$
$\Rightarrow(x-1)^{2}\left(x^{2}+3 x+1\right)=0$
$\Rightarrow x=1$ (twice), $x=-\frac{3 \pm \sqrt{5}}{2}$
Thus, the given equation has two integral roots
499 (b)
Area of the triangle on the argand palne formed by the complex numbers $-z, i z, z-i z$ is $\frac{3}{2}|z|^{2}$
$\therefore \quad \frac{3}{2}|z|^{2}=600 \Rightarrow|z|=20$
500 (a)
$\frac{3 x^{2}+1}{x^{2}-6 x+8}=3+\frac{18 x-23}{x^{2}-6 x+8} \quad$ [On dividing]
Now, $\frac{18 x-23}{(x-2)(x-4)}=\frac{A}{(x-2)}+\frac{B}{(x-4)}$
$\Rightarrow \quad 18 x-23=A(x-4)+B(x-2)$
$\Rightarrow \quad 18 x-23=(A+B) x-4 A-2 B$
On equating the coefficient of x and constant
term, we get
$A+B=18$
And $-4 A-2 B=-23$
On solving these equations, we get
$A=-\frac{13}{2}, \quad B=\frac{49}{2}$
$\therefore \quad \frac{18 x-23}{(x-2)(x-4)}=-\frac{13}{2(x-2)}+\frac{49}{2(x-4)}$
Then, from Eq. (i), we get
$\frac{3 x^{2}+1}{x^{2}-6 x+8}$
$=3-\frac{13}{2(x-2)}+\frac{49}{2(x-4)}$
501 (b)
Since $x-c$ is a factor of order m of the polynomial $f(x)$
$\therefore f(x)=(x-c)^{m} \phi(x)$, where $\phi(x)$ is a
polynomial of degree $n-m$
$\Rightarrow f(x), f^{\prime}(x) \ldots f^{m-1}(x)$ are all zero for $x=c$ but
$f^{m}(x) \neq 0$ at $x=c$
$\Rightarrow x=c$ is root of $f(x), f^{\prime}(x), \ldots, f^{m-1}(x)$
502 (b)
Let $f(x)=\left(a x^{2}+b x+c\right)\left(a x^{2}-d x-c\right)$
$\Rightarrow D_{1}=b^{2}-4 a c$ and $D_{2}=d^{2}+4 a c$
$\Rightarrow D_{1}+D_{2}=b^{2}-4 a c+d^{2}+4 a c$
$=b^{2}+d^{2} \geq 0$
\therefore At least one of D_{1} and D_{2} is positive
Hence, the polynomial has at least two real roots
503 (d)
One of the roots of the given equation is $x=1$, as the sum of the coefficients is zero
504 (d)
Given, $\left|x^{2}-x-6\right|=x+2$
Now, we have to consider two cases,
Case I When $x \leq-$ or $x \geq 3$
$\Rightarrow x^{2}-x-6=x+2$
$\Rightarrow \quad x^{2}-2 x-8=0 \Rightarrow x=-2,4$
Case II When $-2<x<3$
$\Rightarrow-\left(x^{2}-x-6\right)=x+2 \Rightarrow x^{2}=4 \Rightarrow x= \pm 2$
Hence, the roots are $(-2,2,4)$
505 (c)
Let $A B C$ be an equilateral triangle such that the affixes of the vertices A, B and C are $z_{!}, z_{2}$ and z_{3} respectively. Let the circumcentre of $\triangle A B C$ be at the origin. Then, $O A=z_{1}, O B=z_{2}$ and $O C=z_{3}$ Now,
$O B=O A e^{i 2 \pi / 3}$ and $O C=O A e^{i 4 \pi / 3}$
$\Rightarrow z_{2}=z_{1} e^{i 2 \pi / 3}$ and $z_{3}=z_{1} e^{i 4 \pi / 3}$
$\Rightarrow z_{2}=z_{1} \omega$ and $z_{3}=z_{1} \omega^{2}$
$\therefore z_{1}+z_{2}+z_{3}=z_{1}\left(1+\omega+\omega^{2}\right)=z_{1} \times 0=0$

Let α be the common roots to the equations $x^{2}-k x-21=0$ and $x^{2}-3 k x+35=0$
$\therefore \quad \alpha^{2}-k \alpha-21=0$ and $\alpha^{2}-3 k \alpha+35=0$
Now, by cross multiplication method, we get
$\frac{\alpha^{2}}{(-35 k-63 k)}=\frac{\alpha}{(-21-35)}=\frac{1}{(-3 k+k)}$
$\Rightarrow \frac{\alpha^{2}}{-98 k}=\frac{\alpha}{-56}=\frac{1}{-2 k}$
$\Rightarrow \frac{\alpha^{2}}{-98 k}=\frac{1}{-2 k} \Rightarrow \alpha^{2}=49$
And $\frac{\alpha}{-56}=-\frac{1}{2 k} \Rightarrow \alpha=\frac{28}{k}$
From Eqs. (i) and (ii),
$\frac{28 \times 28}{k^{2}}=49$
$\Rightarrow \quad k^{2}=16$
$\Rightarrow k= \pm 4$
507 (d)
$\{(1-\cos \theta)+i .2 \sin \theta\}^{-1}$
$=\left(2 \sin ^{2} \frac{\theta}{2}+i .4 \sin \frac{\theta}{2} \cos \frac{\theta}{2}\right)^{-1}$
$=\left(2 \sin \frac{\theta}{2}\right)^{-1}\left(\sin \frac{\theta}{2}+i 2 \cos \frac{\theta}{2}\right)^{-1}$
$=\left(2 \sin \frac{\theta}{2}\right) \frac{1}{\sin \frac{\theta}{2}+i 2 \cos \frac{\theta}{2}} \times \frac{\sin \frac{\theta}{2}-i 2 \cos \frac{\theta}{2}}{\sin \theta-i 2 \cos \frac{\theta}{2}}$
$=\frac{\sin \frac{\theta}{2}-2 i \cos \frac{\theta}{2}}{2 \sin \frac{\theta}{2}\left(\sin ^{2} \frac{\theta}{2}+4 \cos ^{2} \frac{\theta}{2}\right)}$
$=\frac{\sin \frac{\theta}{2}-2 i \cos \frac{\theta}{2}}{2 \sin \frac{\theta}{2}\left(1+3 \cos ^{2} \frac{\theta}{2}\right)}$
\therefore It's real part is
$\frac{\sin \frac{\theta}{2}}{2 \sin \frac{\theta}{2}\left(1+3 \cos ^{2} \frac{\theta}{2}\right)}=\frac{1}{2\left\{1+3\left(\frac{\cos \theta+1}{2}\right)\right\}}$
$=\frac{1}{5+3 \cos \theta}$
508 (c)
Given, $x=\frac{1}{2}\left(\sqrt{7}+\frac{1}{\sqrt{7}}\right)$
$\Rightarrow x^{2}=\frac{1}{4}\left(7+\frac{1}{7}+2\right)=\frac{16}{7}$
Now, $\frac{\sqrt{x^{2}-1}}{x-\sqrt{x^{2}-1}}=\frac{\sqrt{x^{2}-1}}{x-\sqrt{x^{2}-1}} \times \frac{\left(x+\sqrt{x^{2}-1}\right)}{\left(x+\sqrt{x^{2}-1}\right)}$
$=\frac{x \sqrt{x^{2}-1}+x^{2}-1}{1}$
$=\frac{1}{2}\left(\sqrt{7}+\frac{1}{\sqrt{7}}\right) \sqrt{\frac{16}{7}-1}+\frac{16}{7}-1$
$=\frac{1}{2}\left(\sqrt{7}+\frac{1}{\sqrt{7}}\right) \times \frac{3}{\sqrt{7}}+\frac{9}{7}$
$=\frac{1}{2}\left(3+\frac{3}{7}\right)+\frac{9}{7}$
$=3$
509 (a)
Let the roots are α, β, so $\alpha+\beta=\frac{-b}{a}$ and $\alpha \beta=\frac{c}{a}$
Now, $\frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}=\frac{\alpha^{2}+\beta^{2}}{\alpha^{2} \beta^{2}}$
$=\frac{(\alpha+\beta)^{2}-2 \alpha \beta}{(\alpha \beta)^{2}}$
$=\frac{\frac{b^{2}}{a^{2}}-\frac{2 c}{a}}{\frac{c^{2}}{a^{2}}}=\frac{b^{2}-2 a c}{c^{2}}$
Also, $\alpha+\beta=\frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}$
[given]
$\Rightarrow-\frac{b}{a}=\frac{b^{2}-2 a c}{c^{2}}$
$\Rightarrow-b c^{2}=a b^{2}-2 a^{2} c$
$\Rightarrow 2 a^{2} c=a b^{2}+b c^{2}$
$\Rightarrow a b^{2}, c a^{2}, b c^{2}$
Or $b c^{2}, c a^{2}, a b^{2}$ are in AP
510 (d)
Let roots of the equation $a x^{2}+b x+c=0$ are α and β
$\therefore \alpha+\beta=-\frac{b}{a}$ and $\alpha \beta=\frac{c}{a}$
Now, $\frac{1}{\alpha}+\frac{1}{\beta}=\frac{\alpha+\beta}{\alpha \beta}$
$=\frac{-\frac{b}{a}}{\frac{c}{a}}=\frac{-b}{c}$
And $\frac{1}{\alpha} \times \frac{1}{\beta}=\frac{1}{\frac{c}{a}}=\frac{a}{c}$
\therefore Required equation is
$x^{2}-\left(-\frac{b}{c}\right) x+\frac{a}{c}=0$
$\Rightarrow c x^{2}+b x+a=0$
Alternate To find the equation of reciprocal rots, interchange the coefficients of x^{2} and constant term in the given equation then required equation is $c x^{2}+b x+a=0$
511 (a)
Let α be a root of the equation $a x^{2}+b x+c=0$.
Then, $1 / \alpha$ is a root of $a_{1} x^{2}+b_{1} x+c_{1}=0$
$\Rightarrow a \alpha^{2}+b \alpha+c=0$
and, $\frac{a_{1}}{\alpha^{2}}+\frac{b_{1}}{\alpha}+c_{1}=0 \Rightarrow c_{1} \alpha^{2}+b_{1} \alpha+a_{1}$ $=0 \ldots$ (ii)
from (i) and (ii), we have
$\frac{\alpha^{2}}{b a_{1}-b_{1} c}=\frac{\alpha}{c c_{1}-a a_{1}}=\frac{1}{a b_{1}-c_{1} b}$
$\Rightarrow \alpha^{2}=\frac{b a_{1}-b_{1} c}{a b_{1}-c_{1} b^{\prime}}, \alpha=\frac{c c_{1}-a a_{1}}{a b_{1}-c_{1} b}$
Now, $\alpha^{2}=(\alpha)^{2} \Rightarrow\left(b a_{1}-b_{1} c\right)\left(a b_{1}-c_{1} b\right)=$ $\left(c c_{1}-a a_{1}\right)^{2}$

We have,
$z=(-1)^{1 / 7}, z \neq-1 \Rightarrow z^{7}=-1$
$\therefore z^{86}+z^{175}+z^{289}$
$=\left(z^{7}\right)^{12} z^{2}+\left(z^{7}\right)^{25}+\left(z^{7}\right)^{41} z^{2}=z^{2}-1-z^{2}$

$$
=-1
$$

513 (b)
Since, α and β the roots of the equation
$x^{2}-x-1=0$
$\therefore \alpha+\beta=1$ and $\alpha \beta=-1$
Hence, AM of A_{n-1} and $A_{n}=\frac{A_{n-1}+A_{n}}{2}$
$=\frac{\alpha^{n-1}+\beta^{n-1}+\alpha^{n}+\beta^{n}}{2}$
$=\frac{\alpha^{n-1}(1+\alpha)+\beta^{n-1}(1+\beta)}{2}$
$=\frac{\alpha^{n-1} \cdot \alpha^{2}+\beta^{n-1} \beta^{2}}{2}$
$=\frac{1}{2}\left(\alpha^{n+1}+\beta^{n+1}\right)$
$=\frac{1}{2} A^{n+1}$
515 (c)
It is given that
$|z+4| \leq 3$
$\therefore|z+1|=|z+4-3|$
$\Rightarrow|z+1| \leq|z+4|+|3| \leq 3+3 \quad[\because|z+4|$

$$
\leq 3]
$$

Hence, the greatest value of $|z+1|$ is 6
Since the least value of the modulus of a complex number is zero
$\therefore|z+1|=0 \Rightarrow z=-1$
$\Rightarrow|z+4|=|-1+4|=3$
$\Rightarrow|z+4| \leq 3$ is satisfied by $z=-1$
Therefore, the least value of $|z+1|$ is 0 ALITER Here, we have to find the greatest and least of distances of all points lying inside or the circle from the point $A(-1,0)$. It is evident from the Fig. S.3, that the greatest distance is 6 when P coincides with B and the least distance is 0 when P coindies with A

516 (d)
$\frac{z-1}{2 z+1}=\frac{(x-1)+i y}{(2 x+1)+2 i y} \times \frac{(2 x+1)-2 i y}{(2 x+1)-2 i y}$
$=\frac{\begin{array}{c}\left\{(x+1)(2 x+1)+2 y^{2}\right\}+ \\ i y\{-2 x+2+2 x+1\}\end{array}}{(2 x+1)^{2}+4 y^{2}}$
Given, $\operatorname{Im}\left(\frac{z-1}{2 z+1}\right)=-4$
$\therefore \quad \frac{3 y}{(2 x+1)^{2}+4 y^{2}}=-4$
$\Rightarrow 16 x^{2}+16 y^{2}+16 x+3 y+4=0$
\therefore The locus of z is a circle.
517 (b)
Let $z_{1}=\frac{w-\overline{w_{z}}}{1-z}$ be purely real
$\Rightarrow \quad z_{1}=\overline{z_{1}}$
$\therefore \quad \frac{w-\bar{w} z}{1-z}=\frac{\bar{w}-w \bar{z}}{1-\bar{z}}$
$\Rightarrow \quad w-w \bar{z}-\bar{w} z+\bar{w} z \bar{z}$
$=\bar{w}-z \bar{w}-w \bar{Z}+w z \bar{Z}$
$\Rightarrow \quad(w-\bar{w})+(\bar{w}-w)|z|^{2}=0$
$\Rightarrow \quad(w-\bar{w})+\left(1-|z|^{2}\right)=0$
$\Rightarrow \quad|z|^{2}=1$
[as, $w-\bar{w} \neq 0$, since $\beta \neq 0$]
$\Rightarrow \quad|z|=1$ and $z \neq 1$
518 (d)
Since, $(x-2)$ is a common factor of the expressions $x^{2}+a x+b$ and $x^{2}+c x+d$
$\Rightarrow 4+2 a+b=0$
and $4+2 c+d=0$
$\Rightarrow 2 a+b=2 c+d$
$\Rightarrow b-d=2(c-a)$
$\Rightarrow \frac{b-d}{c-a}=2$
519 (c)
Since, $\alpha_{0}, \alpha_{1}, \alpha_{2}, \ldots, \alpha_{n-1}$ are $n^{\text {th }}$ roots of unity.
Therefore,

$$
\begin{aligned}
& x^{n}-1=\left(x-\alpha_{0}\right)\left(x-\alpha_{1}\right) \ldots\left(x-\alpha_{n}-1\right) \\
& \Rightarrow \log \left(x^{n}-1\right)=\log \left(x-\alpha_{0}\right) \\
&+\log \left(x-\alpha_{1}\right)+\cdots \\
&+\log \left(x-\alpha_{n-1}\right)
\end{aligned}
$$

Differentiating both sides w.r.t. x, we get
$\frac{n x^{n-1}}{x^{n}-1}=\frac{1}{3-\alpha_{0}}+\frac{1}{x-\alpha_{1}}+\cdots+\frac{1}{x-\alpha_{n-1}}$
Putting $x=3$ on both sides, we get
$\frac{n 3^{n-1}}{3^{n}-1}=\frac{1}{3-\alpha_{0}}+\frac{1}{3-\alpha_{1}}+\cdots+\frac{1}{3-\alpha_{n-1}}$
Now,
$\sum_{i=0}^{n-1} \frac{\alpha_{i}}{3-\alpha_{i}}=-\sum_{i=0}^{n-1} \frac{\left\{\left(3-\alpha_{i}\right)-3\right\}}{\left(3-\alpha_{i}\right)}$
$\Rightarrow \sum_{i=0}^{n-1} \frac{\alpha_{i}}{3-\alpha_{i}}=-\sum_{i=0}^{n-1} 1+3 \sum_{i=0}^{n-1} \frac{1}{3-\alpha_{i}}$
$\Rightarrow \sum_{i=0}^{n-1} \frac{\alpha_{i}}{3-\alpha_{i}}=-n+3$

$$
\times \frac{n 3^{n-1}}{3^{n}-1}
$$

[Using (i)]
$\Rightarrow \sum_{i=0}^{n-1} \frac{\alpha_{i}}{3-\alpha_{i}}=-n+n \frac{3^{n}}{3^{n}-1}=\frac{n}{3^{n}-1}$
520 (c)
Let α, β be the roots of $x^{2}-p x+q^{2}=0$ and γ, δ
be the roots of $x^{2}-r x+s^{2}=0$. Then,
$\alpha+\beta=p$ and $\gamma \delta=s^{2} \Rightarrow \frac{\alpha+\beta}{2}=\frac{p}{2}$ and $\sqrt{\gamma \delta}=|s|$
It is given that $\frac{\alpha+\beta}{2}=\sqrt{\gamma \delta}$
$\Rightarrow \frac{p}{2}=|s| \Rightarrow p=2|s| \Rightarrow p$ is an even integer
521 (a)
Let the rots of the equation be α, β, γ. Also,
$\alpha=-\beta$ [given]
$\therefore \alpha+\beta+\gamma=p \Rightarrow-\beta+\beta+\gamma=p$
$\Rightarrow \gamma=p$
Now, since γ is a root of the equation.
\therefore It satisfies the given equation
$\Rightarrow \gamma^{3}-p \gamma^{2}+q \gamma-r=0$
$\Rightarrow p^{3}-p p^{2}+p q-r=0 \quad$ [from Eq. (i)]
$\Rightarrow \quad r=p q$
522 (c)
Here, $\alpha+\beta=-\frac{b}{a}, \alpha \beta=\frac{c}{a}$
But given that $\beta=\alpha^{1 / 3}$
$\therefore \alpha+\alpha^{1 / 3}=-\frac{b}{a}$ and $\alpha \cdot \alpha^{1 / 3}=\frac{c}{a}$
$\Rightarrow \alpha^{4 / 3}=\frac{c}{a} \Rightarrow \alpha=\left(\frac{c}{a}\right)^{3 / 4}$
$\therefore \alpha+\alpha^{1 / 3}=-\frac{b}{a}$
$\Rightarrow\left(\frac{c}{a}\right)^{3 / 4}+\left(\frac{c}{a}\right)^{1 / 4}=-\frac{b}{a}$
$\Rightarrow\left(a c^{3}\right)^{1 / 4}+\left(a^{3} c\right)^{1 / 4}+b=0$
523 (a)
From figure it is clear that, if $a>0$, then
$f(-1)<0$ and $f(1)<0$ and if $a<0, f(-1)>0$ and $f(1)>0$. In both cases $a f(-1)<0$ and $a f(1)<0$

$\Rightarrow a(a-b+c)<0$ and $a(a+b+c)<0$
$\Rightarrow 1-\frac{b}{a}+\frac{c}{a}<0$ and $1+\frac{b}{a}+\frac{c}{a}<0$ [divide by a^{2}]
$\Rightarrow 1 \pm \frac{b}{a}+\frac{c}{a}<0 \Rightarrow 1+\left|\frac{b}{a}\right|+\frac{c}{a}<0$
524 (c)
Since the diagonals of a rhombus bisect each other at right-angle
$\therefore \frac{z_{1}+z_{3}}{2}=\frac{z_{2}+z_{4}}{2} \Rightarrow z_{1}+z_{3}=z_{2}+z_{4}$
Also,
$\angle A O B=\frac{\pi}{2} \Rightarrow \arg \left(\frac{z_{2}-z_{4}}{z_{1}-z_{3}}\right)=\frac{\pi}{2}$

525 (a)
We have,
$7^{\log _{7}\left(x^{2}-4 x+5\right)}=x-1$
$\Rightarrow x^{2}-4 x+5=x-1 \Rightarrow x^{2}-5 x+6=x-1$

$$
\Rightarrow x=2,3
$$

526 (c)
We have, $\frac{1}{|x|-3}<\frac{1}{2}$
Clearly, $\frac{1}{|x|-3}$ is not defined for $|x|=3$ i. e. $x=$ $-3,3$
Now, $\frac{1}{|x|-3}<\frac{1}{2}$
$\Rightarrow \frac{1}{|x|-3}-\frac{1}{2}<0$
$\Rightarrow \frac{2-|x|+3}{|x|-3}<0$
$\Rightarrow \frac{|x|-5}{|x|-3}>0$
$\Rightarrow|x|<3$ or, $|x|>5$
$\Rightarrow x \in(-3,3)$ or, $x \in(-\infty,-5) \cup(5, \infty)$
$\Rightarrow x \in(-\infty,-5) \cup(-3,3) \cup(5, \infty)$
527
(d)

Given, $z=\sqrt{3}+i$,
$\arg \left(z^{2} e^{z-i}\right)=\arg \left[(3-1+2 \sqrt{3} i) e^{\sqrt{3}}\right]$
$=\arg \left[(2+2 \sqrt{3} i) e^{\sqrt{3}}\right]=\tan ^{-1}\left[\frac{2 \sqrt{3}}{2}\right]=\frac{\pi}{3}$
528 (d)
Since the equations $a_{1} x^{2}+b_{1} x+c_{1}=0$ and $a_{2} x^{2}+b_{2} x+c_{2}=0$ have a common root α (say).
Therefore,
$a_{1} \alpha^{2}+b_{1} \alpha+c_{1}=0$ and $a_{2} \alpha^{2}+b_{2} \alpha+c_{2}=0$
$\therefore \frac{\alpha^{2}}{b_{1} c_{2}-b_{2} c_{1}}=\frac{\alpha}{c_{1} a_{2}-c_{2} a_{1}}=\frac{1}{a_{1} b_{2}-a_{2} b_{1}}$
$\Rightarrow \alpha^{2}=\frac{b_{1} c_{2}-b_{2} c_{1}}{a_{1} b_{2}-\alpha_{2} b_{1}}, \alpha=\frac{c_{1} a_{2}-c_{2} a_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Now, $\alpha^{2}=(\alpha)^{2}$
$\Rightarrow\left(\frac{c_{1} a_{2}-c_{2} a_{1}}{a_{1} b_{2}-a_{2} b_{1}}\right)^{2}=\left(\frac{b_{1} c_{2}-b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}\right)$
$\Rightarrow\left(c_{1} a_{2}-c_{2} a_{1}\right)^{2}=\left(a_{1} b_{2}-a_{2} b_{1}\right)\left(b_{1} c_{2}-b_{2} c_{1}\right)$
530 (c)
Given, $(x+i y)^{1 / 3}=2+3 i$
$\Rightarrow x+i y=(2+3 i)^{3}$
$=8+36 i+54 i^{2}+27 i^{3}$
$=-46+9 i$
Equating real and imaginary parts from both
sides, we get
$x=-46, y=9$
$\therefore \quad 3 x+2 y=-138+18=-120$
531 (b)
Given equation $\frac{1}{x+p}+\frac{1}{x+q}=\frac{1}{r}$ can be rewritten as
$x^{2}+x(p+q-2 r)+p q-p r-q r=0$
Let roots are α and $-\alpha$, then the product of roots
$-\alpha^{2}=p q-p r-q r-r(p+q)$
and sum of roots, $0=-(p+q-2 r)$
$\Rightarrow r=\frac{p+q}{2}$
On solving Eqs. (ii) and (iii), we get
$-\alpha^{2}=p q-\frac{p+q}{2}(p+q)$
$=-\frac{1}{2}\left\{(p+q)^{2}-2 p q\right\}$
$\Rightarrow \alpha^{2}=-\frac{\left(p^{2}+q^{2}\right)}{2}$
532 (b)
We have,
$1+i=\sqrt{2}\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)$
and, $1-i=\sqrt{2}\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)$
$\therefore(1+i)^{8}+(1-i)^{8}$
$=2^{4}\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)^{8}+2^{4}\left(\cos \frac{\pi}{4}-i \sin \frac{\pi}{4}\right)^{8}$
$=2^{4}(\cos 2 \pi+i \sin 2 \pi)+2^{4}(\cos 2 \pi-i \sin 2 \pi)$
$2^{4}(2 \cos 2 \pi)=2^{5}$
533 (a)
The given equation is
$x^{2}(\lambda+1)-x\{b(\lambda+1)+a(\lambda-1)\}+c(\lambda-1)$

$$
=0
$$

This equation has roots equal in magnitude but opposite in sign
\therefore Sum of the roots $=0$
$\Rightarrow \frac{b(\lambda+1)+a(\lambda-1)}{\lambda+1}=0 \Rightarrow \lambda=\frac{a-b}{a+b}$
534 (d)
Since $x^{2}+5|x|+4>0$ for all $x \in R$
Therefore, $x^{2}+5|x|+4=0$ has no real roots
535 (d)
Let $z_{r}=x_{r}+i y_{r} ; r=0,1,3,4, \ldots, 6$
We have,
$\left(z_{r}+1\right)^{7}+z_{r}^{7}=0, r=0,1, \ldots, 6$
$\Rightarrow\left(z_{r}+1\right)^{7}=-z_{r}^{7}$
$\Rightarrow\left|z_{r}+1\right|^{7}=\left|z_{r}\right|^{7}$
$\Rightarrow\left|z_{r}+1\right|=\left|z_{r}\right| \Rightarrow\left|z_{r}+1\right|^{2}=\left|z_{r}\right|^{2}$
$\Rightarrow\left(x_{r}+1\right)^{2}+y_{r}^{2}=x_{r}^{2}+y_{r}^{2} \Rightarrow 2 x_{r}+1=0 \Rightarrow x_{r}$ $=-\frac{1}{2}$
$\therefore \sum_{r=0}^{6} x_{r}=-\frac{7}{2} \Rightarrow \sum_{r=0}^{6} \operatorname{Re}\left(z_{r}\right)=-\frac{7}{2}$
536 (d)
Given that,
$z^{2}+(p+i q) z+r+i s=0$
Let $z=\alpha$ (where α is real) be a root of Eq. (i), then
$\alpha^{2}+((p+i q) \alpha+r+i s=0$
$\Rightarrow \alpha^{2}+p \alpha+r+i(q \alpha+s)=0$
On equating real and imaginary parts, we get
$\alpha^{2}+p \alpha+r=0$
and $q \alpha+s=0 \Rightarrow \alpha=\frac{-s}{q}$
On putting the value of α in Eq.(ii), we get
$\left(\frac{-s}{q}\right)^{2}+p\left(\frac{-s}{q}\right)+r=0$
$\Rightarrow s^{2}-p q s+q^{2} r=0$
$\Rightarrow p q s=s^{2}+q^{2} r$

The given condition suggest that a lies between the roots.
Let $f(x)=2 x^{2}-2(2 a+1) x+a(a+1)$

For ` a^{\prime} to lie between the roots we must have
Discriminant ≥ 0 and $f(a)<0$
Now, Discriminant ≥ 0
$\Rightarrow 4(2 a+1)^{2}-8 a(a+1) \geq 0$
$\left.\Rightarrow 8\left(a^{2}+a+\frac{1}{2}\right)\right) \geq 0$, which is always true.
Also, $f(a)<0$
$\Rightarrow 2 a^{2}-2 a(2 a+1)+a(a+1)<0$
$\Rightarrow-a^{2}-a<0 \Rightarrow a^{2}+a>0 \Rightarrow a(1+a)>0$
$\Rightarrow a>0$ or $a<-1$
538 (d)
We have,
$a=\cos \alpha+i \sin \alpha, b=\cos \beta+i \sin \beta$ and
$c=\cos \gamma+i \sin \gamma$
$\therefore a / b=\cos (\alpha-\beta)+i \sin (\alpha-\beta)$,
$b / c=\cos (\beta-\gamma)+i \sin (\beta-\gamma)$
$c=\cos (\gamma-\alpha)+i \sin (\gamma-\alpha)$
$\therefore \frac{a}{b}+\frac{b}{c}+\frac{c}{a}=1$
$\Rightarrow[\cos (\alpha-\beta)+\cos (\beta-\gamma)+\cos (\gamma-\alpha)]$
$+i[\sin (\alpha-\beta)+\sin (\beta-\gamma)+\sin (\gamma-\alpha)]$

$$
=1+i 0
$$

$\cos (\alpha-\beta)+\cos (\beta-\gamma)+\cos (\gamma-\alpha)=1$
539 (d)
Since, α and β are the roots of equation
$(x-a)(x-b)=5$
Or $x^{2}-(a+b) x+a b-5=0$
Then, $\alpha+\beta=(a+b)$ and $\alpha \beta=a b-5$
$\therefore \quad(x-\alpha)(x-\beta)+5=0 \quad$ (given)
$\Rightarrow x^{2}-(\alpha+\beta) x+\alpha \beta+5=0$
$\Rightarrow x^{2}-(a+b) x+a b-5+5=0$
$\Rightarrow(x-a)(x-b)=0$
Hence, a and b are the roots of equation
$(x-\alpha)(x-\beta)+5=0$
540 (d)
Here, $\sum \alpha=0, \quad \sum \alpha \beta=b$ and $\alpha \beta \gamma=-c$
Now, $\sum \alpha \sum \alpha \beta=(\alpha+\beta+\gamma) .(\alpha \beta+\beta \gamma+\gamma \alpha)$
$=\sum \alpha^{2} \beta+3 \alpha \beta \gamma$
$\Rightarrow \sum \alpha^{2} \beta=\sum \alpha \sum \alpha \beta-3 \alpha \beta \gamma$

$$
=0 . \sum \alpha \beta-3(-c)
$$

[from Eq. (i)]
$=3 c$
541 (c)

$$
\begin{aligned}
& \left|\frac{1}{2}\left(z_{1}+z_{2}\right)+\sqrt{z_{1} z_{2}}\right|+\left|\frac{1}{2}\left(z_{1}+z_{2}\right)-\sqrt{z_{1} z_{2}}\right| \\
& =\frac{1}{2}\left|\left(\sqrt{z_{1}}+\sqrt{z_{2}}\right)^{2}\right|+\frac{1}{2}\left|\left(\sqrt{z_{1}}-\sqrt{z_{2}}\right)^{2}\right| \\
& =\frac{1}{2}\left|\sqrt{z_{1}}+\sqrt{z_{2}}\right|^{2}+\frac{1}{2}\left|\sqrt{z_{1}}-\sqrt{z_{2}}\right|^{2} \quad\left[\because\left|z^{2}\right|\right. \\
& \left.=|z|^{2}\right]
\end{aligned}
$$

$=\frac{1}{2} \cdot 2\left[\left|\sqrt{z_{1}}\right|^{2}+\left|\sqrt{z_{2}}\right|^{2}\right]=\left|z_{1}\right|+\left|z_{2}\right|$
542 (c)
We have, $p x^{2}+q x+1=0$, for real roots
discriminant ≥ 0
$\Rightarrow q^{2}-4 p \geq 0 \Rightarrow q^{2} \geq 4 p$
For $p=1, q^{2} \geq 4 \Rightarrow q=2,3,4$
$p=2, q^{2} \geq 8 \Rightarrow q=3,4$
$p=3, q^{2} \geq 12 \Rightarrow q=4$
$p=4, q^{2} \geq 16 \Rightarrow q=4$
Total seven solutions are possible.
543 (c)
We have,
$|z|-2=|z-i|-|z+5 i|=0$
$\Rightarrow|z|=2$ and $|z-i|=|z+5 i|$
$\Rightarrow z$ lies on the circle $|z|=2$ and also on the
perpendicular bisector of the line segment joining $(0,-5)$ and $(0,1)$ i.e., $y=-2$
Putting $y=-2$ in $|z|=2$ i. e. $x^{2}+y^{2}=4$, we get $x=0$
Hence, the locus of z is the single point $(0,-2)$
544 (a)
CASE I When $x-a \geq 0$ i.e. $x \geq a:$
In this case, we have $|x-a|=x-a$
$\therefore x^{2}-2 a|x-a|-3 a^{2}=0$
$\Rightarrow x^{2}-2 a(x-a)-3 a^{2}=0$
$\Rightarrow x^{2}-2 a x-a^{2}=0 \Rightarrow x=a(1 \pm \sqrt{2})$
But, $a \leq 0$ and $x>a$. Therefore, $x=a(1-\sqrt{2})$
CASE II When $(x-a)<0$ i.e. $x<a$
In this case, we have $|x-a|=-(x-a)$
$\therefore x^{2}-2 a|x-a|-3 a^{2}=0$
$\Rightarrow x^{2}+2 a(x-a)-3 a^{2}=0$
$\Rightarrow x^{2}+2 a x-5 a^{2}=0 \Rightarrow x=a(-1 \pm \sqrt{6})$
But, $x<a$ and $a \leq 0$ Therefore, $x=a(-1+\sqrt{6})$
545 (c)
We have,
$16-4 a^{3}<0$ and $\frac{4}{a}=a$
$\Rightarrow 4-a^{2}<0$ and $a^{2}=4$
$\Rightarrow a^{3}-4>0$ and $a= \pm 2 \Rightarrow a=2$
546 (a)
Since, the roots of the equation $4 x^{3}-12 x+$
$11 x+k=0$ are in AP which are $\alpha-a, \alpha, \alpha+a$.
\therefore Sum of roots, $3 \alpha=\frac{12}{4}=3 \Rightarrow \alpha=1$
Since, α is a root, therefore it satisfies the given equation
ie, $\quad 4 x^{3}-12 x^{2}+11 x+k=0$
$\therefore 4-12+11+k=0 \quad \Rightarrow \quad k=-3$
547 (a)
The equations $|z+\sqrt{2}|=\sqrt{a^{2}-3 a+2}$ and
$|z+\sqrt{2} i|=a$ represent two circles having centre $C_{1}(-\sqrt{2}, 0)$ and $C_{2}(0,-\sqrt{2})$ and radii $=$
$\sqrt{a^{2}-3 a+2}$ and a respectively.
These two circles will intersect, if
$C_{1} C_{2}<$ Sum of the radii
$\Rightarrow 2<\sqrt{a^{2}-3 a+2}+a$
$\Rightarrow(2-a)^{2}<a^{2}-3 a+2 \Rightarrow-a+2<0 \Rightarrow a>2$
548 (c)
Let α, β be the roots of $a x^{2}-b x-c=0$ and let
$\alpha^{\prime}, \beta^{\prime}$ be the roots of $a^{\prime} x^{2}-b^{\prime} x-c^{\prime}=0$ such that
$|\alpha-\beta|=\left|\alpha^{\prime}-\beta^{\prime}\right|$
$\Rightarrow(\alpha-\beta)^{2}=\left(\alpha^{\prime}-\beta^{\prime}\right)^{2}$
$\Rightarrow(\alpha+\beta)^{2}-4 \alpha \beta=\left(\alpha^{\prime}+\beta^{\prime}\right)^{2}-4 \alpha^{\prime} \beta^{\prime}$
$\Rightarrow \frac{b^{2}+4 a c}{a^{2}}=\frac{b^{\prime 2}+4 a^{\prime} c^{\prime}}{a^{\prime 2}}$
Hence, the expression $\frac{b^{2}+4 a c}{a^{2}}$ does not vary in value
549 (b)
We have, $x^{\log _{x}(1-x)^{2}}=9$
Taking log on both sides, we get
$\log _{x}(9)=\log _{x}(1-x)^{2}\left(\because a^{x}=N \Rightarrow \log _{a} N=x\right)$
$\Rightarrow 9=(1-x)^{2}$
$\Rightarrow 1+x^{2}-2 x-9=0$
$\Rightarrow x^{2}-2 x-8=0$
$\Rightarrow x=-2,4$
$\Rightarrow x=4 \quad(\because x=-2)$
550 (d)
$\left|\begin{array}{ccc}x+1 & \omega & \omega^{2} \\ \omega & x+\omega^{2} & 1 \\ \omega^{2} & 1 & x+\omega\end{array}\right|$
$=\left|\begin{array}{ccc}x+1+\omega+\omega^{2} & \omega & \omega^{2} \\ \omega+x+\omega^{2}+1 & x+\omega^{2} & 1 \\ \omega^{2}+1+x+\omega & 1 & x+\omega\end{array}\right|$
$\left(C_{1} \rightarrow C_{1}+C_{2}+C_{3}\right)$
$=x\left|\begin{array}{ccc}1 & \omega & \omega^{2} \\ 1 & x+\omega^{2} & 1 \\ 1 & 1 & x+\omega\end{array}\right| \quad\left(\because 1+\omega+\omega^{2}=0\right)$
$=x\left|\begin{array}{ccc}1 & \omega & \omega^{2} \\ 0 & x+\omega^{2}-\omega & 1-\omega^{2} \\ 0 & 1-\omega & x+\omega-\omega^{2}\end{array}\right|$
$\left(R_{2} \rightarrow R_{2}-R_{1}, R_{3} \rightarrow R_{3}-R_{1}\right)$
$=x\left[\left(x+\omega^{2}-\omega\right)\left(x+\omega-\omega^{2}\right)\right.$
$\left.-(1-\omega)\left(1-\omega^{2}\right)\right]$
$=x[x+3-3]$
$=x^{2}$
551 (c)
Using De-Moivre's Theorem, we have
$\left[\sqrt{2}\left\{\cos \left(56^{\circ} 15^{\prime}\right)+i \sin \left(56^{\circ} 15^{\prime}\right)\right\}\right]^{8}$
$=16\left(\cos 450^{\circ}+i \sin 450^{\circ}\right)=16 i$

We have, $\{(1-\cos \theta)+i .2 \sin \theta\}^{-1}$
$=\left(2 \sin ^{2} \frac{\theta}{2}+i .4 \sin \frac{\theta}{2} \cos \frac{\theta}{2}\right)^{-1}$
$=\left(2 \sin \frac{\theta}{2}\right)^{-1}\left(\sin \frac{\theta}{2}+i .2 \cos \frac{\theta}{2}\right)^{-1}$
$=\left(2 \sin \frac{\theta}{2}\right)^{-1} \cdot \frac{1}{\sin \frac{\theta}{2}+i .2 \cos \frac{\theta}{2}} \times \frac{\sin \frac{\theta}{2}-i .2 \cos \frac{\theta}{2}}{\sin \frac{\theta}{2}-i .2 \cos \frac{\theta}{2}}$
$=\frac{\sin \frac{\theta}{2}-i .2 \cos \frac{\theta}{2}}{2 \sin \frac{\theta}{2}\left(\sin ^{2} \frac{\theta}{2}+4 \cos ^{2} \frac{\theta}{2}\right)}$
$=\frac{\sin \frac{\theta}{2}+i .2 \cos \frac{\theta}{2}}{2 \sin \frac{\theta}{2}\left(1+3 \cos ^{2} \frac{\theta}{2}\right)}$
It's real part
$=\frac{\sin \frac{\theta}{2}}{2 \sin \frac{\theta}{2}\left(1+3 \cos ^{2} \frac{\theta}{2}\right)}=\frac{1}{2\left(1+3 \cos ^{2} \frac{\theta}{2}\right)}$
$=\frac{1}{2+3(\cos \theta+1)}=\frac{1}{5+3 \cos \theta}$
553 (b)
Let the discriminant of the equation $x^{2}+p x+$ $q=0$ is D_{1}, then $D_{1}=p^{2}-4 q$
and the discriminant of the equation $x^{2}+r x+$ $s=0$ is D_{2}, then $D_{2}=r^{2}-4 s$
$\therefore D_{1}+D_{2}=p^{2}+r^{2}-4(q+s)=p^{2}+r^{2}-2 p r$
(from the given relation)
$\Rightarrow D_{1}+D_{2}=(p-r)^{2} \geq 0$
Clearly, at least one of D_{1} and D_{2} must be nonnegative, consequently at least one of the equation has real roots.
554 (c)
We know, $-\frac{1}{2}+\frac{i \sqrt{3}}{2}=\omega$
$\therefore \quad 4+5(\omega)^{334}+3(\omega)^{365}$
$=4+5\left(\omega^{3}\right)^{111} \cdot \omega^{1}+3\left(\omega^{3}\right)^{121} \cdot \omega^{2}$
$=4+5 \omega+3 \omega^{2}$
$=3\left(1+\omega+\omega^{2}\right)+1+2 \omega$
$=1+(-1+i \sqrt{3})$
$=i \sqrt{3}$
555 (a)
We have,
$(16)^{1 / 4}=\left(2^{4}\right)^{1 / 4}=2(1)^{1 / 4}$
$=2(\cos 0+i \sin 0)^{1 / 4}$
$=2\left(\cos \frac{1}{4}(2 k \pi+0)+i \sin \frac{1}{4}(2 k \pi+0)\right.$
$k=0,1,2,3$
$=2 \times 1,2 \times i, 2 \times-1,2 \times-i$
$= \pm 2, \pm 2 i$
556
(d)

Let $A B C$ be the equilateral triangle circumscribing
the circle $|z|=\frac{1}{2}$. Let z_{1}, z_{2}, z_{3} be the affixes of vertices A, B and C respectively in anti-clock wise sense. Clearly, O (origin) is the circumcentre of $\triangle A B C$
$\therefore z_{2}=z_{1} e^{i 2 \pi / 3}=\left(-\omega^{2}\right)(\omega)=-\omega^{3}=-1$
557 (d)
$\frac{4\left(\cos 75^{\circ}+i \sin 75^{\circ}\right)}{0.4\left(\cos 30^{\circ}+i \sin 30^{\circ}\right)}$
$=10\left(\cos 75^{\circ}+i \sin 75^{\circ}\right)\left(\cos 30^{\circ}+i \sin 30^{\circ}\right)$
$=10 e^{75 i} \cdot e^{-30 i}=10 e^{45 i}$
$=10\left(\cos 45^{\circ}+i \sin 45^{\circ}\right)=\frac{10}{\sqrt{2}}(1+i)$

558 (b)

Let α and β be the roots, then
$\alpha+\beta=(a-2)$ and $\alpha \beta=-(a+1)$
Now, $\alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta$
$=(a-2)^{2}+2(a+1)$
$=(a-1)^{2}+5$
$\Rightarrow \alpha^{2}+\beta^{2} \geq 5$
Thus, the minimum value of $\alpha^{2}+\beta^{2}$ is 5 at $a=1$
559 (d)
Let $z=\frac{1-i \sqrt{3}}{\sqrt{3}+i}=\frac{1+i \sqrt{3}}{(\sqrt{3}+i)} \times \frac{(\sqrt{3}-i)}{(\sqrt{3}-i)}=\frac{\sqrt{3}+i}{2}$
$\therefore \quad \operatorname{amp}(z)=\tan ^{-1}\left(\frac{1}{\sqrt{3}}\right)=\frac{\pi}{6}$
560 (d)
Let $f(x)=4 x^{2}-20 p x+\left(25 p^{2}+15 p-66\right)$
Clearly, $y=f(x)$ represents a parabola opening upward.
So, roots of the equation $f(x)=0$ will be less than 2 , if
(i) Discriminant ≥ 0
(ii) 2 lies outside the roots i.e. $f(2)>0$
(iii) x-coordinate of vertex <2

Now,
(i) $f(2)>0$
$\Rightarrow 16-40 p+25 p^{2}+15 p-66>0$
$\Rightarrow 25 p^{2}-25 p-50>0 \Rightarrow p^{2}-p-2>0$
$\Rightarrow p<-1$ or, $p>2$
(ii) Discriminant ≥ 0
$\Rightarrow 400 p^{2}-16\left(25 p^{2}+15 p-66\right) \geq 0$
$\Rightarrow 15 p-66 \leq 0 \Rightarrow p \leq 22 / 5$
(iii) x-coordinate of vertex <2
$\Rightarrow-\left(\frac{-20 p}{4}\right)<2 \Rightarrow \frac{20 p}{4}<4 \Rightarrow p<4 / 5$
From (i),(ii) and (iii), we have
$p<-1$ i.e., $p \in(-\infty,-1)$

561 (d)
Since, ω is a complex cube root of unity
Now, $\omega^{10}+\omega^{23}=\left(\omega^{3}\right)^{3} \omega+\left(\omega^{3}\right)^{7} \omega^{2}$
$=\omega+\omega^{2}=-1$
$\therefore \sin \left\{\left(\omega^{10}+\omega^{23}\right) \pi-\frac{\pi}{6}\right\}=\sin \left(-\pi-\frac{\pi}{6}\right)$

$$
=\sin \frac{\pi}{6}=\frac{1}{2}
$$

562 (b)
Let $z=\frac{1+2 i}{1-(1-i)^{2}}=1$
$\therefore \quad|z|=1$ and $\operatorname{amp}(z)=\tan ^{-1}\left(\frac{0}{1}\right)=0$
563 (b)
Let $f(x)=x^{2}-2 k x+k^{2}+k-5$
Since, both roots are less than 5
Then, $D \geq 0,-\frac{b}{2 a}<5$ and $f(5)>0$
Now, $D=4 k^{2}-4\left(k^{2}+k-5\right)=-4 k+20 \geq 0$
$\Rightarrow \quad k \leq 5$...(i)
$-\frac{b}{2 a}<5 \Rightarrow k<5$
And $f(5)>0$
$\Rightarrow 25-10 k+k^{2}+k-5>0$
$\Rightarrow(k-5)(k-4)>0$
$\Rightarrow k>4$ and $k>5$
From Eqs. (i), (ii) and (iii), we get
$k<4$
564 (d)
$\because \quad z=\frac{7-i}{3-4 i}=\frac{(7-i)(3+4 i)}{(3)^{2}-(4 i)^{2}}=(1+i)$
$\therefore \quad z^{14}=(1+i)^{14}=\left[\sqrt{2}\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)\right]^{14}$
$=2^{7}\left(\cos \frac{7 \pi}{2}+i \sin \frac{7 \pi}{2}\right)=-2^{7} i$
565 (b)
Since roots of the equation $x^{3}+b x^{2}+3 x-1=0$ form a non-decreasing H.P. Therefore, roots of the equation
$-x^{3}+3 x^{2}+b x+1=0$ form a non-increasing
A.P.

Let the roots be $a-d, a$ and $a+d$, where $d \leq 0$
$\therefore a-d+a+a+d=3$
$a(a-d)+a(a+d)+a^{2}-d^{2}=-b$
$a\left(a^{2}-d^{2}\right)=1$
From (i), we have $a=1$
Putting $a=1$ in (iii), we get $d=0$
Subtracting the values of a and d (ii), we get $b=-3$
566 (a)
Given equation can be reduced to a quadratic equation.
$\therefore 2 x^{2}+x-11+\frac{1}{x}+\frac{2}{x^{2}}=0$
$\Rightarrow 2\left(x^{2}+\frac{1}{x^{2}}\right)+\left(x+\frac{1}{x}\right)-11=0$
Put $x+\frac{1}{x}=y$
$2\left(y^{2}-2\right)+y-11=0$
$\Rightarrow 2 y^{2}+y-15=0$
$\Rightarrow y=-3$ and $\frac{5}{2}$
$\Rightarrow x+\frac{1}{x}=-3, x+\frac{1}{x}=\frac{5}{2}$
$\Rightarrow x^{2}+3 x+1=0,2 x^{2}-5 x+2=0$
Only 2nd equation has rational roots as $D=9$ and roots are $\frac{1}{2}$ and 2.
567 (b)
Let $f(x)=a x^{2}+b x+c$. Then, $f(0)=c$
Thus, the curve $y=f(x)$ meets y-axis at $(0, c)$
If $c>0$, then by hypothesis $f(x)>0$. This means that the curve $y=f(x)$ does not meet x-axis If $c<0$, then by hypothesis, $f(x)<0$, which means that the curve $y=f(x)$ is always below x axis and so it does not intersect with x-axis
Thus, in both the cases $y=f(x)$ does not intersect with x-axis i. e. $f(x) \neq 0$ for any real x Hence, $f(x)=0$ i.e. $a x^{2}+b x+c=0$ has imaginary roots and so we have $b^{2}<4 a c$
568 (d)
Since, α and β are the roots of given equation.
Let $f(x)=a^{2} x^{2}+2 b x+2 c=0$
Then, $f(\alpha)=a^{2} \alpha^{2}+2 b \alpha+2 c=0$
$=a^{2} \alpha^{2}+2(b \alpha+c)=a^{2} \alpha^{2}-2 a^{2} \alpha^{2}$
$=-a^{2} \alpha^{2}=-\mathrm{ve}$
and $f(\beta)=a^{2} \beta^{2}+2(b \beta+c)=a^{2} \beta^{2}+2 a^{2} \beta^{2}$
$=3 a^{2} \beta^{2}=+\mathrm{ve}$
Since, $f(\alpha)$ and $f(\beta)$ are of opposite signs
therefore by theory of equations there lies a root γ of the equation $f(x)=0$ between
α and $\beta, i e, \alpha<\gamma<\beta$.
569 (c)
We have,
$(1+i)^{2 n}=(1-i)^{2 n}$
$\Rightarrow\left(\frac{1+i}{1-i}\right)^{2 n}=1$
$\Rightarrow\left\{\frac{(1+i)^{2}}{(1+i)(1-i)}\right\}^{2 n}=1$
$\Rightarrow i^{2 n}=1$
$\Rightarrow 2 n$ is a multiple of 4
\Rightarrow The smallest positive value of n is 2
570 (d)
Given, $2 \alpha=-1-i \sqrt{3}$ and $2 \beta=-1+i \sqrt{3}$
$\therefore \alpha+\beta=-1$ and $\alpha \beta=1$

Now, $5 \alpha^{4}+5 \beta^{4}+\frac{7}{\alpha \beta}$
$=5\left[\left\{(a+\beta)^{2}-2 \alpha \beta\right\}^{2}-(\alpha \beta)^{2}+\frac{7}{\alpha \beta}\right.$
$=5\left[\left\{(-1)^{2}-2 \times 1\right\}^{2}-2(1)^{2}\right]+\frac{7}{1}$
$=5(1-2)+7=2$
571 (a)
$\left[4\left(1-\frac{1}{3}+\frac{1}{9}-\frac{1}{27}+\ldots\right)\right]^{\log _{2} x}$

$$
=\left[54\left(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\ldots\right)\right]^{\log _{x} 2}
$$

$\Rightarrow\left[4\left(\frac{1}{1+1 / 3}\right)\right]^{\log _{2} x}=\left[54\left(\frac{1}{1-1 / 3}\right)\right]^{\log _{x} 2}$
$\Rightarrow\left[4\left(\frac{3}{4}\right)\right]^{\log _{2} x}=\left[54 \times \frac{3}{2}\right]^{\log _{x} 2}$
$\Rightarrow 3^{\log _{2} x}=3^{4 \log _{x} 2}$
$\Rightarrow \log _{2} x=4 \log _{x} 2=\frac{4}{\log _{2} x}$
$\Rightarrow\left(\log _{2} x\right)^{2}=4 \Rightarrow \log _{2} x= \pm 2$
If $\log _{2} x=2$
$\Rightarrow x=2^{2}=4$
And if $\log _{2} x=-2$
$\Rightarrow \quad x=2^{-2}=\frac{1}{4}$
\therefore Solution set of the equation is $\left\{4, \frac{1}{4}\right\}$
572 (c)
Let $z=r(\cos \theta+i \sin \theta)$
Given that $\left|z+\frac{1}{z}\right|=a \Rightarrow\left|z+\frac{1}{z}\right|^{2}=a^{2}$
$\Rightarrow r^{2}+\frac{1}{r^{2}}+2 \cos 2 \theta=a^{2}$
On differentiating w.r.t. θ, we get
$2 r \frac{d r}{d \theta}-\frac{2}{r^{3}} \frac{d r}{d \theta}-4 \sin 2 \theta=0$
$\Rightarrow \frac{d r}{d \theta}\left(2 r-\frac{2}{r^{3}}\right)=4 \sin 2 \theta$
For maximum or minimum, put $\frac{d r}{d \theta}=0$, we get
$\theta=0, \frac{\pi}{2}$
$\therefore r$ is maximum for $\theta=\frac{\pi}{2}$, therefore from Eq.(i)
$r^{2}+\frac{1}{r^{2}}-2=a^{2} \Rightarrow r-\frac{1}{r}=a$
$\Rightarrow r^{2}-a r-1=0$
$\Rightarrow r=\frac{a+\sqrt{a^{2}+4}}{2}$
573 (b)
We have,
$6+x-x^{2}>0$
$\Rightarrow x^{2}-x-6<0 \Rightarrow(x-3)(x+2)<0 \Rightarrow-2$ $<x<3$
$(\cos \theta+i \sin \theta)(\cos 2 \theta+i \sin 2 \theta) \ldots(\cos n \theta+$ $i \sin n \theta)=1$
$\Rightarrow \cos (\theta+2 \theta+3 \theta+\ldots+n \theta)$

$$
+i \sin (\theta+2 \theta+3 \theta+\ldots+n \theta)=1
$$

$\Rightarrow \cos \left(\frac{n(n+1)}{2} \theta\right)+i \sin \left(\frac{n(n+1)}{2} \theta\right)=1$
On comparing the coefficients of real and imaginary on both sides, we get
$\cos \left(\frac{n(n+1)}{2} \theta\right)=1$
and $\sin \left(\frac{n(n+1)}{2} \theta\right)=0$
$\Rightarrow\left(\frac{n(n+1)}{2} \theta\right)=2 m \pi$
$\Rightarrow \theta=\frac{4 \mathrm{~m} \pi}{n(n+1)}$, where $m \in I$
575 (b)
Here, $\alpha+\beta+\gamma=6, \quad \alpha \beta+\beta \gamma+\gamma \alpha=11$
And $\alpha \beta \gamma=-6$
Now, $\sum \alpha^{2} \beta+\sum \alpha \beta^{2}=\alpha^{2} \beta+\beta^{2} \alpha+\gamma^{2} \alpha+$
$\alpha \beta 2+\beta \gamma 2+\gamma \alpha 2$
$=\alpha \beta(\alpha+\beta)+\beta \gamma(\beta+\gamma)+\gamma \alpha(\gamma+\alpha)$
$=\alpha \beta(6-\gamma)+\beta \gamma(6-\alpha)+\gamma \alpha(6-\beta)$
$=6(\alpha \beta+\beta \gamma+\gamma \alpha)-3 \alpha \beta \gamma$
$=6(11)+3(6)=84$
576 (b)
We have,
$z_{k}=r_{k}\left(\cos \alpha_{k}+i \sin \alpha_{k}\right)$ and $\omega_{k}=\frac{\cos 2 \alpha_{k}+i \sin 2 \alpha_{k}}{z_{k}}$
$\Rightarrow \omega_{k}=\frac{z_{k}}{r_{k}^{2}}, k=1,2,3$
$\Rightarrow \omega_{1}=\frac{z_{1}}{\left|z_{1}\right|^{2}}, \omega_{2}=\frac{z_{2}}{\left|z_{2}\right|^{2}} \omega_{3}=\frac{z_{3}}{\left|z_{3}\right|^{2}}$
$\Rightarrow \omega_{1}=\frac{1}{\bar{z}_{1}}, \omega_{2}=\frac{1}{\bar{z}_{2}}, \omega_{3}=\frac{1}{\bar{z}_{3}}$
$\Rightarrow \omega_{1}+\omega_{2}+\omega_{3}=\frac{1}{\bar{Z}_{1}}+\frac{1}{\bar{Z}_{2}}+\frac{1}{\bar{Z}_{3}}$
$\Rightarrow \omega_{1}+\omega_{2}+\omega_{3} \Rightarrow \frac{\omega_{1}+\omega_{2}+\omega_{3}}{3}=0$
Hence, the centroid of $\Delta A_{1} A_{2} A_{3}$ is at the origin

Let $z=x+i y$
$\therefore \quad\left|\frac{z-25}{z-1}\right|=5$
$\Rightarrow\left|\frac{(x-25)+i y}{(x-1)+i y}\right|=5$
$\Rightarrow \quad|(x-25)+i y|=5|(x-1)+i y|$
$\Rightarrow \quad \sqrt{(x-25)^{2}+y^{2}}=5 \sqrt{(x-1)^{2}+y^{2}}$
On squaring both sides, we get

$$
\begin{aligned}
& (x-25)^{2}+y^{2}=25\left\{(x-1)^{2}+y^{2}\right\} \\
& \Rightarrow \quad x^{2}-50 x+625+y^{2} \\
&
\end{aligned} \begin{aligned}
& =25 x^{2}-50 x+25+25 y^{2}
\end{aligned}
$$

$\Rightarrow \quad 24 x^{2}+24 y^{2}=600$
$\Rightarrow \quad x^{2}+y^{2}=25$
$\Rightarrow \quad \sqrt{x^{2}+y^{2}}=5 \quad\left[\because|z|=\sqrt{\left(x^{2}+y^{2}\right)}\right]$
$\Rightarrow \quad|z|=5$
578 (c)
We have, $a x^{2}-b x(x-1)+c(x-1)^{2}=0$
$\Rightarrow a\left(\frac{x}{1-x}\right)^{2}+b\left(\frac{x}{1-x}\right)+c=0$
Also, α and β be the roots of $a x^{2}+b x+c=0$.
$\therefore \alpha=\frac{x}{1-x}$ and $\beta=\frac{x}{1-x}$
$\Rightarrow x=\frac{\alpha}{\alpha+1}, x=\frac{\beta}{\beta+1}$
Hence, $\frac{\alpha}{\alpha+1}$ and $\frac{\beta}{\beta+1}$ are the required roots.
579 (b)
Let $z=\frac{13-5 i}{4-9 i} \times \frac{4+9 i}{4+9 i}=\frac{97+97 i}{97}=1+i$
$\therefore \quad \arg (z)=\tan ^{-1}\left(\frac{1}{1}\right)=\frac{\pi}{4}$
580 (b)
It is given that $\sin \theta, \sin \alpha, \cos \theta$ are in G.P.
$\therefore \sin ^{2} \alpha=\sin \theta \cos \theta$
$\Rightarrow 2 \sin ^{2} \alpha=\sin 2 \theta \Rightarrow 1-\cos 2 \alpha=\sin 2 \theta$
Let D be the discriminant of the equation
$x^{2}+2 x \cot \alpha+1=0$
Then,
$D=4 \cot ^{2} \alpha-4=4 \frac{\cos 2 \alpha}{\sin ^{2} \alpha}$
$=4 \frac{(1-\sin 2 \theta)}{\sin ^{2} \alpha}[U \operatorname{sing}(\mathrm{i})]$
$\Rightarrow D=4\left(\frac{\cos \theta-\sin \theta}{\sin \alpha}\right)^{2}>0$
Hence, the roots of the given equation are real
581 (a)
Since, $(1+2 i),(2-\sqrt{3})$ and 5 are the some roots of polynomial $f(x)$ of degree n. As we know that conjugate are also the roots of the polynomial. Therefore, $(1-2 i)$ and $(2+\sqrt{3})$ are also the roots of the polynomial.
\therefore The least value of n is 5
582 (b)
Given, $\frac{3 x}{(x-a)(x-b)}=\frac{2}{(x-a)}+\frac{1}{(x-b)}$
$\Rightarrow 3 x=2(x-b)+1(x-a)$
On comparing the coefficient of constant term, we get
$-2 b-a=0$
$\Rightarrow \frac{a}{b}=-\frac{2}{1}$ or $a: b=-2: 1$
583
(b)

Given, $x+i y=\left(\frac{1+2 i}{3+4 i}\right)^{\frac{1}{2}}$
$\Rightarrow \quad(x+i y)^{2}=\frac{1+2 i}{3+4 i}$
Taking modulus from both sides we get
$|x+i y|^{2}=\left|\frac{1+2 i}{3+4 i}\right|$
$\Rightarrow \quad x^{2}+y^{2}=\sqrt{\frac{1+4}{9+16}}$
$\Rightarrow \quad\left(x^{2}+y^{2}\right)^{2}=\frac{5}{25}=\frac{1}{5}$
584 (a)
Given, $f(x)=(x-1)(x-2)(x-3)(x-4)$
The real roots are 1, 2, 3, 4
Hence, only 2 lies in the interval $(1,3)$
585 (d)
$|3 z-1|=3|z-2|$
$\Rightarrow\left|z-\frac{1}{3}\right|=|z-2|$
$\Rightarrow z$ is perpendicular bisector of $\left(\frac{1}{3}, 0\right)$ and $(2,0)$
$\Rightarrow x=\frac{7}{6}$
586 (c)
Let P, Q, R be the vertices of the triangle having affixes z_{1}, z_{2} and $(1-i) z_{1}+i z_{2}$ respectively.
Then,
$|P Q|=\left|z_{2}-z_{1}\right|$,
$|Q R|=\left|(1-i) z_{1}-(1-i) z_{2}\right|=\sqrt{2}\left|z_{1}-z_{2}\right|$
and, $|R P|=\left|(1-i) z_{1}+i z_{2}-z_{1}\right|=\left|i\left(z_{2}-z_{1}\right)\right|$

$$
=\left|z_{2}-z_{1}\right|
$$

Clearly, $|P Q|=|R P|$ and $|Q R|^{2}=|P Q|^{2}+|R P|^{2}$
Hence, $\triangle P Q R$ is isosceles right angled triangle
$\because x+\frac{1}{x}=2 \sin \alpha$
$\Rightarrow x^{2}-2 x \sin \alpha+1=0$
$\therefore \quad x=\frac{2 \sin \alpha \pm \sqrt{4 \sin ^{2} \alpha-4}}{2}$
$\Rightarrow \quad x=\sin \alpha \pm i \cos \alpha$
Similarly, $y=\cos \beta \pm i \cos \beta$
$\therefore \quad x y=(\sin \alpha \pm i \cos \alpha)(\cos \beta \pm i \sin \beta)$
$=\sin (\beta-\alpha) \pm i \cos (\beta-\alpha)$
$x y= \pm i[\cos (\beta-\alpha)-i \sin (\beta-\alpha)]$
And $\frac{1}{x y}= \pm \frac{1}{i}[\cos (\beta-\alpha)+i \sin (\beta-\alpha)]$
Now, $(x y)^{3}+\frac{1}{(x y)^{3}}= \pm i^{3}[\cos 3(\beta-\alpha)-$
$i \sin 3 \beta-\alpha$
$\pm \frac{1}{i^{3}}[\cos 3(\beta-\alpha)+i \sin 3(\beta-\alpha)]$
$= \pm i[\cos 3(\beta-\alpha)-i \sin 3(\beta-\alpha)]$
$\pm \frac{1}{i}[\cos 3(\beta-\alpha)+i \sin 3(\beta-\alpha)]$
$= \pm \frac{1}{i}[\{\cos 3(\beta-\alpha)-i \sin 3(\beta-\alpha)\}$

$$
-\{\cos 3(\beta-\alpha)+i \sin 3(\beta-\alpha)\}]
$$

$= \pm \frac{1}{i}(-2 i \sin 3(\beta-\alpha))=2 \sin 3(\beta-\alpha)$
588 (a)
The three cube roots of $p(p<0)$ (i.e. solutions of $\left.x^{3}-p=0\right)$ are $p^{1 / 3}, p^{1 / 3} \omega, p^{1 / 3} \omega^{2}$
Let $\alpha=p^{1 / 3}, \beta=p^{1 / 3} \omega, \gamma=p^{1 / 3} \omega^{2}$. Then,
$\frac{x \alpha+y \beta+z \gamma}{x \beta+y \gamma+z \alpha}=\frac{x+y \omega+z \omega^{2}}{x \omega+y \omega^{2}+z}=\omega^{2}$
If $\alpha=p^{1 / 3}, \gamma=p^{1 / 3} \omega^{2}$, then
$\frac{x \alpha+y \beta+z \gamma}{x \beta+y \gamma+z \alpha}=\frac{x+y \omega^{2}+z \omega}{x \omega^{2}+y \omega+z}$

$$
=\omega \frac{\left(x+y \omega^{2}+z \omega\right)}{x \omega^{3}+y \omega^{2}+z \omega}=\omega
$$

Every other choice of a, β, γ will give its value as ω or ω^{2}
590 (c)
Since, $a=\cos \theta+i \sin \theta$
$\therefore \frac{1+a}{1-a}=\frac{1+\cos \theta+i \sin \theta}{1-\cos \theta-i \sin \theta}$
$=\frac{[(1+\cos \theta)+i \sin \theta][(1-\cos \theta)+i \sin \theta]}{[(1-\cos \theta)-i \sin \theta][(1-\cos \theta)+i \sin \theta]}$
$=\frac{2 i \sin \theta}{(1-\cos \theta)^{2}+\sin ^{2} \theta}$
$=\frac{i .4 \sin \frac{\theta}{2} \cos \frac{\theta}{2}}{4 \sin ^{2} \frac{\theta}{2}}=i \cot \frac{\theta}{2}$
591 (b)
$\frac{Z}{\bar{Z}}+\frac{\bar{Z}}{Z}=\frac{r e^{i \theta}}{r e^{-i \theta}}+\frac{r e^{-i \theta}}{r e^{i \theta}}=e^{i 2 \theta}+e^{-i 2 \theta}=2 \cos 2 \theta$
592 (a)
In a parallelogram $O P_{1} P_{2} P_{3}$, the mid point of $P_{1} P_{2}$ and $O P_{3}$ are the same. But mid point of
$P_{1} P_{2}$ is $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$.
So, that the coordinates of P_{3} are $\left(x_{1}+x_{2}, y_{1}+\right.$ y_{2})
Thus, the point P_{3} corresponds to sum of the complex numbers z_{1} and z_{2}
$\therefore \overrightarrow{\mathbf{O P}}_{3}=\overrightarrow{\mathbf{O P}}_{1}+\overrightarrow{\mathbf{O P}}_{2}=z_{1}+z_{2}$
593 (d)
Let $z=a+i b$
$\therefore \quad \arg (z)=\theta=\tan ^{-1} \frac{b}{a}$
$\because \quad \bar{z}=a-i b$
$\therefore \arg (\bar{z})=\tan ^{-1}\left(-\frac{b}{a}\right)=-\tan ^{-1}\left(\frac{b}{a}\right)=-\theta$
594 (a)
We know that, $|-z|=|z|$
and $\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|$

Now, $|z|+|z-1|=|z|+|1-z|$
$\geq|z+(1-z)|=|1|=1$
Hence, minimum value of $|z|+|z-1|$ is 1
(d)

Given numbers are conjugate to each other,
$\therefore \sin x+i \cos 2 x=\cos x-i \sin 2 x$
$\sin x=\cos x$
And $\cos 2 x=\sin 2 x$
$\therefore \tan x=1 \Rightarrow x=\frac{\pi}{4}, \frac{5 \pi}{4}, \frac{9 \pi}{4}, \ldots$
And $\tan 2 x=1 \Rightarrow 2 x=\frac{\pi}{4}, \frac{5 \pi}{4}, \frac{9 \pi}{4}, \ldots$
$\Rightarrow \quad x=\frac{\pi}{8}, \frac{5 \pi}{8}, \frac{9 \pi}{8}, \ldots$
There exists no value of x common in Eqs. (i) and (ii)

596 (c)
Let α be a common root of $x^{2}+a x+b=0$ and
$x^{2}+b x+a=0$. Then,
$\alpha^{2}+a \alpha+b=0$ and $\alpha^{2}+b \alpha+a=0$
$\Rightarrow\left(\alpha^{2}+a \alpha+b\right)-\left(\alpha^{2}+b \alpha+a\right)=0$
$\Rightarrow \alpha(a-b)=(a-b) \Rightarrow \alpha=1$
Putting $\alpha=1$, in either of these two, we get
$a+b=-1$
597 (c)
$\arg \left(\frac{z-2}{z+2}\right)=\frac{\pi}{3}$
$\Rightarrow \quad \arg (x-2+i y)-\arg (x+2+i y)=\frac{\pi}{3}$
$\Rightarrow \tan ^{-1}\left(\frac{y}{x-2}\right)-\tan ^{-1}\left(\frac{y}{x+2}\right)=\frac{\pi}{3}$
$\Rightarrow \tan ^{-1}\left(\frac{\frac{y}{x-2}-\frac{y}{x+2}}{1+\frac{y}{x-2} \cdot \frac{y}{x+2}}\right)=\frac{\pi}{3}$
$\Rightarrow \frac{4}{x^{2}+y^{2}-4}=\tan \frac{\pi}{3}=\sqrt{3}$
$\Rightarrow \quad 4 y=\sqrt{3}\left(x^{2}+y^{2}-4\right)$
$\Rightarrow \quad \sqrt{3}\left(x^{2}+y^{2}\right)-4 \sqrt{3}-4 y=0$
Which represents the equation of a circle.
598 (b)
If $b^{2}-4 a c \geq 0$, then the equation $a x^{4}+b x^{2}+$ $c=0$ has all roots positive real, if $b<0, a\rangle$
$0, c>0$
599 (b)
We know that principle argument of a complex number lie between $-\pi$ and π, but $\alpha+\beta>\pi$ Therefore, principle
$\arg \left(z_{1} z_{2}\right)=\arg \left(z_{1}\right)+\arg \left(z_{2}\right)=\alpha+\beta$ is give by $\alpha+\beta-\pi$
600 (b)
The given equation will represent a circle with the line segment joining $P(\omega)$ and $Q\left(\omega^{2}\right)$ as a diameter, if
$\lambda=P Q^{2}=\left|\omega-\omega^{2}\right|^{2} \Rightarrow \lambda=3$
602 (d)
Let $z=(1)^{1 / 3}$
$z^{3}-1=0$
$\Rightarrow \quad(z-1)\left(z^{2}+z+1\right)=0$
$\Rightarrow \quad z=1, \frac{-1 \pm \sqrt{1-4}}{2}$
$\Rightarrow \quad z=1, \frac{-1 \pm \sqrt{3} i}{2}$
Hence, $\frac{-1-\sqrt{3} i}{2}$ is one of the root of $(1)^{1 / 3}$
603 (a)
Let α and 3 are the roots of the equation
$x^{2}+a x+3=0$
$\therefore 3 \alpha=3 \quad \Rightarrow \quad \alpha=1$
And $3+\alpha=-a \Rightarrow a=-4$
Again, let β and 3β are the roots of the equation $x^{2}+a x+b=0$
$\therefore \beta+3 \beta=4 \beta=-a \Rightarrow \beta=1$
And $\beta .3 \beta=b \Rightarrow b=3$
604 (b)
We have,
$|z-4-3 i| \leq 1$
But, $|z-4-3 i|=|z-(4+3 i)| \geq||z|-$
$4+3 i$
$\Rightarrow 1 \geq||z|-5|$
$\Rightarrow||z|-5| \leq 1$
$\Rightarrow-1 \leq|z|-5 \leq 1$
$\Rightarrow 4 \leq|z| \leq 6 \Rightarrow m=4$ and $n=6$
Let $y=\frac{x^{4}+x^{2}+4}{x}$
$\Rightarrow y=x^{3}+x+\frac{4}{x}$
$\Rightarrow y=x^{3}+x+\frac{1}{x}+\frac{1}{x}+\frac{1}{x}+\frac{1}{x}$
Clearly, the product of $x^{3}, x, \frac{1}{x}, \frac{1}{x}, \frac{1}{x}, \frac{1}{x}$ is 1 i.e. a constant. So, their sum i.e. y will be least when they are equal i.e.
$x^{3}=x=\frac{1}{x} \Rightarrow x=1$
\therefore Least value of $y=1+1+4=6$
Hence, $\lambda=6$
605 (b)
Given equation is $(5+\sqrt{2}) x^{2}-(4+\sqrt{5}) x+8+$ $2 \sqrt{5}=0$.
Let x_{1} and x_{2} are the roots of the equation.
$\Rightarrow x_{1}+x_{2}=\frac{4+\sqrt{5}}{5+\sqrt{2}}$
and $x_{1} x_{2}=\frac{8+2 \sqrt{5}}{5+\sqrt{2}}=\frac{2(4+\sqrt{5})}{5+\sqrt{2}}=2\left(x_{1}+x_{2}\right)$
\therefore Harmonic mean $=\frac{2 x_{1} x_{2}}{x_{1}+x_{2}}=\frac{4\left(x_{1}+x_{2}\right)}{\left(x_{1}+x_{2}\right)}=4$ [from

Eq. (ii)]
606 (b)
We have,
$\left|\begin{array}{lll}a & u & 1 \\ b & v & 1 \\ c & w & 1\end{array}\right|=\left|\begin{array}{lll}a & u & 1 \\ b & v & 1 \\ 0 & 0 & 0\end{array}\right|=0$
Applying $R_{3} \rightarrow R_{3}-(1-r) R_{1}-r R_{2}$
Hence, two triangle are similar
607 (c)
It is given that the roots are of opposite signs
\therefore Product of roots <0
$\Rightarrow \frac{k^{2}-3 k+2}{3}<0 \Rightarrow k^{2}-3 k+2<0 \Rightarrow k$

$$
\in(1,2)
$$

608 (b)
Given, $\operatorname{Re}\left(\frac{1}{z}\right)=k \Rightarrow \operatorname{Re}\left(\frac{1}{x+i y}\right)=k$
$\Rightarrow \quad \operatorname{Re}\left(\frac{x}{x^{2}+y^{2}}-\frac{i y}{x^{2}+y^{2}}\right)=k$
$\Rightarrow \quad k=\frac{x}{x^{2}+y^{2}}$
$\Rightarrow \quad x^{2}+y^{2}-\frac{1}{k} x=0$
Which is an equation of circle.
609 (b)
Let $z=x+i y$. Then, $z \neq 0 \Rightarrow x \neq 0, y \neq 0$
Now,
$\arg (z)=\frac{\pi}{4}$
$\Rightarrow z$ lies on the line $y=x$ lying in the first quadrant
$\therefore x=y>0 \Rightarrow \operatorname{Re}(z)=\operatorname{Im}(z)>0$
610 (c)
Given, $\left|z_{1}\right|=\left|z_{2}\right|=\cdots\left|z_{n}\right|=1$
$\Rightarrow\left|z_{1}\right|^{2}=\left|z_{1}\right|^{2}=\cdots\left|z_{n}\right|^{2}=1$
$\Rightarrow \quad z_{1} \overline{z_{1}}=z_{1} \overline{z_{2}}=\cdots=z_{n} \overline{z_{n}}=1$
$\Rightarrow \quad \overline{z_{1}}=\frac{1}{z_{1}}, \quad \overline{z_{2}}=\frac{1}{z_{2}}, \ldots . \overline{z_{n}}=\frac{1}{z_{n}}$
...(i)
Now, $\left|z_{1}+z_{2}+\ldots+z_{n}\right|$
$=\left|\overline{z_{1}+z_{2}+\ldots+z_{n}}\right|=\left|\overline{z_{1}}+\overline{z_{2}}+\cdots+\overline{z_{n}}\right|$
$=\left|\frac{1}{z_{1}}+\frac{1}{z_{2}}+\ldots+\frac{1}{z_{n}}\right| \quad$ [using Eq. (i)]
611 (c)
We have, $z_{r}=\cos \frac{r \alpha}{n^{2}}+i \sin \frac{r \alpha}{n^{2}}$
where $r=1,2,3, \ldots, n$
$\therefore \quad z_{1}=\cos \frac{\alpha}{n^{2}}+i \sin \frac{\alpha}{n^{2}}$;
$z_{2}=\cos \frac{2 \alpha}{n^{2}}+i \sin \frac{2 \alpha}{n^{2}}$
$\vdots \quad \vdots$
$z_{n}=\cos \frac{n \alpha}{n^{2}}+i \sin \frac{\alpha}{n^{2}}$
$\therefore \lim _{n \rightarrow \infty}\left(z_{1} z_{2} z_{3} \ldots z_{n}\right)$

$$
\begin{aligned}
& =\lim _{n \rightarrow \infty}\left(\cos \frac{\alpha}{n^{2}}+i \sin \frac{\alpha}{n^{2}}\right)\left(\cos \frac{2 \alpha}{n^{2}}\right. \\
& \left.\quad+i \sin \frac{2 \alpha}{n^{2}}\right) \ldots\left(\cos \frac{n \alpha}{n^{2}}+i \sin \frac{n \alpha}{n^{2}}\right) \\
& =\lim _{n \rightarrow \infty}\left[\cos \left\{\frac{\alpha}{n^{2}}(1+2+3+\ldots+n)\right\}\right. \\
& \left.\quad+i \sin \left\{\frac{\alpha}{n^{2}}(1+2+3+\ldots+n)\right\}\right] \\
& =\lim _{n \rightarrow \infty}\left[\cos \frac{\alpha n(n+1)}{2 n^{2}}+i \sin \frac{\alpha n(n+1)}{2 n^{2}}\right] \\
& =\cos \frac{\alpha}{2}+i \sin \frac{\alpha}{2} \\
& =e^{i \frac{\alpha}{2}}
\end{aligned}
$$

612 (b)
Here, $\alpha+\beta+\gamma=3, \alpha \beta+\beta \gamma+\gamma \alpha=1$ and
$\alpha \beta \gamma=-5$
Now, $y=\alpha^{2}+\beta^{2}+\gamma^{2}+\alpha \beta \gamma$
$=(\alpha+\beta+\gamma)^{2}-2(\alpha \beta+\beta \gamma+\gamma \alpha)+\alpha \beta \gamma$
$=(3)^{2}-2(1)-5$
$\Rightarrow y=2$
So, $y=2$ satisfies the equation
$y^{3}-y^{2}-y-2=0$
614 (c)
$(1+i)^{n}+(1-i)^{n}$
$=\left(\sqrt{2}\left(\frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}}\right)\right)^{n}+\left(\sqrt{2}\left(\frac{1}{\sqrt{2}}-\frac{i}{\sqrt{2}}\right)\right)^{n}$
$=2^{n / 2}\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)^{n}+2^{n / 2}\left(\cos \frac{\pi}{4}-i \sin \frac{\pi}{4}\right)^{n}$
$=2^{n / 2}\left(\cos \frac{n \pi}{4}+\sin \frac{n \pi}{4}+\cos \frac{n \pi}{4}-i \sin \frac{n \pi}{4}\right)$
$=2^{\frac{n}{2}+1} \cos \left(\frac{n \pi}{4}\right)=(\sqrt{2})^{n+2} \cos \left(\frac{n \pi}{4}\right)$
615 (c)
Let $y=\frac{3-x+2-x}{2}=\frac{5-2 x}{2}$. Then,
$(3-x)^{4}+(2-x)^{4}=(5-2 x)^{4}$
$\Rightarrow\left(\frac{2 y-1}{2}\right)^{4}+\left(\frac{2 y+1}{2}\right)^{4}=(2 y)^{4}$
$\Rightarrow\left(4 y^{2}+1-4 y\right)^{2}+\left(4 y^{2}+1+4 y\right)^{2}=256 y^{4}$
$\Rightarrow 112 y^{4}-24 y^{2}-1=0$
$\Rightarrow\left(28 y^{2}+1\right)\left(4 y^{2}-1\right)=0$
$\Rightarrow y= \pm \frac{1}{2} \Rightarrow x=2 ., 3 \quad\left[\because x=\frac{5-2 y}{2}\right]$
The equation $7 x^{2}-35 x+44=0$ has imaginary roots. Thus, the given equation has two real and two imaginary roots
616 (c)
Let $z=\frac{1+2 i}{1-i}=\frac{(1+2 i)(1+i)}{(1-i)(1+i)}=-\frac{1}{2}+\frac{3}{2} i$
Here, coefficient of x is negative and y is positive, therefore it lies in the second quadrant
617 (c)
Since α, β are roots of $a x^{2}+b x+c=0$
$\therefore \alpha+\beta=-b / a, \alpha \beta=c / a$
The equation $a x^{2}-b x(x-1)+c(x-1)^{2}=0$ can be written as
$x^{2}(a-b+c)+x(b-2 c)+c=0$
Let, γ, δ be its roots. Then,
$\gamma+\delta=-\frac{(b-2 c)}{a-b+c}=\frac{-b+2 c}{a-b+c}=\frac{-\frac{b}{a}+\frac{2 c}{a}}{1-\frac{b}{a}+\frac{c}{a}}$
$\Rightarrow \gamma+\delta=\frac{\alpha+\beta+2 \alpha a \beta}{1+\alpha+\beta+\alpha \beta}=\frac{\alpha}{\alpha+1}+\frac{\beta}{\beta+1}$
and, $\gamma \delta=\frac{c}{a-b+c}=\frac{\frac{c}{a}}{1-\frac{b}{a}+\frac{c}{a}}$

$$
=\frac{\alpha \beta}{1+\alpha+\beta+\alpha \beta}=\frac{\alpha}{\alpha+1} \cdot \frac{\beta}{\beta+1}
$$

Thus, the equation $a x^{2}-b x(x-1)+$ $c(x-1)^{2}=0$ has $\gamma=\frac{\alpha}{\alpha+1}$ and $\delta=\frac{\beta}{\beta+1}$ as its two roots
618 (b)
Since, $\frac{\left(\sin \frac{x}{2}+\cos \frac{x}{2}\right)-i \tan x}{1+2 i \sin \frac{x}{2}} \in R$
$\Rightarrow \quad \frac{\left\{\sin \frac{x}{2}+\cos \frac{x}{2}-i \tan x\right\}\left\{1-2 i \sin \frac{x}{2}\right\}}{1+4 \sin ^{2} \frac{x}{2}} \in R$
It will be real, if imaginary part is zero
$\therefore \quad-2 \sin \frac{x}{2}\left\{\sin \frac{x}{2}+\cos \frac{x}{2}\right\}-\tan x=0$
$\Rightarrow 2 \sin \frac{x}{2}\left\{\sin \frac{x}{2}+\cos \frac{x}{2}\right\}+\frac{\sin x}{\cos x}=0$
$\Rightarrow \sin \frac{x}{2}\left[\left\{\sin \frac{x}{2}+\cos \frac{x}{2}\right\}\left\{\cos ^{2} \frac{x}{2}-\sin ^{2} \frac{x}{2}\right\}+\cos \frac{x}{2}\right]$
$=0$
$\therefore \sin \frac{x}{2}=0$
$\Rightarrow \quad x=2 n \pi$
or $\left\{\sin \frac{x}{2}+\cos \frac{x}{2}\right\}\left\{\cos ^{2} \frac{x}{2}-\sin ^{2} \frac{x}{2}\right\}+\cos \frac{x}{2}=0$
on dividing by $\cos ^{3} \frac{x}{2}$
$\left(\tan \frac{x}{2}+1\right)\left(1-\tan ^{2} \frac{x}{2}\right)+\left(1+\tan ^{2} \frac{x}{2}\right)=0$
$\Rightarrow \tan ^{3} \frac{x}{2}-\tan \frac{x}{2}-2=0$
Let $\tan \frac{x}{2}=t$, then $f(t)=t^{3}-t-2$,
Then $f(1)=-2<0$ and $f(2)=4>0$
Thus, $f(t)$ changes sign from negative to positive in $(1,2)$
\therefore Let $t=k$ be the root for which $f(k)=0$ and $k \in(1,2)$
$\therefore \quad t=k$ or $\tan \frac{x}{2}=k=\tan \alpha$
Hence, $\frac{x}{2}=n \pi+\alpha$
$\Rightarrow \quad\left\{\begin{array}{c}x=2 n \pi+2 \alpha \quad \alpha=\tan ^{-1} k \\ \text { or } x=2 n \pi\end{array}\right.$ where
$k \in(1,2)$
619 (a)
We have,
$x^{2}-6 x+5 \leq 0$ and $x^{2}-2 x>0$
$\Rightarrow(x-1)(x-5) \leq 0$ and $x(x-2)>0$
$\Rightarrow 1 \leq x \leq 5$ and $(x<0$ or $x>2)$
$\Rightarrow 2<x \leq 5 \Rightarrow x=3,4,5 \quad[\because x \in Z]$
620 (b)
Now, $\left|\left(a z_{1}-b z_{2}\right)\right|^{2}+\left|\left(b z_{1}+a z_{2}\right)\right|^{2}$
$=a^{2}\left|z_{1}\right|^{2}+b^{2}\left|z_{2}\right|^{2}-2 a b \operatorname{Re}\left|z_{1} \bar{z}_{2}\right|+b^{2}\left|z_{1}\right|^{2}$

$$
+a^{2}\left|z_{2}\right|^{2}+2 a b \operatorname{Re}\left|\bar{z}_{1} z_{2}\right|
$$

$=\left(a^{2}+b^{2}\right)\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right)$
621 (b)
It is given that α, β are roots of $6 x^{2}-5 x+1=0$
$\therefore \alpha+\beta=\frac{5}{6}$ and $\alpha \beta=\frac{1}{6}$
$\therefore \tan ^{-1} \alpha+\tan ^{-1} \beta$
$=\tan ^{-1}\left(\frac{\alpha+\beta}{1-\alpha \beta}\right)=\tan ^{-1}\left(\frac{\frac{5}{6}}{1-\frac{1}{6}}\right)=\tan ^{-1} 1=\frac{\pi}{4}$
622 (c)
We have, $\left|z_{k}\right|=1, k=1,2 \ldots, n$
$\Rightarrow\left|z_{k}\right|^{2}=1 \Rightarrow z_{k} \bar{z}_{k}=1 \Rightarrow \bar{z}_{k}=\frac{1}{z_{k}}$
$\therefore\left|z_{1}+z_{2}+\ldots+z_{n}\right|=\left|\overline{z_{1}+z_{2}+\ldots+z_{n}}\right| \quad(\because|z|$

$$
=|\bar{z}|)
$$

$=\left|\bar{z}_{1}+\bar{z}_{2}+\ldots+\bar{z}_{n}\right|$
$=\left|\frac{1}{z_{1}}+\frac{1}{z_{2}}+\ldots+\frac{1}{z_{n}}\right|$
623 (d)
We have,
$\sum_{k=1}^{6}\left(\sin \frac{2 \pi k}{7}-i \cos \frac{2 \pi k}{7}\right)$
$=\sum_{k=1}^{6}-i\left(\cos \frac{2 \pi k}{7}+i \sin \frac{2 \pi k}{7}\right)$
$=\sum_{k=1}^{6}-i e^{\frac{i 2 \pi k}{7}}=-i \sum_{k=1}^{6} r^{k}$, where $r=e^{\frac{i 2 \pi}{7}}$
$=-i \frac{r\left(1-r^{6}\right)}{(1-r)}=-i\left(\frac{r-r^{7}}{1-r}\right)=-i\left(\frac{r-1}{1-r}\right)=i[$

$$
\left.\because r^{7}=1\right]
$$

624 (d)

CASE I When $x \geq 0$

In this case, we have $|x|=x$
$\therefore x^{2}+x+|x|+1<0$
$\Rightarrow x^{2}+2 x+1<0 \Rightarrow(x+1)^{2}<0$, which is not true
CASE II When $x<0$
In this case, we have $|x|=-x$
$\therefore x^{2}+x+|x|+1 \leq 0$
$\Rightarrow x^{2}+1 \leq 0$, which is not true for any $x<0$
Hence, there is no value of x satisfying the given inequation
(c)

We have, $\omega_{n}=\cos \left(\frac{2 \pi}{n}\right)+i \sin \left(\frac{2 \pi}{n}\right)$
$\Rightarrow \omega_{3}=\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}$
$=-\frac{1}{2}+\frac{i \sqrt{3}}{2}=\omega$
and $\omega_{3}^{2}=\left(\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}\right)^{2}$
$=\cos \frac{4 \pi}{3}+i \sin \frac{4 \pi}{3}$
$=-\frac{1}{2}-\frac{i \sqrt{3}}{2}=\omega^{2}$
$\therefore\left(x+y \omega_{3}+z \omega_{3}^{2}\right)\left(x+y \omega_{3}^{2}+z \omega_{3}\right)$
$=\left(x+y \omega+z \omega^{2}\right)\left(x+y \omega^{2}+z \omega\right)$
$=x^{2}+y^{2}+z^{2}-x y-y z-z x$
$\because x^{2}+15|x|+14$
$=\left|x^{2}\right|+15|x|+14>0$
For all real x
\Rightarrow Given equation has no solution

It is given that α, β, γ are the roots of the equation $x^{3}+a x^{2}+b x+c=0$
$\therefore \alpha+\beta+\gamma=-a, \alpha \beta+\beta \gamma+\gamma \alpha=b$ and,
$\alpha \beta \gamma=c$
Hence,
$\alpha^{-1}+\beta^{-1}+\gamma^{-1}=\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}=\frac{\sum \alpha \beta}{\alpha \beta \gamma}=-\frac{b}{c}$
628 (d)
Domain of the function $y=\sqrt{x(x-3)}$ is
$x(x-3) \geq 0$
$\Rightarrow x \leq 0$ or $x \geq 3$
Given equation can be rewritten as
$9|x|^{2}-19|x|+2=0$
$\Rightarrow(9|x|-1)(|x|-2)=0$
$\Rightarrow|x|=2$ or $|x|=\frac{1}{9}$
\therefore Solution of the given equation are $\pm 2, \pm \frac{1}{9}$.
In the domain (i) the required solutions are
$-2,-\frac{1}{9}$.
629 (b)
Since, α is an imaginary cube root of unity. Let it be ω, then $\alpha^{3 n+1}+\alpha^{3 n+3}+\alpha^{3 n+5}=(\omega)^{3 n+1}+$
$(\omega)^{3 n+3}+(\omega)^{3 n+5}$
$=\omega+1+\omega^{5}$
$=\omega+1+\omega^{2}=0$
630 (b)

Given, $z^{2}+\bar{z}=0$
$\therefore \quad(x+i y)^{2}+(x-i y)=0$
$\Rightarrow \quad x^{2}-y^{2}+x+i(2 x y-y)=0$
$\Rightarrow x^{2}-y^{2}+x=0$ and $2 x y-y=0$
Now, $2 x y-y=0 \Rightarrow y=0, x=\frac{1}{2}$
When $y=0, x^{2}-0+x=0 \quad \Rightarrow \quad x=0,-1$
When $x=\frac{1}{2}$,
$\left(\frac{1}{2}\right)^{2}-y^{2}+\frac{1}{2}=0 \Rightarrow y^{2}=\frac{1}{4}+\frac{1}{2} \Rightarrow y$

$$
= \pm \frac{\sqrt{3}}{2}
$$

\therefore Solutions are $(0,0),(-1,0),\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right),\left(\frac{1}{2}, \frac{-\sqrt{3}}{2}\right)$
631 (b)
$\log _{\sqrt{3}}\left(\frac{|z|^{2}-|z|+1}{2+|z|}\right)<2$
$\Rightarrow \frac{|z|^{2}-|z|+1}{2+|z|}<(\sqrt{3})^{2}$
$\Rightarrow|z|^{2}-|z|+1<3(2+|z|)$
$\Rightarrow|z|^{2}-4|z|-5<0$
$\Rightarrow \quad(|z|+1)(|z|-5)<0$
$\Rightarrow-1<|z|<5 \Rightarrow|z|<5$ as $|z|>0$
\therefore Locus of z is $|z|<5$
632 (b)
Since, 2 and 3 are the roots of the equation
$2 x^{3}+m x^{2}-13 x+n=0$
$\therefore f(2)=2(2)^{3}+m(2)^{2}-13(2)+n=0$
And $f(3)=2(3)^{3}+m(3)^{2}-13(3)+n=0$
$\Rightarrow 4 m+n=10$ and $9 m+n=-15$
$\Rightarrow m=-5, \quad n=30$
633 (d)
The affix of the centroid G of the triangle is
$\left(z_{1}+z_{2}+z_{3}\right) / 3$
Since the centroid G divides the line joining the circumcentre and orthocentre in the ratio $1: 2$. Therefore, if z is the affix of the orthocentre, then $\frac{z_{1}+z_{2}+z_{3}}{3}=\frac{1 \cdot z+2 \cdot 0}{1+2} \Rightarrow z=z_{1}+z_{2}+z_{3}$
634 (c)
$x y z=(\alpha+\beta)\left(\alpha \omega+\beta \omega^{2}\right)\left(\alpha \omega^{2}+\beta \omega\right)$
$=(\alpha+\beta)\left[\alpha^{2}+\alpha \beta\left(\omega^{2}+\omega\right)+\beta^{2}\right]$
$\left[\begin{array}{c}\because 1+\omega+\omega^{2}=0 \\ \text { and } \omega^{3}=1\end{array}\right]$
$=(\alpha+\beta)\left(\alpha^{2}-\alpha \beta+\beta^{2}\right)$
$=\alpha^{3}+\beta^{3}$
635 (d)
Given, $n=2006$!
$\therefore \frac{1}{\log _{2} n}+\frac{1}{\log _{3} n}+\ldots+\frac{1}{\log _{2006} n}$
$=\log _{n} 2+\log _{n} 3+\ldots+\log _{n} 2006$
$=\log _{n}(2.3 .4 \ldots .2006)$
$=\log _{n}(2006!)=\log _{n} n=1$
636 (a)
We have,
$a(p+q)^{2}+2 b p q+c=0$ and, $a(p+r)^{2}+$
$2 b p r+c=0$
It is evident from these two equations, that q and r are roots of the equation
$a(p+x)^{2}+2 b p x+c=0$
or, $a x^{2}+2 x(a+b) p+a p^{2}+c=0$
\therefore Product of the roots $=\frac{a p^{2}+c}{a}$
$\Rightarrow q r=\frac{a p^{2}+c}{a}=p^{2}+\frac{c}{a}$
637 (b)
It is given that $\frac{2 z_{1}}{3 z_{2}}$ is purely imaginary. So, let
$\frac{2 z_{1}}{3 z_{2}}=k i \Rightarrow \frac{z_{1}}{z_{2}}=\frac{3 k}{2} i=m i$
$\therefore\left|\frac{z_{1}-z_{2}}{z_{1}+z_{2}}\right|^{4}=\left|\frac{z_{1}}{z_{2}}-1\right|^{4} \frac{z_{1}}{z_{2}}+\left.1\right|^{4}=\left|\frac{m i-1}{m i+1}\right|^{4}=\left|\frac{m+1}{m-1}\right|^{4}$
$=1$
638 (c)
$4^{1 / 2}, 4^{1 / 4}, 4^{1 / 8}, 4^{1 / 16}, \ldots$ are given roots, then
Sum of roots $=4^{\frac{1}{2}}+4^{\frac{1}{4}}+4^{\frac{1}{8}}+\cdots=5$
Product of roots $=4^{1 / 2} .4^{1 / 4} .4^{1 / 8} \ldots$
$=4^{1 / 2+1 / 4+1 / 8+\cdots}$
$=4^{\frac{1 / 2}{1-1 / 2}}=4$
\therefore Required equation is $x^{2}-5 x+4=0$
639 (b)
It is given that
x_{1}, x_{2} are roots of $x^{2}-3 x+p=0$
$\Rightarrow x_{1}+x_{2}=3, x_{1} x_{2}=p$
x_{3}, x_{4} are roots of $x^{2}-12 x+q=0$
$\Rightarrow x_{3}+x_{4}=12$ and $x_{3} x_{4}=q$
It is given that $x_{1}, x_{2}, x_{3}, x_{4}$ form an increasing G.P.
Therefore, $x_{1}=a, x_{2}=a r, x_{3}=a r^{2}, x_{4}=a r^{3}$,
where $r>1$
Now,
$\left.\begin{array}{c}x_{1}+x_{2}=3 \Rightarrow a(1+r)=3 \\ x_{3}+x_{4}=12 \Rightarrow a r^{2}(1+r)=12\end{array}\right\} \Rightarrow r=2$ and a $=1$
$\therefore x_{1}=1, x_{2}=2, x_{3}=4, x_{4}=8$
Thus, $p=x_{1} x_{2}=2$ and $q=x_{3} x_{4}=32$
640 (b)
We have,
$x^{2}-3 k x+2 \times e^{2 \log _{e} k}-1=0[$
$\because \log _{e} k$ is defined for $\left.k>0\right]$
$\Rightarrow x^{2}-3 k x+\left(2 k^{2}-1\right)=0$

Now,
Product of roots $=7 \Rightarrow 2 k^{2}-1=7 \Rightarrow k=2[\because$ $k>0]$
641 (b)
We have,
$(a+1) x^{2}+(2 a+3) x+(3 a+4)=0$
Let α and β be the roots of the equation.
According to the given condition
$\alpha \beta=2$
$\Rightarrow \frac{3 a+4}{a+1}=2$
$\Rightarrow 3 a+4=2 a+2$
$\Rightarrow a=-2$
Also, $\alpha+\beta=-\frac{2 a+3}{a+1}=-\frac{-4+3}{-2+1}=-1$
642 (d)
$\sum_{k=1}^{6}\left[\sin \left(\frac{2 k \pi}{7}\right)-i \cos \left(\frac{2 k \pi}{7}\right)\right]=-i \sum_{k=1}^{6}\left(e^{\frac{2 \pi i}{7}}\right)^{k}$
$=-i\left(r^{1}+r^{2}+\ldots+r^{6}\right) \quad\left[\operatorname{let} r=e^{\frac{2 \pi i}{7}}\right]$
$=-i r \frac{\left(1-r^{6}\right)}{1-r}=\frac{-i\left(r-r^{7}\right)}{1-r}$
$=\frac{-i(r-1)}{1-r}=i \quad\left[\because r^{7}=e^{2 \pi i}=1\right]$
643 (a)
Since, $\sin \alpha, \sin \beta$ and $\cos \alpha$ are in GP, then
$\sin ^{2} \beta=\sin \alpha \cos \alpha$
Given equation is $x^{2}+2 x \cot \beta+1=0$.
\therefore Discriminant, $D=b^{2}-4 a c$
$=(2 \cot \beta)^{2}-4=4\left(\operatorname{cosec}^{2} \beta-2\right)$
$=4(\operatorname{cosec} \alpha \sec \alpha-2) \quad[$ from Eq. (i)]
$=4(2 \operatorname{cosec} 2 \alpha-2) \geq 0$
\therefore Roots are real.
644 (a)
We have, $z^{2}+p z+q=0$ and let $p^{2}=3 q$
$\Rightarrow \quad z=\frac{-p \pm \sqrt{p^{2}-4 q}}{2}$
$=\frac{-p \pm \sqrt{3 q-4 q}}{2}$
$=\frac{-p \pm i \sqrt{q}}{2}$
Let $z_{1}=\frac{-p+i \sqrt{q}}{2}$
And $z_{2}=\frac{-p-i \sqrt{q}}{2}$
Further, let z_{1} and z_{2} be the affixes of points A and B respectively. Then,
$O A=\left|z_{1}\right|=\sqrt{\left(-\frac{p}{2}\right)^{2}+\left(\frac{\sqrt{q}}{2}\right)^{2}}=\sqrt{\frac{p^{2}}{4}+\frac{q}{4}}$
$=\sqrt{\frac{3 q}{4}+\frac{q}{4}}=\sqrt{q}$
$O B=\left|z_{2}\right|=\sqrt{\left(-\frac{p}{2}\right)^{2}+\left(+\frac{\sqrt{q}}{2}\right)^{2}}$
$=\sqrt{\frac{p^{2}}{4}+\frac{q}{4}}=\sqrt{\frac{3 q}{4}+\frac{q}{4}}=\sqrt{q}$
And $A B=\left|z_{1}-z_{2}\right|=|i \sqrt{q}|=\sqrt{0+(\sqrt{q})^{2}}=$ \sqrt{q}
$\therefore \quad O A=O B=A B$
$\Rightarrow \quad \triangle A O B$ is an equilateral triangle.
Thus, $p^{2}=3 q$
645 (a)
$\left(3+\omega^{2}+\omega^{4}\right)^{6}=\left(3+\omega^{2}+\omega\right)^{6}=(3-1)^{6}=64$
646 (b)
We have,
$|\omega|=1$
$\Rightarrow|1-i z|=|z-i|$
$\Rightarrow|z+i|=|z-i|$
$\Rightarrow z$ lies on the perpendicular bisector of the
segment joining $(0,1)$ and $(0,-1)$
$\Rightarrow z$ lies on x-axis
648 (b)
We have , $\left|x+\frac{1}{x}\right|>2$
We know that
$x+\frac{1}{x}>2$ for all $x>0, x \neq 1$ and $x+\frac{1}{x}<-2$ for all $x<0, x \neq-1$
$\therefore\left|x+\frac{1}{x}\right|>2$ for all $x \neq 0,-1,1$
Hence, the solution set of the given inequation is
$R-\{-1,0,1\}$
649 (c)
We have,
$\operatorname{Re}\left(\frac{z+4}{2 z-i}\right)=\frac{1}{2}$
$\Rightarrow \operatorname{Re}\left(\frac{z+4}{z-\frac{i}{2}}\right)=1$
$\Rightarrow \operatorname{Re}\left(\frac{(x+4)+i y}{x+i\left(y-\frac{1}{2}\right)}\right)=1$
$\Rightarrow \operatorname{Re}\left[\frac{\{(x+4)+i y\}\left\{x-i\left(y-\frac{1}{2}\right)\right\}}{x^{2}+\left(y-\frac{1}{2}\right)^{2}}\right]=1$
$\Rightarrow \operatorname{Re}\left\{\frac{x(x+4)+y\left(y-\frac{1}{2}\right)+\{x y-(x+4)(y-}{x^{2}+\left(y-\frac{1}{2}\right)^{2}}\right.$
$=1$
$\Rightarrow \frac{x(x+4)+y\left(y-\frac{1}{2}\right)}{x^{2}+\left(y-\frac{1}{2}\right)^{2}}=1$
$\Rightarrow x^{2}+4 x+y^{2}-\frac{y}{2}=x^{2}+y^{2}-y+\frac{1}{4}$
$\Rightarrow 4 x+\frac{y}{2}-\frac{1}{4}=0$
$\Rightarrow 16 x+2 y-1=0$, which represents a straight line
650 (a)
Since, $\sin A, \sin B, \cos A$ are in GP
$\therefore \sin ^{2} B=\sin A \cos A$
Also, $x^{2}+2 x \cot B+1=0 \quad$ [given]
Now, $b^{2}-4 a c=4 \cot ^{2} B-4$
$=\frac{4 \cos ^{2} B-4 \sin ^{2} B}{\sin ^{2} B}$
$=\frac{4\left(1-2 \sin ^{2} B\right)}{\sin ^{2} B}$
$=\frac{4(1-2 \sin A \cos A)}{\sin ^{2} B}$
$=4\left(\frac{\sin A-\cos A}{\sin B}\right)^{2}$ [from Eq. (i)]
≥ 0
\therefore Roots of given equation are always real
651 (d)
Here, $\alpha+\beta=-\frac{b}{a}$ and $\alpha \beta=\frac{c}{a}$
$\therefore \frac{1}{a \alpha+b}+\frac{1}{a \beta+b}=\frac{a(\alpha+\beta)+2 b}{a^{2} \alpha \beta+a b(\alpha+\beta)+b^{2}}$
$=\frac{a\left(-\frac{b}{a}\right)+2 b}{a^{2}\left(\frac{c}{a}\right)+a b\left(-\frac{b}{a}\right)+b^{2}}=\frac{b}{a c}$
652 (c)
From the figure it is clear that amplitude of point $B=\theta-\pi$

653 (d)
Let $\frac{2 z_{1}}{3 z_{2}}=i k \quad \Rightarrow \quad \frac{z_{1}}{z_{2}}=\frac{3 i k}{2}$
$\therefore \quad\left|\frac{z_{1}-z_{2}}{z_{1}+z_{2}}\right|=\left|\frac{\left(z_{1} / z_{2}\right)-1}{\left(z_{1} / z_{2}\right)+1}\right|=\left|\frac{(3 i k / 2)-1}{(3 i k / 2)+1}\right|=1$
654 (a)
The given equation will have real roots iff
Disc $\geq 0 \Rightarrow 16-4\left(k^{2}-1\right) \geq 0 \Rightarrow k^{2} \leq 5$
655 (c)
Let $z_{1}=1+4 i, \quad z_{2}=3+i, z_{3}=1-i$ and $z_{4}=2-3 i$
$\therefore \quad m_{1}\left|z_{1}\right|, \quad m_{2}=\left|z_{2}\right|, m_{3}=\left|z_{3}\right|$ and $m_{4}=$ $\left|z_{4}\right|$
$\Rightarrow \quad m_{1}=\sqrt{1+4^{2}}=\sqrt{17}, \quad m_{2}=\sqrt{3^{2}+1^{2}}=$ $\sqrt{10}$,
$m_{3}=\sqrt{1^{2}+1^{2}}=\sqrt{2}$ and $m_{4}=\sqrt{2^{2}+3^{2}}=$
$\sqrt{13}$
$\Rightarrow \quad m_{3}<m_{2}<m_{4}<m_{1}$
656 (c)
Given, $(\cos \theta+i \sin \theta)(\cos 2 \theta+i \sin 2 \theta) \ldots$
$(\cos n \theta+i \sin n \theta)=1$
$\therefore \cos (\theta+2 \theta+3 \theta+\ldots+n \theta)$

$$
+i \sin (\theta+2 \theta+3 \theta+\ldots+n \theta)=1
$$

$\Rightarrow \cos \left(\frac{n(n+1)}{2} \theta\right)+i \sin \left(\frac{n(n+1)}{2} \theta\right)=1$
$\Rightarrow \quad \cos \left(\frac{n(n+1)}{2} \theta\right)=1$ and $\sin \left(\frac{n(n+1)}{2} \theta\right)=0$
$\therefore \frac{n(n+1)}{2} \theta=2 m \pi \Rightarrow \theta=\frac{4 m \pi}{n(n+1)}$
657 (c)
Let O is orthocenter, G is centroid and C is circumcentre, then

$$
\begin{aligned}
& \stackrel{O(z)}{\stackrel{2}{ } \quad \stackrel{G}{1} \quad C(0)} \\
& \left(\frac{z_{1}+z_{2}+z_{3}}{3}\right) \\
& \frac{z_{1}+z_{2}+z_{3}}{3}=\frac{2 \times 0+1(z)}{3} \\
& \Rightarrow z=z_{1}+z_{2}+z_{3}
\end{aligned}
$$

658 (d)
We have, $z_{1}=\frac{\lambda z_{2}+z_{3}}{\lambda+1}$
This means that the point A divides $B C$ internally in the ratio $1: \lambda$. So, A lies on the segment $B C$
Hence, distance of A from $B C$ is zero
659 (c)
Given that, the vertices of quadrilateral are
$A=(1+2 i), B=(-3+i), C=(-2-3 i)$ and
$D=(2-2 i)$
Now, $A B=\sqrt{16+1}=\sqrt{17}, B C=\sqrt{1+16}=$ $\sqrt{17}$
$C D=\sqrt{16+1}=\sqrt{17}, D A=\sqrt{1+16}=\sqrt{17}$
$A C=\sqrt{9+25}=\sqrt{34}, B D=\sqrt{25+9}=\sqrt{34}$
\therefore Sides $A B=B C=C D=D A$ and diagonals
$A C=B D$
Hence, it is a square
660 (b)
Given equation is
$\left(p^{2}+q^{2}\right) x^{2}-2 q(p+r) x+\left(q^{2}+r^{2}\right)=0$
Since, roots are real and equal, then
$b^{2}-4 a c=0$
$\Rightarrow 4 q^{2}(p+r)^{2}-4\left(p^{2}+q^{2}\right)\left(q^{2}+r^{2}\right)=0$
$\Rightarrow q^{2}\left(p^{2}+r^{2}+2 p r\right)$

$$
-\left(p^{2} q^{2}+p^{2} r^{2}+q^{4}+q^{2} r^{2}\right)=0
$$

$\Rightarrow q^{2} p^{2}+q^{2} r^{2}+2 p q^{2} r-p^{2} q^{2}-p^{2} r^{2}-q^{4}$

$$
-q^{2} r^{2}=0
$$

$\Rightarrow 2 p q^{2} r-p^{2} r^{2}-q^{4}=0$
$\Rightarrow\left(q^{2}-p r\right)^{2}=0$
$\Rightarrow q^{2}=p r$
$\therefore p, q$ and r will be in GP.
661 (b)
Since, $\left|\frac{z-i}{z+i}\right|=2 \Rightarrow \quad\left|\frac{x+i y-i}{x+i y+i}\right|=2 \quad[$ where
$z=x+i y]$
$\Rightarrow \quad|x+i(y-1)|=2|x+(y+1) i|$
$\Rightarrow \quad x^{2}+(y-1)^{2}=4\left[x^{2}+(y+1)^{2}\right]$
$\Rightarrow \quad x^{2}+y^{2}-2 y+1=4 x^{2}+4 y^{2}+8 y+4$
$\Rightarrow 3 x^{2}+3 y^{2}+10 y+3=0$
662 (c)
$\left|z_{1}\right|=\sqrt{2}, \quad\left|z_{2}\right|=\sqrt{3}$
$\therefore \quad\left|z_{1} z_{2}\right|=\left|z_{1}\right| \mid z_{2}=\sqrt{6}$
663 (d)
We have,

$$
\begin{aligned}
& \left|z_{1}-z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right| \\
& \therefore\left|1+z+z^{2}+\cdots+z^{n}\right|=\left|\frac{z^{n+1}-1}{z-1}\right| \leq \frac{z^{n+1}+1}{|z-1|} \\
& \begin{array}{l}
\Rightarrow\left|1+z+z^{2}+\cdots+z^{n}\right| \\
\qquad \leq \frac{|z|^{n+1}+1}{|z|}\left[\begin{array}{c}
\because \operatorname{Re}(z)<0 \\
\therefore|z-1| \geq|z|
\end{array}\right] \\
\Rightarrow\left|1+z+z^{2}+\cdots+z^{n}\right| \leq|z|^{n}+\frac{1}{|z|}
\end{array}
\end{aligned}
$$

664 (d)
Since, $a+b=-p, a b=1$
And $c+d=-q, c d=1$
Now, $(a-c)(b-c)$ and $(a+d)(b+d)$ are the roots of $x^{2}+a x+\beta=0$
$\therefore \quad(a-c)(b-c)(a+d)(b+d)=\beta$
$\Rightarrow\left(a b-a c-b c+c^{2}\right)\left(a b+a d+b d+d^{2}\right)=\beta$
$\Rightarrow\left\{1-c(a+b)+c^{2}\right\}\left\{1+d(a+b)+d^{2}\right\}=\beta$
$\Rightarrow \quad\left(1+p c+c^{2}\right)\left(1-p d+d^{2}\right)=\beta$
$\Rightarrow 1-p d+d^{2}+p c-p^{2} c d+p c d^{2}+c^{2}-p c^{2} d$ $+c^{2} d^{2}=\beta$
$\Rightarrow 1-p d+d^{2}+p c-p^{2}+p d+c^{2}-p c+1$

$$
=\beta
$$

$$
[\because c d=1]
$$

$\Rightarrow 2+d^{2}+c^{2}-p^{2}=\beta$
$\Rightarrow 2 c d+c^{2}+d^{2}-p^{2}=\beta \quad[\because 1=c d]$
$\Rightarrow(c+d)^{2}-p^{2}=\beta$
$\Rightarrow q^{2}-p^{2}=\beta \quad(\because c+d=-q)$
665 (b)
We have,
$x^{2}-3 x-4<0 \Rightarrow(x-4)(x+1)<0 \Rightarrow-1<x$ <4

Clearly, integers $0,1,2$ and 3 satisfy this inequality
666 (b)
According to the equation,
$D \geq 0,-2<-\frac{b}{2 a}<4, f(4)>0$ and $f(-2)>0$
Now, $D \geq 0 ; \quad 4 m^{2}-4 m^{2}+4 \geq 0$
$\Rightarrow \quad 4>0 \forall m \in R$
$-2<-\frac{b}{2 a}<4 ;-2<\left(\frac{2 m}{2.1}\right)<4$
$\Rightarrow-2<m<4$
$f(4)>0$
$\Rightarrow 16-8 m+m^{2}-1>0 \Rightarrow(m-3)(m-5)>0$
$\Rightarrow-\infty<m<3$ and $5<m<\infty \quad$...(iii)
And $f(-2)>0$
$\Rightarrow 4+4 m+m^{2}-1>0$
$\Rightarrow \quad(m+3)(m+1)>0$
$\Rightarrow-\infty<m<-3$ and $-1<m<\infty$
\therefore From Eqs. (i), (ii), (iii) and (iv), we get m lie between -1 and 3

667 (c)
Given equation is
$(p-q) x^{2}+(q-r) x+(r-p)=0$
$\Rightarrow x=\frac{(r-q) \pm \sqrt{(q-r)^{2}-4(r-p)(p-q)}}{2(p-q)}$
$=\frac{(r-q) \pm \sqrt{q^{2}+r^{2}-2 q r-4\left(r p-r q-p^{2}+p q\right)}}{2(p-q)}$
$\Rightarrow x=\frac{(r-q) \pm(q+r-2 p)}{2(p-q)}$
$\Rightarrow x=\frac{r-p}{p-q}, 1$

668 (b)
Since $\alpha, \beta, \gamma, \delta$ are roots of $x^{4}+x^{2}+1=0$. To
obtain the equation whose roots are $\alpha^{2}, \beta^{2}, \gamma^{2}, \delta^{2}$, we put $x^{2}=y$. Putting $x^{2}=y$, the given equation reduces to
$y^{2}+y+1=0$
Thus, the required equation is
$\left(y^{2}+y+1\right)^{2}=0$ or, $\left(x^{2}+x+1\right)^{2}=0$
669 (d)
We have,
$\left|x^{2}-10\right| \leq 6 \Rightarrow-6 \leq x^{2}-10 \leq 6 \Rightarrow 4 \leq x^{2}$

$$
\leq 16
$$

$\Rightarrow x \in[-4,-2] \cup[2,4]$
$\left[\begin{array}{c}\because a^{2} \leq x^{2} \leq b^{2} \\ \Leftrightarrow x \in[-b,-a] \cup[a, b]\end{array}\right]$
670 (a)
Given, $x=\sqrt{3018+\sqrt{36+\sqrt{169}}}$
$=\sqrt{3018+\sqrt{36+13}}$
$=\sqrt{3018+7}=\sqrt{3025}=55$
671 (c)
Given equation is $(\cos p-1) x^{2}+(\cos p) x+$ $\sin p=0$
Since, roots are real, its discriminant, $D \geq 0$
$\therefore \cos ^{2} p-4(\cos p-1) \sin p \geq 0$
$\Rightarrow \cos ^{2} p-4 \cos p \sin p+4 \sin p \geq 0$
$\Rightarrow(\cos p-2 \sin p)^{2}-4 \sin ^{2} p+4 \sin p \geq 0$
$\Rightarrow(\cos p-2 \sin p)^{2}+4 \sin p(1-\sin p) \geq 0$
.....(i)
Now, $(1-\sin p) \geq 0$ for all real p and $\sin p>0$ for $0<p<\pi$. Therefore, $4 \sin p(1-\sin p) \geq 0$ when $0<p<\pi$ or $p \in(0, \pi)$.
672 (b)
Let the two numbers are x_{1} and x_{2}
Given, $\frac{x_{1}+x_{2}}{2}=9$ and $x_{1} \cdot x_{2}=16$
$\Rightarrow x_{1}+x_{2}=18$ and $x_{1} \cdot x_{2}=16$
Hence, required equation is
$x^{2}-($ sum of roots $) x+$ product of roots $=0$
$\Rightarrow x^{2}-18 x+16=0$
α and β are roots of the equation
$x^{2}-x+1=0$
$\Rightarrow \alpha+\beta=1, \alpha \beta=1$
$\Rightarrow \alpha=-\omega, \beta=-\omega^{2}$
or $\alpha=-\omega^{2}, \beta=-\omega$
Taking $\alpha=-\omega, \beta=-\omega^{2}$
$\alpha^{2009}+\beta^{2009}=(-\omega)^{2009}-\left(-\omega^{2}\right)^{2009}$
$=-\left(\omega^{2}+\omega\right)$
$=1$
674 (a)
$\alpha+\beta=-p, \alpha \beta=q$
$\therefore \alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta$
$=p^{2}-2 q$
$\Rightarrow(\alpha-\beta)^{2}=\alpha^{2}+\beta^{2}-2 \alpha \beta$
$=\left(p^{2}-2 q\right)+2 q$
$=p^{2}-4 q$
Conjugate of $\frac{2-3 i}{4-i}$ is $\frac{2+3 i}{4+i}$
$\therefore \quad \frac{2+3 i}{4+i}=\frac{2+3 i}{4+i} \times \frac{4-i}{4-i}$
$=\frac{8+3-2 i+12 i}{16+1}$
$=\frac{11+10 i}{17}$
(d)

Here, $a=(p-q), b=5(p+q)$ and $c=-(2 p-$
$2 q+r$)
Now, $b^{2}-4 a c=25(p+q)^{2}+4(p-q)(2 p-$
$2 q+r$
$=25(p+q)^{2}+8(p-q)^{2}+4 r(p-q)$
Hence, it depends on the value of p, q and r
677 (a)
We have,
$y=\sqrt{\frac{(x+1)(x-3)}{(x-2)}}$ here x cannot be 2 .
\therefore Either both N^{r} and D^{r} are positive.
$x \geq-1, x \geq 3$ and $x>2$
$\Rightarrow x \geq 3$
or N^{r} is negative and D^{r} is negative.
$x \geq-1$ and $x>2$
$\Rightarrow-1 \leq x<2$
From Eqs. (i) and (ii), we get
$-1 \leq x<2$ or $x \geq 3$
678 (d)
Let $\alpha=x^{1 / 3}$, then it reduces to
$\alpha^{2}-7 \alpha+10=0$
$\Rightarrow(\alpha-5)(\alpha-2)=0 \Rightarrow \alpha=5,2$
$\therefore \alpha^{3}=x \Rightarrow x=125$ and 8
679 (b)
We know that only even prime is 2 , then
$(2)^{2}-\lambda(2)+12=0 \Rightarrow \lambda=8$
and $x^{2}+\lambda x+\mu=0$ has equal roots.
$\therefore \lambda^{2}-4 \mu=0$ or $(8)^{2}-4 \mu=0 \quad$ [from Eq. (i)]
$\therefore \mu=16$
680 (b)
Given, $\arg \left(\frac{z-1}{z+1}\right)=\frac{\pi}{3}$
Let $z=x+i y$
$\therefore \quad \frac{z-1}{z+1}=\frac{x+i y-1}{x+i y+1} \times \frac{(x+1)-i y}{(x+1)-i y}$
$=\frac{x^{2}+y^{2}-1+2 i y}{(x+1)^{2}+y^{2}}$
$\therefore \quad \arg \left(\frac{z-1}{z+1}\right)=\tan ^{-1} \frac{2 y}{x^{2}+y^{2}-1}=\frac{\pi}{3}$
$\Rightarrow \quad \frac{2 y}{x^{2}+y^{2}-1}=\sqrt{3}$
$\Rightarrow \quad x^{2}+y^{2}-\frac{2}{\sqrt{3}} y-1=0$
Which is the equation of a circle.
681 (d)
$\Delta=\left|\begin{array}{ccc}1+\omega & \omega^{2} & -\omega \\ 1+\omega^{2} & \omega & -\omega^{2} \\ \omega^{2}+\omega & \omega & -\omega^{2}\end{array}\right|=\left|\begin{array}{ccc}-\omega^{2} & \omega^{2} & -\omega \\ -\omega & \omega & -\omega^{2} \\ -1 & \omega & -\omega^{2}\end{array}\right|$
$\Rightarrow \Delta=\left|\begin{array}{ccc}\omega^{2} & \omega^{2} & \omega \\ \omega & \omega & \omega^{2} \\ 1 & \omega & \omega^{2}\end{array}\right|=\omega^{2}\left|\begin{array}{ccc}\omega^{2} & \omega & 1 \\ \omega & 1 & \omega \\ 1 & 1 & \omega\end{array}\right|$
$\Rightarrow \Delta=\omega^{2}\left\{\omega^{2}(\omega-\omega)-\omega\left(\omega^{2}-\omega\right)+(\omega-1)\right\}$
$\Rightarrow \Delta=\omega^{2}\left\{0-\omega^{3}+\omega^{2}+\omega-1\right\}=-3 \omega^{2}$
682 (a)
We have,
$|\alpha-\beta|>\sqrt{3 a}$
$\Rightarrow|\alpha-\beta|^{2}>3 a$
$\Rightarrow(\alpha+\beta)^{2}-4 \alpha \beta>3 a$
$\Rightarrow a^{2}-4>3 a$
$\Rightarrow a^{2}-3 a-4>0 \Rightarrow(a-4)(a+1)>0 \Rightarrow a$ $\in(-\infty .-1) \cup(4, \infty)$
684 (b)
The given equation is
$3 x^{2}-2 x(a+b+c)+(a b+b c+c a)=0$
Let D be its discriminant. Then,
$D=4(a+b+c)^{2}-12(a b+b c+c a)$
$\Rightarrow D=4\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right)$
$\Rightarrow D=2\left\{(a-b)^{2}+(b-c)^{2}+(c-a)^{2}\right\} \geq 0$
So, roots of the given equation are real
685 (b)
Sum of roots $=\frac{\alpha}{\beta}+\frac{\beta}{\alpha}=\frac{\alpha^{2}+\beta^{2}}{\alpha \beta}$ and product $=1$
Given, $\alpha+\beta=-p$ and $\alpha^{3}+\beta^{3}=q$

$$
\begin{equation*}
\Rightarrow(\alpha+\beta)\left(\alpha^{2}-\alpha \beta+\beta^{2}\right)=q \tag{i}
\end{equation*}
$$

$\therefore \alpha^{2}+\beta^{2}-\alpha \beta=\frac{-q}{p}$
And $(\alpha+\beta)^{2}=p^{2}$

$$
\Rightarrow \alpha^{2}+\beta^{2}+2 \alpha \beta=p^{2}
$$

From Eqs. (i) and (ii), we get
$\alpha^{2}+\beta^{2}=\frac{p^{3}-2 q}{3 p}$
And $\quad \alpha \beta=\frac{p^{3}+q}{3 p}$
\therefore Required equation is
$x^{2}-\frac{\left(p^{3}-2 q\right) x}{\left(p^{3}+q\right)}+1=0$
$\Rightarrow\left(p^{3}+q\right) x^{2}-\left(p^{3}-2 q\right) x+\left(p^{3}+q\right)=0$
686 (b)
Since, α and β are the roots of the equation
$2 x^{2}+2(a+b)+a^{2}+b^{2}=0$.
$\therefore(\alpha+\beta)^{2}=(a+b)^{2}$ and $\alpha \beta=\frac{a^{2}+b^{2}}{2}$
Now, $(\alpha-\beta)^{2}=(\alpha+\beta)^{2}-4 \alpha \beta$
$=(a+b)^{2}-4\left(\frac{a^{2}+b^{2}}{2}\right)$
$=-(a-b)^{2}$
Now, the required equation whose roots are
$(\alpha+\beta)^{2}$ and $(\alpha-\beta)^{2}$ is

$$
\begin{gathered}
x^{2}-\left\{(\alpha+\beta)^{2}+(\alpha-\beta)^{2}\right\} x+(\alpha+\beta)^{2}(\alpha-\beta)^{2} \\
=0 \\
\Rightarrow x^{2}-\left\{(a+b)^{2}-(a-b)^{2}\right\} x \\
\quad-(a+b)^{2}(a-b)^{2}=0 \\
\Rightarrow x^{2}-4 a b x-\left(a^{2}-b^{2}\right)^{2}=0
\end{gathered}
$$

Let $z=x+i y$, therefore given equation becomes

$$
\begin{gathered}
(x+i y)(x-i y)+(2-3 i)(x+i y) \\
\quad+(2+3 i)(x-i y)+4=0 \\
\Rightarrow x^{2}+y^{2}+2 x+3 y-3 i x+2 i y+2 x-2 i y \\
\quad+3 i x+3 y+4=0 \\
\Rightarrow x^{2}+y^{2}+4 x+6 y+4=0
\end{gathered}
$$

Therefore, given equation represents a circle with radius
$=\sqrt{2^{2}+3^{2}-4}$
$=\sqrt{4+9-4}=\sqrt{9}=3$

689 (a)
Here, $i\left\{\log \left(\frac{x-i}{x+i}\right)\right\}-\pi+2 \tan ^{-1} x=k$ (say)
$\therefore \log \left(\frac{x+i}{x-i}\right)=i\left(k+\pi-2 \tan ^{-1} x\right)$
or $\frac{x+i}{x-i}=e^{i \theta}$, where $\theta=k+\pi-2 \tan ^{-1} x$
$\Rightarrow x+i=(x \cos \theta+\sin \theta)+i(x \sin \theta-\cos \theta)$
$\Rightarrow x=x \cos \theta+\sin \theta$ and $1=x \sin \theta-\cos \theta$
$\Rightarrow x=\cot \frac{\theta}{2} \Rightarrow \theta=2 \cot ^{-1} x$
or $k+\pi-2 \tan ^{-1} x=2 \cot ^{-1} x$
$\Rightarrow k+\pi=2\left(\cot ^{-1} x+\tan ^{-1} x\right)=2\left(\frac{\pi}{2}\right)$
$\Rightarrow k+\pi=\pi$ or $k=0$
690 (b)
Now, $1+x=\log _{a} a+\log _{a} b c=\log _{a} a b c$
$\Rightarrow \frac{1}{1+x}=\log _{a b c} a$
Similarly, $\frac{1}{1+y}=\log _{a b c} b$ and $\frac{1}{1+z}=\log _{a b c} c$
$\therefore \frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}$
$=\log _{a b c} a+\log _{a b c} b+\log _{a b c} c$
$=\log _{a b c} a b c=1$
691 (d)
We have,
$\left|\frac{z_{1}-z_{2}}{1-z_{1} \bar{z}_{2}}\right|=1$
$\Rightarrow\left|z_{1}-z_{2}\right|^{2}=\left|1-z_{1} \bar{z}_{2}\right|^{2}$
$\Rightarrow\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}-2 \operatorname{Re}\left(z_{1} \bar{z}_{2}\right) \mid$
$=1+\left|z_{1} \bar{z}_{2}\right|^{2}-2 \operatorname{Re}\left(z_{1} \bar{z}_{2}\right)$
$\Rightarrow\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}=1+\left|z_{1}\right|^{2}\left|z_{2}\right|^{2}$
$\Rightarrow\left(1-\left|z_{1}\right|^{2}\right)\left(1-\left|z_{2}\right|^{2}\right)=0$
$\Rightarrow\left|z_{1}\right|=1$ or, $\left|z_{2}\right|=1$
$\Rightarrow z_{1}=e^{i \theta}$ or , $z_{2}=e^{i \theta}$, where $\theta \in R$
692 (b)
$\left(\sin 40^{\circ}+i \cos 40^{\circ}\right)^{5}$
$=i^{5}\left(\cos 40^{\circ}-i \sin 40^{\circ}\right)^{5}$
$=i\left(\cos 200^{\circ}-i \sin 200^{\circ}\right)$
$=i\left[\cos \left(180^{\circ}+20^{\circ}\right)-i \sin \left(180^{\circ}+20^{\circ}\right)\right]$
$=i\left(-\cos 20^{\circ}-i \sin 20^{\circ}\right)$
$=-i \cos 20^{\circ}-\sin 20^{\circ}$
$=\cos \left(-110^{\circ}\right)+i \sin \left(-110^{\circ}\right)$
\therefore Principle amplitude $=-110^{\circ}$
693 (a)
We have, $\left|x^{2}-3 x+2\right|+|x-1|=x-3$
Therefore $x \geq 3$
$\therefore x^{2}-3 x+2+x-1=x-3$
$\Rightarrow x^{2}-3 x+4=0$
$\Rightarrow\left(x-\frac{3}{2}\right)^{2}=-\frac{7}{4}$
Hence, no solution exist

694 (d)
We have,
$\sum_{r=1}^{8}\left(\sin \frac{2 r \pi}{9}+i \cos \frac{2 r \pi}{9}\right)$
$=\sum_{r=1}^{8} i\left(\cos \frac{2 r \pi}{9}-i \sin \frac{2 r \pi}{9}\right)$
$=i \sum_{r=1}^{8} e^{-i \frac{2 r \pi}{9}}$
$=i \sum_{r=1}^{8} \alpha^{r}$, when $\alpha=e^{-\frac{2 \pi i}{9}}$
$=i \alpha \frac{\left(1-\alpha^{8}\right)}{(1-\alpha)}$
$=i \frac{\left(\alpha-\alpha^{9}\right)}{1-\alpha}$
$=i\left(\frac{\alpha-1}{1-\alpha}\right) \quad\left[\because \alpha^{9}=e^{-i 2 \pi}=\cos 2 \pi-i \sin 2 \pi\right.$
$=1]$
$=-i$
695 (a)
Given equation of circle is
$z \bar{z}+(2+3 i) \bar{z}+(2-3 i) z+12=0$
Here, centre is $\{-(2+3 i)\}$ and radius
$=\sqrt{|2+3 i|^{2}-12}=\sqrt{13-12}=1$
696
(d)

We have,
$\alpha+\beta=\frac{-b}{a}, \alpha \beta=\frac{c}{a}$
The required equation is
$x^{2}-5 x(\alpha+\beta)+(2 \alpha+3 \beta)(3 \alpha+2 \beta)=0$
$\Rightarrow x^{2}+\frac{5 x b}{a}+\left\{6\left(\alpha^{2}+\beta^{2}\right)+13 \alpha \beta\right\}=0$
$\Rightarrow x^{2}+\frac{5 b x}{a}+\left\{6(\alpha+\beta)^{2}+\alpha \beta\right\}=0$
$\Rightarrow x^{2}+\frac{5 b}{a} x+\left(\frac{6 b^{2}}{a^{2}}+\frac{c}{a}\right)=0$
$\Rightarrow a^{2} x^{2}+5 a b x+\left(6 b^{2}+a c\right)=0$
697 (a)
We have,
$|x-2|^{2}+|x-2|-2=0$
$\Rightarrow(|x-2|+2)(|x-2|-1)=0$
$\Rightarrow|x-2|-1=0 \quad[\because|x-2|+2 \neq 0]$
$\Rightarrow x-2= \pm 1 \Rightarrow x=3,1$
\therefore Sum of the roots $=4$
698 (a)
Given, $x^{2}-x y+y^{2}-4 x-4 y+16=0$
$\Rightarrow x^{2}-(y+4) x+y^{2}-4 y+16=0$
For real $x,(y+4)^{2}-4\left(y^{2}-4 y+16\right) \geq 0$
$\Rightarrow-3 y^{2}+24 y-48=0$
$\Rightarrow y^{2}-8 y+16=0$
$\Rightarrow(y-4)^{2}=0$
$\Rightarrow y=4$
$\therefore x=4$
$\Rightarrow(x, y)=(4,4)$
699 (a)
$\log _{0.3}(x-1)<\log _{0.09}(x-1)$
Here, $x-1>0$
And $\quad \log _{0.3}(x-1)<\log _{(0.3)^{2}}(x-1)$
$\Rightarrow x>1$ and $\log _{0.3}(x-1)<\frac{1}{2} \log _{0.3}(x-1)$
$\Rightarrow x>1$ and $\log _{0.3}(x-1)<0$
$\Rightarrow x>1$ and $x-1>1$
$\Rightarrow x>1$ and $x>2$
$\therefore \quad x \in(2, \infty)$
700 (c)
Given that, $\frac{2 x}{2 x^{2}+5 x+2}>\frac{1}{(x+1)}$
$\Rightarrow \frac{2 x}{(2 x+1)(x+2)}>\frac{1}{(x+1)}$
$\Rightarrow \frac{2 x}{(2 x+1)(x+2)}-\frac{1}{(x+1)}>0$
$\Rightarrow \frac{2 x(x+1)-(2 x+1)(x+2)}{(x+1)(2 x+1)(x+2)}>0$
$\Rightarrow \frac{2 x^{2}+2 x-2 x^{2}-4 x-x-2}{(x+1)(2 x+1)(x+2)}>0$
$\Rightarrow \frac{-3 x-2}{(x+1)(2 x+1)(x+2)}>0$
Equating each factor equal to 0 , we have
$x=-2,-1,-\frac{2}{3},-\frac{1}{2}$
It is clear that $-\frac{2}{3}<x<-\frac{1}{2}$ or $-2<x-1$.
701 (b)
Let $y=\sqrt[3]{28}$
Taking log on both sides, we get
$\log y=\frac{1}{3} \log 28$
$=\frac{1}{3} \times 1.4472$
$=0.4824$
$\Rightarrow y=\operatorname{antilog}(0.4824)$
$=3.037$ (approximately)
702 (b)
As we know, the equation of the form $\left|\frac{z-2}{z+2}\right|=n$ is a circle, if $n \neq 1$

703 (a)
The vertices of the triangle are $z, i z, z+i z$ or $x+i y,-y+i x,(x-y)+i(x+y)$
\therefore Required area $=\frac{1}{2}\left|\begin{array}{ccc}x & y & 1 \\ -y & x & 1 \\ x-y & x+y & 1\end{array}\right|$
$\left.=\frac{1}{2} \right\rvert\,[x(x-x-y)-y(-y-x+y)+1(-y x$
$\left.\left.-y^{2}-x^{2}+x y\right)\right]$
$=\frac{1}{2}\left(x^{2}+y^{2}\right)=\frac{1}{2}|z|^{2}$
704 (b)
For rational roots $b^{2}-4 a c$ must be a perfect square of a rational number and as a, b, c are natural numbers $b^{2}-4 a c$ must be a perfect square of an integer.
$b^{2}-4 a c=I^{2} \Rightarrow b^{2}=I^{2}=4 a c$
$\Rightarrow 4 a c=(b-I)(b+I)$
$\Rightarrow a c=\frac{b-I}{2} \cdot \frac{b+I}{2}$
$b-I, b+I$ are both odd integers or both even integers but $a c$ is an odd integer. So, $b-I$ and $b+I$ must be even integers. b is odd I must be odd. Now, let
$b-I=2 m$, (m odd integer)
$b+I=2 n,(n$ odd integer $)$
$I=(n-m),(n-m$ is an even integer $)$
So, contradiction $\Rightarrow b^{2}-4 a c$ is not a perfect square. So, all a, b, c cannot be odd integers.
705 (b)
We have,
$\left|\lambda_{1} a_{1}+\cdots+\lambda_{n} a_{n}\right|$
$\leq\left|\lambda_{1} a_{1}\right|+\left|\lambda_{2} a_{2}\right|+\cdots+\left|\lambda_{n} a_{n}\right|$
$=\left|\lambda_{1}\right|\left|a_{1}\right|+\left|\lambda_{2}\right|\left|a_{2}\right|+\cdots+\left|\lambda_{n}\right|\left|a_{n}\right|$
$=\lambda_{1}\left|a_{1}\right|+\lambda_{2}\left|a_{2}\right|+\cdots+\lambda_{n}\left|a_{n}\right| \quad\left[\because \lambda_{i} \geq 0\right]$
$<\lambda_{1}+\lambda_{2}+\cdots+\lambda_{n}=1 \quad\left[\because\left|a_{1}\right|<1\right]$
$\left|\lambda_{1} a_{1}+\cdots+\lambda_{n} a_{n}\right|<1$
706
(d)

Since, α, β are the roots of the equation
$a x^{2}+b x+c=0$.
$\therefore a x^{2}+b x+c=a(x-\alpha)(x-\beta)$
$\Rightarrow \alpha, \beta$ be the roots of $a x^{2}+b x+c=0$. Also $\alpha<k<\beta$
So, $a(k-\alpha)(k-\beta)<0$
Also, $a^{2} k^{2}+a b k+a c=a\left(a k^{2}+b k+c\right)=$
$a^{2}(k-\alpha)(k-\beta)<0$
$\Rightarrow a^{2} k^{2}+a b k+a c<0$
707 (b)
We have,
$x=2+2^{2 / 3}+2^{1 / 3}$
$\Rightarrow x-2=2^{2 / 3}+2^{1 / 3}$
$\Rightarrow(x-2)^{3}=2^{2}+2+3 \times 2^{2 / 3} \times 2^{1 / 3}\left(2^{2 / 3}\right.$

$$
\left.+2^{1 / 3}\right)
$$

$\Rightarrow x^{3}-6 x^{2}+12 x-8=4+2+3 \times 2 \times(x-2)$
$\Rightarrow x^{3}-6 x^{2}+6 x=2$

Since, $z_{2}=\frac{z_{1}+z_{3}}{2} \quad\left[\because z_{1}, z_{2}\right.$ and z_{3} are in
AP]
$\Rightarrow \quad B$ is the mid point of the line AC
$\Rightarrow \quad A, B, C$ are collinear
$\Rightarrow \quad z_{1}, z_{2}, z_{3}$ lie on a straight line
709 (c)
The equation $|z-(3+4 i)|^{2}+\mid z-9-4-$
$2 i)\left.\right|^{\wedge} 2=R$ will represent a circle iff
$k \geq \frac{1}{2}|(3+4 i)-(-4-2 i)|^{2} \quad[$ Using: $k \geq$ 12z1-z22
i. e. $k \geq \frac{1}{2}|7+6 i|^{2} \Rightarrow k \geq \frac{85}{2}$

711 (c)
$\because \frac{k+1}{k}+\frac{k+2}{k+1}=-\frac{b}{a}$
and $\frac{k+1}{k} \cdot \frac{k+2}{k+1}=\frac{c}{a}$
$\Rightarrow \frac{k+2}{k}=\frac{c}{a}$
$\Rightarrow \frac{2}{k}=\frac{c}{a}-1=\frac{c-a}{a}$
$\Rightarrow k=\frac{2 a}{c-a}$
On putting the value of k in the Eq. (i), we get
$\frac{c+a}{2 a}+\frac{2 c}{c+a}=-\frac{b}{a}$
$\Rightarrow(c+a)^{2}+4 a c=-2 b(a+c)$
$\Rightarrow(a+b+c)^{2}=b^{2}-4 a c$
712 (a)
$\left[\frac{1+\sin \frac{\pi}{8}+i \cos \frac{\pi}{8}}{1+\sin \frac{\pi}{8}-i \cos \frac{\pi}{8}}\right]^{n}$
$=\left[\frac{1+\cos \alpha+i \sin \alpha}{1+\cos \alpha-i \sin \alpha}\right]^{n} \quad\left(\right.$ Put $\left.\alpha=\frac{\pi}{2}-\frac{\pi}{8}\right)$
$=\left[\frac{2 \cos ^{2} \frac{\alpha}{2}+2 i \sin \frac{\alpha}{2} \cos \frac{\alpha}{2}}{2 \cos ^{2} \frac{\alpha}{2}-2 i \sin \frac{\alpha}{2} \cos \frac{\alpha}{2}}\right]^{n}$
$=\left[\frac{\cos \frac{\alpha}{2}+i \sin \frac{\alpha}{2}}{\cos \frac{\alpha}{2}-i \sin \frac{\alpha}{2}}\right]^{n}$
$=\left(e^{2 i \frac{a}{2}}\right)^{n}=e^{i n^{a}}$
$=e^{i n\left(\frac{3 \pi}{8}\right)}=\cos \frac{3 n \pi}{8}+i \sin \frac{3 n \pi}{8}$
For $n=4$, we get imaginary part
713 (a)
Given, $\left|\frac{z-2 i}{z+2 i}\right|=1$
$\Rightarrow \quad\left|\frac{x+i y-2 i}{x+i y+2 i}\right|=1$
$\Rightarrow \quad \sqrt{x^{2}+(y-2)^{2}}=\sqrt{x^{2}+(y+2)^{2}}$
$\Rightarrow \quad x^{2}+y^{2}+4-4 y=x^{2}+y^{2}+4+4 y$
$\Rightarrow \quad y=0$

Thus, the locus of z is x-axis
714 (a)
The given equations are
$q x^{2}+p x+q=0$
and $x^{2}-4 q x+p^{2}=0$
Since, root of the Eq. (i) are complex, therefore $p^{2}-4 q^{2}<0$
Now, discriminant of Eq. (ii) is
$16 q^{2}-4 p^{2}=-4\left(p^{2}-4 q^{2}\right)>0$
Hence, roots are real and unequal.
715 (d)
Let $e^{\cos x}=y$. Then,
$e^{\cos x}-e^{-\cos x}=4$
$\Rightarrow y-\frac{1}{y}=4$
$\Rightarrow y^{2}-4 y-1=0$
$\Rightarrow y=2 \pm \sqrt{5}$
$\Rightarrow y=2+\sqrt{5}$ as $y>0$
$\Rightarrow e^{\cos x}=2+\sqrt{5} \Rightarrow \cos x=\log _{e}(2+\sqrt{5})$
Clearly, $\log _{e}(2+\sqrt{5})>1$ and $\cos x \leq 1$
So, there is no value of $\cos x$ satisfying the given equation
716 (c)
$\sqrt{12-\sqrt{68+48 \sqrt{2}}}$
$=\sqrt{12-\sqrt{(6)^{2}+(4 \sqrt{2})^{2}+2 \times 6 \times 4 \sqrt{2}}}$
$=\sqrt{12-6-4 \sqrt{2}}=\sqrt{6-4 \sqrt{2}}$
$=\sqrt{(2-\sqrt{2})^{2}}=2-\sqrt{2}$
717 (b)
Vertices of the triangle are $0=0+i 0, z=x+i y$
and $z e^{i \alpha}=(x+i y)(\cos \alpha+i \sin \alpha)$
$=(x \cos \alpha-y \sin \alpha)+i(y \cos \alpha+x \sin \alpha)$
\therefore Area of triangle

$$
\begin{aligned}
& =\frac{1}{2}\left|\begin{array}{ccc}
0 & 0 & 1 \\
x & y & 1 \\
(x \cos \alpha-y \sin \alpha) & (y \cos \alpha+x \sin \alpha) & 1
\end{array}\right| \\
& =\frac{1}{2}\left[x y \cos \alpha+x^{2} \sin \alpha-x y \cos \alpha+y^{2} \sin \alpha\right] \\
& =\frac{1}{2}\left(x^{2}+y^{2}\right) \sin \alpha=\frac{1}{2}|z|^{2} \sin \alpha
\end{aligned}(\because|z|]
$$

718 (d)
We have,
$(\cos \theta+i \sin \theta)(\cos 3 \theta+i \sin 3 \theta)$
$\ldots[\cos (2 n-1) \theta+i \sin (2 n-1) \theta]=1+i 0$
$\Rightarrow \cos [\theta+3 \theta+5 \theta+\cdots+(2 n-1) \theta]$ $+i \sin [\theta+3 \theta+5 \theta+\cdots$ $+(2 n-1) \theta]=1+i 0$
$\Rightarrow \cos \left(n^{2} \theta\right)+i \sin \left(n^{2} \theta\right)=1+i 0$
$\Rightarrow \cos n^{2} \theta=1$ and $\sin n^{2} \theta=0$
$\Rightarrow n^{2} \theta=2 r \pi \Rightarrow \theta=\frac{2 r \pi}{n^{2}}$
719 (c)
We have,
$|x-1|+|x-2|+|x-3| \geq 6$
Following cases arise:
CASE I When $x<1$
In this case, we have
$|x-1|=-(x-1),|x-2|=-(x-2)$
and $|x-3|=-(x-3)$
$\therefore|x-1|+|x-2|+|x-3| \geq 6$
$\Rightarrow-3 x+6 \geq 6 \Rightarrow x \leq 0$
But, $x<1$. Therefore, $x \leq 0$ i.e. $x \in(-\infty, 0]$
CASE II When $1 \leq x<2$
In this case, we have
$|x-1|=x-1,|x-2|=-(x-2)$
and, $|x-3|=-(x-3)$
$\therefore|x-1|+|x-2|+|x-3| \geq 6$
$\Rightarrow x-1-(x-2)-(x-3) \geq 6$
$\Rightarrow-x+4 \geq 6 \Rightarrow-x-2 \geq 0 \Rightarrow x+2 \leq 0 \Rightarrow x$

$$
\leq-2
$$

But, $1 \leq x<2$. Therefore, $x \in[1,2)$
CASE III When $2 \leq x<3$
In this case, we have
$|x-1|=x-1,|x-2|=x-2$
and, $|x-3|=-(x-3)$
$\therefore|x-1|+|x-2|+|x-3| \geq 6$
$\Rightarrow x-1+x-2-(x-3) \geq 6 \Rightarrow x \geq 6$
But, $2 \leq x<3$. So, there is no solution in this case CASE IV When $x \geq 3$
In this case, we have
$|x-1|=x-1,|x-2|=x-2$ and $|x-3|=x-$ 3
$\therefore|x-1|+|x-2|+|x-3| \geq 6$
$\Rightarrow x-1+x-2+x-3 \geq 6 \Rightarrow 3 x \geq 2 \Rightarrow x \geq 4$
But, $x \geq 3$. Therefore, $x \in[4, \infty)$
Hence, $x \in(-\infty, 0] \cup[4, \infty)$

720 (d)
Let $A B C D E F$ be the regular hexagon having its centre at the origin O. Let $1+2 i$ be the affix of vertex A. Then,
$O A=|1+2 i|=\sqrt{5}$
\therefore Perimeter $=6($ Side $)=6 \times O A=6 \sqrt{5}$
721 (c)
Given that, $|\beta|=1$
$\therefore\left|\frac{\beta-\alpha}{1-\bar{\alpha} \beta}\right|=\left|\frac{\beta-\alpha}{\beta \bar{\beta}-\bar{\alpha} \beta}\right|$
$=\left|\frac{\beta-\alpha}{\bar{\beta}(\bar{\beta}-\bar{\alpha})}\right|=\frac{1}{|\beta|}\left|\frac{\beta-\alpha}{(\bar{\beta}-\bar{\alpha})}\right|$
$=\frac{1}{|\beta|}=1 \quad(\because|z|=|\bar{z}|)$
722 (c)
Here, $\alpha+\beta+\gamma=0, \quad \alpha \beta+\beta \gamma+\gamma \alpha=4$
And $\alpha \beta \gamma=1$
$\therefore \frac{1}{\alpha+\beta}+\frac{1}{\beta+\gamma}+\frac{1}{\gamma+\alpha}=-\frac{1}{\gamma}-\frac{1}{\alpha}-\frac{1}{\beta}$
$=-\left[\frac{1}{\gamma}+\frac{1}{\alpha}+\frac{1}{\beta}\right]=-\left[\frac{\alpha \beta+\beta \gamma+\gamma \alpha}{\alpha \beta \gamma}\right]=-4$
724 (d)
Given, $(3+2 \sqrt{2})^{x^{2}-8}+(3+2 \sqrt{2})^{8-x^{2}}=6$
Let $(3+2 \sqrt{2})^{x^{2}-8}=y$
$\therefore y+y^{-1}=6$
$\Rightarrow y^{2}-6 y+1=0$
$\Rightarrow y=\frac{6 \pm \sqrt{36-4}}{2 \times 1}$
$=\frac{6 \pm 4 \sqrt{2}}{2}=3 \pm 2 \sqrt{2}$
For positive sign
$(3+2 \sqrt{2})^{x^{2}-8}=3+2 \sqrt{2}$
$\Rightarrow x^{2}-8=1 \Rightarrow x= \pm 3$
For negative sign
$\left[(3+2 \sqrt{2})^{-1}\right]^{8-x^{2}}=3-2 \sqrt{2}$
$\Rightarrow(3-2 \sqrt{2})^{8-x^{2}}=3-2 \sqrt{2}$
$\Rightarrow 8-x^{2}=1 \Rightarrow x^{2}=7$
$\Rightarrow \quad x= \pm \sqrt{7}$
725 (a)
Let roots be α and 2α
$\therefore \alpha+2 \alpha=3 \alpha=-\frac{(3 a-1)}{\left(a^{2}-5 a+3\right)}$
And α. $2 \alpha=2 \alpha^{2}=\frac{2}{\left(a^{2}-5 a+3\right)}$
$\Rightarrow \frac{(3 a-1)^{2}}{9\left(a^{2}-5 a+3\right)^{2}}=\frac{1}{\left(a^{2}-5 a+3\right)}$
$\Rightarrow(3 a-1)^{2}=9\left(a^{2}-5 a+3\right)$
$\Rightarrow 45 a-6 a=27-1 \Rightarrow a=\frac{2}{3}$
726 (a)
Here, $\tan A+\tan B=p$ and $\tan A \tan B=q$
Now, $\tan (A+B)=\frac{\tan A+\tan B}{1-\tan A \tan B}=\frac{p}{1-q}$
$\therefore \sin ^{2}(A+B)=\frac{1-\cos [2(A+B)]}{2}$
$=\frac{1}{2}\left[1-\frac{1-\tan ^{2}(A+B)}{1+\tan ^{2}(A+B)}\right]$
$=\frac{1}{2}\left[1-\frac{1-\left(\frac{p}{1-q}\right)^{2}}{1+\left(\frac{p}{1-q}\right)^{2}}\right]$
$=\frac{1}{2}\left[\frac{(1-q)^{2}+p^{2}-(1-q)^{2}+p^{2}}{(1-q)^{2}+p^{2}}\right]$
$=\frac{p^{2}}{p^{2}+(1-q)^{2}}$
727 (c)
Given, $x+i y=\sqrt{-7+24 i}$
$\therefore \quad x= \pm \sqrt{\frac{1}{2}\left[(-7)^{2}+(24)^{2}-7\right]}$
$= \pm \sqrt{\frac{1}{2}[49+576-7]}$
$= \pm \sqrt{\frac{1}{2}[25-7]}= \pm \sqrt{9}= \pm 3$
728 (d)
Since the triangle is equilateral. Therefore,
$\left(z_{2}-z_{1}\right)=e^{\frac{i \pi}{3}}\left(z_{3}-z_{1}\right)$ and $z_{1}-z_{3}$

$$
=e^{\frac{i \pi}{3}}\left(z_{2}-z_{3}\right)
$$

$\Rightarrow \frac{z_{2}-z_{1}}{z_{1}-z_{3}}=\frac{z_{3}-z_{1}}{z_{2}-z_{3}}$
$\Rightarrow\left(z_{2}-z_{1}\right)\left(z_{2}-z_{3}\right)=\left(z_{3}-z_{1}\right)\left(z_{1}-z_{3}\right)$
$\Rightarrow z_{1}^{2}+z_{2}^{2}+z_{3}^{2}=z_{1} z_{2}+z_{2} z_{3}+z_{3} z_{1}$
$\Rightarrow\left(z_{1}-z_{2}\right)^{2}+\left(z_{2}-z_{3}\right)^{2}+\left(z_{3}-z_{1}\right)^{2}=0$
Again from (i), we have
$\Rightarrow\left(z_{2}-z_{3}\right)\left(z_{3}-z_{1}\right)+\left(z_{1}-z_{2}\right)\left(z_{3}-z_{1}\right)$

$$
+\left(z_{1}-z_{2}\right)\left(z_{2}-z_{3}\right)=0
$$

$\Rightarrow \frac{1}{z_{1}-z_{2}}+\frac{1}{z_{2}-z_{3}}+\frac{1}{z_{3}-z_{1}}=0$
729 (a)

$$
\begin{aligned}
& \left(\frac{1+i}{1-i}\right)^{x}=\left[\frac{(1+i)(1+i)}{(1-i)(1+i)}\right]^{x}=\left[\frac{(1+i)}{1-i^{2}}\right]^{x} \\
& \quad=\left[\frac{1-1+2 i}{2}\right]^{x} \\
& \Rightarrow \quad\left(\frac{1+i}{1-i}\right)^{x}=(i)^{x}=1 \quad \text { [given] } \\
& \therefore \quad x=4 n
\end{aligned}
$$

730 (c)
Given, $z=x+i y$
$\therefore \quad \frac{z-1}{z+1}=\frac{x+i y-1}{x+i y+1}$
$\frac{(x-1)+i y}{(x+1)+i y} \times \frac{(x+1)-i y}{(x+1)-i y}$
$=\frac{x^{2}+y^{2}+2 i y-1}{x^{2}+1+2 x+y^{2}}$
$\therefore \quad \arg \left(\frac{z-1}{z+1}\right)=\tan ^{-1} \frac{2 y}{x^{2}+y^{2}-1}$
$\Rightarrow \tan ^{-1} \frac{2 y}{x^{2}+y^{2}-1}=\frac{\pi}{4}$ [given]
$\Rightarrow \frac{2 y}{x^{2}+y^{2}-1}=\tan \frac{\pi}{4}=1$
$\Rightarrow \quad x^{2}+y^{2}-2 y=1$
731 (a)
Since, $\sin \alpha$ and $\cos \alpha$ are the roots of the equation
$a x^{2}+b x+c=0$, then
$\sin \alpha+\cos \alpha=-\frac{b}{a}$ and $\sin \alpha \cos \alpha=\frac{c}{a}$
To eliminate α, we get
$1=\sin ^{2} \alpha+\cos ^{2} \alpha$
$\Rightarrow 1=(\sin \alpha+\cos \alpha)^{2}-2 \sin \alpha \cos \alpha$
$\Rightarrow 1=\frac{b^{2}}{a^{2}}=\frac{2 c}{a}$
$\Rightarrow a^{2}-b^{2}+2 a c=0$
732 (c)
$\left(\frac{-1+3 i}{2+i}\right)=\frac{-1-3 i}{2+i} \times \frac{2-i}{2-i}$
$=\frac{-2+i-6 i+3 i^{2}}{4+1}=-1-i$
\therefore Argument of $\left(\frac{-1-3 i}{2+i}\right)=\tan ^{-1}\left(\frac{-1}{-1}\right)=225^{\circ}$
[Since, the given complex number lies in IIIrd quadrant]
733 (a)
Let $f(x)=a x^{2}+2 b x-3 c$
We have,
$\frac{3 c}{4}<a+b \Rightarrow 4 a+4 b-3 c>0 \Rightarrow f(2)>0$
Now,
$f(x)=0$ has no real root
$\Rightarrow f(x)>0$ for all x or, $f(x)<0$ for all x
$\Rightarrow f(x)>0$ for all $x \quad[\because f(2)>0]$
$\Rightarrow f(0)>0 \Rightarrow-3 c>0 \Rightarrow c<0$
734
(b)

We have,
$\frac{1}{x+a}+\frac{1}{x+b}=\frac{1}{c}$
$\Rightarrow x^{2}+x(a+b-2 c)+a b-a c-b c=0$
Let its roots be α, β. Then,
$\alpha+\beta=0$ (given) $\Rightarrow c=\frac{a+b}{2}$
Now,
$\alpha \beta=a b-a c-b c=a b-c(a+b)$

$$
=-\frac{1}{2}\left(a^{2}+b^{2}\right)[\operatorname{Using}(\mathrm{i})]
$$

735 (d)
Given complex number is
$\frac{(1+i)^{2}}{1-i}=\frac{\left(1+i^{2}+2 i\right)}{1-i} \times \frac{1+i}{1+i}=\frac{2 i+2 i^{2}}{1+1}$
$=i-1$
\therefore Required conjugate is $-i-1$
736 (a)
$\left|\frac{z-5 i}{z+5 i}\right|=1 \quad \Rightarrow \quad\left|\frac{x+i(y-5)}{x+i(y+5)}\right|=1$
$\Rightarrow \quad|x+i(y-5)|=|x+i(y+5)|$
$\Rightarrow \quad x^{2}+25-10 y+y^{2}=x^{2}+y^{2}+25+10 y$
$\Rightarrow y=0$
737 (a)
Clearly,
LHS $=2 \cos ^{2}(x / 2) \sin ^{2} x \leq 2$ and, RHS $=x^{2}+$ $\frac{1}{x^{2}} \geq 2$
Thus, the equality holds when each side is equal to 2 . But, RHS is equal to 2 for $x=1$ while LHS is less than 2 for this value of x. Consequently the equation has no solution
738 (c)
Using partial fractions, we have

$$
\begin{aligned}
& \frac{\pi}{n(n+1)(n+2)}=\pi\left\{\frac{1}{2 n}-\frac{1}{n+1}+\frac{1}{2(n+2)}\right\} \\
& \Rightarrow \frac{\pi}{n(n+1)(n+2)} \\
& =\frac{\pi}{2}\left\{\left(\frac{1}{n}-\frac{1}{n+1}\right)\right. \\
& \left.-\left(\frac{1}{n+1}-\frac{1}{n+2}\right)\right\} \\
& \therefore z_{n}=\cos \frac{\pi}{2}\left\{\left(\frac{1}{n}-\frac{1}{n+1}\right)-\left(\frac{1}{n+1}-\frac{1}{n+2}\right)\right\} \\
& +i \sin \frac{\pi}{2}\left\{\left(\frac{1}{n}-\frac{1}{n+1}\right)\right. \\
& \left.-\left(\frac{1}{n+1}-\frac{1}{n+2}\right)\right\}
\end{aligned}
$$

Now,
$Z_{1} Z_{2} \ldots Z_{n}$

$$
\begin{aligned}
& =\cos \frac{\pi}{2}\left[\left\{\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\cdots\right.\right. \\
& \left.+\left(\frac{1}{n}-\frac{1}{n+1}\right)\right\} \\
& -\left\{\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\cdots\right. \\
& \left.\left.+\left(\frac{1}{n+1}-\frac{1}{n+2}\right)\right\}\right] \\
& +i \sin \frac{\pi}{2}\left[\left\{\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\cdots\right.\right. \\
& \left.+\left(\frac{1}{n}-\frac{1}{n+1}\right)\right\} \\
& -\left\{\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\cdots\right. \\
& \left.\left.+\left(\frac{1}{n+1}-\frac{1}{n+2}\right)\right\}\right] \\
& =\cos \frac{\pi}{2}\left[\left(1-\frac{1}{n+1}\right)-\left(\frac{1}{2}-\frac{1}{n+2}\right)\right] \\
& +i \sin \frac{\pi}{2}\left[\left(1-\frac{1}{n+1}\right)\right. \\
& \left.-\left(\frac{1}{2}-\frac{1}{n+2}\right)\right] \\
& =\cos \frac{\pi}{2}\left\{\frac{n}{n+1}-\frac{n}{2(n+2)}\right\} \\
& +i \sin \frac{\pi}{2}\left\{\frac{n}{n+1}-\frac{n}{2(n+2)}\right\} \\
& \therefore \lim _{n \rightarrow \infty}\left(z_{1} z_{2} \ldots z_{n}\right)=\cos \frac{\pi}{2}\left\{1-\frac{1}{2}\right\}+i \sin \frac{\pi}{2}\left\{1-\frac{1}{2}\right\} \\
& \Rightarrow \lim _{n \rightarrow \infty}\left(z_{1} z_{2} \ldots z_{n}\right)=\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}=\frac{1+i}{\sqrt{2}}
\end{aligned}
$$

739 (d)
Given, $x+i y=\left(\frac{a+i b}{c+i d}\right)^{1 / 2}$
$\Rightarrow \quad|x+i y|=\left|\frac{a+i b}{c+i d}\right|^{1 / 2}$
(Taking modulus from both side and using
$\left.\left|z^{n}\right|=|z|^{n}\right)$
$\Rightarrow \quad|x+i y|^{2}=\left|\frac{a+i b}{c+i d}\right|$
$\Rightarrow x^{2}+y^{2}=\sqrt{\frac{a^{2}+b^{2}}{c^{2}+d^{2}}}$
740 (b)
Let $z=x+i y$
$\therefore \arg (z)=\tan ^{-1}\left(\frac{y}{x}\right)$
Then, $\arg (\bar{z})=\tan ^{-1}\left(-\frac{y}{x}\right)=2 \pi-\tan ^{-1} \frac{y}{x}$
$=2 \pi-\arg (z)$
Since, in argument of a conjugate of a complex, the real axis is unaltered, but imaginary axis be changed, hence it is given by $2 \pi-\arg (z)$
(a)

We have,

$$
\begin{aligned}
z_{1}=a+i b, z_{2} & =\frac{1}{-a+i b}=\frac{-a-i b}{a^{2}+b^{2}} \\
& =\frac{-a}{a^{2}+b^{2}}-\frac{i b}{a^{2}+b^{2}}
\end{aligned}
$$

The equation of a line passing through points having affixes z_{1} and z_{2} is
$z\left(\overline{z_{1}}-\overline{z_{2}}\right)-\bar{z}\left(z_{1}-z_{2}\right)+z_{1} \overline{z_{2}}-\overline{z_{1}} z_{2}=0$
So, the equation of the required line is

$$
\begin{aligned}
& z\left[\left(a+\frac{a}{a^{2}+b^{2}}\right)+i\left(-b-\frac{b}{a^{2}+b^{2}}\right)\right] \\
& -\bar{z}\left[\left(a+\frac{a}{a^{2}+b^{2}}\right)+i\left(b+\frac{b}{a^{2}+b^{2}}\right)\right] \\
& +(a+i b)\left(-\frac{a}{a^{2}+b^{2}}+i \frac{b}{a^{2}+b^{2}}\right) \\
& \quad-(a-i b)\left(-\frac{a}{a^{2}+b^{2}}-\frac{b}{a^{2}+b^{2}}\right) \\
& \quad=0 \\
& \Rightarrow z\left[\left(a^{3}+a b^{2}+a\right)-i\left(a^{2} b+b^{3}+b\right)\right] \\
& -\bar{z}\left[\left(a^{3}+a b^{2}+a\right)+i\left(a^{2} b+b\right)\right]=0
\end{aligned}
$$

Clearly, it passes through the origin
743 (d)
The discriminant D of the given equation is given by
$D=\cos ^{2} p-4 \sin p(\cos p-1)$

$$
=\cos ^{2} p+4 \sin p(1-\cos p)
$$

Since the equation has real roots. Therefore,
$D \geq 0$
$\Rightarrow \cos ^{2} p+4 \sin p(1-\cos p) \geq 0$
$\Rightarrow \sin p \geq 0$
$\Rightarrow p \in(0, \pi)$
744 (b)
If the roots of the equation $x^{2}-8 x+a^{2}-6 a=0$ are real, then
$\Rightarrow 64-4\left(a^{2}-6 a\right) \geq 0 \quad[\because$ Disc $\geq 0]$
$\Rightarrow a^{2}-6 a-16 \leq a \in[-2,8]$
745
(d)
$\overline{z_{2}} z_{1}=(3-5 i)(1+2 i)=13+i$
$\therefore \frac{\overline{z_{2}} z_{1}}{z_{2}}=\frac{(13+i)}{(3+5 i)} \times \frac{(3-5 i)}{(3-5 i)}=\frac{44-62 i}{34}$
\therefore Real part of $\left(\frac{\overline{z_{2}} z_{1}}{z_{2}}\right)=\frac{44}{34}=\frac{22}{17}$
746 (b)
Let $S=\log _{2} \log _{3} \ldots \log _{99} \log _{100} 100^{99^{98}}:^{2^{1}}$
$=\log _{2} \log _{3} \ldots \log _{99} 99^{98}:^{2^{1}} \quad\left[\because \log _{a} a=1\right]$
$=\log _{2} 2^{1}=1$
747 (a)
Let α and β be the roots of given equation
$x^{2}+a x+1=0$
Then
$\alpha+\beta=-a$ and $\alpha \beta=1$

Now, $|\alpha-\beta|=\sqrt{(\alpha+\beta)^{2}-4 \alpha \beta}=\sqrt{a^{2}-4}$
Given condition, $\sqrt{a^{2}-4}<\sqrt{5}$
$\Rightarrow a^{2}-4<5 \Rightarrow|a|<3$
$\Rightarrow a \in(-3,3)$
748 (b)
We have,
$\left|\frac{z_{1}-z_{2}}{z_{1}+z_{2}}\right|=1$
$\Rightarrow \frac{z_{1}-z_{2}}{z_{1}+z_{2}}=\cos \alpha+i \sin \alpha$
$\Rightarrow \frac{2 z_{1}}{-2 z_{2}}=\frac{1+\cos \alpha+i \sin \alpha}{\cos \alpha-1+i \sin \alpha}$
$\Rightarrow \frac{z_{1}}{z_{2}}=i \cot \frac{\alpha}{2} \Rightarrow z_{1}=i k z_{2}$, where $k=\cot \frac{\alpha}{2}$
ALITER We have,
$\left|\frac{z_{1}-z_{2}}{z_{1}+z_{2}}\right|=1$
$\Rightarrow\left|z_{1}-z_{2}\right|=\left|z_{1}+z_{2}\right|$
\Rightarrow Diagonals of a parallelogram with sides z_{1} and
z_{2} are equal
\Rightarrow It is a rectangle $\Rightarrow z_{2}=\left|\frac{z_{2}}{z_{1}}\right| e^{i \pi / 2}=k i$
749 (d)
Since the lines are perpendicular
$\therefore \frac{-\alpha}{\alpha}+\frac{-\beta}{\beta}=0 \Rightarrow \alpha \bar{\beta}+\bar{\alpha} \beta=0$
750 (c)
Since a quadratic equation with coefficients as odd integers cannot have rational roots.
Therefore, the given equation has no rational root
(b)

We have, $\arg (z-1)-\arg (z+1)=\frac{\pi}{2}$

It is clear from the figure that it a semi circle
(d)

Since, quadratic equation $a x^{2}+b x+c=0$ has three distinct roots. So, it must be identity. So, $a=b=c=0$.

754 (c)
Since, $(1,-p)$ is the root of given equation so it will satisfy the given equation
$\therefore(1-p)^{2}+p(1-p)+(1-p)=0$
$\Rightarrow(1-p)[1-p+p+1]=0$
$\Rightarrow p=1$
On putting the value of p in given equation, we get $x^{2}+x=0 \quad \Rightarrow \quad x=0,-1$
755
$\omega^{99}+\omega^{100}+\omega^{101}$

$$
=\left(\omega^{3}\right)^{33}+\left(\omega^{3}\right)^{33} \omega+\left(\omega^{3}\right)^{33} \omega^{2}
$$

$=1+\omega+\omega^{2}=0$
756 (c)
We have, $\alpha+\beta=-7 / 2$ and $\alpha \beta=c / 2$
Now,
$\left|\alpha^{2}-\beta^{2}\right|=\frac{7}{4}$
$\Rightarrow \alpha^{2}-\beta^{2}= \pm \frac{7}{4}$
$\Rightarrow(\alpha+\beta)(\alpha-\beta)= \pm \frac{7}{4}$
$\Rightarrow-\frac{7}{2} \sqrt{\frac{49}{4}}-2 c= \pm \frac{7}{4}$
$\Rightarrow \sqrt{49-8 c}=\mp 1 \Rightarrow 49-8 c=1 \Rightarrow c=8$
757 (c)
We have, $\cos \alpha+\cos \beta+\cos \gamma=0$...(i)
and $\sin \alpha+\sin \beta+\sin \gamma=0$
Let $a=\cos \alpha+i \sin \alpha$;
$b=\cos \beta+i \sin \beta$
and $c=\cos \gamma+i \sin \gamma$
Therefore, $a+b+c=(\cos \alpha+\cos \beta+\cos \gamma)$
$+i(\sin \alpha+\sin \beta+\sin \gamma)$
$=0+i 0=0$ [from Eqs.(i)and (ii)]
If $a+b+c=0$, then $a^{3}+b^{3}+c^{3}=3 a b c$
$\Rightarrow(\cos \alpha+i \sin \alpha)^{3}+(\cos \beta+i \sin \beta)^{3}$

$$
+(\cos \gamma+i \sin \gamma)^{3}
$$

$=3(\cos \alpha+i \sin \alpha)(\cos \beta+i \sin \beta)(\cos \gamma+$ $i \sin \gamma$)
$\Rightarrow(\cos 3 \alpha+i \sin 3 \alpha)+(\cos 3 \beta+i \sin 3 \beta)+$ $(\cos 3 \gamma+i \sin 3 \gamma)$
$=3[\cos (\alpha+\beta+\gamma)+i \sin (\alpha+\beta+\gamma)]$
$\Rightarrow \cos 3 \alpha+\cos 3 \beta+\cos 3 \gamma=3 \cos (\alpha+\beta+\gamma)$
759 (b)
We have,
$\alpha_{1} \alpha_{2}=\beta_{1} \beta_{2}=1 \Rightarrow \alpha_{1}=\frac{1}{\alpha_{2}}$ and $\beta_{1}=\frac{1}{\beta_{2}}$
This means that the roots of the equation
$a_{2} x^{2}+b_{2} x+c_{2}=0$ are reciprocal of the roots of the equation $a_{1} x^{2}+b_{1} x+c_{1}=0$
Therefore, equations $a_{1} x^{2}+b_{1} x+c_{1}=0$
and $c_{2} x^{2}+b_{2} x+a_{2}=0$ have same roots
$\therefore \frac{a_{1}}{c_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{a_{2}}$
Given, $a+b+c=0,4 a x^{2}+3 b x+2 c=0$
Now, $D=9 b^{2}-4(4 a)(2 c)$
$=9(a+c)^{2}-32 a c=9(a-c)^{2}+4 a c>0$
Hence, roots are real
761 (b)
We have,
$\arg \left(\frac{z-3 \sqrt{3}}{z+3 \sqrt{3}}\right)=\frac{\pi}{3}$
$\arg \left(\frac{3 \sqrt{3}-z}{-3 \sqrt{3}-2}\right)=\frac{\pi}{3}$
$\Rightarrow \arg \left(\frac{\overrightarrow{P A}}{\overrightarrow{P B}}\right)=\frac{\pi}{3}$
$\Rightarrow P$ moves in such a way that when $P B$ is rotated through $\frac{\pi}{3}$ in coincides with $P A$
$\Rightarrow P$ lies on the segment of the circle such that $\angle B P A=\frac{\pi}{3}$ and P is above x-axis
Now, $\arg \left(\frac{z-3 \sqrt{3}}{z+3 \sqrt{3}}\right)=\frac{\pi}{3}$
$\Rightarrow \arg (z-3 \sqrt{3})-\arg (z+3 \sqrt{3})=\frac{\pi}{3}$
$\Rightarrow \tan ^{-1} \frac{y}{x-3 \sqrt{3}}$
$-\tan ^{-1} \frac{y}{x+3 \sqrt{3}}=\frac{\pi}{3}$, where z $=x+i y$
$\Rightarrow \tan ^{-1}\left(\frac{\frac{y}{x-3 \sqrt{3}}-\frac{y}{x+3 \sqrt{3}}}{1+\frac{y^{2}}{x^{2}-27}}\right)=\frac{\pi}{3}$
$\Rightarrow \frac{6 \sqrt{3} y}{x^{2}+y^{2}-27}=\sqrt{3}$
$\Rightarrow x^{2}+y^{2}-6 y-27=0$
$\Rightarrow x^{2}+(y-3)^{2}=36$
$\Rightarrow|(x+i y)-(0+3 i)|^{2}=36 \Rightarrow|z-3 i|=6$
Hence, the locus of z is $|z-3 i|=6, \operatorname{Im}(z)>0$
762 (b)
Here, $\sin \alpha+\cos \alpha=-\frac{q}{p}$ and $\sin \alpha \cdot \cos \alpha=\frac{r}{p}$
$\therefore(\sin \alpha+\cos \alpha)^{2}=\left(-\frac{q}{p}\right)^{2}$
$\Rightarrow \sin ^{2} \alpha+\cos ^{2} \alpha+2 \sin \alpha \cos \alpha=\frac{q^{2}}{p^{2}}$
$\Rightarrow 1+2 \cdot \frac{r}{p}=\frac{q^{2}}{p^{2}}$
$\Rightarrow p(p+2 r)=q^{2}$
$\Rightarrow p^{2}-q^{2}+2 r p=0$

For the given equation to be meaningful, we must have $x>0$. For $x>0$, the given equation can be written as
$\frac{3}{4}\left(\log _{2} x\right)^{2} \log _{2} x-\frac{5}{4}=\log _{x} \sqrt{2}=\frac{1}{2} \log _{x} 2$
Put $t=\log _{2} x$ so that $\log _{x} 2=\frac{1}{t}$
$\therefore \frac{3}{4} t^{2}+t-\frac{5}{4}=\frac{1}{2}\left(\frac{1}{t}\right)$
$\Rightarrow 3 t^{3}+4 t^{2}-5 t-2=0$
$\Rightarrow(t-1)(t+2)(3 t+1)=0$
$\Rightarrow \log _{2} x=t=1,-2,-\frac{1}{3}$
$\Rightarrow x=2,2^{-2}, 2^{-\frac{1}{3}}$
or $x=2, \frac{1}{4}, \frac{1}{2^{1 / 3}}$
Thus, the given equation has exactly three real solution out of which exactly one is irrational ie, $\frac{1}{2^{1 / 3}}$.
765 (a)
Since, $z \bar{z}\left(z^{2}+\bar{z}^{2}\right)=350$
$\Rightarrow \quad 2\left(x^{2}+y^{2}\right)\left(x^{2}-y^{2}\right)=350$
$\Rightarrow \quad\left(x^{2}+y^{2}\right)\left(x^{2}-y^{2}\right)=175$
Since, $x, y \in I$, the only possible case which gives integral solution, is
$x^{2}+y^{2}=25$
$x^{2}-y^{2}=7$
From Eqs. (i) and (ii), we get
$x^{2}=16, \quad y^{2}=9$
$\Rightarrow \quad x= \pm 4, \quad y= \pm 3$
\therefore Area of rectangle $=8 \times 6=48$
766 (b)
Let $a_{k}+i b_{k}=r_{k}\left(\cos \theta_{k}+i \sin \theta_{k}\right), k=1,2, . ., n$.
Then, $r_{k}=\sqrt{a_{k}^{2}+b_{k}^{2}}$ and $\tan \theta_{k}=\frac{b_{k}}{a_{k}}$
$\therefore\left(a_{1}+i b_{1}\right)\left(a_{2}+i b_{2}\right) \ldots\left(a_{n}+i b_{n}\right)=A+i B$
$\Rightarrow r_{1} r_{2} \ldots r_{n}\left[\cos \left(\theta_{1}+\theta_{2}+\cdots+\theta_{n}\right)\right.$
$\left.+i \sin \left(\theta_{1}+\theta_{2}+\cdots+\theta_{n}\right)\right]$
$=A+i B$
$\Rightarrow r_{1} r_{2} r_{3} \ldots r_{n}=\sqrt{A^{2}+B^{2}}$ and $\tan \left(\theta_{1}+\theta_{2}+\cdots\right.$ $\left.+\theta_{n}\right)=\frac{B}{A}$
$\Rightarrow r_{1}^{2} r_{2}^{2} r_{3}^{2} \ldots r_{n}^{2}=A^{2}+B^{2}$ and $\theta_{1}+\theta_{2}+\cdots+$
$\theta_{n}=\tan ^{-1} \frac{B}{A}$
$\Rightarrow\left(a_{1}^{2}+b_{1}^{2}\right)\left(a_{2}^{2}+b_{2}^{2}\right) \ldots\left(a_{n}^{2}+b_{n}^{2}\right)=A^{2}+B^{2}$
and, $\tan ^{-1} \frac{b_{1}}{a_{1}}+\cdots+\tan ^{-1} \frac{b_{n}}{a_{n}}=\tan ^{-1} \frac{B}{A}$
767 (d)
Let $(\cos x-i \sin 2 x)=\sin x+i \cos 2 x$
$\Rightarrow \cos x+i \sin 2 x=\sin x+i \cos 2 x$
$\therefore \cos x=\sin x$ and $\sin 2 x=\cos 2 x$
$\Rightarrow \tan x=1$ and $\tan 2 x=1$
Which is impossible
768 (b)
Let the required number is x.
According to given condition
$x=\sqrt{x}+12$
$\Rightarrow x-12=\sqrt{x}$
$\Rightarrow x^{2}-25 x+144=0$
$\Rightarrow x^{2}-16 x-9 x+144=0$
$\Rightarrow x=16,9$
Since $x=9$ does not hold the condition.
$\therefore x=16$
769 (b)
We have,
$\frac{|x-2|}{x-2}=\left\{\begin{array}{c}\frac{x-2}{x-2}=1, \text { if } x>2 \\ \frac{-(x-2)}{x-2}=-1, \text { if } x<2\end{array}\right.$
$\therefore \frac{|x-2|}{x-2}<0$ is true for all $x<2$
Hence, the solution set of the given inequation is $(-\infty, 2)$
770 (d)
$(\cos \alpha+i \sin \alpha)^{3 / 5}=e^{i 3 / 5}=e^{i(2 n \pi+3 \alpha) / 5}$
\therefore Required product $=e^{i 3 \alpha / 5} . e^{i(2 \pi+3 \alpha) / 5}$.
$e^{i(4 \pi+3 \alpha) / 5} \cdot e^{i(6 \pi+3 \alpha) / 5} \cdot e^{i(8 \pi+3 \alpha) / 5}$
$=e^{i(4 \pi+3 \alpha)}$
$=\cos (4 \pi+3 \alpha)+i \sin (4 \pi+3 \alpha)$
$=\cos 3 \alpha+i \sin 3 \alpha$
771 (d)
We have, $a=\cos \alpha+i \sin \alpha$;
$b=\cos \beta+i \sin \beta$
and $c=\cos \gamma+i \sin \gamma$
Now, $\frac{b}{c}=\frac{\cos \beta+i \sin \beta}{\cos \gamma+i \sin \gamma} \times \frac{\cos \gamma-i \sin \gamma}{\cos \gamma-i \sin \gamma}$
$=\cos \beta \cos \gamma+\sin \beta \sin \gamma$
$+i[\sin \beta \cos \gamma-\sin \gamma \cos \beta]$
$\Rightarrow \frac{b}{c}=\cos (\beta-\gamma)+i \sin (\beta-\gamma)$
Similarly, $\frac{c}{a}=\cos (\gamma-\alpha)+i \sin (\gamma-\alpha) \ldots$ (ii)
and $\frac{a}{b}=\cos (\alpha-\beta)+i \sin (\alpha-\beta)$
On adding Eqs. (i), (ii), (iii), we get
$\cos (\beta-\gamma)+\cos (\gamma-\alpha)+\cos (\alpha-\beta)$
$+i[\sin (\beta-\gamma)+\sin (\gamma-\alpha)+\sin (\alpha-\beta)]=1$
On equating real part on both sides, we get $\cos (\beta-\gamma)+\cos (\gamma-\alpha)+\cos (\alpha-\beta)=1$

772 (a)
$\frac{x-4}{x^{2}-5 x+6}=\frac{x-4}{(x-2)(x-3)}$
$=\frac{2}{(x-2)}-\frac{1}{(x-3)}$
$=2(x-2)^{-1}-(x-3)^{-1}$
$=2(-2)^{-1}\left(1-\frac{x}{2}\right)^{-1}-(-3)^{-1}\left(1-\frac{x}{3}\right)^{-1}$
$=-\left[1+\left(\frac{x}{2}\right)+\left(\frac{x}{2}\right)^{2}+\left(\frac{x}{2}\right)^{3}+\ldots\right]$

$$
+\frac{1}{3}\left[1+\left(\frac{x}{3}\right)+\left(\frac{x}{3}\right)^{2}+\left(\frac{x}{3}\right)^{3}+\ldots\right]
$$

\therefore Coefficient of x^{3} in $\frac{x-4}{x^{2}-5 x+6}$
$=-\left(\frac{1}{2}\right)^{3}+\frac{1}{3}\left(\frac{1}{3}\right)^{3}=-\frac{1}{8}+\frac{1}{81}=-\frac{73}{648}$
773 (a)
Given, $a=\cos \theta+i \sin \theta$
Now, $\frac{1+a}{1-a}=\frac{1+\cos \theta+i \sin \theta}{1-\cos \theta-i \sin \theta}$
$=\frac{(1+\cos \theta)+i \sin \theta}{(1-\cos \theta)-i \sin \theta} \times \frac{(1-\cos \theta)+i \sin \theta}{(1-\cos \theta)+i \sin \theta}$
$=\frac{\sin ^{2} \theta+2 i \sin \theta-\sin ^{2} \theta}{1+\cos ^{2} \theta-2 \cos \theta+\sin ^{2} \theta}$
$=\frac{i 4 \sin \frac{\theta}{2} \cdot \cos \frac{\theta}{2}}{4 \sin ^{2} \frac{\theta}{2}}=i \cot \frac{\theta}{2}$
774 (a)
Given $\arg \left(\frac{z-2}{z-6 i}\right)=\frac{\pi}{2}$
$\therefore \quad \arg (z-2)-\arg (z-6 i)=\frac{\pi}{2}$
$\Rightarrow \arg [(x-2)+i y]-\arg [x+i(y-6)]=\frac{\pi}{2}$
$\Rightarrow \tan ^{-1} \frac{y}{x-2}-\tan ^{-1} \frac{y-6}{x}=\frac{\pi}{2}$
$\Rightarrow \quad\left(\frac{\frac{y}{x-2}-\frac{y-6}{x}}{1+\frac{y}{x-2} \cdot \frac{y-6}{x}}\right)=\tan \frac{\pi}{2}$
$\Rightarrow \quad 1+\frac{y}{x-2} \cdot \frac{y-6}{x}=0$
$\Rightarrow \quad x(x-2)+y(y-6)=0$
This is an equation of circle in diametric form.
775 (b)
$\log _{4}(x-1)=\log _{2}(x-3)$
$\Rightarrow \log _{4}(x-1)=2 \log _{4}(x-3)=\log _{4}(x-3)^{2}$
$\Rightarrow x-1=x^{2}+9-6 x$
$\Rightarrow x^{2}-7 x+10=0$
$\Rightarrow x=5$ or 2
Hence, $x=5[\because x=2$ makes $\log (x-3)$
undefined]
\therefore Number of solution is 1
776 (c)
Let $\alpha=\cos \alpha+i \sin \alpha, b=\cos \beta+i \sin \beta$ and,
$c=\cos \gamma+i \sin \gamma$ Then,
$a+2 b+3 c$
$=(\cos \alpha+2 \cos \beta+3 \cos \gamma)$

$$
+i(\sin \alpha+2 \sin \beta+3 \sin \gamma)=0
$$

$\Rightarrow a^{3}+8 b^{3}+27 c^{3}=18 a b c$
$\Rightarrow \cos 3 \alpha+8 \cos 3 \beta$

$$
+27 \cos 3 \gamma=18 \cos (\alpha+\beta+\gamma)
$$

and, $\sin 3 \alpha+8 \sin 3 \beta+27 \sin 3 \gamma=$
$18 \sin (\alpha+\beta+\gamma)$
777 (b)
We have,
$\left(x-\frac{1}{k-1}\right)\left(x-\frac{1}{k}\right)$
$=x^{2}-x\left(\frac{1}{k-1}+\frac{1}{k}\right)+\frac{1}{k(k-1)}$
$=x^{2}-x\left(\frac{1}{k-1}+\frac{1}{k}\right)+\left(\frac{1}{k-1}-\frac{1}{k}\right)$
$\therefore f(x)=\sum_{k=2}^{n}\left(x-\frac{1}{k-1}\right)\left(x-\frac{1}{k}\right)$
$=\sum_{k=2}^{n} x^{2}-x \sum_{k=2}^{n}\left(\frac{1}{k-1}+\frac{1}{k}\right)+\sum_{k=2}^{n}\left(\frac{1}{k-1}-\frac{1}{k}\right)$
$=(n-1) x^{2}-x\left\{1+2\left(\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}\right)+\frac{1}{n}\right\}$
$+\left(1-\frac{1}{n}\right)$
\therefore Product of roots $=\frac{1}{n}$
Hence, product of roots as $n \rightarrow \infty$ is 0
778 (a)
Since, $3 p^{2}=5 p+2$
$\Rightarrow p=2,-\frac{1}{3}$
And, $3 q^{2}=5 q+2 \Rightarrow q=2,-\frac{1}{3}$
$\because p \neq q$
Here, we assume that $p=2$ and $q=-\frac{1}{3}$
Now, the given roots of the equation are
$(3 p-2 q)$ and $(3 q-2 p) i e,\left(\frac{20}{3},-5\right)$
Sum of roots $=\frac{20}{3}-5=\frac{5}{3}$
And product of roots $=\frac{20}{3} \times(-5)=-\frac{100}{3}$
\therefore Required equation is
$x^{2}-\frac{5}{2} x-\frac{100}{3}=0$
$\Rightarrow 3 x^{2}-5 x-100=0$
779 (c)
We have,
$x^{3}+3 x^{2}+3 x+2=0$
$\Rightarrow(x+1)^{3}+1=0$
$\Rightarrow x+1=(-1)^{1 / 3}$
$\Rightarrow x+1=-1,-\omega,-1-\omega^{2} \Rightarrow x=-2, \omega^{2}, \omega$

It is given that equation (i) and $a x^{2}+b x+c=0$ have two common roots. Also, a quadratic equation has either both real roots or both nonreal complex conjugate roots. Therefore, ω and ω^{2} are the common roots
$\therefore \omega+\omega^{2}=-\frac{b}{a}$ and $\omega \times \omega^{2}=\frac{c}{a} \Rightarrow a=b=c$
780 (a)
$\left(\frac{1}{2}+\frac{i \sqrt{3}}{2}\right)^{1 / 4}=\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right)^{1 / 4}$
$=\cos \frac{\pi}{12}+i \sin \frac{\pi}{12}$
781 (c)
$(x+2)(x+12)(x+3)(x+8)=4 x^{2}$.
$\Rightarrow\left(x^{2}+14 x+24\right)\left(x^{2}+11 x+24\right)=4 x^{2}$
$\Rightarrow\left(x+14+\frac{24}{x}\right)\left(x+11+\frac{24}{x}\right)=4$
Put $x+\frac{24}{x}=y$
$(y+14)(y+11)=4$
$\Rightarrow y^{2}+25 y+154-4=0$
$\Rightarrow y^{2}+25 y+150=0$
$\Rightarrow y^{2}+15 y+10 y+150=0$
$\Rightarrow y(y+15)+10(y+15)=0$
$\Rightarrow y=-10,-15$
$\Rightarrow x+\frac{24}{x}=-10, x+\frac{24}{x}=-15$
$\Rightarrow x^{2}+10 x+24=0, x^{2}+15 x+24=0$
$\Rightarrow x^{2}+6 x+4 x+24=0$
$\Rightarrow x(x+6)+4(x+6)=0$
$\Rightarrow x=-4,-6$
and $x^{2}+15 x+24=0$
$\Rightarrow x=\frac{-15 \pm \sqrt{225-96}}{2}$
$=\frac{-15 \pm \sqrt{129}}{2}$
Number of integer root is 2 .
782 (c)
Since, α, β and $\alpha-k, \beta-k$ are the roots of the equations $a x^{2}+b x+c=0$ and $A x^{2}+B x+C=$ 0 respectively.
$\Rightarrow \alpha+\beta=-\frac{b}{a}, \alpha \beta=\frac{c}{a}$
and $\alpha+\beta-2 k=-\frac{B}{A},(\alpha-k)(\beta-k)=\frac{C}{A}$
Now, $(\alpha-\beta)^{2}=(\alpha+\beta)^{2}-4 \alpha \beta=\frac{\left(b^{2}-4 a c\right)}{a^{2}}$
...(i)
Also, $\{(\alpha-k)-(\beta-k)\}^{2}$
$=\{(\alpha-k)+(\beta-k)\}^{2}-4(\alpha-k)(\beta-k)$
$=\left(-\frac{B}{A}\right)^{2}-4\left(\frac{C}{A}\right)$
$=\frac{B^{2}-4 A C}{A^{2}}$
From Eqs. (i) and (ii)
$\frac{\left(b^{2}-4 a c\right)}{a^{2}}=\frac{B^{2}-4 A C}{A^{2}}$
$\therefore \frac{B^{2}-4 A C}{b^{2}-4 a c}=\left(\frac{A}{a}\right)^{2}$
783 (c)
Let $\frac{5 z_{2}}{11 z_{1}}=i y \Rightarrow \frac{z_{2}}{z_{1}}=\frac{11}{5} i y$
Now, $\left|\frac{2 z_{1}+3 z_{2}}{2 z_{1}-3 z_{2}}\right|=\left|\frac{2+3 \frac{z_{2}}{z_{1}}}{2-3 \frac{z_{2}}{z_{1}}}\right|=\left|\frac{2+\frac{33}{5} i y}{2-\frac{33}{5} i y}\right|=1$
784 (a)
Let α be the root of equation $a x^{2}+b x+c=0$ then $\frac{1}{\alpha}$ be a root of second equation, therefore
$a \alpha^{2}+b \alpha+c=0$
and $a^{\prime} \frac{1}{\alpha^{2}}+b^{\prime} \frac{1}{\alpha}+c^{\prime}=0$
or $c^{\prime} \alpha^{2}+b^{\prime} \alpha+a^{\prime}=0$
On solving Eqs. (i) and (ii), we get
$\frac{\alpha^{2}}{b a^{\prime}-b^{\prime} c}=\frac{\alpha}{c c^{\prime}-a a^{\prime}}=\frac{1}{a b^{\prime}-b c^{\prime}}$
$\Rightarrow\left(c c^{\prime}-a a^{\prime}\right)^{2}=\left(b a^{\prime}-c b^{\prime}\right)\left(a b^{\prime}-b c^{\prime}\right)$
785 (c)
Given, $|x+i y+8|+|x+i y-8|=16$
$\Rightarrow \quad|(x+8)+i y|=16-|(x-8)+i y|$
$\Rightarrow \quad \sqrt{(x+8)^{2}+y^{2}}=16-\sqrt{(x-8)^{2}+y^{2}}$
$\Rightarrow \quad x^{2}+64+16 x+y^{2}=256+x^{2}+64$
$-16 x+y^{2}-32 \sqrt{(x-8)^{2}+y^{2}}$
$\Rightarrow \quad 32 x=32\left[8-\sqrt{(x-8)^{2}+y^{2}}\right]$
$\Rightarrow \sqrt{(x-8)^{2}+y^{2}}=8-x$
$\Rightarrow \quad(x-8)^{2}+y^{2}=(8-x)^{2}$
$\Rightarrow y^{2}=0 \Rightarrow y=0$
Which, represents a straight line.
786 (d)
Let another root of equation
$x^{2}+(1-3 i) x-2(1+i)=0$ is α
$\therefore \quad \alpha+(-1+i)=-(1-3 i)$
$\Rightarrow \alpha=2 i$
787 (b)
The given equation is
$\left(x^{2}+x-2\right)\left(x^{2}+x-3\right)=12$
$\Rightarrow(y-2)(y-3)=12$, where $y=x^{2}+x$
$\Rightarrow y^{2}-5 y-6=0$
$\Rightarrow y=6,-1$
$\Rightarrow x^{2}+x=6$ or $x^{2}+x=1$
$\Rightarrow x^{2}+x-6=0$ or, $x^{2}+x-1=0$
$\Rightarrow x=-3,2, \omega, \omega^{2}$
\therefore Sum of real roots $=-3+2=-1$
788 (a)
Since $x=4$ is a root of the equation $x^{2}+p x+$
$12=0$.
$\therefore 16+4 p+12=0 \Rightarrow p=-7$
The equation $x^{2}+p x+q=0$ has equal roots
$\therefore p^{2}=4 q \Rightarrow 49=4 q \Rightarrow q=49 / 4$
789 (b)
We have,
$\frac{3(x-2)}{5} \geq \frac{5(2-x)}{3}$
$\Rightarrow 9(x-2) \geq 25(2-x)$
$\Rightarrow 34 x-68 \geq 0 \Rightarrow x-2 \geq 0 \Rightarrow x \in[2, \infty)$
790 (a)
If $a x^{3}+b x+c$ is divisible by $x^{2}+b x+c$, then
the remainder must be zero when $a x^{3}+b x+c$ is
divided by $x^{2}+b x+c$
We have,
$a x^{3}+b x+c=\left(x^{2}+b x+c\right)(a x-a b)$

$$
+\left\{x\left(b-a c+a b^{2}\right)+c-a b c\right\}
$$

\therefore Remainder $=0$
$\Rightarrow x\left(b-a c+a b^{2}\right)-c+a b c=0$ for all x
$\Rightarrow b-a c+a b^{2}=0$ and $-c+a b c=0$
$\Rightarrow b-a c+a b^{2}=0$ and $a b=1 \quad[\because c \neq 0]$
$\Rightarrow b-a c+a\left(\frac{1}{a}\right)^{2}=0 \quad[\because a b=1 \Rightarrow b=1 / a]$
$\Rightarrow a b-a^{2} c+1=0$
$\Rightarrow a^{2} c-a b-1=0$
$\Rightarrow a$ is a root of $x^{2} c-b x-1=0$
791 (b)
Since p and q are roots of the equation
$x^{2}+p x+q=0$
$\therefore p^{2}+p^{2}+q=0$ and $q^{2}+p q+q=0$
$\Rightarrow 2 p^{2}+q=0$ and $q(q+p+1)=0$
$\Rightarrow 2 p^{2}+q=0$ and $(q=0$ or, $q=-p-1)$
Now,
$q=0$ and $2 p^{2}+q=0$
And
$q=-p-1$ and $2 p^{2}+q=0$
$\Rightarrow 2 p^{2}-p-1=0$
$\Rightarrow p=1$ or, $p=-1 / 2$
Hence, $p=0,1,-1 / 2$
792 (a)
Clearly, $(x-4)(x-9) \leq 0$ for all $x \in(4,9)$
793 (a)
We have,
$\frac{6-x}{x-2}=2+\frac{x}{x+2}$
Clearly, this is meaningful when $x \neq \pm 2$
Multiplying both sides of (i) by $x+2$, we get
$\frac{6-x}{x-2}=2(x+2)+x$
$\Rightarrow 3 x^{2}-x-14=0$
$\Rightarrow(x+2)(3 x-7)=0 \Rightarrow x=\frac{7}{3} \quad[\because x+2 \neq 0]$
Hence, the given equation has only one real solution
794 (b)
Since, $|-z|=|z|$
And $\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|$
Now, $|z|+|z-1|=|z|+|1-z| \geq \mid z+$
$1-z=1$
795 (a)
Let roots of given equation are $\alpha, \alpha+2$ and β
$\therefore \alpha+\alpha+2+\beta=13$
$\alpha(\alpha+2)+(\alpha+2) \beta+\alpha \beta=15 \ldots$ (ii)
And $\alpha(\alpha+2) \beta=-189$
These three equations are satisfies by the option
(a)

796 (b)
We have $|z+4| \leq 3$
$-3 \leq z+4 \leq 3$
$-6 \leq z+1 \leq 0$
$0 \leq-(z+1) \leq 6$
$0 \leq|z+1| \leq 6$
Hence, greatest and least value of $|z+1|$ are 6 and 0 respectively
797 (c)
The given equation is meaningful for $x \neq 1$.
Now,
$x-\frac{2}{x-1}=1-\frac{2}{x-1} \Rightarrow x=1$
But, the equation exist for $x \neq 1$
Hence, the equation has no solution
798 (b)
We know that the equation $z \bar{z}+a \bar{z}+\bar{a} z+b=0$ represents a circle of radius $\sqrt{|a|^{2}-b}$
Here, $a=4+3 i$ and $b=5$
\therefore Radius $=\sqrt{|4+3 i|^{2}-5}=\sqrt{20}=2 \sqrt{5}$
799 (a)
$x^{2}-5|x|+6=0$
$\Rightarrow\left|x^{2}\right|-5|x|+6=0$
$\Rightarrow(|x|-2)(|x|-3)=0$
$\Rightarrow \quad|x|=2, \quad|x|=3$
$\Rightarrow \quad x= \pm 2, \quad x= \pm 3$
Hence, the given equation has four solutions
800 (a)
Let roots of the equation $x^{2}+p x+q=0$ be α and α^{2}
$\therefore \alpha+\alpha^{2}=-p$ and $\alpha^{3}=q$
$\Rightarrow \alpha(\alpha+1)=-p$
$\Rightarrow \alpha^{3}\left[\alpha^{3}+1+3 \alpha(\alpha+1)\right]=-p$
$\Rightarrow q(q+1-3 p)=-p^{3}$
$\Rightarrow p^{3}-(3 p-1) q+q^{2}=0$
801 (a)
Since, the roots of the equation $8 x^{3}-14 x^{2}+$ $7 x-1=0$ are in GP. Let the roots be $\frac{\alpha}{\beta}, \alpha, \alpha \beta, \beta \neq 0$. Then, the product of roots is $\alpha^{3}=\frac{1}{8} \Rightarrow \alpha=\frac{1}{2}$ and hence, $\beta=\frac{1}{2}$.
So, roots are $1, \frac{1}{2}, \frac{1}{4}$.
802 (a)
Given, $x^{2}-x y+y^{2}-4 x-4 y+16=0$
$\Rightarrow x^{2}-(y+4) x+y^{2}-4 y+16=0$
For real $x,(y+4)^{2}-4\left(y^{2}-4 y+16\right) \geq 0$
$\Rightarrow-3 y^{2}+24 y-48=0$
$\Rightarrow y^{2}-8 y+16=0$
$\Rightarrow(y-4)^{2}=0 \Rightarrow y=4$
\therefore From given equation $x=4$
$\Rightarrow \quad(x, y)=(4,4)$
803 (a)
Since, α and β are the roots of $a x^{2}+b x+c=0$.
$\Rightarrow \alpha+\beta=-\frac{b}{a}$ and $\alpha \beta=\frac{c}{a}$...
If roots are $\alpha+\frac{1}{\beta}, \beta+\frac{1}{\alpha}$, then
Sum of roots $=\left(\alpha+\frac{1}{\beta}\right)+\left(\beta+\frac{1}{\alpha}\right)=(\alpha+\beta)+$ $\frac{\alpha+\beta}{\alpha \beta}$
$=\frac{-b}{a c}(a+c) \quad$ [from Eq. (i)]
$=\alpha \beta+1+1+\frac{1}{\alpha \beta}=2+\frac{c}{a}+\frac{a}{c} \quad$ [from Eq. (i)]
and product of roots $=\left(\alpha+\frac{1}{\beta}\right)+\left(\beta+\frac{1}{\alpha}\right)$
$=\frac{2 a c+c^{2}+a^{2}}{a c}=\frac{(a+c)^{2}}{a c}$
Hence, required equation is given by
$x^{2}-($ sum of roots $) x+($ prouduct of roots $)=0$
$\Rightarrow x^{2}+\frac{b}{a c}(a+c) x+\frac{(a+c)^{2}}{a c}=0$
$\Rightarrow a c x^{2}+(a+c) b x+(a+c)^{2}=0$
804 (b)

$$
\begin{aligned}
& {\left[1+\cos \frac{\pi}{5}+i \sin \frac{\pi}{5}\right]^{-1}} \\
& =\frac{1}{2 \cos ^{2} \frac{\pi}{10}+2 i \sin \frac{\pi}{10} \cos \frac{\pi}{10}} \\
& =\frac{1}{2 \cos \frac{\pi}{10}\left(\cos \frac{\pi}{10}+i \sin \frac{\pi}{10}\right)} \times \frac{\cos \frac{\pi}{10}-i \sin \frac{\pi}{10}}{\left(\cos \frac{\pi}{10}-i \sin \frac{\pi}{10}\right)} \\
& =\frac{\cos \frac{\pi}{10}-i \sin \frac{\pi}{10}}{2 \cos \frac{\pi}{10}}
\end{aligned}
$$

\therefore Real part is $\frac{1}{2}$
805 (a)
$\Delta=\left|\begin{array}{ccc}1 & \omega^{n} & \omega^{2 n} \\ \omega^{n} & \omega^{2 n} & 1 \\ \omega^{2 n} & 1 & \omega^{n}\end{array}\right|$
$=1\left(\omega^{3 n}-1\right)-\omega^{n}\left(\omega^{2 n}-\omega^{2 n}\right)+\omega^{2 n}\left(\omega^{n}\right.$

$$
\left.-\omega^{4 n}\right)
$$

$=(1-1)-0+\omega^{2 n}\left[\omega^{n}-\left(\omega^{3}\right)^{n} \omega^{n}\right] \quad\left(\because \omega^{3 n}\right.$

$$
=1)
$$

$=0+0+0=0$
806 (a)
Let α, β be the two roots of the equation
$a x^{2}+b x+c=0$. Then,
$\alpha+\beta=-b / a$ and $\alpha \beta=c / a$
$\Rightarrow-\frac{b}{a}=0$ and $\frac{c}{a}=0 \quad[\because \alpha=\beta=0]$
$\Rightarrow b=0, c=0$
807 (b)
Let the roots be α and $\alpha+1$. Then,
$\alpha+\alpha+1=p \Rightarrow \alpha=\frac{p-1}{2}$
and, $\alpha(\alpha+1)=q \Rightarrow \alpha^{2}+\alpha=q$
From (i) and (ii), we get
$\left(\frac{p-1}{2}\right)^{2}+\left(\frac{p-1}{2}\right)=q \quad$ [On eliminating α]
$\Rightarrow p^{2}-2 p+1+2 p-2=4 q \Rightarrow p^{2}=4 q+1$
808 (a)
Since, $|z|=1$ and $w=\frac{z-1}{z+1} \quad \Rightarrow \quad z=\frac{1+w}{1-w}$
$\Rightarrow \quad|z|=\frac{|1+w|}{|1-w|} \quad \Rightarrow \quad|1-w|=|1+w|$

$$
\because|z|=1]
$$

$\Rightarrow \quad 1+|w|^{2}-2 \operatorname{Re}(w)=1+|w|^{2}+2 \operatorname{Re}(w)$
$\Rightarrow \quad \operatorname{Re}(w)=0$
809 (b)
We observe that $\sin ^{-1}\left(\frac{1+x^{2}}{2 x}\right)$ is defined for
$-1 \leq \frac{1+x^{2}}{2 x} \leq 1$
$\Rightarrow\left|\frac{1+x^{2}}{2 x}\right| \leq 1$
$\Rightarrow\left|\frac{1+x^{2}}{2}\right| \leq|x|$
$\Rightarrow 1+x^{2}-2|x| \leq 0 \Rightarrow(|x|-1)^{2} \leq 0 \Rightarrow|x|$

$$
=1[\because x>0]
$$

Thus, we have,
$\left(\frac{1+i}{1-i}\right)^{n}=\frac{2}{\pi} \sin ^{-1}(1)$
$\Rightarrow i^{n}=1 \Rightarrow n$ is a multiple of 4
Hence, the least positive integral value of n is 4
810 (c)
Here, $\alpha+\beta+\gamma=0, \alpha \beta+\beta \gamma+\gamma \alpha=1$
And $\alpha \beta \gamma=-1$
$\therefore \alpha^{3}+\beta^{3}+\gamma^{3}$
$=(\alpha+\beta+\gamma)\left[\alpha^{2}+\beta^{2}+\gamma^{2}-\alpha \beta-\beta \gamma-\gamma \alpha\right]$

$$
+3 \alpha \beta \gamma
$$

$=0+3(-1)=-3$
811 (b)
Let $z=r(\cos \theta+i \sin \theta)$. Then,
$\left|z+\frac{1}{z}\right|=1$
$\Rightarrow\left|z+\frac{1}{z}\right|^{2}=1$
$\Rightarrow\left|r(\cos \theta+i \sin \theta)+\frac{1}{r}(\cos \theta-i \sin \theta)\right|^{2}=1$
$\Rightarrow\left(r+\frac{1}{r}\right)^{2} \cos ^{2} \theta+\left(r-\frac{1}{r}\right)^{2} \sin ^{2} \theta=1$
$\Rightarrow r^{2}+\frac{1}{r^{2}}+2 \cos 2 \theta=1$
Since $|z|=r$ is maximum. Therefore, $\frac{d r}{d \theta}=0$
Differentiating (i)w.r.t. θ, we get
$2 r \frac{d r}{d \theta}-\frac{2}{r^{3}} \frac{d r}{d \theta}-4 \sin 2 \theta=0$
Putting $\frac{d r}{d \theta}$, we get
$\sin 2 \theta=0 \Rightarrow \theta=\frac{\pi}{2} \Rightarrow z$ is purely imaginary
$[\because \theta \neq 0]$
812 (a)
Since $x=c$ is a root of order 2 of the polynomial
$f(x)$
$\therefore f(x)=(x-c)^{2} \phi(x)$
$\Rightarrow f^{\prime}(x)=2(x-c) \phi(x)+(x-c)^{2} \phi^{\prime}(x)$
$\Rightarrow f^{\prime}(c)=0 \Rightarrow x=c$ is a root of $f^{\prime}(x)$
814 (d)
We have,
$\frac{a+b \omega+c \omega^{2}}{c+a \omega+b \omega^{2}}+\frac{a+b \omega+c \omega^{2}}{b+c \omega+a \omega^{2}}$
$=\frac{\omega^{2}\left(a+b \omega+c \omega^{2}\right)}{\left(c \omega^{2}+a \omega^{3}+b \omega^{4}\right)}+\omega \frac{\left(a+b \omega+c \omega^{2}\right)}{\left(b \omega+c \omega^{2}+a \omega^{3}\right)}$
$=\omega^{2}+\omega=-1$
815 (c)
Since, $(\alpha+\beta),\left(\alpha^{2}+\beta^{2}\right)$ and $\left(\alpha^{3}+\beta^{3}\right)$ are in GP.
$\left(\alpha^{2}+\beta^{2}\right)^{2}=(\alpha+\beta)\left(\alpha^{3}+\beta^{3}\right)$
$\Rightarrow \alpha^{4}+\beta^{4}+2 \alpha^{2} \beta^{2}=\alpha^{4}+\beta^{4}+\alpha \beta^{3}+\beta \alpha^{3}$
$\Rightarrow \alpha \beta\left(\alpha^{2}+\beta^{2}-2 \alpha \beta\right)=0$
$\Rightarrow \alpha \beta(\alpha-\beta)^{2}=0$
$\Rightarrow \alpha \beta=0$ or $\alpha=\beta$
ie, $\frac{c}{a}=0$ or $\Delta=0$
$\Rightarrow c \Delta=0$
816 (d)
$i^{n}\left(1+i+i^{2}+i^{3}\right)=i^{n}(1+i-1-i)=0$
817 (b)
If $z=x+i y$ is the additive inverse of $1-i$, the $x+i y+(1-i)=0$
$\Rightarrow \quad x+1=0, y-1=0$
$\Rightarrow \quad x=-1, y=1$
Here required additive inverse is $-1+i$
818 (d)
Given equation is
$x^{2}-2 \sqrt{2} k x+2 e^{2 \log k}-1=0$
Also, product of its root $2 e^{2 \log k}-1=31$
$\Rightarrow 2 e^{2 \log k}=32 \Rightarrow k^{2}=16$
$\Rightarrow k= \pm 4 \quad[$ Since, \log is not defined for $k<0]$
$\therefore \quad k=4$
819 (b)
Let $z=x+i y$
$\therefore \frac{z-1}{z+1}=\frac{x+i y-1}{x+i y+1}$
$=\frac{\left(x^{2}+y^{2}-1\right)+2 i y}{(x+1)^{2}+y^{2}}$
$\therefore \arg \left(\frac{z-1}{z+1}\right)=\tan ^{-1} \frac{2 y}{x^{2}+y^{2}-1}$
$\Rightarrow \tan ^{-1} \frac{2 y}{x^{2}+y^{2}-1}=\frac{\pi}{3}$ (given)
$\Rightarrow \frac{2 y}{x^{2}+y^{2}-1}=\tan \frac{\pi}{3}=\sqrt{3}$
$\Rightarrow x^{2}+y^{2}-1=\frac{2}{\sqrt{3}} y$
$\Rightarrow x^{2}+y^{2}-\frac{2}{\sqrt{3}} y-1=0$
Which is an equation of a circle
820 (c)
Let $z=\frac{(-\sqrt{3}+3 i)(1-i)}{(3 i-\sqrt{3}) \sqrt{3}(1+i)}$
$=\frac{1}{\sqrt{3}}\left(\frac{1-i}{1+i} \times \frac{1-i}{1-i}\right)=-\frac{i}{\sqrt{3}}$
The complex number z is represented on y-axis (imaginary axis)
821 (a)
It is given that a, b, c are in G.P.
$\therefore b^{2}=a c$
Now,
$a x^{2}+2 b x+c=0$
$\Rightarrow a x^{2}+2 \sqrt{a c} x+c=0 \quad\left[\right.$ Using $\left.b^{2}=a c\right]$
$\Rightarrow(\sqrt{a x}+\sqrt{c})^{2}=0 \Rightarrow x=-\frac{\sqrt{c}}{\sqrt{a}}$
Thus, $x=-\sqrt{\frac{c}{a}}$ is a common root
Putting $x=-\sqrt{\frac{c}{a}}$ in $d x^{2}+2$ ex $+f=0$, we get
$d \frac{c}{a}-2 e \sqrt{\frac{c}{a}}+f=0$
$\Rightarrow \frac{d}{a}-2 e . \frac{1}{\sqrt{a c}}+\frac{f}{c}$
$=0 \quad[$ Dividing both sides by $c]$
$\Rightarrow \frac{d}{a}-\frac{2 e}{b}+\frac{f}{c}=0 \quad\left[\because b^{2}=a c\right]$
$\Rightarrow \frac{d}{a}+\frac{f}{c}=\frac{2 e}{b} \Rightarrow \frac{d}{a}, \frac{e}{b}, \frac{f}{c}$ are in GP.
822 (d)

$$
\begin{aligned}
& \text { Let } x=\sqrt{8+2 \sqrt{8+2 \sqrt{8+2 \sqrt{8}}}} \text {. Then, } \\
& \begin{aligned}
& x=\sqrt{8+2 x} \\
& \Rightarrow x^{2}=8+2 x \Rightarrow x^{2}-2 x-8=0 \Rightarrow x=4 \quad[\because x \\
&\quad>0]
\end{aligned}
\end{aligned}
$$

823 (b)
The given equation is $x^{2}-2 x \cos \phi+1=0$.
$\therefore x=\frac{2 \cos \phi \pm \sqrt{4 \cos ^{2} \phi-4}}{2}=\cos \phi \pm i \sin \phi$
Let $\alpha=\cos \phi+i \sin \phi$, then $\beta=\cos \phi-i \sin \phi$
$\therefore \alpha^{n}+\beta^{n}=(\cos n \phi+i \sin \phi)^{n}$

$$
+(\cos \phi-i \sin \phi)^{n}
$$

$=2 \cos n \phi$
and $\alpha^{n} \beta^{n}=(\cos n \phi+i \sin n \phi)(\cos n \phi-$
$i \sin n \phi)$
$=\cos ^{2} n \phi+\sin ^{2} n \phi=1$
\therefore Required equation is $x^{2}-2 x \cos n \phi+1=0$
824 (d)
$\frac{(\cos \theta+i \sin \theta)^{4}}{(\sin \theta+i \cos \theta)^{5}}=\frac{(\cos \theta+i \sin \theta)^{4}}{i^{5}(\cos \theta-i \sin \theta)^{5}}$
$=-i(\cos \theta+i \sin \theta)^{9}$
$=\sin 9 \theta-i \cos 9 \theta$
825 (c)
We have,
$x^{3}-2 x^{2}+2 x-1=0$
$\Rightarrow(x-1)\left(x^{2}-x+1\right)$
$\Rightarrow x-1$ or $x=-\omega,-\omega^{2}$
Since $a x^{2}+b x+a=0$ and $x^{3}-2 x^{2}+2 x-1=$ 0 have two roots in common. Therefore, $-\omega$ and
$-\omega^{2}$ are common roots.
Now,
$-\omega$ is a root of $a x^{2}+b x+a=0$
$\Rightarrow a \omega^{2}-b \omega+a=0$
$\Rightarrow a\left(1+\omega^{2}\right)-b \omega=0 \Rightarrow-a \omega-b \omega=0 \Rightarrow a+b$ $=0$

827 (c)

Equations $x^{3}+a x^{2}+b x+c=0$
and $x^{3}+(a-1) x^{2}+(b-1) x+(c-1)=0$
have at least one common root, let common root be α.
$\therefore \alpha^{3}+a \alpha^{2}+b \alpha+c=0$
and $\alpha^{3}+a \alpha^{2}+b \alpha+c-\alpha^{2}-\alpha-1=0$
$\Rightarrow \alpha^{2}+\alpha+1=0$
$\Rightarrow \alpha=\omega, \omega^{2}$ (where ω and ω^{2} are the cube roots of unity)

828 (a)

Let $z=x+i y$. Then,
$\frac{z-8 i}{z+6}=\frac{x+(y-8) i}{(x+6)+i y}$

$$
=\frac{\{x+(y-8) i\}\{x+6-i y\}}{(x+6)^{2}+y^{2}}
$$

$\Rightarrow \frac{z-8 i}{z+6}$
$=\frac{\left(x^{2}+6 x+y^{2}-8 y\right)+i(x y-8 x-x y)}{(x+6)^{2}+y^{2}}$
$\therefore \operatorname{Re}\left(\frac{z-8 i}{z+6}\right)=0 \Rightarrow x^{2}+y^{2}+6 x-8 y=0$
Hence, $z=x+i y$ lies on the circle
ALITER We have,
$\operatorname{Re}\left(\frac{z-8 i}{z+6}\right)=0$
$\Rightarrow \arg \left(\frac{z-(0+8 i)}{z-(-6+0 i)}\right)= \pm \frac{\pi}{2}$
$\Rightarrow z$ lies on the circle having $(0,8)$ and $(-6,0)$ as the end-points of the diameter
829 (b)
We have,
$\alpha^{2}=5 \alpha-3 \Rightarrow \alpha^{2}-5 \alpha+3=0 \Rightarrow \alpha=\frac{5 \pm \sqrt{13}}{2}$
Similarly, $\beta^{2}=5 \beta-3 \Rightarrow \beta=\frac{5 \pm \sqrt{13}}{2}$
Since $\alpha \neq \beta$
$\therefore \alpha=\frac{5+\sqrt{13}}{2}$ and $\beta=\frac{5-\sqrt{13}}{2}$
or, $\alpha=\frac{5-\sqrt{13}}{2}$ and $\beta=\frac{5+\sqrt{13}}{2}$
Thus, the either case, we have
$\alpha^{2}+\beta^{2}=\frac{1}{4}(50+26)=19$,
and, $\alpha \beta=\frac{1}{4}(25-13)=3$, in both the cases
Thus, the equation having α / β and β / α as its
roots is
$x^{2}-x\left(\frac{\alpha}{\beta}+\frac{\beta}{\alpha}\right)+\frac{\alpha \beta}{\alpha \beta}=0$
$\Rightarrow x^{2}-x\left(\frac{\alpha^{2}+\beta^{2}}{\alpha \beta}\right)+1=0 \Rightarrow 3 x^{2}-19 x+3$

$$
=0
$$

830 (d)
Given, $(x-2)^{3}=-27=-3^{3}$
$\Rightarrow \quad(x-2)=-3(1)^{1 / 3}$
$\Rightarrow \quad(x-2)=-3,-3 \omega,-3 \omega^{2}$
$\Rightarrow \quad x=-1,2-3 \omega, 2-3 \omega^{2}$
831 (c)
Given equations are $2 x^{2}+3 x+5 \lambda=0$ and $x^{2}+$ $2 x+3 \lambda=0$ have a common root, if $\frac{x^{2}}{(9-10) \lambda}=$
$\frac{x}{(5-6) \lambda}=\frac{1}{(4-3)}$
$\Rightarrow \frac{x^{2}}{-\lambda}=\frac{x}{-\lambda}=\frac{1}{1}$
$\Rightarrow x^{2}=-\lambda, x=-\lambda$ or $\lambda=-1,0$
832 (d)
Given, $\quad|x+i y-2|+|x+i y+2|=8$
$\Rightarrow \quad(x-2)^{2}+y^{2}+(x+2)^{2}+y^{2}=8$
$\Rightarrow \quad x^{2}-4 x+4+y^{2}+x^{2}+4 x+4+y^{2}=8$
$\Rightarrow \quad x^{2}+y^{2}=0$
Which represents a circle whose radius is zero.
833 (d)
The equation $x^{2}+x+1=0$ has ω and ω^{2} as its roots. Let $\alpha=\omega$ and $\beta=\omega^{2}$. Then,
$\alpha^{19}=\omega^{19}=\omega$ and $\beta^{7}=\omega^{14}=\omega^{2}$
Hence, α^{19} and β^{7} are roots of the same equation 834 (b)

Given relation is
$3 \alpha+2 \beta=16 \Rightarrow 2(\alpha+\beta)+\alpha=16$
$\Rightarrow 2 \times 6+\alpha=16 \Rightarrow \alpha=4[\because \alpha+\beta=6, \alpha \beta$ $=a]$
$\therefore \alpha^{2}-6 \alpha+a=0$
$\Rightarrow 16-24+a=0 \Rightarrow a=8$
835 (a)
Given equation is $|x-4|+|x-9|=5$
$\Rightarrow\left\{\begin{array}{c}4-x+9-x=5, x \leq 4 \\ x-4+9-x=5,4<x \leq 9 \\ x-4+x-9=5, x>9\end{array}\right.$
$\Rightarrow\left\{\begin{array}{c}x=4, x \leq 4 \\ \text { no solution, } 4<x \leq 9 \\ x=9, x>9\end{array}\right.$
So, $x=4,9$
836 (a)
Given, $a_{n}=i^{(n+1)^{2}}$
Here, $a_{1}=i^{2^{2}}=1, a_{2}=i^{3^{2}}=i$,
$a_{3}=i^{4^{2}}=1, \quad a_{4}=i^{5^{2}}=i$,
$a_{5}=i^{6^{2}}=1, \ldots$
Here, we see that for all odd values of n, we get the value of a_{n} is 1
$\therefore \quad a_{1}+a_{3}+a_{5}+\cdots+a_{25}=$
$\underbrace{1+1+1+\ldots+1}_{13}=13$
837 (d)
We have,

$$
\begin{aligned}
& \left(\frac{1-i \sqrt{3}}{2}\right)^{n}+\left(\frac{-1-i \sqrt{3}}{2}\right)^{n} \\
& =\omega^{n}+\left(\omega^{2}\right)^{n}=\omega^{6 k}+\omega^{12 k}=\left(\omega^{3}\right)^{2 k}+\left(\omega^{3}\right)^{4 k} \\
& \quad=2
\end{aligned}
$$

838 (a)

Given, $\left(\frac{\sqrt{3}}{2}+\frac{i}{2}\right)^{n}=1$
$\Rightarrow \quad\left(\operatorname{cis} \frac{\pi}{6}\right)^{n}=1 \Rightarrow n=12$
839 (c)
We have,
$\frac{x+1}{x^{2}+2}>\frac{1}{4}$
$\Rightarrow \frac{4 x+4-x^{2}-2}{4\left(x^{2}+2\right)}>0$
$\Rightarrow \frac{-x^{2}+4 x+2}{x^{2}+2}>0$
$\Rightarrow \frac{x^{2}-4 x-2}{x^{2}+2}<0$
$\Rightarrow x^{2}-4 x-2<0 \quad\left[\because x^{2}+2>0\right.$ for all $\left.x\right]$
$\Rightarrow 4-\sqrt{6}<x<4+\sqrt{6} \Rightarrow x=2,3,4,5,6$
$[\because x \in Z]$
840 (c)
Here, $\alpha+\beta=-5$ and $\alpha \beta=4$
Now, $\frac{\alpha+2}{3}+\frac{\beta+2}{3}=\frac{\alpha+\beta+4}{3}=\frac{-5+4}{3}=\frac{-1}{3}$
And $\left(\frac{\alpha+2}{3}\right)\left(\frac{\beta+2}{3}\right)=\frac{\alpha \beta+2(\alpha+\beta)+4}{9}$
$=\frac{4+2(-5)+4}{9}=\frac{-2}{9}$
Required equation is
x^{2}-(sum of roots) $x+$ products of roots $=0$
$\therefore x^{2}+\frac{1}{3} x-\frac{2}{9}=0 \Rightarrow 9 x^{2}+3 x-2=0$
841 (d)
$x^{2}+5|x|+4=0$
$\Rightarrow\left|x^{2}\right|+4|x|+|x|+4=0$
$\Rightarrow|x|(|x|+4)+1(|x|+4)=0$
$\Rightarrow(|x|+1)(|x|+4)=0$
$\Rightarrow|x|=-1$ and $|x|=-4$
Which is not possible
Hence, no real root exist
842 (b)
Here, $\alpha+\beta=\frac{-b}{a}, \alpha \beta=\frac{c}{a}$
So, $\left(1+\alpha+\alpha^{2}\right)\left(1+\beta+\beta^{2}\right)$
$=1+\beta+\beta^{2}+\alpha+\alpha \beta+\alpha \beta^{2}+\alpha^{2}+\alpha^{2} \beta$

$$
+\alpha^{2} \beta^{2}
$$

$=1+(\alpha+\beta)+\alpha \beta+\alpha \beta(\alpha+\beta)+(\alpha \beta)^{2}+\alpha^{2}$
$+\beta^{2}$
$=1+(\alpha+\beta)-\alpha \beta+\alpha \beta(\alpha+\beta)+(\alpha \beta)^{2}$

$$
+(\alpha+\beta)^{2}
$$

$=1-\frac{b}{a}-\frac{c}{a}-\frac{b c}{a^{2}}+\frac{c^{2}}{a^{2}}+\frac{b^{2}}{a^{2}}$
$=\frac{a^{2}+b^{2}+c^{2}-a b-b c-c a}{a^{2}}$
$=\frac{1}{2 a^{2}}\left(2 a^{2}+2 b^{2}+2 c^{2}-2 a b-2 b c-2 c a\right)$
$=\frac{1}{2 a^{2}}\left[(a-b)^{2}+(b-c)^{2}+(c-a)^{2}\right] \geq 0$
843 (a)
We have,
$\alpha+i \beta=\tan ^{-1}(z)$
$\Rightarrow \alpha+i \beta=\tan ^{-1}(x+i y)$
$\Rightarrow \alpha-i \beta=\tan ^{-1}(x-i y)$
From (i) and (ii), we get
$(\alpha+i \beta)+(\alpha-i \beta)$

$$
=\tan ^{-1}(x+i y)+\tan ^{-1}(x-i y)
$$

$\Rightarrow 2 \alpha=\tan ^{-1}\left(\frac{x+i y+x-i y}{1-(x+i y)(x-i y)}\right)$
$\Rightarrow \tan 2 \alpha=\frac{2 x}{1-\left(x^{2}+y^{2}\right)}$
$\Rightarrow 1-x^{2}-y^{2}=2 x \cot 2 \alpha$

$$
\Rightarrow x^{2}+y^{2}+2 x \cot 2 \alpha=1
$$

844 (c)
Given, $3 x^{2}-2(a+b+c) x+(a b+b c+c a)=0$
Now, $B^{2}-4 A C=4\left\{(a+b+c)^{2}-3(a b+b c+\right.$
ca) $\}$
$=4\left\{a^{2}+b^{2}+c^{2}-a b-b c-a c\right\}$
$=2\left\{(a-b)^{2}+(b-c)^{2}+(c-a)^{2}\right\} \geq 0$
Hence, both roots are always real
845 (c)
Here, $b^{2}-4 a c=0$
$\Rightarrow 36 p^{2}-4(4)(1)=0$
$\Rightarrow 36 p^{2}=16$
$\Rightarrow p= \pm \frac{2}{3}$
846 (a)
$\left|z-\frac{25}{z}\right| \geq\left||z|-\frac{25}{|z|}\right| \Rightarrow 24 \geq\left||z|-\frac{25}{|z|}\right|$
$\Rightarrow-24 \leq|z|-\frac{25}{|z|} \leq 24$
or $-24|z| \leq|z|^{2}-25 \leq 24|z|$
$\therefore|z|^{2}+24|z|-25 \geq 0$ and $|z|^{2}-24|z|-25$

$$
\leq 0
$$

$\Rightarrow(|z|+25)(|z|-1)$

$$
\geq 0 \text { and }(|z|-25)(|z|+1) \leq 0
$$

$\therefore|z|-1 \geq 0$ and $|z|-25 \leq 0$
Hence, $1 \leq|z| \leq 25$
or $1 \leq|z-0| \leq 25$
847 (a)
If $(x+1)$ is a factor of
$x^{4}-(p-3) x^{3}-(3 p-5) x^{2}+(2 p-7) x+6$,
then by putting $x=-1$, we get
$1+(p-3)-(3 p-5)-(2 p-7)+6=0$
$\Rightarrow-4 p=-16 \Rightarrow p=4$
848 (c)
It is given that $f(x)=x^{3}-3 b^{2} x+2 c^{2}$ is divisible
by $x-a$ and $x-b$
$\therefore f(a)=0$ and $f(b)=0$
$\Rightarrow a^{3}-3 b^{2} a+2 c^{3}=0$
and $b^{3}-3 b^{3}+2 c^{3}=0$
From (ii), we get $b=c$
Putting, $b=c$ in (i), we get
$a^{3}-3 a b^{2}+2 b^{3}=0$
$\Rightarrow(a-b)\left(a^{2}+a b-2 b^{2}\right)=0$
$\Rightarrow a=b$ or $a^{2}+a b=2 b^{2}$
Thus, $a=b=c$ or, $a^{2}+a b=2 b^{2}$ and $b=c$
Clearly, $a^{2}+a b=2 b^{2}$ is satisfied by $a=-2 b$
$\therefore a^{2}+a b=2 b^{2}$ and $b=c$
$\Rightarrow a=-2 b$ and $b=c \Rightarrow a=-2 b=-2 c$
849 (b)
Since a, b, c are in A.P. Therefore,
$c-b=d$ (common difference), $b-a=d$ and
$c-a=2 d$
We have,
$(b-c) x^{2}+(c-a) x+a-b=0$
$\Rightarrow-d x^{2}+2 d x-d=0$
$\Rightarrow x^{2}-2 x+1=0$
$\Rightarrow x=1$ (twice)
Thus, $x=1$ is a common root of the two equations
Since, $x=1$ is a root of $2(c+a) x^{2}+(b+c) x=0$
$\therefore 2(c+a)+b+c=0$
$\Rightarrow 2 a+b+3 c=0$
$\Rightarrow 2 a+\frac{a+c}{2}+3 c=0 \quad[\because a, b, c$ are in A.P. $]$
$\Rightarrow 5 a+7 c=0 \Rightarrow c=-\frac{5 a}{7}$
Now,
$2 b=a+c$ and $c=-\frac{5 a}{7} \Rightarrow b=\frac{a}{7}$
$\therefore b^{2}=\frac{a^{2}}{49}$ and $c^{2}=\frac{25 a^{2}}{49}$
Clearly, $a^{2}+b^{2}=a^{2}+\frac{a^{2}}{49}=\frac{50 a^{2}}{49}=2 c^{2}$
$\therefore a^{2}, c^{2}, b^{2}$ are in A.P.

850 (c)
Let $z=x_{1}+i y_{1}$ and $w=x_{2}+i y_{2}$
As $|z| \leq 1$ and $|w| \leq 1$
$\Rightarrow \quad x_{1}^{2}+y_{1}^{2}<1$ and $x_{2}^{2}+y_{2}^{2} \leq 1$
Now, $\quad|z+i w|=\left|x_{1}+i y_{1}+i\left(x_{2}+i y_{2}\right)\right|=2$
$\Rightarrow \quad\left(x_{1}-y_{2}\right)^{2}+\left(y_{1}+x_{2}\right)^{2}=4$
And $|z-i \bar{w}|=\left|x_{1}+i y_{1}-i\left(x_{2}-i y_{2}\right)\right|=2$
$\Rightarrow\left(x_{1}-y_{2}\right)^{2}+\left(y_{1}-x_{2}\right)^{2}=4$
On solving Eqs. (i) and (ii), we get
$y_{1} x_{2}=0$
\Rightarrow Either $y_{1}=0$ or $x_{2}=0$
When $y_{1}=0, \quad x_{1}^{2} \leq 1$
$\Rightarrow \quad x= \pm 1$
$\therefore \quad z= \pm 1+i 0$
851 (c)
We have,
$\log _{\tan 30^{\circ}}\left(\frac{2|z|^{2}+2|z|-3}{|z|+1}\right)<-2$
$\Rightarrow \frac{2|z|^{2}+2|z|-3}{|z|+1}>\left(\tan 30^{\circ}\right)^{-2}$
$\Rightarrow \frac{2|z|^{2}+2|z|-3}{|z|+1}>3$
$\Rightarrow 2|z|^{2}-|z|-6>0$
$\Rightarrow(|z|-2)(2|z|+3)>0 \Rightarrow|z|>2 \quad[$ $\because 2|z|+3>0$]
852 (c)
Given that $x^{2}+p x+1$ is a factor of $a x^{3}+b x+$ $c=0$, then let $a x^{3}+b x+c \equiv\left(x^{2}+p x+\right.$
$1 a x+\lambda$, where λ is a constant. Then, equating the coefficients of like powers of x on both sides, we get
$0=a p+\lambda, b=p \lambda+a, c=\lambda$
$\Rightarrow p=-\frac{\lambda}{a}=-\frac{c}{a}$
Hence, $b=\left(-\frac{c}{a}\right) c+a \Rightarrow a b=a^{2}-c^{2}$
853 (c)
Since $\operatorname{Im}\left(z_{1}+z_{2}\right)=0$, and $\operatorname{Im}\left(z_{1} z_{2}\right)=0$
$\Rightarrow z_{1}+z_{2}$ and $z_{1} z_{2}$ both are real
Let $z_{1}=a_{1}+i b_{1}, z_{2}=a_{2}+i b_{2}$. Then,
$z_{1}+z_{2}$ is real $\Rightarrow b_{2}=-b_{1}$
$z_{1} z_{2}$ is real
$\Rightarrow a_{1} b_{2}+a_{2} b_{1}=0$
$\Rightarrow-a_{1} b_{1}+a_{2} b_{1}=0 \quad\left[\because b_{2}=-b_{1}\right]$
$\Rightarrow a_{1}=a_{2}$
So, $z_{1}=a_{1}+i b_{1}=a_{2}-i b_{2}=\bar{z}_{2}$
854 (d)
$y^{x^{2}+7 x+12}=1$
$\Rightarrow x^{2}+7 x+12=0$
$\Rightarrow x=-3,-4$
$\Rightarrow y=9,10 \quad($ when $y \neq 1)$

Again when $y=1, x=5$.
\therefore Solutions are $(-3,9),(-4,10),(5,1)$
855 (c)
We have,

```
\(\frac{8 x^{2}+16 x-51}{(2 x-3)(x+4)}<3\)
\(\Rightarrow \frac{8 x^{2}+16 x-51-6 x^{2}-15 x+36}{(2 x-3)(x+4)}<0\)
\(\Rightarrow \frac{2 x^{2}+x-15}{(2 x-3)(x+4)}<0\)
\(\Rightarrow \frac{(2 x-5)(x+3)}{(2 x-3)(x+4)}<0 \Rightarrow x\)
\(\in(-4,-3) \cup(3 / 2,5 / 2)\)
\(\underset{-\infty}{\stackrel{+}{4}} \begin{array}{ccccc}-4 & -3 & + & + \\ \frac{3}{2} & \frac{5}{2} & +\infty\end{array}\)
```

856 (b)
We have, $\left(1+\omega^{2}\right)^{n}=\left(1+\omega^{4}\right)^{n}$
$\Rightarrow \quad(-\omega)^{n}=\left(-\omega^{2}\right)^{n}$
$\Rightarrow \quad \omega^{n}=1$
$\Rightarrow \quad n=3$ is least positive value of n
857 (d)
We have, $x-\frac{2}{x-1}=1-\frac{2}{x-1}$. If $x \neq 1$ multiplying each term by $(x-1)$, the given equation reduces to $x(x-1)=(x-1)$ or $(x-1)^{2}=0$ or $x=1$ which is not possible as considering $x \neq 1$.
Thus, given equation has no roots.
858 (b)
We have,
$x^{2}+x+1=(x-\omega)\left(x-\omega^{2}\right)$
Now,
$P(x)=g\left(x^{3}\right)+x h\left(x^{3}\right)$ is divisible by $x^{2}+x+1$
$\Rightarrow x=\omega$ and $x=\omega^{2}$ are roots of $P(x)=0$
$\Rightarrow P(\omega)=0, \quad P(\omega)^{2}=0$
$\Rightarrow g(1)+\omega h(1)=0$ and $g(1)+\omega^{2} h(1)=0$
$\Rightarrow g(1)=0=h(1)$
859 (a)
Let, $f(x)=x^{2 n}-1$
At $x= \pm 1, f(x)=0$
Hence, for no other real value of $x, f(x)$ is zero
860 (d)
We have, $z=a(1+i \lambda) \Rightarrow z=a+a i \lambda$
Since ai represents a point in the direction perpendicular to the join of O and a and (ai) λ is a variable point in this direction. Therefore, $z=a+1(a \lambda)$ is a point on a line through " a " perpendicular to the join of O and the point a ALITER $z=z_{1}+\lambda z_{2}, \lambda \in R$ represents a line passing thorough z_{1} and parallel to z_{2}. So, $z=a+a i \lambda$ is a line passing through a and
parallel to $a i$

861 (a)
Let A, B, C be the points represented by the numbers z_{1}, z_{2}, z_{3} and P be the point represented by z

Now, the four points A, B, C, P form a parallelogram in the following three orders.
(i) A, B, P, C
(ii) B, C, P, A and (iii) C, A, P, B

In case (i), the condition for A, B, P, C to form a parallelogram is $\overrightarrow{\mathbf{A B}}=\overrightarrow{\mathbf{C P}}$ ie, $z_{2}-z_{1}=z-$ z_{3} or $z=z_{2}+z_{3}-z_{1}$
Similarly, in case (ii) and (iii), $\overrightarrow{\mathbf{B C}}=\overrightarrow{\mathbf{A P}}$ ie,
$z_{3}-z_{2}=z-z_{1}$ or $z=z_{3}+z_{1}-z_{2}$
and $\overrightarrow{\mathbf{C A}}=\overrightarrow{\mathbf{B P}}$
ie, $z_{1}-z_{3}=z-z_{2}$
or $z=z_{1}+z_{2}-z_{3}$
862 (c)
Since a, b are roots of $x^{2}+a x+b=0$. Therefore, $a^{2}+a^{2}+b=0$ and, $b^{2}+a b+b=0$
$\Rightarrow b=-2 a^{2}$ and $b+a+1=0$
$\Rightarrow-2 a^{2}+a+1=0$
$\Rightarrow 2 a^{2}-a-1=0 \Rightarrow a=1$ or, $a=-1 / 2$
Now,
$a=1, \Rightarrow b=-2 \quad[\because b+a+1=0]$
and, $a=-1 / 2 \Rightarrow b=-1 / 2$
But, $a \neq b$. Therefore, $a=1, b=-2$
\therefore Least value of $x^{2}+a x+b$ is
$-\left(\frac{a^{2}-4 b}{4}\right)=-\left(\frac{1+8}{4}\right)=-\frac{9}{4}$
863 (a)
Given, $\left|\frac{z_{1}-3 z_{2}}{3-z_{1} \overline{Z_{2}}}\right|=1, \quad\left|z_{1}\right| \neq 3$
$\Rightarrow\left|z_{1}-3 z_{2}\right|=\left|3-z_{1} \overline{z_{2}}\right|$

$$
\left.=\frac{\left|z_{1}\right|}{\left|z_{2}\right|} \right\rvert\,
$$

$\Rightarrow \quad\left|z_{1}-3 z_{2}\right|^{2}=\left|3-z_{1} \overline{z_{2}}\right|^{2}$
$\Rightarrow \quad\left(z_{1}-3 z_{2}\right)\left(\overline{z_{1}}-3 \overline{z_{2}}\right)$ $=\left(3-z_{1} \overline{z_{2}}\right)\left(3-\overline{z_{1}} z_{2}\right) \quad\left[\because \overline{\overline{z_{2}}}\right.$ $=z_{2}$]
$\Rightarrow\left|z_{1}\right|^{2}-3 z_{1} \overline{z_{2}}-3 z_{2} \overline{z_{1}}+9\left|z_{2}\right|^{2}$
$=9-3 \overline{z_{1}} z_{2}-3 z_{1} \overline{z_{2}}+\left|z_{1}\right|^{2}\left|z_{2}\right|^{2}$
$\Rightarrow \quad\left|z_{1}\right|^{2}+9\left|z_{2}\right|^{2}-9-\left|z_{1}\right|^{2}\left|z_{2}\right|^{2}=0$
$\Rightarrow \quad\left(9-\left|z_{1}\right|^{2}\right)\left(1-\left|z_{2}\right|^{2}\right)=0$
$\Rightarrow\left|z_{1}\right|^{2}=9$ or $\left|z_{2}\right|^{2}=1$
$\Rightarrow \quad\left|z_{1}\right|=3$ or $\left|z_{2}\right|=1$
$\therefore \quad\left|z_{2}\right|=1 \quad\left[\right.$ but $\left|z_{1}\right| \neq 3$ given]
864 (c)
We have,
$\left|\begin{array}{ccc}1+i & 1-1 & i \\ 1-i & i & 1+i \\ i & 1+i & 1-i\end{array}\right|$
$=\left|\begin{array}{ccc}2 & 1 & i \\ 1 & 1+2 i & 1+i \\ 1+2 i & 2 & 1-i\end{array}\right|, \begin{gathered}\text { Applying } \\ C_{1} \rightarrow C_{1}+C_{2}, C_{2} \rightarrow C_{2}-\end{gathered}$
$=\left|\begin{array}{ccc}0 & 0 & i \\ -1-4 i & 3 i & 1+i \\ -3+2 i & 3+i & 1-i\end{array}\right|, C_{1} \rightarrow C_{1}-2 C_{2}, C_{2} \rightarrow C$
$=i\left|\begin{array}{cc}-1-4 i & 3 i \\ -3+2 i & 3+i\end{array}\right|=4+7 i$
865 (b)
Since, $\left|\frac{z}{z-i / 3}\right|=1$
$\Rightarrow 3|z|=|3 z-i|$
$\Rightarrow 3|x+i y|=|3(x+i y)-i| \quad[$ put $z=x+$ iy]
$\Rightarrow \quad 3 \sqrt{x^{2}+y^{2}}=\sqrt{(3 x)^{2}+(3 y-1)^{2}}$
$\Rightarrow 9 x^{2}+9 y^{2}=9 x^{2}+9 y^{2}+1-6 y$
$\Rightarrow y=\frac{1}{6}$
Which shows that z lies on a straight line.
866 (d)
$\underline{\log _{3} 5 \cdot \log _{25} 27 \cdot \log _{49} 7}$
$\log _{81} 3$
$=\frac{\frac{\log 5}{\log 3} \cdot \frac{3}{2} \cdot \frac{\log 3}{\log 5} \cdot \frac{1}{2}}{\frac{1}{4}}$
$=3$
867 (b)
Let α be a root of $x^{2}-x+k=0$. Then, 2α is a root of $x^{2}-x+3 k=0$
$\therefore \alpha^{2}-\alpha+3 k=0$ and $4 \alpha^{2}-2 \alpha+3 k=0$
$\Rightarrow \frac{\alpha^{2}}{-3 k+2 k}=\frac{\alpha}{4 k-3 k}=\frac{1}{-2+4}$
$\Rightarrow \alpha^{2}=-\frac{k}{2}$ and $\alpha=\frac{k}{2}$
Now,
$\alpha^{2}=(\alpha)^{2} \Rightarrow-\frac{k}{2}=\left(\frac{k}{2}\right)^{2} \Rightarrow k^{2}+2 k=0 \Rightarrow k$ $=0$ or, -2

868 (a)
Given equation can be rewritten as
$3 x^{2}-(a+c+2 b+2 d) x+a c+2 b d=0$
\therefore Discriminant, D
$=(a+c+2 b+2 d)^{2}-4 \cdot 3(a c+2 b d)$
$=\{(a+2 d)+(c+2 b)\}^{2}-12(a c+2 b d)$
$=\{(a+2 d)+(c+2 b)\}^{2}+4(a+2 d)(c+2 b)$
$-12(a c+2 b d)$
$=\{(a+2 d)+(c+2 b)\}^{2}-8 a c+8 a b-8 d c$
$-8 b d$
$=\{(a+2 d)+(c+2 b)\}^{2}+8(c-b)(d-a)$
Which is+ve, since $a<b<c<d$.
Hence, roots are real and distinct.
869 (c)
If $|z|=|z-2| \Rightarrow z+\bar{z}=2$
Also, $|z|=|z+2| \Rightarrow z+\bar{z}=-2$
Thus, $|z+\bar{z}|=2$
870 (b)
Here, $\alpha+\beta+\gamma=-2$...(i)
$\alpha \beta+\beta \gamma+\gamma \alpha=-3$
and $\alpha \beta \gamma=1$...(iii)
On solving Eq. (ii), we get
$\alpha^{2} \beta^{2}+\beta^{2} \gamma^{2}+\gamma^{2} \alpha^{2}+2 \alpha \beta \gamma(\alpha+\beta+\gamma)=9$
$\Rightarrow \alpha^{2} \beta^{2}+\beta^{2} \gamma^{2}+\gamma^{2} \alpha^{2}=9-2(1)(-2)=13$
Now, $\alpha^{-2}+\beta^{-2}+r^{-2}=\frac{\beta^{2} \gamma^{2}+\gamma^{2} \alpha^{2}+\alpha^{2} \beta^{2}}{(\alpha \beta \gamma)^{2}}=\frac{13}{1}=$ 13
871 (b)
Let $z=\frac{(1-i \sqrt{3})(2+2 i)}{(\sqrt{3}-i)}$
$=\frac{(2-2 \sqrt{3})+2 i(1+\sqrt{3})}{(\sqrt{3}-i)} \times \frac{(\sqrt{3}-i)}{(\sqrt{3}-i)}$
$=\frac{2 \sqrt{3}-6+2 i-2 \sqrt{3} i+2 \sqrt{3} i+6 i-2-2 \sqrt{3}}{3+1}$
$=\frac{-8+8 i}{4}=-2+2 i$
\therefore Magnitude of $z=\sqrt{4+4}=2 \sqrt{2}$
And amplitude of $z=\tan ^{-1}\left(\frac{2}{-2}\right)=\frac{3 \pi}{4}$
872 (b)
The discriminant D of the given equation is given by $D=(2 m-1)^{2}-4 m(m-2)=4 m+1$
If the given equation has rational roots, then the discriminant should be a perfect square of a rational number, say a
i. e., $4 m+1=a^{2}$
$\Rightarrow a^{2}$ is an integer $\quad[\because 4 m+1$ is an integer $]$
$\Rightarrow a$ is an integer
Now, $4 m+1=a^{2}$
$\Rightarrow 4 m=\left(a^{2}-1\right)$
$\Rightarrow 4 m=(a-1)(a+1)$
$\Rightarrow(a-1)(a+1)$ is an even integer of the form $4 m$
$\Rightarrow a-1$ and $a+1$ are even integers [\because
$4 m$ is an even integer]
$\Rightarrow a$ is an odd integer
Let $a=2 n+1$, where $n \in Z$. Then,
$a^{2}=4 m+1$
$\Rightarrow(2 n+1)^{2}=4 m+1 \Rightarrow m=n(n+1)$, where
$n \in Z$
873 (d)
Let $z_{1}=1-i, z_{2}=i$ and $z_{3}=1+i$
$\therefore \quad\left|z_{1}\right|=\sqrt{1^{2}+1^{2}}=\sqrt{2}$
$\left|z_{2}\right|=\sqrt{1^{2}}=1$
And $\left|z_{3}\right|=\sqrt{1^{2}+1^{2}}=\sqrt{2}$
Hence, given complex numbers form an isosceles triangle.
874 (c)
Let $A B C$ be the triangle such that the affixes of its vertices A, B, C are $1, \frac{1+i}{\sqrt{2}}$ and i respectively. Then,
$A B=\left|\frac{1+i}{\sqrt{2}}-1\right|=\left|\frac{1-\sqrt{2}}{\sqrt{2}}+\frac{1}{\sqrt{2}} i\right|=\sqrt{2-\sqrt{2}}$
$B C=\left|i-\frac{1+i}{\sqrt{2}}\right|=\left|\frac{-1}{\sqrt{2}}+i\left(1-\frac{1}{\sqrt{2}}\right)\right|=\sqrt{2-\sqrt{2}}$
and, $C A=|1-i|=\sqrt{2}$
Clearly $A B=B C$. So, the triangle is isosceles
875 (c)
Let $x=\left|a+b \omega+c \omega^{2}\right|$
$\Rightarrow \quad x^{2}=\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right)$
$\Rightarrow \quad x^{2}=\frac{1}{2}\left\{(a-b)^{2}+(b-c)^{2}+(c-a)^{2}\right\}$
...(i)
Since a, b, c are all integers but not all
simultaneously equal
\Rightarrow If $a=b$, then $a \neq c$ and $b \neq c$
As, difference of integers=integer
$\Rightarrow \quad(b-c)^{2} \geq 1$
[as minimum difference of two consecutive
integers is (± 1)]
Also, $(c-a)^{2} \geq 1$
\therefore From Eq. (i),
$x^{2}=\frac{1}{2}\left[(a-b)^{2}+(b-c)^{2}+(c-a)^{2}\right]$
$\geq \frac{1}{2}[0+1+1]$
$\Rightarrow \quad x^{2} \geq 1$
Hence, minimum value of x is 1
876 (d)
We have, $\omega^{1} \cdot \omega^{2} \cdot \omega^{3} \cdot \ldots \cdot \omega^{n}$
$=\omega^{1+2+3+\ldots+n}=\omega^{\frac{n(n+1)}{2}}=S_{n}$ (say)

On putting $n=1,2,3, \ldots, n$, we get
$S_{1}=\omega^{1}=\omega, S_{2}=\omega^{3}=1$,
$S_{3}=\omega^{6}=1, \ldots, S_{7}=\omega^{28}=\omega$
\therefore We always get 1 and ω
877 (a)
The two equations can be written as
$x^{2}(6 k+2)+r x+(3 k-1)=0$
and, $x^{2}(12 k+4)+p x+(6 k-2)=0$
Equation (ii) can be written as
$x^{2}(6 k+2)+\frac{p}{2} x+(3 k-1)=0$
Comparing (i) and (iii), we get
$r=\frac{p}{2} \Rightarrow 2 r-p=0$
878
(b)

Given, $\frac{3}{2+\cos \theta+i \sin \theta}=a+i b$
$\Rightarrow \frac{3[(2+\cos \theta)-i \sin \theta]}{(2+\cos \theta)^{2}+\sin ^{2} \theta}=a+i b$
$\Rightarrow \frac{3[2+\cos \theta-i \sin \theta]}{5+4 \cos \theta}=a+i b$
$\Rightarrow \quad a=\frac{3(2+\cos \theta)}{5+4 \cos \theta}, \quad b=-\frac{3 \sin \theta}{5+4 \cos \theta}$
$\therefore \quad(a-2)^{2}+b^{2}$

$$
\begin{aligned}
& =\left(\frac{6+3 \cos \theta}{5+4 \cos \theta}-2\right)^{2} \\
& +\frac{9 \sin ^{2} \theta}{(5+4 \cos \theta)^{2}} \\
& = \\
& =\frac{(-4-5 \cos \theta)^{2}+9 \sin ^{2} \theta}{(5+4 \cos \theta)^{2}} \\
& =\frac{16+25 \cos ^{2} \theta+40 \cos \theta+9 \sin ^{2} \theta}{(5+4 \cos \theta)^{2}} \\
& =\frac{(5+4 \cos \theta)^{2}}{(5+4 \cos \theta)^{2}}=1
\end{aligned}
$$

880 (a)
Let $z=x+i y$
$\Rightarrow \quad \bar{z}=x-i y$
and $\left(\bar{z}^{-1}\right)=\frac{1}{x-i y}=\frac{x+i y}{x^{2}+y^{2}}$
$\therefore \quad\left(\bar{z}^{-1}\right) \bar{z}=\frac{x+i y}{x^{2}+y^{2}} \times(x-i y)=1$
881 (b)
We know that, is
$\left|z_{1}+z_{2}\right|=\left|z_{1}\right|+\left|z_{2}\right|$, then $\arg \left(z_{1}\right)=\arg \left(z_{2}\right)$
$\because \quad\left|z^{2}+(-1)\right|=\left|z^{2}\right|+|-1|$
$\Rightarrow \quad \arg \left(z^{2}\right)=\arg (-1)$
$\Rightarrow \quad 2 \arg (z)=\pi \quad[\because \arg (-1)=\pi]$
$\Rightarrow \arg (z)=\frac{\pi}{2}$
$\Rightarrow \quad z$ lies on y-axis (imaginary axis).
882 (d)

The given equation is
$x^{2}-2 a x+a^{2}-1=0$
$\Rightarrow(x-a)^{2}-1^{2}=0 \Rightarrow x-a= \pm 1 \Rightarrow x$

$$
=a+1, a-1
$$

It is given that roots lie between 5 and 10
$\therefore 5<a-1<10$ and $5<a+1<10$
$\Rightarrow 6<a<11$ and $4<a<9 \Rightarrow 6<a<9$
883 (a)
Let $e^{\cos x}=y$
Then, $y-\frac{1}{y}=4 \Rightarrow y^{2}-4 y-1=0$
$\Rightarrow y=\frac{-(-4) \pm \sqrt{16-4 \times(-1)}}{2} \Rightarrow y=\frac{4 \pm 2 \sqrt{5}}{2}$
$\Rightarrow y=2+\sqrt{5}=e^{\cos x}[\because$ exponential is always positive]
$\Rightarrow \cos x=\log (2+\sqrt{5})$
884 (b)
Given, $z=-\bar{Z}$
$\Rightarrow \quad x+i y=-\overline{(x+\imath y)} \quad[$ Put $z=x+i y]$
$\Rightarrow \quad x+i y=-(x-i y)$
$\Rightarrow \quad x=0$
Hence, z is a purely imaginary.
886 (a)
We have,
$\omega=\frac{-1+i \sqrt{3}}{2}$ and $\omega^{2}=\frac{-1-i \sqrt{3}}{2}$
$\Rightarrow \frac{\omega^{2}}{\omega}=\frac{1+i \sqrt{3}}{1-i \sqrt{3}}$ and $\frac{\omega}{\omega^{2}}=\frac{1-i \sqrt{3}}{1+i \sqrt{3}}$
$\therefore\left(\frac{1+i \sqrt{3}}{1-i \sqrt{3}}\right)^{6}+\left(\frac{1-i \sqrt{3}}{1+i \sqrt{3}}\right)^{6}=\left(\frac{\omega^{2}}{\omega}\right)^{6}+\left(\frac{\omega}{\omega^{2}}\right)^{6}$
$=\omega^{6}+\frac{1}{\omega^{6}}=2$
887 (d)
It is given that α, β, γ are the roots of the equation
$x^{3}+q x+r=0$
$\therefore \alpha+\beta+\gamma=0 \Rightarrow \alpha+\beta=-\gamma, \beta+\gamma$

$$
=-\alpha, \gamma+\alpha=-\beta
$$

Hence,
$\sum \frac{\alpha}{\beta+\gamma}=\frac{\beta}{\gamma+\alpha}+\frac{\gamma}{\alpha+\beta}=-\frac{\alpha}{\alpha}-\frac{\beta}{\beta}-\frac{\gamma}{\gamma}=-3$
888 (c)
Here, $\alpha+\alpha^{2}=-1$
And $\alpha^{3}=1$
Now, $\alpha^{31}+\alpha^{62}=\alpha^{31}\left(1+\alpha^{31}\right)$
$\Rightarrow \alpha^{31}+\alpha^{62}=\alpha^{30} \alpha\left(1+\alpha^{30} . \alpha\right)$
$\Rightarrow \alpha^{31}+\alpha^{62}=\left(\alpha^{3}\right)^{10} . \alpha\left\{1+\left(\alpha^{3}\right)^{10} . \alpha\right\}$
$\Rightarrow \alpha^{31}+\alpha^{62}=\alpha(1+\alpha) \quad$ [from Eq. (ii)]
$\Rightarrow \alpha^{31}+\alpha^{62}=-1 \quad$ [from Eq. (i)]
And $\alpha^{31} . \alpha^{62}=\alpha^{93}$
$=\left(\alpha^{3}\right)^{31}=1$
\therefore Required equation is
$x^{2}-\left(\alpha^{31}+\alpha^{62}\right) x+\alpha^{31} . \alpha^{62}=0$
$\Rightarrow x^{2}+x+1=0$
889 (a)
If $\arg (z)=-\pi+\theta$
$\Rightarrow \quad \arg (\bar{z})=\pi-\theta$
$\arg (-\bar{Z})=-\theta$
$\arg (\bar{z})-\arg (-\bar{z})=\pi-\theta-(-\theta)=\pi-\theta+\theta$

$$
=\pi
$$

890 (c)
Given, $\frac{A B}{B C}=\sqrt{2}$
Consider the rotation about ' B ', we get
$\frac{z_{1}-z_{2}}{z_{3}-z_{2}}=\frac{\left|z_{1}-z_{2}\right|}{\left|z_{3}-z_{2}\right|} e^{i \pi / 4}$
$=\frac{A B}{B C} e^{i \pi / 4}$
$=\sqrt{2}\left(\frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}}\right)=1+i$
$\Rightarrow z_{1}-z_{2}=(1+i)\left(z_{3}-z_{2}\right)$
$\Rightarrow z_{1}-(1+i) z_{3}=z_{2}(1-1-i)$
$\Rightarrow i z_{2}=-z_{1}+(1+i) z_{3}$
$\Rightarrow z_{2}=i z_{1}-i(1+i) z_{3}$
$=z_{3}+i\left(z_{1}-z_{3}\right)$
891 (c)
We have, $z^{2}=\bar{z}$
On multiplying by z both sides (if $z \neq 0$),
$z^{3}=1$ has three solutions and $z=0$ is also a
solution
So, total number of solution is 4
892 (d)
Let $z=x+i y$. Then, $z^{2}=x^{2}-y^{2}+2$ ixy
$\therefore \operatorname{Im}\left(z^{2}\right)=k \Rightarrow 2 x y=k \Rightarrow x y=\frac{k}{2}$, which is a hyperbola
893 (c)
Let $z=x+i y$, then $\bar{z}=x-i y$
$\therefore \quad z+\bar{z}=2 x$ and $z-\bar{z}=2 i y$
Given, $(3+i)(z+\bar{z})-(2+i)(z-\bar{z})+14 i=0$
$\Rightarrow \quad(3+i) 2 x-(2+i) 2 i y+14 i=0$
$\Rightarrow 6 x+2 i x-4 y i+2 y+14 i=0+o i$
On comparing real and imaginary part, we get
$6 x+2 y=0$
And $2 x-4 y+14=0$
On solving, we get $x=-1, y=3$
$\therefore \quad z \bar{z}=|z|^{2}=\left(\sqrt{(-1)^{2}+(3)^{2}}\right)^{2}=10$
894 (d)
Given that, $\alpha+\beta=-2$ and $\alpha^{3}+\beta^{3}=-56$
$\Rightarrow(\alpha+\beta)\left(\alpha^{2}+\beta^{2}-\alpha \beta\right)=-56$
$\Rightarrow \alpha^{2}+\beta^{2}-\alpha \beta=28$
Also, $(\alpha+\beta)^{2}=(-2)^{2}$
$\Rightarrow \alpha^{2}+\beta^{2}+2 \alpha \beta=4$
$\Rightarrow 28+3 \alpha \beta=4$
$\Rightarrow \alpha \beta=-8$
\therefore Required equation is $x^{2}+2 x-8=0$
895 (c)
We have,
$|x-1| \leq 3$ and $|x-1| \geq 1$
$\Rightarrow 1-3 \leq x \leq 1+3$ and $x \leq 1-1$ or $x \geq 1+1$
$\Rightarrow-2 \leq x \leq 4$ and $(x \leq 0$ or, $x \geq 2)$
$\Rightarrow x \in[-2,0] \cup[2,4]$
896 (c)
We have,
$\left|\frac{z_{1}-z_{2}}{z_{1}+z_{2}}\right|=1$
$\Rightarrow \frac{z_{1}-z_{2}}{z_{1}+z_{2}}=\cos \alpha+i s \sin \alpha$
$\Rightarrow \frac{2 z_{1}}{-2 z_{2}}$
$=\frac{\cos \alpha+i \sin \alpha+1}{\cos \alpha-1+i \sin \alpha}\left[\begin{array}{c}\text { Applying componendo } \\ \text { and dividendo }\end{array}\right]$
$\Rightarrow \frac{z_{1}}{z_{2}}=i \cot \frac{\alpha}{2}$
$\Rightarrow i z_{1}=-\cot \frac{\alpha}{2} z_{2}$
$\Rightarrow k=-\cot \frac{\alpha}{2} \quad\left[\because i z_{1}=k z_{2}\right]$
$\Rightarrow \tan \alpha=\frac{2 k}{k^{2}-1} \quad\left[\because \tan \alpha=\frac{2 \tan \alpha / 2}{1-\tan ^{2} \alpha / 2}\right]$
$\Rightarrow \tan \alpha=\frac{-2 k}{1-k^{2}} \Rightarrow \alpha$

$$
=\tan ^{-1}\left(\frac{-2 k}{1-k^{2}}\right)=-2 \tan ^{-1} k
$$

$\Rightarrow \alpha=-2 \tan ^{-1} k$ is the angle between $z_{1}-z_{2}$ and $z_{1}+z_{2}$
897 (a)
Let $f(x)=a x^{2}+b x+c$
If the roots of $f(x)=0$ are imaginary, then we cannot say anything about b (i.e. it can be positive, negative or zero). So, options (b),(c) and (d) are not necessarily true
Further, if $a>0$, then the graph of $y=f(x)$ is above x-axis and hence
$f(x)>0$ for all $x \in R \Rightarrow f(0)>0 \Rightarrow c>0$
$\therefore a c>0$
Similarly, if $a<0$, then the graph of $y=f(x)$ is below x-axis and hence
$f(x)<0$ for all $x \in R \Rightarrow f(0)<0 \Rightarrow c<0$
$\therefore a c>0$
898 (a)
Since, α and β are the roots of the equation $x^{2}+p x+q=0$, therefore
$\alpha+\beta=-p$ and $\alpha \beta=q$

Now, $\left(\omega \alpha+\omega^{2} \beta\right)\left(\omega^{2} \alpha+\omega \beta\right)$
$=\alpha^{2}+\beta^{2}+\left(\omega^{4}+\omega^{2}\right) \alpha \beta \quad\left(\because \omega^{3}=1\right)$
$=\alpha^{2}+\beta^{2}-\alpha \beta \quad\left(\because \omega+\omega^{2}=-1\right)$
$=(\alpha+\beta)^{2}-3 \alpha \beta$
$=p^{2}-3 q$
Also, $\frac{\alpha^{2}}{\beta}+\frac{\beta^{2}}{\alpha}=\frac{\alpha^{3}+\beta^{3}}{\alpha \beta}$
$=\frac{(\alpha+\beta)^{3}-3 \alpha \beta(\alpha+\beta)}{\alpha \beta}$
$=\frac{p\left(3 q-p^{2}\right)}{q}$
\therefore The given expression $=\frac{\left(p^{2}-3 q\right)}{\frac{p\left(3 q-p^{2}\right)}{q}}=-\frac{q}{p}$

899 (a)

We have,
$z_{2}=\bar{z}_{1}$ and $z_{4}=\bar{z}_{3}$,
$\therefore z_{1} z_{2}=\left|z_{1}\right|^{2}$ and $z_{3} z_{4}=\left|z_{3}\right|^{2}$
Now, $\arg \left(\frac{z_{1}}{z_{4}}\right)+\arg \left(\frac{z_{2}}{z_{3}}\right)$
$=\arg \left(\frac{z_{1} z_{2}}{z_{4} z_{3}}\right)=\arg \left(\frac{\left|z_{1}\right|^{2}}{\left|z_{3}\right|^{2}}\right)=\arg \left(\left|\frac{z_{1}}{z_{3}}\right|^{2}\right)=0$
900 (a)
Given, $\quad x=\frac{1}{2}\left(\sqrt{3}+\frac{1}{\sqrt{3}}\right)$
$\therefore x^{2}=\frac{1}{4}\left(3+\frac{1}{3}+2\right)=\frac{4}{3}$
Now, $\frac{\sqrt{x^{2}-1}}{x-\sqrt{x^{2}-1}} \times \frac{x+\sqrt{x^{2}-1}}{x+\sqrt{x^{2}-1}}$
$=\frac{x \sqrt{x^{2}-1}+\left(x^{2}-1\right)}{1}$
$=\frac{1}{2}\left(\sqrt{3}+\frac{1}{\sqrt{3}}\right) \sqrt{\frac{4}{3}-1}+\left(\frac{4}{3}-1\right)$
$=\frac{1}{2}\left(\frac{4}{\sqrt{3}}\right) \frac{1}{\sqrt{3}}+\frac{1}{3}=\frac{2}{3}+\frac{1}{3}=1$
901 (b)
$|P Q|=\sqrt{(4-1)^{2}+(1-6)^{2}}=\sqrt{9+25}=\sqrt{34}$
$|Q R|=\sqrt{(1+4)^{2}+(6-3)^{2}}=\sqrt{25+9}=\sqrt{34}$
$|R S|=\sqrt{(-4+1)^{2}+(3+2)^{2}}=\sqrt{9+25}=\sqrt{34}$
$|S P|=\sqrt{(-1-4)^{2}+(-2-1)^{2}}=\sqrt{25+9}$

$$
=\sqrt{34}
$$

$\Rightarrow \quad|P Q|=|Q R|=|R S|=|S P|$
Now, $|P R|=\sqrt{(-8)^{2}+(2)^{2}}=\sqrt{68}$
And, $|Q S|=\sqrt{(-2)^{2}+(-8)^{2}}=\sqrt{68}$
Hence, it is a square.
902 (c)
The given expression is meaningful for $x \neq-1$
Let $y=\frac{x^{2}-6 x+5}{x^{2}+2 x+1}$. Then,
$x^{2}(y-1)+2(y+3) x+y-5=0$

$$
\begin{gathered}
\Rightarrow 4(y+3)^{2}-4(y-1)(y-5) \geq 0 \quad[\because x \in R \\
\quad \therefore \text { Disc } \geq 0] \\
\Rightarrow\left(y^{2}+6 y+9\right)-\left(y^{2}-6 y+5\right) \geq 0 \Rightarrow y \\
\geq-1 / 3
\end{gathered}
$$

Hence, the given expression last value of the is $-\frac{1}{3}$
903 (d)
Given that $x^{2}-3 x+2$ be a factor of $x^{4}-p x^{2}+$
$q=0$...(i)
$\Rightarrow\left(x^{2}-3 x+2\right)=0$
$\Rightarrow(x-2)(x-1)=0$
$\Rightarrow x=2,1$
On putting these values in Eq. (i), we get
$4 p-q-16=0$
and $p-q-1=0$
On solving Eqs.(ii) and (iii), we get
$p=5$ and $q=4$
$\Rightarrow(p, q)=(5,4)$
904 (a)
The RHS of the given equation is greater than or equal to 2 as it is the sum of a positive number and its reciprocal while the LHS is less than or equal to 2 . Therefore, the equation holds true only when each side is equal to 2 .
LHS is equal to 2 when $x=\log \pi / 2$ while RHS is equal to 2 when $x=0$
Thus, the given equation has no solution
906 (c)
Let $y=\frac{x^{2}-3 x+4}{x^{2}+3 x+4}$
$\Rightarrow(y-1) x^{2}+3(y+1) x+4(y-1)=0$
$\because x$ is real.
$\therefore D \geq 0$
$\Rightarrow 9(y+1)^{2}-16(y-1)^{2} \geq 0$
$\Rightarrow-7 y^{2}+50 y-7 \geq 0$
$\Rightarrow-7 y^{2}-50 y+7 \leq 0$
$\Rightarrow(y-7)(7 y-1) \leq 0 \quad$...(i)
$\Rightarrow y \leq 7$ and $y \geq \frac{1}{7} \Rightarrow \frac{1}{7} \leq y \leq 7$
Hence, maximum value is 7 and minimum value is $\frac{1}{7}$.
907 (d)
Using $i^{3}=-i^{5}$ and $i^{7}=-i$, we can write the given expression as

$$
\begin{aligned}
& (1+i)^{n_{1}}+(1-i)^{n_{1}}+(1+i)^{n_{2}}+(1-i)^{n_{2}} \\
& =2\left[{ }^{n_{1}} C_{0}+{ }^{n_{1}} C_{2} i^{2}+{ }^{n_{1}} C_{4} i^{4}+\ldots\right] \\
& \quad \quad+2\left[{ }^{n_{2}} C_{0}+{ }^{n_{2}} C_{2} i^{2}+{ }^{n_{2}} C_{4} i^{4}+\ldots\right] \\
& =2\left[{ }^{n_{1}} C_{0}-{ }^{n_{1}} C_{2}+{ }^{n_{1}} C_{4}-\ldots\right] \\
& \quad+2\left[{ }^{n_{2}} C_{0}-{ }^{n_{2}} C_{2}+{ }^{n_{2}} C_{4}-\ldots\right]
\end{aligned}
$$

This is real number, if the values of n_{1} and n_{2} is greater than zero

908 (d)
We have,
$a=\cos \frac{2 \pi}{7}+i \sin \frac{2 \pi}{7}$
$\Rightarrow a^{7}=\left(\cos \frac{2 \pi}{7}+i \sin \frac{2 \pi}{7}\right)^{7}$

$$
=\cos 2 \pi+i \sin 2 \pi=1+0 i=1
$$

Now,
$\alpha+\beta=a+a^{2}+a^{3}+a^{4}+a^{5}+a^{6}$
$\Rightarrow \alpha+\beta=a\left\{\frac{1-a^{6}}{1-a}\right\}=\frac{a-a^{7}}{1-a}=\frac{a-1}{1-a}=-1 \quad$ [

$$
\left.\because a^{7}=1\right]
$$

and, $\alpha \beta=\left(a+a^{2}+a^{4}\right)\left(a^{3}+a^{5}+a^{6}\right)$
$\Rightarrow \alpha \beta=a^{4}\left(1+a+a^{3}\right)\left(1+a^{2}+a^{3}\right)$
$\Rightarrow \alpha \beta=a^{4}\left(1+a^{2}+a^{3}+a+a^{3}+a^{4}+a^{3}+a^{5}\right.$ $+a^{6}$)
$\Rightarrow \alpha \beta=a^{4}\left(1+a+a^{2}+3 a^{3}+a^{4}+a^{5}+a^{6}\right)$
$\Rightarrow \alpha \beta=\alpha^{4}+a^{5}+a^{6}+3 a^{7}+a^{8}+a^{9}+a^{10}$
$\Rightarrow \alpha \beta=3+a+a^{2}+a^{3}+a^{4}+a^{5}$

$$
+a^{6}\left[\begin{array}{c}
\because a^{7}=1 \therefore a^{8}=a^{7} a=a \\
a^{9}=a^{7} a^{2}=a^{2} \text { and } \\
a^{10}=a^{7} a^{3}=a^{3}
\end{array}\right]
$$

$\Rightarrow \alpha \beta=3+a\left(\frac{1-a^{6}}{1-a}\right)=3+\frac{a-a^{7}}{1-a}$
$=3+\frac{a-1}{1-a}\left[\because a^{7}=1\right]$
$\Rightarrow \alpha \beta=3-1=2$
So, the required equation is
$x^{2}-(\alpha+\beta) x+\alpha \beta=0 \Rightarrow x^{2}+x+2=0$
909 (c)
Here, $D \geq 0$
$\Rightarrow \cos ^{2} p-4(\cos p-1) \sin p \geq 0$
$\Rightarrow \cos ^{2} p-4 \cos p \sin p+4 \sin p \geq 0$
$\Rightarrow(\cos p-2 \sin p)^{2}+4 \sin p(1-\sin p) \geq 0$
...(i)
Since, $(1-\sin p) \geq 0$ for all real p and $\sin p>0$ for $0<p<\pi$
$\therefore 4 \sin p(1-\sin p) \geq 0$ when $0<p<\pi$
910 (d)
We have,
$5 x-1<(x+1)^{2}<7 x-3$
$\Rightarrow 5 x-1<x^{2}+2 x+1$ and $x^{2}+2 x+1<7 x-$
3
$\Rightarrow x^{2}-3 x+2>0$ and $x^{2}-5 x+4<0$
$\Rightarrow(x-2)(x-1)>0$ and $(x-4)(x-1)<0$
$\Rightarrow x \in(2,4) \Rightarrow x=3 \quad[\because x$ is an integer $]$
911 (b)
Let the roots be α and $1 / \alpha$. Then,
Product of roots $=\frac{k}{5} \Rightarrow \alpha\left(\frac{1}{\alpha}\right)=\frac{k}{5} \Rightarrow k=5$
912 (a)

We have,
Sum of the coefficients $=0$
Therefore, $x=1$ is a rational root of the given equation.
Let the other rational robe α. Then,
Product of the roots $=\frac{2 a-1}{a+2}$
$\Rightarrow \alpha \times 1=\frac{2 a-1}{a+2} \Rightarrow \alpha=\frac{2 a-1}{a+2}$
Clearly, α is rational for all rational values of a except-2
913 (c)
Let $f(x)=(k-2) x^{2}+8 x+k+4$
If $f(x)=0$ has both negative roots, then we must have
(i) Discriminant >0
(ii) Vertex of $y=f(x)$ is on left side of y-axis
(iii) $(k-2) f(0)>0$

Now,
(i) Discriminant >0
$\Rightarrow 64-4(k-2)(k+4)>0$
$\Rightarrow k^{2}+2 k-24<0 \Rightarrow-6<k<4$
(ii) Vertex is on left side of y-axis
$\Rightarrow-\frac{8}{2(k-2)}<0 \Rightarrow k-2>0 \Rightarrow k>2$...(ii)
(iii) $(k-2) f(0)>0$
$\Rightarrow(k-2)(k+4)>0 \Rightarrow k<-4$ or $k>2$
From (i),(ii) and (iii), we obtain $k \in(2,4)$
Hence, $k=3$
914 (b)
We have,
$a x^{2}+c=b x$
$\Rightarrow\left(a x^{2}+c\right)^{2}=b^{2} x^{2} \Rightarrow(a y+c)^{2}=b^{2} y$, where $y=x^{2}$
Thus, $(a y+c)^{2}=b^{2} y$ has its root as α^{2}, β^{2}
915 (b)
Given that $3^{2 x^{2}-7 x+7}=3^{2} \Rightarrow 2 x^{2}-7 x+7=2$
$\Rightarrow 2 x^{2}+7 x+5=0$
Now, $D=b^{2}-4 a c$
$=(-7)^{2}-4 \times 2 \times 5$
$=49-40=9>0$
Hence, it has two real roots.
916 (d)
Let α and 3α be the roots of the given equation, then
$\therefore \alpha+3 \alpha=4 \alpha=-b$
And $\alpha .3 \alpha=3 \alpha^{2}=3$
$\Rightarrow \alpha= \pm 1$
$\therefore b= \pm 4$
917 (b)

$$
\begin{aligned}
& \sqrt{2+\sqrt{5}-\sqrt{6-3 \sqrt{5}+\sqrt{14-6 \sqrt{5}}}} \\
& =\sqrt{2+\sqrt{5}-\sqrt{6-3 \sqrt{5}+\sqrt{(9+5-6 \sqrt{5})}}} \\
& =\sqrt{2+\sqrt{5}-\sqrt{6-3 \sqrt{5}+\sqrt{(3-\sqrt{5})^{2}}}} \\
& =\sqrt{2+\sqrt{5}-\sqrt{9-4 \sqrt{5}}} \\
& =\sqrt{2+\sqrt{5}-\sqrt{(-2+\sqrt{5})^{2}}} \\
& =\sqrt{2+\sqrt{5}+2-\sqrt{5}}=2
\end{aligned}
$$

918 (b)
Let $x=\cos A+i \sin A, y=\cos B+i \sin B, z=$ $\cos C+i \sin C$. Then,
$x+y+z=(\cos A+\cos B+\cos C)$
$+i(\sin A+\sin B+\sin C)$
$\Rightarrow x+y+z=0+i 0=0$
$\Rightarrow x^{3}+y^{3}+z^{3}=3 x y z$
$\Rightarrow(\cos 3 A+i \sin 3 A)+(\cos 3 B+i \sin 3 B)$

$$
\begin{aligned}
& +(\cos 3 C+i \sin 3 C) \\
& =3[\cos (A+B+C) \\
& +i \sin (A+B+C)]
\end{aligned}
$$

$\Rightarrow \cos 3 A+\cos 3 B+\cos 3 C=3 \cos (A+B+C)$ and, $\sin 3 A+\sin 3 B+\sin 3 C=3 \sin (A+B+C)$
It is given that $A+B+C=180^{\circ}$
$\therefore \cos 3 A+\cos 3 B+\cos 3 C=3 \cos 180^{\circ}=-3$
919 (b)
We have,
$|\overrightarrow{B D}|=|(4+2 i)-(1-2 i)|=\sqrt{9+16}=5$
Let the affix of A be $z=x+i y$. The affix of the mid point of $B D$ is $(5 / 2,0)$.
Since the diagonals of a parallelogram bisect each other. Therefore, the affix of the point of intersection of the diagonals is $(5 / 2,0)$

We have,
$\overrightarrow{E A}=2 \overrightarrow{E B} e^{i \pi / 2}$
$\Rightarrow \overrightarrow{E A}=2 \overrightarrow{E B}(-i)$
$\Rightarrow z-(5 / 2+0 i)=2\left(-\frac{3}{2}-2 i\right)(-i)=-\frac{3}{2}+3 i$
920 (a)
$-x^{2}+a x+a=0$
$\Rightarrow x^{2}-a x-a=0$
Let $f(x)=x^{2}-a x-a$

$f(1)<0$
$\Rightarrow 1-a-a<0$
$\Rightarrow 1<2 a$
$\Rightarrow a>\frac{1}{2}$
921 (c)
Let α and β are the roots of the given equation
Then, $\alpha+\beta=-\frac{b}{a}$ and $\alpha \beta=\frac{c}{a}$
Also given, $\alpha+\beta=\frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}$
$=\frac{(\alpha+\beta)^{2}-2 \alpha \beta}{\alpha^{2} \beta^{2}}$
$\Rightarrow\left(-\frac{b}{a}\right)=\left(\frac{-b / a}{c / a}\right)^{2}-\frac{2}{c / a}$
$\Rightarrow-\frac{b}{a}=\left(\frac{b}{c}\right)^{2}-\frac{2 a}{c}$
$\Rightarrow \frac{2 a}{c}=\frac{b}{c}\left(\frac{b}{c}+\frac{c}{a}\right)$
$\Rightarrow \frac{2 a}{b}=\frac{b}{c}+\frac{c}{a}$
$\Rightarrow \frac{c}{a}, \frac{a}{b}, \frac{b}{c}$ are in AP
$\Rightarrow \frac{a}{c}, \frac{b}{a}, \frac{c}{b}$ are in HP
922 (a)
Since roots are real.

$$
\begin{aligned}
& \therefore\{2(b c+a d))^{2}=4\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right) \\
& \Rightarrow 4 b^{2} c^{2}+4 a^{2} d^{2}+8 a b c d \\
& \quad=4 a^{2} c^{2}+4 a^{2} d^{2}+4 b^{2} c^{2} \\
& \quad+4 b^{2} d^{2}
\end{aligned} \quad \begin{aligned}
& \Rightarrow 4 a^{2} d^{2}+4 b^{2} c^{2}-8 a b c d=0 \\
& \Rightarrow 4(a d-b c)^{2}=0 \\
& \Rightarrow a d=b c \\
& \Rightarrow \frac{a}{b}=\frac{c}{d}
\end{aligned}
$$

923 (b)

$$
\begin{aligned}
& \left(1-\omega+\omega^{2}\right)^{5}+\left(1+\omega-\omega^{2}\right)^{5} \\
& =(-2 \omega)^{5}+\left(-2 \omega^{2}\right)^{5} \\
& =-32 \omega^{3} \omega^{2}-32\left(\omega^{3}\right)^{3} \omega \\
& =-32\left(\omega^{2}+\omega\right)=32
\end{aligned}
$$

924 (b)
Clearly, $|z+1|=|z-1|$
Represents the perpendicular bisector of the
segment joining $A(-1,0)$ and $B(1,0)$ i.e. y-axis $\arg \left(\frac{z-1}{z+1}\right)=\frac{\pi}{4}$ represents the segment of the circle passing through A and B and lying above x-axis such that angle in the segment is $\pi / 4$
It is evident from the figure that point Q satisfies both the conditions

Let the affix of Q be $z=i y, y \in R$. Then,
$\arg \left(\frac{z-1}{z+1}\right)=\frac{\pi}{4}$
$\Rightarrow \arg \left(\frac{i y-1}{i y+1}\right)=\frac{\pi}{4}$
$\Rightarrow \arg \left(\frac{y+i}{y-i}\right)=\frac{\pi}{4}$
$\Rightarrow \arg \left(\frac{y^{2}-1}{y^{2}+1}+\frac{2 i y}{y^{2}+1}\right)=\frac{\pi}{4}$
$\Rightarrow \tan ^{-1}\left(\frac{2 y}{y^{2}-1}\right)=\frac{\pi}{4}$
$\Rightarrow \frac{2 y}{y^{2}-1}=1 \Rightarrow y-2 y-1=0 \Rightarrow y=\sqrt{2}+1$ $\because y>0]$
Hence, $z=(\sqrt{2}+1) i$
925 (c)
It is given that α, β are the roots of the equation
$x^{2}-a x+b=0$
$\therefore \alpha+\beta=a$ and $\alpha \beta=b$
$\Rightarrow \alpha^{2}+\beta^{2}=a^{2}-2 b$
$\Rightarrow \alpha^{2}+\beta^{2}=a(\alpha+\beta)-2 b$
$\Rightarrow A_{2}$
$=a A_{1}$
$-A_{0} b \quad\left[\begin{array}{c}\because A_{n}=\alpha^{n}+\beta^{n} \quad \therefore A_{2}=\alpha^{2}+\beta^{2} \\ A_{1}=\alpha+\beta \text { and } A_{0}=2\end{array}\right]$
Clearly, it is obtained from option (c) by replacing n by 2
Now,
$a A_{n}-b A_{n-1}=(\alpha+\beta)\left(\alpha^{n}+\beta^{n}\right)-\alpha \beta\left(\alpha^{n-1}\right.$

$$
\left.+\beta^{n-1}\right)
$$

$\Rightarrow a A_{n}-b A_{n-1}=\alpha^{n+1}+\beta^{n+1}=A_{n+1}$
926 (a)
Let α, β, γ are the roots of the given equation.
Then,
$\alpha+\beta+\gamma=-p$
$\alpha \beta+\beta \gamma+\gamma \alpha=-q$

And $\alpha \beta \gamma=-r$
Now, $p q=(\alpha+\beta+\gamma)(\alpha \beta+\beta \gamma+\gamma \alpha)$
$=(0+\gamma)[\alpha \beta+\gamma(\alpha+\beta)](\because \alpha+\beta=0$ is given $)$
$=\alpha \beta \gamma$
$=-r$
927 (b)
$\because x^{4}-8 x^{2}-9=0$
$\Rightarrow x^{4}-9 x^{2}+x^{2}-9=0$
$\Rightarrow x^{2}\left(x^{2}-9\right)+1\left(x^{2}-9\right)=0$
$\Rightarrow\left(x^{2}+1\right)\left(x^{2}-9\right)=0$
$\Rightarrow x= \pm i, \pm 3$
928 (b)
$\frac{1+a}{2}=\frac{1}{2}\left(1+\cos \frac{4 \pi}{3}+i \sin \frac{4 \pi}{3}\right)$
$=\frac{1}{2} 2 \cos \frac{2 \pi}{3}\left(\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}\right)$
$=-\frac{1}{2}\left(\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}\right)$
$\therefore\left(\frac{1+a}{2}\right)^{3 n}=\left(\frac{-1}{2}\right)^{3 n}\left(\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}\right)^{3 n}$

$$
=\frac{(-1)^{n}}{2^{3 n}}
$$

929 (b)
Now, $a^{2}-3 a+2=0$
$\Rightarrow a=1,2$
and $a^{2}-5 a+6=0$
$\Rightarrow a=2,3$...(ii)
$\Rightarrow a-2-r=0$
At $a=2 \quad$ [common value from Eqs. (i) and (ii)] $r=0$
So, $a+r=2$
930 (c)
Given, $\left(a+\frac{b}{10}\right)^{x}=\left(\frac{a}{10}+\frac{b}{100}\right)^{y}=1000$
Let $a=0$
And $b=1$
$\therefore \quad\left(\frac{1}{10}\right)^{x}=\left(\frac{1}{100}\right)^{y}=1000$
$\Rightarrow 10^{-x}=10^{-2 y}=10^{3}$
$\Rightarrow \quad x=-3, \quad y=-\frac{3}{2}$
Now, $\frac{1}{x}-\frac{1}{y}=-\frac{1}{3}+\frac{2}{3}=\frac{1}{3}$
931 (c)
We have,
$z_{1}-z_{4}=z_{2}-z_{3}$
$\Rightarrow z_{1}+z_{3}=z_{2}+z_{4}$
$\Rightarrow \frac{z_{1}+z_{3}}{2}=\frac{z_{2}+z_{4}}{2}$
\Rightarrow Affix of the mid point of $A C$ is same as that of BD
$\Rightarrow A C$ and $B D$ bisect each other

Also, $\arg \left(\frac{z_{4}-z_{1}}{z_{2}-Z_{1}}\right)= \pm \frac{\pi}{2}$
$\Rightarrow \angle B A D=\frac{\pi}{2}$
Thus, $A B C D$ is a rectangle and hence a cyclic quadrilateral also
932 (a)
We have,
$x^{2}+2 \leq 3 x \leq 2 x^{2}-5$
$\Rightarrow x^{2}-3 x+2 \leq 0$ and $2 x^{2}-3 x-5 \geq 0$
$\Rightarrow(x-1)(x-2) \leq 0$ and $(2 x-5)(x+1) \geq 0$
$\Rightarrow 1 \leq x \leq 2$ and $x \leq-1$ or $x \geq \frac{5}{2}$
There is no value of x satisfying these conditions
933 (a)
Let $f(x)=-3+x-x^{2}$
Now, $D=1^{2}-4(3)=-11<0$
Here, coefficient of $x^{2}<0$
$\therefore f(x)<0$
Thus, LHS of the given equation is always positive whereas the RHS is always less than zero
Hence, the given equation has no solution
934 (c)
$4.9^{x-1}=3 \sqrt{\left(2^{2 x+1}\right)}$
$\Rightarrow \quad 3^{2 x-2-1}=2^{\frac{2 x+1}{2}-2}$
$\Rightarrow 3^{2 x-3}=2^{\frac{2 x-3}{2}}$
$\Rightarrow 2^{\frac{2 x-3}{2}}=\left(3^{\frac{2 x-3}{2}}\right)^{2}$
$\Rightarrow 2 x-3=0$
$\therefore x=\frac{3}{2}$

935 (c)

Given equation is $x^{2}+(2+\lambda) x-\frac{1}{2}(1+\lambda)=0$.
Let α and β are the roots of the given equation.
$\Rightarrow \alpha+\beta=-(2+\lambda)$ and $\alpha \beta=-\left(\frac{1+\lambda}{2}\right)$
Now, $\alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta$
$\Rightarrow \alpha^{2}+\beta^{2}=[-(2+\lambda)]^{2}+2 \frac{(1+\lambda)}{2}$
$\Rightarrow \alpha^{2}+\beta^{2}=\lambda^{2}+4+4 \lambda+1+\lambda=\lambda^{2}+5 \lambda+5$
Now, we take the option simultaneously.
\Rightarrow It is minimum for $\lambda=\frac{1}{2}$.
936 (a)
Since, $2+i \sqrt{3}$ is a root of equation $x^{2}+p x+q=$ 0 . Therefore, $2-i \sqrt{3}$ will be other root.

Now, Sum of the roots $=(2+i \sqrt{3})+(2-i \sqrt{3}$
) $=-p$
$\Rightarrow 4=-p$
Product of roots $=(2+i \sqrt{3})+(2-i \sqrt{3})=q$
$\Rightarrow 7=q$
Hence, $(p, q)=(-4,7)$
937 (b)
Given equation is
$4^{x}-3^{x-\frac{1}{2}}=3^{x+\frac{1}{2}}-2^{2 x-1}$
$\Rightarrow 2^{2 x}+2^{2 x-1}=3^{x+\frac{1}{2}}+3^{x-\frac{1}{2}}$
$\Rightarrow 2^{2 x}\left(1+\frac{1}{2}\right)=3^{x-\frac{1}{2}}(3+1)$
$\Rightarrow 2^{2 x} \cdot \frac{3}{2}=3^{x-\frac{1}{2}} .4$
$\Rightarrow 2^{2 x-3}=3^{x-\frac{3}{2}}$
Taking log on both sides, we get
$(2 x-3) \log 2=\left(x-\frac{3}{2}\right) \log 3$
$\Rightarrow 2 x \log 2-3 \log 2=x \log 3-\frac{3}{2} \log 3$
$\Rightarrow x \log 4-x \log 3=3 \log 2-\frac{3}{2} \log 3$
$\Rightarrow x \log \left(\frac{4}{3}\right)=\log 8-\log 3 \sqrt{3}$
$\Rightarrow \log \left(\frac{4}{3}\right)^{x}=\log \frac{8}{3 \sqrt{3}}$
$\Rightarrow\left(\frac{4}{3}\right)^{x}=\frac{8}{3 \sqrt{3}}$
$\Rightarrow\left(\frac{4}{3}\right)^{x}=\left(\frac{4}{3}\right)^{3 / 2}$
$\therefore x=\frac{3}{2}$
938 (d)
We have
$x^{1 / 3}-7 x^{1 / 3}+10=0$
$\Rightarrow x^{1 / 3}=2, x^{1 / 3}=5 \Rightarrow x^{1 / 3}=2, x^{1 / 3}=5 \Rightarrow x$

$$
=8,125
$$

939 (b)
Let $P=\left(1+z_{0}\right)\left(1+z_{0}^{2}\right)\left(1+z_{0}^{2} \ldots\left(1+z_{0}^{2^{n}}\right)\right.$
Then,
$\left(1-z_{0}\right) P=\left(1-z_{0}^{2^{n+1}}\right)$
$\Rightarrow P=\frac{1-z_{0}^{2^{n+1}}}{1-z_{0}}=\frac{1-\left(z_{0}^{2}\right)^{2^{n}}}{1-z_{0}}$
$\Rightarrow P=\frac{1-\left(-\frac{i}{2}\right)^{2 n}}{\frac{1+i}{2}} \quad\left[\because z_{0}=\frac{1-i}{2} \therefore z_{0}^{2}=-\frac{i}{2}\right]$
$\Rightarrow P=\frac{2}{1+i}\left\{1-\frac{(-1)^{2^{n}}(i)^{2^{n}}}{2^{2 n}}\right\}$
$\Rightarrow P=\left\{\begin{array}{l}(1-i)\left(1-\frac{1}{2^{2^{n}}}\right), \text { if } n>1 \\ (1-i)\left(1+\frac{1}{4}\right), \text { if } n=1\end{array}\right.$
$\Rightarrow P=\left\{\begin{array}{l}(1-i)\left(1-\frac{1}{2^{2^{n}}}\right), \text { if } n>1 \\ \frac{5}{4}(1-i) \quad, \text { if } n=1\end{array}\right.$
940 (d)
Since, $A B C$ is a right angled isosceles triangle
$\therefore \quad B C=A C$ and $\angle C=\frac{\pi}{2}$

By rotation about C in anti-clockwise sense
$C B=C A e^{i \pi / 2}$
$\Rightarrow\left(z_{2}-z_{3}\right)=\left(z_{1}-z_{3}\right) e^{i \pi / 2}$
$=i\left(z_{1}-z_{3}\right) \quad\left(\because e^{i \pi / 2}=i\right)$
On squaring both sides, we get
$\left(z_{2}-z_{3}\right)^{2}=-\left(z_{1}-z_{3}\right)^{2}$
$\Rightarrow z_{2}^{2}+z_{3}^{2}-2 z_{2} z_{3}=-z_{1}^{2}-z_{3}^{2}+2 z_{1} z_{3}$
$\Rightarrow \quad z_{1}^{2}+z_{2}^{2}-2 z_{1} z_{2}$
$=2 z_{1} z_{3}+2 z_{2} z_{3}-2 z_{3}^{2}-2 z_{1} z_{2}$
$\Rightarrow\left(z_{1}-z_{2}\right)^{2}=2\left[\left(z_{1} z_{3}-z_{3}^{2}\right)-\left(z_{1} z_{2}-z_{2} z_{3}\right)\right]$
$\Rightarrow\left(z_{1}-z_{2}\right)^{2}=2\left(z_{1}-z_{3}\right)\left(z_{3}-z_{2}\right)$
941 (b)
Given equation is
$(a+1) x^{2}-(a+2) x+(a+3)=0$
Since, roots are equal in magnitude and opposite in sign
\therefore Coefficient of x is zero ie, $a+2=0$
$\Rightarrow a=-2$
\therefore Equation is
$(-2+1) x^{2}-(-2+2) x+(-2+3)=0$
$\Rightarrow \quad-x^{2}+1=0$
$\Rightarrow \quad x= \pm 1$
Only option (b) i.e., $\pm \frac{1}{2} a$ satisfies Eqs. (i) and (ii)
942 (d)
Given, $\log _{27} \log _{3} x=\frac{1}{3}$
$\Rightarrow\left(\log _{3} x\right)=(27)^{1 / 3}=3$
$\Rightarrow x=(3)^{3}$
$\Rightarrow x=27$
943 (d)
$\because \arg (z-3 i)=\arg (x+i y-3 i)=\frac{3 \pi}{4}$
$\Rightarrow x<0, y-3>0 \quad\left(\because \frac{3 \pi}{4}\right.$ is in II quadrant $)$
$\frac{y-3}{x}=\tan \frac{3 \pi}{4}=-1$
$\Rightarrow y=-x+3 \ldots$ (i)
$\forall x<0$ and $y>3$
and $\arg (2 z+1-2 i)=\arg [(2 x+1)+$
$i 2 y-2=\pi 4$
$\Rightarrow 2 x+1>0,2 y-2>0 \quad\left(\because \frac{\pi}{4}\right.$ is in I quadrant $)$
$\therefore \frac{2 y-2}{2 x+1}=\tan \frac{\pi}{4}=1$
$\Rightarrow 2 y-2=2 x+1$
$\Rightarrow y=x+\frac{3}{2}, \forall x>\frac{-1}{2}, y>1$
From Eqs.(i) and(ii)

It is clear from the graph that there is no point of intersection
944 (a)
We have,
$x^{2}+2 \leq 3 x \leq 2 x^{2}-5$
$\Rightarrow x^{2}+2 \leq 3 x$ and $3 x \leq 2 x^{2}-5$
$\Rightarrow x^{2}-3 x+2 \leq 0$ and $2 x^{2}-3 x-5 \geq 0$
$\Rightarrow(x-1)(x-2) \leq 0$ and $(2 x-5)(x+1) \geq 0$
$\Rightarrow 1 \leq x \leq 2$ and $x \in(-\infty,-1] \cup[5 / 2, \infty)$
But, there is no value of x satisfying these two conditions
945 (c)
$a x^{2}+2 b x+c=0$
$\Rightarrow a x^{2}+2 \sqrt{a c} x+c=0 \quad\left[\because b^{2}=a c\right]$
$\Rightarrow(\sqrt{a x}+\sqrt{c})^{2}=0 \Rightarrow x=\frac{-\sqrt{c}}{\sqrt{a}}, \frac{-\sqrt{c}}{\sqrt{a}}$
$\Rightarrow a \alpha=a \beta$
Now, $c x^{2}+2 b x+a=0$
$\Rightarrow c x^{2}+2 \sqrt{a c} x+a=0$
$\Rightarrow(\sqrt{c} x+\sqrt{a})^{2}=0$
$\Rightarrow \quad x=\frac{-\sqrt{a}}{\sqrt{c}}=\frac{-\sqrt{a}}{\sqrt{c}} \Rightarrow c \gamma=c \delta$
$\therefore \quad a \alpha=a \beta=c \gamma=c \delta$

946 (c)
The function $f(x)=\log \left(x^{2}-x-2\right)$ is defined for $x^{2}-x-2>0 \Rightarrow x<-1$ or $x>2$...(i)
Now,
$9 x^{2}-18|x|+5=0$
$\Rightarrow 9|x|^{2}-18|x|+5=0$
$\Rightarrow(3|x|-1)(3|x|-5)=0$
$\Rightarrow|x|=1,5 / 3 \Rightarrow|x|= \pm 1, \pm 5 / 3$
Thus, roots of $x^{2}-18|x|+5=0$ are
$\pm 5 / 3, \pm 1 / 3$.
Clearly, a root of the above equation lying in the domain of the definition of $\log \left(x^{2}-x-2\right)$ is
$-5 / 3$
947 (d)
Since, α and β are the roots of
$\lambda x^{2}+(1-\lambda) x+5=0$
$\therefore \alpha+\beta=\frac{\lambda-1}{\lambda}, \alpha \beta=\frac{5}{\lambda}$
Since, $\frac{\alpha}{\beta}+\frac{\beta}{\alpha}=\frac{4}{5}$
$\Rightarrow \frac{(\alpha+\beta)^{2}-2 \alpha \beta}{\alpha \beta}=\frac{4}{5}$
$\Rightarrow \frac{(\lambda-1)^{2}-10 \lambda}{5 \lambda}=\frac{4}{5}$
$\Rightarrow \lambda^{2}-16 \lambda+1=0$
Now, $\lambda_{1}+\lambda_{2}=16$ and $\lambda_{1} \cdot \lambda_{2}=1$
$\therefore \frac{\lambda_{1}}{\lambda_{2}^{2}}+\frac{\lambda_{2}}{\lambda_{1}^{2}}=\frac{\lambda_{1}^{3}+\lambda_{2}^{3}}{\left(\lambda_{1} \lambda_{2}\right)^{2}}$
$=\frac{\left(\lambda_{1}+\lambda_{2}\right)^{3}-3 \lambda_{1} \lambda_{2}\left(\lambda_{1}+\lambda_{2}\right)}{(1)^{2}}$
$=(16)^{3}-3 \times 1(16)$
$=4048$
948 (a)
Given equation $\frac{\alpha}{x-\alpha}+\frac{\beta}{x-\beta}=1$ can be rewritten as $x^{2}-2(\alpha+\beta) x+3 \alpha \beta=0$
Let its roots be α^{\prime} and $-\alpha^{\prime}$.
$\Rightarrow \alpha^{\prime}+\left(-\alpha^{\prime}\right)=2(\alpha+\beta)$
$\Rightarrow 0=2(\alpha+\beta)$
$\Rightarrow \alpha+\beta=0$
949 (a)
Let $C=\cos \theta, S=\sin \theta$. Then,
$\frac{1+C+i S}{1+C-i S}=\frac{1+\cos \theta+i \sin \theta}{1+\cos \theta-i \sin \theta}$
$\Rightarrow \frac{1+C+i S}{1+C-i S}=\frac{2 \cos ^{2} \frac{\theta}{2}+2 i \sin \frac{\theta}{2} \cos \frac{\theta}{2}}{2 \cos ^{2} \frac{\theta}{2}-2 i \sin \frac{\theta}{2} \cos \frac{\theta}{2}}$
$\Rightarrow \frac{1+C+i S}{1+C-i S}=\frac{\cos \frac{\theta}{2}+i \sin \frac{\theta}{2}}{\cos \frac{\theta}{2}-i \sin \frac{\theta}{2}}=\frac{e^{i \theta / 2}}{e^{-i \theta / 2}}$
$\Rightarrow \frac{1+C+i S}{1+C-i S}=e^{i \theta}=\cos \theta+i \sin \theta$

950 (c)
Given, $|z-3|=|z-5|$
$\Rightarrow \quad(z-3)(\bar{z}-3)=(z-5)(\bar{z}-5)$
[on squaring both sides]
$\Rightarrow \quad 2 \bar{z}+2 z=16 \quad \Rightarrow \quad z+\bar{z}=8$
$\Rightarrow \quad 2 x=8 \quad \Rightarrow \quad x=4$
Hence, locus of z is a straight line parallel to y-axis

We have,
$\frac{4 x+3}{2 x-5}<6$
$\Rightarrow \frac{4 x+3-12 x+30}{2 x-5}<0 \Rightarrow \frac{-8\left(x-\frac{33}{8}\right)}{2\left(x-\frac{5}{2}\right)}<0$
$\Rightarrow \frac{x-\frac{33}{8}}{x-\frac{5}{2}}>0 \Rightarrow x \in\left(-\infty, \frac{5}{2}\right) \cup\left(\frac{33}{8}, \infty\right)$
952 (b)
Let α, β be the roots of a quadratic and α^{2}, β^{2} be the roots of another quadratic. Since the quadratics remain same.
$\therefore \alpha+\beta=\alpha^{2}+\beta^{2}$
and, $\alpha \beta=\alpha^{2} \beta^{2}$
Now,
$\alpha \beta=\alpha^{2} \beta^{2}$
$\Rightarrow \alpha \beta(\alpha \beta-1)=0 \Rightarrow \alpha=0$ or, $\beta=0$ or, $\alpha \beta=1$
If $\alpha=0$ then
$\beta=\beta^{2} \quad[$ Putting $\alpha=0$ in (i)]
$\Rightarrow \beta(1-\beta)=0 \Rightarrow \beta=0, \beta=1$
Thus, we get two sets of values of α and β viz.
$\alpha=0, \beta=0$ and $\alpha=0, \beta=1$
If $\alpha \beta=1$, then
$\alpha+\frac{1}{\alpha}=\alpha^{2}+\frac{1}{\alpha^{2}} \quad\left[\right.$ Putting $\beta=\frac{1}{\alpha}$ in (i) $]$
$\Rightarrow \alpha+\frac{1}{\alpha}=\left(\alpha+\frac{1}{\alpha}\right)^{2}-2$
$\Rightarrow\left(\alpha+\frac{1}{\alpha}\right)^{2}-\left(\alpha+\frac{1}{\alpha}\right)-2=0$
$\Rightarrow \alpha+\frac{1}{\alpha}=2$ or, $\alpha+\frac{1}{\alpha}=-1$
$\Rightarrow \alpha=1$ or $\alpha=\omega, \omega^{2}$
Putting $\alpha=1$ in $\alpha \beta=1$, we get $\beta=1$
Putting $\alpha=\omega$ in $\alpha \beta=1$, we get $\beta=\omega^{2}$
Putting $\alpha=\omega^{2}$ in $\alpha \beta=1$, we get $\beta=\omega$
Thus, we get four pairs of values of α and β
viz. $\alpha=0, \beta=0 ; \alpha=0, \beta=1 ; \alpha=\omega, \beta=\omega^{2} ; \alpha$ $=1, \beta=1$
Hence, there are four quadratic equations which remains unchanged by squaring their roots
953 (d)
Given, $\left|z-z_{1}\right|=\left|z-z_{2}\right|$

It is perpendicular bisector of line joining z_{1} and z_{2}
954 (a)
Here, $\alpha+\beta=-a, \quad \alpha \beta=b$
$\therefore \frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}=\frac{\alpha^{2}+\beta^{2}}{(\alpha \beta)^{2}}$
$=\frac{(\alpha+\beta)^{2}-2 \alpha \beta}{(\alpha \beta)^{2}}=\frac{a^{2}-2 b}{b^{2}}$
955 (b)
Given, $(x+i y)^{1 / 3}=a-i b$
And $\frac{x}{a}-\frac{y}{b}=k\left(a^{2}-b^{2}\right)$
$\therefore \quad x+i y=(a-i b)^{3}$

$$
=\left(a^{3}-3 a b^{2}\right)+i\left(b^{3}-3 a^{2} b\right)
$$

$\therefore \quad x=a^{3}-3 a b^{2}, \quad y=b^{3}-3 a^{2} b$
$\Rightarrow \frac{x}{a}=a^{2}-3 b^{2}, \quad \frac{y}{b}=b^{2}-3 a^{2}$
$\therefore \frac{x}{a}-\frac{y}{b}=a^{2}-3 b^{2}-b^{2}+3 a^{2}=4\left(a^{2}-b^{2}\right)$
But $\frac{x}{a}-\frac{y}{b}=k\left(a^{2}-b^{2}\right) \quad$ [given]
$\therefore \quad k=4$
956 (a)
$z_{1}+z_{2}=-1$ and $z_{1} z_{2}=\frac{b}{3}$
As z_{1}, z_{2} and origin form an equilateral triangle,
we have, $z_{1}^{2}+z_{2}^{2}+z_{3}^{2}=z_{1} z_{2}+z_{2} z_{3}+z_{3} z_{1}$
$\Rightarrow z_{1}^{2}+z_{2}^{2}+0=z_{1} z_{2}+0+0$
$\Rightarrow\left(z_{1}+z_{2}\right)^{2}=3 z_{1} z_{2}$
$\Rightarrow 1=b$
957 (a)
$\frac{1}{\log _{2} n!}+\frac{1}{\log _{3} n!}+\frac{1}{\log _{4} n!}+\ldots+\frac{1}{\log _{2002} n!}$
$=\frac{\log 2}{\log n!}+\frac{\log 3}{\log n!}+\ldots+\frac{\log 2002}{\log n!}$
$=\frac{\log (2.3 .4 \ldots 2002)}{\log n!}$
$=\frac{\log 2002!}{\log n!}$
$=\frac{\log 2002!}{\log 2002!}=1 \quad[\because n=2002$, given $]$
958 (c)
Since, $x^{2}+p x+1$ is a factor of $a x^{3}+b x+c$
$\therefore a x^{3}+b x+c=\left(x^{2}+p x+1\right)(l x+m)$
On equating the coefficients of like powers of x, we get
$l=a, m+l p=0, b=p m+l$ and $c=m$
$\Rightarrow c+a p=0$ and $b=p c+a$
$\Rightarrow b=-\frac{c^{2}}{a}+a \Rightarrow a^{2}-c^{2}=a b$
959 (c)
We have,
$\left|\frac{z-12}{z-8 i}\right|=\frac{5}{3}$ and $\left|\frac{z-4}{z-8}\right|=1$
Let $z=x+i y$. Then,
$\left|\frac{z-12}{z-8 i}\right|=\frac{5}{3}$
$\Rightarrow 3|z-12|=5|z-8 i|$
$\Rightarrow 3|(x-12)+i y|=5|x+(y-8) i|$
$\Rightarrow 9(x-12)^{2}+9 y^{2}=25 x^{2}+25(y-8)^{2}$
...(i)
and, $\left|\frac{z-4}{z-8}\right|=1$
$\Rightarrow|z-4|=|z-8|$
$\Rightarrow|x-4+i y|=|x-8+i y|$
$\Rightarrow(x-4)^{2}+y^{2}=(x-8)^{2}+y^{2}$
$\Rightarrow x=6$
Putting $x=6$ in (i), we get
$y^{2}-25 y-136=0 \Rightarrow y=17,8$
Hence, $z=6+17 i$ or, $z=6+8 i$
960
(d)

Given equation is $e^{\sin x}-e^{-\sin x}-4=0$
Let $e^{\sin x}=y$, then given equation can be written as
$y^{2}-4 y-1=0 \Rightarrow y=2 \pm \sqrt{5}$
But the value of $y=e^{\sin x}$ is always positive so we take only $y=2+\sqrt{5}$
$\Rightarrow \log _{e} y=\log _{e}(2+\sqrt{5})$
$\Rightarrow \sin x=\log _{e}(2+\sqrt{5})>1$
Which is impossible since $\sin x$ cannot be greater than 1.
Hence, we cannot find any real value of x which satisfies each given equation.
961 (a)
We have,
$\sqrt{z}= \pm\left[\sqrt{\frac{1}{2}\{|z|+\operatorname{Re}(z)\}} \pm i \sqrt{\frac{1}{2}\{|z|-\operatorname{Re}(z)\}}\right]$,
$\therefore \sqrt{i}= \pm\left(\frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}}\right) \Rightarrow \sqrt{2} i= \pm(1+i)$
Hence, $a=\sqrt{2 i}= \pm(1+i)$
962 (b)
Since, $2+i \sqrt{3}$ is a root of the equation
$x^{2}+p x+q=0$, then the other root will be
$2-i \sqrt{3}$
$\therefore 2+i \sqrt{3}+2-i \sqrt{3}=-p$
$\Rightarrow \quad p=-4$
And $(2+i \sqrt{3})(2-i \sqrt{3}=q)$
$\Rightarrow \quad q=7$
\therefore The value of (p, q) is $(-4,7)$
963 (a)
Equation of circle whose centre is z_{0} and radius is
r, is $\left|z-z_{0}\right|^{2}=r^{2}$
$\Rightarrow\left(z-z_{0}\right)\left(\overline{\left.z-z_{0}\right)}=r^{2}\right.$
$\Rightarrow\left(z-z_{0}\right)\left(\bar{z}-\bar{z}_{0}\right)=r^{2}$
$\Rightarrow z \bar{z}-z \bar{z}_{0}-\bar{z} z_{0}+z_{0} \bar{z}_{0}=r^{2}$
964 (a)
$\sum_{n=0}^{\infty}\left(\frac{2 i}{3}\right)^{n}=1+\left(\frac{2 i}{3}\right)+\left(\frac{2 i}{3}\right)^{2}+\left(\frac{2 i}{3}\right)^{3}+\ldots$
$=\frac{1}{1-\frac{2 i}{3}}=\frac{3}{3-2 i} \times \frac{3+2 i}{3+2 i}$
$=\frac{9+6 i}{13}$
965 (c)
Given, $y=2^{1 / \log _{x}(8)}=2^{\log _{8}(x)}$
$\Rightarrow y=2^{\log _{2} \sqrt[3]{x}}=\sqrt[3]{x}$
$\Rightarrow x=y^{3}$
966 (a)
Since, $1, \alpha, \alpha^{2}, \ldots, \alpha^{n-1}$ are $n, n^{\text {th }}$ roots of unity
$\therefore \sum_{r=0}^{n-1} \alpha^{r}=0$ and, $\sum_{r=0}^{n-1}(\bar{\alpha})^{r}=0$
Now,
$\sum_{r=0}^{n-1}\left|z_{1}+\alpha^{r} z_{2}\right|^{2}$
$=\sum_{r=0}^{n-1}\left(z_{1}+\alpha^{r} z_{2}\right)\left(\bar{z}_{1}+\bar{\alpha}^{r} \bar{z}_{2}\right)$
$=\sum_{r=0}^{n-1}\left(\left|z_{1}\right|^{2}+|\alpha|^{2 r}\left|z_{2}\right|^{2}+z_{1} \bar{\alpha}^{r} \bar{z}_{2}+\bar{z}_{1} \alpha^{r} z_{2}\right)$
$=\sum_{r=0}^{n-1}\left\{\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+z_{1} \bar{z}_{2}(\bar{\alpha})^{r}+\bar{z}_{1} z_{2} \alpha^{r}\right\}$
$=\sum_{r=0}^{n-1}\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+z_{1} \bar{z}_{2} \sum_{r=0}^{n-1}(\bar{\alpha})^{r}+\bar{z}_{1} z_{2} \sum_{r=0}^{n-1} \alpha^{r}$
967 (d)
Since 8,2 are roots of $x^{2}+a x+\beta=0$ and 3,3
are roots of $x^{2}+\alpha x+b=0$. Therefore,
$8+2=-a, 8 \times 2=\beta$ and $3+3=-\alpha, 3 \times 3=b$
$\Rightarrow a=-10, \beta=16, \alpha=-6$ and $b=9$
Thus, $x^{2}+a x+b=0$, becomes $x^{2}-10 x+9=$ 0 whose roots are 1,9
968 (a)
We have,
$\sqrt{z}=\left\{\sqrt{\frac{|z|+\operatorname{Re}(z)}{2}}+i \sqrt{\frac{|z|+\operatorname{Re}(z)}{2}}\right\}$, if $\operatorname{Im}(z)$ >0
and $\sqrt{z}= \pm\left\{\sqrt{\frac{|z|+\operatorname{Re}(z)}{2}}\right.$

$$
\left.-i \sqrt{\frac{|z|-\operatorname{Re}(z)}{2}}\right\}, \text { if } \operatorname{Im}(z)<0
$$

$\therefore \sqrt{2 i}= \pm(1+i)$ and $\sqrt{-2 i}= \pm(1-i)$
$\Rightarrow \sqrt{2 i}-\sqrt{-2 i}= \pm 2$
$\Rightarrow|\sqrt{2 i}-\sqrt{-2 i}|=2$
969 (c)

$$
\begin{equation*}
a+b=-a \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
a b=b \tag{ii}
\end{equation*}
$$

From Eq. (ii)
$a=1$ $\because b \neq 0$
From Eq. (i)
$b=-2$
970 (a)
$z=(1-i \cot 8)^{3}$
$=\operatorname{cosec}^{3} 8(\sin 8-i \cos 8)^{3}$
$=\operatorname{cosec}^{3} 8\left(\cos \left(\frac{\pi}{2}-8\right)-i \sin \left(\frac{\pi}{2}-8\right)\right)^{3}$
$=\operatorname{cosec}^{3} 8\left(\cos \left(\frac{3 \pi}{2}-24\right)-i \sin \left(\frac{3 \pi}{2}-24\right)\right)$
$=\operatorname{cosec}^{3} 8 \cdot e^{-i\left(\frac{3 \pi}{2}-24\right)}$
$=\operatorname{cosec}^{3} 8 \cdot e^{i\left(24-\frac{3 \pi}{2}\right)}$
971 (a)
Since, one root of the equation
$x^{2}+p x+q=0$ is $2+\sqrt{3}$, then the other root will be
$2-\sqrt{3}$
\therefore Since of roots $2+\sqrt{3}+2-\sqrt{3}=-p$
$\Rightarrow p=-4$
And product of roots
$(2+\sqrt{3})(2-\sqrt{3})=q$
$\Rightarrow q=1$
972 (a)
$7 \log _{2} \frac{16}{15}+5 \log _{2} \frac{25}{24}+3 \log _{2} \frac{81}{80}$
$=7\left[4 \log _{2} 2-\log _{2} 3-\log _{2} 5\right]$

$$
+5\left[2 \log _{2} 5-\log _{2} 3-3 \log _{2} 2\right]
$$

$$
+3\left[4 \log _{2} 3-4 \log _{2} 2-\log _{2} 5\right]
$$

$=\log _{2} 2=1$
973 (c)
$\because \sqrt{5 x^{2}-8 x+3}-\sqrt{5 x^{2}-9 x+4}$

$$
=\sqrt{2 x^{2}-2 x}-\sqrt{2 x^{2}-3 x+1}
$$

Also, $\left(5 x^{2}-8 x+3\right)-\left(5 x^{2}-9 x+4\right)=$
$\left(2 x^{2}-2 x\right)-\left(2 x^{2}-3 x+1\right)$
$\Rightarrow x-1=x-1$
$\Rightarrow x=1$ is the required value.

974 (c)
We know that $a x^{2}+b x+c \geq 0$ if $a>0$ and $b^{2}-$ $4 a c \leq 0$
Now, $m x-1+\frac{1}{x} \geq 0$
$\Rightarrow \frac{m x^{2}-x+1}{x} \geq 0$
$\Rightarrow m x^{2}-x+1 \geq 0$ and $x>0$
Now, $m x^{2}-x+1 \geq 0$, if $m>0$ and $1-4 m \leq 0$ or if $m>0$ and $m \geq \frac{1}{4}$.
Thus, the minimum value of m is $\frac{1}{4}$.
975 (a)
Given, $\log _{e}\left(\frac{a+b}{2}\right)=\frac{1}{2}\left(\log _{e} a+\log _{e} b\right)$
$\Rightarrow \quad \frac{a+b}{2}=\sqrt{a b}$
$\Rightarrow a+b-2 \sqrt{a b}=0$
$\Rightarrow \quad \sqrt{a}=\sqrt{b}$
$\Rightarrow a=b$
976 (a)
Let α be a negative common root of equations
$a x^{2}+b x+c=0$ and $c x^{2}+b x+a=0$. Then,
$a \alpha^{2}+b \alpha+c=0$ and $c \alpha^{2}+b \alpha+a=0$
$\Rightarrow(a-c) \alpha^{2}+(c-a)=0 \quad$ [On subtraction]
$\Rightarrow \alpha^{2}-1=0 \quad[\because a \neq c]$
$\Rightarrow \alpha= \pm 1$
$\Rightarrow \alpha=-1 \quad[\because \alpha<0]$
Putting $\alpha=-1$ in $a \alpha^{2}+b \alpha+c=0$, we get $a-b+c=0$
977 (a)
We have,
$\frac{(1+i)^{2 n}-(1-i)^{2 n}}{\left(1+\omega^{4}-\omega^{2}\right)\left(1-\omega^{4}+\omega^{2}\right)}$
$=\frac{\left\{(1+i)^{2}\right\}^{n}-\left\{(1-i)^{2}\right\}^{n}}{\left(1+\omega^{4}-\omega^{2}\right)\left(1-\omega^{4}+\omega^{2}\right)}$
$=\frac{(2 i)^{n}-(-2 i)^{n}}{\left(1+\omega-\omega^{2}\right)\left(1-\omega+\omega^{2}\right)}$
$=\frac{(2 i)^{n}-(-2 i)^{n}}{\left(-2 \omega^{2}\right)(-2 \omega)}$
$=2^{n-2}\left\{i^{n}-(-i)^{n}\right\}=\left\{\begin{array}{cc}0 & \text {, if } n \text { is even } \\ 2^{n-1} i^{n}, \text { if } n \text { is odd }\end{array}\right.$
978 (c)
Let $\alpha,-\alpha$ and β be the roots of $x^{3}-m x^{2}+3 x-$ $2=0$. Then,
$\alpha+(-\alpha)+\beta=m \Rightarrow \beta=m$
But, $\beta=m$ is a root of $x^{3}-m x^{2}+3 x-2=0$
$\therefore m^{3}-m^{3}+3 m-2=0 \Rightarrow m=\frac{2}{3}$

979 (c)
Given, $\frac{x+1}{(2 x-1)(3 x+1)}=\frac{A}{(2 x-1)}+\frac{B}{(3 x+1)}$
$\Rightarrow \quad(x+1)=A(3 x+1)+B(2 x-1)$
$\Rightarrow(x+1)=x(3 A+2 B)+A-B$
On equating the coefficient of x and constant on both sides, we get
$3 A+2 B=1$
And $A-B=1$
On solving Eqs. (i) and (ii), we get
$A=\frac{3}{5}, \quad B=-\frac{2}{5}$
$\therefore 16 A+9 B=16\left(\frac{3}{5}\right)+9\left(-\frac{2}{5}\right)=6$
980 (b)
$x+i y=\frac{3}{2+\cos \theta+i \sin \theta}$
$=\frac{3(2+\cos \theta-i \sin \theta)}{(2+\cos \theta)^{2}+\sin ^{2} \theta}$
$=\frac{6+3 \cos \theta-3 i \sin \theta}{4+\cos ^{2} \theta+4 \cos \theta+\sin ^{2} \theta}$
$=\left[\frac{6+3 \cos \theta}{5+4 \cos \theta}\right]+i\left[\frac{-3 \sin \theta}{5+4 \cos \theta}\right]$
On equating the real and imaginary parts on both sides, we get
$x=\frac{3(2+\cos \theta)}{(5+4 \cos \theta)}, \quad y=\frac{-3 \sin \theta}{5+4 \cos \theta}$
$\therefore x^{2}+y^{2}=\frac{9}{(5+4 \cos \theta)^{2}}[4$
$\left.+\cos ^{2} \theta+4 \cos \theta+\sin ^{2} \theta\right]$
$=\frac{9}{5+4 \cos \theta}=4\left[\frac{6+3 \cos \theta}{5+4 \cos \theta}\right]-3$
$=4 x-3$
981 (b)
We have,
$\left|z_{1}\right|=\left|z_{2}\right|=\cdots=\left|z_{n}\right|=1$
$\Rightarrow z_{1} \bar{z}_{1}=z_{2} \overline{z_{2}}=\cdots=z_{n} \bar{z}_{n}=1$
$\Rightarrow \bar{z}_{1}=\frac{1}{z_{1}}, \bar{z}_{2}=\frac{1}{z_{2}}, \ldots, \bar{z}_{n}=\frac{1}{z_{n}}$
Now,
$\left|z_{1}+z_{2}+\cdots+z_{n}\right|=\left|\overline{z_{1}+z_{2}+\cdots+z_{n}}\right|$
$\Rightarrow\left|z_{1}+z_{2}+\cdots+z_{n}\right|=\left|\bar{z}_{1}+\bar{z}_{2}+\cdots+\bar{z}_{n}\right|$
$\Rightarrow\left|z_{1}+z_{2}+\cdots+z_{n}\right|=\left|\frac{1}{z_{1}}+\frac{1}{z_{2}}+\cdots+\frac{1}{z_{n}}\right|$
982 (d)
Let $f(x)=x^{3}+a x^{2}+b$. If $f(x)=0$ will have a root of order 2 , then $f(x)=0$ and $f^{\prime}(x)=0$ have a common root
We have, $f^{\prime}(x)=3 x^{2}+2 a x$
$\therefore f^{\prime}(x)=0 \Rightarrow x=0, x=-\frac{2 a}{3}$
Clearly, $x=0$ is not a root of $f(x)=0$. Therefore,
$x=-\frac{2 a}{3}$ is a common root
Putting $x=-\frac{2 a}{3}$ in $x^{3}+a x^{2}+b=0$, we get
$\left(-\frac{2 a}{3}\right)^{3}+a\left(-\frac{2 a}{3}\right)^{2}+b=0$
$\Rightarrow-8 a^{3}+12 a^{3}+27 b=0 \Rightarrow 4 a^{3}+27 b=0$
983 (b)
Given equation is $2 x^{3}-x^{2}-22 x-24=0$
On putting $x=2,-2$ only $x=-2$ satisfies this equation
So, $x=-2$ is a root of this equation and from the given options only (b) has this root
984 (a)
Let $z_{1}=a+i b=(a, b)$
and $z_{2}=c-i d=(c,-d)$
where $a>0$ and $d>0$
Given, $\left|z_{1}\right|=\left|z_{2}\right|$
$\Rightarrow a^{2}+b^{2}=c^{2}+d^{2}$
Now, $\frac{z_{1}+z_{2}}{z_{1}-z_{2}}=\frac{(a+i b)+(c-i d)}{(a+i b)-(c-i d)}$
$=\frac{(a+c)+i(b-d)}{(a-c)+i(b+d)}$
$=\frac{[(a+c)+i(b-d)]}{[(a-c)+i(b+d)]} \frac{[(a-c)-i(b+d)]}{[(a-c)-i(b+d)]}$
$=\frac{\left(a^{2}+b^{2}\right)-\left(c^{2}+d^{2}\right)-2(a d+b c) i}{a^{2}+c^{2}-2 a c+b^{2}+d^{2}+2 b d}$
$=\frac{-(a d+b c) i}{a^{2}+b^{2}-a c+b d} \quad[$ from Eq. (i) $]$
$\therefore \frac{\left(z_{1}+z_{2}\right)}{\left(z_{1}-z_{2}\right)}$ is purely imaginary
Alternative, Assume any two complex number satisfying both conditions, $z_{1} \neq z_{2}$ and $\left|z_{1}\right|=\left|z_{2}\right|$ Let $z_{1}=2+i, z_{2}=1-2 i$,
$\therefore \frac{z_{1}+z_{2}}{z_{1}-z_{2}}=\frac{3-i}{1+3 i} \times \frac{1-3 i}{1-3 i}=-\frac{10 i}{10}=-i$
\therefore It is purely imaginary
985 (b)
The roots of the equation $a x^{2}+b x+c=0$ are given by
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
(i) Let $b^{2}-4 a c>0, b>0$

Now, if $a>0, c>0, b^{2}-4 a c<b^{2}$
\Rightarrow The roots are negative.
(ii) Let $b^{2}-4 a c<0$, then the roots are given by $x=\frac{-b \pm i \sqrt{\left(4 a c-b^{2}\right)}}{2 a} \quad(i=\sqrt{-1})$
Which are imaginary and have negative part.
$(\because b>0)$
\therefore In each case the root have negative real part.
986 (c)
Since, the value of function at different points are
$f(-2)<0, f(-1)>0, f(0)>0, f(1)<0, f(2)$

$$
>0
$$

Hence, one root lie in $(-2,1)$.
$\therefore 2$ nd root lie in $(0,1)$ and last root lie in $(1,2)$.
$\therefore[\alpha]=-2,[\beta]=0,[\gamma]=1$
$\therefore[\alpha]+[\beta]+[\gamma]=-1$
987 (d)
Given, $\arg (x-a+i y)=\frac{\pi}{4}$
$\Rightarrow \tan ^{-1}\left(\frac{y}{x-a}\right)=\frac{\pi}{4}$
$\Rightarrow \quad \frac{y}{x-a}=\tan \frac{\pi}{4}$
$\Rightarrow \quad y=x-a$
Which is an equation of straight line.
988 (a)
The given equation $z^{3}+2 z^{2}+2 z+1=0$ can be rewritten as $(z+1)\left(z^{2}+z+1\right)=0$. Its roots $-1, \omega$ and ω^{2}
Let $f(z)=z^{1985}+z^{100}+1$
Put $z=-1, \omega$ and ω^{2} respectively, we have
$f(-1)=(-1)^{1985}+(-1)^{100}+1 \neq 0$
Therefore, -1 is not a root of the equation
$f(z)=0$
Again, $f(\omega)=\omega^{1985}+\omega^{100}+1$
$=\left(\omega^{3}\right)^{661} \omega^{2}+\left(\omega^{3}\right)^{33} \omega+1$
$=\omega^{2}+\omega+1=0$
Therefore, ω is a root of the equation $f(z)=0$
Similarly, $f\left(\omega^{2}\right)=0$
Hence, ω and ω^{2} are the common roots
989 (a)
We know that,
$\left|\left|z_{1}\right|-\left|z_{2}\right|\right| \leq\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|$
So, greatest and least value of $z_{1}+z_{2}$,
where $z_{1}=24+7 i$ and $\left|z_{2}\right|=6$ are 31 and 9 respectively
990 (b)
Here, $\alpha+\beta=-\frac{b}{a}$ and $\alpha \beta=\frac{c}{a}$
Sum of the given roots $=\frac{1}{\alpha}+\frac{1}{\beta}=\frac{\alpha+\beta}{\alpha \beta}=-\frac{b}{c}$
And product of the given roots $=\frac{1}{\alpha} \cdot \frac{1}{\beta}=\frac{a}{c}$
\therefore Required equation is
$x^{2}-($ sum of roots $) x+$ product of roots $=0$
$\Rightarrow x^{2}+\frac{b}{c} x+\frac{a}{c}=0$
$\Rightarrow c x^{2}+b x+a=0$
991 (d)
$\log _{2} \log _{2} \log _{4} 256+2 \log _{\sqrt{2}} 2$
$=\log _{2} \log _{2} \log _{4}(4)^{4}+2 \frac{1}{\log _{2} \sqrt{2}}$
$=\log _{2} \log _{2} 4+\frac{4}{\log _{2} 2}$
$=\log _{2} 2+4=1+4=5$
992 (d)
For collinear points $\left|\begin{array}{lll}z_{1} & \overline{z_{1}} & 1 \\ z_{2} & \overline{z_{2}} & 1 \\ z_{3} & \overline{z_{3}} & 1\end{array}\right|=0$
$\therefore \quad\left|\begin{array}{lll}1+2 i & 1-2 i & 1 \\ 2+3 i & 2-3 i & 1 \\ 3+4 i & 3-4 i & 1\end{array}\right|=\left|\begin{array}{lll}4 i & 1-2 i & 1 \\ 6 i & 2-3 i & 1 \\ 8 i & 3-4 i & 1\end{array}\right|\left[C_{1}\right.$

$$
\left.\rightarrow C_{1}-C_{2}\right]
$$

$=\left|\begin{array}{ccc}-2 i & -1+i & 0 \\ -2 i & -1+i & 0 \\ 8 i & 3-4 i & 1\end{array}\right|=0$
$\left[R_{1} \rightarrow R_{1}-R_{2}, \quad R_{2} \rightarrow R_{2}-R_{3}\right]$
993 (d)
Discriminant $(D)=(-2 \sqrt{3})^{2}+88$
$=100$
$=10^{2}$
\Rightarrow Roots are real, rational and unequal
994 (a)
Here, $\alpha+\beta+\gamma=\frac{2}{1}=2, \alpha \beta+\beta \gamma+\gamma \alpha=3$
And $\alpha \beta \gamma=4$
We know that
$\alpha^{2} \beta^{2}+\beta^{2} \gamma^{2}+\gamma^{2} \alpha^{2}$
$=(\alpha \beta+\beta \gamma+\gamma \alpha)^{2}-2(\alpha \beta \gamma)(\alpha+\beta+\gamma)$
$=(3)^{2}-2(4)(2)=-7$
995 (d)
We have,
$\left|\frac{k-z_{1} \bar{z}_{2}}{z_{1}-k z_{2}}\right|=1$
$\Rightarrow\left|k-z_{1} \bar{z}_{2}\right|=\left|z_{1}-k z_{2}\right|$
$\Rightarrow\left|k-z_{1} \bar{z}_{2}\right|^{2}=\left|z_{1}-k z_{2}\right|^{2}$
$\Rightarrow k^{2}+\left|z_{1} \bar{z}_{2}\right|^{2}-k z_{1} \bar{z}_{2}-k \overline{z_{1} \bar{z}_{2}}$
$=\left|z_{1}\right|^{2}+k^{2}\left|z_{2}\right|^{2}-k z_{1} \bar{z}_{2}-k \bar{z}_{1} z_{2}$
$\Rightarrow k^{2}+\left|z_{1}\right|^{2}\left|z_{2}\right|^{2}=\left|z_{1}\right|^{2}+k^{2}\left|z_{2}\right|^{2}$
$\Rightarrow k^{2}\left(\left|z_{2}\right|^{2}-1\right)-\left|z_{1}\right|^{2}\left(\left|z_{2}\right|^{2}-1\right)=0$
$\Rightarrow\left(k^{2}-\left|z_{1}\right|^{2}\right)\left(\left|z_{2}\right|^{2}-1\right)=0 \Rightarrow\left|z_{2}\right|^{2}=1 \Rightarrow\left|z_{2}\right|$ $=1$
996 (d)
Let $z=\frac{1}{i-1}$
Then, $\bar{Z}=\overline{\left(\frac{1}{l-1}\right)}=\frac{1}{-i-1}=-\frac{1}{i+1}$
997 (c)
Since, α and β are the roots of $a x^{2}+b x+c=0$.
Then, $\alpha+\beta=-\frac{b}{a}$ and $\alpha \beta=\frac{c}{a}$
Let the roots of $c x^{2}+b x+a=0$ be $\alpha^{\prime}, \beta^{\prime}$, then
$\alpha^{\prime}+\beta^{\prime}=-\frac{b}{c}$ and $\alpha^{\prime} \beta^{\prime}=\frac{a}{c}$
Now, $\frac{\alpha+\beta}{\alpha \beta}=\frac{-\frac{b}{a}}{\frac{c}{a}}=\frac{-b}{c}$
$\Rightarrow \frac{1}{\alpha}+\frac{1}{\beta}=\alpha^{\prime}+\beta^{\prime}$
Hence, $\alpha^{\prime}=\frac{1}{\alpha}$ and $\beta^{\prime}=\frac{1}{\beta}$
998 (b)

$\therefore \overline{A C}=\overline{A B} e^{i \pi / 3}$
By rotating $\frac{\pi}{3}$ in clockwise sense
$\Rightarrow\left(z_{3}-z_{1}\right)=\left(z_{2}-z_{1}\right) e^{i \pi / 3}$
Also, $\left(z_{1}-z_{2}\right)=\left(z_{3}-z_{2}\right) e^{i \pi / 3}$
On dividing Eq.(i) by Eq. (ii), we get
$\frac{\left(z_{3}-z_{1}\right)}{\left(z_{1}-z_{2}\right)}=\frac{\left(z_{2}-z_{1}\right)}{\left(z_{3}-z_{2}\right)}$
$\Rightarrow z_{1}^{2}+z_{2}^{2}+z_{3}^{2}=z_{1} z_{2}+z_{2} z_{3}+z_{3} z_{1}$
999 (a)
Let $x-\alpha$ be the common factor of $x^{2}-11 x+$
$a=0$ and $x^{2}-14 x+2 a=0$. Then,
$\alpha^{2}-11 \alpha+a=0$
and, $\alpha^{2}-14 \alpha+2 a=0$
Subtracting (ii) from (i), we get
$3 \alpha-a=0 \Rightarrow \alpha=a / 3$
Putting $\alpha=a / 3$ in (i), we get $a=0,24$
100 (c)
1 Let O, G and C be the orthocenter, centroid and circumcentre respectively, then
$\frac{z_{1}+z_{2}+z_{3}}{3}=\frac{2 \times 0+1(z)}{3}$ $\Rightarrow \quad z=z_{1}+z_{2}+z_{3}$
100 (a)
2 Let $f(x)=a x^{2}+2 b x-3 c$ and $f(x)=0$ has nonreal roots, $f(x)$ will have the same sign for all values of x.
Also, $\frac{3 c}{4}<(a+b) \Rightarrow 4 a+4 b-3 c<0$
$\Rightarrow f(2)>0$
$\Rightarrow f(0)>0$
$\Rightarrow c<0$
100 (d)
$3 \quad \omega^{2}(1+\omega)^{3}-\left(1+\omega^{2}\right) \omega$
$=\omega^{2}\left(-\omega^{2}\right)^{3}-(-\omega) \omega \quad\left[\because 1+\omega+\omega^{2}=0\right]$
$=-\omega^{2}\left(\omega^{3}\right)^{2}+\omega^{2}=0 \quad\left[\because \omega^{3}=1\right]$
100
(d)

4 Let D_{1} and D_{2} be discriminants of $x^{2}+b_{1} x+c_{1}=$ 0 and $x^{2}+b_{2} x+c_{2}=0$ respectively. Then
$D_{1}+D_{2}=b_{1}^{2}-4 c_{1}+b_{2}^{2}-4 c_{2}$
$=\left(b_{1}^{2}+b_{2}^{2}\right)-4\left(c_{1}+c_{2}\right)$
$=b_{1}^{2}+b_{2}^{2}-2 b_{1} b_{2} \quad\left[\because b_{1} b_{2}=2\left(c_{1}+c_{2}\right)\right.$, given $]$
$=\left(b_{1}-b_{2}\right)^{2} \geq 0$
$\Rightarrow D_{1} \geq 0$ or $D_{2} \geq 0$
$\Rightarrow D_{1}$ and D_{2} both are positive.
100 (d)
$5 \quad \frac{(1+i)^{2}}{i(2 i-1)}=\frac{2 i}{i(2 i-1)}=\frac{2(2 i+1)}{4 i^{2}-1}-\frac{4}{5} i-\frac{2}{5}$
\therefore Imaginary part is $-\frac{4}{5}$
100 (b)
$6 \frac{3 x^{3}-8 x^{2}+10}{(x-1)^{4}}$

$$
\begin{aligned}
& =\frac{A}{(x-1)}+\frac{B}{(x-1)^{2}}+\frac{C}{(x-1)^{3}} \\
& +\frac{D}{(x-1)^{4}}
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow 3 x^{3}-8 x^{2} & +10 \\
& =A(x-1)^{3}+B(x-1)^{2} \\
& +C(x-1)+D
\end{aligned}
$$

Equating coefficient of different powers of
$x, 3=A$
$-8=-3 A+B \quad \Rightarrow \quad B=1$
$0=3 A-2 B+C \quad \Rightarrow C=-7$
$10=-A+B-C+D \quad \Rightarrow \quad D=5$
\therefore Given expression
$=\frac{3}{x-1}+\frac{1}{(x-1)^{2}}-\frac{7}{(x-1)^{3}}+\frac{5}{(x-1)^{4}}$
100 (c)
7
$|z-i \operatorname{Re}(z)|=|z-\operatorname{Im}(z)|$
If $z=x+i y$
Then $|x+i y-i x|=|x+i y-y|$
$\sqrt{x^{2}+(y-x)^{2}}=\sqrt{(x-y)^{2}+y^{2}}$
or $x^{2}=y^{2}$
$\therefore x= \pm y$
$\Rightarrow \operatorname{Re}(z)= \pm \operatorname{Im}(z)$
$\Rightarrow \operatorname{Re}(z)+\operatorname{Im}(z)=0$
and $\operatorname{Re}(z)-\operatorname{Im}(z)=0$
100 (d)
8 It is given that $\alpha=-1+i$ is a root of
$x^{2}+(1-3 i) x-2(1+i)=0$. Let β be the orther root. Then,
$\alpha+\beta=-(1-3 i) \Rightarrow \beta=-1+3 i+1-i=2 i$

100 (c)
9 Let $z-1=r e^{i \alpha}$
$\therefore(x-1)+i y=r(\cos \alpha+i \sin \alpha)$
$\therefore r^{2}=(x-1)^{2}+y^{2}$
and $\tan \alpha=\frac{y}{x-1}$
The expression
$\frac{z-1}{e^{i \theta}}+\frac{e^{i \theta}}{z-1}=r e^{i(\alpha-\theta)}+\frac{1}{r} e^{-i(\alpha-\theta)}$
Which is given as real
$\therefore r \sin (\alpha-\theta)-\frac{1}{r} \sin (\alpha-\theta)=0$
$\Rightarrow r-\frac{1}{r}=0 \Rightarrow r^{2}=1$
$\Rightarrow(x-1)^{2}+y^{2}=1$
Which is a circle with centre $(1,0)$ and radius 1
Since, $\left|\frac{x+i y-1}{x+i y+1}\right|=1$
$\Rightarrow \quad \sqrt{(x-1)^{2}+y^{2}}=\sqrt{(x+1)^{2}+y^{2}}$
$\Rightarrow \quad x^{2}-2 x+1+y^{2}=x^{2}+1+2 x+y^{2}$
$\Rightarrow \quad x=0$
101 (b)
1
Put $\frac{6-x+8-x}{2}=y \Rightarrow x=7-y$
$(y-1)^{4}+(y+1)^{4}=16$
$\Rightarrow y^{4}+6 y^{2}+1=8$
$\Rightarrow y^{4}+6 y^{2}-7=0$
$\Rightarrow y^{2}=1,-7$
$\Rightarrow y^{2}=1 \quad\left(\because y^{2}=-7\right.$ is not possible $)$
$\Rightarrow y= \pm 1$
$\Rightarrow x=6,8$
\therefore Total number of real roots are 2 .
101 (c)
2 We have,
$\left|\frac{x^{2}+6}{5 x}\right| \geq 1$
$\Rightarrow \frac{x^{2}+6}{5 x} \leq-1$ or, $\frac{x^{2}+6}{5 x} \geq 1$
$\Rightarrow \frac{x^{2}+5 x+6}{5 x} \leq 0$ or, $\frac{x^{2}-5 x+6}{5 x} \geq 0$
$\Rightarrow \frac{(x+2)(x+3)}{(x-0)} \leq 0$ or, $\frac{(x-2)(x-3)}{x-0} \geq 0$
$\Rightarrow x \in(-\infty,-3] \cup[-2,0)$ or, $x \in(0,2] \cup[3, \infty)$
$\Rightarrow x \in(-\infty,-3] \cup[-2,0) \cup(0,2] \cup[3, \infty)$
101 (a)
3 Clearly, P and Q are on the opposite side of the origin O such that $O P=O Q$. Therefore,
$O P=O Q$ and $\overrightarrow{O Q}=\overrightarrow{O P} e^{i \pi}$
$\Rightarrow|a+i b|=|c+i d|$ and $c+i d=e^{i \pi}(a+i b)$
$\Rightarrow|a+i b|=|c+i d|$ and $c=-a, d=-b$
$\Rightarrow|a+i b|=|c+i d|$ and $a+c=0, b+d=0$
$\Rightarrow|a+i b|=|c+i d|$ and $a+c=b+d$
101 (d)
4 Here, $\alpha+\beta=-\frac{b}{a}, \quad \alpha \beta=\frac{c}{a}$
The required equation is
$x^{2}-5 x(\alpha+\beta)+(2 \alpha+3 \beta)(3 \alpha+2 \beta)=0$
$\Rightarrow \quad x^{2}+\frac{5 b}{a} x\left[6(\alpha+\beta)^{2}\right]+[3 \alpha \beta]=0$
$\Rightarrow x^{2}+\frac{5 b}{a} x+\left[6 \frac{b^{2}}{a^{2}}+\frac{c}{a}\right]=0$
$\Rightarrow a^{2} x^{2}+5 a b x+6 b^{2}+a c=0$
101 (a)
5
$\frac{1+i \sqrt{3}}{1-i \sqrt{3}}=\frac{1+i \sqrt{3}}{1-i \sqrt{3}} \times \frac{1+i \sqrt{3}}{1+i \sqrt{3}}$
$=\frac{(1+i \sqrt{3})^{2}}{1+3}=-\frac{1}{2}+\frac{i \sqrt{3}}{2}$
$\therefore \quad \tan \theta=\frac{\sqrt{3}}{2} \times \frac{2}{-1}=-\sqrt{3}=-\tan \frac{\pi}{3}$
$\Rightarrow \quad \tan \theta=\tan \left(\pi-\frac{\pi}{3}\right)$
$\Rightarrow \quad \theta=\frac{2 \pi}{3}$
101 (b)
6 We have, $|1-i|^{x}=2^{x} \Rightarrow(\sqrt{2})^{x}=2^{x}$
$\Rightarrow 2^{x / 2}=2^{x}$
$\Rightarrow \frac{x}{2}=x \Rightarrow x=0$
Therefore, the number of non-zero integral solution is one
101 (d)
$7 \frac{1+i}{1-i}=\frac{(1+i)^{2}}{1-i^{2}}=i$
Since, $\left(\frac{1+i}{1-i}\right)^{n}=1 \Rightarrow i^{n}=1$
Hence, smallest positive integer is 4
101 (d)
8
$\frac{x^{2}+x+1}{x^{2}+2 x+1}=1-\frac{x}{x^{2}+2 x+1} \quad$ [on dividing]
Now, $\frac{x}{x^{2}+2 x+1}=\frac{A}{(x+1)}+\frac{B}{(x+1)^{2}}$
$\Rightarrow \quad x=A(x+1)+B$
On equating the coefficient of x and constant, we get
$A=1$ and $A+B=0$
$\Rightarrow A=1$ and $B=-1$
From Eq. (i), we get
$\frac{x^{2}+x+1}{x^{2}+2 x+1}=1-\frac{1}{(x+1)}+\frac{1}{(x+1)^{2}}$
$\Rightarrow \quad A+\frac{B}{(x+1)}+\frac{C}{(x+1)^{2}}=1-\frac{1}{(x+1)}+\frac{1}{(x+1)^{2}}$
[given]
$\Rightarrow A=1, B=-1$ and $C=1$
Now, $A-B=1+1=2=2 C$
101 (a)

9 We have,
$\left|x+\frac{1}{x}\right|<4$
$\Rightarrow-4<x+\frac{1}{x}<4$
$\Rightarrow x+\frac{1}{x}+4>0$ and $x+\frac{1}{x}-4<0$
$\Rightarrow \frac{x^{2}+4 x+1}{x}>0$ and $\frac{x^{2}-4 x+1}{x}<0$
$\Rightarrow \frac{(x+2+\sqrt{3})(x+2-\sqrt{3})}{x-0}>0$
and, $\frac{(x-2-\sqrt{3})(x-2+\sqrt{3})}{x-0}<0$
$\Rightarrow x \in(-2-\sqrt{3},-2+\sqrt{3}) \cup(0, \infty)$
and, $x \in(-\infty, 0) \cup(2-\sqrt{3}, 2+\sqrt{3})$
$\Rightarrow x \in(2-\sqrt{3}, 2+\sqrt{3}) \cup(-2-\sqrt{3},-2+\sqrt{3})$
102 (d)
0 If α and β are roots of the equation $x^{2}+6 x-2=$ 0

Then,
$\alpha+\beta=-6 \Rightarrow \beta=-6-\alpha$
Since α is a root of $x^{2}+6 x-2=0$
$\therefore \alpha^{2}+6 \alpha-2=0$
Now,
$\beta=-6-\alpha$
$\Rightarrow \beta=-6-\alpha+0$
$\Rightarrow \beta=-6-\alpha+\alpha^{2}+6 \alpha-2 \quad\left[\because \alpha^{2}+6 \alpha-2=\right.$ $0]$
$\Rightarrow \beta=\alpha^{2}+5 \alpha-8$
Now,
$\alpha \beta=-2$
$\Rightarrow \beta=\frac{-2}{\alpha}$
$\Rightarrow \beta=\frac{-2+2\left(\alpha^{2}+6 \alpha-2\right)}{\alpha}\left[\because \alpha^{2}+6 \alpha-2\right.$

$$
=0]
$$

$\Rightarrow \beta=\frac{2 \alpha^{2}+12 \alpha-6}{\alpha}$
Now,
$\alpha+\beta=-6$ and, $\alpha \beta=-2$
$\Rightarrow \frac{\alpha+\beta}{\alpha \beta}=3 \Rightarrow \frac{1}{\alpha}+\frac{1}{\beta}=3 \Rightarrow \beta=\frac{\alpha}{3 \alpha-1}$
102 (a)
1

$$
\begin{aligned}
& \omega+\omega^{\left(\frac{1}{2}+\frac{3}{8}+\frac{9}{32}+\frac{27}{128}+\ldots\right)} \\
& =\omega+\omega^{\left(\frac{1 / 2}{1-3 / 4}\right)} \\
& =\omega+\omega^{2}=-1 \quad\left(\because 1+\omega+\omega^{2}=0\right)
\end{aligned}
$$

102 (a)
2 We have,
$\left|\frac{2 x-1}{x-1}\right|>2$
$\Rightarrow \frac{2 x-1}{x-1}<-2$ or, $\frac{2 x-1}{x-1}>2$
$\Rightarrow \frac{4 x-3}{x-1}<0$ or, $\frac{1}{x-1}>0$
$\Rightarrow \frac{4 x-3}{x-1}<0$ or, $x-1>0$
$\Rightarrow 3 / 4<x<1$ or, $x>1 \Rightarrow x \in(3 / 4,1) \cup(1, \infty)$
102 (a)
3 If one root is $2-i$, then the other root will be
$2+i$
Given equation is $a x^{2}+12 x+b=0$
$\therefore 2-i+2+i=\frac{-12}{a}$
$\Rightarrow a=-3$
And $(2-i)(2+i)=\frac{b}{a}$
$\Rightarrow 5=\frac{b}{-3} \Rightarrow b=-15$
$\therefore a b=-3 \times(-15)=45$
102 (d)
4 Since, $f(1)+f(2)+f(3)=0$
$f(1), f(2), f(3)$ all cannot be of same sign.
\Rightarrow Roots are real and distinct.
102 (d)
5 We have, $t^{2} x^{2}+|x|+9>0$ for all $x \in R$
So, given equation has no real root
102 (d)
6 Affix of A is z_{1} means that $\overrightarrow{O A}=z_{1}$ and $\overrightarrow{O B}$ and $\overrightarrow{O C}$ are obtained by rotating $\overrightarrow{O A}$ through $\frac{\pi}{2}$ and π.
Therefore, affixes of B and C are $i z_{1}$ and $-z_{1}$ respectively. Hence, the affix of the centroid of triangle $A B C$ is
$\frac{z_{1}+i z_{1}+\left(-z_{1}\right)}{3}=\frac{i}{3} z_{1}=\frac{1}{3} z_{1}\left(\cos \frac{\pi}{2}+i \sin \frac{\pi}{2}\right)$ If A, B, C are taken in clockwise sense, then the affix of the centroid is $\frac{1}{3} z_{1}\left(\cos \frac{\pi}{2}-i \sin \frac{\pi}{2}\right)$

Thus, the affix of the centroid is $\frac{1}{3} z_{1}\left(\cos \frac{\pi}{2} \pm\right.$ $i \sin \pi 2$

102 (b)
7 Let $z=4+i$ when reflected along $y=x$ will become $z=1+4 i$
When translated by 2 unit $z=3+4 i$
When rotated by angle $\pi / 4$ in anti-clockwise direction will give
$z=(3+4 i)\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)$
$z=\frac{1}{\sqrt{2}}[3-4+i(3+4)]=-\frac{1}{\sqrt{2}}+i \frac{7}{\sqrt{2}}$
102 (b)
$8 \quad$ Since c and d are roots of the equation
$(x-a)(x-b)-k=0$
$\therefore(x-a)(x-b)-k=(x-c)(x-d)$
$\Rightarrow(x-c)(x-d)+k=(x-a)(x-b)$
Clearly, a, b are the roots of $(x-a)(x-b)=0$
and $(x-a)(x-b)=(x-c)(x-d)+k$
$\therefore a, b$ are roots of $(x-c)(x-d)+k=0$
102 (c)
9 We have,
$|x|^{3}-3 x^{2}+3|x|-2=0$
$\Rightarrow|x|^{3}-3|x|^{2}+3|x|-2=0$
$\Rightarrow(|x|-2)\left(|x|^{2}-|x|+1\right)=0$
$\Rightarrow|x|=2,|x|^{2}-|x|+1=0$
$\Rightarrow x= \pm 2\left[\because|x|^{2}-|x|+1=0\right.$ has imaginary roots]
Thus, the given equation has two real roots
103 (d)
$0 \quad$ Let $z=x+i y$. Then,
$z^{2}+|z|^{2}=0$
$\Rightarrow x^{2}-y^{2}+2$ ixy $+x^{2}+y^{2}=0$
$\Rightarrow 2 x^{2}+2 i x y=0$
$\Rightarrow x^{2}=0,2 x y=0 \Rightarrow x=0, y \in R$
Hence, there are infinitely many solution
(d)

1 Discriminant of the equation $3 x^{2}+8 x+15=0$ is given by
$D=64-180=-116<0$
So, its roots are imaginary and therefore roots are conjugate to each other. Therefore, one common root means both the roots are common.
$\therefore \frac{a}{3}=\frac{2 b}{8}=\frac{3 c}{15}$
$\Rightarrow \frac{a}{3}=\frac{b}{4}=\frac{c}{5}=k \quad$ (say), $k \neq 0$
$\Rightarrow a=3 k, b=4 k, c=5 k$
Now, $a^{2}+b^{2}=c^{2}$
$\Rightarrow \triangle A B C$ is right angled.
$\therefore \sin ^{2} A+\sin ^{2} B=\sin ^{2} C$
$\Rightarrow \sin ^{2} A+\sin ^{2} B$

$$
\begin{aligned}
& +\sin ^{2} C=2 \sin ^{2} C \\
& =2 \sin ^{2} 90^{\circ}=2
\end{aligned}
$$

103 (d)
2 We have,
$\left(1-\omega+\omega^{2}\right)^{6}+\left(1-\omega^{2}+\omega\right)^{6}$
$=(-2 \omega)^{6}+\left(-2 \omega^{2}\right)^{6}=2^{6}+2^{6}=2^{7}=128$
103 (a)

3 We have, $\tan ^{-1}(\alpha+i \beta)=x+i y$
$\Rightarrow \alpha+i \beta=\tan (x+i y)$
Taking conjugate,
$(\alpha+i \beta=\tan (x+i y)$
$\therefore \tan 2 x=\tan [(x+i y)+(x-i y)]$
$\Rightarrow \tan 2 x=\frac{(\alpha+i \beta)+(\alpha-i \beta)}{1-(\alpha+i \beta)+(\alpha-i \beta)}$
$=\frac{2 \alpha}{1-\left(\alpha^{2}+\beta^{2}\right)}$
$\therefore \quad x=\frac{1}{2} \tan ^{-1}\left(\frac{2 \alpha}{1-\alpha^{2}-\beta^{2}}\right)$
103 (d)
4 Given system of equation is
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1$
$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$
and $-\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$
On adding all these equations, we get
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=3$
On subtracting Eq. (i) from Eq. (iv), Eq. (ii) from
Eq. (iv) and Eq. (iii) from Eq. (iv), we get
$\frac{2 z^{2}}{c^{2}}=2, \frac{2 y^{2}}{b^{2}}=2, \frac{2 x^{2}}{a^{2}}=2$
$\Rightarrow z= \pm c, y= \pm b, x= \pm a$
103 (d)
5 Given, $\log _{2}\left[\log _{3}\left\{\log _{4}\left(\log _{5} x\right)\right\}\right]=0$
$\Rightarrow \log _{3}\left\{\log _{4}\left(\log _{5} x\right)\right\}=2^{0}=1$
$\Rightarrow \log _{4}\left(\log _{5} x\right)=3$
$\Rightarrow \log _{5} x=4^{3}=64$
$\Rightarrow x=5^{64}$
103 (c)
6 As, $1, a_{1}, a_{2}, \ldots, a_{n-1}$ are nth roots unity
$\Rightarrow \quad\left(x^{n}-1\right)=(x-1)\left(x-a_{1}\right)\left(x-a_{2}\right) \ldots(x$ $\left.-a_{n-1}\right)$
$\Rightarrow \frac{x^{n}-1}{x-1}=\left(x-a_{1}\right)\left(x-a_{2}\right) \ldots\left(x-a_{n-1}\right)$
$\therefore \quad x^{n-1}=x^{n-2}+\ldots x^{2}+x+1$
$=\left(x-a_{1}\right)\left(x-a_{2}\right) \ldots\left(x-a_{n-1}\right)$
$\left[\right.$ as $\left.\frac{x^{n}-1}{x-1}=x^{n-1}+x^{n-2}+\ldots+x+1\right]$
Putting $x=1$, we get
$1+1+\cdots n$ times $=\left(1-a_{1}\right)\left(1-a_{2}\right) \ldots(1-$
an-1
$\Rightarrow \quad\left(1-a_{1}\right)\left(1-a_{2}\right) \ldots\left(1-a_{n-1}\right)=n$
103 (d)
7
$\bar{z}=\frac{4}{1+i}$
103 (b)
$8 \quad(q-r) x^{2}+(r-p) x+(p-q)=0$
$\Rightarrow(q-r) x^{2}+(r-q+q-p) x+(p-q)=0$
$\Rightarrow(q-r) x^{2}-(q-r) x-(p-q) x+(p-q)=0$
$\Rightarrow(q-r) x(x-1)-(p-q)(x-1)=0$
$\Rightarrow(x-1)\{(q-r) x-(p-q)\}=0$
$\Rightarrow x=1, \frac{p-q}{q-r}$

