

5.COMPLEX NUMBERS AND QUADRATIC EQUATIONS

Single Correct Answer Type

1.	The modulus of $\frac{1-i}{3+i} + \frac{4i}{5}$ is	5		
	a) $\sqrt{5}$ unit	b) $\frac{\sqrt{11}}{5}$ unit	c) $\frac{\sqrt{5}}{5}$ unit	d) $\frac{\sqrt{12}}{5}$ unit
2.	If $\frac{\log x}{a-b} = \frac{\log y}{b-c} = \frac{\log z}{c-a}$ then	5	5	3
	a) 0 $b - c - c - a$	b) 1	c) -1	d) 2
3.	The area of the triangle for	ormed by the points repres		the Argand plane is
	2	b) z ²	c) $\frac{3}{2} z ^2$	d) $\frac{1}{4} z ^2$
4.	If $\frac{(1+i)^2}{2-i} = x + iy$, then x -	+ y is equal to		
	a) $-\frac{2}{5}$	b) $\frac{6}{5}$	c) $\frac{2}{5}$	d) $-\frac{6}{5}$
5.		=		resents the complex number
		us of <i>P</i> if $ z - 3 + i = z - 3 + i = z - 3 + i $	2-i is	
	a) Circle on <i>AB</i> as diametb) The line <i>AB</i>	ter		
	c) The perpendicular bis	ector of <i>AB</i>		
	d) None of these	_		
6.		then $x^{2n} - 2x^n \cos n\theta + 1$		d) None of these
7.	a) $\cos 2 n \theta$ Given $z = \frac{q+ir}{1+p}$, then $\frac{p+iq}{1+r}$	b) sin 2 $n \theta$	c) 0	d) None of these
		b) $p^2 + q^2 + r^2 = 2$	a) $m^2 + a^2 - m^2 - 1$	d) None of these
8.	The expression $(1 + i)^{n_1}$		c) $p^{-} + q^{-} - r^{-} = 1$	d) None of these
0.		b) $n_1 = 4r + (-1)^r n_2$	c) $n_1 = 2r + (-1)^r n_2$	d) None of these
9.			quadratic equation $px^2 + a$	qx + r = 0 are complex for
	a) $\left \frac{r}{p} - 7\right \ge 4\sqrt{3}$	·/ ·	c) All p and r	
10.	If the roots of the equation	$ \ln \frac{1}{x+p} + \frac{1}{x+q} = \frac{1}{r}, (x \neq -p, z) $	$x \neq -q, r \neq 0$) are equal in	magnitude but opposite in
	sign, then $p + q$ is equal t	0		4
	a) <i>r</i>	b) 2 <i>r</i>	c) <i>r</i> ²	d) $\frac{1}{r}$
11.	The solution set of the in	equation $ 2x - 3 < x + 2 $, is	1
	a) (−∞, 1/3)	b) (1/3,5)	c) (5,∞)	d) (−∞, 1/3) ∪ (5,∞)
12.		the form $ax^2 + bx + c = 0$		ten incorrectly and roots written incorrectly and it is
		and in writing the same equ al to those of the previous		-
	•	prrect equation, then $(\alpha - \beta)$	• •	
	a) 5	b) 5 α β	c) -4 α β	d) -4
13.		ssion $\frac{x^2+34x-71}{x^2+2x-7}$ takes all wh		
	a) $a = -1, b = 1$	b) $a = 1, b = -1$	c) $a = 5, b = 9$	d) $a = 9, b = 5$
14.	Let a, b, c be real, if $ax^2 + 2b$	bx + c = 0 has two real real c	bots α and β , where $\alpha < -2$	2 and $\beta > 2$, then 2 h c
	a) $4 - \frac{2b}{a} + \frac{c}{a} < 0$	b) $4 + \frac{2b}{a} - \frac{c}{a} < 0$	c) $4 - \frac{ab}{a} + \frac{c}{a} = 0$	d) $4 + \frac{2b}{a} + \frac{c}{a} = 0$
15.		• • •	•	term incorrectly and got the
	roots 3 and 2. The other of correct roots are	copied the constant term co	betticient of x^2 correctly as	-6 and 1 respectively the
	correct roots are			

	a) 3, -2	b) -3, 2	-	d) 6, —1	
16.		root of $ax^2 + bx + c = 0, E$	$a_2: b^2 - a^2 = 2ac$, if $\sin \theta$, co	os $ heta$ are the roots of	
	$ax^2 + bx + c = 0.$				
	Which of the following is	true?			
	a) E_1 is true, E_2 is true		b) E_1 is true, E_2 is false		
. –	c) E_1 is false E_2 is true		d) E_1 is false, E_2 is false		
17.	If $\omega = \frac{-1+\sqrt{3}i}{2}$, then $(3+a)$	$(\omega + 3\omega^2)^4$ is			
	a) 16	b) -16	c) 16ω	d) $16\omega^2$	
18.	If $iz^3 + z^2 - z + i = 0$, t	hen $ z $ is equal to			
	a) 1	b) <i>i</i>	c) -1	d) — <i>i</i>	
19.		which $\tan \theta$ and $\cot \theta$ are ro	pots of the equation $x^2 + ax$	x + 1 = 0, is	
	a) 2	b) 1	c) 1/2	d) 0	
20.		ots of the equation $x^4 + ax^3$			
	a) -25	b) 0	c) 10	d) 24	
21.		plutions of $2(x+2) > x^2 +$		N F	
20	a) 2	b) 3	c) 4	d) 5	
22.	If one root of the equation of <i>b</i> is	$(a-b)x^2 + ax + 1 = 0 b$	e double the other and if a	$\in R$, then the greatest value	
	a) 9/8	b) 7/8	c) 8/9	d) 8/7	
23.	The argument of $(1 - i\sqrt{3})$				
	a) 60°	b) 120°	c) 210°	d) 240°	
24	,	on the complex plane form	,	,	
2	value of $ 3z $ must be equ				
	a) 20	b) 40	c) 60	d) 80	
25.	If the roots of the equation	$\ln bx^2 + cx + a = 0 \text{ be image}$,	,	
	$3b^2x^2 + 6bcx + 2c^2$ is				
	-	b) Less than 4 <i>ab</i>	c) Greater than $-4ab$	-	
		') = 0 and x is a rational fu	nction of y and ac is negati	ive, then	
	a) $ac' + a'c = 0$	b) $\frac{a}{a'} = \frac{c}{c'}$	c) $a^2 + c^2 = a'^2 + c'^2$	d) $aa' + cc' = 1$	
27.	If <i>n</i> is a positive integer, t	hen $\left(1+i\sqrt{3}\right)^n + \left(1-i\sqrt{3}\right)^n$	$)^n$ is equal to		
		b) $2^n \cos \frac{n\pi}{2}$		d) None of these	
20	3	3			
28.	The points represented b	y the complex numbers 1 +	$i, -2 + 3i, \frac{3}{3}i$ on the argan	d diagram are	
	a) Vertices of an equilate	ral triangle	b) Vertices of an isosceles	s triangle	
	c) Collinear	<i>π</i>	d) None of the above		
29.	If the amplitude of $z - 2$	$-3i$ is $\frac{\pi}{4}$, then the locus of z	x = x + iy, is		
	a) $x + y - 1 = 0$	b) $x - y - 1 = 0$	c) $x + y + 1 = 0$	d) $x - y + 1 = 0$	
30.	The value of				
	$[(\cos 20^\circ + i \sin 20^\circ)(\cos 75^\circ + i \sin 20^\circ)(\cos 75^\circ + i \sin 15^\circ - i \cos 15^\circ - i $	$\frac{n 75^{\circ})(\cos 10^{\circ} + i \sin 10^{\circ})}{\cos 15^{\circ}}$ is			
	a) 0	b) -1	c) <i>i</i>	d) 1	
31.	Let α , β be the roots of x^2	$x^2 + bx + 1 = 0$. Then the eq	-	-	
		b) $x^2 + 2b + 4 = 0$		· · · · · · · · · · · · · · · · · · ·	
32.		s turned counterclockwise			
		onding to newly obtained v		2	
				d) None of these	
	a) $6 - \frac{15}{2}i$	b) $-6 + \frac{15}{2}i$	c) $6 + \frac{15}{2}i$		
33.	If $(3 - i)z = (3 - i)\overline{z}$, the	n the complex number z is			

33. If $(3 - i)z = (3 - i)\overline{z}$, then the complex number *z* is

	a) $a(3-i), a \in R$	b) $\frac{a}{(3+i)}$, $a \in R$	c) $a(3+i), a \in R$	d) $a(-3+i), a \in R$
34.			sume all real values provid	
	a) $a \le c \le b$	b) $b \ge a \ge c$	c) $b \le c \le a$	d) $a \ge b \ge c$
35.		$a^{4} + ax^{3} + bx^{2} + cx - 1$, th b) $x + 1$		d) x 1
36.	,	-	,	nities of its diagonals which
	does not pass through thi			Ū
	-	-	c) $-1 + i$, $-1 - i$	-
37.	If $p(x) = ax^2 + bx + c$ ar a) Four real roots	$\operatorname{nd} Q(x) = -ax^2 + dx + c,$	where $ac \neq 0$, then $P(x)Q($ b) Two real roots	(x) = 0 has at least
	c) Four imaginary roots		d) None of these	
38.	If $a = \cos \theta + i \sin \theta$, then	$\frac{1+a}{1-a}$ is equal to	,	
	a) $\cot \frac{\theta}{2}$	b) cot θ	c) $i \cot \frac{\theta}{2}$	d) $i \tan \frac{\theta}{2}$
39	2 If $x^2 + 2ax + b \ge c, \forall x \in$		2	2
07.	a) $a - c \ge a^2$		c) $a - b \ge c^2$	d) None of these
40.	Let A, B, C be three colline	ear points which are such t	hat AB . $AC = 1$ and the point	nts are represented in the
		plex numbers 0, z_1 and z_2 r		
41			c) $ z_1 z_2 = 1$	d) None of these
41.	If $z^2 + z z + z ^2 = 0$, the a) A circle		b) A straight line	
	c) A pair of straight lines		d) None of these	
42.	If $ z - i = 1$ and $\arg(z) =$	$= \theta$, where $0 < \theta < \frac{\pi}{2}$, then	$\cot \theta - \frac{2}{z}$ equals	
	a) 2 <i>i</i>	b) - <i>i</i>	c) i	d) 1 + <i>i</i>
43.			= 0, then $ z_1 - z_2 $ is equal	
4.4	a) $ z_1 + z_2 $	b) $ z_1 - z_2 $		d) 0
44.		b) Non-positive	-6 yz - 3 zx - 2 xy is alw c) Zero	d) None of these
45.	, 0	, I		$ z - z_2 = b$ externally (z, z_1)
	and z_2 are complex numb			
	a) An ellipse	b) A hyperbola	c) A circle	d) None of these
46.		ide of $(1 + i\sqrt{3})^8$ are respe		
	a) 256 and $\frac{\pi}{3}$	b) 256 and $\frac{2\pi}{3}$	c) 2 and $\frac{2\pi}{3}$	d) 256 and $\frac{8\pi}{3}$
47.		equation $x^2 + (a + b)x + a$		
40	a) (a, b)	b) $(-\infty, a) \cup (b, \infty)$		d) $(-\infty, -b) \cup (-a, \infty)$
40.	ω is an imaginary cube equal to	root of unity and $x = a + b$	$b, y = a\omega + b\omega^2, \ z = a\omega^2$	$+ b\omega$, then $x^{-} + y^{-} + z^{-}$ is
	a) 6 <i>ab</i>	b) 3 <i>ab</i>	c) $6a^2b^2$	d) $3a^2b^2$
49.	The square roots of –7, –	$-24\sqrt{-1}$ are		
			c) $\pm (3 - 4\sqrt{-1})$	d) $\pm (4 - 3\sqrt{-1})$
50.	A real value of <i>x</i> will satis	sfy the equation $\left(\frac{3-4ix}{3+4ix}\right) = a$	$\alpha - i\beta (\alpha, \beta \text{ are real}), \text{ if }$	
	, ,	b) $\alpha^2 - \beta^2 = 1$, ,	d) $\alpha^2 - \beta^2 = 2$
51.			$B\omega$, then A and B are resp	
ГЭ	a) 0, 1 If the equation $w^2 + 0w^2$	b) 1, 1 Are $1^2 = 0$ is set is find years	c) $1, 0$	d) –1, 1
52.		-4x + 3 = 0 is satisfied va		2
	a) $1 \le x \le 3$	b) $2 \le x \le 3$	c) $-\frac{1}{3} < y < 1$	d) $0 < y < \frac{2}{3}$

53.	If the sum of the roots of roots is	The equation $(a + 1)x^2 + (a + 1)x^2$	(2a+3)x + (3a+4) = 0 is	s – 1, then the product of the
	a) 0	b) 1	c) 2	d) 3
54.	The roots of the equation	$12^{x+2}3^{3x/(x-1)} = 9$ are give	en by	
	a) 1 – log ₂ 3, 2	b) $\log_2\left(\frac{2}{3}\right)$, 1	c) 2, -2	d) $-2, 1 - \frac{\log 3}{\log 2}$
55.	If $a + b + c = 0$ and $a \neq a$	<i>c</i> then the roots of the equa	ation $(b + c - a)x^2 + (c + c)x^2 + (c + c$	(a-b)x + (a+b-c) = 0,
	are			
	a) Real and unequal b) Real and equal			
	c) Imaginary			
	d) None of these			
56.	If α , β are the roots of th	e equation $x^2 + \sqrt{\alpha} x + \beta =$	= 0, then the values of α and	l $β$ are
		b) $\alpha = 1, \beta = -2$		d) $\alpha = 2, \beta = -2$
57.		(x-a)(x-b) - 1 = 0 h	las	
	 a) Both roots in [<i>a</i>, <i>b</i>] b) Both roots in (-∞, <i>a</i>) 			
	c) Roots in $(-\infty, a)$ and	other in (b, ∞)		
	d) Both roots in (b, ∞)			
58.	The value of $\left(\cos\frac{\pi}{2} + i\sin^2\theta\right)$	$\left(n\frac{\pi}{2}\right)\left(\cos\frac{\pi}{4}+i\sin\frac{\pi}{4}\right)\left(\cos\frac{\pi}{8}\right)$	$(i \sin \frac{\pi}{2}) \dots \infty$ is	
	a) 1	b) 0	c) -1	d) None of these
59.	The value of the express			
	$2\left(1+\frac{1}{\omega}\right)\left(1+\frac{1}{\omega^2}\right)+3\left(1+\frac{1}{\omega^2}\right)$	$2 + \frac{1}{\omega} \left(2 + \frac{1}{\omega^2} \right) + \dots + (n + 1)$	$(-1)\left(n+\frac{1}{\omega}\right)\left(n+\frac{1}{\omega^2}\right)$ is	
	$n(n+1)^{2}$	b) $\left[\frac{n(n+1)}{2}\right]^2 - n$	$\left[n(n+1)\right]^2$	d) None of these
	$\begin{bmatrix} 2 \end{bmatrix}$	$\left[\frac{1}{2}\right] = n$	$c_{j}\left[\frac{1}{2}\right] + n$	
60.	One of the square root of			
	· · ·	b) $-\sqrt{3}(\sqrt{3}-1)$	· · · ·	d) None of these
61.	The solution set of the in a) $(-1, 1)$	nequation $ x - 1 < 1 - x$, is	s c) (−1,∞)	d) None of these
62				d) None of these
02.		hen a and b are respectively		d) None of these
63.		b) 64 & $-64\sqrt{3}$		-
05.		tions of the equation $(5+2)$		
64.	a) 2	b) 4	c) 6	d) None of these
04.		quation $x - \frac{2}{x-1} = 1 - \frac{2}{x-1}$ i		
65	a) One The smallest positive int	b) Two eger <i>n</i> for which $(1 + i)^{2n}$:	c) Infinite = $(1 - i)^{2n}$ is	d) None of these
05.	a) 1	b) 2	(1 - i) is c) 3	d) 4
66.		y number $(z \neq -1)$, then $ z $,	
	a) 1	b) 2	c) 3	d) 4
67.	2	,)	in θ), then the two adjacent
	vertices are			
		b) $\pm (\sin \theta + i \cos \theta)$		-
68.		The equation $ax^2 + bx + c$	= 0 is equal to the sum of t	the squares of their
	reciprocals of their recip a) c^2b , a^2c , b^2a are in A.			
	b) c^2b , a^2c , b^2a are in G.			
	c) $\frac{b}{a} = \frac{c}{a}$ are in G.P.			

c) $\frac{b}{c}$, $\frac{a}{b}$, $\frac{c}{a}$ are in G.P.

a b c aro in C P

	d) $\frac{a}{b}$, $\frac{b}{c}$, $\frac{c}{a}$ are in G.P.			
69.	In the argand plane, if <i>O</i> , <i>I</i>	P and Q represent respectiv	vely the origin <i>O</i> and the co	mplex numbers <i>z</i> and
	z + iz respectively, then z			-
	a) $\frac{\pi}{4}$	b) $\frac{\pi}{-}$	c) $\frac{\pi}{2}$	d) $\frac{2\pi}{2}$
70	Т	5	2	3
70.	If $n \in Z$, then $\frac{2^n}{(1-i)^{2n}} + \frac{(1+i)^{2n}}{2}$	$\frac{1}{2^n}$ is equal to		
	a) 0	b) 2	c) $[1 + (-1)^n]i^n$	d) None of these
71.	Let α , β be the roots of the	e equation $x^2 - px + r = 0$) and $\frac{\alpha}{2}$, 2 β be the roots of the	he equation $x^2 - qx + r =$
	0. Then the value of <i>r</i> is			
	a) $\frac{2}{9}(p-q)(2q-p)$	b) $\frac{2}{9}(q-p)(2p-q)$	c) $\frac{2}{9}(q-2p)(2q-p)$	d) $\frac{2}{9}(2p-q)(2q-p)$
72.	If ω is an imaginary cube	root of unity, then $(1 + \omega - \omega)$	$-\omega^2)^7$ equals	
	a) 128 ω	b) –128 ω	c) 128 ω	d) $-128 \omega^2$
73.	If $z + z^{-1} = 1$, then $z^{100} + z^{100} = 1$	+ z^{-100} is equal to		
	a) i	b) <i>—i</i>	c) 1	d) —1
74.	$\frac{3+2i\sin\theta}{1-2i\sin\theta}$ will be purely im	aginary, if θ is equal to		
	a) $2n\pi \pm \frac{\pi}{3}$	b) $n\pi + \frac{\pi}{3}$	c) $n\pi \pm \frac{\pi}{3}$	d) None of these
75.	If $x^2 + 2ax + 10 - 3a >$	0 for all $x \in R$, then	C C	
	-	b) <i>a</i> < −5	c) <i>a</i> > 5	d) 2 < <i>a</i> < 5
76.			and $z_1 z_2$ both are real, the	
77	a) $z_1 = -z_2$		c) $z_1 = -\bar{z_2}$	d) $z_1 = z_2$
//.	If Im $\left(\frac{2z+1}{iz+1}\right) = -2$, then I			d) Norro of the sec
78	a) A circle	b) A parabola ber and a' be a real parameters	c) A straight line eter such that $z^2 + ax + a^2$	-
70.	a) Locus of z is a pair of s		b) Locus of z is a circle	– 0, then
			-	
	c) $\arg(z) = \pm \frac{5\pi}{3}$		d) $ z = -2 a $	
79.			vertices of a parallelogram	
00			c) $z_1 + z_2 = z_3 + z_4$	
<u>0</u> 0.	If a real valued function <i>f</i>	of a real variable <i>x</i> is such	that $\frac{1}{(1+x)(1+x^2)} = \frac{A}{1+x} + \frac{f(x)}{1+x}$	$\frac{f}{x^{2}}$, then $f(x)$ is equal to
	a) $\frac{1-x}{2}$	b) $\frac{x^2 + 1}{2}$	c) 1 – <i>x</i>	d) None of these
81.	If $a + b + c = 0$, then the	roots of the equation $4ax^2$	+ 3bx + 2c = 0 are	
	a) Equal	b) Imaginary	c) Real	d) None of these
82.			(-1) = 0 is a perfect square	
	a) 2	b) 0	c) 1	d) 3
83.	The number of solutions			
	a) 2	b) 3	c) 1	d) None of these
84.		of the equation $ x ^2 - 3 x $		1 (ل
95	a) 4 If the difference between	b) 3 the roots of $x^2 + ax + b =$	c) 2 0 and $x^2 + bx + a = 0$ is satisfied.	d) 1 amo and $a \neq h$ then
05.			c) $a - b - 4 = 0$	
86.		$+\log_2 x - \frac{5}{4} = \log_x \sqrt{2}$ has		
	a) At least one real solution	т	b) Exactly three real solut	ions
	c) Exactly one irrational		d) Complex roots	10113
87.	•		$ +1 \le 1, z_2 + 2 \le 2$ and	$ z_3 + 4 \le 4$, then the

^{87.} If z_1, z_2, z_3 be three complex numbers such that $|z_1 + 1| \le 1$, $|z_2 + 2| \le 2$ and $|z_3 + 4| \le 4$, then the maximum value of $|z_1| + |z_2| + |z_3|$ is

	a) 7	b) 10	c) 12	d) 14
88.		$a = b$, then $\log_{\sqrt{3}} 300$ is equal	al to	
	a) $2(a + b)$	b) $2(a + b + 1)$	c) $2(a + b + 2)$	d) <i>a</i> + <i>b</i> + 4
89.	largest and smallest num			
90.	a) <i>p</i> and <i>q</i> respectively The number of integral se	b) <i>r</i> and <i>t</i> respectively plutions of $\frac{x+2}{x^2+1} > \frac{1}{2}$ is	c) <i>r</i> and <i>q</i> respectively	d) <i>q</i> and <i>p</i> respectively
	a) 4	b) 5	c) 3	d) None of these
91.	Let α , β be the roots of the in GP, then integral value		and γ, δ be the roots of x^2 -	$-4x + q = 0.$ If $\alpha, \beta, \gamma, \delta$ are
		b) -2, 3	c) -6,3	d) -6, -32
92.	If the complex numbers z	z_1, z_2, z_3 satisfying $\frac{z_1 + z_3}{z_2 - z_2} = \frac{1}{z_2 - z_2}$	$\frac{-i\sqrt{3}}{2}$, then triangle is	
	a) An equilateral triangle	22 23	b) A right angled triangle	
	c) A acute angled triangle	<u>e</u>	d) An obtuse angled isosc	eles triangle
93.	If ω is a complex cube roo 225 + $(3\omega + 8\omega^2)^2$ + $(3\omega^2)^2$	-		
	a) 72	b) 192	c) 200	d) 248
94.	The locus of <i>z</i> satisying the	ne inequality $\left \frac{z+2i}{2z+i}\right < 1$ whe	ere $z = x + iy$, is	
	a) $x^2 + y^2 < 1$	b) $x^2 - y^2 < 1$	c) $x^2 + y^2 > 1$	d) $2x^2 + 3y^2 < 1$
95.		+39x - 28 = 0 are in A.P.,		
06	a) ± 1	b) ± 2	c) ± 3	d) ± 4
96.		equation $\frac{2}{ x-4 } > 1, x \neq 4$, is		
07	a) (2, 6)	b) $(2, 4) \cup (4, 6)$		d) None of these
97.		$i^{n} + i^{n+1}$), where $i = \sqrt{-1}$, e		4) 0
98	a) i	b) $i - 1$ cube roots of unity, then α^4	c) $-i$ $+ R^4 + \frac{1}{r}$ is equal to	d) 0
201			$+ \rho + \frac{1}{\alpha\beta}$ is equal to	
00	a) 3 If a h c are all positive as	b) 0 nd in H.P., then the roots of	c) 1 $ax^2 + 2bx + c = 0$ are	d) 2
<i>.</i>	a) Real	b) Imaginary	c) Rational	d) Equal
100	-		,	inimum value of $ z_1 - z_2 $ is
	a) 4	b) 3	c) 1	d) 2
101		the equation $x^2 + x\sqrt{\alpha} + \beta$		
	a) $\alpha = 1$ and $\beta = -1$		b) $\alpha = 1$ and $\beta = -2$	
102	c) $\alpha = 2$ and $\beta = 1$	of the equation $(\alpha = 1)^2$	d) $\alpha = 2$ and $\beta = -2$ ($\alpha = 2$) ² + ($\alpha = 2$) ² = 0 in	
102	a) 1	of the equation $(x - 1)^2 + b) 2$	$(x-2)^{-} + (x-3)^{-} = 0$ is c) 3	d) None of these
103	•	sumber such that $\frac{z-1}{z+1}$ is pure	-) -	uj none or these
	a) 1	b) 2	c) 3	d) 5
104	,	ee complex numbers, then	,	,
	vertices are z_1, z_2 and z_3		1	0
		b) $z_1 + z_2 + z_3$	c) $\frac{1}{3}(z_1 - z_2 + z_3)$	d) $\frac{1}{3}(z_1 + z_2 - z_3)$
105		such that $\operatorname{Re}(z) = \operatorname{Im}(z)$, t	hen	•
40-	a) Re $(z^2) = 0$		c) Re $(z^2) = \text{Im}(z^2)$	d) Re $(z^2) = -\text{Im}(z^2)$
106	$\sqrt{-1-\sqrt{1-\sqrt{1-\ldots\infty}}}$ is	s equal to		
	a) 1	b) —1	c) ω^2	d) -ω

107. Let *a* be a complex number such that |a| < 1 and $z_1, z_2, ...$ be vertices of a polygon such that $z_k = 1 + a + a$ a^2 +...+ a^{k-1} . Then the vertices of the polygon lie within a circle is b) $\left|z - \frac{1}{1-a}\right| = |1-a|$ a) |z - a| = ac) $\left|z - \frac{1}{1-a}\right| = \frac{1}{|1-a|}$ d) |z - (1 - a)| = |1 - a|108. If α , β , γ are the roots of the equation $x^3 - 7x + 7 = 0$, then $\frac{1}{\alpha^4} + \frac{1}{\beta^4} + \frac{1}{\gamma^4}$ is b) 3/7 d) 7/4a) 7/3 c) 4/7109. If $\sin \theta + \cos \theta = h$, then the quadratic equation having $\sin \theta$ and $\cos \theta$ as its roots, is a) $x^2 - hx + (h^2 - 1) = 0$ b) $2x^2 - 2hx + (h^2 - 1) = 0$ c) $x^2 - hx + 2(h^2 - 1) = 0$ d) $x^2 - 2hx + (h^2 - 1) = 0$ 110. If α and β are the roots of the equation $ax^2 + bx + c = 0$, $(c \neq 0)$, then the equation whose roots are $\frac{1}{a\alpha + b}$ and $\frac{1}{a\beta+b}$ is a) $acx^2 - bx + 1 = 0$ b) $x^2 - acx + bc + 1 = 0$ d) $x^2 + acx - bc + 11 = 0$ c) $acx^2 + bx - 1 = 0$ 111. The value of \sqrt{i} is d) $\pm \frac{1}{\sqrt{2}}(1+i)$ c) *i* − 1 a) 1 – *i* b) 1 + *i* 112. If one root of the quadratic equation $ax^2 + bx + c = 0$ is equal to *n*th power of the other root, then the value of $(ac^{n})^{1/(n+1)} + (a^{n}c)^{1/(n+1)}$ is equal to c) $\frac{1}{b^{n+1}}$ d) $-\frac{1}{k^{n+1}}$ a) b b) –*b* 113. The modulus of the complex number z such that |z + 3 - i| = 1 and $\arg(z) = \pi$ is equal to c) 9 d) 3 b) 2 114. The product of cube roots of -1 is equal to c) -2 a) -1 b) 0 d) 4 115. If the roots of $x^3 - 3x^2 - 6x + 8 = 0$ are in arithmetic progression, then the roots of the equation are b) 4, 7, 10 a) 3, 4, 5 c) -2, 1, 4 d) 1, 4, 7 116. The number of values of a for which $(a^2 - 3a + 2)x^2 + (a^2 - 5a + 6)x + a^2 - 4 = 0$ is an identity in *x*, is b) 2 a) 0 c) 1 d) 3 117. If z_1, z_2, z_3 are vertices of an equilateral triangle inscribed in the circle |z| = 2 and if $z_1 = 1 + i\sqrt{3}$, then a) $z_1 = -2, z_3 = 1 - i\sqrt{3}$ b) $z_2 = 2, z_3 = 1 - i\sqrt{3}$ c) $z_2 = -2, z_3 = -1 - i\sqrt{3}$ d) $z_2 = 1 - i\sqrt{3}, z_3 = -1 - i\sqrt{3}$ 118. The solution set of the inequation $\frac{x^2 - 3x + 4}{x + 1} > x \in R$, is b) $(-1, 1) \cup (3, \infty)$ c) $[-1, 1] \cup [3, \infty)$ a) (3,∞) d) None of these ^{119.} The number of real solutions of the equation $\left(\frac{9}{10}\right)^x = -3 + x - x^2$ is a) None b) One d) More than two c) Two 120. The quadratic equation whose roots are three times the roots of $3ax^2 + 3bx + c = 0$ is a) $ax^2 + 3bx + 3c = 0$ b) $ax^2 + 3bx + c = 0$ c) $9ax^2 + 9bx + c = 0$ d) $ax^2 + bx + 3c = 0$ 121. The values of *x* satisfying $|x^2 + 4x + 3| + (2x + 5) = 0$ are d) $-4,1 + \sqrt{3}$ c) $-4.1 - \sqrt{3}$ a) $-4, -1 - \sqrt{3}$ b) 4.1 + $\sqrt{3}$ 122. If $x = \sqrt{\frac{2+\sqrt{3}}{2-\sqrt{3}}}$, then $x^2(x-4)^2$ is equal to c) 2 d) 1 123. If $|a_k| < 1$, $\lambda_k \ge 0$ for k = 1, 2, ..., n and $\lambda_1 + \lambda_2 + ... \lambda_n = 1$, then the value of $|\lambda_1 a_1 + \lambda_2 a_2 + ... + \lambda_n a_n|$ is

a) Equal to one b) Greater than one c) Zero d) Less than one 124. If $\tan \alpha$ and $\tan \beta$ are roots of the equation $x^2 + px + q = 0$ with $p \neq 0$, then a) $\sin^2(\alpha + \beta) + p \sin(\alpha + \beta) \cos(\alpha + \beta) + q \cos^2(\alpha + \beta) = q$ b) $\tan(\alpha + \beta) = \frac{p}{\alpha + 1}$ c) $\cos(\alpha + \beta) = -p$ d) $sin(\alpha + \beta) = 1 - q$ 125. The amplitude of $\sin \frac{\pi}{5} + i \left(1 - \cos \frac{\pi}{5}\right)$ is a) $\frac{2\pi}{5}$ c) $\frac{\pi}{10}$ d) $\frac{\pi}{5}$ b) $\frac{\pi}{15}$ 126. The value of sum $\sum_{n=1}^{13} (i^n + i^{n+1})$, where $i = \sqrt{-1}$, equals b) *i* — 1 a) —i c) −*i* d) 0 127. If x > 0 and $\log_3 x + \log_3(\sqrt[4]{3}) + \log_3(\sqrt[4]{x}) + \log_3(\sqrt[8]{x}) + \log_3(\sqrt[16]{x}) + \dots = 4$, then x equals b) 81 a) 9 d) 27 128. Is *S* is the set of all real *x* such that $\frac{2x}{2x^2+5x+2} > \frac{1}{x+1}$, then *S* is equal to a) (-2, -1)b) (-2/3, 0)c) (-2/3, -1/2)d) $(-2, -1) \cup (-2/3, -1/2)$ 129. The value of *p* for which the difference between the roots of the equation $x^2 + px + 8 = 0$ is 2 are c) ± 6 a) ± 2 b) ± 4 d) ± 8 130. If $x^2 + ax + 10 = 0$ and $x^2 + bx - 10 = 0$ have a common root, then $a^2 - b^2$ is equal to b) 20 c) 30 a) 10 131. If $|z_1| = |z_2| = |z_3| = 1$ and z_1, z_2, z_3 represent the vertices of an equilateral triangle, then a) $z_1 + z_2 + z_3 = 0$ and $z_1 z_2 z_3 = 1$ b) $z_1 + z_2 + z_3 = 1$ and $z_1 z_2 z_3 = 1$ c) $z_1z_2 + z_2z_3 + z_3z_1 = 0$ and $z_1 + z_2 + z_3 = 0$ d) $z_1z_2 + z_2z_3 + z_3z_1 = 0$ and $z_1z_2z_3 = 1$ 132. If $\sqrt{x + iy} = \pm (a + ib)$, then $\sqrt{-x - iy}$ is equal to a) $\pm (b + ia)$ b) $\pm (a - ib)$ c) $\pm (b - ia)$ d) None of these 133. If the roots of the equation $x^2 + px + q = 0$ are α and β and roots of the equation $x^2 - xr + s =$ 0 are α^4 , β^4 , then the roots of the equation $x^2 - 4qx + 2q^2 = 0$ are a) Both negative b) Both positive d) One negative and one positive c) Both real 134. If *a*, *b*, *c* are the sides of the triangle ABC such that $a \neq b \neq c$ and $x^2 - 2(a + b + c)x + 3\lambda(ab + bc + c)x + 3\lambda(ab + bc) + bc$ *ca=0* has real roots, then b) $\lambda > \frac{5}{3}$ c) $\lambda \in \left(\frac{4}{3}, \frac{5}{3}\right)$ d) $\lambda \in \left(\frac{1}{3}, \frac{5}{3}\right)$ a) $\lambda < \frac{4}{2}$ 135. The centre of a regular polygon of *n* sides is located at the point z = 0 and one of its vertex z_1 is known. If z_2 be the vertex adjacent to z_1 , then z_2 is equal to a) $z_1\left(\cos\frac{2\pi}{n} \pm i\sin\frac{2\pi}{n}\right)$ b) $z_1\left(\cos\frac{\pi}{n} \pm i\sin\frac{\pi}{n}\right)$ c) $z_1\left(\cos\frac{\pi}{2n} \pm i\sin\frac{\pi}{2n}\right)$ d) None of these 136. Let $z = \cos \theta + i \sin \theta$. Then, the value of $\sum_{m=1}^{15} \text{Im}(z^{2m-1})$ at $\theta = 2^{\circ}$ is b) $\frac{1}{3 \sin 2^{\circ}}$ c) $\frac{1}{2 \sin 2^{\circ}}$ d) $\frac{1}{4 \sin 2^{\circ}}$ a) $\frac{1}{\sin 2^\circ}$ 137. Let $a \in R$. If the origin and the non-real roots of $2z^2 + 2z + a = 0$ form the three vertices of an equilateral triangle in the argand plane, then a =a) 1 b) 2 c) −1 d) None of these

138. The region of the Argand diagram defined by		
a) Interior of an ellipse	b) Exterior of a circl	
c) Interior and boundary of an ellipse	d) None of the above	2
139. The radius of the circle $\left \frac{z-i}{z+i}\right = 5$ is given by		N (25
a) $\frac{13}{12}$ b) $\frac{5}{12}$	c) 5	d) 625
12 12 140. The roots of the cubic equation $(z + \alpha\beta)^3 = \alpha$	$x^3 \alpha \neq 0$	
a) Represent sides of an equilateral triangle	$\iota, \iota \neq 0$	
b) Represent the sides of an isosceles triangle		
	_	
c) Represent the sides of a triangle whose on	e side is of length $\sqrt{5} \alpha$	
d) None of these $141 - 56$ (-5)		
^{141.} If $(\sqrt{5} + \sqrt{3}i)^{33} = 2^{49} z$, then modulus of the		
a) 1 b) $\sqrt{2}$	c) $2\sqrt{2}$	d) 4
142. If centre of a regular hexagon is at origin and	one of the vertex on argand	diagram is $1 + 2i$, then its
perimeter is		
a) $2\sqrt{5}$ b) $6\sqrt{2}$	c) $4\sqrt{5}$	d) 6√5
^{143.} The value of $\sum_{k=1}^{6} \left(\sin \frac{2\pi k}{7} - i \cos \frac{2\pi k}{7} \right)$ is		
	a) i	ן: ני
a) -1 b) 0	c) $-i$	d) i
144. The cubic equation whose roots are thrice to $x^{2} + 2(x + 27) = 0$		
a) $x^3 - 6x^2 + 36x + 27 = 0$	b) $x^3 + 6x^2 + 36x + $	
c) $x^3 - 6x^2 - 36x + 27 = 0$	d) $x^3 + 6x^2 - 36x + 6x^2 - 36x^2 - 36x$	
145. Let $(\sin a)x^2 + (\sin a)x + (1 - \cos a = 0)$. The distinct is	he value of a for which roots	of this equation are real and
distinct, is $(0, 2 + c_1 = 1, 1, (4))$ (0, $(0, 2 - 1, (2))$		4) (0, 2–)
	c) $(0, \pi)$	d) $(0, 2\pi)$
146. If α and β ($\alpha < \beta$) are the roots of the equation		
a) $0 < \alpha < \beta$ b) $\alpha < 0 < \beta < \alpha $		d) $\alpha < 0 < \alpha < \beta$
147. If $1 + x^2 = \sqrt{3}x$, then $\sum_{n=1}^{24} \left(x^n - \frac{1}{x^n}\right)^2$ is equal		
a) 0 b) 48	c) -24	d) -48
148. The roots of the equation $ x^2 - x - 6 = x + $		
a) -2,1,4 b) 0,2,4	c) 0,1,4	d) -2,2,4
149. Let α , β be the roots of the equation $ax^2 + bx$	$c + c = 0$, and let $\alpha^n + \beta^n =$	S_n for $n \ge 1$. Then, the value of
the determinant		
$\begin{vmatrix} 3 & 1+S_1 & 1+S_2 \\ 1+S_1 & 1+S_2 & 1+S_3 \\ 1+S_2 & 1+S_3 & 1+S_4 \end{vmatrix}$ is		
$1 + S_1 + S_2 + S_3 + S_3$		
a) $\frac{b^2 - 4ac}{a^4}$		
ü		
b) $\frac{(a+b+c)(b^2+4ac)}{a^4}$		
$(a + b + c)(b^2 - 4ac)$		
c) $\frac{(a+b+c)(b^2-4ac)}{a^4}$		
d) $\frac{(a+b+c)^2(b^2-4ac)}{a^4}$		
a^4		
150. If $z_1, z_2, z_3, \dots, z_n$ are <i>n</i> nth roots of unity, then	1 for $k = 1, 2,, n$	
a) $ z_k = k z_{n+1} $ b) $ z_{k+1} = k z_k $		
151. If α , β are the roots of the equation $x^2 - (1 + \beta)^2$	$(n^2)x + \frac{1}{2}(1 + n^2 + n^4) = 0,$	
a) n^2 b) $-n^2$	c) <i>n</i> ⁴	d) $-n^4$
152. If one root of equation $x^2 + ax + 12 = 0$ is 4	while the equation $x^2 + ax$ -	b = 0 has equal roots, then the
value of h is		

value of *b* is

a) $\frac{4}{49}$	b) $\frac{49}{4}$	c) $\frac{7}{4}$	d) $\frac{4}{7}$
153. If $a = \log_2 3, b = \log_2 5,$	4	n terms of <i>a</i> , <i>b</i> , <i>c</i> is	/
	b) $\frac{2ac+1}{2a+c+a}$		d) None of these
154. Number of non-zero int			d) News of these
a) 1 155. The number of non-zero	b) 2	c) Infinite	d) None of these
$x^2 - 5x - (Sgn(x))6 =$	_		
a) 1	b) 2	c) 3	d) 4
156. If <i>n</i> is a positive integer	,	,	2
$(z+1)^n$, then	8. 64.661 6.1411 6.1109 6.114 2.10		
a) Re $(z) < 0$	b) Re $(z) > 0$	c) Re $(z) = 0$	d) None of these
157. If 1, ω , ω^2 are the cube r	roots of unity, then $(1 + \omega)($	$(1 + \omega^2)(1 + \omega^4)(1 + \omega^8)$	is equal to
a) 1	b) 0	c) ω^2	d) ω
158. $\begin{vmatrix} 6i & -3i & 1 \\ 4 & 2i & 1 \end{vmatrix}$	in them		
158. If $\begin{vmatrix} 6i & -3i & 1 \\ 4 & 3i & -1 \\ 20 & 3 & i \end{vmatrix} = x + $	- <i>iy</i> , men		
	b) $x = 13, y = 3$	c) $x = 0, y = 3$	d) $x = 0, y = 0$
159. If z_1, z_2, z_3 are vertices of	of an equilateral triangle wit	h z_0 its centroid, then z_1^2 +	$z_2^2 + z_3^2 =$
a) z_0^2	b) 9 z ₀ ²	c) $3 z_0^2$	d) 2 z_0^2
160. For all x' , $x^2 + 2ax + ($			
a) <i>a</i> < −5	,	-) ··· -	d) 2 < <i>a</i> < 5
161. If α_1, α_2 and β_1, β_2 are the			
	$\alpha + \alpha_2 z = 0$ and $\beta_1 y + \beta_2 z = 0$		
a) $a^2qc = p^2br$	b) $b^2 = pr = q^2 ac$, ,	d) None of these
162. If 1, ω , ω^2 are the cube r upto 2 <i>n</i> factors is	bots of unity, then $(1 - \omega +$	$(\omega^{-})(1-\omega^{-}+\omega^{-})(1-\omega^{-})$	$(1 - \omega^{2} + \omega^{-2})$
a) 2 <i>n</i>	b) 2 ²ⁿ	c) 1	d) -2^{2n}
163. If α and β are different of	<i>,</i>	2	
			1 (ل
a) 0 164. In a right-angled triangl	b) $3/2$	c) $1/2$	d) 1 - $h \neq 1$ $c + h \neq 1$ Then the
	(a, b) = a + b a + b a + b a + b a + b a + b a + b a + b + b		$-b \neq 1, c + b \neq 1$. Then the
a) 2			d) 1
-	b) —1	c) $\frac{1}{2}$,
165. The set of real values of	x for which $\frac{10x^2 + 17x - 34}{x^2 + 2x - 2} < 8$	3, is	
	b) $(-3, -5/2) \cup (1, 2)$		d) None of these
166. If $\left(\frac{1+\cos\phi+i\sin\phi}{1+\cos\phi-i\sin\phi}\right) = u + u$			
$(1+\cos\phi-i\sin\phi)$			(200)
а) <i>n</i> cos ф	b) cos <i>n</i> ф	c) $\cos\left(\frac{n\phi}{2}\right)$	d) $\sin\left(\frac{n\phi}{2}\right)$
167. The number of real root	ts of the equation $2x^4 + 5x^4$	$^{2} + 3 = 0$, is	
a) 4	b) 1	c) 0	d) 3
168. If α and β are the roots	of $x^2 - 2x + 4 = 0$, then the	e value of $\alpha^6 + \beta^6$ is	
a) 32	b) 64	c) 128	d) 256
169. If $ z + 4 \le 3$, then the g			
a) 6, -6	b) 6, 0	c) 7, 2	d) 0, -1
170. If P, P' represent the concircle with PP' as a diam		ative inverse respectively,	then the equation of the
circle with PP' as a diam	ieter is		
7. 7.			d) None of these
a) $\frac{z}{z_1} = \frac{z_1}{z}$	b) $z\bar{z} = z_1\bar{z}_1 = 0$	c) $z\bar{z}_1 + \bar{z}z_1 = 0$	d) None of these

171. If x + 1 is a factor of $x^4 + (p - 3)x^3 - (3p - 5)x^2 + (2p - 9)x + 6$, then the value of p is a) –4 b) 0 c) 4 d) 2 172. If $A = \{x: f(x) = 0\}$ and $B = \{x: g(x) = 0\}$, then $A \cap B$ will be the set of roots of the equation a) ${f(x)}^2 + {g(x)}^2 = 0$ b) $\frac{f(x)}{q(x)}$ c) $\frac{g(x)}{f(x)}$ d) None of these 173. If α and β are the roots of the equation $x^2 + px + q = 0$ and if the sum $(\alpha + \beta)x - \frac{\alpha^2 + \beta^2}{2} \cdot x^2 + \frac{\alpha^3 + \beta^3}{3} \cdot x^3 - \dots$ exists then it is equal to b) $\log(x^2 - px + q)$ c) $\log(1 + px + qx^2)$ a) $\log(x^2 + px + q)$ d) $\log(1 - px + qx^2)$ 174. Let z be a complex number satisfying $|z - 5i| \le 1$ such that amp (z) is minimum. Then z is equal to a) $\frac{2\sqrt{6}}{5} + \frac{24i}{5}$ b) $\frac{24}{5} + \frac{2\sqrt{6}i}{5}$ c) $\frac{2\sqrt{6}}{5} - \frac{24i}{5}$ d) None of these 175. If α and β are the roots of $x^2 + px + 1 = 0$ and γ and δ are the roots of $x^2 + qx + 1 = 0$, then the value of $(\alpha - \gamma)(\beta - \gamma)(\alpha + \delta)(\beta + \delta)$, is a) $p^2 - q^2$ b) $a^2 - p^2$ c) p^2 d) q^{2} 176. For two complex numbers z_1, z_2 the relation $|z_1 + z_2| = |z_1| + |z_2|$ holds, if b) $\arg(z_1) + \arg(z_2) = \frac{\pi}{2}$ a) $\arg(z_1) = \arg(z_2)$ c) $z_1 z_2 = 1$ d) $|z_1| = |z_2|$ 177. If ω is a complex cube root of unity, then $\sin\left\{(\omega^{10} + \omega^{23}\pi - \frac{\pi}{4})\right\}$ is equal to a) $\frac{1}{\sqrt{2}}$ c) 1 b) $\frac{1}{2}$ d) $\frac{\sqrt{3}}{3}$ 178. If the equation $x^3 - 3x + a = 0$ has distinct roots between 0 and 1, then the value of *a* is b) 1/2 d) None of these a) 2 c) 3 179. If α , β are roots of the equation $375x^2 - 25x - 2 = 0$ and $S_n = a^n + \beta^n$, then $\lim_{n \to \infty} \sum_{r=1}^n S_r$ is equal to c) 29/348 d) None of these a) 7/116 b) 1/12 180. If $y = \tan x \cot 3x$, $x \in R$, then d) None of these b) $\frac{1}{3} \le y \le 1$ c) $\frac{1}{3} \le y \le 3$ a) $\frac{1}{2} < y < 1$ 181. If α is a root of the equation 2x(2x + 1) = 1, then the other roots is c) $4 \alpha^3 - 3 \alpha$ a) $3 \alpha^3 - 4 \alpha$ b) $-2 \alpha(\alpha + 1)$ d) None of these 182. If the roots of the equation $x^2 - bx + c = 0$ be two consecutive integers, then $b^2 - 4c$ equals a) 1 b) 2 c) 3 d) -2 183. If *x*, *y*, *z* are in GP and $a^x = b^y = c^z$, then b) $\log_b a = \log_c b$ c) $\log_c b = \log_a c$ a) $\log_a c = \log_b a$ d) None of the above 184. If the complex numbers $z_1 = a + i$, $z_2 = 1 + ib$, $z_3 = 0$ form the vertices of equilateral triangle (*a*, *b* are real numbers between 0 and 1), then a) $a = \sqrt{3} - 1, b = \frac{\sqrt{3}}{2}$ b) $a = 2 - \sqrt{3}, b = 2 - \sqrt{3}$ c) a = 1/2, b = 3/4d) None of these 185. Sum of the series $\sum_{r=0}^{n} (-1)^{r} {}^{n}C_{r} \{i^{5r} + i^{6r} + i^{7r} + i^{8r}\}$, is d) $2^n + 2^{n/2+1} \cos \frac{n \pi}{4}$ b) $2^{n/2+1}$ c) $n^n + 2^{n/2+1}$ a) 2ⁿ 186. If *a*, *b* and *c* are distinct positive real numbers in AP, then the roots of the equation $ax^2 + 2bx + c = 0$ are a) Imaginary b) Rational and equal c) Rational and distinct d) Irrational

a) Re $(z) > 1$	lex number such that $\log_{1/2} z $ b) Im (z) > 1 + $z^3 + z^2 + z + 1 = 0$ is sati	c) Re $(z) = 1$	d) Im $(z) = 1$
-	b) $z = -1$	c) $z = \pm \frac{1}{2} + \frac{i\sqrt{3}}{2}$	d) None of the above
189. The equation $x^2 - 3 z$	$rl \pm 2 = 0$ has	$\sim -2 - 2$	
a) No real root	b) One real root ation $x^2 + px + 12 = 0$ is 4, w	,	- ,
a) 4	b) 12	c) 3	d) $\frac{49}{4}$
191. If $[x]^2 = [x + 2]$, whe	re[x] = the greatest integer l	ess than or equal to <i>x</i> , then	x must be such that
a) $x = 2, -1$	b) [−1,0] ∪ [2,3]	c) $x \in [-1, 0]$	d) None of these
192. If α , β are the roots of	$ax^2 + bx + c = 0$ the equation	on whose roots are $2 + \alpha$, 2	$2 + \beta$ is
a) $ax^2 + x(4 a - b) + ax^2 $			
b) $ax^2 + x(4a - b) + ax^2 + ax^2 + bx^2 +$			
c) $ax^2 + x(b - 4a) + a^2$			
d) $ax^2 + x(b - 4a) + ax^2 +$		<u> </u>	
	s such that $\tan \alpha + \tan \beta + \tan \beta$	•	$x = \cos \alpha + i \sin \alpha, \ y =$
	$s\gamma + i \sin \gamma$, then $x\gamma z$ is equal to		1) 0
a) 1, but not -1		c) +1 or -1	d) 0
194. If $\arg(z_1 z_2) = 0$ and a) $z_1 + z_2 = 0$		c) $z_1 = \bar{z_2}$	d) None of these
	$7x + 1 = 0$ and $ax^2 + bx + 2$		-
			d) None of these
a) $a = 2, b = -7$	b) $a = -\frac{7}{2}, b = 1$	c) $a = 4, b = -14$	
196. The polynomial x^{3m} -	$+ x^{3n+1} + x^{3k+2}$ is exactly div	isible by $x^2 + x + 1$ if	
a) <i>m, n, k</i> are rational			
b) <i>m, n, k</i> are integers			
c) <i>m</i> , <i>n</i> , <i>k</i> are positive	integers		
d) None of these			
	ngs to the set $\{0, 1, 2, 3, \dots,, n, n\}$	9},	
Then $\log_{10} \left(\frac{a + 10b}{10^{-4}a + 10^{-4}} \right)$	$\frac{10^{2}c}{3b+10^{-2}c}$) is equal to		
a) 1	b) 2	c) 3	d) 4
198. If the roots of the equ	ation $x^2 + px + q = 0$ are tan	30° and tan 15° respective	ely, then the value of
2 + q - p is			
a) 3	b) 0	c) 1	d) 2
199. If $z = x - iy$ and $z^{1/3}$	$= p + iq$, then $\left(\frac{x}{p} + \frac{y}{q}\right)/(p^2 + q^2)$	(q^2) is equal to	
a) 1	b) -1	c) 2	d) -2
200. If sec α and cosec α and	The the roots of the equation x^2	$x^2 - px + q = 0$, then	
	b) $q^2 = p + 2q$		d) $q^2 = p(p+2)$
201. The number of real ro	pots of the equation $\left(x + \frac{1}{x}\right)^3$ -	$+x + \frac{1}{x} = 0$ is	
a) 0	b) 2	c) 4	d) 6
a) One positive and o b) Imaginary roots c) Real roots	p + c = 0, then the quadratic on negative root	equation $4ax^2 + 3bx + 2c$	= 0 has
d) None of these 203. If α . β v and δ are the	roots of the equation $x^4 - 1 =$	= 0. then the value of	

 $\frac{a \alpha + b \beta + c \gamma + d \delta}{a \gamma + b \delta + c \alpha + d \beta} + \frac{a \gamma + b \delta + c \alpha + d \beta}{a \alpha + b \beta + c \gamma + d \delta},$ is d) None of these c) 2 γ b) () 204. If $\log_5 \log_5 \log_2 x = 0$, then the value of *x* is b) 125 c) 625 d) 25 205. $\left(\frac{1}{1+2i} + \frac{3}{1+i}\right) \left(\frac{3+4i}{2-4i}\right)$ is equal to d) $\frac{1}{4} + \frac{9}{4}i$ b) $\frac{1}{2} - \frac{9}{2}i$ c) $\frac{1}{4} - \frac{9}{4}i$ a) $\frac{1}{2} + \frac{9}{2}i$ 206. If α , β are the roots of the equation $x^2 + px + q = 0$ and α^4 , β^4 are the roots of $x^2 - rx + s = 0$, then the equation $x^2 - 4qx + 2q^2 - r = 0$ has always (p, q, r, s are real numbers)a) Two real roots b) Two negative roots c) Two positive roots d) One positive and one negative roots 207. If x is real, then the minimum value of $\frac{x^2-x+1}{x^2+x+1}$, is a) $\frac{1}{2}$ b) 3 d) 1 c) $\frac{1}{2}$ 208. In the equation $a_4x^4 + a_3x^3 + a_2x^2 + a_1x + a_0 = 0$ roots of the equation are α_i , i = 1, 2, 3, 4. Now, x is replaced by x - 1, now roots of new equation are a) $\frac{1}{\alpha_i + 1}$, i = 1, 2, 3, 4b) $\alpha_i + 1, i = 1, 2, 3, 4$ c) $\alpha_i - 1, i = 1, 2, 3, 4$ d) None of these 209. The closest distance of the origin from a curve given as $a\bar{z} + \bar{a}z + |a|^2 = 0$ is c) $\frac{\text{Im}(|a|)}{|a|}$ b) $\frac{\operatorname{Re}(|a|)}{|a|}$ a) 1 d) $\frac{|a|}{2}$ 210. Let *a*, *b* and *c* be such that $\frac{1}{(1-x)(1-2x)(1-3x)} = \frac{a}{1-x} + \frac{b}{1-2x} + \frac{c}{1-3x} \operatorname{then} \frac{a}{1} + \frac{b}{3} + \frac{c}{5} \text{ is equal to}$ c) 1/5 d) 1/3 211. The root of the equation $2(1 + i)x^2 - 4(2 - i)x - 5 - 3i = 0$, where $i = \sqrt{-1}$, which has greater modulus, is a) $\frac{3-5i}{2}$ d) $\frac{3i+1}{2}$ b) $\frac{5-3i}{2}$ c) $\frac{3+i}{2}$ 212. For any complex number *z*, the minimum value of |z| + |z - 2i|, is b) 1 c) 2 a) 0 d) 4 213. The value of expression $2(1 + \omega)(1 + \omega^2) + 3(2 + \omega)(2 + \omega^2) + 4(3 + \omega)(3 + \omega^2) + \dots + (n + 1)(n + \omega^2)$ $\omega n + \omega 2$, where ω is an imaginary cube root of unity is b) $\left\{\frac{n(n+1)}{2}\right\}^2 - n$ c) $\left\{\frac{n(n+1)}{2}\right\}^2 + n$ a) $\left\{\frac{n(n+1)}{2}\right\}^2$ d) None of these ^{214.} For the equation $x^{\frac{3}{4}(\log_2 x)^2 + \log_2(x) - \frac{5}{4}} = \sqrt{2}$ which one of the following is not true? a) Has at least one real solution b) Has exactly three real solutions c) Has exactly one irrational solution d) All of these 215. If $(x^2 - 3x + 2)$ is a factor of $x^4 - px^2 + q = 0$, then the values of p and q are a) -5, 4 b) 5, 4 c) 5, -4 d) -5. -4 216. If the ratio of the equation $x^2 + px + q = 0$ be equal to the ratio of the roots of $x^2 + lx + m = 0$, then a) $p^2 m = q^2 l$ b) $pm^2 = q^2 l$ c) $p^2 l = q^2 m$ d) $p^2 m = l^2 q$ 217. If x_1, x_2, x_3, x_4 are roots of the equation $x^4 - x^3 \sin 2\beta + x^2 \cos 2\beta - x \cos \beta - \sin \beta = 0$, then $\tan^{-1} x_1 + \cos^{-1} x_2 + \cos^{-1} x_3 + \cos^{-1} x_4 + \cos^{-1} x_5 +$ $\tan -1x^{2}$ + $\tan -1x^{3}$ + $\tan -1x^{4}$ is equal to

b) $\frac{\pi}{2} - \beta$ c) $\pi - \beta$ a) β d) $-\beta$ 218. If the roots of the equation $a(b - c)x^2 + b(c - a)x + c(a - b) = 0$ are equal, then *a*, *b*, *c* are in b) G.P. d) None of these a) H.P. c) A.P. 219. If the sum of the squares of the roots of the equation $x^2 - (a - 2)x - (a + 1) = 0$ is least, then the value of a is a) 0 b) 2 c) −1 d) 1 220. If $a + b + c \neq 0$, then $(a + b\omega + c\omega^2)^3 + (a + b\omega^2 + c\omega^2) =$ a) (2a - b - c)(2b - c - a)(2c - a - b)b) abc c) (2a + b + c)(2b + c + a)(2c + a + b)d) None of these 221. The roots of the equation $\log_2(x^2 - 4x + 5) = (x - 2)$ are d) 3,5 a) 4, 5 b) 2, -3 c) 2, 3 222. If $\cos \alpha$ is a root of $25x^2 + 5x - 12 = 0, -1 < x < 0$. Then, the value of $\sin 2\alpha$ is a) $\frac{12}{25}$ b) $\frac{-12}{25}$ c) $\frac{-24}{25}$ d) $\frac{20}{25}$ 223. If α, β, γ are the roots of the equation $2x^3 - 3x^2 + 6x + 1 = 0$, then $\alpha^2 + \beta^2 + \gamma^2$ is equal to a) $-\frac{15}{4}$ b) $\frac{15}{4}$ c) $\frac{9}{4}$ d) 4 c) $\frac{9}{4}$ a) −<u>15</u> 224. If $2z_1 - 3z_2 + z_3 = 0$, then z_1, z_2, z_3 are represented by a) Three vertices of a triangle b) Three collinear points c) Three vertices of a rhombus d) None of these 225. The condition that one root of the equation $ax^2 + bx + c = 0$ may be double of the other, is a) $b^2 = 9ac$ 226. The locus of $z = i + 2 \exp\left\{i\left(\theta + \frac{\pi}{4}\right)\right\}$, where θ is parameter, is d) $b^2 = ac$ c) A parabola a) A circle b) An ellipse d) Hyperbola 227. If $\alpha \neq \beta$ and $\alpha^2 = 5\alpha - 3$, $\beta^2 = 5\beta - 3$, then the equation having α/β and β/α as its roots is a) $3x^2 + 19x + 3 = 0$ b) $3x^2 - 19x + 3 = 0$ c) $3x^2 - 19x - 3 = 0$ d) $x^2 - 16x + 1 = 0$ 228. If $2 - 3x - 2x^2 \ge 0$, then b) $-2 \le x \le \frac{1}{2}$ c) $x \ge -2$ d) $x \le \frac{1}{2}$ a) $x \le -2$ 229. If $f(x) = ax^2 + bx + c$, $g(x) = -ax^2 + bx + c$ where $ac \neq 0$, then f(x)g(x) = 0 has a) At least three real roots b) No real roots c) At least two real roots d) Two real roots and two imaginary roots 230. If $|z + 4| \le 3$, then the maximum value of |z + 1| is d) 0 a) 4 b) 10 c) 6 231. If $x = \sqrt{7} - \sqrt{5}$ and $y = \sqrt{13} - \sqrt{11}$, then a) x > yb) x < yc) x = yd) None of these 232. If α , β are the roots of the equation $ax^2 + bx + c = 0$ such that $\beta < \alpha < 0$, then the quadratic equation whose roots are $|\alpha|$, $|\beta|$, is given by a) $|\alpha|x^2 + |b|x + |c| = 0$ b) $ax^2 - |b|x + c = 0$ c) $|a|x^2 - |b|x + |c| = 0$ d) $a|x|^2 + b|x| + c = 0$ 233. If magnitude of a complex number 4 - 3i is tripled and is rotated anti-clockwise by an angle π , then resulting complex number world be a) -12 + 9ib) 12 + 9*i* c) 7 – 6*i* d) 7 + 6*i* 234. If $z = r e^{i \theta}$, then $|e^{i z}|$ is equal to

b) $r e^{-r\sin\theta}$ a) $e^{-r\sin\theta}$ c) $e^{-r\cos\theta}$ d) $r e^{-r \cos \theta}$ 235. The roots of the equation $|2x - 1|^2 - 3|2x - 1| + 2 = 0$ are a) $\left\{-\frac{1}{2}, 0, \frac{1}{2}\right\}$ b) $\left\{-\frac{1}{2}, 0, \frac{3}{2}\right\}$ c) $\left\{-\frac{3}{2}, \frac{1}{2}, 0, 1\right\}$ d) $\left\{-\frac{1}{2}, 0, 1, \frac{3}{2}\right\}$ 236. If |3x + 2| < 1, then *x* belongs to the interval b) [-1, -1/3]a) (-1, -1/3)c) $(-\infty, -1)$ d) $(-1/3, \infty)$ 237. The set $C = \{z: z\bar{z} + a\bar{z} + \bar{a}z + b = 0, b \in R \text{ and } b < |a|^2\}$ is a) A finite set b) An infinite set c) An empty set d) None of these 238. The equation $\bar{z} = \bar{a} + \frac{r^2}{(z-a)}$, r > 0 represents b) A parabola a) An ellipse c) A circle d) A straight line through point \bar{a} ^{239.} If ω is a complex cube root of unity, then $\frac{a+b\omega+c\omega^2}{c+a\omega+b\omega^2} + \frac{c+a\omega+b\omega^2}{a+b\omega+c\omega^2} + \frac{b+c\omega+a\omega^2}{b+c\omega^4+a\omega^5}$ is equal to a) 1 b) ω c) ω^2 d) 0 b) ω d) 0 240. If the roots of the equation $3x^2 - 6x + 5 = 0$ are α and β , then the equation whose roots are $\alpha + \beta$ and $\frac{2}{\alpha+\beta}$ will be a) $x^{2} + 3x - 1 = 0$ b) $x^{2} + 3x - 2 = 0$ c) $x^{2} + 3x + 2 = 0$ d) $x^{2} - 3x + 2 = 0$ 241. The roots of $ax^2 + 2bx + c = 0$ and $bx^2 - 2\sqrt{ac}x + b = 0$ are simultaneously real, then b) $ac = b^2$ a) a = b, c = 0c) $4b^2 = ac$ d) None of these 242. The solution set of the inequation $\left|\frac{3}{x} + 1\right| > 2$, is c) (−1, 0) ∪ (0, 3) a) (0,3] d) None of these b) [-1,0) 243. The number of real solutions of the equation $|x^2 + 4x + 3| + 2x + 5 = 0$ are b) 2 d) 4 a) 1 c) 3 244. The region of the complex plane for which $\left|\frac{z-a}{z+\bar{a}}\right| = 1$ [Re(*a*) \neq 0], is a) x-axis b) y-axis c) The straight line x = ad) None of these 245. The locus of point *z* satisfying $\text{Re}(z^2) = 0$, is a) A pair of straight lines b) A circle c) A rectangular hyperbola d) None of these 246. The co0mplex number z = x + iy which satisfy the equation $\left| \frac{z-5i}{z+5i} \right| = 1$ lies on a) The axis of x b) The straight line y = 5c) The circle passing through the origin d) None of the above 247. If $2 + i\sqrt{3}$ is a root of $x^2 + px + q = 0$ where $p, q \in R$, then a) p = -4, q = 7 b) p = 4, q = 7 c) p = 4, 248. If $\sqrt{3x^2 - 7x - 30} + \sqrt{2x^2 - 7x - 5} = x + 5$, then x is equal to c) p = 4, q = -7 d) p = -4, q = -7c) 6 a) 2 b) 3 d) 5 249. if $\sqrt{x + iy} = \pm (a + ib)$, then $\sqrt{-x - iy}$ is equal to a) $\pm (b + ia)$ b) $\pm (a - ib)$ c) (ai + b)d) $\pm (b - ia)$ 250. If roots of $x^2 - ax + b = 0$ are prime numbers, then a) `b' is a prime number b) a' is a composite number c) 1 + a + b is a prime number d) None of the above 251. Let z_1 and z_2 be complex numbers, then $|z_1 + z_2|^2 + |z_1 - z_2|^2$ is equal to a) $|z_1|^2 + |z_2|^2$ b) $2(|z_1|^2 + |z_2|^2)$ c) $2(z_1^2 + z_2^2)$ d) $4z_1z_2$ 252. If $f(x) = x^2 + 2bx + 2c^2$ and $g(x) = -x^2 - 2cx + b^2$ such that min $f(x) > \max g(x)$, then the relation between *b* and *c* is b) $0 < c < b\sqrt{2}$ c) $|c| < |b|\sqrt{2}$ a) $|c| < |b|\sqrt{2}$ d) $|c| > |b|\sqrt{2}$

253. The number of complex nu	mbers z such that $ z - 1 $	= z + 1 = z - i equals	
	b) 1	c) 2	d) ∞
254. If $ax^2 + bx + c = 0$ and $2x$		mmon root where $a, b, c \in$	N (set of natural numbers),
the least value of $a + b + c$			
a) 13	b) 11	c) 7	d) 9
255. The solution set of the ineq	$rac{x+4}{x-3} \le 2$, is		
a) $(-\infty, 3) \cup (10, \infty)$		c) $(-\infty, 3) \cup [10, \infty)$	d) None of these
256. Let $f(x) = x^2 + ax + b$, wh	here $a, b \in R$. If $f(x) = 0$	has all its roots imaginary,	then the roots of
f(x) + f'(x) + f''(x) = 0		0 ,	
a) Real and distinct		c) Equal	d) Rational and equal
257. If $\log_{10} 7 = 0.8451$, then the	ne position of the first sign	ificant figure of 7^{-20} is	· ·
	b) 17	c) 20	d) 15
258. If <i>z</i> and <i>w</i> are two non-zero	o complex numbers such t	that $ zw = 1$ and $\arg(z) -$	$\arg(w) = \frac{\pi}{2}$, then \bar{z} is equal
to			-
2	b) -1	,	d) — <i>i</i>
259. If the sum of the roots of th	the equation $ax^2 + 2x + 3a$	a = 0 is equal to their prod	ucts, then the value of <i>a</i> is
a) $-\frac{2}{3}$	b) —3	c) 4	d) $-\frac{1}{2}$
260. If α , β , γ are the roots of x^3		$\alpha^{-2} + \beta^{-2} + \gamma^{-2}$ is equal	L
	b) 13	c) 14	d) 15
261. If $x^2 + 2x + 2xy + my - 3$)	,	,
	b) -6, 2	c) 6, −2	d) 6, 2
262. If α and β are the roots of t		,	
to		<i>b b</i> , <i>up b und u</i> , <i>b</i> , <i>c un</i>	, in m, then a + p is equal
	b) 1	c) 4	d) -2
263. If the difference between th	,	,	2
$x^2 - px + q = 0$, then $a^2 - a^2$		o is equal to the amerene	
	b) $4(b+q)$	c) $4(b-q)$	d) $4(q - b)$
264. The value of $\frac{a+b\omega+c\omega^2}{b+c\omega+a\omega^2} + \frac{a+b\omega+c\omega^2}{c+c\omega+a\omega^2}$			······································
	b) -1	c) 2	d) -2
265. The imaginary part of $(z - z)$)	2	2
	b) $\arg(z-1) = 2\alpha$		d) $ z = 1$
266. If $z = x + iy$ and $\left \frac{1-iz}{z-i}\right = 1$)
a) x-axis		b) y-axis	
c) Circle with unity radius		d) None of the above	
267. If <i>p</i> and <i>q</i> are roots of the q	madratic equation	a) None of the above	
$x^{2} + mx + m^{2} + a = 0$, the		na is	
	b) a	c) $-a$	d) $\pm m^2$
268. For the equation $ x ^2 + x $,	c) u	u) <u>-</u> m
a) There is only one root	0 – 0		
b) There are only two disti	nct roots		
c) There are only three dis			
d) There are four distinct r			
269. Let z_1 and z_2 be two compl	_	$\frac{z_2}{z_1} = 1$. Then,	
a) z_1, z_2 are collinear	Z ₂	2 ₁	
b) z_1, z_2 and the origin from	n a right angled triangle		
c) z_1, z_2 and the origin from			
d) None of these	1		

270 If $u = h$ a array real and $(u = a + b)^2 + (u = b + a)^2$	- 0 there a h a are in	
270. If <i>x</i> , <i>a</i> , <i>b</i> , <i>c</i> are real and $(x - a + b)^2 + (x - b + c)^2$ a) H.P. b) G.P.		d) None of these
,	c) A.P.	d) None of these
271. If $z = i \log(2 - \sqrt{3})$, then $\cos z =$	a) 1	4) J
a) i b) $2i$ 272. If $x = 2 + i$, then $x^3 = 2x^2 - 9x + 15$ is equal to	c) 1	d) 2
272. If $x = 3 + i$, then $x^3 - 3x^2 - 8x + 15$ is equal to	a) 10	4) (
a) 45 b) -15	c) 10	d) 6
273. If z_1, z_2 are any two complex numbers, then	b	
a) $ z_1 + z_2 \ge z_1 + z_2 $ c) $ z_1 + z_2 \le z_1 + z_2 $	b) $ z_1 + z_2 > z_1 + z_2 $ d) $ z_1 + z_2 = z_1 + z_2 $	
	, i <u>i</u> i i i i	
274. The value of <i>a</i> for which the equation $2x^2 + 2\sqrt{6}x - \frac{1}{2}x^2 + \frac{1}{2}\sqrt{6}x - \frac{1}{2}\sqrt{6}x $		
a) 3 b) 4	c) 2	d) √3
275. If $a = \cos\left(\frac{2\pi}{7}\right) + i\sin\left(\frac{2\pi}{7}\right)$, then the quadratic eq	uation whose roots are a	$a = a + a^2 + a^4$ and $\beta = a^3 + a^4$
$a^5 + a^6$ is		2
a) $x^2 - x + 2 = 0$ b) $x^2 + x - 2 = 0$	c) $x^2 - x - 2 = 0$	d) $x^2 + x + 2 = 0$
276. If $ z_1 = z_2 $ and $\arg(z_1) + \arg(z_2) = 0$, then		
a) $z_1 = z_2$ b) $z_1 = \overline{z_2}$, 1 5	d) None of these
277. For any complex number <i>z</i> , the minimum value of .		
a) 1 b) 0	c) 1/2	d) 3/2
278. The equation $z\bar{z} + a\bar{z} + \bar{a}z + b = 0$, $b \in R$ represented by the second		
	c) $ a ^2 < b$	d) None of these
279. If z_1, z_2, z_3, z_4 are the affixes of four points in the an		ix of a point such that
$ z - z_1 = z - z_2 = z - z_3 = z - z_4 $, then z_1 ,		
a) Concyclic	b) Vertices of a parallelo	gram
c) Vertices of a rhombus	d) In a straight line	
280. Let α , β be the roots of the equation $ax^2 + 2bx + c$	= 0 and γ , δ be the roots o	t the equation $px^2 + 2qx +$
$r = 0$. If α , β , γ , δ are in GP, then		
a) $q^2ac = b^2pr$ b) $qac = bpr$		
281. If α , β , γ are such that $\alpha + \beta + \gamma = 2$, $\alpha^2 + \beta^2 + \gamma^2 = 2$		
a) 7 b) 12	,	,
282. If the roots of the equation $x^2 - 2ax + a^2 + a - 3 =$		
a) $a < 2$ b) $2 \le a \le 3$,	d) $a > 4$
283. For any two complex numbers z_1 and z_2 and any re equal to	al numbers a and b , $ az_1 - az_1 = az_1 - az_1$	$ bz_2 ^2 + bz_1 + az_2 ^2$ is
a) $(a^2 + b^2)(z_1 + z_2)$	b) $(a^2 + b^2)(z_1 ^2 + z_2)$	²)
c) $(a^2 + b^2)(z_1 ^2 - z_2 ^2)$	d) None of the above	,
284. If ω is the complex cube root of unity, then the value		
	c) $-i$	d) :
a) -1 b) 1	,	d) i
285. If α and β are the roots of the equation $ax^2 + bx + b$	$c = 0$ and, if $px^2 + qx + r$	=0 has roots $\frac{\alpha}{\alpha}$ and $\frac{\beta}{\beta}$,
then r is equal to		
	c) $ab + bc + ca$	d) abc
286. If $1 + x^2 = \sqrt{3}x$, then $\sum_{n=1}^{24} \left(x^n - \frac{1}{x^n}\right)^2$ is equal to		
a) 48 b) -48	c) $\pm 48(\omega - \omega^2)$	d) None of these
287. If α , β are the roots of $x^2 + bx - c = 0$, then the equ	lation whose roots are b ar	nd <i>c</i> is
a) $x^2 + a x - \beta = 0$		
b) $x^2 - x(\alpha + \beta + \alpha\beta) - \alpha \beta(\alpha + \beta) = 0$		
c) $x^2 + (\alpha + \beta - \alpha \beta)x - \alpha \beta(\alpha + \beta) = 0$		
d) $x^2 + x(\alpha + \beta + \alpha \beta) + \alpha \beta(\alpha + \beta) = 0$		
288. Let α , β be the roots of the equation $x^2 - ax + b =$	0 and $A_n = \alpha^n + \beta^n$. Then,	$A_{n+1} - aA_n + bA_{n-1}$ is

equal to			
a) <i>–a</i>	b) <i>b</i>	c) 0	d) <i>a</i> – <i>b</i>
289. The quadratic equation	ons $x^2 + (a^2 - 2)x - 2a^2 = 0$) and $x^2 - 3x + 2 = 0$ have	1
a) No common root fo	or all $a \in R$		
b) Exactly one commo	on root for all $a \in R$		
c) Two common roots	s for some $a \in R$		
d) None of these			
290. If <i>a</i> , <i>b</i> , <i>c</i> are distinct p	ositive numbers each being d	ifferent from 1 such that	
$(\log_b a \cdot \log_c a - \log_a a)$	$a) + (\log_a b \cdot \log_c b - \log_b b)$	$+ (\log_a c \cdot \log_b c - \log_c c) =$	= 0, then <i>abc</i> is
a) 0	b) <i>e</i>	c) 1	d) 2
in the coefficient of x		9 and finds the roots as -7	solving <i>A</i> commits a mistake and -2. Then the equation is d) $x^2 - 9x - 14 = 0$
292. The values of ' a ' for w	which the roots of the equatio	n $x^2 + x + a = 0$ are real a	nd exceed 'a' are
a) 0 < <i>a</i> < 1/4	b) <i>a</i> < 1/4		d) $-2 < a < 0$
293. If <i>a, b, c</i> are positive r	eal numbers, then the numbe	er of real roots of the equati	on $ax^2 + b x + c = 0$ is
a) 2	b) 4	c) 0	d) None of these
294. If <i>a</i> and <i>b</i> are two dist	tinct real roots of the polynom	mial $f(x)$ such that $a < b$, the function of $f(x)$ such that $a < b$, the function of $f(x)$ is the function of $f(x)$ and $f(x)$	hen there exists a real
number <i>c</i> lying betwe	en a and b, such that		
a) $f(c) = 0$		c) $f''(c) = 0$	d) None of these
	ty are 1, ω , ω^2 , then the roots		8 = 0, are
a) -1 , $1 + 2\omega$, $1 + 2\omega$	2	b) $-1, 1 - 2\omega, 1 - 2\omega^2$	
c) −1, −1, −1		d) -1 , $-1 + 2\omega$, $-1 - 2\omega$	
296. A value of <i>k</i> for which	the quadratic equation x^2 –	2x(1+3k) + 7(2k+3) =	0 has equal roots, is
a) 1	b) 2	c) 3	d) 4
297. 7 ^{2 log₇ 5} is equal to			
a) log ₇ 35	b) 5	c) 25	d) log ₇ 25
^{298.} The expression $\tan\{i\}$	$\log\left(\frac{a-ib}{a+ib}\right)$ reduces to		
		ab	2 ab
a) $\frac{ab}{a^2+b^2}$	b) $\frac{2 ab}{a^2 - b^2}$	c) $\frac{ab}{a^2 - b^2}$	d) $\frac{2 ab}{a^2 + b^2}$
299. The common roots of	the equations $x^3 + 2x^2 + 2x$	$x + 1 = 0$ and $1 + x^{2002} + x^{2002}$	$\omega^{2003} = 0$ are (where ω is a
complex cube root of	unity)		
a) ω , ω^2	b) 1, ω ²	c) −1, −ω	d) ω , $-\omega^2$
300. If α , β , γ are the cube	roots of a negative number <i>p</i>	, then for any three real nur	mbers <i>x</i> , <i>y</i> , <i>z</i> the value of
$\frac{x\alpha + y\beta + z\gamma}{x\beta + y\gamma + z\alpha}$ is			
a) $\frac{1-i\sqrt{3}}{2}$	b) $\frac{-1 - i\sqrt{3}}{2}$	c) $(x + y + z)i$	d) π
L	2 + a has no value of x for an		
			$1)\left(\sqrt{2}\right)$
	b) $(-\sqrt{3}, 0)$	c) $(-\infty, -\sqrt{3})$	d) $\left(\sqrt{3},\infty\right)$
,	$42 + \sqrt{42 + \ldots}$ is equal to		
a) 7	b) -6	c) 5	d) 4
	on in <i>x</i> such that the arithmet	ic mean of its roots is 5 and	l geometric mean of the roots
is 4, is given by			
	b) $x^2 - 10x + 16 = 0$	c) $x^2 + 10x + 16 = 0$	d) $x^2 - 10x - 16 = 0$
304. The shaded region, w			
$P \equiv (-1,0), Q \equiv (-1)$			
$R \equiv \left(-1 + \sqrt{2}, -\sqrt{2}\right),$	$S \equiv (1,0)$ is represented by		

a) |z+1| > 2, $|\arg(z+1) < \frac{\pi}{4}|$ b) |z + 1| < 2, $\arg(z + 1) < \frac{\pi}{2}$ d) |z - 1| < 2, $|\arg(z + 1) > \frac{\pi}{4}$ c) |z-1| > 2, $\arg(z+1) > \frac{\pi}{4}$ 305. If ω and ω^2 are the two imaginary cube roots of unity, then the equation whose roots are $a\omega^{317}$ and $a\omega^{382}$, a) $x^{2} + ax + a^{2} = 0$ b) $x^{2} + a^{2}x + a = 0$ c) $x^{2} - ax + a^{2} = 0$ d) $x^{2} - a^{2}x + a = 0$ 306. If *x* is real, then expression $\frac{x+2}{2x^2+3x+6}$ takes all values in the interval a) $\left(\frac{1}{13}, \frac{1}{3}\right)$ b) $\left[-\frac{1}{13}, \frac{1}{3}\right]$ c) $\left(-\frac{1}{3}, \frac{1}{13}\right)$ d) None of these 307. If $z(\overline{z+\alpha}) + \overline{z}(z+\alpha) = 0$ where α is a complex constant, then z is represented by a point on b) A straight line c) A parabola a) A circle d) None of these 308. The value of *a* for which the equations $x^3 + ax + 1 = 0$ and $x^4 + ax^2 + 1 = 0$ have a common root, is b) -1 a) –2 c) 1 d) 2 309. If $2x = -1 + \sqrt{3}i$, then the value of $(1 - x^2 + x)^6 - (1 - x + x^2)^6$ is equal to b) -64 c) 64 d) 0 a) 32 a) 32 b) -64 c) 64 d) 0 310. If α , β are roots of $x^2 + px - q = 0$ and γ , δ are root of $x^2 + px + r = 0$, then the value of $(\alpha - \gamma)(\alpha - \delta)$ is b) *q* − *r* c) r - qa) p + qd) *q* + *r* 311. The roots α , β and γ of an equation $x^{3} - 3 a x^{2} + 3 b x - c = 0$ are in H.P. Then, c) $\beta = \frac{b}{c}$ d) $\beta = \frac{c}{b}$ a) $\beta = \frac{1}{a}$ b) $\beta = b$ 312. The value of $1 + i^2 + i^4 + i^6 + \dots + i^{2n}$ is a) Positive b) Negative c) Zero d) Cannot be determined If 1, ω , ω^2 are the cube roots of unity, then $\begin{vmatrix} 1 + \omega & \omega^2 & -\omega \\ 1 + \omega^2 & \omega & -\omega^2 \\ \omega^2 + \omega & \omega & -\omega^2 \end{vmatrix}$ 313. a) ω^2 b) 0 314. The value of $1 + \sum_{k=0}^{14} \left\{ \cos \frac{(2k+1)}{15} \pi + i \sin \frac{(2k+1)}{15} \pi \right\}$ is d) ω c) 1 d) i 315. If $az_1 + bz_2 + cz_3 = 0$ for complex numbers z_1, z_2, z_3 and real numbers a, b, c, then z_1, z_2, z_3 lie on a a) Straight line b) Circle c) Depends on the choice of *a*, *b*, *c* d) None of these 316. If $\omega \neq 1$ be a cube root of unity and $(1 + \omega)^7 = A + B\omega$, then A and B are respectively the numbers: a) 0, 1 b) 1, 1 c) 1,0 d) −1, 1 317. If $x \in R$, then the expression $9^x - 3^x + 1$ assumes a) All real values b) All real values greater than 0 c) All real values greater than 3/4 d) All real values greater than 1/4318. The locus represented by the equation |z - 1| = |z - i| is a) A circle of radius 1 b) An ellipse with foci at 1 and -ic) A line through the origin d) A circle on the line joining 1 and – *i* as diameter

	ts of the equation $x^4 + \sqrt{x^4}$	+20 = 20 is	
a) 4	b) 2	c) 0	d) 1
320. If the roots of the quadr	tratic equation $x^2 - 4x - \log x$	$a_3 a = 0$ are real, then the le	ast value of <i>a</i> is
a) 81	b) 1/81	c) 1/64	d) None of these
321. For the equation $\frac{1}{x+a}$ –	$\frac{1}{r+h} = \frac{1}{r+c}$, if the product of t	he roots is zero, then the s	um of the roots is
a) 0			
-	b) $\frac{2ab}{b+c}$	5 1 6	d) $-\frac{2bc}{b+c}$
322. If $\frac{3x+2}{(x+1)(2x^2+3)} = \frac{A}{x+1} + \frac{B}{2}$	$\frac{Bx+C}{x^2+3}$, then $A + C - B$ is equal	l to	
a) 0	b) 2	c) 3	d) 5
323. If $z^2 + (p + iq)z + (r + iq)z + (r$			
	b) $pqr = r^2 + p^2 s$		
324. The values of p for which			
a) ± 2	b) ± 4	c) ± 6	d) ± 8
325. If $\cos \alpha + 2 \cos \beta + 3 \cos \beta$	$s\gamma = \sin \alpha + 2\sin \beta + 3\sin \beta$	$\gamma = 0$ and $\alpha + \beta + \gamma = n \pi$,	then $\sin 3\alpha + 8\sin 3\beta +$
$27\sin 3\gamma =$	h) 2	a) ()	J) 10
a) 0	b) 3	c) 8	d) –18
326. If $\frac{3}{2} + \frac{7}{2}i$ is a solution of $a + b$ is equal to	the equation $ax^2 - 6x + b =$	= 0, where <i>a</i> and <i>b</i> are real	numbers, then the value of
a) 10	b) 22	c) 30	d) 31
327. Re $(z^2) = 1$ is represent	, ,	,	,
a) The circle $x^2 + y^2 =$	1	b) The hyperbola $x^2 - y$	$^{2} = 1$
c) Parabola or a circle		d) All of the above	
328. If $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ are the r	boots of the equation $x^4 + (2)$	$(-\sqrt{3})x^2 + 2 + \sqrt{3} = 0$, th	en the value of $(1 - \alpha_1)(1 - \alpha_2)$
$\alpha 21 - \alpha 3(1 - \alpha 4)$ is			
a) 1	b) 4	c) $2 + \sqrt{3}$	d) 5
329. If $x = 8 + 3\sqrt{7}$ and $xy = 3\sqrt{7}$	= 1, then the value of $\frac{1}{r^2} + \frac{1}{v^2}$	is	
a) 254	b) 192	c) 292	d) 66
330. The complex numbers z	having positive argument a	and satisfying $ 2 - 3i < z $, is
330. The complex numbers a a) $\frac{12}{5} + \frac{16}{5}i$	$h) - \frac{4}{4} + \frac{6}{i}$	$\frac{6}{5} = \frac{5}{5}i$	d) None of these
0 0	0 0	0 1	
331. Let <i>S</i> denote the set of <i>a</i> root less than <i>a</i> and oth	Ill values of <i>S</i> for which the ear noot greater than <i>a</i> , then		+a(a+1) = 0 has one
a) (0, 1)		b equuis	
a) (0, 1)	b) (-1, 0)	c) (0, 1/2)	d) None of these
332. If $a \le 0$, then one of the		c) (0, 1/2)	d) None of these
332. If $a \le 0$, then one of the		c) $(0, 1/2)$ $a^2 = 0$ is	d) None of these d) None of these
332. If $a \le 0$, then one of the a) $(-1 + \sqrt{6})a$	e roots of $x^2 - 2a x - a - 3$ b) $(\sqrt{6} - 1)a$	c) $(0, 1/2)$ $a^2 = 0$ is c) a	-
332. If $a \le 0$, then one of the a) $(-1 + \sqrt{6})a$ 333. If $A(z_1), B(z_2)$ and $C(z_1)$ of z_2 is equal to	proots of $x^2 - 2a x - a - 3$ b) $(\sqrt{6} - 1)a$ 3) be the vertices of a triang	c) $(0, 1/2)$ $a^2 = 0$ is c) a le <i>ABC</i> in which $\angle ABC = \frac{\pi}{4}$	d) None of these and $\frac{AB}{BC} = \sqrt{2}$, then the value
332. If $a \le 0$, then one of the a) $(-1 + \sqrt{6})a$ 333. If $A(z_1), B(z_2)$ and $C(z_1)$ of z_2 is equal to	e roots of $x^2 - 2a x - a - 3$ b) $(\sqrt{6} - 1)a$	c) $(0, 1/2)$ $a^2 = 0$ is c) a le <i>ABC</i> in which $\angle ABC = \frac{\pi}{4}$	d) None of these and $\frac{AB}{BC} = \sqrt{2}$, then the value
332. If $a \le 0$, then one of the a) $(-1 + \sqrt{6})a$ 333. If $A(z_1)$, $B(z_2)$ and $C(z_2)$ of z_2 is equal to a) $z_3 + i(z_1 + z_3)$	proots of $x^2 - 2a x - a - 3$ b) $(\sqrt{6} - 1)a$ 3) be the vertices of a triang b) $z_3 - i(z_1 - z_3)$	c) $(0, 1/2)$ $a^2 = 0$ is c) a le <i>ABC</i> in which $\angle ABC = \frac{\pi}{4}$ c) $z_3 + i(z_1 - z_3)$	d) None of these and $\frac{AB}{BC} = \sqrt{2}$, then the value d) None of these
332. If $a \le 0$, then one of the a) $(-1 + \sqrt{6})a$ 333. If $A(z_1), B(z_2)$ and $C(z_1)$ of z_2 is equal to a) $z_3 + i(z_1 + z_3)$ 334. When $\frac{z+i}{z+2}$ is purely image	proots of $x^2 - 2a x - a - 3$ b) $(\sqrt{6} - 1)a$ 3) be the vertices of a triang b) $z_3 - i(z_1 - z_3)$ ginary, the locus described b	c) $(0, 1/2)$ $a^2 = 0$ is c) a le <i>ABC</i> in which $\angle ABC = \frac{\pi}{4}$ c) $z_3 + i(z_1 - z_3)$ by the point z in the argand	d) None of these and $\frac{AB}{BC} = \sqrt{2}$, then the value d) None of these diagram is a
332. If $a \le 0$, then one of the a) $(-1 + \sqrt{6})a$ 333. If $A(z_1)$, $B(z_2)$ and $C(z_2)$ of z_2 is equal to a) $z_3 + i(z_1 + z_3)$ 334. When $\frac{z+i}{z+2}$ is purely image a) Circle of radius $\frac{\sqrt{5}}{2}$	proots of $x^2 - 2a x - a - 3$ b) $(\sqrt{6} - 1)a$ 3) be the vertices of a triang b) $z_3 - i(z_1 - z_3)$ ginary, the locus described b b) Circle of radius $\frac{5}{4}$	c) $(0, 1/2)$ $a^2 = 0$ is c) a le <i>ABC</i> in which $\angle ABC = \frac{\pi}{4}$ c) $z_3 + i(z_1 - z_3)$ by the point z in the argand c) Straight line	d) None of these and $\frac{AB}{BC} = \sqrt{2}$, then the value d) None of these diagram is a d) Parabola
332. If $a \le 0$, then one of the a) $(-1 + \sqrt{6})a$ 333. If $A(z_1)$, $B(z_2)$ and $C(z_1)$ of z_2 is equal to a) $z_3 + i(z_1 + z_3)$ 334. When $\frac{z+i}{z+2}$ is purely images a) Circle of radius $\frac{\sqrt{5}}{2}$ 335. Area of the triangle form	Proots of $x^2 - 2a x - a - 3$ b) $(\sqrt{6} - 1)a$ b) $z_3 - i(z_1 - z_3)$ ginary, the locus described b b) Circle of radius $\frac{5}{4}$ med by 3 complex numbers	c) $(0, 1/2)$ $a^2 = 0$ is c) a le <i>ABC</i> in which $\angle ABC = \frac{\pi}{4}$ c) $z_3 + i(z_1 - z_3)$ by the point z in the argand c) Straight line 1 + i, i - 1, 2i in the Argand	d) None of these and $\frac{AB}{BC} = \sqrt{2}$, then the value d) None of these diagram is a d) Parabola d plane is
332. If $a \le 0$, then one of the a) $(-1 + \sqrt{6})a$ 333. If $A(z_1)$, $B(z_2)$ and $C(z_1)$ of z_2 is equal to a) $z_3 + i(z_1 + z_3)$ 334. When $\frac{z+i}{z+2}$ is purely image a) Circle of radius $\frac{\sqrt{5}}{2}$ 335. Area of the triangle form a) $1/2$	proots of $x^2 - 2a x - a - 3$ b) $(\sqrt{6} - 1)a$ 3) be the vertices of a triang b) $z_3 - i(z_1 - z_3)$ ginary, the locus described b b) Circle of radius $\frac{5}{4}$ ned by 3 complex numbers $\frac{5}{4}$ b) 1	c) $(0, 1/2)$ $a^2 = 0$ is c) a le <i>ABC</i> in which $\angle ABC = \frac{\pi}{4}$ c) $z_3 + i(z_1 - z_3)$ by the point z in the argand c) Straight line 1 + i, i - 1, 2i in the Argand c) $\sqrt{2}$	d) None of these and $\frac{AB}{BC} = \sqrt{2}$, then the value d) None of these diagram is a d) Parabola
332. If $a \le 0$, then one of the a) $(-1 + \sqrt{6})a$ 333. If $A(z_1)$, $B(z_2)$ and $C(z_1)$ of z_2 is equal to a) $z_3 + i(z_1 + z_3)$ 334. When $\frac{z+i}{z+2}$ is purely images a) Circle of radius $\frac{\sqrt{5}}{2}$ 335. Area of the triangle form a) $1/2$ 336. The value of $x^4 + 9x^3 + 12$	e roots of $x^2 - 2a x - a - 3$ b) $(\sqrt{6} - 1)a$ 3) be the vertices of a triang b) $z_3 - i(z_1 - z_3)$ ginary, the locus described b b) Circle of radius $\frac{5}{4}$ med by 3 complex numbers 1 b) 1 $-35x^2 - x + 4$ for $x = -5 + 4$	c) $(0, 1/2)$ $a^2 = 0$ is c) a le <i>ABC</i> in which $\angle ABC = \frac{\pi}{4}$ c) $z_3 + i(z_1 - z_3)$ by the point z in the argand c) Straight line 1 + i, i - 1, 2i in the Argand c) $\sqrt{2}$ $2\sqrt{-4}$ is	d) None of these and $\frac{AB}{BC} = \sqrt{2}$, then the value d) None of these diagram is a d) Parabola d plane is d) 2
332. If $a \le 0$, then one of the a) $(-1 + \sqrt{6})a$ 333. If $A(z_1)$, $B(z_2)$ and $C(z_1)$ of z_2 is equal to a) $z_3 + i(z_1 + z_3)$ 334. When $\frac{z+i}{z+2}$ is purely images a) Circle of radius $\frac{\sqrt{5}}{2}$ 335. Area of the triangle form a) $1/2$ 336. The value of $x^4 + 9x^3 + a^3 +$	proots of $x^2 - 2a x - a - 3$ b) $(\sqrt{6} - 1)a$ b) $z_3 - i(z_1 - z_3)$ ginary, the locus described b b) Circle of radius $\frac{5}{4}$ med by 3 complex numbers $\frac{5}{4}$ b) 1 - $35x^2 - x + 4$ for $x = -5 + b$ b) -160	c) $(0, 1/2)$ $a^2 = 0$ is c) a le <i>ABC</i> in which $\angle ABC = \frac{\pi}{4}$ c) $z_3 + i(z_1 - z_3)$ by the point z in the argand c) Straight line 1 + i, i - 1, 2i in the Argand c) $\sqrt{2}$ $2\sqrt{-4}$ is c) 160	d) None of these and $\frac{AB}{BC} = \sqrt{2}$, then the value d) None of these diagram is a d) Parabola d plane is
332. If $a \le 0$, then one of the a) $(-1 + \sqrt{6})a$ 333. If $A(z_1)$, $B(z_2)$ and $C(z_1)$ of z_2 is equal to a) $z_3 + i(z_1 + z_3)$ 334. When $\frac{z+i}{z+2}$ is purely images a) Circle of radius $\frac{\sqrt{5}}{2}$ 335. Area of the triangle form a) $1/2$ 336. The value of $x^4 + 9x^3 + 12$	proots of $x^2 - 2a x - a - 3$ b) $(\sqrt{6} - 1)a$ b) $z_3 - i(z_1 - z_3)$ ginary, the locus described b b) Circle of radius $\frac{5}{4}$ med by 3 complex numbers $\frac{5}{4}$ b) 1 - $35x^2 - x + 4$ for $x = -5 + b$ b) -160	c) $(0, 1/2)$ $a^2 = 0$ is c) a le <i>ABC</i> in which $\angle ABC = \frac{\pi}{4}$ c) $z_3 + i(z_1 - z_3)$ by the point z in the argand c) Straight line 1 + i, i - 1, 2i in the Argand c) $\sqrt{2}$ $2\sqrt{-4}$ is c) 160	d) None of these and $\frac{AB}{BC} = \sqrt{2}$, then the value d) None of these diagram is a d) Parabola d plane is d) 2
332. If $a \le 0$, then one of the a) $(-1 + \sqrt{6})a$ 333. If $A(z_1)$, $B(z_2)$ and $C(z_1)$ of z_2 is equal to a) $z_3 + i(z_1 + z_3)$ 334. When $\frac{z+i}{z+2}$ is purely images a) Circle of radius $\frac{\sqrt{5}}{2}$ 335. Area of the triangle form a) $1/2$ 336. The value of $x^4 + 9x^3 + a^3 +$	proots of $x^2 - 2a x - a - 3$ b) $(\sqrt{6} - 1)a$ b) $(\sqrt{6} - 1)a$ b) $z_3 - i(z_1 - z_3)$ ginary, the locus described b b) Circle of radius $\frac{5}{4}$ med by 3 complex numbers 1 b) 1 $-35x^2 - x + 4$ for $x = -5 + b$ b) -160 satisfying arg $\left(\frac{z-1}{z+1}\right) = k$, wh	c) $(0, 1/2)$ $a^2 = 0$ is c) a le <i>ABC</i> in which $\angle ABC = \frac{\pi}{4}$ c) $z_3 + i(z_1 - z_3)$ by the point z in the argand c) Straight line 1 + i, i - 1, 2i in the Argand c) $\sqrt{2}$ $2\sqrt{-4}$ is c) 160	d) None of these and $\frac{AB}{BC} = \sqrt{2}$, then the value d) None of these diagram is a d) Parabola d plane is d) 2

b) A circle with centre	on r avia		
c) A straight line para			
, <u> </u>	ing an angle of 60° with the	r-axis	
338. The product of the rea		<i>x</i> unio	
$ 2x + 3 ^2 - 3 2x + 3 $	•		
a) 5/4	b) 5/2	c) 5	d) 2
, ,	, ,	,	on whose roots are α^{19} , β^7 is
-	b) $x^2 - x - 1 = 0$	-	-
	ne complex number $z = 4 - $		
stretched three times	. The complex number repre	esented by the new number	is
a) 12 + 9 <i>i</i>		c) −12 − 9 <i>i</i>	d) −12 + 9 <i>i</i>
341. If A is the A.M. of the r	roots of the equation $x^2 - 2a$	ax + b = 0 and <i>G</i> is the G.M.	. of the roots of the equation
$x^2 - 2bx + a^2 = 0$, th	en		
a) $A > G$	b) $A \neq G$	-	d) None of these
342. The maximum value of	of $ z $ where z satisfies the c	ondition $\left z + \frac{2}{z}\right = 2$, is	
		c) $\sqrt{3}$	d) $\sqrt{2} + \sqrt{3}$
, , = _			β , then what is the value of p ?
a) 1	b) 2	c) 3	d) -2
	e equation whose roots are	2	
	b) $x^2 - x + 1 = 0$		$d) x^2 + 2x + 4 = 0$
-	$\int x^2 - x + 1 = 0$ in the quadratic equation x^2	-	-
	nd -15. The correct root of the		17 III place of 15, its roots
a) -10, -3	b) -9, -4		d) -7, -6
	listinct, then $u = x^2 + 4y^2 + 4y^2$, ,	
a) Non-negative	b) Non-positive		d) None of these
	the equation $6x^2 - 5x + 1$	-	2
a) 0	b) $\pi/4$		d) $\pi/2$
	, then the value of $x\left(\frac{1}{y} + \frac{1}{z} + \frac{1}{z}\right)$,	-) - 1
	~		
a) $\log_a(abc)$	b) $\log_a(bcd)$	c) $\log_b(cda)$	d) $\log_e(dab)$
	ng the inequality $\log_{1/3} z $ +		
a) Re $(z) < 0$	b) Re $(z) > 0$	c) $Im(z) < 0$	d) None of these
	ers in G.P. such that a and c	are positive, then the roots	s of the equation $ax^2 + bx + bx$
c = 0 a) Are real and are in	ratio h : ac		
b) Are real			
-	are in ratio $1:\omega$, where ω is	s a complex cube root of un	ity
d) Are imaginary and			icy
	e roots of the equation x^2 +	ax + b = 0, then the value	of $\sin^2(\alpha + \beta) + a \sin(\alpha + \beta)$
$\beta \cos \alpha + \beta + b \cos 2(\alpha + \beta)$			
a) <i>ab</i>	b) <i>b</i>	c) $\frac{a}{b}$	d) <i>a</i>
,	,	D	
352. If ω is an imaginary cu	ube root of unity, then the va	alue of sin $\left\{ (\omega^{10} + \omega^{23})\pi - \right\}$	$\left\{\frac{\pi}{4}\right\}$ is
a) $\frac{1}{\sqrt{2}}$	b) $\frac{\sqrt{3}}{2}$	c) $\frac{-1}{\sqrt{3}}$	d) $-\frac{\sqrt{3}}{2}$
V 2	L	γJ	Z
	by decreasing each root of a		
a) $a = -b$	b) $b = -c$	c) $c = -a$	d) $b = a + c$
	1 , z - 5 , where z is a con-		
a) Re $(z) = \frac{3}{2}$	b) Re $(z) = \frac{7}{2}$	c) Re $(z) \in \left\{\frac{3}{2}, \frac{7}{2}\right\}$	d) None of these
2	2		

355. If <i>a</i> , <i>b</i> are odd integers, then the roots of the equation	on $2ax^2 + (2a + b)x + b =$	$= 0, a \neq 0$ are	
a) Rational b) Irrational	c) Non-real	d) None of these	
356. If α , β are the roots of the equation $lx^2 + mx + n =$	0 , then the equation whos	e roots are $\alpha^3\beta$ and $\alpha\beta^3$, is	
a) $l^4x^2 - nl(m^2 - 2nl)x + n^4 = 0$	b) $l^4x^2 + nl(m^2 - 2nl)x$		
c) $l^4x^2 + nl(m^2 - 2nl)x - n^4 = 0$	d) $l^4x^2 - nl(m^2 + 2nl)x$	$+ n^4 = 0$	
357. If <i>α</i> , <i>β</i> , <i>γ</i> are the roots of the equation $x^3 - 7x + 7 =$	= 0, then $\frac{1}{\alpha^4} + \frac{1}{\beta^4} + \frac{1}{\gamma^4}$ is		
a) 7/3 b) 3/7	c) 4/7	d) 7/4	
358. If $x^2 - 2r a_r x + r = 0$; $r = 1, 2, 3$ are three quadrat		pair has exactly one root	
common, then the number of solutions of the triplet			
a) 1 b) 2	c) 9	d) 27	
359. Let $z = \frac{11-3i}{1+i}$. If α is a real number such that $z - i\alpha$ is			
a) 4 b) -4	c) 7	d) -7	
360. The coefficient of <i>x</i> in the equation $x^2 + px + q = 0$		f 13 its roots were found to	
be -2 and -15 . The roots of the original equation <i>a</i> a) 3,10 b) -3 , -10	c) $-5, -8$	d) None of these	
	<i>,</i>		
^{361.} If $z^2 + z + 1 = 0$, where <i>z</i> is a complex number, the	n the value of $\left(z + \frac{1}{z}\right) + \left(z + \frac{1}{z}\right)$	$(z^2 + \frac{1}{z^2}) + (z^3 +$	
<i>1z3++z6+1z62</i> is			
a) 6 b) 12	c) 18	d) 24	
362. The set of possible values of <i>a</i> for which $x^2 - (a^2 - a^2)$	$5a + 5)x + (2a^2 - 3a - 4)$) = 0	
has roots whose sum and product are both less thar			
a) (-1,5/2) b) (1,4)	c) [1,5/2]	d) (1, 5/2)	
363. If $(x - 2)$ is a common factor of the expressions x^2	$+ax + b$ and $x^2 + cx + d$, t	then $\frac{b-d}{c-a}$ is equal to	
a) -2 b) -1	c) 1	d) 2	
364. The value of $\log_2 20 \log_2 80 - \log_2 5 \log_2 320$ is equ	al to		
a) 5 b) 6	c) 7	d) 8	
365. The greatest number among $\sqrt[3]{9}$, $\sqrt[4]{11}$, $\sqrt[6]{17}$ is			
a) ³ √9	b) ∜ <u>11</u>		
c) ∜17	d) Cannot be determined		
366. The value of $\left(-\frac{1}{2}+\frac{\sqrt{3}i}{2}\right)^{1000}$ is			
a) ω^3 b) ω^2	c) $\omega^3 - \omega$	d) ω	
367. If each pair of the equation $x^2 + ax + b = 0$, $x^2 + b^2$	$x + c = 0$ and $x^2 + cx + a = 0$	= 0 has a common root,	
then product of all common roots is			
a) \sqrt{abc} b) $2\sqrt{abc}$	c) $\sqrt{ab + bc + ca}$	d) $2\sqrt{ab+bc+ca}$	
^{368.} The value of $\sum_{k=1}^{10} \left(\sin \frac{2k\pi}{11} + i \cos \frac{2k\pi}{11} \right)$ is			
a) 1 b) -1	c) — <i>i</i>	d) <i>i</i>	
369. If z is a complex number such that $z \neq 0$ and Re (z)	= 0, then		
a) Re $(z^2) = 0$ b) Im $(z^2) = 0$	c) Re $(z^2) = \text{Im}(z^2)$,	
370. If z_1, z_2, z_3, z_4 are four complex numbers represented by the vertices of a quadrilateral taken in order			
such that $z_1 - z_4 = z_2 - z_3$ and $\arg\left(\frac{z_4 - z_1}{z_2 - z_1}\right) = \frac{\pi}{2}$, the such that $z_1 - z_4 = z_2 - z_3$ and $\arg\left(\frac{z_4 - z_1}{z_2 - z_1}\right) = \frac{\pi}{2}$.	nen the quadrilateral is		
a) A square	b) A rectangle		
c) A rhombus	d) A cyclic quadrilateral		
371. The real root of the equation $x^3 - 6x + 9 = 0$ is			
a) -6 b) -9	c) 6	d) -3	
372. The value of the expression 1. $(2 - \omega)(2 - \omega^2) + 2(3 - \omega)(3 - \omega^2) + \dots + \dots$	$(m - 1)(m - 1)(m - 1)^{2}$		
1. $(2 - \omega)(2 - \omega) + 2(3 - \omega)(3 - \omega) + +$	$+ (n - 1)(n - \omega)(n - \omega^{-})$		

Where ω is an imaginary cube root of unit is b) $(n-1)n(n^2+3n+4)/2$ a) $(n-1)n(n^2+3n+4)/4$ c) $(n+1)n(n^2+3n+4)/2$ d) None of the above 373. If $|z_1| = |z_2| = |z_3|$ and $z_1 + z_2 + z_3 = 0$, then z_1, z_2, z_3 are vertices of a) A right angled triangle b) An equilateral triangle c) Isosceles triangle d) Scalene triangle 374. If x is real, then the value of $\frac{x+2}{2x^2+3x+6}$ is equal to b) $\left(-\frac{1}{13},\frac{1}{3}\right)$ c) $\left(-\frac{1}{3},\frac{1}{13}\right)$ a) $\left(\frac{1}{13}, \frac{1}{3}\right)$ d) None of these 375. Which of the following is correct? a) 1 + i > 2 - ic) 2 - i > 1 + ib) 2 + i > 1 + id) None of these 376. If *n* is an integer which leaves remainder one when divided by three, then $(1 + \sqrt{3}i)^n + (1 - \sqrt{3}i)^n$ equals c) $-(-2)^n$ a) -2^{n+1} b) 2^{n+1} d) -2^{n} ^{377.} If $\left(\frac{\sqrt{3}/2 + (1/2)i}{\sqrt{3}/2 - (1/2)i}\right)^{120} = p + iq$, then a) $p = \cos 20^{\circ}$, $q = \sin 20^{\circ}$ b) $p = -\cos 20^{\circ}$, $q = -\sin 20^{\circ}$ c) $p = \cos 20^{\circ}$, $q = -\sin 20^{\circ}$ d) p = 1, q = 0378. The roots of $|x - 2|^2 + |x - 2| - 6 = 0$ are a) 4, 2 b) 0, 4 d) 5, 1 c) -1, 3 379. The greatest negative integer satisfying $x^2 - 4x - 77 < 0$ and $x^2 > 4$, is a) -4 b) -6 c) -7380. The values of *x* and *y* satisfying the equation $\frac{(1+i)x-2i}{3+i} + \frac{(2-3i)y+i}{3-i} = i$ are b) -6 d) None of these a) x = -1, y = 3b) x = 3, y = -1d) x = 1, y = 0c) x = 0, y = 1381. If α and β are roots of the quadratic equation $x^2 + 4x + 3 = 0$, then the equation whose roots are $2\alpha + \beta$ and $\alpha + 2\beta$ is a) $x^2 - 12x + 35 = 0$ b) $x^2 + 12x - 33 = 0$ c) $x^2 - 12x - 33 = 0$ d) $x^2 + 12x + 35 = 0$ 382. In a triangle $PQR, \angle R = \frac{\pi}{2}$. If $\tan\left(\frac{P}{2}\right)$ and $\tan\left(\frac{Q}{2}\right)$ are the roots of $ax^2 + bx + c = 0, a \neq 0$, then d) a = b + ca) b = a + cb) b = cc) c = a + b383. The set of values of 'a' for which $x^{2} + ax + \sin^{-1}(x^{2} - 4x + 5) + \cos^{-1}(x^{2} - 4x + 5) = 0$ has at least one real root is given by a) $\left(-\infty, -\sqrt{2}\pi\right] \cup \left[\sqrt{2}\pi, \infty\right)$ b) $(-\infty, -\sqrt{2\pi}) \cup (\sqrt{2\pi}, \infty)$ c) *R* d) None of these 384. If z lies on the circle |z - 1| = 1, then $\frac{z-2}{z}$ is a) Purely real b) Purely imaginary c) Positive real d) N 385. If α , β be the roots of $x^2 - a(x - 1) + b = 0$, then the value of $\frac{1}{\alpha^2 - a\alpha} + \frac{1}{\beta^2 + a\beta} + \frac{2}{a+b}$ is d) None of these c) 0 a) $\frac{4}{a+b}$ b) $\frac{1}{a+b}$ d) −1 386. If $x = \log_b a$, $y = \log_c b$, $z = \log_a c$, then xyz is b) 1 c) 3 d) None of the above 387. If $\log_4 2 + \log_4 4 + \log_4 x + \log_4 16 = 6$, then the value of *x* is d) 32 a) 64 b) 4 c) 8

388. If $\frac{\pi}{2} < \alpha < \frac{3\pi}{2}$, the modulus and argument form of $(1 + \cos 2\alpha) + i \sin 2\alpha$ is a) $-2\cos\alpha \{\cos(\pi + \alpha) + i\sin(\pi + \alpha)\}\$ b) $2 \cos \alpha \{\cos \alpha + i \sin \alpha\}$ c) $2 \cos \alpha \{ \cos(-\alpha) + i \sin(-\alpha) \}$ d) $-2\cos\alpha \{\cos(\pi - \alpha) + i\sin(\pi - \alpha)\}$ 389. Let α and β be the roots of $x^2 - 2x \cos \phi + 1 = 0$. Then the equation whose roots are α^n, β^n is a) $x^2 - 2x \cos n\phi - 1 = 0$ b) $x^2 - 2x \cos n\phi + 1 = 0$ c) $x^2 - 2x \sin n\phi + 1 = 0$ d) $x^2 + 2x \sin n\phi - 1 = 0$ 390. $\sqrt{1-c^2} = nc-1$ and $z = e^{i\theta}$, then $\frac{c}{2n}\left(1+nz\left(1+\frac{n}{z}\right)\right)$ is equal to a) $1 - c \cos \theta$ b) $1 + 2c \cos \theta$ c) $1 + c \cos \theta$ d) $1 - 2c \cos \theta$ 391. The number of solutions of the system of equations Re $(z^2) = 0$; |z| = 2 is c) 2 a) 4 b) 3 d) 1 392. If $|z - 25i| \le 15$, then $|\max \operatorname{maximum} \operatorname{amp}(z) - \min \operatorname{mum} \operatorname{amp}(z)| =$ a) $\cos^{-1}\left(\frac{3}{5}\right)$ b) $\pi - 2\cos^{-1}\left(-\frac{3}{5}\right)$ c) $\frac{\pi}{2} + \cos^{-1}\left(\frac{3}{5}\right)$ d) $\sin^{-1}\left(\frac{3}{5}\right) - \cos^{-1}\left(\frac{3}{5}\right)$ 393. If α , β be the roots of the equation $x^2 - px + q = 0$ and α_1 , β_1 be the roots of the equation $x^2 - qx + p = 0$, then the equation whose roots are $\frac{1}{\alpha_1\beta} + \frac{1}{\alpha_2\beta_1}$ and $\frac{1}{\alpha_2\alpha_1} + \frac{1}{\beta_1\beta_2}$, is a) $pqx^2 - pqx + p^2 + q^2 + 4qp = 0$ b) $p^2 a^2 x^2 - p^2 a^2 x + p^3 + a^3 - 4pa = 0$ c) $p^3q^3x^2 - p^3q^3x + p^4 + q^4 - 4p^2q^2 = 0$ d) $(p+q)x^2 - (p+q)x + p^2 + q^2 = 0$ 394. If $iz^4 + 1 = 0$, then *z* can be take the value a) $\frac{1+i}{\sqrt{2}}$ b) $\cos\frac{\pi}{9} + i\sin\frac{\pi}{9}$ c) $\frac{1}{4}$ d) i 395. If *P* is the point in the Agrand diagram corresponding to the complex number $\sqrt{3} + i$ And if OPQ is an isosceles right angled triangle, right angled at 'O' then Q represents the complex number a) $-1i\sqrt{3}$ or $1-i\sqrt{3}$ c) $\sqrt{3} - i$ or $1 - i\sqrt{3}$ d) $-1 + i\sqrt{3}$ b) $1 + i\sqrt{3}$ 396. The solution of equation |z| - z = 1 + 2i is b) $\frac{3}{2} - 2i$ d) None of these a) $\frac{3}{2} + 2i$ c) 3 – 2*i* 397. If $\alpha + \beta = 4$ and $\alpha^3 + \beta^3 = 44$, then α, β are the roots of the equation If $\alpha + \beta = 4$ and $\alpha^3 + \beta^3 = 44$, then α, β are the roots of the equation a) $2x^2 - 7x + 6 = 0$ b) $3x^2 + 9x + 11 = 0$ c) $9x^2 - 27x + 20 = 0$ d) $3x^2 - 12x + 5 = 0$ 398. The number of non-zero integer solutions of the equation $|1 - i|^x = 2^x$ is a) Infinite b) 1 c) 2 d) None of these 399. If α and β are the roots of the equation $x^2 - 7x + 1 = 0$, then the value of $\frac{1}{(\alpha - 7)^2} + \frac{1}{(\beta - 7)^2}$ is a) 45 b) 47 c) 49 400. If the equations $x^2 + px + q = 0$ and $x^2 + p'x + q' = 0$ have a common root, then it is equal to a) $\frac{p - p'}{q - q'}$ b) $\frac{p + p'}{q + q'}$ c) $\frac{q' - q}{p - p'}$ d) $\frac{q + q'}{p + p'}$ 401. The area of the triangle whose vertices are *i*, ω and ω^2 , where $i = \sqrt{-1}$ and ω , ω^2 are complex cube roots of unity, is c) 0 a) $\frac{3\sqrt{3}}{2}$ sq. units b) $\frac{3\sqrt{3}}{4}$ sq. units d) $\frac{\sqrt{3}}{4}$ 402. If *n* is a positive integer greater than unity and *z* is a complex number satisfying the equation $z^n =$ $(z+1)^n$, then b) Im (z) > 0a) Im (z) < 0c) Im (z) = 0d) None of these

403. The complex numbers z_1 , z_2 , z_3 , z_4 taken in that order in the Argand plane represent the vertices of a

parallelogram iff a) $z_1 + z_4 = z_2 + z_3$ b) $z_1 + z_3 = z_2 + z_4$ c) $z_1 + z_2 = z_3 + z_4$ d) None of these 404. If α , β are the roots of the equation $x^2 - 2x \cos \phi + 1 = 0$, then the equation whose roots are α^n , β^n , is a) $x^2 - 2x \cos n\phi - 1 = 0$ b) $x^2 - 2x \cos n\phi + 1 = 0$ c) $x^2 - 2x \sin n\phi + 1 = 0$ d) $x^2 + 2x \sin n\phi - 1 = 0$ 405. If a < c < b, then the roots of the equation $(a - b)^2 x^2 + 2(a + b - 2c)x + 1 = 0$ are a) Imaginary b) Real c) One real and one imaginary d) Equal and imaginary 406. If the equations $ax^2 + bx + c = 0$ and $x^3 + 3x^2 + 3x + 2 = 0$ have to common roots, then c) a = b = ca) $a = b \neq c$ b) a = -b = cd) None of these 407. If roots of the equation $(a - b)x^2 + (c - a)x + (b - c) = 0$ are equal, then *a*, *b*, *c* are in a) AP b) HP d) None of these c) GP 408. The smallest positive integer *n* for which $\left(\frac{1+i}{1-i}\right)^n = 1$ is a) 3 b) 2 c) 4 d) None of these 409. If $x^2 + px + q = 0$ is the quadratic equation whose roots are a - 2 and b - 2 where a, b are the roots of $x^2 - 3x + 1 = 0$, then a) p = 1, q = 5b) p = 1, q = -5c) p = -1, q = 1 d) p = 1, q = -1410. If sec α and tan α are the roots of $ax^2 + bx + c = 0$, then a) $a^2 - b^2 + 2ac = 0$ b) $a^3 + b^3 + c^3 - 2abc = 0$ c) $a^4 + 4ab^2c = b^4$ d) None of these 411. The points represents the complex numbers *z*, for which $|z - a|^2 + |z + a|^2 = b^2$ lie on a) A straight line b) A circle c) A parabola d) A hyperbola 412. The solution of $\log_{99} \{ \log_2(\log_3 x) \} = 0$ is c) 44 d) 99 a) 4 b) 9 413. If the roots of the equation $x^2 - bx + c = 0$ are two consecutive integers, then $b^2 - 4c$ is b) 0 a) –1 c) 1 d) 2 414. For $a \neq b$, if the equation $x^2 + ax + b = 0$ and $x^2 + bx + a = 0$ have a common root, then the value of a + b equals a) -1 b) 0 c) 1 d) 2 415. Let f(x) be a quadratic expression which is positive for all real x and g(x) = f(x) + f'(x) + f''(x), then for any real *x*, a) g(x) < 0b) g(x) > 0c) g(x) = 0d) $g(x) \ge 0$ 416. If $a = \cos \alpha + i \sin \alpha$, $b = \cos \beta + i \sin \beta$, $c = \cos \gamma + i \sin \gamma$ and b/c + c/a + a/b = 1, then $\cos(\beta - \gamma) + i \sin \gamma$. $\cos \gamma - \alpha + \cos (\alpha - \beta)$ is equal to 417. The value of $\frac{\cos 30^\circ + i \sin 30^\circ}{\cos 60^\circ - i \sin 60^\circ}$ is equal to d) None of these c) -1 c) $\frac{1 + \sqrt{3}i}{2}$ d) $\frac{1 - \sqrt{3i}}{2}$ b) —*i* a) i 418. If α , β are the roots of the equation $ax^2 + bx + c = 0$, then $\frac{\alpha}{a\beta+b} + \frac{\beta}{a\alpha+b}$ is equal to a) $\frac{2}{3}$ b) $\frac{2}{h}$ c) $\frac{2}{c}$ d) $-\frac{2}{\pi}$ 419. If the difference of the roots of the equation $x^2 - bx + c = 0$ be 1, then a) $b^2 - 4c - 1 = 0$ b) $b^2 - 4c = 0$ c) $b^2 - 4c + 1 = 0$ d) $b^2 + 4c - 1 = 0$

420. The graph of the functi the inequality	on $y = 16x^2 + 8(a+5)x -$	-7 a - 5 is strictly above	the x-axis, then a' must satisfy
2	b) $-2 < a < -1$,	d) None of these
421. If α , β are the roots of β			
	b) $a \in (-\infty, 9/4)$	c) $a \in (2, 9/4]$	d) None of these
422. One of the values of $\left(\frac{1}{\sqrt{2}}\right)$	$\left(\frac{1}{2}\right)^{2/3}$ is		
a) $\sqrt{3} + i$	b) — <i>i</i>	c) <i>i</i>	d) $-\sqrt{3} + i$
423. If the equation $x^2 + px$	x + q = 0 has roots u and v	where <i>p,q</i> are non-zero c	onstants. Then,
a) $qx^2 + px + 1 = 0$ has	as roots $\frac{1}{n}$ and $\frac{1}{n}$		
b) $(x - p)(x + q) = 0$			
c) $x^2 + p^2 x + q^2 = 0$ h	has roots u^2 and v^2		
d) $x^2 + qx + p = 0$ has	s roots $\frac{u}{v}$ and $\frac{v}{v}$		
424. If <i>a, b, c</i> are in GP, then	the equation $ax^2 + 2bx + bx$	$c = 0 \text{ and } dx^2 + 2ex + f$	= 0 have a common root, if
$\frac{d}{a}, \frac{e}{b}, \frac{f}{c}$ are in			
a) AP	b) HP	c) GP	d) None of these
2	2		$= \lambda$ will represent a circle, if
a) $\lambda \in (0, 3/2)$		c) $\lambda \in (0,3)$	
426. The real roots of the eq	$y = x^{2/3} - x^{1/3} - 2 = 0$	are	
a) 1, 8	b) -1, -8) ,	d) 1, -8
427. Let $A(z_1), B(z_2), C(z_3)$	be the vertices of an equila	teral triangle <i>ABC</i> in the <i>A</i>	Argand plne, then the number
$\left(\frac{z_2-z_3}{2z_1-z_2-z_3}\right)$ is			
a) Purely real			
b) Purely imaginary			
	with non-zero real and imag	ginary parts	
d) None of these			
d) None of these 428. If \bar{z} be the conjugate of	the complex number z, the	en which of the following i	
d) None of these 428. If \bar{z} be the conjugate of a) $ z = \bar{z} $	the complex number z , the b) $z. \overline{z} = \overline{z} ^2$	en which of the following r c) $\overline{z_1 + z_2} = \overline{z}_1 + \overline{z}_2$	d) arg $(z) = \arg(\overline{z})$
d) None of these 428. If \bar{z} be the conjugate of	The complex number z , the b) $z. \bar{z} = \bar{z} ^2$ $(a_n + ib_n) = A + iB$, then	en which of the following r c) $\overline{z_1 + z_2} = \overline{z}_1 + \overline{z}_2$ n $\sum_{i=1}^n \tan^{-1} \left(\frac{b_i}{a_i}\right)$ is equal t	d) arg $(z) = \arg(\overline{z})$
d) None of these 428. If \bar{z} be the conjugate of a) $ z = \bar{z} $ 429. If $(a_1 + ib_1)(a_2 + ib_2)$	The complex number z , the b) $z. \bar{z} = \bar{z} ^2$ $(a_n + ib_n) = A + iB$, then	en which of the following r c) $\overline{z_1 + z_2} = \overline{z}_1 + \overline{z}_2$ n $\sum_{i=1}^n \tan^{-1} \left(\frac{b_i}{a_i}\right)$ is equal t	d) $\arg(z) = \arg(\overline{z})$ to
d) None of these 428. If \bar{z} be the conjugate of a) $ z = \bar{z} $ 429. If $(a_1 + ib_1)(a_2 + ib_2)$ a) $\frac{B}{A}$	The complex number z , the b) $z. \bar{z} = \bar{z} ^2$ $(a_n + ib_n) = A + iB$, the b) $\tan\left(\frac{B}{A}\right)$	en which of the following r c) $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$ n $\sum_{i=1}^{n} \tan^{-1} \left(\frac{b_i}{a_i}\right)$ is equal to c) $\tan^{-1} \left(\frac{B}{A}\right)$	d) arg $(z) = \arg(\overline{z})$ to d) $\tan^{-1}\left(\frac{A}{B}\right)$
d) None of these 428. If \bar{z} be the conjugate of a) $ z = \bar{z} $ 429. If $(a_1 + ib_1)(a_2 + ib_2)$ a) $\frac{B}{A}$ 430. The values of 'a' for when	The complex number z , the b) $z. \bar{z} = \bar{z} ^2$ $(a_n + ib_n) = A + iB$, then b) $\tan\left(\frac{B}{A}\right)$ nich $(a^2 - 1)x^2 + 2(a - 1)z$	en which of the following r c) $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$ in $\sum_{i=1}^{n} \tan^{-1} \left(\frac{b_i}{a_i}\right)$ is equal t c) $\tan^{-1} \left(\frac{B}{A}\right)$ x + 2 is positive for any x,	d) arg $(z) = \arg(\overline{z})$ to d) $\tan^{-1}\left(\frac{A}{B}\right)$, are
d) None of these 428. If \bar{z} be the conjugate of a) $ z = \bar{z} $ 429. If $(a_1 + ib_1)(a_2 + ib_2)$ a) $\frac{B}{A}$ 430. The values of 'a' for wh a) $a \ge 1$	The complex number z , the b) $z. \bar{z} = \bar{z} ^2$ $(a_n + ib_n) = A + iB$, then b) $\tan\left(\frac{B}{A}\right)$ nich $(a^2 - 1)x^2 + 2(a - 1)z$ b) $a \le 1$	en which of the following r c) $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$ in $\sum_{i=1}^{n} \tan^{-1} \left(\frac{b_i}{a_i}\right)$ is equal to c) $\tan^{-1} \left(\frac{B}{A}\right)$ x + 2 is positive for any x, c) $a > -3$	d) arg $(z) = \arg(\overline{z})$ to d) $\tan^{-1}\left(\frac{A}{B}\right)$
d) None of these 428. If \bar{z} be the conjugate of a) $ z = \bar{z} $ 429. If $(a_1 + ib_1)(a_2 + ib_2)$ a) $\frac{B}{A}$ 430. The values of 'a' for wh a) $a \ge 1$ 431. The roots of the equation	The complex number z , the b) $z. \bar{z} = \bar{z} ^2$ $(a_n + ib_n) = A + iB$, then b) $\tan\left(\frac{B}{A}\right)$ nich $(a^2 - 1)x^2 + 2(a - 1)z$ b) $a \le 1$	en which of the following n c) $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$ n $\sum_{i=1}^{n} \tan^{-1} \left(\frac{b_i}{a_i}\right)$ is equal to c) $\tan^{-1} \left(\frac{B}{A}\right)$ x + 2 is positive for any x, c) $a > -3$	d) arg $(z) = \arg(\overline{z})$ to d) $\tan^{-1}\left(\frac{A}{B}\right)$, are d) $a < -3$ or $a > 1$
d) None of these 428. If \bar{z} be the conjugate of a) $ z = \bar{z} $ 429. If $(a_1 + ib_1)(a_2 + ib_2)$ a) $\frac{B}{A}$ 430. The values of 'a' for wh a) $a \ge 1$ 431. The roots of the equation	The complex number z , the b) $z. \bar{z} = \bar{z} ^2$ $(a_n + ib_n) = A + iB$, then b) $\tan\left(\frac{B}{A}\right)$ hich $(a^2 - 1)x^2 + 2(a - 1)x^2$ b) $a \le 1$ on $x^4 - 2x^3 + x = 380$ are b) $-5, 4, \frac{-1 \pm 5\sqrt{-3}}{2}$	en which of the following n c) $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$ in $\sum_{i=1}^{n} \tan^{-1} \left(\frac{b_i}{a_i}\right)$ is equal to c) $\tan^{-1} \left(\frac{B}{A}\right)$ x + 2 is positive for any x, c) $a > -3$ c) $5, 4, \frac{-1 \pm 5\sqrt{-3}}{2}$	d) arg $(z) = \arg(\overline{z})$ to d) $\tan^{-1}\left(\frac{A}{B}\right)$, are d) $a < -3$ or $a > 1$ d) $-5, -4, \frac{1 \pm 5\sqrt{3}}{2}$
d) None of these 428. If \bar{z} be the conjugate of a) $ z = \bar{z} $ 429. If $(a_1 + ib_1)(a_2 + ib_2)$ a) $\frac{B}{A}$ 430. The values of 'a' for wh a) $a \ge 1$ 431. The roots of the equation a) $5, -4, \frac{1 \pm 5\sqrt{-3}}{2}$	The complex number z , the b) $z. \bar{z} = \bar{z} ^2$ $(a_n + ib_n) = A + iB$, then b) $\tan\left(\frac{B}{A}\right)$ hich $(a^2 - 1)x^2 + 2(a - 1)x^2$ b) $a \le 1$ on $x^4 - 2x^3 + x = 380$ are b) $-5, 4, \frac{-1 \pm 5\sqrt{-3}}{2}$	en which of the following n c) $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$ in $\sum_{i=1}^{n} \tan^{-1} \left(\frac{b_i}{a_i}\right)$ is equal to c) $\tan^{-1} \left(\frac{B}{A}\right)$ x + 2 is positive for any x, c) $a > -3$ c) $5, 4, \frac{-1 \pm 5\sqrt{-3}}{2}$	d) arg $(z) = \arg(\overline{z})$ to d) $\tan^{-1}\left(\frac{A}{B}\right)$, are d) $a < -3$ or $a > 1$ d) $-5, -4, \frac{1 \pm 5\sqrt{3}}{2}$
d) None of these 428. If \bar{z} be the conjugate of a) $ z = \bar{z} $ 429. If $(a_1 + ib_1)(a_2 + ib_2)$ a) $\frac{B}{A}$ 430. The values of 'a' for wh a) $a \ge 1$ 431. The roots of the equation a) $5, -4, \frac{1 \pm 5\sqrt{-3}}{2}$ 432. The value of $(2 - \omega)(2)$	The complex number z , the b) $z. \bar{z} = \bar{z} ^2$ $(a_n + ib_n) = A + iB$, then b) $\tan\left(\frac{B}{A}\right)$ nich $(a^2 - 1)x^2 + 2(a - 1)z$ b) $a \le 1$ on $x^4 - 2x^3 + x = 380$ are b) $-5, 4, \frac{-1 \pm 5\sqrt{-3}}{2}$ $(z - \omega^2)(2 - \omega^{10})(2 - \omega^{11}),$ b) 50 ns for the equations $ z - 1 $	en which of the following n c) $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$ n $\sum_{i=1}^{n} \tan^{-1} \left(\frac{b_i}{a_i}\right)$ is equal to c) $\tan^{-1} \left(\frac{B}{A}\right)$ x + 2 is positive for any x, c) $a > -3$ c) 5, 4, $\frac{-1 \pm 5\sqrt{-3}}{2}$ where ω is the complex of c) 48	d) $\arg(z) = \arg(\overline{z})$ to d) $\tan^{-1}\left(\frac{A}{B}\right)$, are d) $a < -3$ or $a > 1$ d) $-5, -4, \frac{1 \pm 5\sqrt{3}}{2}$ sube root of unity, is
d) None of these 428. If \bar{z} be the conjugate of a) $ z = \bar{z} $ 429. If $(a_1 + ib_1)(a_2 + ib_2)$ a) $\frac{B}{A}$ 430. The values of 'a' for wh a) $a \ge 1$ 431. The roots of the equation a) $5, -4, \frac{1 \pm 5\sqrt{-3}}{2}$ 432. The value of $(2 - \omega)(2 - \omega)(2 - \omega)(2 - \omega)$ a) 49 433. The number of solution a) One solution	The complex number z , the b) $z. \bar{z} = \bar{z} ^2$ $(a_n + ib_n) = A + iB$, then b) $\tan\left(\frac{B}{A}\right)$ nich $(a^2 - 1)x^2 + 2(a - 1)x^2$ b) $a \le 1$ on $x^4 - 2x^3 + x = 380$ are b) $-5, 4, \frac{-1 \pm 5\sqrt{-3}}{2}$ $(a - \omega^2)(2 - \omega^{10})(2 - \omega^{11}),$ b) 50 ns for the equations $ z - 1 $ b) 3 solutions	en which of the following n c) $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$ n $\sum_{i=1}^{n} \tan^{-1} \left(\frac{b_i}{a_i}\right)$ is equal to c) $\tan^{-1} \left(\frac{B}{A}\right)$ x + 2 is positive for any x, c) $a > -3$ c) 5, 4, $\frac{-1 \pm 5\sqrt{-3}}{2}$ where ω is the complex conclusion c) 48 = $ z - 2 = z - i $ is c) 2 solutions	d) arg $(z) = \arg(\overline{z})$ to d) $\tan^{-1}\left(\frac{A}{B}\right)$, are d) $a < -3$ or $a > 1$ d) $-5, -4, \frac{1 \pm 5\sqrt{3}}{2}$ sube root of unity, is d) 47 d) No solution
d) None of these 428. If \bar{z} be the conjugate of a) $ z = \bar{z} $ 429. If $(a_1 + ib_1)(a_2 + ib_2)$ a) $\frac{B}{A}$ 430. The values of 'a' for wh a) $a \ge 1$ 431. The roots of the equation a) $5, -4, \frac{1 \pm 5\sqrt{-3}}{2}$ 432. The value of $(2 - \omega)(2 - \omega)(2 - \omega)$ a) 49 433. The number of solution a) One solution 434. If α, β and γ are the root	The complex number z , the b) $z. \bar{z} = \bar{z} ^2$ $(a_n + ib_n) = A + iB$, then b) $\tan\left(\frac{B}{A}\right)$ nich $(a^2 - 1)x^2 + 2(a - 1)x^2$ b) $a \le 1$ on $x^4 - 2x^3 + x = 380$ are b) $-5, 4, \frac{-1 \pm 5\sqrt{-3}}{2}$ $(z - \omega^2)(2 - \omega^{10})(2 - \omega^{11}),$ b) 50 ns for the equations $ z - 1 $ b) 3 solutions ots of $x^3 + 8 = 0$, then the equation $z = 1$	en which of the following n c) $\overline{z_1 + z_2} = \overline{z}_1 + \overline{z}_2$ in $\sum_{i=1}^n \tan^{-1} \left(\frac{b_i}{a_i}\right)$ is equal to c) $\tan^{-1} \left(\frac{B}{A}\right)$ x + 2 is positive for any x, c) $a > -3$ c) $5, 4, \frac{-1 \pm 5\sqrt{-3}}{2}$ where ω is the complex conclusion c) 48 = $ z - 2 = z - i $ is c) 2 solutions equation whose roots are a	d) $\arg (z) = \arg(\overline{z})$ to d) $\tan^{-1} \left(\frac{A}{B}\right)$, are d) $a < -3$ or $a > 1$ d) $-5, -4, \frac{1 \pm 5\sqrt{3}}{2}$ sube root of unity, is d) 47 d) No solution α^2, β^2 and γ^2 is
d) None of these 428. If \bar{z} be the conjugate of a) $ z = \bar{z} $ 429. If $(a_1 + ib_1)(a_2 + ib_2)$ a) $\frac{B}{A}$ 430. The values of 'a' for wh a) $a \ge 1$ 431. The roots of the equation a) $5, -4, \frac{1 \pm 5\sqrt{-3}}{2}$ 432. The value of $(2 - \omega)(2 - \omega)(2 - \omega)(2 - \omega)$ a) 49 433. The number of solution a) One solution 434. If α, β and γ are the root a) $x^3 - 8 = 0$	The complex number z , the b) $z. \bar{z} = \bar{z} ^2$ $(a_n + ib_n) = A + iB$, then b) $\tan\left(\frac{B}{A}\right)$ nich $(a^2 - 1)x^2 + 2(a - 1)z$ b) $a \le 1$ on $x^4 - 2x^3 + x = 380$ are b) $-5, 4, \frac{-1 \pm 5\sqrt{-3}}{2}$ $(2 - \omega^2)(2 - \omega^{10})(2 - \omega^{11}),$ b) 50 ns for the equations $ z - 1 $ b) 3 solutions ots of $x^3 + 8 = 0$, then the e b) $x^3 - 16 = 0$	en which of the following n c) $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$ in $\sum_{i=1}^{n} \tan^{-1} \left(\frac{b_i}{a_i}\right)$ is equal to c) $\tan^{-1} \left(\frac{B}{A}\right)$ x + 2 is positive for any x, c) $a > -3$ c) $5, 4, \frac{-1 \pm 5\sqrt{-3}}{2}$ where ω is the complex conclusion of the complex conclusion of the complex conclusion of the complex conclusion of the conclusion of t	d) arg $(z) = \arg(\overline{z})$ to d) $\tan^{-1}\left(\frac{A}{B}\right)$, are d) $a < -3$ or $a > 1$ d) $-5, -4, \frac{1 \pm 5\sqrt{3}}{2}$ sube root of unity, is d) 47 d) No solution
d) None of these 428. If \bar{z} be the conjugate of a) $ z = \bar{z} $ 429. If $(a_1 + ib_1)(a_2 + ib_2)$ a) $\frac{B}{A}$ 430. The values of 'a' for wh a) $a \ge 1$ 431. The roots of the equation a) $5, -4, \frac{1 \pm 5\sqrt{-3}}{2}$ 432. The value of $(2 - \omega)(2 - \omega)(2 - \omega)(2 - \omega)$ a) 49 433. The number of solution a) One solution 434. If α, β and γ are the root a) $x^3 - 8 = 0$ 435. The quadratic equation	The complex number z , the b) $z. \bar{z} = \bar{z} ^2$ $(a_n + ib_n) = A + iB$, then b) $\tan\left(\frac{B}{A}\right)$ nich $(a^2 - 1)x^2 + 2(a - 1)x^2$ b) $a \le 1$ on $x^4 - 2x^3 + x = 380$ are b) $-5, 4, \frac{-1 \pm 5\sqrt{-3}}{2}$ $(z - \omega^2)(2 - \omega^{10})(2 - \omega^{11}),$ b) 50 ns for the equations $ z - 1 $ b) 3 solutions ots of $x^3 + 8 = 0$, then the e b) $x^3 - 16 = 0$ n whose roots are $\sin^2 18^\circ a$	en which of the following n c) $\overline{z_1 + z_2} = \overline{z}_1 + \overline{z}_2$ in $\sum_{i=1}^{n} \tan^{-1} \left(\frac{b_i}{a_i}\right)$ is equal to c) $\tan^{-1} \left(\frac{B}{A}\right)$ x + 2 is positive for any x, c) $a > -3$ c) 5, 4, $\frac{-1 \pm 5\sqrt{-3}}{2}$ where ω is the complex of c) 48 = $ z - 2 = z - i $ is c) 2 solutions equation whose roots are c) $x^3 + 64 = 0$ and $\cos^2 36^\circ$ is	d) $\arg(z) = \arg(\overline{z})$ to d) $\tan^{-1}\left(\frac{A}{B}\right)$, are d) $a < -3$ or $a > 1$ d) $-5, -4, \frac{1 \pm 5\sqrt{3}}{2}$ sube root of unity, is d) 47 d) No solution α^2, β^2 and γ^2 is d) $x^3 - 64 = 0$
d) None of these 428. If \bar{z} be the conjugate of a) $ z = \bar{z} $ 429. If $(a_1 + ib_1)(a_2 + ib_2)$ a) $\frac{B}{A}$ 430. The values of 'a' for wh a) $a \ge 1$ 431. The roots of the equation a) $5, -4, \frac{1 \pm 5\sqrt{-3}}{2}$ 432. The value of $(2 - \omega)(2 - \omega)(2 - \omega)(2 - \omega)(2 - \omega)(2 - \omega))(2 - \omega))(2 - \omega))(2 - \omega)(2 - \omega))(2 - \omega))($	F the complex number z , the b) $z. \bar{z} = \bar{z} ^2$ $(a_n + ib_n) = A + iB$, then b) $\tan\left(\frac{B}{A}\right)$ nich $(a^2 - 1)x^2 + 2(a - 1)z^2$ b) $a \le 1$ on $x^4 - 2x^3 + x = 380$ are b) $-5, 4, \frac{-1 \pm 5\sqrt{-3}}{2}$ $(z - \omega^2)(2 - \omega^{10})(2 - \omega^{11}),$ b) 50 ns for the equations $ z - 1 $ b) 3 solutions ots of $x^3 + 8 = 0$, then the equations ots of $x^3 - 16 = 0$ n whose roots are $\sin^2 18^\circ a^\circ$	en which of the following n c) $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$ in $\sum_{i=1}^{n} \tan^{-1} \left(\frac{b_i}{a_i}\right)$ is equal to c) $\tan^{-1} \left(\frac{B}{A}\right)$ x + 2 is positive for any x, c) $a > -3$ c) 5, 4, $\frac{-1 \pm 5\sqrt{-3}}{2}$ where ω is the complex conclusion c) 48 = $ z - 2 = z - i $ is c) 2 solutions equation whose roots are conclusion equation whose roots are conclusion equ	d) $\arg(z) = \arg(\overline{z})$ to d) $\tan^{-1}\left(\frac{A}{B}\right)$, are d) $a < -3$ or $a > 1$ d) $-5, -4, \frac{1 \pm 5\sqrt{3}}{2}$ sube root of unity, is d) 47 d) No solution α^2, β^2 and γ^2 is d) $x^3 - 64 = 0$ 0
d) None of these 428. If \bar{z} be the conjugate of a) $ z = \bar{z} $ 429. If $(a_1 + ib_1)(a_2 + ib_2)$ a) $\frac{B}{A}$ 430. The values of 'a' for wh a) $a \ge 1$ 431. The roots of the equation a) $5, -4, \frac{1 \pm 5\sqrt{-3}}{2}$ 432. The value of $(2 - \omega)(2 - \omega)(2 - \omega)(2 - \omega)$ a) 49 433. The number of solution a) One solution 434. If α, β and γ are the root a) $x^3 - 8 = 0$ 435. The quadratic equation a) $16x^2 - 12x + 1 = 0$ c) $16x^2 - 12x - 1 = 0$	The complex number z , the b) $z. \bar{z} = \bar{z} ^2$ $(a_n + ib_n) = A + iB$, then b) $\tan\left(\frac{B}{A}\right)$ nich $(a^2 - 1)x^2 + 2(a - 1)x^2$ b) $a \le 1$ on $x^4 - 2x^3 + x = 380$ are b) $-5, 4, \frac{-1 \pm 5\sqrt{-3}}{2}$ $(z - \omega^2)(2 - \omega^{10})(2 - \omega^{11}),$ b) 50 ns for the equations $ z - 1 $ b) 3 solutions ots of $x^3 + 8 = 0$, then the e b) $x^3 - 16 = 0$ n whose roots are $\sin^2 18^\circ a$	en which of the following n c) $\overline{z_1 + z_2} = \overline{z}_1 + \overline{z}_2$ in $\sum_{i=1}^{n} \tan^{-1} \left(\frac{b_i}{a_i}\right)$ is equal to c) $\tan^{-1} \left(\frac{B}{A}\right)$ x + 2 is positive for any x, c) $a > -3$ c) 5, 4, $\frac{-1 \pm 5\sqrt{-3}}{2}$ where ω is the complex of c) 48 = $ z - 2 = z - i $ is c) 2 solutions equation whose roots are c) $x^3 + 64 = 0$ and $\cos^2 36^\circ$ is	d) $\arg(z) = \arg(\overline{z})$ to d) $\tan^{-1}\left(\frac{A}{B}\right)$, are d) $a < -3$ or $a > 1$ d) $-5, -4, \frac{1 \pm 5\sqrt{3}}{2}$ sube root of unity, is d) 47 d) No solution α^2, β^2 and γ^2 is d) $x^3 - 64 = 0$ 0
d) None of these 428. If \bar{z} be the conjugate of a) $ z = \bar{z} $ 429. If $(a_1 + ib_1)(a_2 + ib_2)$ a) $\frac{B}{A}$ 430. The values of 'a' for wh a) $a \ge 1$ 431. The roots of the equation a) $5, -4, \frac{1 \pm 5\sqrt{-3}}{2}$ 432. The value of $(2 - \omega)(2 - \omega)(2 - \omega)(2 - \omega)(2 - \omega)(2 - \omega)(2 - \omega))(2 - \omega)(2 - \omega)(2 - \omega)(2 - \omega))(2 - \omega))$	The complex number z , the b) $z. \bar{z} = \bar{z} ^2$ $(a_n + ib_n) = A + iB$, then b) $\tan\left(\frac{B}{A}\right)$ nich $(a^2 - 1)x^2 + 2(a - 1)x^2$ b) $a \le 1$ on $x^4 - 2x^3 + x = 380$ are b) $-5, 4, \frac{-1 \pm 5\sqrt{-3}}{2}$ $(z - \omega^2)(2 - \omega^{10})(2 - \omega^{11}),$ b) 50 ns for the equations $ z - 1 $ b) 3 solutions ots of $x^3 + 8 = 0$, then the e b) $x^3 - 16 = 0$ n whose roots are $\sin^2 18^\circ a$	en which of the following n c) $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$ in $\sum_{i=1}^{n} \tan^{-1} \left(\frac{b_i}{a_i}\right)$ is equal to c) $\tan^{-1} \left(\frac{B}{A}\right)$ x + 2 is positive for any x, c) $a > -3$ c) 5, 4, $\frac{-1 \pm 5\sqrt{-3}}{2}$ where ω is the complex conclusion c) 48 = $ z - 2 = z - i $ is c) 2 solutions equation whose roots are conclusion equation whose roots are conclusion equ	d) $\arg(z) = \arg(\overline{z})$ to d) $\tan^{-1}\left(\frac{A}{B}\right)$, are d) $a < -3$ or $a > 1$ d) $-5, -4, \frac{1 \pm 5\sqrt{3}}{2}$ sube root of unity, is d) 47 d) No solution α^2, β^2 and γ^2 is d) $x^3 - 64 = 0$ 0
d) None of these 428. If \bar{z} be the conjugate of a) $ z = \bar{z} $ 429. If $(a_1 + ib_1)(a_2 + ib_2)$ a) $\frac{B}{A}$ 430. The values of 'a' for wh a) $a \ge 1$ 431. The roots of the equation a) $5, -4, \frac{1 \pm 5\sqrt{-3}}{2}$ 432. The value of $(2 - \omega)(2 - \omega)(2 - \omega)(2 - \omega)$ a) 49 433. The number of solution a) One solution 434. If α, β and γ are the root a) $x^3 - 8 = 0$ 435. The quadratic equation a) $16x^2 - 12x + 1 = 0$ c) $16x^2 - 12x - 1 = 0$	The complex number z , the b) $z. \bar{z} = \bar{z} ^2$ $(a_n + ib_n) = A + iB$, then b) $\tan\left(\frac{B}{A}\right)$ nich $(a^2 - 1)x^2 + 2(a - 1)x^2$ b) $a \le 1$ on $x^4 - 2x^3 + x = 380$ are b) $-5, 4, \frac{-1 \pm 5\sqrt{-3}}{2}$ $(z - \omega^2)(2 - \omega^{10})(2 - \omega^{11}),$ b) 50 ns for the equations $ z - 1 $ b) 3 solutions ots of $x^3 + 8 = 0$, then the e b) $x^3 - 16 = 0$ n whose roots are $\sin^2 18^\circ a$	en which of the following n c) $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$ in $\sum_{i=1}^{n} \tan^{-1} \left(\frac{b_i}{a_i}\right)$ is equal to c) $\tan^{-1} \left(\frac{B}{A}\right)$ x + 2 is positive for any x, c) $a > -3$ c) 5, 4, $\frac{-1 \pm 5\sqrt{-3}}{2}$ where ω is the complex conclusion c) 48 = $ z - 2 = z - i $ is c) 2 solutions equation whose roots are conclusion equation whose roots are conclusion equ	d) $\arg(z) = \arg(\overline{z})$ to d) $\tan^{-1}\left(\frac{A}{B}\right)$, are d) $a < -3$ or $a > 1$ d) $-5, -4, \frac{1 \pm 5\sqrt{3}}{2}$ sube root of unity, is d) 47 d) No solution α^2, β^2 and γ^2 is d) $x^3 - 64 = 0$ 0

c) Re (z) => 0, Im (z) > 0d) Re (z) > 0, Im (z) < 0437. If one root of the equation $lx^2 + mx + n = 0$ is $\frac{9}{2}(l, m \text{ and } n \text{ are positive integers})$ and $\frac{m}{4n} = \frac{1}{m}$, then l + n is equal to a) 80 d) 95 c) 90 438. If $\frac{x^3}{(2x-1)(x+2)(x-3)} = A + \frac{B}{2x-1} + \frac{C}{x+2} + \frac{D}{x-3}$, then A is equal to b) $-\frac{1}{50}$ c) $-\frac{8}{25}$ d) $\frac{27}{25}$ 439. If α , β , γ are the roots of $x^3 + 4x + 1 = 0$, then the equation whose roots are $\frac{\alpha^2}{\beta + \gamma}$, $\frac{\beta^2}{\alpha + \gamma}$, $\frac{\gamma^2}{\alpha + \beta}$ is ^{439.} If α , β , γ are the roots of $x^2 + 4x + 1 = 0$, a) $x^3 - 4x - 1 = 0$ b) $x^3 - 4x + 1 = 0$ c) $x^3 + 4x - 1 = 0$ d) $x^3 + 4x + 1 = 0$ 440. The solution set of the equation $pqx^2 - (p+q)^2x + (p+q)^2 = 0$ is $pq^{(p-q)}$ b) $\{pq, \frac{p}{q}\}$ c) $\{\frac{q}{n}, pq\}$ d) $\{\frac{p+q}{p}, \frac{p+q}{q}\}$ d) $x^3 + 4x + 1 = 0$ 441. The system of equation $|z + 1 - i| = \sqrt{2}$ and |z| = 3 has b) One solution c) Two solutions d) None of these a) No solution 442. If x = a + b, $y + a\alpha + b\beta$ and $z = a\beta + b\alpha$, where α and β are complex cube roots of unity, then *xyz* is equal to b) $a^3 + b^3$ d) $a^3 - b^3$ a) $a^2 + b^2$ c) $a^{3}b^{3}$ 443. If α , β are the roots of equation $ax^2 + bx + c = 0$, then the value of the determinant $\begin{vmatrix} 1 & \cos(\beta - \alpha) & \cos\alpha \\ \cos(\alpha - \beta) & 1 & \cos\beta \\ \cos\alpha & \cos\beta & 1 \\ \cos(\alpha + \beta) & b) \sin\alpha \sin\beta \end{vmatrix}$ c) $1 + \cos(\alpha + \beta)$ a) $sin(\alpha + \beta)$ d) None of these 444. The least positive integer *n* for which $\left(\frac{1+i}{1-i}\right)^n$ is real, is b) 4 c) 8 d) None of these 445. Let [x] denote the greatest integer less than or equal to x. Then, in [0,3] the number of solutions of the equation $x^2 - 3x + [x] = 0$, is a) 6 d) 0 b) 4 c) 2 446. If at least one root of $2x^2 + 3x + 5 = 0$ and $ax^2 + bx + c = 0$, $a, b, c \in N$ is common, then the maximum value of a + b + c is a) 10 c) Does not exist d) None of these a) 10 b) U If $x = \sqrt{1 + \sqrt{1 + \sqrt{1 + \dots \infty}}}$, then x is equal to 447. b) $\frac{1-\sqrt{5}}{2}$ c) $\frac{1\pm\sqrt{5}}{2}$ d) None of these a) $\frac{1+\sqrt{5}}{2}$ 448. If a > 0 and the equation $|z - a^2| + |z - 2a| = 3$ represents an ellipse, then a belongs to the interval a) (1, 3) b) $(\sqrt{2}, \sqrt{3})$ c) (0, 3) 449. If *x* is real, the function $\frac{(x-a)(x-b)}{(x-c)}$ will assume all real values, provided d) $(1, \sqrt{3})$ d) $a \le c \le b$ c) *a* > *c* > *b* a) a > b > cb) $a \le b \le c$ 450. The value of the expression $1 \cdot (2 - \omega)(2 - \omega^2) + 2 \cdot (3 - \omega)(3 - \omega^2) + \dots + (n - 1) \cdot (n - \omega)(n - \omega^2)$ Where ω is an imaginary cube root of unity, is a) $\frac{1}{2}(n-1)n(n^2+3n+4)$ b) $\frac{1}{4}(n-1)n(n^2+3n+4)$ d) $\frac{1}{4}(n+1) n (n^2 + 3n + 4)$ c) $\frac{1}{2}(n+1) n (n^2 + 3n + 4)$

451. The points representing cube roots of unity

a) Are collinear

b) Lie on a circle of radius $\sqrt{3}$ c) From an equilateral triangle d) None of these 452. If the equations $ax^2 + bc + c = 0$ and $2x^2 + 3x + 4 = 0$ have a common root, then a : b : cb) 1 : 2 : 3 c) 4 : 3 : 2 d) None of these a) 2 : 3 : 4 453. Consider the following statements: 1. The equation $x^2 - cx + d = 0$ and $x^2 - ax + b = 0$ have common root and second equation has equal roots if ac = 2(b + d). 2. If α is a root of the equation $4x^2 + 2x - 1 = 0$, then the other root is $4\alpha^3 - 3\alpha$. 3. The expression (x - 1)(x - 3)(x - 4)(x - 6) + 10 is positive for all real values of x. Which of these is/are correct? d) None of these a) Only (3) b) Only (2) c) All of these 454. The equation $x^2 - 3|x| + 2 = 0$ has a) No real roots b) One real root c) Two real roots d) Four real roots 455. The solution set of the inequation $0 < |3x + 1| < \frac{1}{2}$, is a) (-4/9, -2/9)b) [-4/9, -2/9]c) $(-4/9, -2/9) - \{-1/3\}$ d) $[-4/9, -2/9] - \{-1/3\}$ 456. The solution set of the equation $x^{\log_x(1-x)^2} = 9$ is c) $\{0, -2, 4\}$ a) {-2,4} b) {4} d) None of these 457. If $x^2 + ax + 1$ is a factor of $ax^3 + bx + c$, then a) $b + a + a^2 = 0$, a = c b) $b - a + a^2 = 0$, a = c c) $b + a - a^2 = 0$, a = 0 d) None of these 458. If the complex numbers z_1 , z_2 and the origin form an equilateral triangle, then $z_1^2 + z_2^2$ is equal to d) $|z_1|^2 = |z_2|^2$ b) $z_1 \bar{z}_2$ c) $\bar{z}_2 z_1$ a) $z_1 z_2$ 459. If two equations $x^2 + a^2 = 1 - 2ax$ and $x^2 + b^2 = 1 - 2bx$ have only one common root, then b) a - b = 1a) a - b = 1d) |a - b| = 1c) a - b = 2460. If α , β are the roots of $x^2 - ax + b = 0$ and if $\alpha^n + \beta^n = V_n$, then a) $V_{n+1} = aV_n + bV_{n-1}$ b) $V_{n+1} = aV_n + aV_{n-1}$ c) $V_{n+1} = aV_n - bV_{n-1}$ d) $V_{n+1} = aV_{n-1} - bV_n$ 461. $z^2 + \alpha z + \beta = 0(\alpha, \beta \text{ are complex numbers})$ has a real root, then a) $(\alpha + \overline{\alpha})(\alpha \overline{\beta} + \overline{\alpha} \beta) + (\beta - \overline{\beta})^2 = 0$ b) $(\alpha - \overline{\alpha})(\beta - \overline{\beta})^2 = 0$ c) $(\bar{\alpha} - \alpha)(\alpha\bar{\beta} - \bar{\alpha}\beta) = (\beta - \bar{\beta})^2$ d) None of these 462. If $2^x \cdot 3^{x+4} = 7^x$, then *x* is equal to a) $\frac{4 \log_e 3}{\log_e 7 - \log_e 6}$ b) $\frac{4 \log_e 3}{\log_e 6 - \log_e 7}$ c) $\frac{2 \log_e 3}{\log_e 7 - \log_e 6}$ d) $\frac{3 \log_e 4}{\log_e 6 - \log_e 7}$ 463. If α , β and γ are the roots of the equation $x^3 - 8x + 8 = 0$, then $\sum \alpha^2$ and $\sum \frac{1}{\alpha\beta}$ are respectively a) 0 and -16 b) 16 and 18 c) -16 and 0 d) 16 and 0 464. If x is real, then $\frac{x^2-2x+4}{x^2+2x+4}$ takes values in the interval b) $\left(\frac{1}{3},3\right)$ d) $\left(-\frac{1}{3},3\right)$ a) $\left|\frac{1}{3}, 3\right|$ c) (3,3) 465. The value of $2 + \frac{1}{2 + \frac{1}{2$ b) $1 + \sqrt{2}$ d) None of these a) $1 - \sqrt{2}$ c) $1 \pm \sqrt{2}$ 466. Let z_1 be a complex number with $|z_1| = 1$ and z_2 be any complex number, then $\left|\frac{z_1-z_2}{1-z_1z_2}\right|$ is equal to b) 1 c) -1 a) 0 d) 2

467. If α , β are the roots of $x^2 + px + q = 0$ and also of $x^{2n} + p^n x^n + q^n = 0$ and if $\frac{\alpha}{\beta}$, $\frac{\beta}{\alpha}$ are the roots of $x^{n} + 1 + (x + 1)^{n} = 0$, then *n* is b) An even integer c) Any integer a) An odd integer d) None of these 468. If $x = \left(\frac{1+i}{2}\right)$, (where $i = \sqrt{-1}$), then the expression $2x^4 - 2x^2 + x + 3$ equals a) $3 - \left(\frac{i}{2}\right)$ b) $3 + \left(\frac{i}{2}\right)$ c) $\frac{(3+i)}{2}$ d) $\frac{(3-i)}{2}$ 469. Let α , α^2 be the roots of $x^2 + x + 1 = 0$, then the equation whose roots are α^{31} , α^{62} , is a) $x^2 - x + 1 = 0$ b) $x^2 + x - 1 = 0$ c) $x^2 + x + 1 = 0$ d) $x^{60} + x^{30} + 1 = 470$. If one root of the equation $8x^2 - 6x - a - 3 = 0$ is the square of the other, then the values of *a* are d) $x^{60} + x^{30} + 1 = 0$ a) 4, -24 b) 4, 24 c) -4, -24 d) -4, 24471. If $x_n = \cos \frac{\pi}{3^n} + i \sin \frac{\pi}{3^n}$, then $x_1, x_2, x_3, \dots x_\infty$ is equal to b) -1 d) −*i* c) i 472. The centre of a regular hexagon is at the point z = i. If one of its vertices is at 2 + i, then the adjacent vertices of 2 + i are at the points b) $i + 1 \pm \sqrt{3}$ c) $2 + i(1 \pm \sqrt{3})$ d) $1 + i(1 \pm \sqrt{3})$ a) 1 ± 2*i* 473. If the real part of $\frac{\bar{z}+2}{\bar{z}-1}$ is 4, then the locus of the point representing z in the complex plane is a) a circle b) a parabola c) a hyperbola d) an ellipse 474. Given that $ax^2 + bx + c = 0$ has no real roots and a + b + c < 0, then a) c = 0b) *c* > 0 c) *c* < 0 d) c = 0475. If $2\sin^2\frac{\pi}{8}$ is a root of the equation $x^2 + ax + b = 0$, where *a* and *b* are rational numbers, then a - b is equal to a) $-\frac{5}{2}$ b) $-\frac{3}{2}$ d) $\frac{1}{2}$ c) $-\frac{1}{2}$ 476. If α is a complex number satisfying the equation $\alpha^2 + \alpha + 1 = 0$, then α^{31} is equal to a) α b) α^2 c) 1 477. If $z_r = \cos\left(\frac{\pi}{2^r}\right) + i \sin\left(\frac{\pi}{2^r}\right)$, then $z_1. z_2. z_3 \dots$ upto ∞ equals b) α² a) -3 c) 1 d) -1 478. If $\alpha_1, \alpha_2, \alpha_3$ respectively denote the moduli of the complex numbers $-i, \frac{1}{3}(1+i)$ and -1+i, then their increasing order is a) $\alpha_1, \alpha_2, \alpha_3$ b) $\alpha_3, \alpha_2, \alpha_1$ c) $\alpha_2, \alpha_1, \alpha_3$ d) $\alpha_3, \alpha_1, \alpha_2$ 479. The solution set of the inequation $\frac{2x+4}{x-1} \ge 5$, is c) $(-\infty, 1) \cup [3, \infty)$ d) None of these a) (1,3) b) (1,3] 480. If the equation $\frac{a}{x-a} + \frac{b}{x-b} = 1$ has roots equal in magnitude but opposite in sign, then the value of a + b is b) 0 d) None of these c) 1 a) -1 481. The roots of the equation $x^3 - 3x - 2 = 0$ are a) -1, -1, 2 b) -1, 1, -2 c) -1, 2, -3 d) -1, -1, -2 482. If the sum of the squares of the roots of the equation $x^2 - (\sin \alpha - 2)x - (1 + \sin \alpha) = 0$ is least, then $\alpha =$ c) π/2 a) π/4 b) π/3 d) $\pi/6$ 483. $\left(\frac{-1+\sqrt{-3}}{2}\right)^{100} + \left(\frac{-1-\sqrt{-3}}{2}\right)^{100}$ is equal to b) Zero a) 2 c) -1 d) 1 484. The set of values of p for which the roots of the equation $3x^2 + 2x + p(p-1) = 0$ are of opposite signs is b) (0, 1) a) $(-\infty, 0)$ c) (1,∞) d) (0,∞) 485. The roots of $(x - a)(x - a - 1) + (x - a - 1)(x - a - 2) + (x - a)(x - a - 2) = 0, a \in R$ are always c) Real and distinct a) Equal b) Imaginary d) Rational and equal 486. If z is a complex number satisfying $z + z^{-1} = 1$, then $z^n + z^{-n}$, $n \in N$ has the value a) $2(-1)^n$, when *n* is a multiple of 3

b) $(-1)^n$ when *n* is not a multiple of 3 c) $(-1)^{n+1}$ when *n* is a multiple of 3 d) 0 when *n* is not a multiple of 3 487. If α, β, γ be the roots of $x^3 + a^3 = 0$ ($a \in R$), then the number of equation(s) whose roots are $\left(\frac{\alpha}{\beta}\right)^2$ and $\left(\frac{\alpha}{\gamma}\right)^2$, is b) 2 d) 6 c) 3 a) 1 b) 2 c) 488. If $\left|z - \frac{4}{z}\right| = 2$, then the maximum value of |z| is equal to d) 2 + $\sqrt{2}$ a) $\sqrt{3} + 1$ b) $\sqrt{5} + 1$ 489. If $z\bar{z} = 0$, iff a) Re (z) = 0b) Im (z) = 0c) z = 0d) None of these 490. Let *z*, *w* be complex numbers such that $\overline{z} + \overline{tw} = 0$ and $\arg(zw) = \pi$. Then $\arg(z)$ equals b) $\frac{\pi}{2}$ c) $\frac{3\pi}{4}$ d) $\frac{5\pi}{4}$ a) $\frac{\pi}{4}$ 491. If ω is an imaginary cube root of unity, *n* is a positive integer but not a multiple of 3, then the value of $1 + \omega^n + \omega^{2n}$ is a) 3 d) $\omega^{2} + 1$ b) $\omega + 2$ c) 0 492. The quadratic equations $x^2 - 6x + a = 0$ And $x^2 - cx + 6 = 0$ Have one root in common. The other roots of the first and second equations are integers in the ratio 4:3. Then the common root is a) 2 b) 1 c) 4 d) 3 493. If $\left|\frac{z+i}{z-i}\right| = \sqrt{3}$, then radius of the circle is b) $\frac{1}{\sqrt{21}}$ a) $\frac{2}{\sqrt{21}}$ c) $\sqrt{3}$ d) $\sqrt{21}$ 494. If $\sin \alpha$ and $\cos \alpha$ are roots of the equation $px^2 + qx + r = 0$, then a) $p^2 + q^2 + 2pr = 0$ b) $(p + r)^2 = q^2 - r^2$ c) $p^2 + q^2 - 2pr = 0$ d) $(p - r)^2 = q^2 + r^2$ 495. The number of real roots of the equation $\frac{2x-3}{x-1} + 1 = \frac{6x^2 - x - 6}{x-1}$, is b) 1 d) None of these a) 0 496. If $\alpha \neq 1$ is any *n*th root of unity, then $S = 1 + 3\alpha + 5\alpha^2$... upon *n* terms, is equal to a) $\frac{2n}{1-\alpha}$ b) $-\frac{2n}{1-\alpha}$ c) $\frac{n}{1-\alpha}$ d) a) $\frac{2n}{1-\alpha}$ d) $-\frac{n}{1-\alpha}$ 497. $\frac{3+2i\sin\theta}{1-2i\sin\theta}$ will be real, if θ is b) $n\pi + \frac{\pi}{2}$ d) None of these c) *nπ* 498. The number of positive integral roots of $x^4 + x^3 - 4x^2 + x + 1 = 0$ is b) 1 a) 0 c) 12 d) 4 499. If the area of triangle on the argand place formed by the complex numbers -z, iz, z - iz is 600 sq. unit, then |z| is equal to b) 20 c) 30 d) 40 a) 10 500. $\frac{3x^2+1}{x^2-6x+8}$ is equal to a) $3 + \frac{49}{2(x-4)} - \frac{13}{2(x-2)}$ b) $\frac{49}{2(x-4)} - \frac{13}{2(x-2)}$ c) $\frac{-49}{2(x-4)} + \frac{13}{2(x-2)}$ d) $\frac{49}{2(x-4)} + \frac{13}{2(x-2)}$ 501. If x - c is a factor of order *m* of the polynomial f(x) of degree n(1 < m < n), then x = c is a root of the

polynomial

a) $f^m(x)$ b) $f^{m-1}(x)$ c) $f^n(x)$ d) None of these 502. The polynomial $(ax^2 + bx + c)(ax^2 - dx - c), ac \neq 0$ has a) Four real roots b) At least two real roots c) At most two real roots d) No real roots 503. The roots of the quadratic equation $(a + b - 2c)x^{2} - (2a - b - c)x + (a - 2b + c) = 0$ are a) a + b + c and a - b + cb) $\frac{1}{2}$ and a - 2b + cc) a - 2b + c and $\frac{1}{a+b-c}$ d) None of these 504. The roots of the equation $|x^2 - x - 6| = x + 2$ are a) -2, 1, 4 b) 0. 2. 4 c) 0, 1, 4 d) -2, 2, 4 505. If z_1, z_2, z_3 be vertices of an equilateral triangle occurring in the anticlockwise sense, then a) $z_1^2 + z_2^2 + z_3^2 = 2(z_1z_2 + z_2z_3 + z_3z_1)$ b) $\frac{1}{z_1 + z_2} + \frac{1}{z_2 + z_3} + \frac{1}{z_3 + z_1} = 0$ c) $z_1 + \omega z_2 + \omega^2 z_3 = 0$ d) None of these 506. The values of k for which the equations $x^2 - kx - 21 = 0$ and $x^2 - 3kx + 35 = 0$ will have a common roots are a) $k = \pm 4$ b) $k = \pm 1$ c) $k = \pm 3$ d) k = 0507. The real part of $(1 - \cos \theta + 2i \sin \theta)^{-1}$ is a) $\frac{1}{3+5\cos\theta}$ b) $\frac{1}{5-3\cos\theta}$ c) $\frac{1}{3-5\cos\theta}$ d) $\frac{1}{5+3\cos\theta}$ 508. If $x = \frac{1}{2} \left(\sqrt{7} + \frac{1}{\sqrt{7}} \right)$, then $\frac{\sqrt{x^2 - 1}}{x - \sqrt{x^2 - 1}}$ is equal to a) 1 d) 4 c) 3 h) 2 509. If the sum of the roots of the equation $ax^2 + bx + c = 0$ be equal to the sum of the reciprocal of their squares, then bc^2 , ca^2 , ab^2 will be in a) AP c) HP d) None of these b) GP 510. The equation whose roots are reciprocal of the roots of the equation $ax^2 + bx + c = 0$ is a) $bx^2 + cx + a = 0$ b) $bx^2 + ax + c = 0$ c) $cx^2 + ax + b = 0$ d) $cx^2 + bx + a = 0$ 511. If one root of the equation $ax^2 + bx + c = 0$ is reciprocal of the one root of the equation $a_1x^2 + b_1x + c_1 = 0$ 0, then a) $(aa_1 - cc_1)^2 = (bc_1 - b_1a)(b_1c - a_1b)$ b) $(ab_1 - a_1b)^2 = (bc_1 - b_1c)(ca_1 - c_1a)$ c) $(bc_1 - b_1c)^2 = (ca_1 - a_1c)(ab_1 - a_1b)$ d) None of these 512. If *z* is a non-real 7^{th} root of -1, then $z^{86} + z^{175} + z^{289}$ is equal to a) () b) -1 d) 1 c) 3 513. If α and β the roots of $x^2 - x - 1 = 0$ and $A_n = \alpha^n + \beta^n$, then AM of A_{n-1} and A_n is b) $\frac{A_{n+1}}{2}$ d) None of these c) 2*A*_{n-2} a) 2*A*_{n+1} 514. If $\omega \neq 1$ is a cube root of unity, then $\begin{vmatrix} 1 & 1+i+\omega^2 & \omega^2 \\ 1-i & -1 & \omega^2-1 \\ -i & -i+\omega-1 & -1 \end{vmatrix}$ equals b) 1 c) i d) ω a) () 515. If a complex number z lies in the interior or on the boundary of a circle or radius 3 and centre at (-4, 0), then the greatest and least values of |z + 1| are a) 5,0 b) 6, 1 c) 6,0 d) None of these

516. If $\operatorname{Im}\left(\frac{z-1}{2z+1}\right) = -4$, then locus of z is b) A parabola a) An ellipse c) A straight line d) A circle 517. If $w = \alpha + i\beta$, where $\beta \neq 0$ and $z \neq 1$, satisfies the condition that $\left(\frac{w - \bar{w}z}{1-z}\right)$ is purely real, then the set of values of z is b) |z| = 1 and $z \neq 1$ c) $z = \bar{z}$ a) $|z| = 1, z \neq 2$ d) None of these 518. If (x-2) is a common factor of the expressions $x^2 + ax + b$ and $x^2 + cx + d$, then $\frac{b-d}{c-a}$ is equal to a) -2 b) -1 c) 1 519. If $\alpha_0, \alpha_1, \alpha_2, \dots, \alpha_{n-1}$ be the n^{th} roots of unity, then the value of $\sum_{i=0}^{n-1} \frac{\alpha_i}{3-\alpha_i}$ is equal to b) $\frac{n+1}{3^n-1}$ a) $\frac{n}{3^n - 1}$ c) $\frac{n-1}{3^n-1}$ d) None of these 520. *p*, *q*, *r* and *s* are integers. If the A.M. of the roots of $x^2 - px + q^2 = 0$ and GM of the roots of $x^2 - rx + s^2 = 0$ 0 are equal, then c) *p* is an even integer a) q is an odd integer b) r is an even integer d) *s* is an odd integer 521. The condition that $x^3 - px^2 + qx - r = 0$ may have two of its roots equal in magnitude but of opposite sign, is b) $r = 2p^3 + pq$ c) $r = p^2 q$ d) None of the above a) r = pq522. If α and β are the solutions of the quadratic equation $ax^2 + bx + c = 0$ such that $\beta = \alpha^{1/3}$, then b) $(a^{3}b)^{1/4} + (ab^{3})^{1/4} + c = 0$ a) $(ac)^{1/3} + (ab)^{1/3} + c = 0$ c) $(a^{3}c)^{1/4} + (ac^{3})^{1/4} + b = 0$ d) $(a^4c)^{1/3} + (ac^4)^{1/3} + b = 0$ 523. Let *a*, *b*, *c* be real. If $ax^2 + bx + c = 0$ has two real roots α and β , where $\alpha < -1$ and $\beta > 1$, then $1 + \frac{c}{a} + \left|\frac{b}{a}\right|$ is a) < 0 b) >0 c) ≤ 0 d) None of these 524. If z_1, z_2, z_3, z_4 represent the vertices of a rhombus taken in the anticlockwise order, then a) $z_1 + z_2 + z_3 + z_4 = 0$ b) $z_1 + z_2 = z_3 + z_4$ c) $\operatorname{amp} \frac{z_2 - z_4}{z_1 - z_3} = \frac{\pi}{2}$ d) $\operatorname{amp} \frac{z_1 - z_2}{z_3 - z_4} = \frac{\pi}{2}$ 525. If $7^{\log_7(x^2-4x+5)} = x - 1$, x may have values c) -2, -3b) 7 d) 2, -3a) 2, 3 526. The solution set of the inequation $\frac{1}{|x|-3} < \frac{1}{2}$, is a) $(-\infty, -5) \cup (5, \infty)$ b) (-3, 3)c) $(-\infty, -5) \cup (-3, 3) \cup (5, \infty)$ d) None of these 527. If $z = \sqrt{3} + i$, then the argument of $z^2 e^{z-i}$ is equal to a) $\frac{\pi}{2}$ b) $\frac{\pi}{c}$ c) $e^{\pi/6}$ d) $\pi/3$ 528. If two equations $a_1 x^2 + b_1 x + c_1 = 0$ and, $a_2 x^2 + b_2 x + c_2 = 0$ have a common root, then the value of $(a_1 b_2 - b_1 x + b_1 x + c_1 + b_2 x + b_2 x + b_2 x + c_2 + b_2 x$ *a2b1b1c2–b2c1*, is a) $-(a_1c_2 - a_2c_1)^2$ b) $(a_1a_2 - c_1c_2)^2$ c) $(a_1c_1 - a_2c_2)^2$ d) $(a_1c_2 - c_1a_2)^2$ 529. The value of expression $\left(1 + \frac{1}{\omega}\right)\left(1 + \frac{1}{\omega^2}\right) + \left(2 + \frac{1}{\omega}\right)\left(2 + \frac{1}{\omega^2}\right) + \left(3 + \frac{1}{\omega}\right)\left(3 + \frac{1}{\omega^2}\right) + \dots + \left(n + \frac{1}{\omega}\right)\left(n + \frac{1}{\omega^2}\right)$, where ω is an imaginary cube root of unity is b) $\frac{n(n^2-2)}{2}$ c) $\frac{n(n^2+1)}{2}$ a) $\frac{n(n^2+2)}{2}$ d) None of these 530. If $(x + iy)^{1/3} = 2 + 3i$, then 3x + 2y is equal to c) -120 d) 60 a) -20 b) -60 531. If the roots of the equation $\frac{1}{x+n} + \frac{1}{x+a} = \frac{1}{r}$ are equal in magnitude but opposite in sign, then the product of the roots will be

522. (1 + i^{5} + (1 - $i)^{8}$ = 2 2 2 2 2 2 2 2 2 2	a) $\frac{p^2 + q^2}{2}$	b) $-\frac{(p^2+q^2)}{2}$	c) $\frac{p^2 - q^2}{2}$	d) $-\frac{(p^2-q^2)}{2}$
533. If $\frac{x^2 - bx}{a - c} = \frac{b}{a + 1}$ has roots equal in magnitude and opposite in sign then the value of λ is a) $\frac{a}{a - b}$ b) $\frac{a + b}{a - b}$ c) c d) $\frac{1}{c}$ 534. Real roots of the equation $x^2 + 5 x + 4 = 0$ are a) $-1, -4$ b) $1, 4$ c) $-4, 4$ d) None of these 535. If $x_c(r = 0, 1, 2,, 6)$ be the roots of the equation $(z + 1)^7 + z^7 = 0$, then $\sum_{p=0}^{6} Pe(z_r) =$ a) 0 b) $3/2$ c) $7/2$ d) $-7/2$ 536. Given that the equation $z^2 + (p + iq)z + r + is = 0$, where p, q, r, s are real and non-zero roots, then a) $pqr = r^2 + p^2 s$ b) $prs = q^2 + r^2 p$ c) $qrs = p^2 + s^2 q$ d) $pqs = s^2 + q^2 r$ 537. The values of a for which $2x^2 - 2(2a + 1)x + a(a + 1) = 0$ may have one root less than a and other root greater than a are given by a) $1 > a > 0$ b) $-1 < a < 0$ c) $a \ge 0$ d) $a > 0$ or $a < -1$ 538. If $a = \cos a + i \sin a, b = \cos \beta + i \sin \beta, c = \cos y + i \sin y$ and $\frac{b}{c} + \frac{c}{a} + \frac{b}{b} = 1$, then $\cos(\beta - \gamma) + \cos(\alpha - \beta)$ is equal to a) $3/2$ b) $-3/2$ c) 0 d) d1 539. If $a, cos a + i \sin a, b = \cos \beta + i \sin \beta, c = \cos y + i \sin y$ and $\frac{b}{c} + \frac{c}{a} + \frac{b}{a} = 1$, then $\cos(\beta - \gamma) + \cos(\alpha - \beta)$ is equal to a) $a, 5$ b) $b, 5$ c) a, a d) a, b 540. If a, β are the roots of ta ³ + $bx + c = 0$, then $a^2\beta + a\beta^2 + \beta^2\gamma + \beta\gamma^2 + \gamma^2 + \gamma a^2$ is equal to a) a, c b) $-c$ c) $-3c$ c) $-3c$ d) $3c$ 541. $ \frac{1}{2}(z_1 + z_2) + \sqrt{z_1z_2} + \frac{1}{2}(z_1 + z_2) - \sqrt{z_1z_2} $ is equal to a) $(z + y, q \in [1, 2, 3, 4]$. The number of equations of the form $px^2 + qx + 1 = 0$ having real roots, is a) 15 b) 9 c) 7 d) 8 543. The locus of the points representing the complex numbers z for which $ z - 2 = z - i - z + 5i = 0$ is a) $a(1 - \sqrt{2}), a(1 - \sqrt{6})$ c) $a(1 - \sqrt{2}), a(1 - \sqrt{6})$ d) None of these 544. If $a \le 0$, then the real values of x satisfying $x^2 - 2a x - a - 3a^2 = 0$ are a) $a(1 - \sqrt{2}), a(1 - \sqrt{6})$ c) $a(1 - \sqrt{2}), a(1 - \sqrt{6})$ d) None of these 545. If the roots of the equation $ax^2 - 4x + a^2 = 0$ are imaginary and the sum of th	532. $(1+i)^8 + (1-i)^8 =$	Z	2	L
a) $\frac{a-b}{a+b}$ b) $\frac{a+b}{a-b}$ c) c d) $\frac{1}{c}$ 534. Real roots of the equation $x^2 + 5 x + 4 = 0$ are a) $-1, -4$ b) $1, 4$ c) $-4, 4$ d) None of these 535. If $x_r(r = 0, 1, 2,, 6)$ be the roots of the equation $(x + 1)^7 + x^7 = 0$, then $\sum_{r=0}^{r} \operatorname{Re}(x_r) =$ a) 0 b) $3/2$ c) $7/2$ d) $-7/2$ 536. Given that the equation $z^2 + (p+iq)z + r + is = 0$, where p, q, r, s are real and non-zero roots, then a) $pqr = r^2 + p^2 s$ b) $prs = q^2 + r^2 p$ c) $qrs = p^2 + s^2 q$ d) $pqs = s^2 + q^2 r$ 537. The values of a for which $2x^2 - 2(2a + 1)x + a(a + 1) = 0$ may have one root less than a and other root greater than a are given by a) $1 > a > 0$ b) $-1 < a < 0$ c) $a \ge 0$ d) $a > 0$ or $a < -1$ 538. If $a = \cos \alpha + i \sin \alpha$, $b = \cos \beta + i \sin \beta$, $c = \cos y + i \sin y$ and $\frac{b}{c} + \frac{c}{a} + \frac{a}{b} = 1$, then $\cos(\beta - \gamma) + \cos\gamma - \alpha + \cos(\alpha - \beta)$ is equation a) $3/2$ b) $-3/2$ c) 0 d) 1 539. If a, β are the roots of the equation $(x - a)(x - b) = 5$, then the roots of the equation $(x - a)(x - \beta) + 5 = 0$ are a) $a, 5$ b) $b, 5$ c) a, α d) a, b 540. If a, β, y are the roots of $x^3 + bx + c = 0$, then $a^2\beta + a\beta^2 + \beta^2 y + \beta y^2 + ya^2 + ya^2$ is equal to a) c b) $-c - \sqrt{2iz^2}$ c) $3c$ 541. $\left \frac{1}{2}(x_1 + x_2) + \sqrt{2iz^2}\right + \left \frac{1}{2}(x_1 + x_2) - \sqrt{2iz^2}\right $ is equal to a) $ x_1 + x_2 $ b) $ y_1 - x_2 $ c) $ x_1 + x_2 $ d) $ x_1 - x_2 $ 542. Let $p, q \in \{1, 2, 3, 4\}$. The number of equations of the form $px^2 + qx + 1 = 0$ having real roots, is a) 15 b) 9 c) 7 d) 8 543. The locus of the points representing the complex numbers z for which $ z - 2 = z - i - z + 5i = 0$ is a) $a(1 - \sqrt{2}), a(1 - \sqrt{6})$ d) None of these 544. If $a \le 0$, then the real values of x satisfying $x^2 - 2a x - a - 3a^2 = 0$ are a) $a(1 - \sqrt{2}), a(1 - \sqrt{6})$ d) None of these 544. If the roots of the equation $ax^2 - 4x + a^2 = 0$ are in arithmetic progression, then k is equal to their product, then $a =$ a) -2 b) 4 c) 2 d) None of these 546. If the roots of the equation $ax^$	a) 2 ⁸	b) 2 ⁵	c) $2^4 \cos \frac{\pi}{4}$	d) $z^8 \cos \frac{\pi}{8}$
534. Real roots of the equation $x^2 + 5 x + 4 = 0$ are a) $-1, -4$ b) $1, 4$ c) $-4, 4$ d) None of these 535. If $z_r(r = 0, 1, 2,, 6)$ be the roots of the equation $(x + 1)^7 + x^7 = 0$, then $\sum_{r=0}^{r} (x, r) = a$ a) 0 b) $3/2$ c) $7/2$ d) $-7/2$ 536. Given that the equation $z^3 + (p + iq)z + r + is = 0$, where p, q, r, s are real and non-zero roots, then a) $pqr = r^2 + p^2 s$ b) $prs = q^2 + r^2 p$ c) $qrs = p^2 + s^2 q$ d) $pqs = s^2 + q^2 r$ 537. The values of a for which $2x^2 - 2(2a + 1)x + a(a + 1) = 0$ may have one root less than a and other root greater than a are given by a) $1 > a > 0$ b) $-1 < a < 0$ c) $a \ge 0$ d) $a > 0$ or $a < -1$ 538. If $a = \cos a + i \sin a, b = \cos \beta + i \sin \beta, c = \cos \gamma + i \sin \gamma$ and $\frac{b}{c} + \frac{c}{a} + \frac{a}{b} = 1$, then $\cos(\beta - \gamma) + \cos(\alpha - \beta)$ is equal to a) $3/2$ b) $-3/2$ c) 0 d) 1 539. If a, β are the roots of the equation $(x - a)(x - b) = 5$, then the roots of the equation $(x - a)(x - \beta) + 5 = 0$ are a) $a, 5$ b) $b, 5$ c) a, a d) a, b 540. If a, β, γ are the roots of $x^3 + bx + c = 0$, then $a^2\beta + a\beta^2 + \beta^2\gamma + \beta\gamma^2 + \gamma^2a + \gamma a^2$ is equal to a) $a, 5$ b) $b, 5$ c) $ a, a = 0$ d) a) $ z_1 + z_2 $ b) $ z_1 - z_2 $ c) $ z_1 + z_2 $ d) $ z_1 - z_2 $ 541. $\left \frac{1}{2}(z_1 + z_2) + \sqrt{z_1z_2}\right + \left \frac{1}{2}(z_1 + z_2) - \sqrt{z_1z_2}\right $ is equal to a) a, c b) $-c$ c) $-3c$ d) $3c$ 543. The locus of the points representing the complex numbers z for which $ z - 2 = z - i - z + 5i = 0$ is a) A circle with centre at the origin b) A straight line passing through the origin c) The single point $(0, -2)$ d) None of these 544. If $a < 0$, then the real values of x satisfying $x^2 - 2a x - a - 3a^2 = 0$ are a) $a(1 - \sqrt{2}), a(1 - \sqrt{6})$ c) $a(1 - \sqrt{2}), a(1 - \sqrt{6})$ d) None of these 545. If the roots of the equation $ax^2 - 4x + a^2 = 0$ are inarginary and the sum of the roots is equal to their product, then $a = a) -2$ b) 4 c) 2 d) None of these 546. If the roots of the equation $4x^3 - 12x^2 + 11x + k = 0$ are in arithmetic	533. If $\frac{x^2 - bx}{ax - c} = \frac{\lambda - 1}{\lambda + 1}$ has roots	equal in magnitude and opp	posite in sign then the value	e of λ is
a) $-1, -4$ b) $1, 4$ c) $-4, 4$ d) None of these 535. If $x_r(r = 0, 1, 2,, 6)$ be the roots of the equation $(x + 1)^7 + x^7 = 0$, then $\sum_{r=0}^{n} \text{Re}(x_r) = a$ a) 0 b) $3/2$ c) $7/2$ d) $n = 7/2$ b) $pr = q^2 + r^2 p$ c) $qrs = p^2 + s^2 q$ d) $pqs = s^2 + q^2 r$ 537. The values of a for which $2x^2 - 2(2a + 1)x + a(a + 1) = 0$ may have one root less than a and other root greater than a are given by a) $1 > a > 0$ b) $-1 < a < 0$ c) $a \ge 0$ d) $a > 0$ or $a < -1$ 538. If $a = \cos \alpha + i \sin \alpha$, $b = \cos \beta + i \sin \beta$, $c = \cos y + i \sin \gamma$ and $\frac{b}{2} + \frac{c}{a} + \frac{a}{b} = 1$, then $\cos(\beta - \gamma) + \cos(\alpha - \beta)$ is $a = 0$ d) $a > 0$ or $a < -1$ 538. If $a = \cos \alpha + i \sin \alpha$, $b = \cos \beta + i \sin \beta$, $c = \cos y + i \sin \gamma$ and $\frac{b}{2} + \frac{c}{a} + \frac{a}{b} = 1$, then $\cos(\beta - \gamma) + \cos(\alpha - \beta)$ is $a = 0$ d) $a > 0$ or $a < -1$ 539. If a, β are the roots of the equation $(x - a)(x - b) = 5$, then the roots of the equation $(x - a)(x - \beta) + 5 = 0$ are a) $a, 5$ b) $b, 5$ c) a, α d) a, b 540. If a, β, y are the roots of $x^3 + bx + c = 0$, then $a^2\beta + a\beta^2 + \beta^2 y + \beta y^2 + y^2 a + ya^2$ is equal to a) c b) $-c$ c) $-c$ d) $3c$ 541. $\left \frac{1}{2}(z_1 + z_2) + \sqrt{2_1z_2} \right + \left \frac{1}{2}(z_1 + z_2) - \sqrt{2_1z_2} \right $ is equal to a) a, c b) $1 = -z_2 $ c) $ z_1 + z_2 $ d) $ z_1 - z_2 $ 542. Let $p, q \in \{1, 2, 3, 4\}$. The number of equations of the form $px^2 + qx + 1 = 0$ having real roots, is a) 15 b) 9 c) r) d 8 543. The locus of the entry representing the complex numbers z for which $ z - 2 = z - i - z + 5i = 0$ is a) A circle with centre at the origin b) A straight line passing through the origin c) The single point $(0, -2)$ d) None of these 544. If $a < 0$, then the real values of x satisfying $x^2 - 2a x - a - 3a^2 = 0$ are a) $a(1 - \sqrt{2}), a(-1 + \sqrt{6})$ b) $a(1 + \sqrt{2}), a(-1 + \sqrt{6})$ b) $a(1 + \sqrt{2}), a(-1 + \sqrt{6})$ d) None of these 545. If the roots of the equation $ax^2 - 4x + a^2 = 0$ are inarginary and the sum of the roots is equal to their product, then $a = a - 2$ b) $4 c$ c) 2 d) None	u i b	u D	c) <i>c</i>	d) $\frac{1}{c}$
535. If $z_r(r = 0, 1, 2,, 6)$ be the roots of the equation $(z + 1)^7 + z^7 = 0$, then $\sum_{i=0}^{6} \operatorname{Re}(z_r) = a) 0$ b) $3/2$ c) $7/2$ d) $-7/2$ 536. Given that the equation $z^2 + (p + iq)z + r + is = 0$, where p, q, r, s are real and non-zero roots, then a) $pqr = r^2 + p^2 s$ b) $prs = q^2 + r^2 p$ c) $qrs = p^2 + s^2 q$ d) $pqs = s^2 + q^2 r$ 537. The values of a for which $2x^2 - 2(2a + 1)x + a(a + 1) = 0$ may have one root less than a and other root greater than a are given by a) $1 > a > 0$ b) $-1 < a < 0$ c) $a \ge 0$ d) $a > 0$ or $a < -1$ 538. If $a = \cos a + i \sin a$, $b = \cos \beta + i \sin \beta$, $c = \cos \gamma + i \sin \gamma$ and $\frac{b}{c} + \frac{c}{a} + \frac{a}{b} = 1$, then $\cos(\beta - \gamma) + \cos\gamma - \alpha + \cos(\alpha - \beta)$ is equal to a) $3/2$ b) $-3/2$ c) 0 d) 1 539. If a, β are the roots of the equation $(x - a)(x - b) = 5$, then the roots of the equation $(x - a)(x - \beta) + 5 = 0$ are a) $a, 5$ b) $b, 5$ c) a, a d) a, b 540. If a, β, γ are the roots of $x^3 + bx + c = 0$, then $a^2\beta + a\beta^2 + \beta^2\gamma + \beta\gamma^2 + \gamma^2 a + \gamma a^2$ is equal to a) c b) $-c$ c) $-3c$ d) $3c$ 541. $\left \frac{1}{2}(z_1 + z_2) + \sqrt{z_1z_2}\right + \left \frac{1}{2}(z_1 + z_2) - \sqrt{z_1z_2}\right $ is equal to a) $ z_1 + z_2 $ b) $ z_1 - z_2 $ c) $ z_1 + z_2 $ d) $ z_1 - z_2 $ 542. Let $p, q \in \{1, 2, 3, 4\}$. The number of equations of the form $px^2 + qx + 1 = 0$ having real roots, is a) 15 b) 9 c) 7 d) 8 543. The locus of the points representing the complex numbers z for which $ z - 2 = z - i - z + 5i = 0$ is a) A circle with centre at the origin c) The single point $(0, -2)$ d) None of these 544. If $a \leq 0$, then the real values of x satisfying $x^2 - 2a x - a - 3a^2 = 0$ are a) $a(1 - \sqrt{2}), a(1 - \sqrt{6})$ c) $a(1 - \sqrt{2}), a(1 - \sqrt{6})$ d) None of these 545. If the roots of the equation $ax^2 - 4x + a^2 = 0$ are in arithmetic progression, then k is equal to their product, then $a = a^{-2}$ b) 4 c) 2 d) None of these 546. If the roots of the equation ax^2			a) 4.4	d) None of these
a) 0 b) 3/2 c) 7/2 d) -7/2 536. Given that the equation $z^2 + (p + iq)z + r + is = 0$, where p, q, r, s are real and non-zero roots, then a) $pqr = r^2 + p^2$ b) $prs = q^2 + r^2p$ c) $qrs = p^2 + s^2q$ d) $pqs = s^2 + q^2r$ 537. The values of a for which $2x^2 - 2(2a + 1)x + a(a + 1) = 0$ may have one root less than a and other root greater than a are given by a) $1 > a > 0$ b) $-1 < a < 0$ c) $a \ge 0$ d) $a > 0$ or $a < -1$ 538. If $a = \cos a + i \sin a$, $b = \cos \beta + i \sin \beta$, $c = \cos \gamma + i \sin \gamma$ and $\frac{b}{c} + \frac{c}{a} + \frac{a}{b} = 1$, then $\cos(\beta - \gamma) + \cos(\alpha - \beta)$ is equal to a) $3/2$ b) $-3/2$ c) 0 d) 1 539. If a, β are the roots of the equation $(x - a)(x - b) = 5$, then the roots of the equation $(x - a)(x - \beta) + 5 = 0$ are a) $a, 5$ b) $b, 5$ c) a, α d) a, b 540. If a, β, γ are the roots of $x^3 + bx + c = 0$, then $a^2\beta + a\beta^2 + d^2\gamma + \beta\gamma^2 + \gamma^2a + \gamma a^2$ is equal to a) c b) $-c$ c) $-3c$ d) $3c$ 541. $\left[\frac{1}{c}(z_1 + z_2) + \sqrt{z_1 z_2}\right] + \left \frac{1}{2}(z_1 + z_2) - \sqrt{z_1 z_2}\right $ is equal to a) $ z_1 + z_2 $ b) $ z_1 - z_2 $ c) $ z_1 + z_2 $ d) $ z_1 - z_2 $ 542. Let $p, q \in \{1, 2, 3, 4\}$. The number of equations of the form $px^2 + qx + 1 = 0$ having real roots, is a) 15 b) 9 c) 7 d) 8 543. The locus of the points representing the complex numbers z for which $ z - 2 = z - i - z + 5i = 0$ is a) A circle with centre at the origin b) A straight line passing through the origin c) The single point (0, -2) d) None of these 544. If $a \le 0$, then the real values of x satisfying $x^2 - 2a x - a - 3a^2 = 0$ are a) $a(1 - \sqrt{2}), a(1 - \sqrt{6})$ c) $a(1 - \sqrt{2}), a(1 - \sqrt{6})$ c) $a(1 - \sqrt{2}), a(1 - \sqrt{6})$ d) None of these 545. If the roots of the equation $ax^2 - 4x + a^2 = 0$ are imaginary and the sum of the roots is equal to their product, then $a =$ a) -2 b) 4 c) 2 d) None of these 546. If the roots of the equation $4x^3 - 12x^2 + 11x + k = 0$ are in arithmetic progression, then k is equal to a) -3 b) 1 c) $2 = (2 - a) a < 2$ d) None of these 546. If the roots of the eq	, ,	, .	, ,	,
a) $pqr = r^2 + p^2s$ b) $prs = q^2 + r^2p$ c) $qrs = p^2 + s^2q$ d) $pqs = s^2 + q^2r$ 537. The values of a for which $2x^2 - 2(2a + 1)x + a(a + 1) = 0$ may have one root less than a and other root greater than a are given by a) $1 > a > 0$ b) $-1 < a < 0$ c) $a \ge 0$ d) $a > 0$ or $a < -1$ 538. If $a = \cos a + i \sin a$, $b = \cos \beta + i \sin \beta$, $c = \cos \gamma + i \sin \gamma$ and $\frac{b}{c} + \frac{c}{a} + \frac{a}{b} = 1$, then $\cos(\beta - \gamma) + \cos(\alpha - \beta)$ is equal to a) $3/2$ b) $-3/2$ c) 0 d) 1 539. If a, β are the roots of the equation $(x - a)(x - b) = 5$, then the roots of the equation $(x - a)(x - \beta) + 5 = 0$ are a) $a, 5$ b) $b, 5$ c) a, α d) a, b 540. If a, β, γ are the roots of $x^3 + bx + c = 0$, then $a^2\beta + a\beta^2 + \beta^2\gamma + \beta\gamma^2 + \gamma^2\alpha + \gamma\alpha^2$ is equal to a) c b) $-c$ c) $-3c$ d) $3c$ 541. $ \frac{1}{2}(z_1 + z_2) + \sqrt{z_1z_2} + \frac{1}{2}(z_1 + z_2) - \sqrt{z_1z_2} $ is equal to a) $ z_1 + z_2 $ b) $ z_1 - z_2 $ c) $ z_1 + z_2 $ d) $ z_1 - z_2 $ 542. Let $p, q \in \{1, 2, 3, 4\}$. The number of equations of the form $px^2 + qx + 1 = 0$ having real roots, is a) 15 b) 9 c, 7 d) 8 543. The locus of the points representing the complex numbers z for which $ z - 2 = z - i - z + 5i = 0$ is a) A circle with centre at the origin b) A straight line passing through the origin c) The single point $(0, -2)$ d) None of these 544. If $a \le 0$, then the real values of x satisfying $x^2 - 2a x - a - 3a^2 = 0$ are a) $a(1 - \sqrt{2}), a(-1 + \sqrt{6})$ b) $a(1 + \sqrt{2}), a(1 - \sqrt{6})$ c) $a(1 - \sqrt{2}), a(-1 + \sqrt{6})$ b) $3(1 + \sqrt{2}), a(-1 + \sqrt{6})$ c) $a(1 - \sqrt{2}), a(-1 + \sqrt{6})$ c) $a(1 - \sqrt{2}), a(-1 + \sqrt{6})$ d) None of these 545. If the roots of the equation $ax^2 - 4x + a^2 = 0$ are imaginary and the sum of the roots is equal to their product, then $a = a) - 2$ b) 4 c) 2 d) None of these 546. If the roots of the equation $ax^2 - 4x + a^2 = 0$ are in arithmetic progression, the k is equal to $a) \cdot 3$ b) 1 c) 2 d) 3 547. If at least one value of the complex number $z = x + i y$ satisfy the condition $ z + \sqrt{2} = a^2 $				
537. The values of <i>a</i> for which $2x^2 - 2(2a + 1)x + a(a + 1) = 0$ may have one root less than <i>a</i> and other root greater than <i>a</i> are given by a) $1 > a > 0$ b) $-1 < a < 0$ c) $a \ge 0$ d) $a > 0$ or $a < -1$ 538. If $a = \cos a + i \sin a$, $b = \cos \beta + i \sin \beta$, $c = \cos \gamma + i \sin \gamma$ and $\frac{b}{c} + \frac{c}{a} + \frac{a}{b} = 1$, then $\cos(\beta - \gamma) + \cos(\alpha - \beta)$ is equal to a) $3/2$ b) $-3/2$ c) 0 d) 1 539. If a, β are the roots of the equation $(x - a)(x - b) = 5$, then the roots of the equation $(x - a)(x - \beta) + 5 = 0$ are a) $a, 5$ b) $b, 5$ c) a, α d) a, b 540. If a, β, γ are the roots of $x^3 + bx + c = 0$, then $a^2\beta + a\beta^2 + \beta^2\gamma + \beta\gamma^2 + \gamma^2a + \gamma a^2$ is equal to a) c b) $-c$ c) $-3c$ d) $3c$ 541. $[\frac{1}{2}(z_1 + z_2) + \sqrt{z_1z_2}] + [\frac{1}{2}(z_1 + z_2) - \sqrt{z_1z_2}]$ is equal to a) $ z_1 + z_2 $ b) $ z_1 - z_2 $ c) $ z_1 + z_2 $ d) $ z_1 - z_2 $ 542. Let $p, q \in \{1, 2, 3, 4\}$. The number of equations of the form $px^2 + qx + 1 = 0$ having real roots, is a) 15 b) 9 c) 7 d) 8 543. The locus of the points representing the complex numbers z for which $ z - 2 = z - i - z + 5i = 0$ is a) A circle with centre at the origin b) A straight line passing through the origin c) The single point $(0, -2)$ d) None of these 544. If $a \le 0$, then the real values of x satisfying $x^2 - 2a x - a - 3a^2 = 0$ are a) $a(1 - \sqrt{2}), a(1 - \sqrt{6})$ c) $a(1 - \sqrt{2}), a(1 - \sqrt{6})$ d) None of these 545. If the roots of the equation $ax^2 - 4x + a^2 = 0$ are imaginary and the sum of the roots is equal to their product, then $a = a - 2$ b) 4 c) 2 d) None of these 546. If the roots of the equation $4x^3 - 12x^2 + 11x + k = 0$ are in arithmetic progression, then k is equal to a) -3 b) 1 c) 2 d) None of these 546. If the roots of the equation $4x^3 - 12x^2 + 11x + k = 0$ are in arithmetic progression, the k is equal to a) -3 b) $4 = 2$ c) $a < 2$ d) None of these 546. If the roots of the equation $4x^3 - 12x^2 + 11x + k = 0$ are in arithmetic progression, the k is equal to a) -3 b) $4 =$				
greater than <i>a</i> are given by a) $1 > a > 0$ b) $-1 < a < 0$ c) $a \ge 0$ d) $a > 0$ or $a < -1$ 538. If $a = \cos a + i \sin a$, $b = \cos \beta + i \sin \beta$, $c = \cos \gamma + i \sin \gamma$ and $\frac{b}{c} + \frac{c}{a} + \frac{a}{b} = 1$, then $\cos(\beta - \gamma) + \cos(\alpha - \beta)$ is equal to a) $3/2$ b) $-3/2$ c) 0 d) 1 539. If a , β are the roots of the equation $(x - a)(x - b) = 5$, then the roots of the equation $(x - a)(x - \beta) + 5 = 0$ are a) a , 5 b) b , 5 c) a , a d) a , b 540. If a , β y are the roots of $x^3 + bx + c = 0$, then $a^2\beta + a\beta^2 + \beta^2\gamma + \beta\gamma^2 + \gamma^2a + \gamma a^2$ is equal to a) c b) $-c$ c) $-3c$ d) $3c$ 541. $\left \frac{1}{2}(z_1 + z_2) + \sqrt{z_1z_2}\right + \left \frac{1}{2}(z_1 + z_2) - \sqrt{z_1z_2}\right $ is equal to a) $ z_1 + z_2 $ b) $ z_1 - z_2 $ c) $ z_1 + z_2 $ d) $ z_1 - z_2 $ 542. Let p , $q \in \{1, 2, 3, 4\}$. The number of equations of the form $px^2 + qx + 1 = 0$ having real roots, is a) 15 b) 9 c) 7 d) 8 543. The locus of the points representing the complex numbers z for which $ z - 2 = z - i - z + 5i = 0$ is a) A circle with centre at the origin b) A straight line passing through the origin c) The single point $(0, -2)$ d) None of these 544. If $a \le 0$, then the real values of x satisfying $x^2 - 2a x - a - 3a^2 = 0$ are a) $a(1 - \sqrt{2}), a(1 - \sqrt{6})$ c) $a(1 - \sqrt{2}), a(1 - \sqrt{6})$ d) None of these 545. If the roots of the equation $ax^2 - 4x + a^2 = 0$ are imaginary and the sum of the roots is equal to their product, then $a =$ a) -2 b) 4 c) 2 d) None of these 546. If the roots of the equation $ax^2 - 12x^2 + 11x + k = 0$ are in arithmetic progression, then k is equal to a) -3 b) 1 c) 2 d) 3 547. If at least one value of the complex number $z = x + i y$ satisfy the condition $ z + \sqrt{2} = \sqrt{a^2 - 3a + 2}$ and the inequality $ z + i\sqrt{2} < a$, then a) $a > 2$ b) $a = 2$ c) $a < 2$ d) None of these 548. If the roots of $ax^2 - bx - c = 0$ change by the same quantity, then the expression in a, b, c that does not			, , , ,	<i>,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
a) $1 > a > 0$ b) $-1 < a < 0$ c) $a \ge 0$ d) $a > 0$ or $a < -1$ 538. If $a = \cos \alpha + i \sin \alpha$, $b = \cos \beta + i \sin \beta$, $c = \cos \gamma + i \sin \gamma$ and $\frac{b}{c} + \frac{c}{a} + \frac{a}{b} = 1$, then $\cos(\beta - \gamma) + \cos(\alpha - \beta)$ is equal to a) $3/2$ b) $-3/2$ c) 0 d) 1 539. If α , β are the roots of the equation $(x - a)(x - b) = 5$, then the roots of the equation $(x - \alpha)(x - \beta) + 5 = 0$ are a) a , 5 b) b , 5 c) a , α d) a , b 540. If α , β , γ are the roots of $x^3 + bx + c = 0$, then $a^2\beta + a\beta^2 + \beta^2\gamma + \beta\gamma^2 + \gamma^2\alpha + \gamma\alpha^2$ is equal to a) c b) $-c$ c) $-3c$ d) $3c$ 541. $\frac{1}{2}(z_1 + z_2) + \sqrt{z_1z_2} + \frac{1}{2}(z_1 + z_2) - \sqrt{z_1z_2} $ is equal to a) $ z_1 + z_2 $ b) $ z_1 - z_2 $ c) $ z_1 + z_2 $ d) $ z_1 - z_2 $ 542. Let p , $q \in \{1, 2, 3, 4\}$. The number of equations of the form $px^2 + qx + 1 = 0$ having real roots, is a) 15 b) 9 c) 7 d) 8 543. The locus of the points representing the complex numbers z for which $ z - 2 = z - i - z + 5i = 0$ is a) A circle with centre at the origin b) A straight line passing through the origin c) The single point $(0, -2)$ d) None of these 544. If $a \le 0$, then the real values of x satisfying $x^2 - 2a x - a - 3a^2 = 0$ are a) $a(1 - \sqrt{2}), a(-1 + \sqrt{6})$ b) $a(1 + \sqrt{2}), a(-1 - \sqrt{6})$ c) $a(1 - \sqrt{2}), a(-1 - \sqrt{6})$ d) None of these 545. If the roots of the equation $ax^2 - 4x + a^2 = 0$ are imaginary and the sum of the roots is equal to their product, then $a = a^{-2}$ b) 4 c) 2 d) None of these 546. If the roots of the equation $ax^2 - 4x + a^2 = 0$ are in arithmetic progression, then k is equal to a) -3 b) 1 c) 2 d) 3 547. If at least one value of the complex number $z = x + i y$ satisfy the condition $ z + \sqrt{2} = \sqrt{a^2 - 3a + 2}$ and the inequality $ z + i\sqrt{2} < a$, then a) $a > 2$ b) $a = 2$ c) $a < 2$ d) None of these 548. If the roots of $ax^2 - bx - c = 0$ change by the same quantity, then the expression in a, b, c that does not			(+1) = 0 may have one roo	t less than <i>a</i> and other root
538. If <i>a</i> = cos <i>α</i> + <i>i</i> sin <i>α</i> , <i>b</i> = cos <i>β</i> + <i>i</i> sin <i>β</i> , <i>c</i> = cos <i>γ</i> + <i>i</i> sin <i>γ</i> and $\frac{b}{c} + \frac{c}{a} + \frac{a}{b} = 1$, then cos(<i>β</i> − <i>γ</i>) + cos(<i>γ</i> − <i>α</i> +cos(<i>α</i> − <i>β</i>) is equal to a) 3/2 b) -3/2 c) 0 d) 1 539. If <i>α</i> , <i>β</i> are the roots of the equation (<i>x</i> − <i>a</i>)(<i>x</i> − <i>b</i>) = 5, then the roots of the equation (<i>x</i> − <i>a</i>)(<i>x</i> − <i>β</i>) + 5 = 0 are a) <i>a</i> , 5 b) <i>b</i> , 5 c) <i>a</i> , <i>α</i> d) <i>a</i> , <i>b</i> 540. If <i>α</i> , <i>β</i> , <i>γ</i> are the roots of $x^3 + bx + c = 0$, then $a^2β + aβ^2 + β^2γ + βγ^2 + γ^2a + γa^2$ is equal to a) <i>c</i> b) − <i>c</i> c) −3 <i>c</i> d) 3 <i>c</i> 541. $\left \frac{1}{2}(z_1 + z_2) + \sqrt{z_1z_2}\right + \left \frac{1}{2}(z_1 + z_2) - \sqrt{z_1z_2}\right $ is equal to a) $ z_1 + z_2 $ b) $ z_1 - z_2 $ c) $ z_1 + z_2 $ d) $ z_1 - z_2 $ 542. Let <i>p</i> , <i>q</i> ∈ {1, 2, 3, 4}. The number of equations of the form $px^2 + qx + 1 = 0$ having real roots, is a) 15 b) 9 c; 7 d) 8 543. The locus of the points representing the complex numbers <i>z</i> for which $ z - 2 = z - i - z + 5i = 0$ is a) <i>A</i> circle with centre at the origin c) The single point (0, −2) d) None of these 544. If <i>a</i> ≤ 0, then the real values of <i>x</i> satisfying $x^2 - 2a x - a - 3a^2 = 0$ are a) <i>a</i> ($1 - \sqrt{2}$), <i>a</i> ($-1 + \sqrt{6}$) b) <i>a</i> ($1 + \sqrt{2}$), <i>a</i> ($-1 + \sqrt{6}$) c) <i>a</i> ($1 - \sqrt{2}$), <i>a</i> ($-1 - \sqrt{6}$) d) None of these 545. If the roots of the equation $ax^2 - 4x + a^2 = 0$ are imaginary and the sum of the roots is equal to their product, then <i>a</i> a) −2 b) 4 c) 2 d) None of these 546. If the roots of the equation $ax^2 - 4x + a^2 = 0$ are in arithmetic progression, then <i>k</i> is equal to a) −3 b) 1 c) 2 d) 3 547. If at least one value of the complex number <i>z</i> = <i>x</i> + <i>i y</i> satisfy the condition $ z + \sqrt{2} = \sqrt{a^2 - 3a + 2}$ and the inequality $ z + i\sqrt{2} < a$, then a) <i>a</i> 2 b) <i>a</i> = 2 c) <i>a</i> (<i>a</i> < 2 d) None of these 548. If the roots of $ax^2 - bx - c = 0$ change by the same quantity, then the expression in <i>a</i> , <i>b</i> , c that does not	0 0	5	c) $a > 0$	d) $a > 0$ or $a < -1$
$\cos y - \alpha + \cos (\alpha - \beta) \text{ is equal to}$ a) $3/2$ b) $-3/2$ c) 0 d) 1 539. If α , β are the roots of the equation $(x - a)(x - b) = 5$, then the roots of the equation $(x - a)(x - \beta) + 5 = 0$ are a) a , 5 b) b , 5 c) a , α d) a , b 540. If α , β , γ are the roots of $x^3 + bx + c = 0$, then $\alpha^2 \beta + \alpha \beta^2 + \beta^2 \gamma + \beta \gamma^2 + \gamma^2 \alpha + \gamma \alpha^2$ is equal to a) c b) $-c$ c) $-3c$ d) $3c$ 541. $\left \frac{1}{2}(z_1 + z_2) + \sqrt{z_1 z_2}\right + \left \frac{1}{2}(z_1 + z_2) - \sqrt{z_1 z_2}\right $ is equal to a) $ z_1 + z_2 $ b) $ z_1 - z_2 $ c) $ z_1 + z_2 $ d) $ z_1 - z_2 $ 542. Let p , $q \in \{1, 2, 3, 4\}$. The number of equations of the form $px^2 + qx + 1 = 0$ having real roots, is a) 15 b) 9 c) 7 d) 8 543. The locus of the points representing the complex numbers z for which $ z - 2 = z - i - z + 5i = 0$ is a) A circle with centre at the origin b) A straight line passing through the origin c) The single point $(0, -2)$ d) None of these 544. If $a \le 0$, then the real values of x satisfying $x^2 - 2a x - a - 3a^2 = 0$ are a) $a(1 - \sqrt{2}), a(1 - \sqrt{6})$ b) $a(1 + \sqrt{2}), a(1 - \sqrt{6})$ d) None of these 545. If the roots of the equation $ax^2 - 4x + a^2 = 0$ are imaginary and the sum of the roots is equal to their product, then $a = a$ a) -2 b) 4 c) 2 d) None of these 545. If the roots of the equation $4x^3 - 12x^2 + 11x + k = 0$ are in arithmetic progression, then k is equal to $a \cdot 3 - 3$ b) 1 c) 2 d) None of these 546. If the roots of the equation $4x^3 - 12x^2 + 11x + k = 0$ are in arithmetic progression, then k is equal to $a \cdot 3 - 3$ b) 1 c) 2 d) 3 547. If at least one value of the complex number $z = x + i y$ satisfy the condition $ z + \sqrt{2} = \sqrt{a^2 - 3a + 2}$ and the inequality $ z + i\sqrt{2} < a$, then a) $a > 2$ b) $a = 2$ c) $a < 2$ d) None of these 548. If the roots of $ax^2 - bx - c = 0$ change by the same quantity, then the expression in a , b , c that does not				2
a) $3/2$ b) $-3/2$ c) 0 d) 1 539. If α , β are the roots of the equation $(x - a)(x - b) = 5$, then the roots of the equation $(x - a)(x - \beta) + 5 = 0$ are a) a , 5 b) b , 5 c) a , α d) a , b 540. If α , β , γ are the roots of $x^3 + bx + c = 0$, then $a^2\beta + a\beta^2 + \beta^2\gamma + \beta\gamma^2 + \gamma^2a$ is equal to a) c b) $-c$ c) $-3c$ d) $3c$ 541. $\left \frac{1}{2}(x_1 + x_2) + \sqrt{x_1x_2}\right + \left \frac{1}{2}(x_1 + x_2) - \sqrt{x_1x_2}\right $ is equal to a) $ x_1 + x_2 $ b) $ x_1 - x_2 $ c) $ x_1 + x_2 $ d) $ x_1 - x_2 $ 542. Let p , $q \in \{1, 2, 3, 4\}$. The number of equations of the form $px^2 + qx + 1 = 0$ having real roots, is a) 15 b) 9 c) 7 d) 8 543. The locus of the points representing the complex numbers z for which $ z - 2 = z - i - z + 5i = 0$ is a) A circle with centre at the origin b) A straight line passing through the origin c) The single point (0, -2) d) None of these 544. If $a \le 0$, then the real values of x satisfying $x^2 - 2a x - a - 3a^2 = 0$ are a) $a(1 - \sqrt{2}), a(1 - \sqrt{6})$ c) $a(1 - \sqrt{2}), a(1 - \sqrt{6})$ d) None of these 545. If the roots of the equation $ax^2 - 4x + a^2 = 0$ are imaginary and the sum of the roots is equal to their product, then $a = a$ a) -2 b) 4 c) 2 d) None of these 546. If the roots of the equation $4x^3 - 12x^2 + 11x + k = 0$ are in arithmetic progression, then k is equal to a) -3 b) 1 c) 2 d) None of these 546. If the roots of the equation $4x^3 - 12x^2 + 11x + k = 0$ are in arithmetic progression, then k is equal to a) -3 b) 1 c) 2 d) 3 547. If at least one value of the complex number $z = x + i y$ satisfy the condition $ z + \sqrt{2} = \sqrt{a^2 - 3a + 2}$ and the inequality $ z + i\sqrt{2} < a$, then a) $a > 2$ b) $a = 2$ c) $a < 2$ d) None of these 548. If the roots of $ax^2 - bx - c = 0$ change by the same quantity, then the expression in a, b, c that does not			c a b _,	
5 = 0 are a) <i>a</i> , 5 b) <i>b</i> , 5 c) <i>a</i> , <i>a</i> d) <i>a</i> , <i>b</i> 540. If <i>a</i> , <i>β</i> , <i>γ</i> are the roots of $x^3 + bx + c = 0$, then $a^2\beta + a\beta^2 + \beta^2\gamma + \beta\gamma^2 + \gamma^2a + \gamma a^2$ is equal to a) <i>c</i> b) - <i>c</i> c) -3 <i>c</i> d) 3 <i>c</i> 541. $\left \frac{1}{2}(z_1 + z_2) + \sqrt{z_1z_2}\right + \left \frac{1}{2}(z_1 + z_2) - \sqrt{z_1z_2}\right $ is equal to a) $ z_1 + z_2 $ b) $ z_1 - z_2 $ c) $ z_1 + z_2 $ d) $ z_1 - z_2 $ 542. Let <i>p</i> , <i>q</i> \in {1, 2, 3, 4}. The number of equations of the form $px^2 + qx + 1 = 0$ having real roots, is a) 15 b) 9 c) 7 d) 8 543. The locus of the points representing the complex numbers <i>z</i> for which $ z - 2 = z - i - z + 5i = 0$ is a) <i>A</i> circle with centre at the origin b) A straight line passing through the origin c) The single point (0, -2) d) None of these 544. If $a \le 0$, then the real values of <i>x</i> satisfying $x^2 - 2a x - a - 3a^2 = 0$ are a) $a(1 - \sqrt{2}), a(-1 + \sqrt{6})$ b) $a(1 + \sqrt{2}), a(1 - \sqrt{6})$ c) $a(1 - \sqrt{2}), a(1 - \sqrt{6})$ d) None of these 545. If the roots of the equation $ax^2 - 4x + a^2 = 0$ are imaginary and the sum of the roots is equal to their product, then <i>a</i> = a) -2 b) 4 c) 2 d) None of these 546. If the roots of the equation $4x^3 - 12x^2 + 11x + k = 0$ are in arithmetic progression, then <i>k</i> is equal to a) -3 b) 1 c) 2 d) 3 547. If at least one value of the complex number $z = x + i y$ satisfy the condition $ z + \sqrt{2} = \sqrt{a^2 - 3a + 2}$ and the inequality $ z + i\sqrt{2} < a$, then a) $a > 2$ b) $a = 2$ c) $a < 2$ d) None of these 548. If the roots of $ax^2 - bx - c = 0$ change by the same quantity, then the expression in <i>a</i> , <i>b</i> , <i>c</i> that does not		•	c) 0	d) 1
a) $a, 5$ b) $b, 5$ c) a, α d) a, b 540. If a, β, γ are the roots of $x^3 + bx + c = 0$, then $a^2\beta + a\beta^2 + \beta^2\gamma + \beta\gamma^2 + \gamma^2 a + \gamma a^2$ is equal to a) c b) $-c$ c) $-3c$ d) $3c$ 541. $\left \frac{1}{2}(z_1 + z_2) + \sqrt{z_1z_2}\right + \left \frac{1}{2}(z_1 + z_2) - \sqrt{z_1z_2}\right $ is equal to a) $ z_1 + z_2 $ b) $ z_1 - z_2 $ c) $ z_1 + z_2 $ d) $ z_1 - z_2 $ 542. Let $p, q \in \{1, 2, 3, 4\}$. The number of equations of the form $px^2 + qx + 1 = 0$ having real roots, is a) 15 b) 9 c) 7 d) 8 543. The locus of the points representing the complex numbers z for which $ z - 2 = z - i - z + 5i = 0$ is a) A circle with centre at the origin b) A straight line passing through the origin c) The single point $(0, -2)$ d) None of these 544. If $a \le 0$, then the real values of x satisfying $x^2 - 2a x - a - 3a^2 = 0$ are a) $a(1 - \sqrt{2}), a(-1 + \sqrt{6})$ b) $a(1 + \sqrt{2}), a(1 - \sqrt{6})$ c) $a(1 - \sqrt{2}), a(1 - \sqrt{6})$ d) None of these 545. If the roots of the equation $ax^2 - 4x + a^2 = 0$ are imaginary and the sum of the roots is equal to their product, then $a = a$ a) -2 b) 4 c) 2 d) None of these 546. If the roots of the equation $4x^3 - 12x^2 + 11x + k = 0$ are in arithmetic progression, then k is equal to $a^3 - 3$ b) 1 c) 2 d) 3 - 3 547. If a teast one value of the complex number $z = x + iy$ satisfy the condition $ z + \sqrt{2} = \sqrt{a^2 - 3a + 2}$ and the inequality $ z + i\sqrt{2} < a$, then a) $a > 2$ b) $a = 2$ c) $a < 2$ d) None of these 548. If the roots of $ax^2 - bx - c = 0$ change by the same quantity, then the expression in a, b, c that does not	539. If α , β are the roots of the formula of the second seco	the equation $(x - a)(x - b)$	= 5, then the roots of the ed	quation $(x - \alpha)(x - \beta) +$
540. If a, β, γ are the roots of $x^3 + bx + c = 0$, then $a^2\beta + a\beta^2 + \beta^2\gamma + \beta\gamma^2 + \gamma^2a + \gamma a^2$ is equal to a) c b) $-c$ c) $-3c$ d) $3c$ 541. $\left \frac{1}{2}(z_1 + z_2) + \sqrt{z_1z_2}\right + \left \frac{1}{2}(z_1 + z_2) - \sqrt{z_1z_2}\right $ is equal to a) $ z_1 + z_2 $ b) $ z_1 - z_2 $ c) $ z_1 + z_2 $ d) $ z_1 - z_2 $ 542. Let $p, q \in \{1, 2, 3, 4\}$. The number of equations of the form $px^2 + qx + 1 = 0$ having real roots, is a) 15 b) 9 c) 7 d) 8 543. The locus of the points representing the complex numbers z for which $ z - 2 = z - i - z + 5i = 0$ is a) A circle with centre at the origin b) A straight line passing through the origin c) The single point $(0, -2)$ d) None of these 544. If $a \le 0$, then the real values of x satisfying $x^2 - 2a x - a - 3a^2 = 0$ are a) $a(1 - \sqrt{2}), a(1 - \sqrt{6})$ b) $a(1 + \sqrt{2}), a(1 - \sqrt{6})$ c) $a(1 - \sqrt{2}), a(1 - \sqrt{6})$ d) None of these 545. If the roots of the equation $ax^2 - 4x + a^2 = 0$ are imaginary and the sum of the roots is equal to their product, then $a = a$ a) -2 b) 4 c) 2 d) None of these 546. If the roots of the equation $4x^3 - 12x^2 + 11x + k = 0$ are in arithmetic progression, then k is equal to a) -3 b) 1 c) 2 d) 3 547. If at least one value of the complex number $z = x + iy$ satisfy the condition $ z + \sqrt{2} = \sqrt{a^2 - 3a + 2}$ and the inequality $ z + i\sqrt{2} < a$, then a) $a > 2$ b) $a = 2$ c) $a < 2$ d) None of these 548. If the roots of $ax^2 - bx - c = 0$ change by the same quantity, then the expression in a, b, c that does not				
a) c b) $-c$ c) $-3c$ d) $3c$ 541. $\left \frac{1}{2}(z_1 + z_2) + \sqrt{z_1 z_2}\right + \left \frac{1}{2}(z_1 + z_2) - \sqrt{z_1 z_2}\right $ is equal to a) $ z_1 + z_2 $ b) $ z_1 - z_2 $ c) $ z_1 + z_2 $ d) $ z_1 - z_2 $ 542. Let $p, q \in \{1, 2, 3, 4\}$. The number of equations of the form $px^2 + qx + 1 = 0$ having real roots, is a) 15 b) 9 c) 7 d) 8 543. The locus of the points representing the complex numbers z for which $ z - 2 = z - i - z + 5i = 0$ is a) A circle with centre at the origin b) A straight line passing through the origin c) The single point $(0, -2)$ d) None of these 544. If $a \le 0$, then the real values of x satisfying $x^2 - 2a x - a - 3a^2 = 0$ are a) $a(1 - \sqrt{2}), a(-1 + \sqrt{6})$ b) $a(1 + \sqrt{2}), a(1 - \sqrt{6})$ c) $a(1 - \sqrt{2}), a(1 - \sqrt{6})$ d) None of these 545. If the roots of the equation $ax^2 - 4x + a^2 = 0$ are imaginary and the sum of the roots is equal to their product, then $a =$ a) -2 b) 4 c) 2 d) None of these 546. If the roots of the equation $4x^3 - 12x^2 + 11x + k = 0$ are in arithmetic progression, then k is equal to a) -3 b) 1 c) 2 d) 3 547. If at least one value of the complex number $z = x + iy$ satisfy the condition $ z + \sqrt{2} = \sqrt{a^2 - 3a + 2}$ and the inequality $ z + i\sqrt{2} < a$, then a) $a > 2$ b) $a = 2$ c) $a < 2$ d) None of these 548. If the roots of $ax^2 - bx - c = 0$ change by the same quantity, then the expression in a, b, c that does not		3 ·		
541. $\left \frac{1}{2}(z_1 + z_2) + \sqrt{z_1 z_2}\right + \left \frac{1}{2}(z_1 + z_2) - \sqrt{z_1 z_2}\right $ is equal to a) $ z_1 + z_2 $ b) $ z_1 - z_2 $ c) $ z_1 + z_2 $ d) $ z_1 - z_2 $ 542. Let $p, q \in \{1, 2, 3, 4\}$. The number of equations of the form $px^2 + qx + 1 = 0$ having real roots, is a) 15 b) 9 c) 7 d) 8 543. The locus of the points representing the complex numbers z for which $ z - 2 = z - i - z + 5i = 0$ is a) A circle with centre at the origin b) A straight line passing through the origin c) The single point $(0, -2)$ d) None of these 544. If $a \le 0$, then the real values of x satisfying $x^2 - 2a x - a - 3a^2 = 0$ are a) $a(1 - \sqrt{2}), a(-1 + \sqrt{6})$ b) $a(1 + \sqrt{2}), a(-1 + \sqrt{6})$ c) $a(1 - \sqrt{2}), a(1 - \sqrt{6})$ d) None of these 545. If the roots of the equation $ax^2 - 4x + a^2 = 0$ are imaginary and the sum of the roots is equal to their product, then $a =$ a) -2 b) 4 c) 2 d) None of these 546. If the roots of the equation $4x^3 - 12x^2 + 11x + k = 0$ are in arithmetic progression, then k is equal to a) -3 b) 1 c) 2 d) 3 547. If at least one value of the complex number $z = x + iy$ satisfy the condition $ z + \sqrt{2} = \sqrt{a^2 - 3a + 2}$ and the inequality $ z + i\sqrt{2} < a$, then a) $a > 2$ b) $a = 2$ c) $a < 2$ d) None of these 548. If the roots of $ax^2 - bx - c = 0$ change by the same quantity, then the expression in a, b, c that does not				
542. Let $p, q \in \{1, 2, 3, 4\}$. The number of equations of the form $px^2 + qx + 1 = 0$ having real roots, is a) 15 b) 9 c) 7 d) 8 543. The locus of the points representing the complex numbers <i>z</i> for which $ z - 2 = z - i - z + 5i = 0$ is a) A circle with centre at the origin b) A straight line passing through the origin c) The single point $(0, -2)$ d) None of these 544. If $a \le 0$, then the real values of <i>x</i> satisfying $x^2 - 2a x - a - 3a^2 = 0$ are a) $a(1 - \sqrt{2}), a(-1 + \sqrt{6})$ b) $a(1 + \sqrt{2}), a(1 - \sqrt{6})$ c) $a(1 - \sqrt{2}), a(1 - \sqrt{6})$ d) None of these 545. If the roots of the equation $ax^2 - 4x + a^2 = 0$ are imaginary and the sum of the roots is equal to their product, then $a =$ a) -2 b) 4 c) 2 d) None of these 546. If the roots of the equation $4x^3 - 12x^2 + 11x + k = 0$ are in arithmetic progression, then <i>k</i> is equal to a) -3 b) 1 c) 2 d) 3 547. If at least one value of the complex number $z = x + iy$ satisfy the condition $ z + \sqrt{2} = \sqrt{a^2 - 3a + 2}$ and the inequality $ z + i\sqrt{2} < a$, then a) $a > 2$ b) $a = 2$ c) $a < 2$ d) None of these 548. If the roots of $ax^2 - bx - c = 0$ change by the same quantity, then the expression in <i>a</i> , <i>b</i> , <i>c</i> that does not	2	2	<i>,</i>	
a) 15 b) 9 c) 7 d) 8 543. The locus of the points representing the complex numbers <i>z</i> for which $ z - 2 = z - i - z + 5i = 0$ is a) A circle with centre at the origin b) A straight line passing through the origin c) The single point $(0, -2)$ d) None of these 544. If $a \le 0$, then the real values of <i>x</i> satisfying $x^2 - 2a x - a - 3a^2 = 0$ are a) $a(1 - \sqrt{2}), a(-1 + \sqrt{6})$ b) $a(1 + \sqrt{2}), a(1 - \sqrt{6})$ c) $a(1 - \sqrt{2}), a(1 - \sqrt{6})$ d) None of these 545. If the roots of the equation $ax^2 - 4x + a^2 = 0$ are imaginary and the sum of the roots is equal to their product, then $a =$ a) -2 b) 4 c) 2 d) None of these 546. If the roots of the equation $4x^3 - 12x^2 + 11x + k = 0$ are in arithmetic progression, then <i>k</i> is equal to a) -3 b) 1 c) 2 d) 3 547. If at least one value of the complex number $z = x + iy$ satisfy the condition $ z + \sqrt{2} = \sqrt{a^2 - 3a + 2}$ and the inequality $ z + i\sqrt{2} < a$, then a) $a > 2$ b) $a = 2$ c) $a < 2$ d) None of these 548. If the roots of $ax^2 - bx - c = 0$ change by the same quantity, then the expression in <i>a</i> , <i>b</i> , <i>c</i> that does not	· · ·	· · ·		· · · ·
543. The locus of the points representing the complex numbers <i>z</i> for which $ z - 2 = z - i - z + 5i = 0$ is a) A circle with centre at the origin b) A straight line passing through the origin c) The single point $(0, -2)$ d) None of these 544. If $a \le 0$, then the real values of <i>x</i> satisfying $x^2 - 2a x - a - 3a^2 = 0$ are a) $a(1 - \sqrt{2}), a(-1 + \sqrt{6})$ b) $a(1 + \sqrt{2}), a(1 - \sqrt{6})$ c) $a(1 - \sqrt{2}), a(1 - \sqrt{6})$ d) None of these 545. If the roots of the equation $ax^2 - 4x + a^2 = 0$ are imaginary and the sum of the roots is equal to their product, then $a =$ a) -2 b) 4 c) 2 d) None of these 546. If the roots of the equation $4x^3 - 12x^2 + 11x + k = 0$ are in arithmetic progression, then <i>k</i> is equal to a) -3 b) 1 c) 2 d) 3 547. If at least one value of the complex number $z = x + iy$ satisfy the condition $ z + \sqrt{2} = \sqrt{a^2 - 3a + 2}$ and the inequality $ z + i\sqrt{2} < a$, then a) $a > 2$ b) $a = 2$ c) $a < 2$ d) None of these 548. If the roots of $ax^2 - bx - c = 0$ change by the same quantity, then the expression in <i>a</i> , <i>b</i> , <i>c</i> that does not				
a) A circle with centre at the origin b) A straight line passing through the origin c) The single point $(0, -2)$ d) None of these 544. If $a \le 0$, then the real values of x satisfying $x^2 - 2a x - a - 3a^2 = 0$ are a) $a(1 - \sqrt{2}), a(-1 + \sqrt{6})$ b) $a(1 + \sqrt{2}), a(-1 + \sqrt{6})$ c) $a(1 - \sqrt{2}), a(1 - \sqrt{6})$ d) None of these 545. If the roots of the equation $ax^2 - 4x + a^2 = 0$ are imaginary and the sum of the roots is equal to their product, then $a =$ a) -2 b) 4 c) 2 d) None of these 546. If the roots of the equation $4x^3 - 12x^2 + 11x + k = 0$ are in arithmetic progression, then k is equal to a) -3 b) 1 c) 2 d) 3 547. If at least one value of the complex number $z = x + iy$ satisfy the condition $ z + \sqrt{2} = \sqrt{a^2 - 3a + 2}$ and the inequality $ z + i\sqrt{2} < a$, then a) $a > 2$ b) $a = 2$ c) $a < 2$ d) None of these 548. If the roots of $ax^2 - bx - c = 0$ change by the same quantity, then the expression in a, b, c that does not	-) -	···) ·	-)	-) -
b) A straight line passing through the origin c) The single point $(0, -2)$ d) None of these 544. If $a \le 0$, then the real values of x satisfying $x^2 - 2a x - a - 3a^2 = 0$ are a) $a(1 - \sqrt{2}), a(-1 + \sqrt{6})$ b) $a(1 + \sqrt{2}), a(1 - \sqrt{6})$ c) $a(1 - \sqrt{2}), a(1 - \sqrt{6})$ d) None of these 545. If the roots of the equation $ax^2 - 4x + a^2 = 0$ are imaginary and the sum of the roots is equal to their product, then $a =$ a) -2 b) 4 c) 2 d) None of these 546. If the roots of the equation $4x^3 - 12x^2 + 11x + k = 0$ are in arithmetic progression, then k is equal to a) -3 b) 1 c) 2 d) 3 547. If at least one value of the complex number $z = x + iy$ satisfy the condition $ z + \sqrt{2} = \sqrt{a^2 - 3a + 2}$ and the inequality $ z + i\sqrt{2} < a$, then a) $a > 2$ b) $a = 2$ c) $a < 2$ d) None of these 548. If the roots of $ax^2 - bx - c = 0$ change by the same quantity, then the expression in a, b, c that does not				
d) None of these 544. If $a \le 0$, then the real values of x satisfying $x^2 - 2a x - a - 3a^2 = 0$ are a) $a(1 - \sqrt{2}), a(-1 + \sqrt{6})$ b) $a(1 + \sqrt{2}), a(1 - \sqrt{6})$ c) $a(1 - \sqrt{2}), a(1 - \sqrt{6})$ d) None of these 545. If the roots of the equation $ax^2 - 4x + a^2 = 0$ are imaginary and the sum of the roots is equal to their product, then $a =$ a) -2 b) 4 c) 2 d) None of these 546. If the roots of the equation $4x^3 - 12x^2 + 11x + k = 0$ are in arithmetic progression, then k is equal to a) -3 b) 1 c) 2 d) 3 547. If at least one value of the complex number $z = x + i y$ satisfy the condition $ z + \sqrt{2} = \sqrt{a^2 - 3a + 2}$ and the inequality $ z + i\sqrt{2} < a$, then a) $a > 2$ b) $a = 2$ c) $a < 2$ d) None of these 548. If the roots of $ax^2 - bx - c = 0$ change by the same quantity, then the expression in a, b, c that does not				
544. If $a \le 0$, then the real values of x satisfying $x^2 - 2a x - a - 3a^2 = 0$ are a) $a(1 - \sqrt{2}), a(-1 + \sqrt{6})$ b) $a(1 + \sqrt{2}), a(1 - \sqrt{6})$ c) $a(1 - \sqrt{2}), a(1 - \sqrt{6})$ d) None of these 545. If the roots of the equation $ax^2 - 4x + a^2 = 0$ are imaginary and the sum of the roots is equal to their product, then $a =$ a) -2 b) 4 c) 2 d) None of these 546. If the roots of the equation $4x^3 - 12x^2 + 11x + k = 0$ are in arithmetic progression, then k is equal to a) -3 b) 1 c) 2 d) 3 547. If at least one value of the complex number $z = x + iy$ satisfy the condition $ z + \sqrt{2} = \sqrt{a^2 - 3a + 2}$ and the inequality $ z + i\sqrt{2} < a$, then a) $a > 2$ b) $a = 2$ c) $a < 2$ d) None of these 548. If the roots of $ax^2 - bx - c = 0$ change by the same quantity, then the expression in a, b, c that does not	,	-2)		
a) $a(1 - \sqrt{2}), a(-1 + \sqrt{6})$ b) $a(1 + \sqrt{2}), a(1 - \sqrt{6})$ c) $a(1 - \sqrt{2}), a(1 - \sqrt{6})$ d) None of these 545. If the roots of the equation $ax^2 - 4x + a^2 = 0$ are imaginary and the sum of the roots is equal to their product, then $a =$ a) -2 b) 4 c) 2 d) None of these 546. If the roots of the equation $4x^3 - 12x^2 + 11x + k = 0$ are in arithmetic progression, then k is equal to a) -3 b) 1 c) 2 d) 3 547. If at least one value of the complex number $z = x + i y$ satisfy the condition $ z + \sqrt{2} = \sqrt{a^2 - 3a + 2}$ and the inequality $ z + i\sqrt{2} < a$, then a) $a > 2$ b) $a = 2$ c) $a < 2$ d) None of these 548. If the roots of $ax^2 - bx - c = 0$ change by the same quantity, then the expression in a, b, c that does not		$\frac{1}{2}$	$ a = 2a^2 - 0$ and	
b) $a(1 + \sqrt{2}), a(1 - \sqrt{6})$ c) $a(1 - \sqrt{2}), a(1 - \sqrt{6})$ d) None of these 545. If the roots of the equation $ax^2 - 4x + a^2 = 0$ are imaginary and the sum of the roots is equal to their product, then $a =$ a) -2 b) 4 c) 2 d) None of these 546. If the roots of the equation $4x^3 - 12x^2 + 11x + k = 0$ are in arithmetic progression, then k is equal to a) -3 b) 1 c) 2 d) 3 547. If at least one value of the complex number $z = x + i y$ satisfy the condition $ z + \sqrt{2} = \sqrt{a^2 - 3a + 2}$ and the inequality $ z + i\sqrt{2} < a$, then a) $a > 2$ b) $a = 2$ c) $a < 2$ d) None of these 548. If the roots of $ax^2 - bx - c = 0$ change by the same quantity, then the expression in a, b, c that does not			$ x - a - 3a^2 = 0$ are	
c) $a(1 - \sqrt{2}), a(1 - \sqrt{6})$ d) None of these 545. If the roots of the equation $ax^2 - 4x + a^2 = 0$ are imaginary and the sum of the roots is equal to their product, then $a =$ a) -2 b) 4 c) 2 d) None of these 546. If the roots of the equation $4x^3 - 12x^2 + 11x + k = 0$ are in arithmetic progression, then k is equal to a) -3 b) 1 c) 2 d) 3 547. If at least one value of the complex number $z = x + i y$ satisfy the condition $ z + \sqrt{2} = \sqrt{a^2 - 3a + 2}$ and the inequality $ z + i\sqrt{2} < a$, then a) $a > 2$ b) $a = 2$ c) $a < 2$ d) None of these 548. If the roots of $ax^2 - bx - c = 0$ change by the same quantity, then the expression in a, b, c that does not	· · · ·			
d) None of these 545. If the roots of the equation $ax^2 - 4x + a^2 = 0$ are imaginary and the sum of the roots is equal to their product, then $a =$ a) -2 b) 4 c) 2 d) None of these 546. If the roots of the equation $4x^3 - 12x^2 + 11x + k = 0$ are in arithmetic progression, then k is equal to a) -3 b) 1 c) 2 d) 3 547. If at least one value of the complex number $z = x + i y$ satisfy the condition $ z + \sqrt{2} = \sqrt{a^2 - 3a + 2}$ and the inequality $ z + i\sqrt{2} < a$, then a) $a > 2$ b) $a = 2$ c) $a < 2$ d) None of these 548. If the roots of $ax^2 - bx - c = 0$ change by the same quantity, then the expression in a, b, c that does not				
545. If the roots of the equation $ax^2 - 4x + a^2 = 0$ are imaginary and the sum of the roots is equal to their product, then $a = a) -2$ b) 4 c) 2 d) None of these 546. If the roots of the equation $4x^3 - 12x^2 + 11x + k = 0$ are in arithmetic progression, then k is equal to $a) -3$ b) 1 c) 2 d) 3 547. If at least one value of the complex number $z = x + i y$ satisfy the condition $ z + \sqrt{2} = \sqrt{a^2 - 3a + 2}$ and the inequality $ z + i\sqrt{2} < a$, then a) a > 2 b) $a = 2$ c) $a < 2$ d) None of these 548. If the roots of $ax^2 - bx - c = 0$ change by the same quantity, then the expression in a, b, c that does not)		
product, then $a =$ a) -2 b) 4 c) 2 d) None of these 546. If the roots of the equation $4x^3 - 12x^2 + 11x + k = 0$ are in arithmetic progression, then k is equal to a) -3 b) 1 c) 2 d) 3 547. If at least one value of the complex number $z = x + i y$ satisfy the condition $ z + \sqrt{2} = \sqrt{a^2 - 3a + 2}$ and the inequality $ z + i\sqrt{2} < a$, then a) $a > 2$ b) $a = 2$ c) $a < 2$ d) None of these 548. If the roots of $ax^2 - bx - c = 0$ change by the same quantity, then the expression in a, b, c that does not	-	ion $ax^2 - 4x + a^2 = 0$ are i	maginary and the sum of th	ne roots is equal to their
546. If the roots of the equation $4x^3 - 12x^2 + 11x + k = 0$ are in arithmetic progression, then k is equal to a) -3 b) 1 c) 2 d) 3 547. If at least one value of the complex number $z = x + i y$ satisfy the condition $ z + \sqrt{2} = \sqrt{a^2 - 3a + 2}$ and the inequality $ z + i\sqrt{2} < a$, then a) $a > 2$ b) $a = 2$ c) $a < 2$ d) None of these 548. If the roots of $ax^2 - bx - c = 0$ change by the same quantity, then the expression in a, b, c that does not				-
a) -3 b) 1 c) 2 d) 3 547. If at least one value of the complex number $z = x + i y$ satisfy the condition $ z + \sqrt{2} = \sqrt{a^2 - 3a + 2}$ and the inequality $ z + i\sqrt{2} < a$, then a) $a > 2$ b) $a = 2$ c) $a < 2$ d) None of these 548. If the roots of $ax^2 - bx - c = 0$ change by the same quantity, then the expression in a, b, c that does not	-	2	<i>,</i>	-
the inequality $ z + i\sqrt{2} < a$, then a) $a > 2$ b) $a = 2$ c) $a < 2$ d) None of these 548. If the roots of $ax^2 - bx - c = 0$ change by the same quantity, then the expression in a, b, c that does not	a) -3	b) 1	c) 2	d) 3
a) $a > 2$ b) $a = 2$ c) $a < 2$ d) None of these 548. If the roots of $ax^2 - bx - c = 0$ change by the same quantity, then the expression in <i>a</i> , <i>b</i> , <i>c</i> that does not	547. If at least one value of t	he complex number $z = x + $	i y satisfy the condition $ z $	$+\sqrt{2} = \sqrt{a^2 - 3a + 2}$ and
548. If the roots of $ax^2 - bx - c = 0$ change by the same quantity, then the expression in <i>a</i> , <i>b</i> , <i>c</i> that does not	the inequality $ z + i\sqrt{2} $	< <i>a</i> , then		
		2	,	
		-c = 0 change by the same	e quantity, then the express	tion in <i>a, b, c</i> that does not

a)
$$\frac{b^2 - 4ac}{a^2}$$
 b) $\frac{b - 4c}{a}$ c) $\frac{b^2 + 4ac}{a^2}$ d) $\frac{b^2 - 4ac}{a}$
549. The solution of set of the equation $x^{\log(4-x)^2} = 9$ is
a) $\{-2,4\}$ b) $\{4\}$ c) $\{0,-2,4\}$ d) None of these
550. If ω is a complex cube root of unity, then the value of $\begin{vmatrix} x + 1 & x + \omega^2 & 1 \\ \omega^2 & x + \omega^2$

564. If $z = \frac{7-i}{3-4i}$, then z^{14} is equivalent.	rual to		
a) 2^7	b) $2^7 i$	c) 2 ¹⁴ <i>i</i>	d) $-2^{7}i$
565. If the roots of the equation)	,	2
a) $b \in (-3, \infty)$		c) $b \in (-\infty, -3)$	d) None of these
566. Rational roots of the equ	uation $2x^4 + x^3 - 11x^2 + x^3$	x + 2 = 0 are	
a) $\frac{1}{2}$ and 2	b) $\frac{1}{2}$, 2, $\frac{1}{4}$, -2	c) $\frac{1}{2}$, 2, 3, 4	d) $\frac{1}{2}$, 2, $\frac{3}{4}$, -2
567. The expression $y = ax^2$			
a) 4 $ac < b^2$	b) 4 $ac > b^2$	c) $ac < b^2$	d) $ac > b^2$
568. Let <i>a</i> , <i>b</i> , <i>c</i> be real number			
	ation $a^2x^2 + 2bx + 2c = 0$	has a root of γ that always	satisfies
a) $\gamma = \frac{\alpha + \beta}{2}$	b) $\gamma = \alpha + \frac{\beta}{2}$	c) $\gamma = \alpha$	d) $\alpha < \gamma < \beta$
569. The smallest positive in	teger <i>n</i> for which $(1 + i)^{2n}$	$=(1-i)^{2n}$ is	
a) 4	b) 8	c) 2	d) 12
570. If $2\alpha = -1 - i\sqrt{3}$ and 2β	$\beta = -1 + i\sqrt{3}$, then $5\alpha^4 + 5\alpha^4$	$5\beta^4 + 7\alpha^{-1}\beta^{-1}$ is equal to	
a) -1	b) -2	c) 0	d) 2
571. The solution set of the e			
	$\log_2 x = \left[54\left(1 + \frac{1}{3} + \frac{1}{9} + \frac{1}{27}\right)\right]$	$+\dots\Big)\Big]^{\log_{x}2}$ is	<i>(</i> 1)
a) $\left\{4, \frac{1}{4}\right\}$	b) $\left\{2, \frac{1}{2}\right\}$	c) {1,2}	d) $\left\{8,\frac{1}{8}\right\}$
572. The maximum distance	from the origin of coordina	tes to the point $oldsymbol{z}$ satisfying	g the equation $\left z + \frac{1}{z}\right = a$ is
a) $\frac{1}{2}\left(\sqrt{a^2+1}+a\right)$	b) $\frac{1}{2}\left(\sqrt{a^2+2}+a\right)$	c) $\frac{1}{2}\left(\sqrt{a^2+4}+a\right)$	d) None of these
573. The solution of $6 + x - x$			
,	,	c) $-2 < x < -1$	d) None of these
574. If $(\cos \theta + i \sin \theta) (\cos 2\theta)$			of θ is $m\pi$
a) 4 <i>m</i> π	b) $\frac{2m\pi}{n(n+1)}$	c) $\frac{4m\pi}{n(n+1)}$	d) $\frac{nn}{n(n+1)}$
575. If α , β , γ are the roots of		$1x + 6 = 0$, then $\sum \alpha^2 \beta + \sum \alpha^2 \beta$	$2 \alpha \beta^2$ is equal to
a) 80	b) 84	c) 90	d) -84
576. Let z_1, z_2, z_3 be three con	mplex numbers satisfying -	$\frac{1}{2} + \frac{1}{2} + \frac{1}{2} = 0$. Let $z_k = r_k$	$(\cos \alpha_k + i \sin \alpha_k)$ and
	$k = 1,2,3$. If ω_1, ω_2 and ω_3	1 2 5	
the Argand plane, then Z_k		1 1	
a) Incentre at the origin	1 2 0		
b) Centroid at the origin			
c) Circumcentre at the c			
d) Orthocentre at the or	-		
577. If $\left \frac{z-25}{z-1}\right = 5$, find the value	lue of z		
a) 3	b) 4	c) 5	d) 6
578. If α and β are the roots	of $ax^2 + bx + c = 0$, then t	the equation $ax^2 - bx(x - bx)$	1) + $c(x - 1)^2 = 0$ has roots
$\alpha \beta$	b) $\frac{1-\alpha}{\alpha}$, $\frac{1-\beta}{\beta}$	$\alpha \beta$	d) $\frac{\alpha+1}{\beta+1}$
	$\beta \beta - \alpha \beta \beta - \beta $	$\frac{\alpha}{\alpha+1}, \frac{\beta}{\beta+1}$	α , β
J/Y. The argument of the cor		···	
	nplex number $\frac{13-5i}{4-9i}$ is		
a) π/3	nplex number $\frac{13-5i}{4-9i}$ is b) $\pi/4$	c) π/5	d) π/6
	nplex number $\frac{13-5i}{4-9i}$ is b) $\pi/4$	c) π/5	d) π/6

f(x) = 0, then the least value of n is a) 5 b) 4 c) 3 d) 6 542. If $\frac{3x}{(p-n)(x-1)} = \frac{x}{x-n} + \frac{1}{x-p}$, then at b is equal to a) 1:2 b) -2:1 c) 1:3 d) 3:1 543. If $(x + iy) = \sqrt{\frac{3x+2i}{3x+4i}}$, then $(x^2 + y^2)^2$ is equal to a) 5 b) 1/5 c) 2/5 d) 3:1 544. The number of real roots of $f(x) = 0$, where $f(x) = (x-1)(x-2)(x-3)(x-4)$ lying in the interval (1, 3) is a) 1 b) 2 c) 3 d) 4 555. If z is a complex number, then $ 3z - 1 = 3 z - 2 $ represents a) y-axis b) 3 circle c) x-axis b) 3 circle c) x-axis c) 4) A line parallel to y-axis 567. If triangle with vertices at the points $z_1, z_2, (1-i)z_1 + iz_2$ is a) Right angled but not isosceles b) Isosceles but not right angled c) Right angled and isosceles d) Equilateral 547. If $x = \frac{1}{x} = 2 \sin \alpha, y = y + \frac{1}{y} = 2 \cos \beta$, then $x^3y^3 + \frac{1}{x^3y^3}$ is a) 2 cos $3(\beta - \alpha)$ b) 2 cos $3(\beta + \alpha)$ c) 2 sin $3(\beta + \alpha)$ 548. If α, β, γ are the cube roots of $p, p < 0$ then for any x, y and z the values of $\frac{x + p + x}{x^3 p + y + x}$ are a) a, ω^2 b) $-\alpha, -\omega^2$ c) $1, -1$ d) None of these 549. If $p^2 - p + 1 = 0$, then the value of p^{39} can be a) 1 b) -1 c) 0 d) None of these 549. If $a = \cos \theta + i \sin \theta$, then $\frac{1+x}{2-\alpha}$ is equal to a) $\cot \frac{\theta}{2}$ b) $\cot \theta$ c) $i \cot \frac{\theta}{2}$ d) $i \tan \frac{\theta}{2}$ 559. If $a = \cos \theta + i \sin \theta$, then the value of $\frac{z}{z} + \frac{x}{z}$ is a) $\cos 2\theta$ b) $2\cos 2\theta$ c) $2\cos \theta$ d) $2\sin \theta$ 559. If $a = \cos \theta + i \sin \theta$, then thereal to $\frac{z}{z} + \frac{x}{z}$ is a) $\cos 2\theta$ b) $2\cos 2\theta$ c) $2\cos \theta$ d) $2\sin \theta$ 559. If a g(z) = \theta then $\arg (2)$ is equal to a) $\frac{1}{p^3}$ b) $\frac{1}{p^3}$ c) $\frac{1}{p^3}$ c) $\frac{1}{p^3}$ c) $\frac{1}{p^3}$ d)	581. If $f(x)$ is a polynomial of		fficients and $1 + 2i$, $2 - \sqrt{3}$	and 5 are three roots of
582. If $\frac{3\pi}{(x-6)(x-6)} = \frac{2}{x-a} + \frac{1}{x-b}$, then $a:b$ is equal to a) 1:2 b) -2:1 c) 1:3 d) 3:1 583. If $(x + iy) = \sqrt{\frac{1+2}{3+4t}}$, then $(x^2 + y^2)^2$ is equal to a) 5 b) 1/5 c) 2/5 d) 5/2 584. The number of real roots of $f(x) = 0$, where $f(x) = (x - 1)(x - 2)(x - 3)(x - 4)$ lying in the interval $(1, 3)$ is a) 1 b) 2 c) 3 d) 4 585. If z is a complex number, then $ 3z - 1 = 3 z - 2 $ represents a) y -axis b) A circle c) x -axis b) A circle c) x -axis b) A circle c) x -axis c) A circle c) x -axis 586. The triangle with vertices at the points $z_1, z_2, (1-i)z_1 + iz_2$ is a) Regulateral 587. If $x = \frac{1}{x} = 2 \sin \alpha, y = y + \frac{1}{y} = 2 \cos \beta, \text{ then } x^3y^3 + \frac{1}{x^3y^3}$ is a) $2 \cos 3(\beta - \alpha)$ b) $2 \cos 3(\beta + \alpha)$ c) $2 \sin 3(\beta - \alpha)$ d) $2 \sin 3(\beta + \alpha)$ 588. If $\alpha, \beta, \text{ are the cube roots of p, p < 0 then for any x, y and z the values of \frac{x + y + y + x}{x + y + x} area) \omega, \omega^2 b) -\omega, -\omega^2 c) 1, -1 d) None of these590. If a = \cos \theta + i \sin \theta, then the value of \frac{z}{2} + \frac{z}{z} isa) \omega, \omega^2 b) -\omega, -\omega^2 c) 1, -1 d) None of these590. If a = \cos \theta + i \sin \theta, then the value of \frac{z}{2} + \frac{z}{z} isa) \cos 2\theta b) 2 \cos 2\theta c) 2 \cos \theta d) 2 \sin \theta591. If x = r (\cos \theta + i \sin \theta, then the value of \frac{z}{2} + \frac{z}{z} isa) 2 \sin \theta 592. In a give parallelogram, if the points P_1 and P_2 represent two complex numbersz_1 and z_2, then the points P_1 and P_2 represent two complex numbersz_1 and z_2, then the points P_1 and P_2 cos \beta d) 2 \sin \theta c) z_$			a))	4) (
a) 1:2 b) -2:1 c) 1:3 d) 3:1 583. If $(x + iy) = \sqrt{\frac{1+i}{3+4i}}$ then $(x^2 + y^2)^2$ is equal to a) 5 b) 1/5 c) 2/5 d) 5/2 584. The number of real roots of $f(x) = 0$, where $f(x) = (x - 1)(x - 2)(x - 3)(x - 4)$ lying in the interval (1, 3) is a) 1 b) 2 c) 3 d) 4 585. If x is a complex number, then $ 3x - 1 = 3 z - 2 $ represents a) y-axis b) A circle c) x-axis d) A line parallel to y-axis 586. The triangle with vertices at the points $z_1, z_2, (1 - i)z_1 + iz_2$ is a) Right angled but not isosceles b) Isosceles but not right angled c) Right angled not not right angled c) Right angled and isosceles d) Equilateral 587. If $x = \frac{1}{x} = 2\sin \alpha$, $y = y + \frac{1}{y} = 2\cos \beta$, then $x^3y^3 + \frac{1}{x^{1y}}$ is a) 2 cos $3(\beta - \alpha)$ b) 2 cos $3(\beta + \alpha)$ c) 2 sin $3(\beta - \alpha)$ d) 2 sin $3(\beta + \alpha)$ 588. If α, β, γ are the cube roots of $p, p < 0$ then for any x, y and z the values of $\frac{x a - y (b + y)}{x \beta + y \gamma + z \alpha}$ are a) a, ω^2 b) $-\omega, -\omega^2$ c) $1, -1$ d) None of these 589. If $p^2 - p + 1 = 0$, then the value of $p^{2\pi}$ can be a) 1 b) -1 c) 0 d) None of these 590. If $a = \cos \theta + i \sin \theta$, then $\frac{1+a}{1-a}$ is equal to a) $\cot \frac{\theta}{2}$ b) $\cot \theta$ c) $i \cot \frac{\theta}{2}$ d) $i \tan \frac{\theta}{2}$ 592. In a give parallelogram, if the points P_1 and P_2 represent two complex numbers z_1 and z_2 , then the point P_3 represents the number $y = \frac{y}{P_2} \int \frac{P_1}{P_1} \int \frac{P_1}{P_1} \int \frac{P_1}{P_2} \int \frac{P_1}{P_2} \int \frac{P_1}{P_2} \int \frac{P_1}{P_1} \int \frac{P_1}{P_2} \int \frac{P_1}{P_2} \int \frac{P_1}{P_2} \int \frac{P_1}{P_2} \int \frac{P_1}{P_2} \int \frac{P_1}{P_2} \int \frac{P_2}{P_2} \int \frac{P_1}{P_2} \int \frac{P_1}{P_1} \int \frac{P_1}{P_2} \int \frac{P_1}{P_2} \int \frac{P_1}{P_2} \int \frac{P_1}{P_2} \int \frac{P_1}{P_2} \int $,	,	CJ 3	a) 6
583. If $(x + iy) = \int_{1+ix}^{1+ix} (\operatorname{then} (x^2 + y^2)^2 \operatorname{is equal to} a) 5 b) 1/5 c) 2/5 d) 5/2 534. The number of real roots of f(x) = 0, where f(x) = (x - 1)(x - 2)(x - 3)(x - 4) lying in the interval (1, 3) is b) 2 c) 3 d) 4 535. If x is a complex number, then 3x - 1 = 3 x - 2 represents a) y-axis b) A circle c) x-axis b) A circle c) x-axis d) A line parallel to y-axis d) a line for any x, y and z the values of \frac{x + \theta + y}{x + y + y + x + z} are a) \omega \omega^2 b) - \omega - \omega^2 c) 2 \sin 3(\beta - \alpha) d) 2 \sin 3(\beta + \alpha) 580. If p^2 - p + 1 = 0, then the value of p^{3n} can be a) 1 b) - 1 c) 0 d) None of these 590. If f^2 - p + 1 = 0, then the value of p^{3n} can be a) 1 b) - 1 c) 0 d) None of these 590. If f^2 - p + 1 = 0, then the value of p^2 + \frac{z}{z} is a) \cos 2\theta d) z \sin \theta 592. In a give parallelogram, if the points P_1 and P_2 represent two complex numbers z_1 and z_2, then the point P_3 represents the number y^2 + \frac{p^2}{p_2} = \frac{p^2}{p_1} = \frac{p^2}{$				
a) 5 b) $1/5$ c) $2/5$ d) $5/2$ 584. The number of real roots of $f(x) = 0$, where $f(x) = (x - 1)(x - 2)(x - 3)(x - 4)$ lying in the interval (1, 3) is a) 1 b) 2 c) 3 d) 4 585. If z is a complex number, then $ 3z - 1 = 3 z - 2 $ represents a) y -axis b) A circle c) x -axis b) A circle c) x -axis d) A line parallel to y -axis 586. The triangle with vertices at the points $z_1, z_2, (1 - i)z_1 + iz_2$ is a) Right angled but not isosceles b) isosceles but not right angled c) Right angled and isosceles d) Equilateral 587. If $x = \frac{1}{x} = 2 \sin a, y = y + \frac{1}{y} = 2 \cos \beta$, then $x^3y^3 + \frac{1}{x^3y^3}$ is a) $2 \cos 3(\beta - \alpha)$ b) $2 \cos 3(\beta + \alpha)$ c) $2 \sin 3(\beta - \alpha)$ d) $2 \sin 3(\beta + \alpha)$ 588. If α, β, γ are the cube roots of $p, p < 0$ then for any x, y and z the values of $\frac{x + y \beta = x}{x^3 \beta + y + x \pi}$ are a) ω, ω^2 b) $-\omega, -\omega^2$ c) $1, -1$ d) None of these 589. If $p^2 - p + 1 = 0$, then the value of p^{3n} can be a) 1 b) -1 c) 0 d) None of these 590. If $a = \cos \theta + i \sin \theta$, then $\frac{1+\alpha}{1-a}$ is equal to a) $\cot \frac{\theta}{2}$ b) $\cot \theta$ c) $i \cot \frac{\theta}{2}$ d) $i \tan \frac{\theta}{2}$ 591. If $z = r(\cos \theta + i \sin \theta)$, then the value of $\frac{z}{z} + \frac{z}{z}$ is a) $\cos 2\theta$ b) $2\cos 2\theta$ c) $2\cos \theta$ d) $2\sin \theta$ 592. In a give parallelogram, if the points P_1 and P_2 represent two complex numbers z_1 and z_2 , then the point P_3 represents the number $y + \frac{y^2}{y^2} + \frac{p_3}{y}$ $y = \frac{p_3}{y} - \frac{p_3}{y} - \frac{p_1}{y} - \frac{p_1}{y} - \frac{p_2}{y}$ d) $z_1 + z_2$ 593. If $\arg(z) = \theta$ then $\arg(z)$ is equal to a) $\theta - \pi$ b) $\pi - \theta$ c) θ d) $-\theta$ 594. If z is a complex number, then the minimum value of $ z + z - 1 $ is a) 1 b) 0 c) $\frac{1}{2}$ d) None of these 595. The complex numbers sin $x + i \cos 2x$ and $\cos x - i \sin 2x$ are conjugate to each other for a) $x = n\pi$ b) $x = \left(n + \frac{1}{2}\right)\pi$ c) $x = 0$ d) No value of x 596. If the equations $x^2 + ax + b = 0$ hand $x^2 + bx + a = 0$ have a common root, then the numerical value of			c) 1:3	d) 3:1
584. The number of real roots of $f(x) = 0$, where $f(x) = (x - 1)(x - 2)(x - 3)(x - 4)$ bying in the interval (1, 3) is a) 1 b) 2 c) 3 d) 4 585. If z is a complex number, then $ 3z - 1 = 3 z - 2 $ represents a) $y \cdot axis$ b) A circle () $x \cdot axis$ d) A line parallel to $y \cdot axis$ 586. The triangle with vertices at the points $z_1, z_2, (1 - i)z_1 + i z_2$ is a) Right angled but not isosceles b) Isosceles but not ringht angled c) Right angled and isosceles d) Equilateral 587. If $x = \frac{1}{x} = 2 \sin a, y = y + \frac{1}{y} = 2 \cos \beta$, then $x^3y^3 + \frac{1}{x^3y^3}$ is a) $2 \cos 3(\beta - \alpha)$ b) $2 \cos 3(\beta + \alpha)$ c) $2 \sin 3(\beta - \alpha)$ d) $2 \sin 3(\beta + \alpha)$ 588. If α, β, γ are the cube roots of $p, p < 0$ then for any x, y and z the values of $\frac{x (z + p \beta + z)}{x^2 p \gamma + z_\alpha}$ are a) ω, ω^2 b) $-\omega, -\omega^2$ c) $1, -1$ d) None of these 589. If $p^2 - p + 1 = 0$, then the value of $p^{3\pi}$ can be a) 1 b) -1 c) 0 d) None of these 590. If $a = \cos \theta + i \sin \theta$, then $\frac{1+a}{1-a}$ is equal to a) $\cos \frac{\theta}{2}$ b) $\cos \theta$ c) $i \cot \frac{\theta}{2}$ c) $2\cos \theta$ d) $2 \sin \frac{\theta}{2}$ 591. If $z = r(\cos \theta + i \sin \theta)$, then the value of $\frac{z}{x} + \frac{z}{x}$ is a) $\cos 2\theta$ b) $2\cos 2\theta$ c) $2\cos \theta$ d) $2\sin \theta$ 592. In a give parallelogram, if the points P_1 and P_2 represent two complex numbers z_1 and z_2 , then the point P_3 represents the number $y = \frac{P_3}{P_2}$ $\frac{P_3}{P_2}$ $\frac{P_3}{P_3}$ $\frac{P_3}{P_2}$ $\frac{P_3}{P_2}$ $\frac{P_3}{P_3}$ $\frac{P_3}{P_2}$ P	583. If $(x + iy) = \sqrt{\frac{1+2i}{3+4i'}}$, then	$(x^2 + y^2)^2$ is equal to		
3) is a) 1 b) 2 c) 3 d) 4 585. If z is a complex number, then $ 3z - 1 = 3 z - 2 $ represents a) y-axis b) A circle c) x-axis d) A line parallel to y-axis 586. The triangle with vertices at the points $z_1, z_2, (1 - i)z_1 + i z_2$ is a) Right angled but not isosceles b) Isosceles but not right angled c) Right angled and isosceles d) Equilateral 587. If $x = \frac{1}{x} = 2 \sin \alpha, y = y + \frac{1}{y} = 2 \cos \beta$, then $x^3y^3 + \frac{1}{x^3y^3}$ is a) $2 \cos 3(\beta - \alpha)$ b) $2 \cos 3(\beta + \alpha)$ c) $2 \sin 3(\beta - \alpha)$ d) $2 \sin 3(\beta + \alpha)$ 588. If α, β, γ are the cube roots of $p, p < 0$ then for any x, y and z the values of $\frac{x a + y \beta + x y}{x \beta + y + y + z z}$ are a) ω, ω^2 b) $-\omega, -\omega^2$ c) $1, -1$ d) None of these 589. If $p^2 - p + 1 = 0$, then the value of p^{3n} can be a) 1 b) -1 c) 0 d) None of these 590. If $a = \cos \theta + i \sin \theta$, then $\frac{11 + x}{1 - a}$ is equal to a) $\cot \frac{\theta}{2}$ b) $\cot \theta$ c) $i \cot \frac{\theta}{2}$ d) $i \tan \frac{\theta}{2}$ 591. If $z = r(\cos \theta + i \sin \theta)$, then the value of $\frac{z}{z} + \frac{z}{z}$ is a) $\cos 2\theta$ b) $2\cos 2\theta$ c) $2\cos \theta$ d) $2\sin \theta$ 592. In a give parallelogram, if the points P_1 and P_2 represent two complex numbers z_1 and z_0 , then the point P_3 represents the number $y = \frac{P_1}{P_2} - \frac{P_2}{P_1}$ z_1 and z_0 , then the point P_3 represents the number $y = \frac{P_2}{P_2} - \frac{P_1}{P_1}$ d) $\pi - \theta$ c) θ d) $-\theta$ 595. The complex number, then the minimum value of $ z + z - 1 $ is a) 1 b) 0 c) $\frac{1}{2}$ d) None of these 595. The complex numbers is $x + i \cos 2x$ and $\cos x - i \sin 2x$ are conjugate to each other for a) $x = n\pi$ b) $x = (n + \frac{1}{2})\pi$ c) $x = 0$ d) No value of x 596. If the equations $x^2 + ax + b = 0$ and $x^2 + bx + a = 0$ have a common root, then the numerical value of	,	, ,	<i>, , , , , , , , , ,</i>	<i>.</i>
585. If z is a complex number, then $ 3z - 1 = 3 z - 2 $ represents a) y-axis b) A circle c) x-axis b) A circle c) x-axis c)		s of $f(x) = 0$, where $f(x) =$	(x-1)(x-2)(x-3)(x-3)(x-3)(x-3)(x-3)(x-3)(x-3)(x-3	- 4) lying in the interval (1,
a) y-axis b) A circle c) x-axis d) A line parallel to y-axis 586. The triangle with vertices at the points $z_1, z_2, (1-i)z_1 + iz_2$ is a) Right angled but not isosceles b) Isosceles but not right angled c) Right angled and isosceles d) Equilateral 587. If $x = \frac{1}{x} = 2 \sin \alpha, y = y + \frac{1}{y} = 2 \cos \beta$, then $x^3y^3 + \frac{1}{x^3y^3}$ is a) $2 \cos 3(\beta - \alpha)$ b) $2 \cos 3(\beta + \alpha)$ c) $2 \sin 3(\beta - \alpha)$ d) $2 \sin 3(\beta + \alpha)$ 588. If α, β, γ are the cube roots of $p, p < 0$ then for any x, y and z the values of $\frac{z \alpha \neq y \beta = y}{x \beta + y + z \alpha}$ are a) ω, ω^2 b) $-\omega, -\omega^2$ c) $1, -1$ d) None of these 589. If $p^2 - p + 1 = 0$, then the value of p^3 can be a) 1 b) -1 c) 0 d) None of these 590. If $a = \cos \theta + i \sin \theta$, then $\frac{1+a}{1-a}$ is equal to a) $\cot \frac{\theta}{2}$ b) $\cot \theta$ c) $i \cot \frac{\theta}{2}$ d) $i \tan \frac{\theta}{2}$ 591. If $z = r(\cos \theta + i \sin \theta)$, then the value of $\frac{z}{z} + \frac{z}{x}$ is a) $\cos 2\theta$ b) $2\cos 2\theta$ c) $2\cos \theta$ d) $2\sin \theta$ 592. In a give parallelogram, if the points P_1 and P_2 represent two complex numbers z_1 and z_2 , then the point P_3 represents the number $y \frac{1}{p^2} \frac{P_3}{p_1 p_2} \frac{P_1}{p_1}$ z_1 and z_2 then the point P_3 represents the number $y \frac{1}{p^2} \frac{P_1}{p_1} \frac{P_1}{p_1}$ z_1 and z_2 is equal to a) $\theta - \pi$ b) $\pi - \theta$ c) θ d) $-\theta$ 593. If $arg(z) = \theta$ then arg(z) is equal to a) $\theta - \pi$ b) $\pi - \theta$ c) θ d) $-\theta$ 594. If z is a complex number, then the minimum value of $ z + z - 1 $ is a) 1 b) 0 c) $\frac{1}{2}$ d) None of these 595. The complex numbers in $x + i \cos 2x$ and $\cos x - i \sin 2x$ are conjugate to each other for a) $x = n\pi$ b) $x = (n + \frac{1}{2})\pi$ c) $x = 0$ d) No value of x 596. If the equations $x^2 + ax + b = 0$ and $x^2 + bx + a = 0$ have a common root, then the numerical value of	a) 1	b) 2	c) 3	d) 4
c) x-axis d) A line parallel to y-axis 586. The triangle with vertices at the points $z_1, z_2, (1-i)z_1 + iz_2$ is a) Right angled but not isosceles b) Isosceles but not right angled c) Right angled and isosceles d) Equilateral 587. If $x = \frac{1}{x} = 2 \sin \alpha, y = y + \frac{1}{y} = 2 \cos \beta$, then $x^3y^3 + \frac{1}{x^2y^2}$ is a) $2 \cos 3(\beta - \alpha)$ b) $2 \cos 3(\beta + \alpha)$ c) $2 \sin 3(\beta - \alpha)$ d) $2 \sin 3(\beta + \alpha)$ 588. If α, β, γ are the cube roots of $p, < 0$ then for any x, y and z the values of $\frac{x \alpha + y \beta + z}{x \beta + y + z \alpha}$ are a) ω, ω^2 b) $-\omega, -\omega^2$ c) $1, -1$ d) None of these 589. If $p^2 - p + 1 = 0$, then the value of p^{3n} can be a) 1 b) -1 c) 0 d) None of these 590. If $a = \cos \theta + i \sin \theta$, then $\frac{14\pi}{1-\alpha}$ is equal to a) $\cot \frac{\theta}{2}$ b) $\cot \theta$ c) $i \cot \frac{\theta}{2}$ d) $i \tan \frac{\theta}{2}$ 591. If $z = r (\cos \theta + i \sin \theta)$, then the value of $\frac{z}{z} + \frac{z}{z}$ is a) $\cos 2\theta$ b) $2\cos 2\theta$ c) $2\cos \theta$ d) $2\sin \theta$ 592. In a give parallelogram, if the points P_1 and P_2 represent two complex numbers z_1 and z_2 , then the point P_3 represents the number $y^3 - y^3 - y^3$ $y^2 - y^2 - y^2$ $z = 0$ $z_1 \times z_2$ d) $z_1 + z_2$ 593. If $arg(z) = \theta$ then arg(z) is equal to a) $\theta - \pi$ b) $\pi - \theta$ c) θ d) $-\theta$ d) $-\theta$ 594. If z is a complex number, then the minimum value of $ z + z - 1 $ is a) 1 b) 0 c) $\frac{1}{2}$ d) None of these 595. The complex numbers is $x + i \cos 2x$ and $\cos x - i \sin 2x$ are conjugate to each other for a) $x = n\pi$ b) $x = \left(n + \frac{1}{2}\right)\pi$ c) $x = 0$ d) No value of x 596. If the equations $x^2 + ax + b = 0$ and $x^2 + bx + a = 0$ have a common root, then the numerical value of	585. If z is a complex number	, then $ 3z - 1 = 3 z - 2 $ r	epresents	
586. The triangle with vertices at the points $z_1, z_2, (1-i)z_1 + i z_2$ is a) Right angled but not isosceles b) Isosceles but not right angled c) Right angled and isosceles d) Equilateral 587. If $x = \frac{1}{x} = 2 \sin \alpha, y = y + \frac{1}{y} = 2 \cos \beta$, then $x^3y^3 + \frac{1}{x^{3y^3}}$ is a) $2 \cos 3(\beta - \alpha)$ b) $2 \cos 3(\beta + \alpha)$ c) $2 \sin 3(\beta - \alpha)$ d) $2 \sin 3(\beta + \alpha)$ 588. If α, β, γ are the cube roots of $p, p < 0$ then for any x, y and z the values of $\frac{x d + y \beta + z \gamma}{x \beta + y + z \alpha}$ are a) ω, ω^2 b) $-\omega, -\omega^2$ c) $1, -1$ d) None of these 589. If $p^2 - p + 1 = 0$, then the value of p^{3n} can be a) 1 b) -1 c) 0 d) None of these 590. If $a = \cos \theta + i \sin \theta$, then $\frac{1+a}{1+a}$ is equal to a) $\cot \frac{\theta}{2}$ b) $\cot \theta$ c) $i \cot \frac{\theta}{2}$ d) $i \tan \frac{\theta}{2}$ 591. If $z = r (\cos \theta + i \sin \theta)$, then the value of $\frac{z}{z} + \frac{z}{z}$ is a) $\cos 2\theta$ b) $2\cos 2\theta$ c) $2\cos \theta$ d) $2\sin \theta$ 592. In a give parallelogram, if the points P_1 and P_2 represent two complex numbers z_1 and z_2 , then the point P_3 represents the number $y = \frac{P_3}{P_2} = \frac{P_1}{\sqrt{D}} = \frac{P_2}{\sqrt{D}} = \frac{P_1}{\sqrt{D}} = \frac{P_2}{\sqrt{D}} = \frac{P_1}{\sqrt{D}} = P_$	a) <i>y</i> -axis		b) A circle	
a) Right angled but not isosceles b) Isosceles but not right angled c) Right angled and isosceles d) Equilateral 587. If $x = \frac{1}{x} = 2 \sin \alpha$, $y = y + \frac{1}{y} = 2 \cos \beta$, then $x^3 y^3 + \frac{1}{x^3 y^3}$ is a) $2 \cos 3(\beta - \alpha)$ b) $2 \cos 3(\beta + \alpha)$ c) $2 \sin 3(\beta - \alpha)$ d) $2 \sin 3(\beta + \alpha)$ 588. If α, β, γ are the cube roots of $p, p < 0$ then for any x, y and z the values of $\frac{x(z+y) + z}{x^{\beta+y} + z\alpha}$ are a) ω, ω^2 b) $-\omega, -\omega^2$ c) $1, -1$ d) None of these 589. If $p^2 - p + 1 = 0$, then the value of p^{3n} can be a) 1 b) -1 c) 0 d) None of these 590. If $a = \cos \theta + i \sin \theta$, then $\frac{1+a}{1-a}$ is equal to a) $\cot \frac{\theta}{2}$ b) $\cot \theta$ c) $i \cot \frac{\theta}{2}$ d) $i \tan \frac{\theta}{2}$ 591. If $z = r (\cos \theta + i \sin \theta)$, then the value of $\frac{z}{z} + \frac{z}{z}$ is a) $\cos 2\theta$ b) $2\cos 2\theta$ c) $2\cos \theta$ d) $2\sin \theta$ 592. In a give parallelogram, if the points P_1 and P_2 represent two complex numbers z_1 and z_2 , then the point P_3 represents the number $y = \frac{1}{\sqrt{p}} \frac{P_3}{p_1} \frac{P_1}{p_1}$ $a) 2\pi + 2z$ b) $z_1 - z_2$ c) $z_1 \times z_2$ d) $z_1 \div z_2$ 593. If $\arg(z) = \theta$ then $\arg(z)$ is equal to a) $\theta - \pi$ b) $\pi - \theta$ c) θ d) $-\theta$ 594. If z is a complex number, then the minimum value of $ z + z - 1 $ is a) 1 b) 0 c) $\frac{1}{2}$ d) None of these 595. The complex numbers $\sin x + i \cos 2x$ and $\cos x - i \sin 2x$ are conjugate to each other for a) $x = n\pi$ b) $x = \left(n + \frac{1}{2}\right)\pi$ c) $x = 0$ d) No value of x 596. If the equations $x^2 + ax + b = 0$ and $x^2 + bx + a = 0$ have a common root, then the numerical value of	2		, <u>, , , , , , , , , , , , , , , , , , </u>	5
b) Isosceles but not right angled c) Right angled and isosceles d) Equilateral 587. If $x = \frac{1}{x} = 2 \sin \alpha, y = y + \frac{1}{y} = 2 \cos \beta$, then $x^3 y^3 + \frac{1}{x^3 y^3}$ is a) $2 \cos 3(\beta - \alpha)$ b) $2 \cos 3(\beta + \alpha)$ c) $2 \sin 3(\beta - \alpha)$ d) $2 \sin 3(\beta + \alpha)$ 588. If α, β, γ are the cube roots of $p, p < 0$ then for any x, y and z the values of $\frac{x + y + p + x}{x + \beta + y + x \alpha}$ are a) ω, ω^2 b) $-\omega, -\omega^2$ c) $1, -1$ d) None of these 589. If $p^2 - p + 1 = 0$, then the value of p^{3n} can be a) 1 b) -1 c) 0 d) None of these 590. If $a = \cos \theta + i \sin \theta$, then $\frac{1+\alpha}{1-\alpha}$ is equal to a) $\cot \frac{\theta}{2}$ b) $\cot \theta$ c) $i \cot \frac{\theta}{2}$ d) $i \tan \frac{\theta}{2}$ 591. If $z = r(\cos \theta + i \sin \theta)$, then the value of $\frac{x}{z} + \frac{x}{z}$ is a) $\cos 2\theta$ b) $2 \cos 2\theta$ c) $2 \cos \theta$ d) $2 \sin \theta$ 592. In a give parallelogram, if the points P_1 and P_2 represent two complex numbers z_1 and z_2 , then the point P_3 represents the number $y = \frac{P_3}{P_2} = \frac{P_1}{P_1}$ $z_1 = \frac{P_1}{P_1}$ b) 0 c) $\frac{1}{2}$ d) None of these 595. The complex number, then the minimum value of $ z + z - 1 $ is a) 1 b) 0 c) $\frac{1}{2}$ d) None of these 595. The complex numbers is $x + i \cos 2x$ and $\cos x - i \sin 2x$ are conjugate to each other for a) $x = n\pi$ b) $x = (n + \frac{1}{2})\pi$ c) $x = 0$ d) No value of x 596. If the equations $x^2 + ax + b = 0$ and $x^2 + bx + a = 0$ have a common root, then the numerical value of			$z_1 + i z_2$ is	
d) Equilateral 587. If $x = \frac{1}{x} = 2 \sin \alpha$, $y = y + \frac{1}{y} = 2 \cos \beta$, then $x^3y^3 + \frac{1}{x^3y^3}$ is a) $2 \cos 3(\beta - \alpha)$ b) $2 \cos 3(\beta + \alpha)$ c) $2 \sin 3(\beta - \alpha)$ d) $2 \sin 3(\beta + \alpha)$ 588. If α, β, γ are the cube roots of $p, p < 0$ then for any x, y and z the values of $\frac{x \alpha + y \beta + x}{x (\beta + y) + x \alpha}$ are a) ω, ω^2 b) $-\omega, -\omega^2$ c) $1, -1$ d) None of these 589. If $p^2 - p + 1 = 0$, then the value of p^{3n} can be a) 1 b) -1 c) 0 d) None of these 590. If $a = \cos \theta + i \sin \theta$, then $\frac{1+a}{1-a}$ is equal to a) $\cot \frac{\theta}{2}$ b) $\cot \theta$ c) $i \cot \frac{\theta}{2}$ d) $i \tan \frac{\theta}{2}$ 591. If $z = r(\cos \theta + i \sin \theta)$, then the value of $\frac{z}{z} + \frac{z}{z}$ is a) $\cos 2\theta$ b) $2\cos 2\theta$ c) $2\cos \theta$ d) $2\sin \theta$ 592. In a give parallelogram, if the points P_1 and P_2 represent two complex numbers z_1 and z_2 , then the point P_3 represents the number $y = \frac{P_3}{\sqrt{p}} $	b) Isosceles but not right	angled		
587. If $x = \frac{1}{x} = 2 \sin \alpha$, $y = y + \frac{1}{y} = 2 \cos \beta$, then $x^3y^3 + \frac{1}{x^3y^3}$ is a) $2 \cos 3(\beta - \alpha)$ b) $2 \cos 3(\beta + \alpha)$ c) $2 \sin 3(\beta - \alpha)$ d) $2 \sin 3(\beta + \alpha)$ 588. If α, β, γ are the cube roots of $p, p < 0$ then for any x, y and z the values of $\frac{x\alpha + y\beta + x \cdot \gamma}{x\beta + y\gamma + z\alpha}$ are a) ω, ω^2 b) $-\omega, -\omega^2$ c) $1, -1$ d) None of these 589. If $p^2 - p + 1 = 0$, then the value of p^{3n} can be a) 1 b) -1 c) 0 d) None of these 590. If $a = \cos \theta + i \sin \theta$, then $\frac{1+a}{1-a}$ is equal to a) $\cot \frac{\theta}{2}$ b) $\cot \theta$ c) $i \cot \frac{\theta}{2}$ d) $i \tan \frac{\theta}{2}$ 591. If $z = r(\cos \theta + i \sin \theta)$, then the value of $\frac{z}{x} + \frac{z}{x}$ is a) $\cos 2\theta$ b) $2\cos 2\theta$ c) $2\cos \theta$ d) $2\sin \theta$ 592. In a give parallelogram, if the points P_1 and P_2 represent two complex numbers z_1 and z_2 , then the point P_3 represents the number $y = \frac{y^3}{P_2} + \frac{P_1}{P_1}$ $Q = \frac{y^3}{P_1} + \frac{z}{Z}$ b) $z_1 - z_2$ c) $z_1 \times z_2$ d) $z_1 \div z_2$ 593. If $\arg(z) = \theta$ then $\arg(\bar{z})$ is equal to a) $\theta - \pi$ b) $\pi - \theta$ c) θ d) $-\theta$ 594. If z is a complex number, then the minimum value of $ z + z - 1 $ is a) 1 b) 0 c) $\frac{1}{2}$ d) None of these 595. The complex numbers $\sin x + i \cos 2x$ and $\cos x - i \sin 2x$ are conjugate to each other for a) $x = n\pi$ b) $x = (n + \frac{1}{2})\pi$ c) $x = 0$ d) No value of x 596. If the equations $x^2 + ax + b = 0$ and $x^2 + bx + a = 0$ have a common root, then the numerical value of	c) Right angled and isosc	celes		
a) $2 \cos 3(\beta - \alpha)$ b) $2 \cos 3(\beta + \alpha)$ c) $2 \sin 3(\beta - \alpha)$ d) $2 \sin 3(\beta + \alpha)$ 588. If α, β, γ are the cube roots of $p, p < 0$ then for any x, y and z the values of $\frac{x a + y \beta + z \gamma}{x \beta + y \gamma + z \alpha}$ are a) ω, ω^2 b) $-\omega, -\omega^2$ c) $1, -1$ d) None of these 589. If $p^2 - p + 1 = 0$, then the value of p^{3n} can be a) 1 b) -1 c) 0 d) None of these 590. If $a = \cos \theta + i \sin \theta$, then $\frac{1+\alpha}{1-\alpha}$ is equal to a) $\cot \frac{\theta}{2}$ b) $\cot \theta$ c) $i \cot \frac{\theta}{2}$ d) $i \tan \frac{\theta}{2}$ 591. If $z = r(\cos \theta + i \sin \theta)$, then the value of $\frac{z}{z} + \frac{z}{z}$ is a) $\cos 2\theta$ b) $2\cos 2\theta$ c) $2\cos \theta$ d) $2\sin \theta$ 592. In a give parallelogram, if the points P_1 and P_2 represent two complex numbers z_1 and z_2 , then the point P_3 represents the number $y = \frac{P_3}{P_2} = \frac{P_1}{P_1}$ a) $z_1 + z_2$ b) $z_1 - z_2$ c) $z_1 \times z_2$ d) $z_1 + z_2$ 593. If $\arg(z) = \theta$ then $\arg(z)$ is equal to a) $\theta - \pi$ b) $\pi - \theta$ c) θ d) $-\theta$ 594. If z is a complex number, then the minimum value of $ z + z - 1 $ is a) 1 b) 0 c) $\frac{1}{2}$ d) None of these 595. The complex numbers $\sin x + i \cos 2x$ and $\cos x - i \sin 2x$ are conjugate to each other for a) $x = n\pi$ b) $x = (n + \frac{1}{2})\pi$ c) $x = 0$ d) No value of x 596. If the equations $x^2 + ax + b = 0$ and $x^2 + bx + a = 0$ have a common root, then the numerical value of	d) Equilateral			
a) $2 \cos 3(\beta - \alpha)$ b) $2 \cos 3(\beta + \alpha)$ c) $2 \sin 3(\beta - \alpha)$ d) $2 \sin 3(\beta + \alpha)$ 588. If α, β, γ are the cube roots of $p, p < 0$ then for any x, y and z the values of $\frac{x a + y \beta + z \gamma}{x \beta + y \gamma + z \alpha}$ are a) ω, ω^2 b) $-\omega, -\omega^2$ c) $1, -1$ d) None of these 589. If $p^2 - p + 1 = 0$, then the value of p^{3n} can be a) 1 b) -1 c) 0 d) None of these 590. If $a = \cos \theta + i \sin \theta$, then $\frac{1+\alpha}{1-\alpha}$ is equal to a) $\cot \frac{\theta}{2}$ b) $\cot \theta$ c) $i \cot \frac{\theta}{2}$ d) $i \tan \frac{\theta}{2}$ 591. If $z = r(\cos \theta + i \sin \theta)$, then the value of $\frac{z}{z} + \frac{z}{z}$ is a) $\cos 2\theta$ b) $2\cos 2\theta$ c) $2\cos \theta$ d) $2\sin \theta$ 592. In a give parallelogram, if the points P_1 and P_2 represent two complex numbers z_1 and z_2 , then the point P_3 represents the number $y = \frac{P_3}{P_2} = \frac{P_1}{P_1}$ a) $z_1 + z_2$ b) $z_1 - z_2$ c) $z_1 \times z_2$ d) $z_1 + z_2$ 593. If $\arg(z) = \theta$ then $\arg(z)$ is equal to a) $\theta - \pi$ b) $\pi - \theta$ c) θ d) $-\theta$ 594. If z is a complex number, then the minimum value of $ z + z - 1 $ is a) 1 b) 0 c) $\frac{1}{2}$ d) None of these 595. The complex numbers $\sin x + i \cos 2x$ and $\cos x - i \sin 2x$ are conjugate to each other for a) $x = n\pi$ b) $x = (n + \frac{1}{2})\pi$ c) $x = 0$ d) No value of x 596. If the equations $x^2 + ax + b = 0$ and $x^2 + bx + a = 0$ have a common root, then the numerical value of	587. If $x = \frac{1}{2} = 2 \sin \alpha$, $y = y = -\frac{1}{2}$	$+\frac{1}{2} = 2\cos\beta$, then $x^3y^3 + -$	$\frac{1}{3}$ is	
588. If α, β, γ are the cube roots of <i>p</i> , <i>p</i> < 0 then for any <i>x</i> , <i>y</i> and <i>z</i> the values of $\frac{x (x+y) \beta+z y}{x \beta+y y+z a}$ are a) ω, ω^2 b) $-\omega, -\omega^2$ c) 1, -1 d) None of these 589. If $p^2 - p + 1 = 0$, then the value of p^{3n} can be a) 1 b) -1 c) 0 d) None of these 590. If $a = \cos \theta + i \sin \theta$, then $\frac{1+a}{1-a}$ is equal to a) $\cot \frac{\theta}{2}$ b) $\cot \theta$ c) $i \cot \frac{\theta}{2}$ d) $i \tan \frac{\theta}{2}$ 591. If $z = r (\cos \theta + i \sin \theta)$, then the value of $\frac{z}{z} + \frac{z}{z}$ is a) $\cos 2\theta$ b) $2\cos 2\theta$ c) $2\cos \theta$ d) $2\sin \theta$ 592. In a give parallelogram, if the points P_1 and P_2 represent two complex numbers z_1 and z_2 , then the point P_3 represents the number $v = \frac{v}{\rho_2} + \frac{P_3}{\rho_1}$ a) $z_1 + z_2$ b) $z_1 - z_2$ c) $z_1 \times z_2$ d) $z_1 \div z_2$ 593. If $\arg(z) = \theta$ then $\arg(\bar{z})$ is equal to a) $\theta - \pi$ b) $\pi - \theta$ c) θ d) $-\theta$ 594. If <i>z</i> is a complex number, then the minimum value of $ z + z - 1 $ is a) 1 b) 0 c) $\frac{1}{2}$ d) None of these 595. The complex numbers sin $x + i \cos 2x$ and $\cos x - i \sin 2x$ are conjugate to each other for a) $x = n\pi$ b) $x = (n + \frac{1}{2})\pi$ c) $x = 0$ d) Novalue of x 596. If the equations $x^2 + ax + b = 0$ and $x^2 + bx + a = 0$ have a common root, then the numerical value of		y	, y	d) $2 \sin 3(\beta + \alpha)$
a) ω, ω^2 b) $-\omega, -\omega^2$ c) $1, -1$ d) None of these 589. If $p^2 - p + 1 = 0$, then the value of p^{3n} can be a) 1 b) -1 c) 0 d) None of these 590. If $a = \cos \theta + i \sin \theta$, then $\frac{1+a}{1-a}$ is equal to a) $\cot \frac{\theta}{2}$ b) $\cot \theta$ c) $i \cot \frac{\theta}{2}$ d) $i \tan \frac{\theta}{2}$ 591. If $z = r(\cos \theta + i \sin \theta)$, then the value of $\frac{z}{z} + \frac{z}{z}$ is a) $\cos 2\theta$ b) $2\cos 2\theta$ c) $2\cos \theta$ d) $2\sin \theta$ 592. In a give parallelogram, if the points P_1 and P_2 represent two complex numbers z_1 and z_2 , then the point P_3 represents the number $V = \frac{P_3}{Q} = \frac{P_1}{Q} = \frac{P_1}{Q} = \frac{P_1}{Q} = \frac{P_1}{Q} = \frac{P_1}{Q} = \frac{P_2}{Q} = \frac{P_1}{Q} = \frac{P_2}{Q} = \frac{P_1}{Q} = \frac{P_1}{Q} = \frac{P_2}{Q} = \frac{P_1}{Q} = \frac{P_1}{Q} = \frac{P_2}{Q} = \frac{P_1}{Q} = \frac{P_2}{Q} = \frac{P_1}{Q} = \frac{P_2}{Q} = \frac{P_1}{Q} = \frac{P_2}{Q} = \frac{P_2}{Q} = \frac{P_2}{Q} = \frac{P_1}{Q} = \frac{P_2}{Q} = P$				0.
589. If $p^2 - p + 1 = 0$, then the value of p^{3n} can be a) 1 b) -1 c) 0 d) None of these 590. If $a = \cos \theta + i \sin \theta$, then $\frac{1+a}{1-a}$ is equal to a) $\cot \frac{\theta}{2}$ b) $\cot \theta$ c) $i \cot \frac{\theta}{2}$ d) $i \tan \frac{\theta}{2}$ 591. If $z = r (\cos \theta + i \sin \theta)$, then the value of $\frac{z}{z} + \frac{z}{z}$ is a) $\cos 2\theta$ b) $2\cos 2\theta$ c) $2\cos \theta$ d) $2\sin \theta$ 592. In a give parallelogram, if the points P_1 and P_2 represent two complex numbers z_1 and z_2 , then the point P_3 represents the number $P_2 \longrightarrow P_1$ $P_2 \longrightarrow P_2$ $p_2 \longrightarrow P_1$ $p_2 \longrightarrow P_2$ $p_2 \longrightarrow P_1$ $p_2 \longrightarrow P_2$ $p_2 \longrightarrow P_1$ $p_2 \longrightarrow P_1$ $p_2 \longrightarrow P_2$ $p_2 \longrightarrow P_1$ $p_2 \longrightarrow P_1$ $p_2 \longrightarrow P_2$ $p_2 \longrightarrow P_2$ $p_2 \longrightarrow P_1$ $p_2 \longrightarrow P_2$ $p_2 \longrightarrow P_1$ $p_2 \longrightarrow P_2$ $p_2 \longrightarrow P_2$ $p_2 \longrightarrow P_2$ $p_2 \longrightarrow P_1$ $p_2 \longrightarrow P_2$ $p_2 \longrightarrow P_2$ p				$\frac{1}{\gamma + z \alpha}$ are
a) 1 b) -1 c) 0 d) None of these 590. If $a = \cos \theta + i \sin \theta$, then $\frac{1+a}{1-a}$ is equal to a) $\cot \frac{\theta}{2}$ b) $\cot \theta$ c) $i \cot \frac{\theta}{2}$ d) $i \tan \frac{\theta}{2}$ 591. If $z = r$ (cos $\theta + i \sin \theta$), then the value of $\frac{z}{z} + \frac{z}{z}$ is a) $\cos 2\theta$ b) $2\cos 2\theta$ c) $2\cos \theta$ d) $2\sin \theta$ 592. In a give parallelogram, if the points P_1 and P_2 represent two complex numbers z_1 and z_2 , then the point P_3 represents the number $P_2 \longrightarrow P_1$ $Q \longrightarrow x$ a) $z_1 + z_2$ b) $z_1 - z_2$ c) $z_1 \times z_2$ d) $z_1 + z_2$ 593. If $\arg(z) = \theta$ then $\arg(\bar{z})$ is equal to a) $\theta - \pi$ b) $\pi - \theta$ c) θ d) $-\theta$ 594. If z is a complex number, then the minimum value of $ z + z - 1 $ is a) 1 b) 0 c) $\frac{1}{2}$ d) None of these 595. The complex numbers $\sin x + i \cos 2x$ and $\cos x - i \sin 2x$ are conjugate to each other for a) $x = n\pi$ b) $x = (n + \frac{1}{2})\pi$ c) $x = 0$ d) No value of x 596. If the equations $x^2 + ax + b = 0$ and $x^2 + bx + a = 0$ have a common root, then the numerical value of	<i>,</i>	, ,	c) 1, −1	d) None of these
590. If $a = \cos \theta + i \sin \theta$, then $\frac{1+a}{1-a}$ is equal to a) $\cot \frac{\theta}{2}$ b) $\cot \theta$ c) $i \cot \frac{\theta}{2}$ d) $i \tan \frac{\theta}{2}$ 591. If $z = r$ ($\cos \theta + i \sin \theta$), then the value of $\frac{z}{z} + \frac{z}{z}$ is a) $\cos 2\theta$ b) $2\cos 2\theta$ c) $2\cos \theta$ d) $2\sin \theta$ 592. In a give parallelogram, if the points P_1 and P_2 represent two complex numbers z_1 and z_2 , then the point P_3 represents the number P_2 P_2 P_2 P_1 P_2 P_1 P_2 P_2 P_1 P_2 P_1 P_2 P_1 P_2 P_2 P_1 P_2 P_2 P_1 P_2 P_1 P_2 P_2 P_1 P_2 P_1 P_2 P_2 P_1 P_2 P_2 P_1 P_2 P_2 P_1 P_2 P_2 P_1 P_2 P_2 P_1 P_2 P_2 P_2 P_2 P_1 P_2				
a) $\cot \frac{\theta}{2}$ b) $\cot \theta$ c) $i \cot \frac{\theta}{2}$ d) $i \tan \frac{\theta}{2}$ 591. If $z = r (\cos \theta + i \sin \theta)$, then the value of $\frac{z}{z} + \frac{z}{z}$ is a) $\cos 2\theta$ b) $2\cos 2\theta$ c) $2\cos \theta$ d) $2\sin \theta$ 592. In a give parallelogram, if the points P_1 and P_2 represent two complex numbers z_1 and z_2 , then the point P_3 represents the number v P_2 v P_2 v P_1 P_2 v P_2 v P_3 P_2 v P_1 v P_2 v v v P_3 v v v v v v v v	,		c) 0	d) None of these
591. If $z = r (\cos \theta + i \sin \theta)$, then the value of $\frac{z}{z} + \frac{z}{z}$ is a) $\cos 2\theta$ b) $2\cos 2\theta$ c) $2\cos \theta$ d) $2\sin \theta$ 592. In a give parallelogram, if the points P_1 and P_2 represent two complex numbers z_1 and z_2 , then the point P_3 represents the number P_2 P_2 P_1 P_2 P_1 P_2 P_2 P_1 P_2 P_2 P_1 P_2 P_1 P_2 P_1 P_2 P_1 P_2 P_1 P_2 P_1 P_2 P_1 P_2 P_1 P_2 P_2 P_1 P_2 P_2 P_1 P_2 P_1 P_2 P_2 P_3 P_2 P_1 P_2 P_2 P_3 P_2 P_1 P_2 P_2 P_3 P_2 P_2 P_2 P_3 P_2 P_2 P_3 P_2 P_2 P_3 P_2 P_3 P_2 P_3 P_2 P_3 P_2 P_3 P_2 P_3 P_2 P_3 P_2 P_3 P_3 P_2 P_3	590. If $a = \cos \theta + i \sin \theta$, the	$n \frac{1+a}{1-a}$ is equal to		
591. If $z = r (\cos \theta + i \sin \theta)$, then the value of $\frac{z}{z} + \frac{z}{z}$ is a) $\cos 2\theta$ b) $2\cos 2\theta$ c) $2\cos \theta$ d) $2\sin \theta$ 592. In a give parallelogram, if the points P_1 and P_2 represent two complex numbers z_1 and z_2 , then the point P_3 represents the number P_2 P_2 P_1 P_2 P_1 P_2 P_2 P_1 P_2 P_2 P_1 P_2 P_1 P_2 P_1 P_2 P_1 P_2 P_1 P_2 P_1 P_2 P_1 P_2 P_1 P_2 P_2 P_1 P_2 P_2 P_1 P_2 P_1 P_2 P_2 P_3 P_2 P_1 P_2 P_2 P_3 P_2 P_1 P_2 P_2 P_3 P_2 P_2 P_2 P_3 P_2 P_2 P_3 P_2 P_2 P_3 P_2 P_3 P_2 P_3 P_2 P_3 P_2 P_3 P_2 P_3 P_2 P_3 P_2 P_3 P_3 P_2 P_3	a) $\cot \frac{\theta}{\theta}$	b) $\cot \theta$	c) i cot $\frac{\theta}{\theta}$	d) $i \tan \theta$
a) $\cos 2\theta$ b) $2\cos 2\theta$ c) $2\cos \theta$ d) $2\sin \theta$ 592. In a give parallelogram, if the points P_1 and P_2 represent two complex numbers z_1 and z_2 , then the point P_3 represents the number p_2 p_2 p_1 p_2 p_1 p_2 p_2 p_2 p_3 p_2 p_2 p_2 p_3 p_2 p_2 p_3 p_2 p_4 p_1 p_2 p_2 p_2 p_2 p_3 p_4 p_2 p_2 p_3 p_4 p_2 p_2 p_3 p_4 p_4 p_2 p_1 p_2 p_2 p_3 p_4 p_2 p_1 p_2 p_3 p_4	Z	_	$\frac{1}{2}$	$\frac{1}{2}$
592. In a give parallelogram, if the points P_1 and P_2 represent two complex numbers z_1 and z_2 , then the point P_3 represents the number p_2 p_2 p_1 p_2 p_2 p_1 p_2 p_2 p_2 p_1 p_2 p_1 p_2 p_2 p_1 p_2 p_2 p_2 p_3 p_4 p_1 p_2 p_2 p_2 p_2 p_2 p_3 p_4 p_1 p_2 p_2 p_2 p_2 p_2 p_3 p_4 p_4 p_2 p_4 p_4 p_4 p_4 p_2 p_2 p_4	591. If $z = r (\cos \theta + i \sin \theta)$,	then the value of $\frac{z}{z} + \frac{z}{z}$ is		
$z_1 \text{ and } z_2, \text{ then the point } P_3 \text{ represents the number}$ $P_2 \xrightarrow{P_1} P_1$ $P_2 \xrightarrow{P_2} P_1$ $P_2 \xrightarrow{P_1} P_1$ $P_2 \xrightarrow{P_2} P_2$ $P_$	a) cos 2 <i>θ</i>	b) 2cos 2 <i>θ</i>	c) 2cos θ	d) 2sin <i>θ</i>
$y = P_{3}$ $P_{2} = P_{1}$ $P_{2} = P_{2}$ $P_{2} = P_{1}$ $P_{2} = P_{2}$ $P_{2} = P_{1}$ $P_{2} = P_{1}$ $P_{2} = P_{2}$ $P_{2} = P_{1}$ $P_{2} = P_{2}$ $P_{2} = P_{1}$ $P_{2} = P_{2}$	592. In a give parallelogram, i	f the points P_1 and P_2 repre	sent two complex numbers	
$P_{2} \qquad P_{1} \qquad P_{1} \qquad P_{2} \qquad P_{1} \qquad P_{2} \qquad P_{1} \qquad P_{2} \qquad P_{2$	${oldsymbol z}_1$ and ${oldsymbol z}_2$, then the point	P_3 represents the number		
a) $z_1 + z_2$ b) $z_1 - z_2$ c) $z_1 \times z_2$ d) $z_1 \div z_2$ 593. If $\arg(z) = \theta$ then $\arg(\overline{z})$ is equal to a) $\theta - \pi$ b) $\pi - \theta$ c) θ d) $-\theta$ 594. If z is a complex number, then the minimum value of $ z + z - 1 $ is a) 1 b) 0 c) $\frac{1}{2}$ d) None of these 595. The complex numbers $\sin x + i \cos 2x$ and $\cos x - i \sin 2x$ are conjugate to each other for a) $x = n\pi$ b) $x = \left(n + \frac{1}{2}\right)\pi$ c) $x = 0$ d) No value of x 596. If the equations $x^2 + ax + b = 0$ and $x^2 + bx + a = 0$ have a common root, then the numerical value of	$Y P_3$			
a) $z_1 + z_2$ b) $z_1 - z_2$ c) $z_1 \times z_2$ d) $z_1 \div z_2$ 593. If $\arg(z) = \theta$ then $\arg(\overline{z})$ is equal to a) $\theta - \pi$ b) $\pi - \theta$ c) θ d) $-\theta$ 594. If z is a complex number, then the minimum value of $ z + z - 1 $ is a) 1 b) 0 c) $\frac{1}{2}$ d) None of these 595. The complex numbers $\sin x + i \cos 2x$ and $\cos x - i \sin 2x$ are conjugate to each other for a) $x = n\pi$ b) $x = \left(n + \frac{1}{2}\right)\pi$ c) $x = 0$ d) No value of x 596. If the equations $x^2 + ax + b = 0$ and $x^2 + bx + a = 0$ have a common root, then the numerical value of				
a) $z_1 + z_2$ b) $z_1 - z_2$ c) $z_1 \times z_2$ d) $z_1 \div z_2$ 593. If $\arg(z) = \theta$ then $\arg(\overline{z})$ is equal to a) $\theta - \pi$ b) $\pi - \theta$ c) θ d) $-\theta$ 594. If z is a complex number, then the minimum value of $ z + z - 1 $ is a) 1 b) 0 c) $\frac{1}{2}$ d) None of these 595. The complex numbers $\sin x + i \cos 2x$ and $\cos x - i \sin 2x$ are conjugate to each other for a) $x = n\pi$ b) $x = \left(n + \frac{1}{2}\right)\pi$ c) $x = 0$ d) No value of x 596. If the equations $x^2 + ax + b = 0$ and $x^2 + bx + a = 0$ have a common root, then the numerical value of	P			
a) $z_1 + z_2$ b) $z_1 - z_2$ c) $z_1 \times z_2$ d) $z_1 \div z_2$ 593. If $\arg(z) = \theta$ then $\arg(\overline{z})$ is equal to a) $\theta - \pi$ b) $\pi - \theta$ c) θ d) $-\theta$ 594. If z is a complex number, then the minimum value of $ z + z - 1 $ is a) 1 b) 0 c) $\frac{1}{2}$ d) None of these 595. The complex numbers $\sin x + i \cos 2x$ and $\cos x - i \sin 2x$ are conjugate to each other for a) $x = n\pi$ b) $x = \left(n + \frac{1}{2}\right)\pi$ c) $x = 0$ d) No value of x 596. If the equations $x^2 + ax + b = 0$ and $x^2 + bx + a = 0$ have a common root, then the numerical value of				
a) $z_1 + z_2$ b) $z_1 - z_2$ c) $z_1 \times z_2$ d) $z_1 \div z_2$ 593. If $\arg(z) = \theta$ then $\arg(\overline{z})$ is equal to a) $\theta - \pi$ b) $\pi - \theta$ c) θ d) $-\theta$ 594. If z is a complex number, then the minimum value of $ z + z - 1 $ is a) 1 b) 0 c) $\frac{1}{2}$ d) None of these 595. The complex numbers $\sin x + i \cos 2x$ and $\cos x - i \sin 2x$ are conjugate to each other for a) $x = n\pi$ b) $x = \left(n + \frac{1}{2}\right)\pi$ c) $x = 0$ d) No value of x 596. If the equations $x^2 + ax + b = 0$ and $x^2 + bx + a = 0$ have a common root, then the numerical value of	x			
593. If $\arg(z) = \theta$ then $\arg(\overline{z})$ is equal to a) $\theta - \pi$ b) $\pi - \theta$ c) θ d) $-\theta$ 594. If z is a complex number, then the minimum value of $ z + z - 1 $ is a) 1 b) 0 c) $\frac{1}{2}$ d) None of these 595. The complex numbers $\sin x + i \cos 2x$ and $\cos x - i \sin 2x$ are conjugate to each other for a) $x = n\pi$ b) $x = \left(n + \frac{1}{2}\right)\pi$ c) $x = 0$ d) No value of x 596. If the equations $x^2 + ax + b = 0$ and $x^2 + bx + a = 0$ have a common root, then the numerical value of	0			D
a) $\theta - \pi$ b) $\pi - \theta$ c) θ d) $-\theta$ 594. If z is a complex number, then the minimum value of $ z + z - 1 $ is a) 1 b) 0 c) $\frac{1}{2}$ d) None of these 595. The complex numbers sin $x + i \cos 2x$ and $\cos x - i \sin 2x$ are conjugate to each other for a) $x = n\pi$ b) $x = \left(n + \frac{1}{2}\right)\pi$ c) $x = 0$ d) No value of x 596. If the equations $x^2 + ax + b = 0$ and $x^2 + bx + a = 0$ have a common root, then the numerical value of			c) $z_1 \times z_2$	d) $z_1 \div z_2$
594. If z is a complex number, then the minimum value of $ z + z - 1 $ is a) 1 b) 0 c) $\frac{1}{2}$ d) None of these 595. The complex numbers $\sin x + i \cos 2x$ and $\cos x - i \sin 2x$ are conjugate to each other for a) $x = n\pi$ b) $x = \left(n + \frac{1}{2}\right)\pi$ c) $x = 0$ d) No value of x 596. If the equations $x^2 + ax + b = 0$ and $x^2 + bx + a = 0$ have a common root, then the numerical value of			a) A	d) _ A
a) 1 b) 0 c) $\frac{1}{2}$ d) None of these 595. The complex numbers $\sin x + i \cos 2x$ and $\cos x - i \sin 2x$ are conjugate to each other for a) $x = n\pi$ b) $x = \left(n + \frac{1}{2}\right)\pi$ c) $x = 0$ d) No value of x 596. If the equations $x^2 + ax + b = 0$ and $x^2 + bx + a = 0$ have a common root, then the numerical value of	,	,	,	uj — 0
595. The complex numbers $\sin x + i \cos 2x$ and $\cos x - i \sin 2x$ are conjugate to each other for a) $x = n\pi$ b) $x = \left(n + \frac{1}{2}\right)\pi$ c) $x = 0$ d) No value of x 596. If the equations $x^2 + ax + b = 0$ and $x^2 + bx + a = 0$ have a common root, then the numerical value of				d) None of these
a) $x = n\pi$ b) $x = \left(n + \frac{1}{2}\right)\pi$ c) $x = 0$ d) No value of x 596. If the equations $x^2 + ax + b = 0$ and $x^2 + bx + a = 0$ have a common root, then the numerical value of	aj 1	0,0	c) $\frac{1}{2}$	as none of these
596. If the equations $x^2 + ax + b = 0$ and $x^2 + bx + a = 0$ have a common root, then the numerical value of				
596. If the equations $x^2 + ax + b = 0$ and $x^2 + bx + a = 0$ have a common root, then the numerical value of	a) $x = n\pi$	b) $x = (n + \frac{1}{2})\pi$	c) $x = 0$	d) No value of <i>x</i>
	596. If the equations $x^2 + ax$			n the numerical value of

a) 1 597. If $S = \{z \in C : \arg(\frac{z-2}{z+2})\}$	b) 0 = $\frac{\pi}{2}$, then <i>S</i> is	c) -1	d) None of these
a) An ellipse 598. If $b^2 \ge 4ac$ for the equa	b) A straight line	-	_
599. Let z_1 and z_2 be two conprincipal $\arg(z_1z_2)$ is given by	mplex numbers with α and (ven by	3 as their principle argume	nts such that $\alpha + \beta > \pi$, then
600. Let ω be a complex cube	b) $\alpha + \beta - \pi$ e root of unity. If the equation nd ω^2 as the end points of a	on $ z - \omega ^2 + z - \omega^2 ^2 = \lambda$	<i>y</i>
a) 4	b) 3	c) 2	d) $\sqrt{2}$
601. Let $2\sin^2 x + 3\sin x - 2$		x is measured in radians).	Then x lies in the interval
a) $\left(\frac{\pi}{6}, \frac{5\pi}{6}\right)$	b) $\left(-1,\frac{5\pi}{6}\right)$	c) (-1,2)	d) $\left(\frac{\pi}{6}, 2\right)$
602. One root of $(1)^{1/3}$ is	_	_	
a) $\frac{\sqrt{3}i}{2}$	b) $\frac{1 + \sqrt{3}i}{2}$	c) $\frac{1 - \sqrt{3i}}{4}$	d) $\frac{-1-\sqrt{3}i}{2}$
603. If one of the root of the			the equation $x^2 + ax + b = 0$
is three times the other	root, then the value of <i>b</i> is e	equal to	
a) 3	b) 4	c) 2	d) 1
604 . If $ z - 4 - 3i \le 1$ and r	n and n are the least and gro	eatest value of $ z $ and λ is t	he least value of $\frac{x^4 + x^2 + 4}{x}$ in
the interval $(0, \infty)$ then	λ is equal to		
a) <i>m</i>	b) <i>n</i>	c) <i>m</i> + <i>n</i>	d) None of these
605. The harmonic mean of t	he roots of the equation (5)	$(+\sqrt{2})x^2 - (4 + \sqrt{5})x + 8 -$	$+2\sqrt{5}=0$ is
a) 2	b) 4	c) 6	d) 8
606. If a, b, c and u, v, ω are c		-	-
	(1-r)u + rv, where r is a		
a) Have the same area	,	c) Are congurent	d) None of these
607. The value of <i>k</i> for which $3x^2 + 2x(k^2 + 1) + k^2$	1		
has roots of opposite sig			
a) $(-\infty, 0)$		c) (1,2)	d) (3/2,2)
608. The locus of point <i>z</i> sati			
	1-7		
a) A straight line	b) A circle $\pi/4$ the	c) An ellipse	d) A hyperbola
609. If $z \neq 0$ be a complex null a) Po $(z) = \text{Im}(z)$ only	b) Re $(z) = Im(z) > 0$		d) None of these
610. If $z_1, z_2,, z_n$ are compl	, , , , ,	, , , , , , , , , , , , , , , , , , , ,	•
a) $ z_1 z_2 z_3 \dots z_n $	b) $ z_1 + z_2 + \ldots + z_n $	c) $\left \frac{1}{z_1} + \frac{1}{z_2} + + \frac{1}{z_n} \right $	d) <i>n</i>
611. If $z_r = \cos\frac{r\alpha}{n^2} + i\sin\frac{r\alpha}{n^2}$,			qual to
a) $\cos \alpha + i \sin \alpha$	b) $\cos\left(\frac{\alpha}{2}\right) - i\sin\left(\frac{\alpha}{2}\right)$	c) $e^{i\alpha/2}$	d) $\sqrt[3]{e^{i\alpha}}$
612. If α , β and γ are the root	ts of equation $x^3 - 3x^2 + x$	$+5 = 0$, then $y = \sum \alpha^2 + \alpha$	$lphaeta\gamma$ satisfies the equation
a) $y^3 + y + 2 = 0$		b) $y^3 - y^2 - y - 2 = 0$	
c) $y^3 + 3y^2 - y - 3 = 0$)	d) $y^2 + 4y^2 + 5y + 20 =$	= 0
613. If the roots of $(z - 1)^n =$	$= i (z + 1)^n$ are plotted in the	ne Argand plane, they are	
a) On a parabola			
b) Concyclic			
c) Collinear			

d) The vertices of a triangle

614. If *n* is a positive integer, then $(1 + i)^n + (1 - i)^n$ is equal to

a)
$$(\sqrt{2})^{n-2} \cos\left(\frac{n\pi}{4}\right)$$
 b) $(\sqrt{2})^{n-2} \sin\left(\frac{n\pi}{4}\right)$ c) $(\sqrt{2})^{n+2} \cos\left(\frac{n\pi}{4}\right)$ d) $(\sqrt{2})^{n+2} \sin\left(\frac{n\pi}{4}\right)$
5. The roots of the equation $(3-x)^4 + (2-x)^4 = (5-2x)^4$ are

615. The roots of the equation $(3 - x)^4 + (2 - x)^4$

- a) All real
- b) All imaginary
- c) Two real and two imaginary
- d) None of these

c) No solution

616. In which quadrant of the complex plane, the point $\frac{1+2i}{1-i}$ lies?

a) Fourth b) First c) Second d) Third 617. If α , β are roots of $ax^2 + bx + c = 0$, then the equation $ax^2 - bx(x - 1) + c(x - 1)^2 = 0$ has roots a) $\frac{\alpha}{1-\alpha}$, $\frac{\beta}{1-\beta}$ b) $\frac{1-\alpha}{\alpha}$, $\frac{1-\beta}{\beta}$ c) $\frac{\alpha}{\alpha+1}$, $\frac{\beta}{\beta+1}$ d) $\frac{\alpha+1}{\alpha}$, $\frac{\beta+1}{\beta}$

^{518.} If the expression
$$\frac{\left|\sin\left(\frac{x}{2}\right) + \cos\left(\frac{x}{2}\right) - i\tan(x)\right|}{\left[1 + 2i\sin\left(\frac{x}{2}\right)\right]}$$
 is real then the set of all possible value of x is

c) $\frac{n\pi}{2} + \alpha$ d) None of these b) 2*nπ* a) $n\pi + \alpha$ 619. If x is an integer satisfying $x^2 - 6x + 5 \le 0$ and $x^2 - 2x > 0$, then the number of positive values of x, is d) Infinite a) 3 b) 4 c) 2

620. For any two complex numbers z_1 and z_2 and any real numbers a and b; $|az_1 - bz_2|^2 + |(bz_1 + az_2)|^2$ is equal to

a)
$$(a^{2} + b^{2})(|z_{1}| + |z_{2}|)$$

c) $(a^{2} + b^{2})(|z_{1}|^{2} - |z_{2}|^{2})$
621. If α, β are roots of the equation $6x^{2} - 5x + 1 = 0$, then the value of $\tan^{-1}\alpha + \tan^{-1}\beta$ is
a) 0
b) $\frac{\pi}{4}$
c) 1
d) $\frac{\pi}{2}$

622. If $|z_1| = |z_2| = \cdots = |z_n| = 1$, then the value of $|z_1 + z_2 + z_3 + \ldots + z_n|$ is b) $|z_1| + |z_2| + ... + |z_n|$ d) None of these c) $\left| \frac{1}{z_1} + \frac{1}{z_2} + \dots + \frac{1}{z_n} \right|$

623. The value of $\sum_{k=1}^{6} \left(\sin \frac{2\pi k}{7} - i \cos \frac{2\pi k}{7} \right)$, is a) –1 c) -i

624. The solution set of $x^2 + x + |x| + 1 < 0$, is b) $(-\infty, 0)$ c) *R* a) (0,∞) d) φ 625. Let $\omega_n = \cos\left(\frac{2\pi}{n}\right) + i\sin\left(\frac{2\pi}{n}\right)$, $i^2 = -1$, then $(x + y\omega_3 + z\omega_3^2)(x + y\omega_3^2 + z\omega_3)$ is equal to b) $x^2 + y^2 + z^2$

c) $x^2 + y^2 + z^2 - yz - zx - xy$ d) $x^2 + y^2 + z^2 + yz + zx + xy$ 626. The quadratic equation $x^2 + 15|x| + 14 = 0$ has a) Only positive solutions

b) Only negative solutions

d) Both positive and negative solution

d) i

627. If α , β , γ are the roots of the equation $x^3 + ax^2 + bx + c = 0$, then $\alpha^{-1} + \beta^{-1} + \gamma^{-1} = 0$ b) $-\frac{b}{c}$ c) $\frac{b}{a}$ a) $\frac{a}{c}$ d) $\frac{c}{d}$

628. The solution of the quadratic equation $(3|x| - 3)^2 = |x| + 7$ which belongs to the domain of definition of the function $y = \sqrt{x(x-3)}$ are given by

a)
$$\pm \frac{1}{9}, \pm 2$$
 b) $-\frac{1}{9}, 2$ c) $\frac{1}{9}, -2$ d) $-\frac{1}{9}, -2$
629. If α is a cube root of unit and is not real, then $\alpha^{3n+1} + \alpha^{3n+3} + \alpha^{3n+5}$ has the value
a) -1 b) 0 c) 1 d) 3

630. The number of solutions of th	ne equation $z^2 + \bar{z} = 0$ is	3	
a) 2 b)		c) 6	d) 8
631. If $\log_{\sqrt{3}} \left(\frac{ z ^2 - z + 1}{2 + z } \right) < 2$, then	the locus of z is		
a) $ z = 5$ b)			d) None of these
632. If $f(x) = 2x^3 + mx^2 - 13x + mx^2 - $			
, , , , , , , , , , , , , , , , , , ,	,		d) None of these
633. Let <i>A</i> , <i>B</i> and <i>C</i> represent the c circumcenter of the triangle <i>A</i>			
number	abe lies at the origin, the	en the of thocentre is repres	sented by the complex
a) $z_1 + z_2 - z_3$ b)	$z_2 + z_3 - z_1$	c) $z_3 + z_1 - z_2$	d) $z_1 + z_2 + z_3$
634. Let $x = \alpha + \beta$, $y = \alpha \omega + \beta \omega^2$			
a) $\alpha^2 + \beta^2$ b)			
635. Let $n = 2006!$. Then			
$\frac{1}{\log_2 n} + \frac{1}{\log_3 n} + \dots + \frac{1}{\log_{2006} n}$ is	equal to		
a) 2006 b)	2005	c) 2005!	d) 1
636. If $a(p+q)^2 + 2b pq + c = 0$			
a) $p^2 + \frac{c}{a}$ b)	$p^2 + \frac{a}{-}$	c) $p^2 + \frac{a}{a}$	d) $p^2 + \frac{b}{a}$
a	C	b	a
637. If $\frac{2z_1}{3z_2}$ is purely imaginary num	then $\left \frac{z_1-z_2}{z_1+z_2}\right ^2$ is equal	al to	
a) 3/2 b)		c) 2/3	d) 4/9
638. $\sqrt{4}$, $\sqrt[4]{4}$, $\sqrt[8]{4}$, $\sqrt[16]{4}$, to ∞ are re		_	
a) $x^2 - 4 = 0$ b)		-	-
639. Let x_1, x_2 be the roots of the e			
$x^{2} - 12x + q = 0$. If the number a) $p = 2, q = 16$ b)			
640. If the equation $x^2 - 3kx + 2e^{-3kx}$			
value of <i>k</i> is			
a) ± 1 b)	2	c) ± 3	d) None of these
641. If the product of the roots of t	the equation $(a + 1)x^2$ +	+(2a+3)x + (3a+4) = 0) is 2, then the sum of roots
is			
, , , , , , , , , , , , , , , , , , , ,		c) 2	d) -2
642. Value of $\sum_{k=1}^{6} \left[\sin\left(\frac{2k\pi}{7}\right) - i \cos\left(\frac{2k\pi}{7}\right) \right]$	$\left(\frac{2\pi n}{7}\right)$ is equal to		
a) -1 b)		-	d) None of these
643. If $\sin \alpha$, $\sin \beta$ and $\cos \alpha$ are in (
	•	•	d) Non-real
644. Let z_1 and z_2 be the roots of t z_1, z_2 and the origin form an e		= 0 where <i>p</i> , <i>q</i> are real. If	ie points represented by
		c) $p^2 < 3q$	d) $p^2 = 2q$
645. If 1, ω , ω^2 are the cube roots of			~) p = q
			d) 0
646. If $z = x + iy$ and $w = \frac{1 - iz}{z - i}$, th	en $ w = 1$ implies that i	in the complex plane	
a) z lies on imaginary axis			
b) z lies on real axis			
c) <i>z</i> lies on unit circle			
d) None of these			
647. The number of real roots of the			۷ (۲
a) 0 b)	۷	c) 3	d) 4

648. The solution set of the inequation $\left|x + \frac{1}{x}\right| > 2$, is a) $R - \{0\}$ b) $R - \{-1, 0, 1\}$ c) $R - \{1\}$ 649. If Re $\left(\frac{z+4}{2z-i}\right) = \frac{1}{2}$, then *z* is represented by a point lying on d) $R - \{-1,1\}$ b) An ellipse c) A straight line a) A circle d) None of these 650. sin *A*, sin *B*, cos *A* are in GP. Roots of $x^2 + 2x \cot B + 1 = 0$ are always b) Imaginary c) Greater than 1 a) Real d) Equal 651. If α , β are the roots of the equation $ax^2 + bx + c = 0$, then the value of $\frac{1}{a\alpha + b} + \frac{1}{a\beta + b}$ is equal to c) <u>ab</u> a) $\frac{ac}{b}$ b) 1 d) $\frac{b}{ac}$ 652. *A* And *B* are two points on the Argand plane such that the segment *AB* is bisected at the point(0,0). If the point A, which is in the third quadrant has principle amplitude θ , then the principle amplitude of the point B is a) $-\theta$ b) $\pi - \theta$ c) $\theta - \pi$ d) $\pi + \theta$ 653. If $\frac{2z_1}{3z_2}$ is purely imaginary, then $\left|\frac{z_1-z_2}{z_1+z_2}\right|$ is b) $\frac{3}{2}$ c) $\frac{4}{9}$ d) 1 a) $\frac{2}{3}$ 654. If $(1 + k) \tan^2 x - 4 \tan x - 1 + k = 0$ has real roots $\tan x_1$ and $\tan x_2$, then a) $k^2 \le 5$ b) $k^2 \ge 6$ c) k = 3d) None of these 655. If m_1, m_2, m_3 and m_4 respectively denote the moduli of the complex numbers 1 + 4i, 3 + i, 1 - i and 2 - 3i, then the correct one, among the following is a) $m_1 < m_2 < m_3 < m_4$ b) $m_4 < m_3 < m_2 < m_1$ c) $m_3 < m_2 < m_4 < m_1$ d) $m_3 < m_1 < m_2 < m_4$ 656. If $(\cos \theta + i \sin \theta)(\cos 2\theta + i \sin 2\theta) \dots (\cos n\theta + i \sin n\theta) = 1$, then the value of θ is c) $\frac{4m\pi}{n(n+1)}$ a) $\frac{2m\pi}{n(n+1)}$ d) $\frac{m\pi}{n(n+1)}$ b) 4*m*π 657. Let z_1, z_2, z_3 be the affixes of the vertices of a triangle having the circumcentre at the origin. If z is the affix of it's orthocentre, then z is equal to a) $\frac{z_1 + z_2 + z_3}{3}$ b) $\frac{z_1 + z_2 + z_3}{2}$ d) None of these c) $z_1 + z_2 + z_3$ 658. If A, B, C are three points in the Argand plane representing the complex numbers z_1 , z_2 , z_3 such that $z_1 = \frac{\lambda z_2 + z_3}{\lambda + 1}$, where $\lambda \in \mathbb{R}$, then the distance of A from the line BC is d) 0 b) $\frac{\lambda}{\lambda+1}$ c) 1 a)λ 659. If the vertices of a quadrilateral be A = 1 + 2i, B = -3 + i, C = -2 - 3i and D = 2 - 2i, then the quadrilateral is a) Parallelogram b) Rectangle c) Square d) Rhombus 660. If the roots of the equation $(p^2 + q^2)x^2 - 2q(p+r)x + (q^2 + r^2) = 0$ be real and equal, then p, q, r will be in a) AP c) HP d) None of these b) GP 661. The equation of the locus of *z* such that $\left|\frac{z-i}{z+i}\right| = 2$, where z = x + iy is a complex number, is b) $3x^2 + 3y^2 + 10y + 3 = 0$ a) $3x^2 + 3y^2 + 10y - 3 = 0$ c) $3x^2 - 3y^2 - 10y - 3 = 0$ d) $x^2 + y^2 - 5y + 3 = 0$ 662. If $z_1 = \sqrt{2} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right)$ And $z_2 = \sqrt{3} \left(\cos \frac{\pi}{3} + i \sin \frac{\pi}{3} \right)$, then $|z_1 z_2|$ is a) 6 b) $\sqrt{2}$ d) $\sqrt{3}$ 663. If Re (z) < 0, then the value of $|1 + z + z^2 + \dots + z^n|$ cannot exceed

		1	1
a) <i>n</i>	b) $n z ^n + 1$	c) $ z^n - \frac{1}{ z }$	d) $ z ^n + \frac{1}{ z }$
	$as of x^2 + px + 1 = 0 and c, c$		x + 1 = 0. If $(a - c)(b - c)$
and $(a + d)(b + d)$ ar a) $p + q$	e the solutions of $x^2 + ax + b$ b) $p - q$	$\beta = 0$, then β equals c) $p^2 + q^2$	d) $q^2 - p^2$
<i>y</i> 1 1	al solutions of $x^2 - 3x - 4 < 3x - 4$		d y q - p
a) 3	b) 4	c) 6	d) None of these
666. All the values of m for	which both roots of the equa	ation $x^2 - 2mx + m^2 - 1 =$	0 are greater than -2 but
less than 4 lie in the in			
a) $m > 3$ 667 The roots of the given	b) $-1 < m < 3$ equation $(p - q)x^2 + (q - r)$,	d) $-2 < m < 0$
			q-r
F	b) $\frac{q-r}{p-q}$, 1	E 1	d) $1, \frac{q-r}{p-q}$
•	of $x^4 + x^2 + 1 = 0$. Then, th	-	
a) $(x^2 - x + 1)^2 = 0$ 669. The solution set of $ x^2 $	b) $(x^2 + x + 1)^2 = 0$ - 101 < 6 is	c) $x^{1} - x^{2} + 1 = 0$	d) $x^2 + x + 1 = 0$
		c) (−4, −2) ∪ (2, 4)	d) [−4, −2] ∪ [2, 4]
670.	b) $(-4, -2)$ $\overline{-\sqrt{169}}$, then the value of x is	•) (-, -) - (-, -)	-7[-, _]-[-, -]
a) 55 671 If the roots of the give	b) 44	c) 63	d) 42
	n equation $(\cos p - 1)x^2 + ($		
a) $p \in (-\pi, 0)$	$\langle L L' \rangle$	c) $p \in (0, \pi)$	
	nave arithmetic mean 9 and g	geometric mean 4. Then, the	ese numbers are the roots of
the quadratic equation a) $x^2 - 18x - 16 = 0$	1	b) $x^2 - 18x + 16 = 0$	
c) $x^2 + 18x - 16 = 0$		d) $x^2 + 18x + 16 = 0$	
,	s of the equation $x^2 - x + 1$	<i>,</i>	qual to
a) -2	b) —1	c) 1	d) 2
	the roots α and β , then the		
a) $p^2 - 4q$	b) $(p^2 - 4q)^2$	c) $p^2 + 4q$	d) $(p^2 + 4q)^2$
675. The conjugate of comp		11 10;	2 + 2i
a) $\frac{3i}{4}$	b) $\frac{11 + 10l}{17}$	c) $\frac{11-10i}{17}$	d) $\frac{2+3i}{4i}$
676. If <i>p</i> , <i>q</i> , <i>r</i> are real and <i>p</i>	\neq <i>q</i> , then the roots of the eq	uation $(p - q)x^2 + 5(p + q)$	(x)x - 2(p - q) = r, are
a) Real and equal		b) Unequal and rational	
c) Unequal and irratio		d) Nothing can be said	
b/7. Let $y = \sqrt{\frac{(x+1)(x-3)}{(x-2)}}$, the	en all real values of x for wh	ich y takes real values, are	
a) $-1 \le x < 2$ or $x \ge$	3 b) $-1 \le x < 3$ or $x > 2$		d) None of these
678. If $x^{2/3} - 7x^{1/3} + 10 =$			
a) {125}	b) {8} tion $r^2 = 3r \pm 12 = 0$ is over	c) \emptyset	d) {125, 8} = 0 has equal roots, then μ is
a) 8	b) 16	c) 24 $+ \lambda x + \mu$	d) 32
	s z which satisfy the conditio		,
a) A straight line	b) A circle	c) A parabola	d) None of these
	-	, .	-
The value of $\begin{vmatrix} 1 + \omega^2 \\ \omega^2 + \omega \end{vmatrix}$	$ \begin{array}{c} \omega^2 & -\omega \\ \omega & -\omega^2 \\ \omega & -\omega^2 \end{array} $ is equal to (ω is	an imaginary cube root of u	inity)
a) 0	b) 2ω	c) $2\omega^2$	d) $-3\omega^2$

682. If the absolute value of the difference of the roots of the equation $x^2 + ax + 1 = 0$ exceeds $\sqrt{3a}$, then

a) $a \in (-\infty, -1) \cup (4, \infty)$ b) $a \in [0, 4)$ c) $a \in (-1, 4)$ d) $a \in [0, 4)$ 683. Consider the following statements: 1. If the quadratic equation is $ax^2 + bx + c = 0$ such that a + b + c = 0, then roots of the equation $ax^2 + bx + c = 0$ will be $1, \frac{c}{a}$. 2. If $ax^2 + bx + c = 0$ is quadratic equation such that a - b + c = 0, then roots of the equation will be, $-1, \frac{c}{a}$. Which of the statements given above are correct? a) Only (1) c) Both (1) and (2) b) Only (2) d) Neither (1) nor (2)684. The equation (x-b)(x-c) + (x-a)(x-b) + (x-a)(x-c) = 0 has all its roots b) Real a) Positive c) Imaginary d) Negative 685. Let p and q be real numbers such that $p \neq 0, p^3 \neq q$ and $p^3 \neq -q$. If α and β are non-zero complex numbers satisfying $\alpha + \beta = -p$ and $\alpha^3 + \beta^3 = q$, then a quadratic equation having $\frac{\alpha}{\beta}$ and $\frac{\beta}{\alpha}$ as its roots is a) $(p^{3} + q)x^{2} - (p^{3} + 2q)x + (p^{3} + q) = 0$ b) $(p^{3} + q)x^{2} - (p^{3} - 2q)x + (p^{3} + q) = 0$ c) $(p^{3} - q)x^{2} - (5p^{3} - 2q)x + (p^{3} - q) = 0$ d) $(p^{3} - q)x^{2} - (5p^{3} + 2q)x + (p^{3} - q) = 0$ d) $(p^3 - q)x^2 - (5p^3 + 2q)x + (p^3 - q) = 0$ 686. If α and β be the roots of the equation $2x^2 + 2(a + b)x + a^2 + b^2 = 0$, then the equation whose roots are $(\alpha + \beta)^2$ and $(\alpha - \beta)^2$, is a) $x^2 - 2ab x - (a^2 - b^2)^2 = 0$ b) $x^2 - 4abx - (a^2 - b^2)^2 = 0$ c) $x^2 - 4abx + (a^2 - b^2)^2 = 0$ d) None of these 687. The equation $\overline{b} z + b \overline{z} = c$, where *b* is a non-zero complex constant and *c* is a real number, represents a) A circle b) A straight line c) A pair of straight lines d) None of these 688. The equation $z\bar{z} + (2-3i)z + (2+3i)\bar{z} + 4 = 0$ represents a circle of radius b) 3 c) 4 d) 6 a) 2 689. The value of $i \log(x - i) + i^2 \pi + i^3 \log(x + i) + i^4 (2 \tan^{-1} x)$, (where, x > 0 and $i = \sqrt{-1}$), is a) 0 b) 1 d) 3 690. If $x = \log_a bc$, $y = \log_b ca$, $z = \log_a ab$, then the value of $\frac{1}{1+x} + \frac{1}{1+x} + \frac{1}{1+x}$ will be b) 1 c) ab + bc + caa) x + y + zd) *abc* 691. If z_1 and z_2 are two complex numbers such that $\left|\frac{z_1-z_2}{1-\overline{z_1}z_2}\right| = 1$, then which one of the following is not true? a) $|z_1| = 1, |z_2| = 1$ b) $z_1 = e^{i\theta}, \theta \in R$ c) $z_2 = e^{i\theta}, \theta \in R$ d) All of these 692. The principle amplitude of $(\sin 40^\circ + i \cos 40^\circ)^5$ is d) -70° b) -110° c) 110° a) 70° 693. If x satisfies $|x^2 - 3x + 2| + |x - 1| = x - 3$, then c) $x \in [3, \infty]$ d) $x \in (-\infty, \infty)$ a) $x \in \emptyset$ b) $x \in [1, 2]$ 694. The value of $\sum_{r=1}^{8} \left(\sin \frac{2 r \pi}{9} + i \cos \frac{2 r \pi}{9} \right)$, is a) –1 d) −*i* b) 1 c) i 695. The centre and the radius of the circle $z\bar{z} + (2+3i)\bar{z} + (2-3i)z + 12 = 0$ are respectively a) –(2 + 3*i*), (1) c) (3 + 6i), (3)b) (3 + 2i), (1) d) None of these 696. If α , β are roots of the equation $ax^2 + bx + c = 0$, then the equation whose roots are $2\alpha + 3\beta$ and $3\alpha + 2\beta$ is

a) $ab x^2 - (a + b)cx + (a + b)^2 = 0$ b) $ac x^2 - (a + c)bx + (a + c)^2 = 0$ c) $ac x^{2} + (a + c)bx - (a + c)bx - (a + c)^{2} = 0$ d) None of these 697. The sum of the real roots of the equation $|x-2|^2 + |x-2| - 2 = 0$, is a) 4 b) 3 c) 2 d) 10 698. The values of x and y such that y satisfy the equation $(x, y \in \text{real number}) x^2 - xy + y^2 - 4x - 4y + y^2 - 4x - 4y$ 16 = 0 is a) 4, 4 b) 3, 3 c) 2, 2 d) None of these 699. If $\log_{0.3}(x-1) < \log_{0.09}(x-1)$, then *x* lies in the interval c) −2, −1 b) (1, 2) d) None of these 700. If $\frac{2x}{2x^2+5x+2} > \frac{1}{x+1}$, then b) $-2 \ge x \ge -1$ c) -2 < x < -1 d) $-2 < x \le -1$ a) -2 > x > -1701. The approximate value of $\sqrt[3]{28}$ is a) 3.0037 b) 3.037 c) 3.0086 d) 3.37 702. If $\left|\frac{z-2}{z+2}\right| = \frac{\pi}{6}$, then the locus of z is c) A parabola d) An ellipse a) A straight line b) A circle 703. If z = x + iy, then area of the triangle whose vertices are points z, iz, z + iz is b) $\frac{1}{4}|z|^2$ d) $\frac{3}{2}|z|^2$ a) $\frac{1}{2}|z|^2$ c) $|z|^2$ 704. If roots of the equation $ax^2 + bx + c = 0$; $(a, b, c \in N)$ are rational numbers, then which of the following cannot be true? a) All a, b, c are even b) All *a*, *b* and *c* are odd c) *b* is even while a' and c' are odd d) None of the above 705. If $|a_i| < 1$, $\lambda_i \ge 0$ for i = 1, 2, ..., n and $\lambda_1 + \lambda_2 + \cdots + \lambda_n = 1$, then the value of $|\lambda_1 a_1 + \lambda_2 a_2 + \cdots + \lambda_n a_n|$ is b) Less than 1 c) Greater than 1 a) Equal to 1 d) None of these 706. If α , β be the roots of the quadratic equation $ax^2 + bx + c = 0$ and k be a real number, then the condition so that $\alpha < k < \beta$ is given by d) $a^2k^2 + abk + ac < 0$ b) $ak^2 + bk + c = 0$ c) ac < 0a) ac > 0707. If $x = 2 + 2^{2/3} + 2^{1/3}$, then the value of $x^3 - 6x^2 + 6x$ is a) 3 b) 2 c) 1 d) None of these 708. If the complex numbers z_1, z_2, z_3 are in AP, then they lie on c) A straight line a) A circle b) A parabola d) An ellipse 709. If z be a complex number, then $|z - 3 - 4i|^2 + |z + 4 + 2i|^2 = k$ represents a circle, if k is equal to b) 40 c) 55 d) 35 a) 30 710. If $\begin{vmatrix} 6i & -3i & 1 \\ 4 & 3i & -1 \\ 20 & 3 & i \end{vmatrix} = x + iy$, then c) x = 0, y = 3b) x = 1, y = 3a) x = 3, y = 1d) None of these 711. If the roots of the equation $ax^2 + bx + c = 0$ of the form $\frac{k+1}{k}$ and $\frac{k+2}{k+1}$, then $(a + b + c)^2$ is equal to b) $\sum a^2$ a) $2b^2 - ac$ c) $b^2 - 4ac$ d) $b^2 - 2ac$ 712. The smallest positive integral value of *n* such that $\left[\frac{1+\sin\frac{\pi}{8}+i\cos\frac{\pi}{8}}{1+\sin\frac{\pi}{8}-i\cos\frac{\pi}{8}}\right]^n$ is purely imaginary, is equal to a) 4 b) 3 d) 8 713. The locus of the point z = x + iy satisfying $\left| \frac{z-2i}{z+2i} \right| = 1$ is d) *x* = 2 c) v = 2a) x-axis b) y-axis

714. If the roots of the equat equation $x^2 - 4qx + p^2$		omplex, where <i>p</i> , <i>q</i> are real,	then the roots of the
a) Real and unequal 715. If $e^{\cos x} - e^{-\cos x} = 4$, t		c) Imaginary	d) None of these
a) $\log_e(2 + \sqrt{5})$	b) $-\log_e(2+\sqrt{5})$	c) $\log_e(-2 + \sqrt{5})$	d) None of these
a) $\log_e(2 + \sqrt{5})$ 716. $\sqrt{12 - \sqrt{68 + 48\sqrt{2}}}$ is e	qual to		
a) $\sqrt{2} - 3$			d) $6 - 2\sqrt{8}$
717. The area of the triangl equals	e whose vertices are repre	esented by the complex n	umber $0, z, ze^{i\alpha}, (0 < \alpha < \pi)$
-	b) $\frac{1}{2} z ^2 \sin \alpha$	c) $\frac{1}{2} z ^2 \sin \alpha \cos \alpha$	$d)\frac{1}{2} z ^2$
718. The general value of θ v $(\cos(2n-1)\theta + i\sin(2))$		$(\cos \theta + i \sin \theta)(\cos 3\theta + i$	$\sin 3 \theta)(\cos 5 \theta + i \sin 5 \theta) \dots$
a) $\frac{r \pi}{r^2}$	b) $\frac{(r-1)\pi}{n^2}$	c) $\frac{(2r+1)}{2}$	d) $\frac{2 r \pi}{2}$
719. The solution set of the i	11	n	n^2
a) [0,4]		c) $(-\infty, 0] \cup [4, \infty)$	d) None of these
720. If the centre of a regular its perimeter is	hexagon is at the origin and	d one of its vertices on arga	and diagram is $1 + 2i$, then
-	b) 6√2		d) 6√5
721. If α and β are different α	complex numbers with $ \beta $ =	= 1 then $\left \frac{\beta-\alpha}{1-\overline{\alpha}\beta}\right $ is equal to	
a) 0	b) 1/2	c) 1	d) 2
722. If α , β , γ are the roots of a) 2	b) 3	= 0, then $(\alpha + \beta)^{-1} + (\beta + c)^{-4}$	$(\gamma)^{-1} + (\gamma + \alpha)^{-1}$ is equal to d) 5
723. Which of the following s			
	product of the two complex $f(x)$ with real coefficients i		_
.,	in complex numbers when	• • •	,
, ,	d as a cube root of unity and		
a) (i) and (ii) only	b) (i) and (iv) only	c) (iii) and (ii)only	d) (i), (ii) and (iv) only
724. The solution of the equation r^2			
$(3+2\sqrt{2})^{x^2-8}+(3+2)^{x^2-8}$	$(\sqrt{2})^{8-x^2} = 6$ are		
a) $3 \pm 2\sqrt{2}$	b) ±1	c) $\pm 3\sqrt{3}, \pm 2\sqrt{2}$	
725. The value of <i>a</i> for which	one root of the quadratic e	quation $(a^2 - 5a + 3)x^2 + 3x^2$	-(3a-1)x+2=0 is twice
as large as the other, is	h) 2/2	a) $1/2$	d) 1/2
a) 2/3 726. Given that tan A and tar	b) -2/3 B are the roots of $x^2 - nr$	c) $1/3$ + $a = 0$ then the value of s	d) -1/3 $\sin^2(A + B)$ is
a) $\frac{1}{p^2(1-q)^2}$	b) $\frac{q^2}{p^2+q^2}$	c) $\frac{1}{p^2 - (1 - q^2)}$	d) $\frac{1}{p^2 + q^2}$
727. If square root of $-7 + 2$	4i is $x + iy$, then x is		
a) ±1	b) ±2	c) ±3	d) ±4
728. If the points z_1, z_2, z_3 ar		ral triangle in the Argand p	lane, then which one of the
following is not correct			
a) $\frac{1}{z_1 - z_2} + \frac{1}{z_2 - z_3} + \frac{1}{z_2}$	$\frac{1}{3-z_1} = 0$		
b) $z_1^2 + z_2^2 + z_3^2 = z_1 z_2$	5 I		
c) $(z_1 - z_2)^2 + (z_2 - z_3)^2$			
d) $z_1^3 + z_2^3 + z_3^3 + 3 z_1 z_2$	$2z_3 = 0$		

729. If $\left(\frac{1+i}{1-i}\right)^{x} = 1$, then a) x = 4n, where *n* is any positive integer b) x = 2n, where *n* is any positive integer c) x = 4n + 1, where *n* is any positive integer d) x = 2n + 1, where *n* is any positive integer 730. If z = x + iy is a variable complex number such that $\arg \frac{z-1}{z+1} = \frac{\pi}{4}$, then a) $x^2 - y^2 - 2x = 1$ b) $x^2 + y^2 - 2x = 1$ c) $x^2 + y^2 - 2y = 1$ d) $x^2 + y^2 + 2x = 1$ 731. If $\sin \alpha$, $\cos \alpha$ are the roots of the equation $ax^2 + bx + c = 0$, then a) $a^2 - b^2 + 2ac = 0$ b) $(a - c)^2 = b^2 + c^2$ c) $a^2 + b^2 - 2ac = 0$ d) $a^2 + b^2 + 2ac = 0$ 732. Argument of the complex number $\left(\frac{-1-3i}{2+i}\right)$ is b) 135° a) 45° c) 225° d) 240° 733. If the equation $ax^2 + 2 bx - 3 c = 0$ has no real roots and $\frac{3 c}{4} < a + b$, then a) c < 0734. If the roots of the equation $\frac{1}{x+a} + \frac{1}{x+b} = \frac{1}{c}$ are equal in magnitude but opposite in sign, then their product is b) $-\frac{1}{2}(a^2 + b^2)$ c) $\frac{1}{2}ab$ a) $\frac{1}{2}(a^2 + b^2)$ d) $-\frac{1}{2}ab$ 735. The conjugate of the complex number $\frac{(1+i)^2}{1-i}$ is b) 1 + *i* d) -1 - ia) 1 – *i* c) -1 + ia) 1 - i b) 1 + i c) -1 + i736. The complex number z = x + iy, which satisfy the equation $\left|\frac{z-5i}{z+5i}\right| = 1$ lies on a) Real axis b) The line y = 5c) A Circle passing through the origin d) None of the above 737. The equation $2\cos^2(\frac{x}{2})\sin^2 x = x^2 + \frac{1}{x^2}, 0 \le x \le \frac{\pi}{2}$ has a) No real solution b) One real solution c) More than one real solution d) None of these 738. If $z_n = \cos\left\{\frac{\pi}{n(n+1)(n+2)}\right\} + i \sin\left\{\frac{\pi}{n(n+1)(n+2)}\right\}$ for n = 1, 2, 3, ..., then the valu of $\lim (z_1 z_2 ..., z_n)$ is b) $\frac{-1 + i\sqrt{3}}{\sqrt{2}}$ c) $\frac{-1 - i\sqrt{3}}{\sqrt{2}}$ a) $\frac{1-i}{\sqrt{2}}$ d) $\frac{1+i}{\sqrt{2}}$ 739. If $x + iy = \sqrt{\frac{a+ib}{c+id}}$, then $x^2 + y^2$ is equal to c) $\frac{a^2 + b^2}{c^2 - d^2}$ a) $\frac{a^2 - b^2}{c^2 + d^2}$ b) $\frac{a^2 + b^2}{c^2 + d^2}$ d) None of these 740. arg (\bar{z}) is equal to a) $\pi - \arg(z)$ b) $2\pi - \arg(z)$ c) $\pi + \arg(z)$ d) $2\pi + \arg(z)$ 741. Consider the following statements : I. The points having affixes \mathbb{Z}_1 , \mathbb{Z}_2 , \mathbb{Z}_3 from an equilateral triangle, iff $\frac{1}{\mathbb{P}_1 - \mathbb{P}_2} + \frac{1}{\mathbb{P}_2 - \mathbb{P}_3} + \frac{1}{\mathbb{P}_3 - \mathbb{P}_1} = 0$ II. If \mathbb{P} is a complex number, then $\mathbb{P}^{\mathbb{P}}$ is periodic. III. If $|\mathbb{P}_1| = |\mathbb{P}_2|$ and $\arg\left(\frac{\mathbb{P}_1}{\mathbb{P}_2}\right) = \mathbb{P}$, then $\mathbb{P}_1 + \mathbb{P}_2 = 0$. Which of the statements given above are correct? b) (2) and (3) a) (1) and (2) c) (3) and (1) d) All (1), (2) and (3) 742. The joint of $z_1 = a + i b$ and $z_2 = \frac{1}{-a+i b}$ passes through c) z = 0 + ia) Origin b) z = 1 + i 0d) z = 1 + i743. The equation $(\cos p - 1)x^2 + \cos px + \sin p = 0$, in variable *x*, has real roots. Then, *p* belongs to the interval

a) (0, 2π)	b) (<i>-π</i> , 0)	c) $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$	d) (0, π)
744. If the roots of the equat	$x^{2} + a^{2} = 8x + 6a$ are	real, then <i>a</i> belongs to the in	nterval
a) [2,8]	b) [-2,8]	c) [-8,2]	d) None of these
745. If $z_1 = 1 + 2i$ and $z_2 =$			
a) -31/17	b) 17/22	c) -17/31	d) 22/17
746. The value of logaloga	$\log_{100} 100^{99^{98}}$ is equal	to	
a) 0	b) 1	c) 2	d) 100!
	,	,	n $\sqrt{5}$, then the set of possible
values of <i>a</i> is	in the roots of the equation		
a) (-3, 3)	b) (−3,∞)	c) (3,∞)	d) (−∞, −3)
748. If z_1 and z_2 are two con	nplex numbers such that $\left \frac{z}{z}\right $	$\frac{1-z_2}{1-z_2} = 1$, then	
	b) $z_1 = i k z_2, k \in R$		d) None of these
749. Let α and β be two fixed			,
	$\bar{z} + \bar{\beta} z - 1 = 0$ are mutual		
	b) $\alpha \beta - \overline{\alpha} \overline{\beta} = 0$		d) $\alpha \overline{\beta} + \overline{\alpha} \beta = 0$
750. If <i>b</i> and <i>c</i> are odd integ	ers, then the equation x^2 +	bx + c = 0 has	
a) Two odd roots			
b) Two integer roots, o	ne odd and one even		
c) No integer roots			
d) None of these			
751. Consider the following		2	1^2 (1^2
		$b^2 + bx + c = 0$ be $p:q$, then	
		en the roots of $cx^2 + bx + a$	u
3 The roots of the equa	2 1 1 1 0		
		reciprocal to $a'x^2 + b'x + c$	$r' = 0$, if $(cc' - aa')^2 =$
(ba'-cb')(ab'-bc').		reciprocal to $a'x^2 + b'x + c$	$a' = 0$, if $(cc' - aa')^2 =$
(ba' - cb')(ab' - bc'). Which of the statement	s given above are correct?		
(ba' - cb')(ab' - bc'). Which of the statement a) (1) and (2)	s given above are correct? b) (2) and (3)	reciprocal to $a'x^2 + b'x + c$ c) (1) and (3)	$a^{\prime} = 0$, if $(cc^{\prime} - aa^{\prime})^2 =$ d) All (1), (2) and (3)
(ba' - cb')(ab' - bc'). Which of the statement a) (1) and (2) 752. Locus of <i>z</i> , if $\arg\left(\frac{z-1}{z+1}\right)$ =	ts given above are correct? b) (2) and (3) = $\frac{\pi}{2}$, is	c) (1) and (3)	d) All (1), (2) and (3)
(ba' - cb')(ab' - bc'). Which of the statement a) (1) and (2) 752. Locus of <i>z</i> , if $\arg\left(\frac{z-1}{z+1}\right)$ = a) A circle	ts given above are correct? b) (2) and (3) = $\frac{\pi}{2}$, is b) A semi circle	c) (1) and (3) c) A straight line	
(ba' - cb')(ab' - bc'). Which of the statement a) (1) and (2) 752. Locus of <i>z</i> , if $\arg\left(\frac{z-1}{z+1}\right)$ = a) A circle 753. If x_1, x_2, x_3 are distinct	ts given above are correct? b) (2) and (3) = $\frac{\pi}{2}$, is b) A semi circle roots of the equation ax^2 -	c) (1) and (3) c) A straight line bx + c = 0, then	d) All (1), (2) and (3) d) None of these
(ba' - cb')(ab' - bc'). Which of the statement a) (1) and (2) 752. Locus of <i>z</i> , if $\arg\left(\frac{z-1}{z+1}\right)$ = a) A circle 753. If x_1, x_2, x_3 are distinct a) $a = b = 0, c \in R$	is given above are correct? b) (2) and (3) $=\frac{\pi}{2}$, is b) A semi circle roots of the equation $ax^2 + b$ b) $a = c = 0, b \in R$	c) (1) and (3) c) A straight line - $bx + c = 0$, then c) $b^2 - 4ac \ge 0$	 d) All (1), (2) and (3) d) None of these d) a = b = c = 0
(ba' - cb')(ab' - bc'). Which of the statement a) (1) and (2) 752. Locus of <i>z</i> , if $\arg\left(\frac{z-1}{z+1}\right)$ = a) A circle 753. If x_1, x_2, x_3 are distinct a) $a = b = 0, c \in R$ 754. If $(1 - p)$ is a root of qu	is given above are correct? b) (2) and (3) $=\frac{\pi}{2}$, is b) A semi circle roots of the equation $ax^2 + b$ b) $a = c = 0, b \in R$ uadratic equation $x^2 + px$	c) (1) and (3) c) A straight line - $bx + c = 0$, then c) $b^2 - 4ac \ge 0$ + $(1 - p) = 0$, then its roots	 d) All (1), (2) and (3) d) None of these d) a = b = c = 0 are
(ba' - cb')(ab' - bc'). Which of the statement a) (1) and (2) 752. Locus of <i>z</i> , if $\arg\left(\frac{z-1}{z+1}\right)$ = a) A circle 753. If x_1, x_2, x_3 are distinct a) $a = b = 0, c \in R$ 754. If $(1 - p)$ is a root of qual a) 0, 1	is given above are correct? b) (2) and (3) $=\frac{\pi}{2}$, is b) A semi circle roots of the equation $ax^2 + b$ b) $a = c = 0, b \in R$ uadratic equation $x^2 + px$ b) -1, 1	c) (1) and (3) c) A straight line - $bx + c = 0$, then c) $b^2 - 4ac \ge 0$ + $(1 - p) = 0$, then its roots c) 0, -1	 d) All (1), (2) and (3) d) None of these d) a = b = c = 0
(ba' - cb')(ab' - bc'). Which of the statement a) (1) and (2) 752. Locus of <i>z</i> , if $\arg\left(\frac{z-1}{z+1}\right) =$ a) A circle 753. If x_1, x_2, x_3 are distinct a) $a = b = 0, c \in R$ 754. If $(1 - p)$ is a root of qual 0, 1 755. If ω is a complex cube r	is given above are correct? b) (2) and (3) $=\frac{\pi}{2}$, is b) A semi circle roots of the equation $ax^2 + b$ b) $a = c = 0, b \in R$ uadratic equation $x^2 + px$ b) -1, 1 root of unity, then the value	c) (1) and (3) c) A straight line - $bx + c = 0$, then c) $b^2 - 4ac \ge 0$ + $(1 - p) = 0$, then its roots c) $0, -1$ e of $\omega^{99} + \omega^{100} + \omega^{101}$ is	 d) All (1), (2) and (3) d) None of these d) a = b = c = 0 are d) -1, 2
(ba' - cb')(ab' - bc'). Which of the statement a) (1) and (2) 752. Locus of <i>z</i> , if $\arg\left(\frac{z-1}{z+1}\right) =$ a) A circle 753. If x_1, x_2, x_3 are distinct a) $a = b = 0, c \in R$ 754. If $(1 - p)$ is a root of qual 0, 1 755. If ω is a complex cube range of α and β	is given above are correct? b) (2) and (3) $=\frac{\pi}{2}$, is b) A semi circle roots of the equation $ax^2 + b$ b) $a = c = 0, b \in R$ uadratic equation $x^2 + px$ b) -1, 1 root of unity, then the value b) -1	c) (1) and (3) c) A straight line - $bx + c = 0$, then c) $b^2 - 4ac \ge 0$ + $(1 - p) = 0$, then its roots c) $0, -1$ s of $\omega^{99} + \omega^{100} + \omega^{101}$ is c) 3	 d) All (1), (2) and (3) d) None of these d) a = b = c = 0 are d) -1, 2 d) 0
(ba' - cb')(ab' - bc'). Which of the statement a) (1) and (2) 752. Locus of <i>z</i> , if $\arg\left(\frac{z-1}{z+1}\right) =$ a) A circle 753. If x_1, x_2, x_3 are distinct a) $a = b = 0, c \in R$ 754. If $(1 - p)$ is a root of qual 0, 1 755. If ω is a complex cube r	is given above are correct? b) (2) and (3) $=\frac{\pi}{2}$, is b) A semi circle roots of the equation $ax^2 + b$ b) $a = c = 0, b \in R$ uadratic equation $x^2 + px$ b) -1, 1 root of unity, then the value b) -1	c) (1) and (3) c) A straight line - $bx + c = 0$, then c) $b^2 - 4ac \ge 0$ + $(1 - p) = 0$, then its roots c) $0, -1$ s of $\omega^{99} + \omega^{100} + \omega^{101}$ is c) 3	 d) All (1), (2) and (3) d) None of these d) a = b = c = 0 are d) -1, 2 d) 0
(ba' - cb')(ab' - bc'). Which of the statement a) (1) and (2) 752. Locus of <i>z</i> , if $\arg\left(\frac{z-1}{z+1}\right) =$ a) A circle 753. If x_1, x_2, x_3 are distinct a) $a = b = 0, c \in R$ 754. If $(1 - p)$ is a root of qual 0, 1 755. If ω is a complex cube range 1 756. The value of 'c' for which	is given above are correct? b) (2) and (3) $=\frac{\pi}{2}$, is b) A semi circle roots of the equation $ax^2 + b$ b) $a = c = 0, b \in R$ uadratic equation $x^2 + px$ b) -1, 1 root of unity, then the value b) -1 ch $ \alpha^2 - \beta^2 = 7/4$, where b) 0	c) (1) and (3) c) A straight line - $bx + c = 0$, then c) $b^2 - 4ac \ge 0$ + $(1 - p) = 0$, then its roots c) 0, -1 s of $\omega^{99} + \omega^{100} + \omega^{101}$ is c) 3 α and β are the roots of 2 x^2 c) 6	d) All (1), (2) and (3) d) None of these d) $a = b = c = 0$ are d) -1, 2 d) 0 $c^{2} + 7 x + c = 0$, is d) 2
(ba' - cb')(ab' - bc'). Which of the statement a) (1) and (2) 752. Locus of <i>z</i> , if $\arg\left(\frac{z-1}{z+1}\right) =$ a) A circle 753. If x_1, x_2, x_3 are distinct a) $a = b = 0, c \in R$ 754. If $(1 - p)$ is a root of qual a) 0, 1 755. If ω is a complex cube range and	is given above are correct? b) (2) and (3) $=\frac{\pi}{2}$, is b) A semi circle roots of the equation $ax^2 + b$ b) $a = c = 0, b \in R$ uadratic equation $x^2 + px$ b) -1, 1 root of unity, then the value b) -1 ch $ \alpha^2 - \beta^2 = 7/4$, where b) 0 $= \sin \alpha + \sin \beta + \sin \gamma = 0$, b) $\cos(\alpha + \beta + \gamma)$	c) (1) and (3) c) A straight line - $bx + c = 0$, then c) $b^2 - 4ac \ge 0$ + $(1 - p) = 0$, then its roots c) 0, -1 e of $\omega^{99} + \omega^{100} + \omega^{101}$ is c) 3 α and β are the roots of 2 x^2 c) 6 then $\cos 3\alpha + \cos 3\beta + \cos 3\beta$	d) All (1), (2) and (3) d) None of these d) $a = b = c = 0$ are d) -1, 2 d) 0 $c^{2} + 7x + c = 0$, is d) 2 3γ equals
(ba' - cb')(ab' - bc'). Which of the statement a) (1) and (2) 752. Locus of <i>z</i> , if $\arg\left(\frac{z-1}{z+1}\right) =$ a) A circle 753. If x_1, x_2, x_3 are distinct a) $a = b = 0, c \in R$ 754. If $(1 - p)$ is a root of qual a) 0, 1 755. If ω is a complex cube r a) 1 756. The value of ' <i>c</i> ' for whith a) 4 757. If $\cos \alpha + \cos \beta + \cos \gamma$	is given above are correct? b) (2) and (3) $=\frac{\pi}{2}$, is b) A semi circle roots of the equation $ax^2 + b$ b) $a = c = 0, b \in R$ uadratic equation $x^2 + px$ b) -1, 1 root of unity, then the value b) -1 ch $ \alpha^2 - \beta^2 = 7/4$, where b) 0 $= \sin \alpha + \sin \beta + \sin \gamma = 0$, b) $\cos(\alpha + \beta + \gamma)$	c) (1) and (3) c) A straight line - $bx + c = 0$, then c) $b^2 - 4ac \ge 0$ + $(1 - p) = 0$, then its roots c) 0, -1 e of $\omega^{99} + \omega^{100} + \omega^{101}$ is c) 3 α and β are the roots of 2 x^2 c) 6 then $\cos 3\alpha + \cos 3\beta + \cos 3\beta$	d) All (1), (2) and (3) d) None of these d) $a = b = c = 0$ are d) -1, 2 d) 0 $c^{2} + 7x + c = 0$, is d) 2 3γ equals
(ba' - cb')(ab' - bc'). Which of the statement a) (1) and (2) 752. Locus of <i>z</i> , if $\arg\left(\frac{z-1}{z+1}\right) =$ a) A circle 753. If x_1, x_2, x_3 are distinct a) $a = b = 0, c \in R$ 754. If $(1 - p)$ is a root of qual a) 0, 1 755. If ω is a complex cube rance a) 1 756. The value of ' <i>c</i> ' for which a) 4 757. If $\cos \alpha + \cos \beta + \cos \gamma$ a) 0 758. If z_2 and z_2 are two <i>n</i> th	is given above are correct? b) (2) and (3) $=\frac{\pi}{2}$, is b) A semi circle roots of the equation $ax^2 + b$ b) $a = c = 0, b \in R$ uadratic equation $x^2 + px$ b) -1, 1 root of unity, then the value b) -1 ch $ a^2 - \beta^2 = 7/4$, where b) 0 $= \sin \alpha + \sin \beta + \sin \gamma = 0$, b) $\cos(\alpha + \beta + \gamma)$ in roots of unity, then $\arg(\frac{2}{2})$	c) (1) and (3) c) A straight line - $bx + c = 0$, then c) $b^2 - 4ac \ge 0$ + $(1 - p) = 0$, then its roots c) 0, -1 e of $\omega^{99} + \omega^{100} + \omega^{101}$ is c) 3 α and β are the roots of 2 x^2 c) 6 then $\cos 3\alpha + \cos 3\beta + \cos 3\beta$ c) $3\cos(\alpha + \beta + \gamma)$ $\frac{51}{22}$ is a multiple of	d) All (1), (2) and (3) d) None of these d) $a = b = c = 0$ are d) -1, 2 d) 0 $c^{2} + 7x + c = 0$, is d) 2 3γ equals
(ba' - cb')(ab' - bc'). Which of the statement a) (1) and (2) 752. Locus of <i>z</i> , if $\arg\left(\frac{z-1}{z+1}\right) =$ a) A circle 753. If x_1, x_2, x_3 are distinct a) $a = b = 0, c \in R$ 754. If $(1 - p)$ is a root of qual a) 0, 1 755. If ω is a complex cube r a) 1 756. The value of ' <i>c</i> ' for which a) 4 757. If $\cos \alpha + \cos \beta + \cos \gamma$ a) 0 758. If z_2 and z_2 are two nth a) $n\pi$	is given above are correct? b) (2) and (3) = $\frac{\pi}{2}$, is b) A semi circle roots of the equation $ax^2 + b$ b) $a = c = 0, b \in R$ uadratic equation $x^2 + px$ b) -1, 1 root of unity, then the value b) -1 ch $ a^2 - \beta^2 = 7/4$, where b) 0 = $\sin \alpha + \sin \beta + \sin \gamma = 0$ b) $\cos(\alpha + \beta + \gamma)$ in roots of unity, then $\arg\left(\frac{3}{2}\right)$	c) (1) and (3) c) A straight line - $bx + c = 0$, then c) $b^2 - 4ac \ge 0$ + $(1 - p) = 0$, then its roots c) $0, -1$ e of $\omega^{99} + \omega^{100} + \omega^{101}$ is c) 3 α and β are the roots of $2x^2$ c) 6 then $\cos 3\alpha + \cos 3\beta + \cos 3\beta$ then $\cos 3\alpha + \cos 3\beta + \cos 3\beta$ c) $3\cos(\alpha + \beta + \gamma)$ $\frac{51}{22}$ is a multiple of c) $\frac{2\pi}{n}$	d) All (1), (2) and (3) d) None of these d) $a = b = c = 0$ are d) -1, 2 d) 0 $c^{2} + 7x + c = 0$, is d) 2 $d^{3}y$ equals d) $3 \sin(\alpha + \beta + \gamma)$ d) None of these
(ba' - cb')(ab' - bc'). Which of the statement a) (1) and (2) 752. Locus of <i>z</i> , if $\arg\left(\frac{z-1}{z+1}\right) =$ a) A circle 753. If x_1, x_2, x_3 are distinct a) $a = b = 0, c \in R$ 754. If $(1 - p)$ is a root of qual a) 0, 1 755. If ω is a complex cube r a) 1 756. The value of ' <i>c</i> ' for which a) 4 757. If $\cos \alpha + \cos \beta + \cos \gamma$ a) 0 758. If z_2 and z_2 are two <i>n</i> th a) $n\pi$ 759. If the roots of $a_1x^2 + b_2$	is given above are correct? b) (2) and (3) = $\frac{\pi}{2}$, is b) A semi circle roots of the equation $ax^2 + b$ b) $a = c = 0, b \in R$ uadratic equation $x^2 + px$ b) $-1, 1$ root of unity, then the value b) -1 ch $ \alpha^2 - \beta^2 = 7/4$, where b) 0 = sin α + sin β + sin γ = $0, \beta$ b) cos($\alpha + \beta + \gamma$) n roots of unity, then arg($\frac{2}{3}, \beta$ b) $\frac{3\pi}{n}$ $1x + c_1 = 0$ are α_1, β_1 and	c) (1) and (3) c) A straight line - $bx + c = 0$, then c) $b^2 - 4ac \ge 0$ + $(1 - p) = 0$, then its roots c) $0, -1$ e of $\omega^{99} + \omega^{100} + \omega^{101}$ is c) 3 α and β are the roots of $2x^2$ c) 6 then $\cos 3\alpha + \cos 3\beta + \cos 3\beta$ then $\cos 3\alpha + \cos 3\beta + \cos 3\beta$ c) $3\cos(\alpha + \beta + \gamma)$ $\frac{51}{22}$ is a multiple of c) $\frac{2\pi}{n}$	d) All (1), (2) and (3) d) None of these d) $a = b = c = 0$ are d) -1, 2 d) 0 $c^{2} + 7x + c = 0$, is d) 2 $d^{3}y$ equals d) $3 \sin(\alpha + \beta + \gamma)$ d) None of these
(ba' - cb')(ab' - bc'). Which of the statement a) (1) and (2) 752. Locus of <i>z</i> , if $\arg\left(\frac{z-1}{z+1}\right)$ a) A circle 753. If x_1, x_2, x_3 are distinct a) $a = b = 0, c \in R$ 754. If $(1 - p)$ is a root of qual a) 0, 1 755. If ω is a complex cube r a) 1 756. The value of ' <i>c</i> ' for which a) 4 757. If $\cos \alpha + \cos \beta + \cos \gamma$ a) 0 758. If z_2 and z_2 are two nth a) $n\pi$ 759. If the roots of $a_1x^2 + b_1$ $\alpha_1 \alpha_2 = \beta_1 \beta_2 = 1$, ther	is given above are correct? b) (2) and (3) = $\frac{\pi}{2}$, is b) A semi circle roots of the equation $ax^2 + b$ b) $a = c = 0, b \in R$ uadratic equation $x^2 + px$ b) -1, 1 root of unity, then the value b) -1 ch $ a^2 - \beta^2 = 7/4$, where b) 0 = sin α + sin β + sin γ = 0, b) cos($\alpha + \beta + \gamma$) n roots of unity, then arg $(\frac{3}{2})$ b) $\frac{3\pi}{n}$ $ax + c_1 = 0$ are α_1 , β_1 and α_1	c) (1) and (3) c) A straight line -bx + c = 0, then c) $b^2 - 4ac \ge 0$ + (1 - p) = 0, then its roots c) 0, -1 e of $\omega^{99} + \omega^{100} + \omega^{101}$ is c) 3 α and β are the roots of 2 x^2 c) 6 then $\cos 3\alpha + \cos 3\beta + \cos 3\beta$ then $\cos 3\alpha + \cos 3\beta + \cos 3\beta$ c) $3\cos(\alpha + \beta + \gamma)$ $\frac{51}{22}$ is a multiple of c) $\frac{2\pi}{n}$ those of $a_2x^2 + b_2x + c_2 = 0$	d) All (1), (2) and (3) d) None of these d) $a = b = c = 0$ are d) -1, 2 d) 0 $c^{2} + 7x + c = 0$, is d) 2 $\beta\gamma$ equals d) 3 sin($\alpha + \beta + \gamma$) d) None of these 0 are $\alpha_{2} \beta_{2}$ such that
(ba' - cb')(ab' - bc'). Which of the statement a) (1) and (2) 752. Locus of <i>z</i> , if $\arg\left(\frac{z-1}{z+1}\right)$ a) A circle 753. If x_1, x_2, x_3 are distinct a) $a = b = 0, c \in R$ 754. If $(1 - p)$ is a root of qual a) 0, 1 755. If ω is a complex cube r a) 1 756. The value of ' <i>c</i> ' for which a) 4 757. If $\cos \alpha + \cos \beta + \cos \gamma$ a) 0 758. If z_2 and z_2 are two nth a) $n\pi$ 759. If the roots of $a_1x^2 + b_1$ $\alpha_1 \alpha_2 = \beta_1 \beta_2 = 1$, ther	is given above are correct? b) (2) and (3) = $\frac{\pi}{2}$, is b) A semi circle roots of the equation $ax^2 + b$ b) $a = c = 0, b \in R$ uadratic equation $x^2 + px$ b) $-1, 1$ root of unity, then the value b) -1 ch $ \alpha^2 - \beta^2 = 7/4$, where b) 0 = sin α + sin β + sin γ = $0, \beta$ b) cos($\alpha + \beta + \gamma$) n roots of unity, then arg($\frac{2}{3}, \beta$ b) $\frac{3\pi}{n}$ $1x + c_1 = 0$ are α_1, β_1 and	c) (1) and (3) c) A straight line -bx + c = 0, then c) $b^2 - 4ac \ge 0$ + (1 - p) = 0, then its roots c) 0, -1 e of $\omega^{99} + \omega^{100} + \omega^{101}$ is c) 3 α and β are the roots of 2 x^2 c) 6 then $\cos 3\alpha + \cos 3\beta + \cos 3\beta$ then $\cos 3\alpha + \cos 3\beta + \cos 3\beta$ c) $3\cos(\alpha + \beta + \gamma)$ $\frac{51}{22}$ is a multiple of c) $\frac{2\pi}{n}$ those of $a_2x^2 + b_2x + c_2 = 0$	d) All (1), (2) and (3) d) None of these d) $a = b = c = 0$ are d) -1, 2 d) 0 $c^{2} + 7x + c = 0$, is d) 2 $d^{3}y$ equals d) $3 \sin(\alpha + \beta + \gamma)$ d) None of these
(ba' - cb')(ab' - bc'). Which of the statement a) (1) and (2) 752. Locus of <i>z</i> , if $\arg\left(\frac{z-1}{z+1}\right)$ a) A circle 753. If x_1, x_2, x_3 are distinct a) $a = b = 0, c \in R$ 754. If $(1 - p)$ is a root of qual a) 0, 1 755. If ω is a complex cube r a) 1 756. The value of ' <i>c</i> ' for which a) 4 757. If $\cos \alpha + \cos \beta + \cos \gamma$ a) 0 758. If z_2 and z_2 are two nth a) $n\pi$ 759. If the roots of $a_1x^2 + b_1$ $\alpha_1 \alpha_2 = \beta_1 \beta_2 = 1$, ther	is given above are correct? b) (2) and (3) $= \frac{\pi}{2}$, is b) A semi circle roots of the equation $ax^2 + b$ b) $a = c = 0, b \in R$ uadratic equation $x^2 + px$ b) $-1, 1$ root of unity, then the value b) -1 ch $ a^2 - \beta^2 = 7/4$, where b) 0 $= \sin \alpha + \sin \beta + \sin \gamma = 0$, b) $\cos(\alpha + \beta + \gamma)$ in roots of unity, then $\arg\left(\frac{2}{3}\right)$ $\frac{3\pi}{n}$ $ax + c_1 = 0$ are a_1 , β_1 and b) $\frac{a_1}{c_2} = \frac{b_1}{b_2} = \frac{c_1}{a_2}$	c) (1) and (3) c) A straight line -bx + c = 0, then c) $b^2 - 4ac \ge 0$ + (1 - p) = 0, then its roots c) 0, -1 $cof \omega^{99} + \omega^{100} + \omega^{101}$ is c) 3 α and β are the roots of 2 x^2 c) 6 then $\cos 3\alpha + \cos 3\beta + \cos 3\beta$ c) $3\cos(\alpha + \beta + \gamma)$ $\frac{(1)}{22}$) is a multiple of c) $\frac{2\pi}{n}$ those of $a_2x^2 + b_2x + c_2 = 2$ c) $a_1a_2 = b_1b_2 = c_1c_2$	d) All (1), (2) and (3) d) None of these d) $a = b = c = 0$ are d) -1, 2 d) 0 $c^{2} + 7x + c = 0$, is d) 2 $\beta\gamma$ equals d) 3 sin($\alpha + \beta + \gamma$) d) None of these 0 are $\alpha_{2} \beta_{2}$ such that

a) Equal b) Imaginary c) Real d) None of these ^{761.} If z is a complex number in the Argand plane such that $\arg\left(\frac{z-3\sqrt{3}}{z+3\sqrt{3}}\right) = \frac{\pi}{3}$ then the lous of z is a) |z - 3i| = 6b) |z - 3i| = 6, Im (z) > 0c) |z - 3i| = 6, Im (z) < 0d) None of these 762. If $\sin \alpha$ and $\cos \alpha$ are the roots of the equation $px^2 + qx + r = 0$, then a) $p^2 + q^2 - 2pr = 0$ b) $p^2 - q^2 + 2pr = 0$ c) $p^2 - q^2 - 2pr = 0$ d) $p^2 + q^2 + 2qr = 0$ 763. The equation $x^{\frac{3}{4}(\log_2 x)^2 + (\log_2 x)^{-\frac{5}{4}}} = \sqrt{2}$ has a) At least one real solution b) Exactly three real solution c) Exactly one irrational solution d) All of the above ^{764.} If z = x + i y, then the equation $\left|\frac{2 z - 1}{z + 1}\right| = m$ does not represent a circle when m =a) 1/2 c) 2 d) 3 765. Let z = x + iy be a complex number where x and y are integers. Then the area of the rectangle whose vertices are the roots of the equation $z\bar{z}^3 + \bar{z}z^3 = 350$ is b) 32 a) 48 c) 40 d) 80 766. If $(a_1 + i b_1)(a_2 + i b_2) \dots (a_n + i b_n) = A + i B$, then $(a_1^2 + b_1^2)(a_2^2 + b_2^2) \dots (a_n^2 + b_n^2)$ is equal to d) $\frac{1}{A^2} + \frac{1}{R^2}$ a) 1 b) $A^2 + B^2$ c) *A* + *B* 767. The complex numbers $\sin x + i \cos 2x$ and $\cos x - i \sin 2x$ are conjugate to each other for b) $x = (n + \frac{1}{2})\pi$ c) x = 0a) $x = n\pi$ d) No value of x 768. The number which exceeds its positive square roots by 12, is d) None of these a) 9 c) 25 b) 16 769. The solution set of the inequation $\frac{|x-2|}{x-2} < 0$, is a) (2,∞) b) $(-\infty, 2)$ c) *R* d) (-2, 2)770. The product of all values of $(\cos \alpha + i \sin \alpha^{3/5})$ is b) $\cos \alpha + i \sin \alpha$ a) 1 c) $\cos 3\alpha + i \sin 3\alpha$ d) $\cos 5\alpha + i \sin 5\alpha$ 771. If $a = \cos \alpha + i \sin \alpha$, $b = \cos \beta + i \sin \beta$, $c = \cos \gamma + i \sin \gamma$ and $\frac{b}{c} + \frac{c}{a} + \frac{a}{b} = 1$, then $\cos(\beta - \gamma) + \frac{c}{a} + \frac{c}{a} + \frac{c}{b} = 1$. $\cos\gamma - \alpha + \cos(\alpha - \beta)$ is equal to a) $\frac{3}{2}$ c) 0 d) 1 b) $-\frac{3}{2}$ 772. If $\frac{x-4}{x^2-5x+6}$ can be expanded in the ascending powers of *x*, then the coefficient of x^3 is c) $\frac{71}{648}$ b) $\frac{73}{648}$ d) $-\frac{71}{648}$ a) $-\frac{73}{648}$ 773. If $a = \cos \theta + i \sin \theta$, then $\frac{1+a}{1-a}$ is equal to a) $i \cot \frac{\theta}{2}$ b) *i* tan $\frac{\theta}{2}$ c) $i \cos \frac{\theta}{2}$ d) *i* cosec $\frac{\theta}{2}$ ^{774.} The points in the set $\left\{z \in C: \arg\left(\frac{z-2}{z-6i}\right) = \frac{\pi}{2}\right\}$ (where *C* denotes the set of all complex numbers) lie on the curve which is a b) Pair of lines d) Hyperbola a) Circle c) Parabola 775. The number of solution of $\log_4(x - 1) = \log_2(x - 3)$ is a) 3 b) 1 c) 2 d) 0 776. If $\cos \alpha + 2 \cos \beta + 3 \cos \gamma = \sin \alpha + 2 \sin \beta + 3 \sin \gamma = 0$, then the value of $\sin 3 \alpha + 8 \sin 3 \beta + 27 \sin 3 \gamma$ is b) $3\sin(\alpha + \beta + \gamma)$ a) $sin(\alpha + \beta + \gamma)$ c) $18\sin(\alpha + \beta + \gamma)$ d) $\sin(\alpha + 2\beta + 3\gamma)$ 777. If $f(x) = \sum_{k=2}^{n} \left(x - \frac{1}{k-1}\right) \left(x - \frac{1}{k}\right)$, then the product of roots of f(x) = 0 as $n \to \infty$, is

a) —1	b) 0	c) 1	d) None of these	
778. If $3p^2 = 5p + 2$ and $3q^2 = 5q + 2$ where $p \neq q$, then the equation whose roots are $3p - 2q$ and $3q - 2p$ is				
a) $3x^2 - 5x - 100 = 0$ b) $5x^2 + 3x + 100 = 0$				
c) $3x^2 - 5x + 100 = 0$		d) $3x^2 + 5x - 100 = 0$		
779. If $a, b, c \in R$ and the eq	uations $ax^2 + bx + c = 0$ ar	$dx^3 + 3x^2 + 3x + 2 = 0 h$	ave two roots in common,	
then				
a) $a = b \neq c$	b) $a = b = -c$	c) $a = b = c$	d) None of these	
^{780.} Which of the following	is a fourth root of $\frac{1}{2} + i \frac{\sqrt{3}}{2}$?			
_		π	π	
a) cis $\frac{\pi}{12}$	b) cis $\frac{\pi}{2}$	c) cis $\frac{1}{6}$	d) cis $\frac{\pi}{3}$	
781. Number of integer root	s of the equation $(x + 2)(x)$	$(x+3)(x+8)(x+12) = 4x^{2}$	is	
a) 0	b) 4	c) 2	d) None of these	
782. If the roots of $ax^2 + bx$	$+ c = 0$ are α . β and the root	ots of $Ax^2 + Bx + C = 0$ are	$\alpha - k, \beta - k$, then $\frac{B^2 - 4AC}{b^2 - 4aC}$ is	
equal to			b^2-4ac	
a) 0	b) 1	$(\Lambda)^2$	$\langle a \rangle^2$	
	0)1	c) $\left(\frac{A}{a}\right)^2$	d) $\left(\frac{a}{4}\right)^2$	
783. tc^{5z^2} .	$ 2z_1+3z_2 $	(u) [2].	ΥΛΥ ΥΛΥ	
783. If $\frac{5z^2}{11z_1}$ is purely imagina	ary, then the value of $\left \frac{z_1-3z_2}{2z_1-3z_2}\right $	$\frac{1}{\sqrt{2}}$ 1S		
a) 37/33	b) 2	c) 1	d) 3	
784. If a root of the equation				
	(ab' - bc')		-bc')(ab'-bc')	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(ab' + bc')(ab' + bc')	,		
785. If $ z + 8 + z - 8 = 16$				
a) A circle	b) An ellipse		d) None of these	
786. If one root of the equat	_	= 0 is $-l + i$, then the other	er root is	
a) —l — <i>i</i>	b) $\frac{-l-i}{2}$	c) i	d) 2 <i>i</i>	
787. The sum of non-real ro	Z			
$(x^2 + x - 2)(x^2 + x - 1)(x^2 + x - 1)(x^$				
($x + x - 2$)($x + x - 1$ a) 1	•	c) -6	d) 6	
2	2	-) -	q = 0 has equal roots, then	
the value of q is			q o nuo equal rooto, then	
a) 49/4	b) 4/49	c) 4	d) None of these	
789. If $\frac{3(x-2)}{5} \ge \frac{5(2-x)}{3}$, then x	5 1	,	,	
		a) (an 2]		
a) $(2, \infty)$ 790. If $ax^2 + bx - c$ is divisi		c) $(-\infty, 2]$	d) None of these	
	b) $ax^2 - bx - 1 = 0$		d) None of these	
791. If p and q are the roots	-	-	u) None of these	
a) $p = 1$		c) $p = -2$	d) $p = -2$ or 0	
792. If $4 \le x \le 9$, then	b) p = 1010	$c_{j} p = -2$	$u_{j}p = -2 010$	
	b) $(x-4)(x-9) \ge 0$	c) $(x-4)(x-9) < 0$	d) $(x - 4)(x - 9) > 0$	
793. The number of real solu				
$\frac{6-x}{x^2-4} = 2 + \frac{x}{x+2}$, is				
a) 1	b) 2	c) 0	d) None of these	
794. For any complex numb	er <i>z,</i> the minimum value of	z + z - 1 is		
a) 0	b) 1	c) 2	d) -1	
795. The difference betweer	two roots of the equation a	$x^3 - 13x^2 + 15x + 189 = 0$) is 2. Then the roots of the	
equation are				
a) -3, 7, 9	b) -3, -7, -9	c) 3, -5, 7	d) -3, -7, 9	

796. If $ z + 4 \le 3$, then the g	reatest and the least value o	of $ z + 1 $ are respectively	
a) 6, -6	b) 6, 0	c) 7, 2	d) 0, -1
797. The number of roots of t	-	$\frac{2}{1}$ is	
a) 1	b) 2		d) Infinitely many
798. The equation $z\bar{z} + (4 - 3)$,	•	ayy
a) 5	b) $2\sqrt{5}$	c) 5/2	d) None of these
799. The number of solutions	y	<i>,</i> ,	-
a) 4	b) 3	c) 2	d) 1
800. If one root is square of the	ne root of the equation x^2 +	-px + q = 0, then the relati	on between <i>p</i> and <i>q</i> is
a) $p^3 - (3p - 1)q + q^2 =$	= 0	b) $p^3 - q(3p+1) + q^2 =$	= 0
c) $p^3 + q(3p - 1) + q^2 =$		d) $p^3 + q(3p+1) + q^2 =$	
801. If the roots of the equation			
a) $1, \frac{1}{2}, \frac{1}{4}$	b) 2, 4, 8	c) 3, 6, 12	d) None of these
802. The values of x and y such that $y = x^2 + y^2$	ch that y satisfy the equation	on $(x, y \in \text{real numbers}) x^2$	$-xy + y^2 - 4x - 4y +$
16 = 0 is			
a) 4, 4	b) 3, 3	c) 2, 2	d) None of these
803. If α , β are the roots of the	e equation $ax^2 + bx + c =$	0, then the equation whose	roots are $\alpha + \frac{1}{\alpha}$ and $\beta + \frac{1}{\alpha}$,
is			β α
a) $ac x^2 + (a + c)bx + (a +$	$(a+c)^2 = 0$	b) $ab x^2 + (a + c)bx + (a +$	$(a+c)^2 = 0$
c) $ac x^2 + (a + b)cx + (a +$		d) None of these	
804 . The real part of $1 + \cos \theta$			
a) 1	(3) (3)]	$1 (\pi)$	$1 (\pi)$
-	b) $\frac{1}{2}$	c) $\frac{1}{2}\cos\left(\frac{\pi}{10}\right)$	d) $\frac{1}{2}\cos\left(\frac{\pi}{5}\right)$
805. If 1, ω , ω^2 are the cube ro			
$ \begin{bmatrix} 1 & \omega^n & \omega^{2n} \\ n & 2n \end{bmatrix} $	aqual to		
$\Delta = \begin{vmatrix} 1 & \omega^n & \omega^{2n} \\ \omega^n & \omega^{2n} & 1 \\ \omega^{2n} & 1 & \omega^n \end{vmatrix}$ is	equal to		
a) 0	b) 1	c) ω	d) ω^2
806. If both the roots of the ed	quation $ax^2 + bx + c = 0$ a	re zero, then	
a) $b = c = 0$	b) $b = 0, c \neq 0$	c) $b \neq 0, c = 0$	d) $b \neq 0, c \neq 0$
807. If the roots of the equation			
a) $p^2 = 4q$	b) $p^2 = 4q + 1$		d) None of these
808. If $ z = 1$ and $w = \frac{z-1}{z+1}$ (w	where $z \neq -1$), then $\operatorname{Re}(w)$	is	
a) 0	b) 1	c) $\left \frac{1}{z+1}\right \cdot \frac{1}{ z+1 ^2}$	$\sqrt{2}$
	$\frac{ z+1 ^2}{ z+1 ^2}$	$ z+1 \cdot z+1 ^2$	$\frac{ z+1 ^2}{ z+1 ^2}$
^{809.} The least positive intege	r <i>n</i> for which $\left(\frac{1+i}{n}\right)^n = \frac{2}{n} \sin \frac{1}{n}$	$1^{-1}\left(\frac{1+x^2}{x}\right)$, where $x > 0$, is	
a) 2	(1- <i>i</i>) π	$(2x)^{2}$	d) 12
810. If α , β , γ are the roots of			
a) 0	b) 3	c) -3	d) -1
811. Let z be a complex numb	per (not lying on x-axis) of i	maximum modulus such $ z $	$+\frac{1}{2} = 1$. Then.
a) Im $(z) = 0$	b) Re $(z) = 0$		d) None of these
812. If $x = c$ is a root of order			,
a) $f'(x)$	b) <i>f</i> "(<i>x</i>)		d) None of these
813. If $\cos \alpha + 2\cos \beta + 3\cos \beta$,, , ,	,, , ,	
27cos <i>3y=</i>			
a) 0	b) 3	c) 18	d) -18
^{814.} If ω is a complex cube ro	ot of unity, then the value o	of $\frac{a+b\omega+c\omega^2}{c+a\omega+b\omega^2} + \frac{a+b\omega+c\omega^2}{b+c\omega+a\omega^2}$ is	

a) 1	b) 0	c) 2	d) -1
-	$c, a \neq 0$ and $\Delta = b^2 - 4ac$.	If $\alpha + \beta$, $\alpha^2 + \beta^2$ and $\alpha^3 + \beta^2$	β^3 are in GP, then
a) ∆≠ 0	b) <i>b</i> ∆= 0	c) $c\Delta = 0$	d) $bc \neq 0$
816. If $i = \sqrt{-1}$ and <i>n</i> is a p	positive integer, then $i^n + i^n$	$^{+1} + i^{n+2} + i^{n+3}$ is equal t	20
a) 1	b) <i>i</i>	c) <i>iⁿ</i>	d) 0
817. The additive inverse o			
a) 0 + 0 <i>i</i>	,	c) $-1 + i$,
	$2kx + 2e^{2\log k} - 1 = 0$ has t	he product of roots equal	to 31, then for what value of <i>k</i>
it has real roots?	h) 2	a) 2	J) 4
a) 1	b) 2	c) 3 (z-1) π .	d) 4
	z which satisfy the condition		
a) A straight line	b) A circle	c) A parabola	d) None of these
	$\frac{(-\sqrt{3}+3i)(1-i)}{(3+\sqrt{3}i)(i)(\sqrt{3}+\sqrt{3}i)}$ when repre		
a) In the second quadr		b) In the first quadrant	
c) On the <i>y</i> -axis (imag			
	n the equations $ax^2 + 2bx$ -	$c = 0$ and $dx^2 + 2ex + j$	f = 0 have a common root if
$\frac{d}{a}, \frac{e}{b}, \frac{f}{c}$ are in			
a) A.P.	b) G.P.	c) H.P.	d) None of these
822.	<i></i>		
822. The value of $\sqrt{8+2\sqrt{8}}$	$3 + 2\sqrt{8} + 2\sqrt{2}$, is		
a) 10	b) 6	c) 8	d) 4
	$fx^2 - 2x\cos\phi + 1 = 0$, ther		
a) $x^2 - 2x \cos n\phi - 1$		b) $x^2 - 2x \cos n\phi + 1$	
c) $x^2 - 2x \sin n\phi + 1$		d) $x^2 + 2x \sin n\phi - 1 =$	= 0
824. $\frac{(\cos\theta + i\sin\theta)^4}{(\sin\theta + i\cos\theta)^5}$ is equal to	0		
a) $\cos \theta - i \sin \theta$	b) $\sin \theta - i \cos \theta$	c) $\cos 9\theta - i \sin 9\theta$	d) $\sin 9\theta - i \cos 9\theta$
•	$ax + a = 0$ and $x^3 - 2x^2 + 2$	2x - 1 = 0 have 2 roots in	a common. Then, $a + b$ must
be equal to			
a) 1	b) -1	c) 0	d) None of these
a) G.P.	tion $(a^2 + b^2)x^2 - 2b(a + b) \wedge p$	$c)x + (b^2 + c^2) = 0$ are e c) H.P.	d) None of these
,	b) A.P. the equation $x^3 + ax^2 + bx + bx^2$,	,
	which one of the following	-	
a) 1	i which one of the following	b) -1	en equation.
c) ω , an imaginary cub	e root of unity	d) <i>i</i>	
828. If Re $\left(\frac{z-8i}{z+6}\right) = 0$, then	•	2	
a) $x^2 + y^2 + 6x - 8y$			
b) $4x - 3y + 24 = 0$	- 0		
c) $x^2 + y^2 - 8 = 0$			
d) None of these			
829. If $\alpha \neq \beta$ and $\alpha^2 = 5 \alpha$	-3 , $\beta^2 = 5\beta - 3$, then the β	equation having α/β and β	$3/\alpha$ as its roots is
-	b) $3x^2 - 19x + 3 = 0$		-
	ty are 1, ω , ω^2 , then the root		
a) -1, -1, -1	-	-	d) $-1, 2 - 3\omega, 2 - 3\omega^2$
	$3x + 5\lambda = 0$ and $x^2 + 2x + 3$		
a) 0 832 If z is a complex numb	b) −1 er in the Argand plane, then	c) 0, -1 the equation $ z - 2 ^2 + z ^2$	d) 2, -1
032. Il 2 is a complex numb	er in the Arganu plane, then	$\frac{1}{2} = \frac{1}{2} + \frac{1}{2}$	$2 \pm 21 = 0$ represents

a) A norabala b) An allinga	a) A humanhala	d) A gingle
a) A parabola b) An ellipse 833. Let α and β be the roots of the equation $x^2 + x + 1$	· · ·	d) A circle
a) $x^2 - x - 1 = 0$ b) $x^2 - x + 1 = 0$		
834. If α and β are the roots of the equation $x^2 - 6x + \beta$	-	-
value of <i>a</i> is		
a) -8 b) 8	c) -16	d) 9
835. The values of x satisfying $ x - 4 + x - 9 = 5$ is	,	,
a) $x = 4,9$ b) $4 \le x \le 9$	c) $x \le 4 \text{ or } x \ge 9$	d) None of these
836. Let $a_n = i^{(n+1)^2}$, where $i = \sqrt{-1}$ and $n = 1, 2, 3,$		$a_5 + \ldots + a_{25}$ is
a) 13 b) $13 + i$	c) 13 – <i>i</i>	d) 12
837. For $n = 6 k, k \in \mathbb{Z}, \left(\frac{1-i\sqrt{3}}{2}\right)^n + \left(\frac{-1-i-\sqrt{3}}{2}\right)^n$ has the	value	
a) -1 b) 0	c) 1	d) 2
^{838.} A value of <i>n</i> such that $\left(\frac{\sqrt{3}}{2} + \frac{i}{2}\right)^n = 1$ is		
	a))	J) 1
a) 12 b) 3 839 The set of $x^{+1} > 1$	c) 2	d) 1
839. The number of integral solutions of $\frac{x+1}{x^2+2} > \frac{1}{4}$, is		
a) 1 b) 2	c) 5	d) None of these
840. If α and β are the roots of $x^2 + 5x + 4 = 0$, then the	ne equation whose roots are	$e\frac{\alpha+2}{3}, \frac{\beta+2}{3}$ is
a) $9x^2 + 3x + 2 = 0$ b) $9x^2 - 3x - 2 = 0$	c) $9x^2 + 3x - 2 = 0$	d) $9x^2 - 3x + 2 = 0$
841. Real roots of the equation $k, x^2 + 5 x + 4 = 0$ are		
a) 1, -1 b) 2, 0	c) 0, 1	d) None of these
842. If α and β are the roots of the equation $ax^2 + bx + b$		
a) Zero b) Positive	c) Negative	d) None of these
843. If $\alpha + i\beta = \tan^{-1}(z), z = x + iy$ and α is constant	, the locus of z' is	
a) $x^2 + y^2 + 2x \cot 2\alpha = 1$ b) $\cot 2\alpha(x^2 + y^2) = 1 + x$		
b) $\cot 2 \alpha (x^2 + y^2) = 1 + x$ c) $x^2 + y^2 + 2y \tan 2 \alpha = 1$		
c) $x + y + 2y \tan 2\alpha = 1$ d) $x^2 + y^2 + 2x \sin 2\alpha = 1$		
844. Both the roots of the given equation		
(x-a)(x-b) + (x-b)(x-c) + (x-c)(x-a)	= 0 are always	
a) Positive b) Negative	c) Real	d) Imaginary
845. The roots of $4x^2 + 6px + 1 = 0$ are equal, then the	,	, , ,
a) 4/5 b) 1/3	c) ±2/3	d) 4/3
846. The complex number z satisfies the condition $ z $ -	$\left \frac{25}{25}\right = 24$. The maximum d	istance from the origin of
coordinates to the point z is	z I	
a) 25 b) 30	c) 32	d) None of these
847. If $(x + 1)$ is a factor of $x^4 - (p - 3)x^3 - (3p - 5)x^3$	2	
a) 4 b) 2	c) 1	d) None of these
848. If <i>a</i> , <i>b</i> , <i>c</i> are real and $x^3 - 3b^2x + 2c^3$ is divisible by	by $x - a$ and $x - b$, then	
a) $a = -b = -c$		
b) $a = 2b = 2c$		
c) $a = b = c$ or $a = -2b = -2c$		
d) None of these		
849. If <i>a</i> , <i>b</i> , <i>c</i> are in A.P. and if $(b - c)x^2 + (c - a)x + a$	$-b = 0$ and $2(c + a)x^2 + b^2$	(b+c)x = 0 have a common
root then a) a^2 , b^2 , c^2 are in A.P. b) a^2 , c^2 , b^2 are in A.P.	a) $a^2 c^2 h^2 ara in C D$	d) None of these
a) a^2 , b^2 , c^2 are in A.P. b) a^2 , c^2 , b^2 are in A.P. 850. Let z and w be two complex numbers such that	-	
equal to	$ 2 \ge 1$, $ w \ge 1$ and $ 2 + 1$	$\iota w = \lfloor z = \iota w \rfloor = 2$. Then, z is
cyuu to		

c) 1or -1 d) *i* or −1 a) 1 or *i* b) *i* or −*i* 851. If $\log_{\tan 30^\circ} \left(\frac{2|z|^2 + 2|z| - 3}{|z| + 1} \right) < -2$, then b) |z| > 3/2a) |z| < 3/2d) |z| < 2c) |z| > 2852. If $x^2 + px + 1$ is a factor of the expression $ax^3 + bx + c$, then a) $a^2 + c^2 = -ab$ b) $a^2 - c^2 = -ab$ c) $a^2 - c^2 = ab$ d) None of these 853. If z_1, z_2 are two complex numbers such that $\text{Im}(z_1 + z_2) = 0$, $\text{Im}(z_1 z_2) = 0$, then a) $z_1 = -z_2$ c) $z_1 = \sqrt{z_2}$ d) None of these b) $z_1 = z_2$ 854. The system $y^{(x^2+7x+12)} = 1$ and x + y = 6, y > 0 has a) No solution b) One solution c) Two solution d) More than 2 solutions 855. The set of all real values of x for which $\frac{8x^2+16x-51}{(2x-3)(x+4)} < 3$, is a) (3/2, 5/2) b) (-4, -3) c) $(-4, -3) \cup (3/2, 5/2)$ d) None of these 856. If $\omega \neq 1$ be a cube root of unity and $(1 + \omega^2)^n = (1 + \omega^4)^n$, then the least positive value of *n* is b) 3 d) 6 a) 2 c) 5 857. How many roots of the equation $x - \frac{1}{x-1} = 1 - \frac{2}{x-1}$ have? a) One b) Two c) Infinite d) None of these 858. If g (x) and h(x) are two polynomials such that the polynomial $P(x) = g(x^3) + x h(x^3)$ is divisible by $x^{2} + x + 1$, then which one of the following is not true? a) g(1) = h(1) = 0b) $g(1) = h(1) \neq 0$ c) g(1) = -h(1)d) g(1) + h(1) = 0859. The maximum number of real roots of the equation $x^{2n} - 1 = 0$ is b) 3 a) 2 c) n d) 2n 860. Given that 'a' is a fixed complex number, and λ' is a scalar variable, the point *z* satisfying $z = a(1 + i\lambda)$ traces out a) A straight line through the point 'a'b) A circle with centre at the point 'a' c) A straight line through the point 'a' and perpendicular to the join 0 and that point 'a' d) None of these 861. The complex numbers z_1 , z_2 , z_3 are the vertices of a triangle. Then the complex number z which makes the triangle into a parallelogram, is b) $z_1 - z_2 + z_3$ c) $z_2 + z_3 - z_1$ d) All of these a) $z_1 + z_2 - z_3$ 862. If *a* and *b* are the non-zero distinct roots of $x^2 + ax + b = 0$, then the least value of $x^2 + ax + b$ is b) $\frac{9}{4}$ c) $-\frac{9}{4}$ a) $\frac{2}{3}$ d) 1 863. If z_1, z_2 are two complex numbers satisfying $\left|\frac{z_1+3z_2}{3-z_1\overline{z_2}}\right| = 1, |z_1| \neq 3$, then $|z_2|$ is equal to d) 4 c) 3 a) 1 b) 2 The value of the determinant $\begin{vmatrix} 1+i & 1-i & i \\ 1-i & i & 1+i \\ i & 1+i & 1-i \end{vmatrix}$, where $i = \sqrt{-1}$ is 864. b) 7 – 4*i* a) 7 + 4*i* c) 4 + 7id) 4 – 7*i* 865. If $w = \frac{z}{z - \frac{1}{2}i}$ and |w| = 1, then z lies on b) A straight line a) A parabola c) A circle d) An ellipse 866. The value of $\frac{\log_3 5 \times \log_{25} 27 \times \log_{49} 7}{\log_{81} 3}$ is a) 1 b) 6 c) $\frac{2}{2}$ d) 3 867. The value of 'k' for which one of the roots of $x^2 - x + 3k = 0$, is double of one of the roots of $x^2 - x + k = 0$

0 is

a) 1	b) -2	c) 2	d) None of these
868. If $a < b < c < d$, the	n the roots of the equation (<i>x</i>	(x-a)(x-c) + 2(x-b)(x-b)(x-b)(x-b)(x-b)(x-b)(x-b)(x-b)	(-d) = 0 are
		c) Imaginary	d) None of these
869. If $ z = \max\{ z - 2 ,$			
	b) $ z + \overline{z} = 4$		d) None of these
a) 12	s of $x^3 + 2x^2 - 3x - 1 = 0$, the	$\frac{1}{2} \cos \alpha = \frac{1}{2} + \beta = \frac{1}{2} + \gamma = \frac{1}{2} \sin \alpha$	d) 15
,	b) 13	,	u) 15
The magnitude and a	mplitude of $\frac{(1+i\sqrt{3})(2+2i)}{(\sqrt{3}-i)}$ are i	respectively	
a) 2, $\frac{3\pi}{4}$	b) $2\sqrt{2}, \frac{3\pi}{4}$	c) $2\sqrt{2}, \frac{\pi}{4}$	d) $2\sqrt{2}, \frac{\pi}{2}$
	ation $m x^2 + (2 m - 1)x + (r -$		
	b) $n(n + 1), n \in Z$		d) None of these
	umbers $1 - i$, i , $1 + i$ which of		
a) They form a right	0	b) They are collinear	
c) They form an equi	_	d) They form an isosce	6
^{674.} The triangle formed	by the points 1, $\frac{1+i}{\sqrt{2}}$ and <i>i</i> as ve		
a) Scalene	b) Equilateral	c) Isosceles	
	of $ a + b\omega + c\omega^2 $, where a, b	and <i>c</i> are all not equal int	egers and $\omega \neq 1$ is a cube
root of unity, is	1.) 1./2	.) 1	
a) $\sqrt{3}$	b) 1/2	c) 1	d) 0
be $876.$ If ω is a complex cub	e root of unity, then for positi	ve integral value of <i>n</i> , the	product of ω . ω^2 . ω^3 ω^n will
a) $\frac{1-i\sqrt{3}}{2}$	b) $-\frac{1-i\sqrt{3}}{2}$	c) 1	d) Both (b) and (c)
877. If the equations $k(6x)$ common, then the va	$r^{2} + 3) + rx + 2x^{2} - 1 = 0$ and $r^{2} + 3 + rx + 2x^{2} + 1 = 0$ and $r^{2} + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + $	and $6k(2x^2 + 1) + px + 4x^2$	$2^{2}-2=0$ have both roots
a) 0	b) 1/2	c) 1	d) None of these
878. If $\frac{3}{3} = a + \frac{3}{3}$	<i>ib</i> , then $[(a - 2)^2 + b^2]$ is equivalent to the interval of a constraint	iual to	
$2+\cos\theta+i\sin\theta$ a) 0		c) -1	d) 2
	The ABCD is at $z = 0$. A is z_1 , th	-	,
a) $z_1(\cos \pi \pm i \sin \pi)$			
b) $\frac{z_1}{3}(\cos \pi \pm i \sin \pi)$			
5			
c) $z_1(\cos \pi/2 \pm i \sin z_1)$			
d) $\frac{z_1}{3} (\cos \pi/2 \pm i \sin \theta)$	$\pi/2)$		
880. If <i>z</i> is a complex num	iber, then $(ar{z}^{-1})(ar{z})$ is equal to)	
a) 1	b) —1	c) 0	d) None of these
881. If $ z^2 - 1 = z ^2 + 1$			
a) The real axis	, , ,	c) A circle	d) An ellipse
	of all real values of a for which	h the roots of the equation	$x^2 - 2ax + a^2 - 1 = 0$ lie
between 5 and 10, th	-	(1,0)	
a) $(-1, 2)$ 883. If $e^{\cos x} - e^{-\cos x} = 4$	b) $(2,9)$	c) (4,9)	d) (6,9)
		a) $\log(-2 + \sqrt{\Gamma})$	d) None of these
$884. \text{ If } z \text{ is a comple number } x = 100 \text{ (} 2 + \sqrt{5} \text{)}$	b) $-\log(2 + \sqrt{5})$	$c_{j} \log(-2 + \sqrt{5})$	uj none or these
a) z is purely real	z = -2, then	b) z is purely imaginar	W
c) z is any complex n	umber		y same as its imaginary part
	$x^{i+1} - x^n + 1$ shall be divisible		canto do no midemary part

2	b) $n = 6k - 1$	c) $n = 3k + 1$	d) $n = 3k - 1$
886. The value of $\left(\frac{1+i\sqrt{3}}{1-i\sqrt{3}}\right)^{6}$ +	$\left(\frac{1-i\sqrt{3}}{1+i\sqrt{3}}\right)^{6}$ is		
a) 2	b) -2	c) 1	d) 0
887. If α , β and γ are the root	as of $x^2 + qx + r = 0$, then \sum	$\frac{\alpha}{\alpha}$, is	-
a) 3	b) $q + r$	c) q/r	d) -3
888. Let α , α^2 be the roots of	<i><i>J I</i></i>	<i>y</i> 17	5
	b) $x^2 + x - 1 = 0$		
889. If $-\pi < \arg(z) < -\frac{\pi}{2}$ the	,		
2	b) $-\pi$	a) = 12	d) = /2
a) π	,	c) $\pi/2$	d) $-\pi/2$
890. If $A(z_1)$, $B(z_2)$ and $C(z_3)$) be the vertices of a triang	$\frac{1}{4} BC = \frac{1}{4}$	and $\frac{1}{BC} = \sqrt{2}$, then the value
of z_2 is equal to			
	b) $z_3 - i(z_1 - z_3)$	c) $z_3 + i(z_1 - z_3)$	d) None of these
891. The equation $z^2 = \bar{z}$ has	5		
a) No solution		b) Two solutions	
c) Four solutions		d) An infinite number of	solutions
892. The curve represented b		non-zero real number, is	
a) A pair of straight line	S		
b) An ellipse			
c) A parabola			
d) A hyperbola 893. If $(3 + i)(z + \overline{z}) - (2 + i)(z + \overline{z})$	$i(z - \overline{z}) + 14i = 0$ then $z\overline{z}$	tic oqual to	
a) 5	b) 8	c) 10	d) 40
894. If $\alpha + \beta = -2$ and $\alpha^3 + \beta$	··) ·	,	5
	b) $x^2 + 2x + 15 = 0$		
895. The set of values of x sat	-	-	
a) [2, 4]	b) $(-\infty, 2] \cup [4, \infty)$		d) None of these
896. If z_1, z_2 are two complex			5
		$= 1 \operatorname{and} t z_1 = k z_2 \operatorname{where} t$	t C R, then the angle
between $z_1 - z_2$ and $z_1 - z_2$	-		
a) $\tan^{-1}\left(\frac{2\pi}{k^2+1}\right)$	b) $\tan^{-1}\left(\frac{2k}{1-k^2}\right)$	c) $-2 \tan^{-1} k$	d) $2 \tan^{-1} k$
$(x^2 + 1)$ 897. If roots of $ax^2 + bx + c$			
a) $ac > 0$	$=$ 0, $u, b, c \in \mathbb{N}, u \neq 0$ are m	luginary then	
b) $ab > 0$			
c) $bc > 0$			
d) Exactly two of <i>ab</i> , <i>bc</i>	and <i>ca</i> are positive		
898. If α and β he the roots of	$fr^2 + nr + a = 0$ then $\frac{(\omega a)}{\omega}$	$+\omega^2\beta(\omega^2\alpha+\omega\beta)$ is equal to	
^{898.} If <i>α</i> and <i>β</i> be the roots o	1x + px + q = 0, then	$\frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha}$ is equal to	
a		c) $-\frac{p}{a}$	4) ()
1	b) <i>α β</i>	9	d) ω
899. If z_1, z_2 and z_3, z_4 are tw	o pairs of conjugate comple	x numbers, then $\arg\left(\frac{z_1}{z_4}\right) +$	$\arg\left(\frac{z_2}{z_3}\right)$ equals
a) 0	b) π/2	c) 3 π/2	d) π
a) 0 900. If $x = \frac{1}{2} \left(\sqrt{3} + \frac{1}{\sqrt{3}} \right)$, then	$\sqrt{x^2-1}$ is equal to		
a) 1	b) 2	c) 3	d) 1/2
901. If <i>P</i> , <i>Q</i> , <i>R</i> , <i>S</i> are represen	ted by the complex number	s + l, 1 + 6l, -4 + 3l, -1	– 21 respectively, then
PQRS is a	h) A square	c) A rhombus	d) A parallelogram
a) A rectangle	b) A square	c) A rhombus	d) A parallelogram

902. If $x \in R$, the least value	of the expression $\frac{x^2-6x+5}{x^2+2x+1}$, is	3	
a) —1	b) -1/2	c) -1/3	d) None of these
903. If $x^2 - 3x + 2$ be a factor	or of $x^4 - px^2 + q$, then (p, q)) is equal to	
a) (3, 4)	b) (4, 5)	c) (4, 3)	d) (5, 4)
904. The number of solution	=		
$2\sin(e^x) = 5^x + 5^{-x}$, is		a))	d) Infinitaly many
a) 0 905. The centre of a square is	b) 1 s at $z = 0$ A is z, then the c	c) 2 entroid of the triangle <i>ABC</i>	d) Infinitely many
a) $Z_1(\cos \pi \pm \iota \sin \pi)$	b) $\frac{1}{3}z_1(\cos\pi\pm i\sin\pi)$	c) $z_1\left(\cos\frac{1}{2} \pm i\sin\frac{1}{2}\right)$	d) $\frac{1}{3}z_1\left(\cos\frac{1}{2}\pm i\sin\frac{1}{2}\right)$
906. If x is real, then the max		s of the expression $\frac{x^2 - 3x + 4}{x^2 + 3x + 4}$	will be
a) 2, 1	b) 5, 1	c) 7, $\frac{1}{7}$	d) None of these
907. For positive integers n_1	5	1	$(1 \pm i^5)^{n_2} \pm (1 \pm i^7)^{n_2} i =$
$\sqrt{-1}$ is a real number if		1011(1+i) - + (1+i)	+(1+i) + (1+i) + (i-i) = -, i = -
		c) $n_1 = n_2$	d) $n_1 > 0, n_2 > 0$
, 1 1	, 1 -	·	lation whose roots are α, β is
/ /	b) $x^2 + x - 2 = 0$		
909. If the roots of the given	-	2	2
a) $p \in (-\pi, 0)$	$\sqrt{\pi}$ π_{λ}		d) $p \in (0, 2\pi)$
	$\sim 2 2'$		$u) p \in (0, 2n)$
910. The set of all integral va			(۵) رو
a) Φ 911. If one root of the equati	b) {1} on $5r^2 + 13r + k = 0$ is real	c) {2}	d) $\{3\}$
a) 0	b) 5	c) 1/6	d) 6
912. The equation $(a + 2)x^2$,		,
a) All rational values of			
b) All real values of <i>a</i> ex	cept $a = -2$		
c) Rational values of a >	> 1/2		
d) None of these			
913. The value of <i>k</i> for which	the equation $(k-2)x^2 + 8$	3x + k + 4 = 0 has both ro	ots real, distinct and
negative, is a) 0	b) 2	c) 3	d) -4
914. If α , β are the roots of α .	-	2	2
a) α^{-1}, β^{-1}		c) $\alpha\beta^{-1}, \alpha^{-1}\beta$	d) $\sqrt{\alpha}$, $\sqrt{\beta}$
915. The number of real root	<i>y i i</i>		
a) 0	b) 2	c) 1	d) 4
916. If one of the roots of the	2	,	5
a) ±3	b) ±2	c) 0	d) ±4
917.			
$\sqrt{2 + \sqrt{5} - \sqrt{6 - 3\sqrt{5} + 3}}$	$\sqrt{14-6\sqrt{5}}$ is equal to		
a) 1	b) 2	c) 3	d) 4
918. If $\cos A + \cos B + \cos C$	$= 0, \sin A + \sin B + \sin C =$	$= 0 \text{ and } A + B + C = 180^{\circ}, t$	hen the value of
$\cos 3A + \cos 3B + \cos 3B$	3 <i>C</i> is		
a) 3	b) -3	c) √3	d) 0
919. The vertices <i>B</i> and <i>D</i> of		and $4 + 2i$. If the diagonal	s are at right angles and
	a number representing A is		
a) $\frac{5}{2}$	b) 3 $i - \frac{3}{2}$	c) 3 <i>i</i> – 4	d) 3 <i>i</i> + 4
	<u>L</u>		

Page | 55

920. One lies between the roots of the equation $-x^2 + ax + a = 0$, $a \in R$ if and only if a lies in the interval b) $\left[-\frac{1}{2},\infty\right)$ c) $\left(-\infty,\frac{1}{2}\right)$ d) $\left(-\infty,\frac{1}{2}\right)$ a) $\left(\frac{1}{2},\infty\right)$ 921. If the sum of the roots of the quadratic equation $ax^2 + bx + c = 0$ is equal to the sum of the square of their reciprocals, then $\frac{a}{c}$, $\frac{b}{a}$ and $\frac{c}{b}$ are in a) Arithmetic progression b) Geometric progression c) Harmonic progression d) Arithmetico-geometric progression 922. If the roots of $(a^2 + b^2)x^2 - 2(bc + ad)x + c^2 + d^2 = 0$ are equal, then b) $\frac{a}{c} + \frac{b}{d} = 0$ c) $\frac{a}{d} = \frac{b}{c}$ a) $\frac{a}{b} = \frac{c}{d}$ d) a + b = c + d923. If ω is a cube root of unity, then the value of $(1 - \omega + \omega^2)^5 + (1 + \omega - \omega^2)^5$ is b) 32 d) None of these a) 30 c) 2 924. The complex number satisfying |z + 1| = |z - 1| and $\arg\left(\frac{z-1}{z+1}\right) = \frac{\pi}{4}$ is b) $0 + (\sqrt{2} + 1)i$ a) $(\sqrt{2} + 1) + 0i$ c) $0 + (\sqrt{2} - 1)i$ d) $(-\sqrt{2}+1) + 0i$ 925. If α and β are the roots of the equation $x^2 - \alpha x + b = 0$ and $A_n = \alpha^n + \beta^n$, then which one of the following is true? a) $A_{n+1} = a A_n + b A_{n-1}$ b) $A_{n+1} = b A_n + a A_{n-1}$ c) $A_{n+1} = a A_n - b A_{n-1}$ d) $A_{n+1} = b A_n - a A_{n-1}$ 926. If the sum of two of the roots of $x^3 + px^2 - qx + r = 0$ is zero, then pq is equal to a) – r c) 2r d) -2rb) r 927. The roots of the equation $x^4 - 8x^2 - 9 = 0$ are b) $\pm 3, \pm i$ c) $\pm 2, \pm i$ a) ± 1, ± i d) None of these 928. If $a = \cos \frac{4\pi}{3} + i \sin \frac{4\pi}{3}$, then the value of $\left(\frac{1+a}{2}\right)^{3n}$ is b) $\frac{(-1)^n}{2^{3n}}$ c) $\frac{1}{2^{3n}}$ a) $(-1)^n$ d) $(-1)^n + 1$ 929. $(a^2 - 3a + 2)x^2 + (a^2 - 5a + 6)x + a - 2 = r$ for three distinct values of x for some $r \in R$, if a + r is equal to a) 1 b) 2 d) Does not exist c) 3 930. Given that $a, b \in \{0, 1, 2, ..., 9\}$ with $a + b \neq 0$ and that $\left(a + \frac{b}{10}\right)^x = \left(\frac{a}{10} + \frac{b}{100}\right)^y = 1000$. Then, $\frac{1}{x} - \frac{1}{y}$ is equal to a) 1 b) $\frac{1}{2}$ c) $\frac{1}{3}$ d) $\frac{1}{4}$ 931. If z_1, z_2, z_3, z_4 are the four complex numbers represented by the vertices of a quadrilateral taken in order such that $z_1 - z_4 = z_2 - z_3$ and $\arg\left(\frac{z_4 - z_1}{z_2 - z_1}\right) = \pm \frac{\pi}{2}$, then the quadrilateral is a) A rhombus b) A square c) A rectangle d) Not a cyclic quadrilateral 932. The solution set of $x^2 + 2 \le 3x \le 2x^2 - 5$, is а) Ф c) $(-\infty, -1] \cup [5/2, \infty)$ b) [1, 2] d) None of these 933. The number of real solution of the equation $\left(\frac{9}{10}\right) = -3 + x - x^2$ is a) 0 b) 1 c) 2 d) None of these 934. Solution of the equation $4.9^{x-1} = 3\sqrt{2^{2x+1}}$ is a) 3 b) 2 d) $\frac{2}{2}$ c) $\frac{3}{2}$

935. For what value of
$$\lambda$$
 the sum of the squares of the roots of $x^2 + (2 + \lambda)x - \frac{1}{2}(1 + \lambda) = 0$ is minimum?
a) $\frac{3}{2}$ b) 1 c) $\frac{1}{2}$ c) $\frac{1}{2}$ d) $\frac{11}{4}$
936. If $2^2 + i\sqrt{3}$ is a root of the equation $x^2 + px + q = 0$, where p and q are real, then (p, q) is equal to
a) $(-4, 7)$ b) $(4, -7)$ c) $(4, 7)$ d) $(-4, -7)$
937. The value of x in the given equation $4^x - 3^{x-\frac{1}{2}} = 3^{x+\frac{1}{2}} - 2^{2x-1}$ is
a) $\frac{4}{3}$ b) $\frac{3}{2}$ c) $\frac{2}{2}$ d) $\frac{4}{3}$
938. If $x^{2/3} - 7x^{3/3} + 10 = 0$ then the set of values of x , is
a) $(12,5)$ b) (18) c) Φ d) $(8, 125)$
939. If $x_0 = \frac{1-1}{x}$, then the value of the product $(1 + z_0)(1 + z_0^2)(1 + z_0^2)(1 + z_0^2) \dots (1 + z_0^2)^2$ must be
a) $(1 - i)(1 + \frac{1}{2x^3})$, if $n \ge 1$
b) $(1 - i)(1 - \frac{1}{2x^3})$, if $n > 1$
940. If complex numbers z_1, z_2 and z_3 represent the vertices A, B and C respectively of an isosceles triangle
 ABC of which $\angle C$ is right angle, then correct statement is
a) $z_1^2 + z_1^2 + z_2^2 = z_2 z_3$ b) $(z_3 - z_1)^2 = z_3 - z_2$
c) $(z_1 - z_2)^2 = (z_1 - z_3)(z_3 - z_2)$ d) $(x_1 - z_2)^2 = 2(z_1 - z_3)(z_3 - z_2)$
941. If the equation $(a + 1)x^2 - (a + 2)x + (a + 3) = 0$ has roots equal in magnitude but opposite in sign, then
the roots of the equation are
a) $\pm a$ b) $\pm \frac{1}{2}a$ c) $\pm \frac{3}{2}a$ d) $\pm 2a$
942. If $\log_{27}(\log_2 x) = \frac{1}{3}$, then the value of x is
a) 3 b) 6 c) 9 d) 27
943. The point of intersection of the curves $\arg(z - 3i) = \frac{3}{4}$ and $\arg(2z + 1 - 2i) = \frac{4}{4}$ (where $i = \sqrt{-1}$) is
a) $\frac{1}{4}(3 + 9i)$ b) $\frac{1}{4}(3 - 9i)$ c) $(-\infty, -1] \cup [5/2, \infty)$ d) Non of these
945. If a, b and c are in geometric progression and the roots of the equation $ax^2 + 2bx + c = 0$ are α and β and
those of $cx^2 + 2bx + c = 0$ are $p = ad \delta$, then
a) $a \neq \beta \neq \gamma \neq \delta$ b) $1, 2, 2$ c) $(-\infty, -1] \cup [5/2, \infty)$ d) None of these
946. Root(s) of the equation $9x^2 - 18|x| + 5 = 0$ belonging to the domain of definition of the function
 $f(x) = \log(x^2 - x - 2$

949. If $C^2 + S^2 = 1$, then $\frac{1+C+iS}{1+C-iS}$ is equal to b) *C* − *i S* c) *S* + *i C* a) C + i Sd) *S* − *i C* 950. The points representing complex number z for which |z - 3| = |z - 5| lie on the locus given by a) An ellipse b) A circle c) A straight line d) None of these 951. The solution set of the inequation $\frac{4x+3}{2x-5} < 6$, is a) (5/2,33/8) b) $(-\infty, 5/2) \cup (33/8, \infty)$ c) (5/2,∞) d) (33/8,∞) 952. The number of quadratic equations which are unchanged by squaring their roots is a) 2 b) 4 c) 6 d) None of these 953. A point *P* which represents a complex number *z* moves such that $|z - z_1| = |z - z_2|$, then its locus is a) A circle with centre z_1 b) A circle with centre z_2 c) A circle with centre z d) Perpendicular bisector of line joining z_1 and z_2 954. The α , β are the roots of the equation $x^2 + ax + b = 0$, then $\frac{1}{\alpha^2} + \frac{1}{\beta^2}$ is equal to a) $\frac{a^2 - 2b}{h^2}$ b) $\frac{b^2 - 2a}{b^2}$ c) $\frac{a^2 + 2b}{b^2}$ d) $\frac{b^2 + 2a}{h^2}$ 955. If z = x + iy, $z^{1/3} = a - ib$ and $\frac{x}{a} - \frac{y}{b} = k(a^2 - b^2)$, then value of *k* equals d) 1 a) 2 c) 6 956. Let z_1 and z_2 be the non-real roots of the equation $3z^2 + 3z + b = 0$. If the origin together with the points represented by z_1 and z_2 form an equilateral triangle, then the value of b is d) None of these a) 1 c) 3 b) 2 957. If correlation n = 2002, evaluate $\frac{1}{\log_2 n!} + \frac{1}{\log_3 n!} + \frac{1}{\log_4 n!} + \dots + \frac{1}{\log_{2002} n!}$ a) 1 b) 2 c) 3 d) 4 958. If $x^2 + px + 1$ is a factor of the cubic polynomial $ax^3 + bx + c$, then a) $a^2 + c^2 = -ab$ b) $a^2 - c^2 = -ab$ c) $a^2 - c^2 = ab$ d) None of these 959. Find the complex number *z* satisfying the equations $\left|\frac{z-12}{z-8i}\right| = \frac{5}{3'} \left|\frac{z-4}{z-8}\right| = 1$ b) $6 \pm 8 i$ c) 6 ± 8*i*, 6 + 17 *i* d) None of these a) 6 960. The number of real roots of the equation $e^{\sin x} - e^{-\sin x} - 4 = 0$ are b) 2 c) Infinite d) None of these a) 1 961. If $a = \sqrt{2}i$, then which of the following is correct? a) a = 1 + id) None of these b) a = 1 - ic) $a = -(\sqrt{2})i$ 962. If $2 + i\sqrt{3}$ is a root of the equation $x^2 + px + q = 0$, then the value of (p, q) is a) (-7, 4) b) (-4, 7) c) (4, -7) d) (7, -4) 963. The equation of a circle whose radius and centre are r and z_0 respectively, is a) $z\bar{z} - z\bar{z}_0 - \bar{z}z_0 + z_0\bar{z}_0 = r^2$ b) $z\bar{z} + z\bar{z}_0 - \bar{z}z_0 + z_0\bar{z}_0 = r^2$ c) $z\bar{z} - z\bar{z}_0 + \bar{z}z_0 - z_0\bar{z}_0 = r^2$ d) None of the above 964. The value of $\sum_{n=0}^{\infty} \left(\frac{2i}{3}\right)^n$ is a) $\frac{9+6i}{13}$ b) $\frac{9-6i}{13}$ c) 9 + 6id) 9 – 6*i* 965. If $y = 2^{1/\log_x(8)}$, then *x* is equal to b) v^2 c) y^{3} d) None of these 966. If 1, α , α^2 , ..., a^{n-1} are the *n*, n^{th} roots of unity and z_1 and z_2 are any two complex numbers, then $\sum_{r=0}^{n-1} |z_1 + a^r z_2|^2 =$

b) $(n-1)(|z_1|^2 + |z_2|^2)$ c) $(n+1)(|z_1|^2 + |z_2|^2)$ d) None of these a) $n(|z_1|^2 + |z_2|^2)$ 967. If 8, 2 are the roots of $x^2 + \alpha x + \beta = 0$, and 3,3 are the roots of $x^2 + \alpha x + b = 0$, then the roots of $x^2 + ax + b = 0$ are a) 8, -1 b) -9, 2c) -8, -2d) 9, 1 968. The modulus of $\sqrt{2i} - \sqrt{-2i}$ is a) 2 c) 0 b) $\sqrt{2}$ d) $2\sqrt{2}$ 969. If *a* and *b* are the roots of the equation $x^2 + ax + b = 0$, $a \neq 0$, $b \neq 0$, then the values of *a* and *b* are respectively b) 2 and -1a) 2 and -2 c) 1 and −2 d) 1 and 2 970. The trigonometric form of $z = (1 - i \cot 8)^3$ (where $i = \sqrt{-1}$) is b) $\csc^{3} 8. e^{-i(2u - \frac{3\pi}{2})}$ a) $\cos^{3} 8 e^{i\left(24 - \frac{3\pi}{2}\right)}$ c) $\csc^{3} 8.e^{i(36-\frac{\pi}{2})}$ d) $\csc^2 8 e^{-i24+\frac{\pi}{2}}$ 971. If one root of the equation $x^2 + px + q = 0$ is $2 + \sqrt{3}$, then the value of the *p* and *q* respectively a) -4, 1 b) 4, -1 c) 2, $\sqrt{3}$ d) $-2, -\sqrt{3}$ 972. The value of $7 \log_2 \frac{16}{15} + 5 \log_2 \frac{25}{24} + 3 \log_2 \frac{81}{80}$ is c) $\log_2\left(\frac{9}{2}\right)$ a) 1 d) $\log_2\left(\frac{8}{n}\right)$ b) $\log_2(105)$ 973. The value of *x* which satisfy the equation $\sqrt{5x^2 - 8x + 3} - \sqrt{5x^2 - 9x + 4} = \sqrt{2x^2 - 2x} - \sqrt{2x^2 - 3x + 1}$ is a) 3 b) 2 d) 0 974. If the expression $\left(mx - 1 + \frac{1}{x}\right)$ is always non-negative, then the minimum value of *m* must be b) 0 c) $\frac{1}{4}$ d) $\frac{1}{2}$ a) $-\frac{1}{2}$ 975. If $\log_e\left(\frac{a+b}{2}\right) = \frac{1}{2}(\log_e a + \log_e b)$, then d) $a = \frac{b}{2}$ c) 2*a* = *b* b) $a = \frac{b}{2}$ a) *a* = *b* 976. If the equations $ax^2 + bx + c = 0$ and $cx^2 + bx + a = 0$, $a \neq c$ have a negative common root, then a - b + c =a) 0 b) 2 d) None of these 977. If ω is a complex cube root of unity, then $\frac{(1+i)^{2n}-(1-i)^{2n}}{(1+\omega^4-\omega^2)(1-\omega^4+\omega^2)}$ is equal to a) 0, if *n* is an even integer b) 0 for all $n \in Z$ c) $2^{n-1}i$ for all $n \in N$ d) None of these 978. The value of *m* for which the equation $x^3 - mx^2 + 3x - 2 = 0$ has two roots equal in magnitude but opposite sign, is c) 2/3 a) 4/5 b) 3/4 d) 1/2 979. If $\frac{(x+1)}{(2x-1)(3x+1)} = \frac{A}{(2x-1)} + \frac{B}{(3x+1)}$, then 16A + 9B is equal to c) 6 d) 8 980. If $x + iy = \frac{3}{2 + \cos \theta + i \sin \theta}$, then $x^2 + y^2$ is equal to b) 4 *x* – 3 c) 4x + 3d) None of these 981. If $|z_1| = |z_2| = \dots = |z_n| = 1$, then the value of $|z_1 + z_2 + \dots + z_n|$, is b) $\left| \frac{1}{z_1} + \frac{1}{z_2} + \dots + \frac{1}{z_n} \right|$ c) 0 d) None of these a) n 982. If the equation $x^3 + ax^2 + b = 0, b \neq 0$ has a root of order 2, then b) $a^2 - 2b = 0$ a) $a^2 + 2b = 0$ c) $4a^3 + 27b + 1 = 0$ d) $4a^3 + 27b = 0$ 983. The solution of the equation $2x^3 - x^2 - 22x - 24 = 0$ when two of the roots in the ration 3: 4, is

a) 3, 4, $\frac{1}{2}$	b) $-\frac{3}{2}$, -2, 4	c) $-\frac{1}{2}, \frac{3}{2}, 2$	d) $\frac{3}{2}$, 2, $\frac{5}{2}$
984. If z_1 and z_2 be complex :	2		
negative imaginary part,			
	b) Real and positive		d) None of these
985. If $a > 0, b > 0, c > 0$, the			
a) Are real and negative		b) Have negative real par	rt
c) Are rational numbers		d) None of the above $1 = 0$ then $[\alpha] + [\beta] + [\beta]$	is ([.] donotes the greatest
986. If α , β and γ are the root integer function)			
,	b) -2	c) -1	d) Does not exist
987. If $\arg(z-a) = \frac{\pi}{4}$, where	$a \in R$, then the locus of $z \in R$	E C is a	
a) Hyperbola	b) Parabola	· ·	d) Straight line
988. Common roots of the eq			
a) ω, ω^2) ,	c) ω^2, ω^3	d) None of these
989. The greatest and the leas			
a) 31, 19 000 If $a = 0$ and $a = 0$ are the	b) 25, 19	c) 31,25 $\frac{2}{3}$ + br + $a = 0$ then the give	d) None of these
990. If $a, c \neq 0$ and α, β are th and $1/\beta$ as its root is	ie roots of the equation ax	$r^2 + bx + c = 0$, then the qua	α and α equation with $1/\alpha$
a) $x^2/a + x/b + 1/c = 0$)	b) $cx^2 + bx + a = 0$	
c) $bx^2 + cx + a = 0$		d) $ax^2 + cx + b = 0$	
991. The value of $\log_2 \log_2 \log_2$	$g_4 256 + 2 \log_{\sqrt{2}} 2$ is		
a) 1	b) 2	c) 3	d) 5
992. If $z_1 = 1 + 2i$, $z_2 = 2 + 2i$	$3i, z_3 = 3 + 4i$, then z_1, z_2	z_3 represents the vertices	,
		c) Right angled triangle	
993. The roots of the quadrat	ic equation $x^2 - 2\sqrt{3}x - 2x$	2 = 0 are	
a) Imaginary		b) Real, rational and equ	al
c) Real irrational and un		d) Real, rational and une	•
994. If α , β , γ are the roots of			
	b) -5	c) -3	d) 0
995. If $k > 1$, $ z_1 < k$ and $\left \frac{k}{z_1} \right $	$\frac{ z_1 z_2 }{ k z_2 } = 1$, then		
	b) $ z_2 = k$		d) $ z_2 = 1$
^{996.} The conjugate of a comp	lex number is $\frac{1}{i-1}$. Then, that	t complex number is	
	• •	c) $\frac{1}{i+1}$	
ίΙ	ιI	ιII	ι I Ι
997. If the roots of the equati	on $ax^2 + bx + c = 0$ be α a	and eta , then the roots of the	equation $cx^2 + bx + a = 0$
are	1	1 1	
a) <i>-α</i> , <i>-β</i>	b) $\alpha, \frac{1}{\beta}$	c) $\frac{1}{\alpha}, \frac{1}{\alpha}$	d) None of these
998. If the points z_1, z_2, z_3 ar	Ρ	u p	plane, then the value of
$z_1^2 + z_2^2 + z_3^2$ is equal to $z_1 z_2 z_3$			$Z_1 - Z_2 - Z_3$
a) $\frac{z_1}{z_2} + \frac{z_2}{z_3} + \frac{z_3}{z_1}$ 999. If the expressions $x^2 - 1$	b) $z_1 z_2 + z_2 z_3 + z_3 z_1$	c) $z_1 z_2 - z_2 z_3 - z_3 z_1$	d) $-\frac{1}{z_2} - \frac{1}{z_3} - \frac{1}{z_1}$
999. If the expressions $x^2 - 1$	$1x + a$ and $x^2 - 14x + 2a$	have a common root, then	the values of 'a' is
a) 0, 24	b) 0, –24	c) 1,−1	d) −2, 1
100 If $ x - 1 + x + x + 1 $	\geq 6, then <i>x</i> belongs to		
0.			
	b) $(-\infty, -2] \cup [2, \infty)$,	d) φ
100 Let z_1, z_2 and z_3 be the a	trixes of the vertices of a tri	iangle having the circumcer	tre at the origin. If z is the

affix of its orthocentre, then z is equal to 1. b) $\frac{z_1 + z_2 + z_3}{2}$ a) $\frac{z_1 + z_2 + z_3}{2}$ d) None of these c) $z_1 + z_2 + z_3$ 100 If the equation $ax^2 + 2bx - 3c = 0$ has non-real roots and (3c/4) < (a + b), then *c* is 2. c) ≥ 0 a) < 0 b) > 0 d) = 0100 If 1, ω , ω^2 are the cube roots of unity, then $\omega^2(1 + \omega)^3 - (1 + \omega^2)\omega$ is equal to 3. a) 1 b) -1 d) 0 100 If $b_1b_2 = 2(c_1 + c_2)$, then the least one of the equation $x^2 + b_1x + c_1 = 0$ and $x^2 + b_2x + c_2 = 0$ has 4. a) Real roots b) Purely imaginary roots d) None of the above c) Imaginary roots 100 The imaginary part of $\frac{(1+i)^2}{i(2i-1)}$ is 5. a) 4/5 c) 2/5 d) -(4/5)100 The partial fraction of $\frac{3x^3 - 8x^2 + 10}{(x-1)^4}$ is a) $\frac{3}{(x-1)} + \frac{1}{(x-1)^2} + \frac{7}{(x-1)^3} + \frac{5}{(x-1)^4}$ b) $\frac{3}{(x-1)} + \frac{1}{(x-1)^2} - \frac{7}{(x-1)^3} + \frac{5}{(x-1)^4}$ c) $\frac{3}{(x-1)} + \frac{1}{(x-1)^2} - \frac{7}{(x-1)^3} + \frac{5}{(x-1)^4}$ d) None of the above 100 If $|z - i\operatorname{Re}(z)| = |z - \operatorname{Im}(z)|$ (where $i = \sqrt{-1}$), then z lies on 7. c) Re (z) + Im (z) = 2 d) None of the above a) Re (z) = 2b) Im (z) = 2100 if one of the roots of the equation $x^2 + (1 - 3i)x - 2(1 + i) = 0$ is -1 + i, then the other root is 8. b) $-\frac{1}{2} - \frac{i}{2}$ a) -1 - id) 2*i* c) i ¹⁰⁰ If the imaginary part of the expression $\frac{z-1}{e^{i\theta}} + \frac{e^{i\theta}}{z-1}$ be zero, then the locus of z is 9. a) A straight line parallel to *x*-axis b) A parabola c) A circle of radius 1 and centre (1, 0) d) None of the above 101 The locus of the point z = x + y - iy satisfying the equation $\left|\frac{z-1}{z+1}\right| = 1$ is given by 0. a) x = 0b) y = 0d) x + y = 0c) x = y101 Number of real roots of the equation $(6 - x)^4 + (8 - x)^4 = 16$ is 1. d) None of these a) 4 b) 2 c) 0 $\frac{101}{2} \text{ If } \left| \frac{x^2 + 6}{5x} \right| \ge 1 \text{, then } x \text{ belongs to}$ a) $(-\infty, -3)$ b) $(-\infty, -3) \cup (3, \infty)$ c) $(-\infty, -3] \cup [-2, 0) \cup (0, 2] \cup [3, \infty)$ d) *R* 101 *POQ* is a straight line through the origin *O*. *P* and *Q* represent the complex numbers a + ib and c + idrespectively and OP = OQ. Then which one of the following is not true? 3. a) |a + i b| = |c + i d|b) a + b = c + dc) $\arg(a + i b) = \arg(c + i d)$

d) None of these

101 If α , β are the roots of the equation $ax^2 + bx + c = 0$, then the equation whose roots are $2\alpha + 3\beta$ and $3\alpha + 2\beta$, is 4. b) $acx^2 - (a + c)bx + (a + c)^2 = 0$ a) $acx^{2} + (a + c)bx - (a + c)^{2} = 0$ c) $abx^2 - (a+b)cx + (a+b)^2 = 0$ d) None of the above 101 The argument of $\frac{1+i\sqrt{3}}{1-i\sqrt{3}}$ is 5. a) $2\pi/3$ b) $\pi/3$ c) $-\pi/3$ d) $-2\pi/3$ 101 The number of non-zero integral solutions of the equation $|1 - i|^x = 2^x$ is 6. b) 1 d) None of these a) Infinite c) 2 ¹⁰¹ The smallest positive integer *n* for which $\left(\frac{1+i}{1-i}\right)^n = 1$, is 7. c) *n* = 16 d) None of these a) n = 8b) *n* = 12 101 If $\frac{x^2+x+1}{x^2+2x+1} = A + \frac{B}{x+1} + \frac{C}{(x+1)^2}$, then A - B is equal to a) 4C b) 4*C* + 1 c) 3C d) 2C 101 The solution set of the inequation $\left|x + \frac{1}{x}\right| < 4$, is 9. a) $(2 - \sqrt{3}, 2 + \sqrt{3}) \cup (-2 - \sqrt{3}, -2 + \sqrt{3})$ b) $R - (2 - \sqrt{3}, 2 + \sqrt{3})$ c) $R - (-2 - \sqrt{3}, -2 + \sqrt{3})$ d) None of these 102 If α is a root of the quadratic equation $x^2 + 6x - 2 = 0$, then another root β is 0. c) $\frac{2 \alpha^2 + 12 \alpha - 6}{\alpha}$ d) All of these a) $\alpha^2 + 5 \alpha - 8$ b) $\frac{\alpha}{3\alpha-1}$ If ω is a complex root of the equation $z^3 = 1$, then $\omega + \omega^{\left(\frac{1}{2} + \frac{3}{8} + \frac{9}{32} + \frac{27}{128} + \ldots\right)}$ is equal to 102 1. b) 0 a) –1 c) 9 d) i 102 The solution set of the inequation $\left|\frac{2x-1}{x-1}\right| > 2$, is b) (3/4,∞) c) $(-\infty, 3/4)$ a) $(3/4, 1) \cup (1, \infty)$ d) None of these 102 If 2 - i is the root of the equation $ax^2 + 12x + b = 0$ (where *a* and *b* are real), then the value of *ab* is 3. equal to a) 45 b) 15 c) -15 d) -45102 Let $f(x) = x^2 + ax + b$; $a, b \in R$. If f(1) + f(2) + f(3) = 0, then the roots of the equation f(x) = 04. b) Are real and equal a) Are imaginary c) Are from the set $\{1, 2, 3\}$ d) Real and distinct 102 Product of the real roots of the equation $t^2x^2 + |x| + 9 = 0$, $(t \neq 0)$ 5. a) Is always positive b) Is always negative c) Does not exist d) None of these 102 The centre of a square *ABCD* is at z = 0. The affix of the vertex *A* is z_1 . Then, the affix of the centroid of the triangle ABC is 6. a) $z_1(\cos \pi \pm i \sin \pi)$ b) $\frac{z_1}{3}(\cos \pi \pm i \sin \pi)$ c) $z_1\left(\cos \frac{\pi}{2} \pm i \sin \frac{\pi}{2}\right)$ d) $\frac{z_1}{3}\left(\cos \frac{\pi}{2} \pm i \sin \frac{\pi}{2}\right)$ 102 The point (4, 1) undergoes the following three transformations successively (i) Refletion about the line y = x7. (ii) Translation through a distance of 2 unit along the positive direction of *x*-axis (iii) Rotation through an angle of $\frac{\pi}{4}$ about the origin in the anti-clockwise direction

The final position of the point is

a)
$$\left(\frac{1}{\sqrt{2}}, \frac{7}{\sqrt{2}}\right)$$
 b) $\left(-\frac{1}{\sqrt{2}}, \frac{7}{\sqrt{2}}\right)$ c) $\left(-\sqrt{2}, 7\sqrt{2}\right)$ d) $\left(\sqrt{2}, 7\sqrt{2}\right)$
102 If *c* and *d* are roots of the equation $(x - a)(x - b) - k = 0$, then *a*, *b* are roots of the equation
8.
a) $(x - c)(x - d) - k = 0$
b) $(x - c)(x - d) + k = 0$
c) $(x - a)(x - c) + k = 0$
d) $(x - b)(x - d) + k = 0$

102 The real roots of $|x|^3 - 3x^2 + 3|x| - 2 = 0$ are

9.

0.

a) 0, 2 b) ± 1 c) ± 2 d) 1, 2 103 Number of solutions of the equation $z^2 + |z|^2 = 0$, where $z \in C$ is

a) 1 b) 2 c) 3 d) Infinity many 103 If the equation $ax^2 + 2bx + 3c = 0$ and $3x^2 + 8x + 15 = 0$ have a common root, where *a*, *b*, *c* are the 1. lengths of the sides of a $\triangle ABC$, then $\sin^2 A + \sin^2 B + \sin^2 C$ is equal to

a) 1 b) $\frac{3}{2}$ c) $\sqrt{2}$ d) 2

103 If ω is a complex cube root of unity, then $(1 - \omega + \omega^2)^6 + (1 - \omega^2 + \omega)^6 = 2$.

a) 0 b) 6 c) 64 d) 128 103 If $\tan^{-1}(\alpha + i\beta) = x + iy$, then x is equal to 3.

a)
$$\frac{1}{2} \tan^{-1} \left(\frac{2\alpha}{1 - \alpha^2 - \beta^2} \right)$$
 b) $\frac{1}{2} \tan^{-1} \left(\frac{2\alpha}{1 + \alpha^2 + \beta^2} \right)$ c) $\tan^{-1} \left(\frac{2\alpha}{1 - \alpha^2 - \beta^2} \right)$ d) None of these

103 Let *a*, *b*, *c* be positive numbers. The following system of equations in *x*, *y* and *z*, $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$; $\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ and $\frac{-x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ has

a) No solution b) Unique solution

c) Infinitely many solutions d) Finitely may solutions

103 If $\log_2[\log_3\{\log_4(\log_5 x)\}] = 0$, then the value of *x* is 5.

a) 5^{24} b) 1 c) 2^{25} d) 5^{64} 103 If 1, $a_1, a_2, ..., a_{n-1}$ are the *n* roots of unity, then the value of $(1 - a_1)(1 - a_2)(1 - a_3) ... (1 - a_{n-1})$ is 6. equal to

a)
$$\sqrt{3}$$
 b) $\frac{1}{2}$ c) *n*

103 If $z = \frac{4}{1-i}$, then \bar{z} is (where \bar{z} is complex conjugate of z) 7.

a)
$$2(1+i)$$
 b) $(1+i)$ c) $\frac{2}{1-i}$ d) $\frac{4}{1+i}$

103 The roots of the equation

8.
$$(q-r)x^{2} + (r-p)x + (p-q) = 0$$
 are
a) $\frac{r-p}{q-r}$, 1 b) $\frac{p-q}{q-r}$, 1 c) $\frac{p-r}{q-r}$, 2 d) $\frac{q-r}{p-q}$, 2

d) 0

5.COMPLEX NUMBERS AND QUADRATIC EQUATIONS

: ANSWER KEY :															
1)	С	2)	b	3)	С	4)	С		d	190)	d	191)	b	192)	d
1) 5)	c	2) 6)	C	3) 7)	a	4) 8)			u C	190) 194)	u C	191)	c	192)	b
9)	b	10)	b	, j 11)	b	0) 12)	b	197)	d	194)	a	199)	d	200)	c
-) 13)	c	10)	a	15)	d	16)			a	202)	C C	203)	d	200) 204)	a
13) 17)	c	14)	a	19)	a	20)	u C	201)	d	202)	a	203) 207)	a	204)	b
21)	b	22)	a	23)	d	20) 24)	c c	203)	d	200) 210)	a	207)	a	200)	c
21) 25)	c	22) 26)	b	23) 27)	u C	24)	c c	213)	u C	210) 214)	d	211)	b	212)	d
29)	d	30)	b	31)	c c	20) 32)		·	b	211) 218)	a	219) 219)	d	220)	c
33)	a	34)	b	35)	b	36)		221)	c	222)	c	223)	a	224)	b
37)	b	38)	c	39)	a	40)		-	b	226)	a	227)	b	228)	b
41)	c	42)	c	43)	c	44)		229)	c	230)	c	231)	a	232)	c
45)	b	46)	b	47)	c	48)			a	234)	a	235)	d	236)	a
49)	c	50)	c	51)	b	52)		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	b	238)	c	239)	d	240)	d
53)	c	54)	d	55)	a	56)		-	b	242)	c	243)	b	244)	b
57)	c	58)	c c	59)	c	60)		-	a	246)	a	247)	a	248)	c
61)	d	62)	c c	63)	b	64)		249)	d	250)	d	251)	b	252)	d
65)	b	66)	a	67)	a	68)		a a a	b	254)	d	251) 255)	c	256)	b
69)	c	70)	d	71)	d	72)		257)	b	258)	d	259)	a	260) 260)	b
73)	d	73) 74)	c	75)	a	76)		261)	c	262)	d	263)	a	260) 264)	b
77)	a	78)	a	79)	b	80)	a	265)	C C	266)	a	267)	c	268)	b
81)	c	82)	a	83)	d	84)		269)	C C	270)	c	207) 271)	d	272)	b
85)	a	86)	b	87)	d	88)	b	273)	c	274)	a	275)	d	276)	b
89)	a	90)	c	91)	a	92)		277)	a	278)	b	279)	a	280)	a
93)	d	94)	c	95)	С	96)	b	281)	С	282)	a	283)	b	284)	a
97)	b	98)	b	99)	b	100)		-	b	286)	b	287)	d	288)	С
101)	b	102)	d	103)	a	104)		000	b	290)	c	291)	b	292)	c
105)	a	106)	С	107)	С	108)		,	c	294)	b	295)	b	296)	b
, 109)	b	110)	а	, 111)	d	112)		297)	С	298)	b	299)	а	300)	b
, 113)	d	114)	а	115)	С	116)		301)	d	302)	а	303)	b	304)	а
, 117)	а	118)	b	, 119)	а	120)		305)	а	306)	b	307)	а	308)	а
, 121)	а	122)	d	123)	d	124)		309)	d	310)	d	311)	d	312)	d
, 125)	С	, 126)	b	127)	a	, 128)		313)	b	314)	С	315)	С	316)	b
, 129)	С	130)	d	, 131)	а	132)		317)	С	318)	с	, 319)	b	320)	b
133)	С	134)	а	135)	а	136)		321)	d	322)	b	323)	а	324)	С
137)	d	138)	С	139)	b	140)		325)	а	326)	d	327)	b	328)	d
, 141)	b	142)	d	, 143)	d	144)		329)	а	330)	а	331)	d	332)	b
145)	а	146)	b	147)	d	148)		333)	С	334)	а	335)	b	336)	b
, 149)	d	150)	d	151)	а	152)		337)	а	338)	b	339)	d	340)	d
153)	d	154)	d	155)	а	156)		341)	С	342)	b	343)	b	344)	d
157)	а	158)	d	159)	С	160)		345)	а	346)	а	347)	b	348)	b
161)	b	162)	b	163)	d	164)		349)	а	350)	С	351)	b	352)	а
165)	b	166)	b	, 167)	с	168)		353)	b	354)	С	355)	а	356)	а
169)	b	170)	а	171)	С	172)		357)	b	358)	b	359)	d	360)	b
173)	d	174)	a	, 175)	b	, 176)		361)	b	362)	d	363)	d	364)	d
177)	а	, 178)	d	179)	С	180)		365)	а	366)	d	367)	a	368)	С
181)	C	182)	a	183)	b	184)		369)	b	370)	b	371)	d	372)	a
185)	d	186)	c	187)	a	188)		373)	b	374)	b	375)	d		С

377)	d	378)	b	379)	d	380)	b	581)	а	582)	b	583)	b	584)	а
381)	d	382)	С	383)	а	384)	b	585)	d	586)	С	587)	С	588)	a
385)	С	386)	b	387)	d	388)	а	589)	d	590)	С	591)	b	592)	а
389)	b	390)	С	391)	а	392)	b	593)	d	594)	а	595)	d	596)	С
393)	b	394)	b	395)	а	396)	b	597)	С	598)	b	599)	b	600)	b
397)	d	398)	d	399)	b	400)	с	601)	d	602)	d	603)	а	604)	b
401)	d	402)	d	403)	b	404)	b	605)	b	606)	b	607)	С	608)	b
405)	а	406)	С	407)	а	408)	с	609)	b	610)	С	611)	С	612)	b
409)	d	410)	С	411)	b	412)	b	613)	b	614)	С	615)	С	616)	С
413)	С	414)	а	415)	b	416)	b	617)	С	618)	b	619)	а	620)	b
417)	а	418)	d	419)	а	420)	а	621)	b	622)	С	623)	d	624)	d
421)	а	422)	С	423)	а	424)	а	625)	С	626)	С	627)	b	628)	d
425)	b	426)	d	427)	b	428)	d	629)	b	630)	b	631)	b	632)	b
429)	С	430)	d	431)	а	432)	а	633)	d	634)	С	635)	d	636)	а
433)	а	434)	d	435)	а	436)	b	637)	b	638)	С	639)	b	640)	b
437)	b	438)	а	439)	С	440)	d	641)	b	642)	d	643)	а	644)	а
441)	а	442)	b	443)	d	444)	a	645)	а	646)	b	647)	b	648)	b
445)	С	446)	С	447)	а	448)	с	649)	С	650)	а	651)	d	652)	с
449)	d	450)	b	451)	С	452)	a	653)	d	654)	а	655)	С	656)	с
453)	С	454)	d	455)	С		b	657)	С	658)	d	659)	С	660)	b
457)	d	458)	а	459)	С	460)	с	661)	b	662)	С	663)	d	664)	d
461)	d	462)	а	463)	d	464)	a	665)	b	666)	b	667)	С	668)	b
465)	b	466)	b	467)	b	468)	a	669)	d	670)	а	671)	С	672)	b
469)	С	470)	d	471)	С	-		673)	С	674)	а	675)	b	676)	d
473)	а	474)	С	475)	а			677)	а	678)	d	679)	b	680)	b
477)	d	478)	С	479)	b			681)	d	682)	а	683)	а	684)	b
481)	а	482)	С	483)	С			685)	b	686)	b	687)	b	688)	b
485)	С	486)	а	487)	а		b	689)	а	690)	b	691)	d	692)	b
489)	С	490)	С	491)	С			693)	а	694)	d	695)	а	696)	d
493)	С	494)	а	495)	b	496)	b	697)	а	698)	а	699)	а	700)	с
497)	С	498)	С	499)	b	-		701)	b	702)	b	703)	а	704)	b
501)	b	502)	b	503)	d	-		705)	b	706)	d	707)	b	708)	с
505)	С	506)	а	507)	d	-		709)	С	710)	d	711)	с	712)	а
509)	а	510)	d	511)	а	-		713)	а	714)	а	715)	d	716)	с
513)	b	514)	а	515)	С	-		717)	b	718)	d	719)	с	720)	d
517)	b	518)	d	519)	С	-		721)	С	722)	С	723)	b	724)	d
521)	а	522)	С	523)	а	-		725)	а	726)	а	727)	с	728)	d
525)	а	526)	С	527)	d	,		729)	а	730)	с	731)	а	732)	с
529)	а	530)	С	531)	b	-		733)	а	734)	b	735)	d	736)	а
533)	a	534)	d	535)	d	-		737)	a	738)	c	739)	d	740)	b
537)	d	538)	d	539)	d	-		, 741)	d	742)	а	743)	d	744)	b
541)	С	542)	С	543)	С	-		745)	d	746)	b	747)	а	748)	b
545)	С	546)	а	547)	а	-		, 749)	d	750)	С	751)	с	752)	b
549)	b	550)	d	551)	С	-		753)	d	754)	c	755)	d	756)	c
553)	b	554)	С	555)	a	-		757)	С	758)	c	759)	b	760)	c
557)	d	558)	b	559)	d	-		761)	b	762)	b	763)	c	764)	c
561)	d	562)	b	563)	b	-		765)	a	766)	b	767)	d	768)	b
565)	b	566)	a	567)	b			769)	b	770)	d	771)	d	772)	a
569)	С	570)	d	571)	а	-		773)	а	774)	а	, 775)	b	, 776)	С
573)	b	574)	С	575)	b	,		777)	b	778)	a	779)	c	780)	a
577)	c	578)	c	579)	b	-		781)	c	782)	С	783)	c	784)	a
,		- 1		· •		- 1	1	J		-)		,		Dagol	

785)	С	786)	d	787)	b	788)	a	989)	а	990)	b	991)	d	992) d
789)	b	790)	а	791)	b	792)	а	993)	d	994)	а	995)	d	996) d
793)	а	794)	b	795)	а	796)	b	997)	С	998)	b	999)	а	1000) b
797)	С	798)	b	799)	а	800)	а	1001)	С	1002)	а	1003)	d	1004) d
801)	а	802)	а	803)	а	804)	b	1005)	d	1006)	b	1007)	C	1008) d
805)	а	806)	а	807)	b	808)	а	1009)	С	1010)	а	1011)	b	1012) c
809)	b	810)	С	811)	b	812)	а	1013)	а	1014)	d	1015)	a	1016) b
813)	С	814)	d	815)	С	816)	d	1017)	d	1018)	d	1019)	a	1020) d
817)	b	818)	d	819)	b	820)	С	1021)	а	1022)	а	1023)	a	1024) d
821)	а	822)	d	823)	b	824)		1025)		1026)		1027)	b	1028) b
825)	С	826)	а	827)	С	828)		1029)		1030)	d	1031)	d	1032) d
829)	b	830)	d	831)	С	832)		1033)		1034)		1035)	d	1036) c
833)	d	834)	b	835)	а	836)	а	1037)	d	1038)	b			
837)	d	838)	а	839)	С	840)	С							
841)	d	842)	b	843)	а	844)	С							
845)	С	846)	а	847)	а	848)	С							
849)	b	850)	С	851)	С	852)	С							
853)	С	854)	d	855)	С	856)	b							
857)	d	858)	b	859)	а	860)	d							
861)	а	862)	С	863)	а	864)	С							
865)	b	866)	d	867)	b	868)	а							
869)	С	870)	b	871)	b	872)	b							
873)	d	874)	С	875)	С	876)	d							
877)	а	878)	b	879)	d	880)	а							
881)	b	882)	d	883)	а	884)	b							
885)	а	886)	а	887)	d	888)	С							
889)	а	890)	С	891)	С	892)	d							
893)	С	894)	d	895)	С	896)	С							
897)	а	898)	а	899)	а	900)	а							
901)	b	902)	С	903)	d	904)	а							
905)	d	906)	С	907)	d	908)	d							
909)	С	910)	d	911)	b	912)	а							
913)	С	914)	b	915)	b	916)	d							
917)	b	918)	b	919)	b	920)	а							
921)	С	922)	а	923)	b	924)	b							
925)	С	926)	а	927)	b	928)	b							
929)	b	930)	С	931)	С	932)	а							
933)	а	934)	С	935)	С	936)	а							
937)	b	938)	d	939)	b	940)	d							
941)	b	942)	d	943)	d	944)	а							
945)	С	946)	С	947)	d	948)	a							
949)	a	950)	С	951)	b	952)	b							
953)	d	954)	а	955)	b	956)	a							
957)	а	958)	C	959)	С	960)	d							
961) 0(5)	а	962) 962)	b	963)	a	964)	а							
965)	С	966)	а	967)	d	968)	а							
969) 072)	С	970) 074)	а	971)	а	972) 07()	а							
973)	С	974)	С	975)	а	976)	a							
977)	a	978)	С	979)	C	980)	b							
981)	b	982) 982)	d	983)	b	984)	а							
985)	b	986)	С	987)	d	988)	а							

: HINTS AND SOLUTIONS :

```
\Rightarrow xyz = e^0 = 1
```

1 (c) Let $z = \frac{1-i}{3+i} + \frac{4i}{5}$ $= \frac{5-5i+12i-4}{5(3+i)} = \frac{1+7i}{5(3+i)}$ $= \frac{(1+7i)(3-i)}{5(9+1)} = \frac{10+20i}{50} = \frac{1+2i}{5}$ $\therefore |z| = \sqrt{\left(\frac{1}{5}\right)^2 + \left(\frac{2}{5}\right)^2} = \frac{1}{5}\sqrt{1+4} = \frac{\sqrt{5}}{5}$

2 **(b)**

Let each ratio be k and let A = xyz, Then $\log x = k(a - b)$, $\log y = k(b - c)$ And $\log z = k(c - a)$ $\therefore \log A = \log x + \log y + \log z$ = k(a - b) + k(b - c) + k(c - a) = k[a - b + b - c + c - a] = k[0] $\therefore \log A = \log(xyz) = 0$ [$\because A = xyz$] (c)

Let z = x + iy. Then, coordinates of the vertices of the triangle are (-x, -y), (-y, x) and (x + y, y - x) \therefore Area of the triangle

9

$$= \frac{1}{2} \begin{vmatrix} -x & -y & 1 \\ -y & x & 1 \\ x + y & y - x & 1 \end{vmatrix}$$

$$= \frac{1}{2} \begin{vmatrix} -x & -y & 1 \\ x - y & x + y & 0 \\ 2x + y & 2y - x & 0 \end{vmatrix}$$

Applying $R_2 \to R_2 \to R_1$
 $R_3 \to R_3 \to R_1$
$$= -\frac{3}{2} (x^2 + y^2) = -\frac{3}{2} |z|^2$$

Hence, Area $= \frac{3}{2} |z|^2$

4 **(c)**

Given,
$$\frac{(1+i)^2}{2-i} = x + iy$$

$$\Rightarrow \quad \frac{2i}{2-i} \times \frac{2+i}{2+i} = x + iy$$

$$\Rightarrow \quad \frac{4i-2}{5} = x + iy$$

$$\Rightarrow \quad x + iy = -\frac{2}{5} + \frac{4}{5}i$$

$$\therefore \quad x + y = -\frac{2}{5} + \frac{4}{5} = \frac{2}{5}$$

5 (c)

7

We have,

$$|z - 3 + i| = |z - 2 - i|$$

 $\Rightarrow |z - (3 - i)| = |z - (2 + i)|$
 $\Rightarrow AP = BP$
 \Rightarrow locus of *P* is the perpendicular bisector of *AB*
(a)

We have, $z = \frac{1+ir}{1+p}$ $\therefore iz = \frac{-r+iq}{1+p}$ By componendo and dividendo $\frac{1+iz}{1-iz} - \frac{1+p-r+iq}{1+p+r-iq}$ $\therefore \frac{p+iq}{1+r} = \frac{1+iz}{1-iz}$ if $\frac{p+iq}{1+r} = \frac{1+p-r+iq}{1+p+r-iq}$ or $p(1+p+r) + q^2 + i\{q(1+p+r) - pq\}$ = (1+r)(1+p-r) + iq(1+r) $\Rightarrow p(1+p+r) + q^2 = (1+r)(1+p-r)$ and q(1+p+r) - pq = q(1+r)[this is obviously true] \therefore The condition is $p(1+p+r) + q^2 = (1+r)(1+p-r)$ or $p+p^2 + pr + q^2 = 1 + p - r + r + pr - r^2$ or $p^2 + q^2 + r^2 = 1$ **(b)**

Since, 2q = p + rGiven that, $px^2 + qx + r = 0$ has complex roots *.*:. D < 0 $\Rightarrow q^2 - 4pr < 0$ $\Rightarrow \left(\frac{p+r}{2}\right)^2 - 4pr < 0$ $\Rightarrow p^2 + r^2 - 14pr < 0$ $\Rightarrow \frac{p^2}{r^2} + 1 - \frac{14p}{r} < 0$ $\Rightarrow \left(\frac{p^2}{r^2} - \frac{14\,p}{r} + 49\right) - 48 < 0$ $\Rightarrow \left(\frac{p}{r}-7\right)^2 < 48 \Rightarrow \left|\frac{p}{r}-7\right| < 4\sqrt{3}$ 10 **(b)** Given, $\frac{1}{x+p} + \frac{1}{x+q} = \frac{1}{r}$ $\Rightarrow r(2x + p + q) = [x^2 + (p + q)x + pq]$ $\Rightarrow x^2 + (p+q-2r)x + pq - r(p+q) = 0$ As we know, if roots are equal in magnitude but opposite in sign, then coefficient of *x* will be zero $\therefore p+q-2r=0 \Rightarrow p+q=2r$ 11 **(b)** We have, |2x - 3| < |x + 2|Following cases arise: <u>CASE I</u> When x < -2In this case, we have |2x-3| = -(2x-3) and |x+2| = -(x+2)||2x-3|| < |x+2|| $\Rightarrow -(2x-3) < -(x+2)$ $\Rightarrow 2x - 3 > x + 2 \Rightarrow x - 5 > 0 \Rightarrow x > 5$ But, x < -2. So, there is no solution in this case <u>CASE II</u> When $-2 \le x < \frac{3}{2}$ In this case, we have |x + 2| = x + 2 and |2x - 3| = -(2x - 3)||2x - 3|| < |x + 2|| $\Rightarrow -(2x-3) < x+2 \Rightarrow 3x-1 > 0 \Rightarrow x > \frac{1}{2}$ But, $-2 \le x < \frac{3}{2}$. Therefore, $x \in \left(\frac{1}{3}, \frac{3}{2}\right)$ <u>CASE III</u> When $x \ge \frac{3}{2}$ In this case, we have |x + 2| = x + 2 and |2x - 3| = 2x - 3 $\therefore |2x-3| < |x+2| \Rightarrow 2x-3 < x+2 \Rightarrow x < 5$ But, $x \ge \frac{3}{2}$. Therefore, $x \in [3/2, 5)$ Hence, the solution set is $x \in (1/3, 5)$ 12 **(b)** Let the correct equation is $ax^2 + bx + c = 0,$ Then $\alpha + \beta = -\frac{b}{a}$ and $\alpha\beta = \frac{c}{a}$ When *b* is written incorrectly, then the roots are

equal. Let these are γ and γ . $\therefore \gamma \cdot \gamma = \frac{c}{a} \Rightarrow \gamma^2 = \alpha \beta \dots (i)$ When *c* is written icorrectly, then the roots are γ and 2γ . $\therefore \gamma + 2\gamma = -\frac{b}{\alpha} \Rightarrow 3\gamma = \alpha + \beta$ $\Rightarrow 9\gamma^2 = (\alpha + \beta)^2 \Rightarrow 9\alpha\beta = (\alpha - \beta)^2 + 4\alpha\beta$ [from Eq. (i)] $\therefore (\alpha - \beta)^2 = 5\alpha\beta$ 13 (c) Let $y = \frac{x^2 + 34x - 71}{x^2 + 2x - 7}$ $\Rightarrow x^2(y - 1) + x(2y - 34) + 71 - 7y = 0$ Since, *x* is complex number $\therefore D < 0$ $\Rightarrow (2y - 34)^2 - 4(y - 1)(71 - 7y) < 0$ $\Rightarrow (y - 17)^2 - (71y - 7y^2 - 71 + 7y) < 0$ $\Rightarrow 8y^2 - 112y + 360 < 0$ $\Rightarrow y^2 - 14y + 45 < 0$ $\Rightarrow (y-9)(y-5) < 0$ \Rightarrow 5 < y < 9 $\therefore a = 5, b = 9$ 14 **(a)** Given, *a*, *b*, *c* are real, $ax^2 + bx + c = 0$ has two real roots α and β , where $\alpha < -2$ and $\beta > 2$ \Rightarrow f(-2) < 0 and f(2) > 0 \Rightarrow 4a - 2b + c < 0 and 4a + 2b + c > 0 $\Rightarrow 4 - \frac{2b}{a} + \frac{c}{a} < 0 \text{ and } 4 + \frac{2b}{a} + \frac{c}{a} > 0$ 15 (d) Let the correct equation be $ax^2 + bx + c = 0$ and the correct roots are α and β . Taking *c* wrong, the roots are 3 and 2. $\therefore \ \alpha + \beta = 3 + 2 = 5 \dots (i)$ Also, a = 1 and c = -6 $\therefore \alpha\beta = \frac{c}{a} = -6$...(ii) On solving Eqs.(i) and (ii), the correct roots are 6 and -1. 16 (a) Since, 1 is root of $ax^2 + bx + c = 0$ $\Rightarrow a + b + c = 0$ $\therefore E_1 : a + b + c = 0$ is true Since, $\cos \theta$, $\sin \theta$ are the roots of $ax^2 + bx + c =$ 0 $\therefore \sin\theta + \cos\theta = -\frac{b}{a}$ And $\sin\theta\cos\theta = \frac{c}{a}$ $\Rightarrow \quad (\sin\theta + \cos\theta)^2 = \frac{b^2}{c^2}$

 $\Rightarrow \sin^2 \theta + \cos^2 \theta + 2\sin \theta \cos \theta = \frac{b^2}{a^2}$ $\Rightarrow 1+2\left(\frac{c}{a}\right)=\frac{b^2}{a^2}$ $\Rightarrow b^2 - a^2 = 2ac$ Hence, E_1 and E_2 both are true 17 (c) $(3 + \omega + 3\omega^2)^4 = [3 + (1 + \omega^2) + \omega]^4$ $= [-3\omega + \omega]^4$ $= (-2\omega)^4$ $= 16\omega$ 18 (a) $z^{3} + \frac{1}{i}z^{2} - \frac{z}{i} + 1 = 0$ $\Rightarrow z^3 - iz^2 + iz + 1 = 0$ $\Rightarrow z^2(z-i) + i(z-i) = 0$ \Rightarrow $(z-i)(z^2+i) \Rightarrow |z| = 1$ 19 (a) Given equation $x^2 + ax + 1 = 0$. Since, roots are $\tan \theta$ and $\cot \theta$. \therefore Product of roots, $\tan \theta \cdot \cot \theta = a \Rightarrow a = 1$ Again, since roots are real. $\therefore a^2 - 4 \ge 0 \implies |a| \ge 2$ Thus, the least value of |a| is 2. 20 (c) If 1,2, 3, 4 are the roots of given equation, then (x-1)(x-2)(x-3)(x-4) $= x^4 + ax^3 + bx^2 + cx + d$ $\Rightarrow (x^2 - 3x + 2)(x^2 - 7x + 12)$ $= x^4 + ax^3 + bx^2 + cx + d$ $\Rightarrow x^4 - 10x^3 + 35x^2 - 50x + 24$ $= x^4 + ax^3 + bx^2 + cx + d$ $\Rightarrow a = -10, b = 35, c = -50, d = 24$ $\therefore a + 2b + c = -10 + 2 \times 35 - 50 = 10$ Alternate Since, 1, 2, 3 and 4 are the roots of the equation $x^4 + ax^3 + bx^2 + cx + d = 0$, then 1 + a + b + c + d = 0 ...(i) 16 + 8a + 4b + 2c + d = 0 ...(ii) 81 + 27a + 9b + 3c + d = 0 ...(iii) And 256 + 64a + 16b + 4c + d = 0 ...(iv) On solving Eqs. (i), (ii), (iii) and (iv), we get a = -10, b = 35, c = -50,d = 24Now, $a + 2b + c = -10 + 2 \times 35 + (-50)$ = -10 + 70 - 50 = 1021 **(b)** We have, $2(x+2) > x^2 + 1$ $\Rightarrow x^2 - 2x - 3 < 0 \Rightarrow (x - 3)(x + 1) < 0 \Rightarrow -1$ < x < 3

So, there are three integral values viz. 0,1,2

22 (a) Let the roots be α and 2 α . Then, $\alpha + 2 \alpha = -\frac{a}{a-b}$ and $2 \alpha^2 = \frac{1}{a-b}$ $\Rightarrow \alpha = -\frac{a}{3(a-b)}$ and $\alpha^2 = \frac{1}{2(a-b)}$ $\Rightarrow \frac{a^2}{9(a-b)^2} = \frac{1}{2(a-b)}$ $\Rightarrow 2a^2 = 9a - 9b$ $\Rightarrow 2a^2 - 9a + 9b = 0$ $\Rightarrow 81 - 72b \ge 0$ $[\because a \in R]$ $\Rightarrow b \leq 9/8$ Hence, the greatest value of b is $\frac{9}{2}$ 23 (d) Let $z = \frac{1 - i\sqrt{3}}{1 + i\sqrt{3}} = \frac{1 - i\sqrt{3}}{1 + i\sqrt{3}} \times \frac{1 - i\sqrt{3}}{1 - i\sqrt{3}} = -\frac{1}{2} - \frac{i\sqrt{3}}{2}$ ⇒ $\arg(z) = \theta = \tan^{-1}\left(\frac{\sqrt{3}/2}{1/2}\right) = \tan^{-1}(\sqrt{3})$ $\Rightarrow \theta = 60^{\circ}$ Since, given number lies in IIIrd quadrant *.*... $\theta = 180^{\circ} + 60^{\circ} = 240^{\circ}$ 24 (c) Let z = x + iyThen, z + iz = (x + iy) + i(x + iy) = (x - y) + i(x + iy) + i(x + iy) = (x - y) + i(x + iy) + i(x + iy) + i(x + iy) + i(x + iy) = (x - y) + i(x + iy) = (x - y) + i(x + iy) + i(x + iy) = (x - y) + i(x + iy) + i(x + iy)i(x + y)and iz = i(x + iy) = -y + ixIf Δ be the area of the triangle formed by z, z + izand *iz*, then $\Delta = \frac{1}{2} \begin{vmatrix} x & y & 1 \\ x - y & x + y & 1 \\ y & x & 1 \end{vmatrix}$ Applying $R_2 \rightarrow R_2 - (R_1 + R_3)$ Then $\Delta = \frac{1}{2} \begin{vmatrix} x & y & 1 \\ 0 & 0 & -1 \\ -y & x & 1 \end{vmatrix} = \frac{1}{2} (x^2 + y^2)$ $=\frac{1}{2}|z|^2 = 200$ (given) $\Rightarrow |z|^2 = 400$ $\Rightarrow |z| = 20$ |3z| = 3|z| = 6025 (c) Given bx + cx + a = 0 has imaginary roots $\Rightarrow c^2 - 4ab < 0$ $\Rightarrow c^2 < 4ab$ $\Rightarrow -c^2 > -4ab$ Let $f(x) = 3b^2x^2 + 6bcx + 2c^2$ Here, $3b^2 > 0$ So, the given expression has a minimum value \therefore Minimum value = $\frac{-D}{4a}$ $=\frac{4ac-b^2}{4a}$

$$= \frac{4(3b^{2})(2c^{2}) - 36b^{2}c^{2}}{4(3b^{2})}$$

$$= -\frac{12b^{2}c^{2}}{12b^{2}} = -c^{2} > -4ab$$
[from Eq. (i)]
26 **(b)**
Given, $(ax^{2} + c)y + (a'x^{2} + c') = 0$
Since, *x* is rational, then the discriminant of the above equation must be a perfect square.
 $\therefore 0 - 4(ay + a') + (cy + c') = 0$
 $\Rightarrow -acy^{2} - (ac' + a'c)y - a'c'$
Must be a perfect square
 $\Rightarrow (ac' - a'c)^{2} - 4aca'c' = 0$
 $\Rightarrow (ac' - a'c)^{2} = 0$
 $\Rightarrow ac' = a'c$
 $\Rightarrow \frac{a}{a'} = \frac{c}{c'}$
27 **(c)**
 $(1 + i\sqrt{3})^{n} + (1 - i\sqrt{3})^{n}$
 $= 2^{n} [(\cos \frac{\pi}{3} + i \sin \frac{\pi}{3})^{n} + (\cos \frac{\pi}{3} - i \sin \frac{\pi}{3})^{n}]$
 $= 2^{n} [\cos \frac{\pi\pi}{3}] = 2^{n+1} \cos \frac{n\pi}{3}$
28 **(c)**
Let $z_{1} = 1 + i, z_{2} = -2 + 3i \text{ and } z_{3} = 0 + \frac{5}{3}i$
Then, $\begin{vmatrix} x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \\ x_{3} & y_{3} & 1 \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 \\ -2 & 3 & 1 \\ 0 & \frac{5}{3} & 1 \end{vmatrix}$
 $= 1(3 - \frac{5}{3}) + 1(2) + 1(\frac{-10}{3})$
 $= \frac{4}{3} + 2 - \frac{10}{3}$
 $= \frac{4 + 6 - 10}{3} = 0$
Hence, area of triangle is zero, therefore points are collinear
29 **(d)**
We have, $z - 2 - 3i = x + iy - 2 - 3i = (x - 2) + i(y - 3)$
Given, $\tan^{-1}(\frac{y^{-3}}{x^{-2}}) = \frac{\pi}{4}$
 $\Rightarrow y - 3 = x - 2$
 $\Rightarrow x - y + 1 = 0$
30 **(b)**
 $\frac{[(\cos 20^{\circ} + i \sin 20^{\circ})(\cos 75^{\circ} + i \sin 75^{\circ})(\cos 10)}{(\cos 10^{\circ} 15^{\circ} - i \cos 15^{\circ})}$

 $= -\frac{e^{i105^{\circ}}}{ie^{i15^{\circ}}}$ $= -\frac{e^{i90^{\circ}}}{i} = -1$ 31 (c) Since α , β are roots of $x^2 + bx + 1 = 0$ $\therefore \alpha + \beta = -b, \alpha\beta = 1$ We have, $\left(-\alpha - \frac{1}{\beta}\right) + \left(-\beta - \frac{1}{\alpha}\right)$ $= -(\alpha + \beta) - \left(\frac{1}{\beta} + \frac{1}{\alpha}\right) = -(\alpha + \beta) - \frac{(\alpha + \beta)}{\alpha \beta}$ = b + b = 2band, $\left(-\alpha - \frac{1}{\beta}\right)\left(-\beta - \frac{1}{\alpha}\right) = \alpha \beta + 2 + \frac{1}{\alpha \beta}$ = 1 + 2 + 1 = 4Thus, the equation whose roots are $-\alpha - \frac{1}{\beta}$ and - $\beta - \frac{1}{\alpha}$ is $x^2 - 2bx + 4 = 0$ 32 (a) The required vector is given by $\frac{3}{2}(z)e^{i\pi} = \frac{3}{2}(-4+5i)(-1+0i) = 6 - \frac{15}{2}i$ 33 (a) Given, $\frac{z}{\bar{z}} = \frac{3-i}{3+i}$ [let z = x + iy] $\Rightarrow \frac{x+iy}{x-iy} = \frac{3-i}{3+i} \Rightarrow x = 3a, y = -a$ \Rightarrow z = a(3 - i), where $a \in R$ 34 **(b)** Let $m = \frac{(x-b)(x-c)}{x-a}$ $\Rightarrow x^2 - (b + c + m)x + (bc + am) = 0$ Since *x* is real, we must have $(b + c + m)^2 - 4(bc + am) \ge 0$ $\Rightarrow m^2 + 2(b + c - 2a)m + (b - c)^2 \ge 0 \text{ for all } m$ $\Rightarrow 4(b + c - 2a)^2 - 4(b - c)^2 \le 0$ $\Rightarrow (b+c-2a)^2 - (b-c)^2 \le 0$ $\Rightarrow (b+c-2a+b-c)(b+c-2a-b+c) \le 0$ $\Rightarrow 2(b-a)2(c-a) \leq 0$ $\Rightarrow (a-b)(a-c) \leq 0$ $\Rightarrow b \leq a \leq c \text{ or, } c \leq a \leq b$ 35 **(b)** Let $f(x) = x^4 + ax^3 + bx^2 + cx - 1$ Since $(x - 1)^3$ is a factor of f(x). Therefore, $(x-1)^2$ is a factor of f'(x) and (x-1) is a factor of f''(x)f(1) = 0, f'(1) = 0 and f''(1) = 0 $\Rightarrow a + b + c = 0$, 3a + 2b + c = -4 and 6a + 2b = -12

 $\Rightarrow a = -2, b = 0, c = 2$

$$f(x) = x^{4} - 2x^{3} + 2x - 1$$

= $(x^{4} - 1) - 2x(x^{2} - 1)$
$$\Rightarrow f(x) = (x^{2} - 1)(x^{2} + 1 - 2x)$$

= $(x + 1)(x - 1)^{3}$
Hence, $(x + 1)$ is the other factor of $f(x)$

36 **(a)**

Required vertices are given by $z = (1 + i) e^{\pm i \pi/2} = (1 + i)(\pm i) = \pm (-1 + i)$

37 **(b)**

Let all four roots are imaginary. Then roots of both equation P(x) = 0 and Q(x) = 0 are imaginary. Thus, $b^2 - 4ac < 0$; $d^2 - 4ac < 0$, so $b^2 + d^2 < 0$ which is impossible unless b = 0, d = 0. So, if $b \neq 0$ or $d \neq 0$ at least two roots must be real, if b = 0, d = 0 we have the equations $P(x) = ax^2 + c = 0$ and $Q(x) = -ax^2 + c = 0$ or $x^2 = -\frac{c}{a}$; $x^2 = \frac{c}{a}$ as one of $\frac{c}{a}$ and $-\frac{c}{a}$ must be positive so two roots must be real.

38 **(c)**

$$\frac{1+a}{1-a} = \frac{e^{\frac{-i\theta}{2}}(1+e^{i\theta})}{e^{\frac{-i\theta}{2}}(1-e^{i\theta})} = \frac{e^{-i\left(\frac{\theta}{2}\right)}+e^{i\frac{\theta}{2}}}{e^{-i\left(\frac{\theta}{2}\right)}-e^{-i\frac{\theta}{2}}}$$
$$= \frac{2\cos\frac{\theta}{2}}{-2i\sin\frac{\theta}{2}} = i\cot\frac{\theta}{2}$$

39 **(a)**

Let, $f(x) = x^2 + 2ax + b$ = $(x + a)^2 + b - a^2$ So, minimum value of $f(x) = b - a^2$. Since, $f(x) \ge c$, $\forall x \in R$ hence $b - a^2 \ge c$ $ie, b - c \ge a^2$

41 **(c)**

We have,
$$z^2 + z|z| + |z|^2 = 0$$

$$\Rightarrow \left(\frac{z}{|z|}\right)^2 + \frac{z}{|z|} + 1 = 0$$
This is a quadratic equation in $\frac{z}{|z|}$, therefore roots
are $\frac{z}{|z|} = \omega, \omega^2 \Rightarrow z = \omega|z|$ or $z = \omega^2|z|$
Let $z = x + iy$

$$\Rightarrow x + iy = |z| \left(\frac{-1}{2} + \frac{i\sqrt{3}}{2}\right)$$
or $x + iy = |z| \left(\frac{-1}{2} - \frac{i\sqrt{3}}{2}\right)$

$$\Rightarrow x = -\frac{1}{2}|z|, y = |z| \frac{\sqrt{3}}{2}$$
or $x = -\frac{|z|}{2}, y = -\frac{|z|\sqrt{3}}{2}$

$$\Rightarrow y + \sqrt{3}x = 0$$
or $y - \sqrt{3}x = 0$

 $\Rightarrow y^2 - 3x^2 = 0$ $\Rightarrow \text{ It represents a pair of straight lines}$

42 **(c)**

Clearly, |z - i| = 1 represents a circle having centre *C* at (0, 1) and radius 1. Let P(z) be a point on the circle such that $z = r(\cos \theta + i \sin \theta)$

$$\therefore \cot \theta - \frac{2}{z} = \cot \theta - \frac{2}{r} (\cot \theta - i \sin \theta)$$

$$\Rightarrow \cot \theta - \frac{2}{z} = \cot \theta - \frac{2}{r} \cos \theta + \left(\frac{2}{r} \sin \theta\right) i$$

$$\Rightarrow \cot \theta - \frac{2}{z} = \cot \theta - \cot \theta + i \qquad \left[\because \sin \theta = \frac{r}{2}\right]$$

$$\Rightarrow \cot \theta - \frac{2}{z} = i$$

43 **(c)**

We have,

 $\begin{aligned} |z_1 - z_2|^2 &= |z_1|^2 + |z_2|^2 - 2|z_1||z_2|\cos(\theta_1 - \theta_2), \\ \text{Where } \theta_1 &= \arg(z_1) \text{ and } \theta_2 &= \arg(z_2) \\ \therefore \arg(z_1 - z_2) &= 0 \\ \Rightarrow |z_1 - z_2|^2 &= |z_1|^2 + |z_2|^2 - 2|z_1||z_2| \\ \Rightarrow |z_1 - z_2|^2 &= (|z_1| - |z_2|)^2 \\ \Rightarrow |z_1 - z_2| &= ||z_1| - |z_2|| \end{aligned}$

44 **(a)**

We have,

$$x^{2} + 4y^{2} + 9z^{2} - 6yz - 3zx - 2xy$$

$$= x^{2} + (2y)^{2} + (3z)^{2} - (2y)(3z) - (3z)x$$

$$-x(2y)$$

$$= \frac{1}{2} \{ (x - 2y)^{2} + (2y - 3z)^{2} + (3z - x)^{2} \} \ge 0$$

Hence, the given expression is always non-negative

45 **(b)**

Let *A*, *B* be the centres of circles $|z - z_1| = a$ and $|z - z_2| = b$ respectively. Let $P(\alpha)$ be the centre of the variable circle $|z - \alpha| = r$ which touches the given circles externally. Then,

$$AP = r + a$$
 and $PB = r + a$

 $\Rightarrow AP - BP = (r + a) - (r + b)$

$$\Rightarrow AP - BP = a - b$$

 \Rightarrow Locus of *P* is a hyperbola having its foci at *A* and *B* respectively

46 **(b)**

Let
$$z = (1 + i\sqrt{3})^8$$

 $= (-2)^8 \left(\frac{1 + i\sqrt{3}}{-2}\right) = (-2)^8 (\omega^2)^8$ [:: $\omega^3 = 1$]
 $= 2^8 \omega^{16} = 2^8 \omega$
 $= 2^8 \left(\frac{-1 + i\sqrt{3}}{2}\right)$
 $= 2^8 \left(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}\right)$

 \therefore Modulus= $2^8 = 256$ and amplitude= $\frac{2\pi}{3}$ 47 (c) We have, $x^2 + (a+b)x + ab < 0$ $\Rightarrow (x+a)(x+b) < 0 \Rightarrow -b < x < -a \Rightarrow x$ $\in (-b, -a)$ 48 (a) $x^{2} + y^{2} + z^{2} = (a + b)^{2} + \omega^{2}(a + b\omega)^{2}$ $+(a\omega^2+b\omega)^2$ $= a^{2} + b^{2} + 2ab + a^{2}\omega^{2} + b^{2}\omega^{4} + 2ab\omega^{3}$ $+a^2\omega^4+b^2\omega^2+2ab\omega^3$ $= a^{2}(1 + \omega + \omega^{2}) + b^{2}(1 + \omega + \omega^{2})$ + 6*ab* [:: $\omega^4 = \omega$] = 6ab [$\because 1 + \omega + \omega^2 = 0$] 49 (c) $\sqrt{-7 - 24\sqrt{-1}} = \sqrt{-1}\sqrt{7 + 24i}$ We know $\sqrt{a+ib} = \pm \left| \sqrt{\frac{1}{2}} (\sqrt{a^2 + b^2} + a) \right|$ $+i\left|\frac{1}{2}(\sqrt{a^2+b^2}-a)\right|$ $\therefore i\sqrt{7+24i}$ $= i \left[\pm \left\{ \frac{1}{2} \left(\sqrt{49 + 576} + 7 \right) \right\} \right]$ $+i\left|\frac{1}{2}(\sqrt{49+576}-7)\right|$ $=i\left[\pm\left\{\sqrt{\frac{1}{2}(32)}+i\sqrt{\frac{1}{2}(18)}\right\}\right]$ $= \pm (3 - 4\sqrt{-1})$ 50 (c) Given, $\alpha - i\beta = \left(\frac{3+i(-4x)}{3+i(4x)}\right)$ $|\alpha + i(-\beta)| = \left|\frac{3 + i(-4x)}{3 + i(4x)}\right|$ $=\frac{|3+i(-4x)|}{|3+i(4x)|}$ $\Rightarrow \quad \alpha^2 + \beta^2 = \frac{9 + 16x^2}{9 + 16x^2}$ $\alpha^2 + \beta^2 = 1$ \Rightarrow 51 **(b)** $(1+\omega)^7 = (1+\omega)(1+\omega)^6$ $= (1 + \omega)(-\omega^2)^6 = (1 + \omega)$ \Rightarrow $A + B\omega = 1 + \omega$ $\Rightarrow A = 1, B = 1$

52 (a) Given equation is $x^2 + 9y^2 - 4x + 3 = 0$...(i) or $x^2 - 4x + 9y^2 + 3 = 0$ Since *x* is real. $\therefore (-4)^2 - 4(9y^2 + 3) \ge 0$ $\Rightarrow 16 - 4(9y^2 + 3) \ge 0$ $\Rightarrow 4 - 9y^2 - 3 \ge 0$ $\Rightarrow 9v^2 - 1 < 0$ $\Rightarrow (3y-1)(3y+1) \le 0$ $\Rightarrow \frac{-1}{2} \le y \le \frac{1}{3}$ Eq. (i) can also be written as $9y^2 + 0y + x^2 - 4x + 3 = 0$ Since *y* is real. $\therefore 0^2 - 4.9(x^2 - 4x + 3)) \ge 0$ $\Rightarrow x^2 - 4x + 3 \le 0$ $\Rightarrow (x-1)(x-3)) \le 0$ $\Rightarrow 1 \le x \le 3$ 53 (c) Let α , β be the roots of the equation $(a + 1)x^{2} + (2a + 3)x + (3a + 4) = 0$. Then, $\alpha + \beta = -1 \Rightarrow -\left(\frac{2a+3}{a+1}\right) = -1 \Rightarrow a = -2$ $\therefore \text{Product of the roots} = \frac{3a+4}{a+1} = \frac{-6+4}{-2+1} = 2$ 54 (d) We have. $2^{x+2}3^{3x/(x-1)} = 9$ Taking log on both sides, we get $(x+2)\log 2 + \left(\frac{3x}{x-1}\right)\log 3 = 2\log 3$ $\Rightarrow (x+2)\left(\log 2 + \frac{1}{x-1}\log 3\right) = 0$ $\Rightarrow x = -2 \text{ or } \frac{1}{1-x} = \frac{\log 2}{\log 3}$ $\Rightarrow 1 - x = \frac{\log 3}{\log 2}$ $\Rightarrow x = 1 - \frac{\log 3}{\log 2}$ 55 (a) Using a + b + c = 0, the given equation reduces to $ax^2 + bx + c = 0$ Clearly, x = 1 is a root of this equation Let *D* be its discriminant. Then, $D = b^{2} - 4ac = (-a - c)^{2} - 4ac = (a - c)^{2} > 0$ $[\because a \neq c]$ Hence, the roots are real and unequal 56 **(b)** We have, $\alpha + \beta = -\sqrt{\alpha}$ and $\alpha \beta = \beta$ Now, $\alpha \beta = \beta \Rightarrow \alpha = 1$ $\therefore \alpha + \beta = -\sqrt{\alpha} \Rightarrow \beta = -2$ 57 (C)

We have, (x-a)(x-b) - 1 = 0 $\Rightarrow x^2 - x(a+b) + ab - 1 = 0$ Let α , β be the roots of this equation. Then, $\alpha + \beta = a + b$ and $\alpha \beta = ab - 1$ \Rightarrow If one root is less than *a*, then the other root is greater than b \Rightarrow One root lies in $(-\infty, a)$ and the other is in *(b,∞)* ALITER Clearly, *a* and *b* are the roots of the equation (x - a)(x - b) = 0Therefore, the curve y = (x - a)(x - b) opens upward and cuts x-axis at (a, 0) and (b, 0)The curve y = (x - a)(x - b) - 1 is obtained by translating y = (x - a)(x - b) through one unit in vertically downward direction. So, it will cross x-axis at two points one lying on the left of (a, 0)and other one the right of (b, 0)Hence, one of the roots lies in $(-\infty, a)$ and other

in (*b*,∞) 58 **(c)**

$$(\cos \frac{\pi}{2} + i \sin \frac{\pi}{2}) \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4}\right) \left(\cos \frac{\pi}{8} + i \sin \frac{\pi}{8}\right) \dots \infty$$
$$= \cos \left(\frac{\pi}{2} + \frac{\pi}{4} + \frac{\pi}{8} + \dots \infty\right)$$
$$+ i \sin \left(\frac{\pi}{2} + \frac{\pi}{4} + \frac{\pi}{8} + \dots \infty\right)$$
$$= \cos \left(\frac{\frac{\pi}{2}}{1 - \frac{1}{2}}\right) + i \sin \left(\frac{\frac{\pi}{2}}{1 - \frac{1}{2}}\right)$$
$$\cos \pi + i \sin \pi = -1$$

59 (c)

$$2\left(1+\frac{1}{\omega}\right)\left(1+\frac{1}{\omega^{2}}\right)+3\left(2+\frac{1}{\omega}\right)\left(2+\frac{1}{\omega^{2}}\right)++(n+1)\left(n+\frac{1}{\omega}\right)\left(n+\frac{1}{\omega^{2}}\right)\\=2(1+\omega)(1+\omega^{2})+3(2+\omega)(2+\omega^{2})+...+(n+1)(n+\omega)(n+\omega^{2})\\=\sum_{r=1}^{n}(r+1)(r+\omega)(r+\omega^{2})\\=\sum_{r=1}^{n}(r+1)[r^{2}+(\omega+\omega^{2})r+\omega^{3}]\\=\sum_{r=1}^{n}(r+1)(r^{2}-r+1)\\=\sum_{r=1}^{n}(r^{3}+1)$$

 $= \left[\frac{n(n+1)}{2}\right]^2 + n$ 60 **(d)** Let $\sqrt{6+4\sqrt{3}} = \sqrt{x} + \sqrt{y}$ $\Rightarrow 6 + 4\sqrt{3} = x + y + 2\sqrt{xy}$ $\Rightarrow x + y = 6, \sqrt{xy} = 2\sqrt{3}$ Now, $(x - y)^2 = (x + y)^2 - 4xy$ $= 36 - 4(4 \times 3)$ = -12 < 0It is not possible Hence, square root is not possible 61 (d) We have, |x| - 1 < 1 - xTwo cases arise CASE I When $x \ge 0$ In this case, we have |x| = x $\therefore |x| - 1 < 1 - x \Rightarrow x - 1 < 1 - x \Rightarrow 2(x - 1)$ $< 0 \Rightarrow x < 1$ But, $x \ge 0$. Therefore, $x \in [0, 1)$ <u>CASE II</u> When x < 0In this case, we have |x| = -x $\therefore |x| - 1 < 1 - x \Rightarrow -x - 1 < 1 - x \Rightarrow -1 < 1$ This is true for all x < 0Hence, $x \in (-\infty, 0) \cup [0, 1)$ i.e. $x \in (-\infty, 1)$ <u>ALITER</u> Draw the graphs of y = |x| - 1 and v = 1 - xClearly, |x| - 1 < 1 - x for all $x \in (-\infty, 1)$

62 (c)

We have,

$$(\sqrt{3} + i)^{10} = a + ib$$

$$\Rightarrow i^{10} (1 - i\sqrt{3})^{10} = a + ib$$

$$\Rightarrow -(-2\omega)^{10} = a + ib$$

$$\Rightarrow -2^{10}\omega^{10} = a + ib$$

$$\Rightarrow -2^{10}\omega = a + ib$$

$$\Rightarrow -2^{10} \left(\frac{-1}{2} + i\frac{\sqrt{3}}{2}\right) = a + ib$$

$$\Rightarrow 2^9 - 2^9\sqrt{3}i = a + ib \Rightarrow a = 2^9 \text{ and }$$

$$b = -2^9\sqrt{3}$$

63 **(b)**

We have,

$$(5+2\sqrt{6})^{x^2-3} + (5-2\sqrt{5})^{x^2-3}$$

= $(5+2\sqrt{6}) + (5-2\sqrt{6})$
 $\Rightarrow x^2 - 3 = \pm 1 \Rightarrow x = \pm 2, \pm \sqrt{2}$

64 **(d)**

If $x \neq 1$, multiplying each term by (x - 1)the given equation reduces to x(x - 1) = (x - 1) or $(x - 1)^2 = 0$ or x = 1, which is not possible as considering $x \neq 1$, thus given equation has no roots

65 **(b)**

Given, $(1+i)^{2n} = (1-i)^{2n}$ $\Rightarrow 2^n i^n = 2^n (-1)^n i^n \Rightarrow 1 = (-1)^n$ \therefore The smallest value of *n* is 2

66 **(a)**

Since, $\frac{z-1}{z+1}$ is purely imaginary $\therefore \quad \frac{z-1}{z+1} = -\overline{\left(\frac{z-1}{z+1}\right)}$ $\Rightarrow \quad \frac{z-1}{z+1} = \frac{\overline{z}-1}{\overline{z}+1}$ $\Rightarrow \quad \frac{2z}{-2} = \frac{2}{-2\overline{z}} \Rightarrow \quad z\overline{z} = 1$ $\Rightarrow \quad |z|^2 = 1 \quad \Rightarrow \quad |z| = 1$

67 **(a)**

Let the vertex *A* be $3(\cos \theta + i \sin \theta)$, then *OB* and *OD* can be obtained by rotating *OA* through $\frac{\pi}{2}$ and

Thus, $\overrightarrow{OB} = (\overrightarrow{OA})e^{i\frac{\pi}{2}}$ and, $\overrightarrow{OD} = \overrightarrow{OA} e^{-i\frac{\pi}{2}}$ $\Rightarrow \overrightarrow{OB} = 3(\cos\theta + i\sin\theta) i \text{ and}, \overrightarrow{OD} = 3(\cos\theta + i\sin\theta)(-i)$ $\Rightarrow \overrightarrow{OB} = 3(-\sin\theta + i\cos\theta) \text{ and}, \overrightarrow{OD} = 3(\sin\theta - i\cos\theta)$ Thus, vertices *B* and *D* are represented by $\pm 3(\sin\theta - i\cos\theta)$ (a)

68 **(a)**

Let α , β be the roots of the given quadratic equation. Then, $\alpha + \beta = -b/a, \alpha\beta = c/a$ It is given that $\alpha + \beta = \frac{1}{\alpha^2} + \frac{1}{b^2}$

 $\Rightarrow \alpha^2 + \beta^2 = (\alpha + \beta)\alpha^2\beta^2$

 $\Rightarrow (\alpha + \beta)^2 - 2 \alpha \beta = (\alpha + \beta)(\alpha \beta)^2$

$$\Rightarrow \frac{b^2}{a^2} - \frac{2c}{a} = \frac{-bc^2}{a^3}$$

$$\Rightarrow \frac{2c}{a} = \frac{b^2}{a^2} + \frac{bc^2}{a^3}$$

$$\Rightarrow 2a^2c = ab^2 + bc^2 \Rightarrow c^2b, a^2c, b^2a \text{ are in A.P.}$$
Dividing both sides of $2a^2c - ab^2 + bc^2$ by abc , we get
$$2\frac{a}{b} = \frac{b}{c} + \frac{c}{a} \Rightarrow \frac{b}{c}, \frac{a}{b}, \frac{c}{a} \text{ are in A.P.}$$
69 (c)
Clearly, angle between z and iz is a right angle
$$\therefore \angle OPQ = \frac{\pi}{2}$$
70 (d)
We have,
$$\frac{2^n}{(1-i)^{2n}} + \frac{(1+i)^{2n}}{2^n}$$

$$= \frac{2^n}{(1-2i)^{2n}} + \frac{(1+i)^{2n}}{2^n}$$

$$= \frac{2^n}{(1-2i)^n} + \frac{(1+2i+i^2)^n}{2^n}$$

$$= \frac{2^n}{(-2i)^n} + \frac{(2i)^n}{2^n} = \left(-\frac{1}{i}\right)^n + i^n = i^n + i^n = 2i^n$$
71 (d)
Since, the equation $x^2 - px + r = 0$ has roots
 $(\frac{a}{p}, 2\beta)$

$$\therefore a + \beta = p \text{ and } r = a\beta \text{ and } \frac{a}{2} + 2\beta = q$$

$$\Rightarrow \beta = \frac{2q-p}{3} \text{ and } a = \frac{2(2p-q)}{3}$$

$$\therefore a\beta = r = \frac{2}{9}(2q - p)(2p - q)$$
72 (d)
We have, $(1 + \omega - \omega^2)^7 = (-\omega^2 - \omega^2)^7$

$$= (-2)^7(\omega^2)^7 = -128\,\omega^2$$
73 (d)
We have,
$$z + z^{-1} = 1 \Rightarrow z^2 - z + 1 = 0 \Rightarrow z = -\omega \text{ or } - \omega^2$$
For $z = -\omega$, we have
$$z^{100} + z^{-100} = (-\omega)^{100} + (-\omega)^{-100} = \omega + \frac{1}{\omega}$$

 $z^{100} + z^{-100} = (-\omega^2)^{100} + (-\omega^2)^{-100}$ $= \omega^{200} + \frac{1}{\omega^{200}}$ $\Rightarrow z^{100} + z^{-100} = \omega^2 + \frac{1}{\omega^2} = \omega^2 + \omega = -1$ 74 (c)

Let
$$z = \frac{3+2i\sin\theta}{1-2i\sin\theta}$$

 $z = \frac{3 + 2i\sin\theta}{1 - 2i\sin\theta} \times \frac{(1 + 2i\sin\theta)}{1 + 2i\sin\theta}$ $=\frac{3-4\sin^2\theta+8i\sin\theta}{1+4\sin^2\theta}$ For purely imaginary of *z*, put $\operatorname{Re}(z) = 0$ $\frac{3-4\sin^2\theta}{1+4\sin^2\theta} = 0$ ie, $\Rightarrow \sin \theta = \pm \frac{\sqrt{3}}{2}$ $\Rightarrow \quad \theta = n\pi + (-1)^n \left(+ \frac{\pi}{2} \right) = n\pi \pm \frac{\pi}{2}$ 75 (a) We have, $x^{2} + 2ax + 10 - 3a > 0$ for all $x \in R$ $\Rightarrow 4a^2 - 40 + 12a < 0$ [Using: discriminant] < 01 $\Rightarrow a^2 + 3a - 10 < 0$ $\Rightarrow (a+5)(a-2) < 0 \Rightarrow -5 < a < 2$ 76 **(b)** Let $a_1 = a + ib$, $z_2 = c + id$. Then, $z_1 + z_2$ is real \Rightarrow (a + c) + i(b + d) is real $\Rightarrow b + d = 0 \Rightarrow d = -b$...(i) $z_1 z_2$ is real $\Rightarrow (ac - bd) + i(ad + bc)$ is real $\Rightarrow ad + bc = 0$ $\Rightarrow a(-b) + bc = 0$ Using (i) $\Rightarrow a = c$ $\therefore z_1 = a + ib = c - id = \bar{z}_2$ $[\because a = c \text{ and } b]$ = -d77 (a) Let z = z + i y. Then, $\frac{2 z + 1}{i z + 1} = \frac{(2x + 1) + 2 i y}{(1 - y) + ix}$ $=\frac{(1-y+2x)+i(2y-2y^2-2x^2-x)}{(1-y)^2+x^2}$ $\operatorname{Im}\left(\frac{2z+1}{iz+1}\right) = 3$ $\Rightarrow \frac{2y - 2y^2 - 2x^2 - x}{(1 - y)^2 + x^2} = 3$ $\Rightarrow 2y - 2y^2 - 2x^2 - x = 3x^2 + 3(1 - y)^2$ \Rightarrow 5 x^2 + 5 y^2 - 8 y + x + 3 = 0, which is a circle 78 (a) $z_2 + ax + a^2 = 0 \Rightarrow z = a\omega, a\omega^2$ (where ω' is a non-real root of unity) \Rightarrow Locus of z is a pair of straight lines and $\arg(z) = \arg(a) + \arg(\omega)$ or $\arg(z) = \arg(a) + \arg(\omega^2)$ $\Rightarrow \arg(z) = \pm \frac{2\pi}{3}$ Also, $|z| = |a||\omega|$ or $|z| = |a||\omega^2|$

 $\Rightarrow |z| = |a|$ 79 **(b)** Diagonals of parallelogram ABCD are bisected each other at a point ie, $\frac{z_1 + z_3}{2} = \frac{z_2 + z_4}{2}$ \Rightarrow $z_1 + z_2 = z_2 + z_4$ 80 (a) Now, $\frac{1}{(1+x)(1+x^2)} = \frac{A}{1+x} + \frac{Bx+C}{1+x^2}$ Where Bx + C = f(x) $\Rightarrow 1 = A(1 + x^2) + (Bx + C)(1 + x)$ On comparing the coefficient of x^2 , x and constant terms, we get 0 = A + B, 0 = B + C and 1 = A + C $\Rightarrow A = C = \frac{1}{2} \text{ and } B = -\frac{1}{2}$ $\therefore \quad \frac{1}{(1+x)(1+x^2)} = \frac{1}{2(1+x)} + \frac{-\frac{x}{2} + \frac{1}{2}}{1+x^2}$ $\therefore f(x) = -\frac{x}{2} + \frac{1}{2} = \frac{1-x}{2}$ 81 (c) We have, a + b + c = 0 ...(i) Let $D = B^2 + 4AC$ $=9b^2 - 4(4a)(2c) = 9b^2 - 32ac$ $= 9(a + c)^2 - 32ac$ [from Eq. (i)] $=9(a-c)^{2}+4ac$ Hence, roots are real. 82 (a) Given, $x^{2}(1+2k) + x(1-2k) + 1(1-2k) = 0$...(i) Given, D = 0, $b^2 - 4ac = 0$ $\Rightarrow (1-2k)^2 - 4(1+2k)(1-2k) = 0$ $\Rightarrow 20k^2 - 4k - 3 = 0$ $\Rightarrow k = \frac{1}{2}, \frac{3}{10}$ 83 (d) We have, $\frac{\log 5 + \log (x^2 + 1)}{\log(x - 2)} = 2$ $\Rightarrow \log\{5(x^2+1)\} = \log(x-2)^2$ $\Rightarrow 5(x^2 + 1) = (x - 2)^2$ $\Rightarrow 4x^2 + 4x + 1 = 0$ $\Rightarrow x = -\frac{1}{2}$ But for $x = -\frac{1}{2}$, $\log(x - 2)$ is not meaningful. ∴ It has no root. 84 (a) We have, $|x|^2 - 3|x| + 2 = 0$ $\Rightarrow (|x| - 1)(|x| - 2) = 0$ \Rightarrow $|x| = 1, 2 \Rightarrow x = \pm 1, \pm 2$ 85 (a)

Let α_1, β_1 be the roots of $x^2 + ax + b = 0$ and α_2, β_2 be the roots of $x^2 + bx + a = 0$. Then, $\alpha_1 + \beta_1 = -a, \alpha_1\beta_1 = b; \ \alpha_2 + \beta_2 = -b, \alpha_2\beta_2 = a$ It is given that $|\alpha_1 - \beta_1| = |\alpha_2 - \beta_2|$ $\Rightarrow (\alpha_1 - \beta_1)^2 = (\alpha_2 - \beta_2)^2$ $\Rightarrow (\alpha_1 + \beta_1)^2 - 4 \alpha_1 \beta_1 = (\alpha_2 + \beta_2)^2 - 4\alpha_2 \beta_2$ $\Rightarrow a^2 - 4b = b^2 - 4a$ $\Rightarrow (a^2 - b^2) + 4(a - b) = 0 \Rightarrow a + b + 4 = 0$ $[\because a \neq b]$ 86 **(b)** $\frac{3}{4}(\log_2 x)^2 + \log_2 x - \frac{5}{4} = \log_x \sqrt{2}$ $\Rightarrow \frac{3}{4} (\log_2 x)^2 + \log_2 x - \frac{5}{4} = \frac{1}{2 \log_2 x}$ $\Rightarrow 3(\log_2 x)^3 + 4(\log_2 x)^2 - 5(\log_2 x) - 2 = 0$ Put $\log_2 x = y$ $\therefore 3y^2 + 4y^2 - 5y - 2 = 0$ $\Rightarrow (y-1)(y+2)(3y+1) = 0$ $\Rightarrow y = 1, -2, \frac{-1}{3}$ $\Rightarrow \log_2 x = 1, -2, -\frac{1}{3}$ $\Rightarrow x = 2, \frac{1}{2^{1/3}}, \frac{1}{4}$ 87 (d) Since $|z + a| \le a$ implies z lies on or inside a circle with centre (-a, 0) and radius *a*, we have $|z_1| + |z_2| + |z_3| \le 14$ 88 **(b)** $\log_{\sqrt{3}} 300 = \log_{\sqrt{3}} 3 + \log_{\sqrt{3}} 100$ $= 2 \log_{\sqrt{3}} \sqrt{3} + 2 \log_{\sqrt{3}} 5 + 2 \log_{\sqrt{3}} 2$ = 2(1 + a + b) [: $\log_{\sqrt{b}} 5 = a, \log_{\sqrt{b}} 2 = b$] 89 (a) We have, p + q < r + s...(i) q + r < s + t...(ii) r + s < t + p...(iii) and, s + t ...(iv)From (i) and (iii), we have $p + q < r + s < t + p \Rightarrow q < t$ From (ii) and (iv), we have $q + r < s + t < p + q \Rightarrow r < p$ From (i) and (iv), we have s + t $\therefore q < t < r < p$ From (i), we have p + q < r + sAlso, r < p $\therefore p + q + r < r + s + p \Rightarrow q < s$ From (iv), we have s + tAlso, q < t

 $\therefore s + t + q$ $\therefore q < s < p$ Hence, the largest and the smallest numbers are *p* and q respectively 90 (c) We have, $\frac{x+2}{x^2+1} > \frac{1}{2}$ $\Rightarrow 2x + 4 > x^2 + 1$ $\Rightarrow x^2 - 2x - 3 < 0$ $\Rightarrow (x-3)(x+1) < 0$ $\Rightarrow -1 < x < 3 \Rightarrow x = 0,1,2$ [:: x is an integer] 91 (a) Let r be the common ratio of the GP. Since $\alpha, \beta, \gamma, \delta$ are in GP, then $\beta = \alpha r, \gamma = \alpha r^2$ and $\delta =$ αr^3 . For equations, $x^2 - x + p = 0$ $\therefore \alpha + \beta = 1$ $\Rightarrow \alpha + \alpha r = 1$ $\Rightarrow \alpha(1+r) = 1$ (i) and $\alpha\beta = p \Rightarrow \alpha(\alpha r) = p$ $\Rightarrow \alpha^2 r = p$...(ii) For equation, $x^2 - x + q = 0$ $\gamma + \delta = 4$ $\Rightarrow \alpha r^2 + \alpha r^3 = 4$ $\Rightarrow \alpha r^2(1+r) = 4$...(iii) and $\gamma \delta = q \Rightarrow \alpha r^3 \cdot \alpha r^2 = q$ $\Rightarrow \alpha^2 r^5 = q$...(iv) On dividing Eq. (iii) by Eq. (i), we get $r^2 = 4 \Rightarrow r = \pm 2$ If we take r = 2, then α is not integral, so we take r = -2.Substituting r = -2 in Eq. (i), we get $\alpha = -1$ Now, from Eq. (ii), we have $p = \alpha^2 r = (-1)^2 (-2) = -2$ and from Eq. (iv), we have $q = \alpha^2 r^5 = (-1)^2 (-2)^5 = -32$ \Rightarrow (*p*, *q*) = (-2, -32) 92 (a) Let the vertices of triangle be $A(z_1), B(z_2)$ and $C(z_3)$ Given, $\frac{z_1 - z_3}{z_2 - z_3} = \frac{1 - i\sqrt{3}}{2}$ $\Rightarrow \quad \left|\frac{z_1 - z_3}{z_2 - z_2}\right| = \frac{|2|}{|2|} = 1$ $\therefore |z_1 - z_3| = |z_2 - z_3|$ $\Rightarrow |AC| = |BC|$ Now, $\frac{z_1 - z_3}{z_2 - z_3} = e^{-i\pi/3}$ $\arg\left(\frac{z_1 - z_3}{z_2 - z_3}\right) = -\frac{\pi}{3}$

 $\angle BCA = \frac{\pi}{3}$:. |AC| = |BC| and $\angle BCA = 60^{\circ}$ ⇒ |AB| = |BC| = |CA|⇒ ΔABC is an equilateral triangle. ⇒ 93 (d) We have, $225 + (3\omega + 8\omega^2)^2 + (3\omega^2 + 8\omega)^2$ $= 225 + 9\omega^{2} + 64\omega^{4} + 48\omega^{3} + 9\omega^{4} + 64\omega^{2}$ $+ 48\omega^{3}$ $= 225 + 9\omega^2 + 64\omega + 48 + 9\omega + 64\omega^2 + 48$ $= 225 + 73(\omega^2 + \omega) + 96 = 225 - 73 + 96$ = 24894 (c) Let z = x + iyGiven, $\left|\frac{z+2i}{2z+i}\right| < 1$ $\Rightarrow \quad \frac{\sqrt{(x)^2 + (y+2)^2}}{(2x)^2 + (2y+1)^2} < 1$ $\Rightarrow x^{2} + y^{2} + 4 + 4y < 4x^{2} + 4y^{2} + 1 + 4y$ $\Rightarrow 3x^2 + 3y^2 > 3$ $\Rightarrow x^2 + y^2 > 1$ 95 (c) Let a - d, a, a + d be the roots of the equation $x^3 - 12x^2 + 39x - 28 = 0$. Then, a - d + a + a + d = 12 and, (a - d)(a + d) = 28 $\Rightarrow 3a = 12 \text{ and } a(a^2 - d^2) = 28$ \Rightarrow *a* = 4 and *d* = \pm 3 96 **(b)** We have, $\frac{2}{|x-4|} > 1$ $\Rightarrow 2 > |x - 4|$ $\Rightarrow |x-4| < 2 \Rightarrow -2 < x-4 < 2 \Rightarrow 2 < x < 6$ But $\frac{2}{|x-4|} > 1$ is not defined at x = 4 $\therefore x \in (2,4) \cup (4,6)$ 97 (b) As sum of any four consecutive powers of iota is zero $\therefore \quad \sum^{\infty} (i^n + i^{n+1})$ = (i + i² + ... + i¹³) + (i² + i³ + ... + i¹⁴) $= i + i^2 = i - 1$ 98 (b) The complex cube roots of unity are 1, ω , ω^2 Let $\alpha = \omega$, $\beta = \omega^2$ Then, $\alpha^4 + \beta^4 + \alpha^{-1}\beta^{-1} = \omega^4 + (\omega^2)^4 + (\omega^2)$ $(\omega)^{-1}(\omega^2)^{-1}$ $=\omega + \omega^2 + 1 = 0$ 99 (b)

Since a, b, c are in H.P. $\therefore b = \frac{2 ac}{a+c}$ Now, Disc = 4 b² - 4 ac = 4 $\left\{ \frac{4 a^2 c^2}{(a+c)^2} - ac \right\}$ $= -4 ac \frac{(a-c)^2}{(a+c)^2} < 0$ Hence roots of the given equation are in

Hence, roots of the given equation are imaginary 100 **(d)**

The two circle whose centre and radius are $C_1(0,0), r_1=12, C_2(3,4), r_2=5$ and it passes through origin *ie*, the centre of C_1

Now, $C_1 C_2 = \sqrt{3^2 + 4^2} = 5$ And $r_1 - r_2 = 12 - 5 = 7$ $\therefore \quad C_1 C_2 < r_1 - r_2$ Hence, circle C_2 lies inside the circle C_1 From figure the minimum distance between them, is $AB = C_1 B - C_1 A$ $= r_1 - (C_1C_2 + C_2A)$ = 12 - 10 = 2101 **(b)** Since, α and β be the roots of the equation $x^2 + \sqrt{\alpha}x + \beta = 0$, therefore $\alpha + \beta = -\sqrt{\alpha}$ and $\alpha\beta = \beta$ From second relation $\beta \neq 0$ $\therefore \alpha = 1$ $\therefore 1 + \beta = -1 \Rightarrow \beta = -2$ Hence, $\alpha = 1$ and $\beta = -2$

102 (d)

The equation has no real root, because LHS is always positive while RHS is zero

103 (a)
Let
$$z = x + iy$$
. Then,
 $\frac{z-1}{z+1} = \frac{(x^2 + y^2 - 1) + 2iy}{(x+1)^2 + y^2}$
Since $\frac{z-1}{z+1}$ is purely imaginary. Therefore,
Re $\left(\frac{z-1}{x+1}\right) = 0$
 $\Rightarrow \frac{x^2 + y^2 - 1}{(x+1)^2 + y^2} = 0$
 $\Rightarrow x^2 + y^2 = 1 \Rightarrow |z|^2 = 1 \Rightarrow |z| = 1$
ALITER We have,
 $\left(\frac{z-1}{z+1}\right)$ is purely imaginary
 $\Rightarrow \arg\left(\frac{z-1}{z+1}\right) = \pm \frac{\pi}{2}$
 $\Rightarrow z$ lies on the circle $|z| = 1$
104 (a)
Let z be the fourth vertex of parallelogram, then
 $\frac{z_1 + z_3}{2} = \frac{z_2 + z}{2} \Rightarrow z = z_1 + z_3 - z_2$
105 (a)
Let $z = x + iy$
 $\Rightarrow zz = (x + iy)(x + iy)$
 $= x^2 - y^2 + 2ixy$
 $= 0 + 2ixy$ [: Re $(z) = \operatorname{Im}(z) \Rightarrow x = y$]
 $\Rightarrow \operatorname{Re}(z^2) = 0$
106 (c)
Let $x = \sqrt{-1 - \sqrt{-1 - \sqrt{-1 - \dots \infty}}}$
Then, $x = \sqrt{-1 - x}$ or $x^2 = -1 - x$
or $x^2 + x + 1 = 0$
 $\therefore x = \frac{-1 \pm \sqrt{1 - 4 \cdot 1 \cdot 1}}{2.1} = \frac{-1 \pm \sqrt{-3}}{2}$
 $= \frac{-1 \pm \sqrt{3}}{2} = \omega$ or ω^2
107 (c)
We have, $z_k = 1 + a + a^2 + \dots + a^{k-1} = \frac{1 - a^k}{1 - a}$
 $\Rightarrow z_k - \frac{1}{1 - a} = \frac{-a^k}{1 - a}$
 $\Rightarrow |z_k - \frac{1}{1 - a}| = \frac{|a^k|}{|1 - a|}$ (: $|a| < 1$)
 $\Rightarrow z_k$ lies within a circle $|z - \frac{1}{1 - a}| = \frac{1}{|1 - a|}$
108 (b)
Here, $\Sigma \alpha = 0$, $\Sigma \alpha \beta = -7$, $\alpha \beta \gamma = -7$
 $\therefore \frac{1}{\alpha^4} + \frac{1}{\beta^4} + \frac{1}{\gamma^4} = \frac{\alpha^4 \beta^4 + \beta^4 \gamma^4 + \gamma^4 \alpha^4}{\alpha^4 \beta^4 \gamma^4}$

...(1)

 $\alpha^4 \beta^4 \gamma^4$

y

Now, $\sum \alpha \beta \sum \alpha \beta \sum \alpha \beta \sum \alpha \beta = (\sum \alpha \beta)^2 (\sum \alpha \beta)^2$ $\Rightarrow (-7)^4 = \left[\alpha^2 \beta^2 + \beta^2 \gamma^2 + \gamma^2 \alpha^2\right]$ $+ 2\alpha\beta\gamma(\alpha + \beta + \gamma)$] $[\alpha^2\beta^2 + \beta^2\gamma^2 + \gamma^2\alpha^2 + 2\alpha\beta\gamma(\alpha + \beta + \gamma)]$ $= (\alpha^2 \beta^2 + \beta^2 \gamma^2 + \gamma^2 \alpha^2)(\alpha^2 \beta^2 + \beta^2 \gamma^2 + \gamma^2 \alpha^2)$ $[\therefore \sum \alpha = \alpha + \beta + \gamma = 0]$ $= \alpha^4 \beta^4 + \beta^4 \gamma^4 + \gamma^4 \alpha^4 + 2\alpha^4 \beta^2 \gamma^2 + 2\alpha^2 \beta^4 \gamma^2$ $+ 2\alpha^2\beta^2\gamma^4$ $= \sum \alpha^4 \beta^4 + 2\alpha^2 \beta^2 \gamma^2 (\alpha^2 + \beta^2 + \gamma^4)$ $= \sum \alpha^4 \beta^4 + 2\alpha^2 \beta^2 \gamma^2 \left[\left(\sum \alpha \right)^2 - 2 \sum \alpha \beta \right]$ $= \sum \alpha^4 \beta^4 + 2 \alpha^2 \beta^2 \gamma^2 [0 - 2 \times (-7)]$ $= \sum \alpha^4 \beta^4 + 2(-7)^2 (2 \times 7)$ $\sum \alpha^4 \beta^4 = (-7)^4 + 4(-7)^3$ ⇒ $\Rightarrow \sum \alpha^4 \beta^4 = (-7)^3 (-7+4) = -3(-7)^3$ On putting this value in Eq. (i), we get $\frac{1}{\alpha^4} + \frac{1}{\beta^4} + \frac{1}{\nu^4} = \frac{-3(-7)^3}{(-7)^4} = \frac{-3}{-7} = \frac{3}{7}$ 109 **(b)** Given, $\sin \theta + \cos \theta = h$ $\Rightarrow \sin^2 \theta + \cos^2 \theta + 2\sin \theta \cos \theta = h^2$ [squaring] $\Rightarrow \sin\theta\cos\theta = \frac{h^2 - 1}{2}$ The quadratic equation having the roots $\sin \theta$ and $\cos\theta$ is $x^{2} - (\sin \theta + \cos \theta)x + \sin \theta \cos \theta = 0$ $\therefore 2x^2 - 2hx + (h^2 - 1) = 0$ 110 (a) Replacing *x* by $\frac{1-bx}{ax}$ we get the required equation $a\left(\frac{1-bx}{ax}\right)^2 + b\left(\frac{1-bx}{ax}\right) + c = 0$ $\Rightarrow a(1 + b^{2}x^{2} - 2bx) + ax(b - b^{2}x) + ca^{2}x^{2} = 0$ $\Rightarrow a + ab^2x^2 - 2abx + abx - ab^2x^2 + a^2cx^2 = 0$ $acx^2 - bx + 1 = 0$ ⇒ 111 (d) $\sqrt{i} = \sqrt{\frac{2i}{2}} = \frac{1}{\sqrt{2}}\sqrt{2i+1+i^2}$ $=\frac{1}{\sqrt{2}}\sqrt{(1+i)^2}=\pm\frac{1}{\sqrt{2}}(1+i)$

112 **(b)** Let α and α^n be the roots of the equation, then $\alpha + \alpha^n = -\frac{b}{a}$ and $\alpha \cdot \alpha^n = \frac{c}{a} \Rightarrow \alpha^{n+1} = \frac{c}{a}$ On eliminating α , we get $\left(\frac{c}{a}\right)^{\frac{1}{n+1}} + \left(\frac{c}{a}\right)^{\frac{1}{n+1}} = -\frac{b}{a}$ $\Rightarrow a. a^{-\frac{1}{n+1}} c^{\frac{1}{n+1}} + a. a^{-\frac{n}{n+1}} c^{\frac{n}{n+1}} = -b$ $\Rightarrow (a^n c)^{\frac{1}{n+1}} + (ac^n)^{\frac{1}{n+1}} = -b$ 113 (d) Let z = x + iy \therefore |z+3-i| = |(x+3)+i(y-1)| = 1 $\Rightarrow \sqrt{(x+3)^2 + (y-1)^2} = 1$...(i) \therefore arg $z = \pi$ \Rightarrow tan⁻¹ $\frac{y}{r} = \pi$ $\Rightarrow \quad \frac{y}{x} = \tan \pi = 0 \quad \Rightarrow \quad y = 0$...(ii) from Eqs.(i) and (ii) we get x = -3, y = 0 $\therefore z = -3$ \Rightarrow |z| = |-3| = 3114 (a) Let $x = (-1)^{1/3}$ $x = (\cos \pi + i \sin \pi)^{1/3}$ $x = \left[\cos\left(\frac{2n+1}{3}\right)\pi + i\sin\left(\frac{2n+1}{3}\right)\pi\right]$ $= \rho^{i(2n+1)\pi/3}$ Put n = 0, 1, 2 we get $x = e^{i\pi/3}, e^{i\pi}, e^{5i\pi/3}$: Products of roots = $e^{i\pi/3}$, $e^{\pi i}$. $e^{5\pi i/3} = e^{3\pi i}$ $= (\cos 3\pi + i \sin 3\pi) = -1$ **Alternate Method** We know that the cube roots of -1 are -1, $-\omega$, $-\omega^2$ \therefore Their product = $(-1)(-\omega)(-\omega^2) = -1$ 115 (c) Sum of the roots $=-\frac{b}{a}=-\frac{(-3)}{1}=3$ From the given options only (c) ie, -2, 1, 4satisfies this condition 116 (c) If $(a^2 - 3a + 2)x^2 + (a^2 - 5a + 6)x + a^2 - 4 = 0$ is an identity in *x*, then $a^{2} - 3a + 2 = 0$, $a^{2} - 5a + 6 = 0$ and $a^{2} - 4 = 0$ must holdgood simultaneously. Clearly, a = 2 is the value of 'a' which satisfies these equations 117 (a) Since z_2 and z_3 can be obtained by rotating vector

representing z_1 through $\frac{2\pi}{3}$ and $\frac{4\pi}{3}$ respectively $\therefore z_2 = z_1 \omega \text{ and } z_3 = z_1 \omega^3$ $\Rightarrow z_2 = \left(1 + i\sqrt{3}\right) \left(-\frac{1}{2} + i\frac{\sqrt{3}}{2}\right) \text{ and, } z_3$ $= (1 + i\sqrt{3}) \left(-\frac{1}{2} - i\frac{\sqrt{3}}{2}\right)$ \Rightarrow $z_2 = -2 + 0 i$ and $z_3 = 1 - i\sqrt{3}$ 118 (b) We have, $\frac{x^2 - 3x + 4}{x + 1} > 1$ $\Rightarrow \frac{x^2 - 4x + 3}{x + 1} > 0$ $\Rightarrow \frac{(x-1)(x-3)}{x+1} > 0 \Rightarrow x \in (-1,1) \cup (3,\infty)$ 119 (a) $\left(\frac{9}{10}\right)^x = -3 + x - x^2$ $\Rightarrow \left(\frac{9}{10}\right)^{x} = -\left\{\left(x - \frac{1}{2}\right)^{2} + \frac{11}{4}\right\}$ \Rightarrow LHS is always positive while RHS is always negative. Hence, the given equation has no solution. 120 (a) Let root of $3ax^2 + 3bx + c = 0$ be α , then $3a\alpha^2 + 3b\alpha + c = 0$ According to the given condition, $\Rightarrow x = 3\alpha$ $\Rightarrow \alpha = \frac{x}{2}$ $\therefore \quad 3a\frac{x^2}{9} + 3b\frac{x}{2} + c = 0$ $\Rightarrow ax^2 + 3bx + 3c = 0$ 121 (a) <u>CASE I</u> When $x^2 + 4x + 3 \ge 0$ i.e. $x \le -3$ or $x \ge -3$ -1 In this case, we have $|x^{2} + 4x + 3| = x^{2} + 4x + 3$ $|x^{2} + 4x + 3| + (2x + 5) = 0$ $\Rightarrow x^{2} + 4x + 3 + 2x + 5 = 0$ $\Rightarrow x = -2, -4 \Rightarrow x = -4$ [$\because x \le -3 \text{ or, } x \ge$

-1]<u>CASE II</u> When x² + 4x + 3 < 0 i. e. -3 < x < -1 In this case, we have $|x^{2} + 4x + 3| = -(x^{2} + 4x + 3)$ ∴ $|x^{2} + 4x + 3| + (2x + 5) = 0$ $\Rightarrow -x^{2} - 4x - 3 + 2x + 5 = 0$

Page | **79**

$$\begin{array}{l} \Rightarrow -x^{2} - 2x + 2 = 0 \\ \Rightarrow x^{2} + 2x - 2 = 0 \\ \Rightarrow x = \frac{-2 \pm 2\sqrt{3}}{2} = -1 \pm \sqrt{3} \\ \Rightarrow x = -1 - \sqrt{3} \quad [\because -3 < x < -1] \end{array}$$
122 (d)
Given, $x = \sqrt{\frac{2+\sqrt{3}}{2-\sqrt{3}}} = \sqrt{\frac{(2+\sqrt{3})(2+\sqrt{3})}{(2-\sqrt{3})(2+\sqrt{3})}} \\ = 2 + \sqrt{3} \\ \therefore x^{2}(x - 4)^{4} = (2 + \sqrt{3})^{2}(2 + \sqrt{3} - 4)^{2} \\ = (\sqrt{3} + 2)^{2}(\sqrt{3} - 2)^{2} \\ = [(\sqrt{3})^{2} - (2)^{2}]^{2} \\ = (-1)^{2} = 1 \\ 123 (d)$
We have, $|\lambda_{1}a_{1} + \lambda_{2}a_{2} + \ldots + \lambda_{n}a_{n}| \\ \leq |\lambda_{1}a_{1}| + |\lambda_{2}a_{2}| + \ldots + |\lambda_{n}a_{n}| \\ = |\lambda_{1}|a_{1}| + \ldots + \lambda_{n}|a_{n}| \quad (\because each \lambda_{k} \ge 0) \\ < \lambda_{1} + \ldots + \lambda_{n} \quad (\land |a_{k}| < 1 \text{ and so } \lambda_{k}|a_{k}| < \lambda_{k} \text{ for all } k \\ = 1, 2, \ldots n) \\ \text{Hence, } |\lambda_{1}a_{1} + \lambda_{2}a_{2} + \ldots + \lambda_{n}a_{n}| < 1 \\ 124 (a) \\ \text{It is given that tan α and tan β are the roots of the equation $x^{2} + px + q = 0$ \\ \therefore \tan \alpha + \tan \beta = -p$ and tan α tan $\beta = q$ \\ \Rightarrow \tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta} = \frac{-p}{1 - q} = \frac{p}{q - 1} \\ \text{The LHS of choice (a) can be written as} \\ = \cos^{2}(\alpha + \beta) \{\tan^{2}(\alpha + \beta) + p \tan(\alpha + \beta) + q\} \\ = \frac{1}{1 + \tan^{2}(\alpha + \beta)} \{\tan^{2}(\alpha + \beta) + p \tan(\alpha + \beta) + q\} \\ = \frac{1}{1 + \frac{p^{2}}{(q - 1)^{2}}} \{\frac{p^{2}}{(q - 1)^{2}} + \frac{p^{2}}{q - 1} + q\} = q \\ \text{So, option (a) is correct} \\ 125 (c) \\ \sin \frac{\pi}{10} \cos \frac{\pi}{10} + i 2 \sin^{2} \frac{\pi}{10} \\ \Rightarrow \theta = \frac{\pi}{10} \end{cases}$

126 **(b)**

We know that, sum of any four consecutive powers of *i* is zero

$$\therefore \sum_{n=1}^{13} (i^{n} + i^{n+1}) = (i + i^{2} + \dots + i^{13}) + (i^{2} + i^{3} + \dots + i^{14}) = i^{13} + i^{14} = i - 1$$
127 (a)

$$\log_{3} x + \log_{3} \sqrt{x} + \log_{3} \sqrt[4]{x} + \log_{3} \sqrt[8]{x} + \dots = 4$$

$$\Rightarrow \log_{3} x + \frac{1}{2} + \log_{3} x + \frac{1}{4} \log_{3} x + \frac{1}{8} \log_{3} x + \dots = 4$$

$$\Rightarrow \log_{3} x \left[1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots \right] = 4$$

$$\Rightarrow \log_{3} x \left[\frac{1}{1 - \frac{1}{2}} \right] = 4$$

$$\Rightarrow \log_{3} x \left[\frac{1}{1 - \frac{1}{2}} \right] = 4$$

$$\Rightarrow \log_{3} x = 2$$

$$\Rightarrow x = 3^{2} = 9$$
128 (d)
We have,

$$\frac{2x}{2x^{2} + 5x + 2} > \frac{1}{x + 1}$$

$$\Rightarrow \frac{2x^{2} + 2x - 2x^{2} - 5x - 2}{(x + 1)(2x + 1)(x + 2)} > 0$$

$$\leftarrow \frac{1 + \frac{1}{2} + \frac{1}$$

130 (d) Let α be a common root of the equations $x^{2} + ax + 10 = 0$ and $x^{2} + bx - 10 = 0$. Then, $\alpha^2 + a \alpha + 10 = 10$ and, $\alpha^{2} + b \alpha - 10 = 0$ Adding and subtracting these two equations, we get $2 \alpha^{2} + \alpha(a + b) = 0$ and $(a - b)\alpha + 20 = 0$ $\Rightarrow \alpha = -\frac{a+b}{2}$ and $\alpha = -\frac{20}{a-b}$ $\Rightarrow -\frac{a+b}{2} = -\frac{20}{a-b} \Rightarrow a^2 - b^2 = 40$ 131 (a) We have, $|z_1| = |z_2| = |z_3|$ $\Rightarrow OA = OB = OC$, where O is the origin $A(z_1)$ $C(z_3)$ $B(z_2)$ \Rightarrow Circumcentre of \triangle *ABC* is at the origin But, the triangle is equilateral. Therefore, its centroid coincides with the circumcentre Thus, $\frac{z_1 + z_2 + z_3}{2} = 0 \Rightarrow z_1 + z_2 + z_3 = 0$ Clearly, $z_2 = z_1 e^{i 2 \pi/3} = z_1 \omega$ and $z_3 =$ $z_1 e^{i 4 \pi/3} = z_1 \omega^2$ Let *OA* be along *x*-axis such that OA = 1 unit. Then, $z_1 = 1$ $\therefore z_2 = \omega$ and $z_3 = \omega^2$ Hence, $z_1 z_2 z_3 = \omega^2 = 1$ Thus, we have $z_1 + z_2 + z_3 = 0$ and $z_1 z_2 z_3 = 1$ 132 (c) We have, $\sqrt{x+iy} = \pm (a+ib)$ $\Rightarrow x + iy = a^2 - b^2 + 2i ab$ $\Rightarrow x = a^2 - b^2$, y = 2 ab $\therefore \sqrt{-x - iy} = \sqrt{-(a^2 - b^2) - 2i ab}$ $\Rightarrow \sqrt{-x - iy} = \sqrt{b^2 - a^2 - 2i ab} = \sqrt{(b - ia)^2}$ = +(b - ia)133 (c) Since, α , β are the roots of the equation $x^{2} + px + q = 0$, then $\alpha + \beta = p, \ \alpha\beta = q \dots (i)$

and α^4 , β^4 are the roots of $x^2 - xr + s = 0$. Then, $\alpha^4 + \beta^4 = r$...(ii) and $\alpha^4 \beta^4 = s$ If *D* is discriminant of the equation $x^2 - 4qx +$ $2q^2 - r = 0$, Then $D = 16q^2 - 4(2q^2 - r) = 8q^2 + 4r$ $= 8\alpha^2\beta^2 + 4(\alpha^4 + \beta^4)$ [from Eqs. (i) and (ii)] $=4(\alpha^2\beta^2)^2 \ge 0$ Hence, the equation $x^2 - 4qx + 2q^2 - r = 0$ has always two real roots. 134 (a) Since, *a*, *b* and *c* are the sides of a \triangle *ABC*, then $|a - b| < |c| \Rightarrow a^2 + b^2 - 2ab < c^2$ Similarly, $b^2 + c^2 - 2bc < a^2$, $c^2 + a^2 - 2ca < c^2$ h^2 On adding, we get $(a^{2} + b^{2} + c^{2}) < 2(ab + bc + ca)$ $\Rightarrow \frac{a^2 + b^2 + c^2}{ab + bc + ca} < 2 \qquad \dots \dots (i)$ Also, $D \ge 0$, $(a + b + c)^2 - 3\lambda(ab + bc + ca) > 0$ $\Rightarrow \frac{a^2 + b^2 + c^2}{ab + bc + ca} > 3\lambda - 2 \quad \dots \dots \dots \dots (ii)$ From Eqs. (i) and (ii), $3\lambda - 2 < 2 \Rightarrow \lambda < \frac{4}{2}$

135 **(a)**

Let *A* be the vertex with affix z_1 . There are two possibilities of z_2 *ie*, z_2 can be obtained by rotating z_1 through $\frac{2\pi}{n}$ either in clockwise or in anti-clockwise direction.

$$B(z_{2}) = O$$

$$A(z_{1}) = B(z_{2})$$

$$\therefore \frac{z_{2}}{z_{1}} = \left|\frac{z_{2}}{z_{1}}\right| e^{\pm \frac{i2\pi}{n}}$$

$$\Rightarrow z_{2} = z_{1} \left(\cos \frac{2\pi}{n} \pm i \sin \frac{2\pi}{n}\right) \quad (\because |z_{2}| = |z_{1}|)$$
(d)

136 **(d)**

Given,
$$z = \cos \theta + i \sin \theta = e^{i\theta}$$

$$\therefore \sum_{m=1}^{15} \operatorname{Im} (z^{2m-1}) = \sum_{m=1}^{15} \operatorname{Im} (e^{i\theta})^{2m-1}$$
$$= \sum_{m=1}^{15} \operatorname{Im} e^{i(2m-1)\theta}$$
$$= \sin\theta + \sin 3\theta + \sin 5\theta + \dots + \sin 29\theta$$
$$= \frac{\sin\left(\frac{\theta+29\theta}{2}\right)\sin\left(\frac{15\times 2\theta}{2}\right)}{\sin\left(\frac{2\theta}{2}\right)}$$

$$=\frac{\sin(15\,\theta)\sin(15\,\theta)}{\sin\theta}=\frac{1}{4\sin 2^\circ}$$

137 **(d)**

We have,

$$2z^{2} + 2z + a = 0 \Rightarrow z = \frac{-2 \pm \sqrt{4 - 8a}}{4}$$
$$= \frac{-1 \pm \sqrt{1 - 2a}}{2}$$

For *z* to be non-real, we must have

$$4 - 8a < 0 \Rightarrow a > \frac{1}{2}$$

Let $z_1 = \frac{-1 + \sqrt{1 - 2a}}{2}$ and $z_2 = \frac{-1 - \sqrt{1 - 2a}}{2}$

Now, origin and points representing z_1 and z_2 will form an equilateral triangle in the argand plane, if $z_1^2 + z_2^2 = z_1 z_2$ [:: $z_1^2 + z_2^2 + z_3^2$ $= z_1 z_2 + z_2 z_2 + z_2 z_1$]

$$\Rightarrow (z_1 + z_2)^2 = 3 z_1 z_2$$

$$\Rightarrow 1 = \frac{3a}{2} \Rightarrow a = \frac{2}{3}$$

Clearly, $a = 2/3$ satisfies the condition $a > 1/2$
Hence, $a = 2/3$

138 **(c)**

Let P, A, B represent complex numbers z, 1 + 0i, -1 + 0i respectively, then $|z - 1| + |z + 1| \le 4 \implies PA + PB \le 4$ $\Rightarrow P$ moves in such a way that the sum of its distance from two fixed points is always less than or equal to 4 \Rightarrow Locus of P is the interior and boundary of

ellipse having foci at (1, 0) and (-1, 0)

139 **(b)**

On comparing the given circle with $\left|\frac{z-\alpha}{z-\beta}\right| = k$, we get

$$\alpha = i, \ \beta = -i, \ k = 5$$

$$\therefore \text{ Radius} = \left| \frac{k(\alpha - \beta)}{1 - k^2} \right| = \left| \frac{5(i+i)}{1 - 25} \right| = \frac{5}{12}$$

140 **(d)**

We have,

$$(z + \alpha\beta)^3 = \alpha^3 \Rightarrow z = \alpha - \alpha\beta, z = \alpha\omega - \alpha\beta, z$$

 $= \alpha\omega^2 - \alpha\beta$
Thus, the vertices *A*, *B* and *C* of \triangle *ABC* are

respectively, $\alpha - \alpha \beta$, $\alpha \omega - \alpha \beta$ and $\alpha \omega^2 - \alpha \beta$ Clearly, $AB = BC = AC = |\alpha| |1 - \omega| = \sqrt{3} |\alpha|$ 141 **(b)**

Given,
$$(\sqrt{5} + \sqrt{3}i)^{33} = 2^{49}z$$

Let $\sqrt{5} = r \cos \theta$, $\sqrt{3} = r \sin \theta$
 $\therefore r^2 = 5 + 3 \implies r = 2\sqrt{2}$
 $\therefore (r \cos \theta + ir \sin \theta)^{33} = 2^{49}z$
 $\implies |r^{33}(\cos 33\theta + i \sin 33\theta)| = |2^{49}z|$

$$\Rightarrow (2\sqrt{2})^{33} |\cos 33\theta + i \sin 33\theta| = 2^{49} |z|$$

$$\Rightarrow 2^{\frac{99}{2}}(1) = 2^{49} |z| \Rightarrow |z| = \sqrt{2}$$

142 **(d)**

143

Let the vertices be $z_0, z_1, ..., z_5$ w.r.t. centre 0 at origin and $|z_0| = \sqrt{5}$

$$\begin{aligned} & \int_{A_{1}} \int_{A_{2}} \int_{A_{3}} \int_{A_{4}} \int_{A_{5}} \int_{A_{5}}$$

144 **(d)**

Let α , β and γ be the roots of the given equation

 $\therefore \alpha + \beta + \gamma = -2, \alpha\beta + \beta\gamma + \gamma\alpha = -4$ And $\alpha\beta\gamma = -1$ Let the required cubic equation has the roots $3\alpha, 3\beta$ and 3γ . $\therefore 3\alpha + 3\beta + 3\gamma = -6$ $3\alpha, 3\beta + 3\beta, 3\gamma + 3\gamma, 3\alpha = -36$ And $3\alpha, 3\beta, 3\gamma = -27$ \therefore Required equation is $x^3 - (-6)x^2 + (-36)x - (-27) = 0$ $\Rightarrow x^3 + 6x^2 - 36x + 27 = 0$ 145 (a) Since, D > 0, $\sin^2 a - 4\sin a(1 - \cos a) > 0$ $\Rightarrow \sin a > 0$ or $(\sin a - 4 + 4\cos a) > 0$ $\Rightarrow a \in (0, \pi)$ or $\frac{1-\cos a}{\sin a} < \frac{1}{4}$

 $\Rightarrow a \in (0,\pi) \text{ or } a \in \left(0,2 \tan^{-1}\left(\frac{1}{4}\right)\right)$ $\Rightarrow a \in \left(0,2 \tan^{-1}\left(\frac{1}{4}\right)\right)$

146 **(b)**

Since, α , β are the roots of equation $x^2 + bx + c = 0$. Here, $D = b^2 - 4c > 0$ because c < 0 < b. So,

roots are real and unequal.

Now, $\alpha + \beta = -b < 0$ and $\alpha \beta = c < 0$ \therefore One root is positive and the other is negative, the negative root being numerically bigger. As $\alpha < \beta, \alpha$ is the negative root while β is the positive root. So, $|\alpha| > \beta$ and $\alpha < 0 < \beta$.

147 (d)

Given,
$$x^2 - \sqrt{3x} + 1 = 0$$

 $\Rightarrow x = \frac{\sqrt{3} \pm \sqrt{3} - 4}{2} = \frac{\sqrt{3} \pm i}{2} = \cos \frac{\pi}{6} \pm i \sin \frac{\pi}{6}$
 $\Rightarrow x^n = \cos \frac{n\pi}{6} \pm i \sin \frac{n\pi}{6}$
And $\frac{1}{x^n} = \cos \frac{n\pi}{6} \pm i \sin \frac{n\pi}{6}$
 $\therefore x^n - \frac{1}{x^n} = \pm 2i \sin \frac{n\pi}{6}$
 $\Rightarrow \left(x^n - \frac{1}{x^n}\right)^2 = -4 \sin^2 \frac{n\pi}{6}$
Hence, $\sum_{n=1}^{24} \left(x^n - \frac{1}{x^n}\right)^2$
 $= -4 \left[\sin^2 \frac{\pi}{6} + \sin^2 \frac{2\pi}{6} + \dots + \sin^2 \frac{24\pi}{6}\right]$
 $= -4(12) = -48$

148 (d)

We have,

 $|x^{2} - x - 6| = \begin{cases} x^{2} - x - 6, & \text{if } x \le -2 \text{ or } x \ge 3\\ -(x^{2} - x - 6), & \text{if } -2 < x < 3 \end{cases}$ <u>CASE I</u> When $x \le -2$ or, $x \ge 3$ In this case, we have $|x^{2} - x - 6| = x^{2} - x - 6$ $\therefore |x^{2} - x - 6| = x + 2$

 $\Rightarrow x^2 - x - 6 = x + 2$ $\Rightarrow x^2 - 2x - 8 = 0$ $\Rightarrow (x-4)(x+2) = 0$ $\Rightarrow x = -2, 4$ CASE II When -2 < x < 3In this case, we have $|x^2 - x - 6| = -(x^2 - x - 6)$ 6) $|x^2 - x - 6| = x + 2$ $\Rightarrow -(x^2 - x - 6) = x + 2$ $\Rightarrow x^2 - 4 = 0$ $\Rightarrow x = \pm 2$ $\Rightarrow x = 2$ $[: 2 \in (-2, 3)]$ Hence, the roots are -2, 2, 4149 (d) We have, $\begin{vmatrix} 3 & 1 + S_1 & 1 + S_2 \\ 1 + S_1 & 1 + S_2 & 1 + S_3 \\ 1 + S_2 & 1 + S_3 & 1 + S_4 \end{vmatrix}$ $= \begin{vmatrix} 1 + 1 + 1 & 1 + \alpha + \beta & 1 + \alpha^2 + \beta^2 \\ 1 + \alpha + \beta & 1 + \alpha^2 + \beta^2 & 1 + \alpha^3 + \beta^3 \\ 1 + \alpha^2 + \beta^2 & 1 + \alpha^3 + \beta^3 & 1 + \alpha^4 + \beta^4 \end{vmatrix}$ $= \begin{vmatrix} 1 & 1 & 1 \\ 1 & \alpha & \beta \\ 1 & \alpha^{2} & \beta^{2} \end{vmatrix} \begin{vmatrix} 1 & 1 & 1 \\ 1 & \alpha & \beta \\ 1 & \alpha^{2} & \beta^{2} \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 \\ 1 & \alpha & \beta \\ 1 & \alpha^{2} & \beta^{2} \end{vmatrix}^{2}$ Now. $\begin{vmatrix} 1 & 1 & 1 \\ 1 & \alpha & \beta \\ 1 & \alpha^2 & \beta^2 \end{vmatrix}$ $= \begin{vmatrix} 1 & 1 & 1 \\ 0 & \alpha - 1 & \beta - 1 \\ 0 & \alpha^2 - 1 & \beta^2 - 1 \end{vmatrix} \qquad \begin{bmatrix} \text{Applying } R_2 \to R_2 - R_1 \\ R_3 \to R_3 - R_1 \end{bmatrix}$ $= (\alpha - 1)(\beta^2 - 1) - (\beta - 1)(\alpha^2 - 1)$ $= \alpha \beta^2 - \alpha - \beta^2 - \alpha^2 \beta + \beta + \alpha^2$ $= (\alpha^2 - \beta^2) - (\alpha - \beta) - \alpha\beta(\alpha - \beta)$ $= (\alpha - \beta)[\alpha + \beta - 1 - \alpha\beta]$ $= \sqrt{(\alpha + \beta)^2 - 4 \alpha \beta} \{ \alpha + \beta - 1 - \alpha \beta \}$ $= \left| \frac{b^2 - 4ac}{a^2} \left\{ -\frac{b}{a} - 1 - \frac{c}{a} \right\} \right|$ $= -\sqrt{\frac{b^2 - 4ac}{a^2}} \left(\frac{a + b + c}{a}\right)$ Hence, $\begin{vmatrix} 3 & 1 + S_1 & 1 + S_2 \\ 1 + S_1 & 1 + S_2 & 1 + S_3 \\ 1 + S_2 & 1 + S_3 & 1 + S_4 \end{vmatrix}$ $=\left\{-\sqrt{\frac{b^2-4ac}{a^2}}\left(\frac{a+b+c}{a}\right)\right\}^2$

 $=\frac{(b^2-4ac)(a+b+c)^2}{a^4}$

150 (d) We have, $z_k = e^{\frac{i2\pi k}{n}}, \qquad k = 0, 1, 2, \dots, n-1$ $\therefore |z_k| = \left| e^{\frac{i2\pi k}{n}} \right| = 1 \quad \text{for all} = 0, 1, 2, \dots n-1$ $\Rightarrow |z_k| = |z_{k+1}|$ for all k = 0, 1, 2, ..., n-1151 (a) Here, $\alpha + \beta = 1 + n^2$ and $\alpha \beta = \frac{1 + n^2 + n^4}{2}$ Now, $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$ $= (1 + n^2)^2 - (1 + n^2 + n^4) = n^2$ 152 **(b)** Since, 4 is a root of $x^2 + ax + 12 = 0$ $\therefore 16 + 4a + 12 = 0 \Rightarrow a = -7$ Let the roots of the equation $x^2 + ax + b = 0$ be α and α $\therefore 2\alpha = -a$ $\Rightarrow \alpha = \frac{7}{2}$ And α . $\alpha = b$ $\Rightarrow \left(\frac{7}{2}\right)^2 = b$ $\Rightarrow b = \frac{49}{4}$ 153 (d) $\log_{140} 63 = \log_{2^2 \times 5 \times 7} (3 \times 3 \times 7)$ $=\frac{\log_2(3\times3\times7)}{\log_2(2^2\times5\times7)}$ $=\frac{2\log_2 3 + \log_2 7}{2\log_2 2 + \log_2 5 + \log_2 7}$ $=\frac{2a+\frac{1}{c}}{2+b+\frac{1}{c}}=\frac{2ac+1}{2c+bc+1}$ 154 (d) We have, $(1-i)^n = 2^n$ $\Rightarrow |1 - i|^n = |2|^n$ $\Rightarrow \left(\sqrt{2}\right)^n = 2^n \Rightarrow 2^{n/2} = 2^n \Rightarrow 2^{n/2} = 1 \Rightarrow n = 0$ So, there is no non-zero integral solution of the given equation 155 (a) We have the following cases: <u>CASE I</u> When x < 0In this case, we have Sgn x = -1 $\therefore x^2 - 5x - (Sgn x)6 = 0$ $\Rightarrow x^2 - 5x + 6 = 0 \Rightarrow x = 2.3$ But, x < 0. So, the equation has no solution in this case. <u>CASE II</u> When x > 0In this case, we have Sgn x = 1 $\therefore x^2 - 5x - (Sgn x)6 = 0$

 $\Rightarrow x^2 - 5x - 6 = 0$ $\Rightarrow (x-6)(x+1) = 0 \Rightarrow x = -1, 6 \Rightarrow x$ = 6 [:: x > 0]Hence, the given equation has only one solution 156 (a) We have, $z^n = (1+z)^n$ $\Rightarrow |z^n| = |(1+z)^n|$ $\Rightarrow |z|^n = |1+z|^n$ $\Rightarrow |z| = |1 + z|$ $\Rightarrow |z - 0| = ||z - (-1)|$ \Rightarrow *z* lies on the perpendicular bisector of the segment joing (0,0) and (0,-1) $\Rightarrow z = -\frac{1}{2} \Rightarrow \operatorname{Re}(z) < 0$ 157 (a) Given, $(1 + \omega)(1 + \omega^2)(1 + \omega^4)(1 + \omega^8)$ $= (1+\omega)(-\omega)(1+\omega)(1+\omega^2)$ $[\because 1 + \omega + \omega^2 = 0 \text{ and } \omega^4 = \omega]$ $= (1 + \omega)^2 (-\omega - \omega^3)$ $= (1 + \omega^2 + 2\omega)(-\omega - 1)$ $= (\omega)(\omega^2) = 1$ 158 (d) We have, $\begin{vmatrix} -3i & 1\\ 3i & -1\\ 3 & i \end{vmatrix} = \begin{vmatrix} 6i & 0 & 1\\ 4 & 0 & -1\\ 20 & 0 & i \end{vmatrix}$ Applying C_2 |6i –3i 4 20 $\rightarrow C_2 + 3i C_2$ = 0 = 0 + 0i $\therefore x = 0, y = 0$ 159 (c) Since z_1, z_2, z_3 are vertices of an equilateral triangle $\therefore z_1^2 + z_2^2 + z_3^2 = z_1 z_2 + z_2 z_3 + z_3 z_1$ $\Rightarrow (z_1 + z_2 + z_3)^2 = 3(z_1^2 + z_2^2 + z_3^2)$ $\Rightarrow (3 z_0)^2 = 3(z_1^2 + z_2^2 + z_3^2) \quad \left[::\frac{z_1 + z_2 + z_3}{3}\right]$ $= z_0$ $\Rightarrow z_1^2 + z_2^2 + z_3^2 = 3 z_0^2$ 160 **(b)** As we know, $ax^2 + bx + c > 0$ for all $x \in R$, iff a > a0 and D < 0 $\therefore x^{2} + 2ax + (10 - 3a) > 0, \forall x \in R$ $\Rightarrow D < 0$ $\Rightarrow 4a^2 - 4(10 - 3a) < 0$ $\Rightarrow 4(a^2 + 3a - 10) < 0$ $\Rightarrow (a+5)(a-2) < 0$ Using number line rule + - +

 $a \in (-5, 2)$ 161 **(b)** Given that α_1, α_2 are the roots of the equation $ax^2 + bx + c = 0$, then $\alpha_1 + \alpha_2 = -\frac{b}{a}$ and $\alpha_1 \alpha_2 = \frac{c}{a}$...(i) Now, β_1, β_2 are the roots of $px^2 + qx + r = 0$, then $\beta_1 + \beta_2 = -\frac{q}{n}$ and $\beta_1 \beta_2 = \frac{r}{n}$...(ii) Given system is $\alpha_1 y + \alpha_2 z = 0$ and $\beta_1 y + \beta_2 z =$ 0. $\Rightarrow \frac{\alpha_1}{\beta_1} = \frac{\alpha_2}{\beta_1}$ Now, $\frac{\alpha_{1\alpha_2}}{\beta_1\beta_2} = \frac{\frac{c}{a}}{\frac{r}{n}}$ $\Rightarrow \frac{\alpha_1}{\beta_1} \cdot \frac{\alpha_2}{\beta_2} = \frac{cp}{ar}^p$...(iii) Since, $\frac{\alpha_1}{\beta_1} = \frac{\alpha_2}{\beta_2} \Rightarrow \frac{\alpha_1}{\alpha_2} = \frac{\beta_1}{\beta_2} \Rightarrow \frac{\alpha_1^2}{\alpha_2^2} = \frac{\beta_1^2}{\beta_2^2}$ $\Rightarrow \frac{\alpha_1^2 + \alpha_2^2}{\alpha_2^2} = \frac{\beta_1^2 + \beta_2^2}{\beta_2^2}$ (on adding 1 on both sides) $\Rightarrow \frac{\alpha_2^2}{\beta_2^2} = \frac{\alpha_1^2 + \alpha_2^2}{\beta_1^2 + \beta_2^2}$ $=\frac{(\alpha_{1}+\alpha_{2})^{2}-2\alpha_{1}\alpha_{2}}{(\beta_{1}+\beta_{2})^{2}-2\beta_{1}\beta_{2}}$ On substituting the values from Eqs. (i), (ii) and (iii), we get $\frac{cp}{ar} = \frac{\frac{b^2}{a^2} - 2\left(\frac{c}{a}\right)}{\frac{q^2}{n^2} - 2\left(\frac{r}{n}\right)} = \frac{(b^2 - 2ac)p^2}{(q^2 - 2pr)a^2}$ $\Rightarrow \frac{c}{r} = \frac{pb^2 - 2acp}{a^2a - 2apr}$ $\Rightarrow b^2 rp - 2acpr = q^2 ac - pr 2ac$ $\Rightarrow b^2 pr = q^2 ac$ 162 **(b)** $(1-\omega+\omega^2)(1-\omega^2+\omega^3.\omega)$ $(1 - \omega^3, \omega + \omega^6, \omega^2)(1 - \omega^6, \omega^2 + \omega^{15}, \omega)$... upto 2n $=(1\omega+\omega^2)(1-\omega^2+\omega)$ $(1 - \omega + \omega^2)(1 - \omega^2 + \omega)$... upto 2n $= [(-2\omega)(-2\omega^2)] \times [(-2\omega)(-2\omega^2)] \times \dots$ up to 2n $= (2^2 \omega^3) \times (2^2 \omega^3) \times \dots$ upto *n* $= [2^2 \times 2^2 \times 2^2 \times ...$ upto n $] = 2^{2n}$ 163 (d) Given, α and β are different complex numbers and $|\beta| = 1$ $\left|\frac{\beta-\alpha}{1-\bar{\alpha}\beta}\right| = \frac{|\beta-\alpha|}{|\beta\bar{\beta}-\bar{\alpha}\beta|} = \frac{|\beta-\alpha|}{|\beta||\bar{\beta}-\bar{\alpha}|} = 1$ ÷ 164 (d) $\frac{\log_{c+b} a + \log_{c-a} a}{2\log_{c+b} a \cdot \log_{c-b} a}$

169 **(b)**

= 128 [:: $\omega^3 = 1$]

(b) We have, $|z + 4| \le 3 \Rightarrow -3 \le z + 4 \le 3$ $\Rightarrow -6 \le z + 1 \le 0 \Rightarrow 0 \le -(z + 1) \le 6$ $\Rightarrow 0 \le |z + 1| \le 6$ Hence, greatest and least values of |z + 1| are 6 and 0 respectively

170 (a)

Let P(z) be any point on the circle OP = OP'' $\Rightarrow |z| = |z_1|$ $\Rightarrow |z|^2 = |z_1|^2 \Rightarrow z\overline{z} = z_1 \overline{z_1} \Rightarrow \frac{z}{z_1} = \frac{\overline{z_1}}{z}$

171 (c)

It is given that x + 1 be a factor of f(x) given by $f(x) = x^{4} + (p - 3)x^{3} - (3p - 5)x^{2} + (2p - 9)x$ + 6 $\therefore f(-1) = 0$ $\Rightarrow 1 - p + 3 - 3p + 5 - 2p + 9 + 6 = 0$ $\Rightarrow 6p = 24 \Rightarrow p = 4$ 172 (a) Let $\alpha \in A \cap B$. Then, $\alpha \in A \cap B$ $\Rightarrow \alpha \in A$ and $\alpha \in B$ $\Rightarrow f(\alpha) = 0$ and $g(\alpha) = 0$ $\Rightarrow [f(\alpha)]^{2} + [g(\alpha)]^{2} = 0$

$$\Rightarrow \alpha \text{ is a root of } [f(x)]^2 + [g(x)]^2 = 0$$

173 **(d)**

Here,
$$\alpha + \beta = -p \text{ and } \alpha\beta = q$$

Now, $(\alpha + \beta)x - \frac{\alpha^2 + \beta^2}{2}x^2 + \frac{\alpha^3 + \beta^3}{3}x^3 - \cdots$
 $= \left(\alpha x - \frac{\alpha^2 x^2}{2} + \frac{\alpha^3 x^3}{3} - \cdots\right)$
 $+ \left(\beta x - \frac{\beta^2 x^2}{2} + \frac{\beta^3 x^3}{3} - \cdots\right)$
 $= \log(1 + \alpha x) + \log(1 + \beta x)$
 $= \log\{1 + (\alpha + \beta)x + \alpha\beta x^2\}$
 $= \log(1 - px + qx^2)$
174 (a)

We have, $|z - 5i| \le 1$

$$\int_{0}^{1} \int_{0}^{1} \int_{0$$

So, f(x) does not have distinct roots between 0

and 1 for any value of a 179 (c) It is given that α , β are the roots of the equation $375x^2 - 25x - 2 = 0$ $\therefore \alpha + \beta = \frac{1}{15} \text{ and } \alpha \beta = \frac{-2}{375}$ $\therefore \lim_{n \to \infty} \sum^n S_r = \lim_{n \to \infty} \sum^n (\alpha^r + \beta^r)$ $\Rightarrow \lim_{n \to \infty} \sum_{r=1}^{\infty} S_r = (\alpha + \alpha^2 + \alpha^3 + \dots \infty) + (\beta + \beta^2)$ $+\beta^3 + \cdots \infty$) $\Rightarrow \lim_{n \to \infty} \sum_{r=1}^{\infty} S_r = \frac{\alpha}{1-\alpha} + \frac{\beta}{1-\beta} \quad [\because |\alpha| < 1, |\beta|]$ < 11 $\Rightarrow \lim_{n \to \infty} \sum_{r=1}^{n} S_r = \frac{\alpha + \beta - 2 \alpha \beta}{1 - (\alpha + \beta) + \alpha \beta} = \frac{\frac{1}{15} + \frac{1}{375}}{1 - \frac{1}{12} - \frac{2}{12}}$ $=\frac{29}{348}$ 180 (d) We have, $y = \tan x \cot 3x$ $\Rightarrow y = \frac{1}{\tan 3x}$ $\Rightarrow y = \frac{\tan x (1 - 3 \tan^2 x)}{2}$

$$3 \tan x - \tan^3 x$$

$$\Rightarrow y = \frac{1 - 3 \tan^2 x}{3 - \tan^2 x}$$

$$\Rightarrow \tan^2 x = \frac{3y - 1}{y - 3}$$

$$\Rightarrow \frac{3y - 1}{y - 3} \ge 0 \qquad [\because \tan^2 x \ge 0]$$

$$\Rightarrow y \le \frac{1}{3} \text{ or } y > 3$$

181 (c)

Let α , β be the roots of the equation 2x(2x + 1) = 1. Then, $\alpha + \beta = -\frac{1}{2}$ and $\alpha \beta = -\frac{1}{2}$

$$\alpha + \beta = \frac{1}{2} \text{ and } \alpha \beta = \frac{4}{4}$$

$$\Rightarrow 4\alpha^{2} + 2\alpha - 1 = 0 \qquad \dots(i)$$
Again,

$$\alpha + \beta = -\frac{1}{2}$$

$$\Rightarrow \beta = -\frac{1}{2} - \alpha$$

$$\Rightarrow \beta = -\frac{1 + 2\alpha}{2}$$

$$\Rightarrow \beta = -\frac{4\alpha^{2} + 2\alpha + 2\alpha}{2} \qquad \text{[Using (i)]}$$

$$\Rightarrow \beta = -2\alpha (\alpha + 1)$$

$$\Rightarrow \beta = -2\alpha^{2} - 2\alpha$$

 $\Rightarrow \beta = -2 \alpha \times \alpha - 2 \alpha$ $\Rightarrow \beta = \alpha (4 \alpha^2 - 1) - 2 \alpha$ [Using (i)] $\Rightarrow \beta = 4 \alpha^3 - 3 \alpha$ 182 (a) Let two consecutive integers *n* and (n + 1) be the roots of $x^{2} - bx + c = 0$. Then, n + (n + 1) = band n(n+1) = c: $b^2 - 4c = (2n+1)^2 - 4n(n+1) = 1$ 183 **(b)** Given, $a^x = b^y = c^z = m(say)$ $\Rightarrow x = \log_a m, y = \log_b m, z = \log_c m$ Again as, *x*, *y*, *z* are in GP, so $\frac{y}{x} = \frac{z}{v}$ $\Rightarrow \frac{\log_b m}{\log_a m} = \frac{\log_c m}{\log_b m}$ $\Rightarrow \frac{\log_m a}{\log_m b} = \frac{\log_m b}{\log_m c}$ $\Rightarrow \log_{h} a = \log_{c} b$ 184 (b) Let $O, A(z_1)$ and $B(z_2)$ be the vertices of the triangle. The triangle is an equilateral triangle $\therefore z_2 = z_1 \, e^{\pm i \pi/3}$ $\Rightarrow 1 + i b = (a + i)(\cos \pi/3 \pm \sin \pi/3)$ $\Rightarrow 1 + ib = (a + i)(1/2 \pm i\sqrt{3}/2)$ $\Rightarrow 1 + i b = \left(\frac{a}{2} \pm \frac{\sqrt{3}}{2}\right) + i \left(\frac{1}{2} \pm a \frac{\sqrt{3}}{2}\right)$ $\Rightarrow \frac{a}{2} \pm \frac{\sqrt{3}}{2} = 1 \text{ and } b = \frac{1}{2} \pm \frac{1}{2}a\sqrt{3}$ \Rightarrow $(a = 2 - \sqrt{3} \text{ or } a = 2 + \sqrt{3}) \text{ and } b = \frac{1}{2} \pm \frac{a}{2}\sqrt{3}$ $\Rightarrow a = 2 - \sqrt{3}$ and $b = 2 - \sqrt{3}$ [:: 0 < a, b < 1] 185 (d) We have, $\sum_{n=1}^{\infty} (-1)^{r} {}^{n}C_{r}\{i^{5r}+i^{6r}+i^{7r}+i^{8r}\}$ $= \sum (-1)^{r \ n} \mathcal{C}_r \{ i^r + i^{2r} + i^{3r} + 1 \}$ $=\sum_{i=1}^{n}(-1)^{r} {}^{n}C_{r} i^{r} + \sum_{i=1}^{n}(-1)^{r} {}^{n}C_{r}(i^{2})^{r}$ $+\sum_{r=0}^{\infty}(-1)^{r} C_{r}(i^{3})^{r}$ $+\sum_{r=1}^{n}(-1)^{r-n}C_r$ $= (1-i)^n + (1-i^2)^n + (1-i^3)^n + (1-1)^n$ $= (1-i)^n + 2^n + (1+i)^n$

$$= 2^{n} + 2^{n/2} \left\{ \cos \frac{\pi}{4} - i \sin \frac{\pi}{4} \right\}^{n} + 2^{n/2} \left\{ \cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right\}^{n}$$
$$= 2^{n} + 2^{n/2+1} \cos \frac{n \pi}{4}$$

186 **(c)**

Since, $b = \frac{a+c}{2}$...(i) Now, discriminant, $D = B^2 - 4AC$ $= 4b^2 - 4ac$ $= 4\left(\frac{a+c}{2}\right)^2 - 4ac$ [from Eq. (i)] $= (a-c)^2 \ge 0$ \therefore Roots of the given equation are rational and distinct

187 **(a)**

We have, $\log_{1/2}|z - 2| > \log_{1/2}|z|$ $\Rightarrow |z - 2| < |z|$ $\Rightarrow z$ lies on the right side of the perpendicular bisector of the segment joining (0, 0) and (2, 0) $\Rightarrow \operatorname{Re}(z) > 1$

189 **(d)**

Since, $x^2 - 3|x| + 2 = 0$ $\Rightarrow (|x| - 2)(|x| - 1) = 0$ $\Rightarrow |x| = 2 \text{ or } |x| = 1$ $\Rightarrow x = \pm 2 \text{ or } x = \pm 1$ \therefore The given equation has four real roots

190 **(d)**

Let 4 and α be roots of given equation $\therefore 4\alpha = 12 \implies \alpha = 3$ And $4 + 3 = -p \implies p = -7$ \therefore Equation $x^2 + px + q = 0$ will reduce to $x^2 - 7x + q = 0$ Let this equation have β, β as its roots $\therefore 2\beta = 7 \implies \beta = \frac{7}{2}$ and $\beta^2 = q$ $\implies q = \left(\frac{7}{2}\right)^2 = \frac{49}{4}$ (b)

191 **(b)**

 $[x]^{2} - [x] - 2 = 0$ $\Rightarrow ([x] - 2)([x] + 1) = 0$ $\Rightarrow [x] = 2, -1$ $\Rightarrow x \in [-1, 0] \cup [2, 0]$ 192 (d) We have, $\alpha + \beta = -b/a \text{ and } \alpha \beta = c/a$ Now, Sum of the roots = $2 + \alpha + 2 + \beta = 4 + (\alpha + \beta) = 4 - b/a$ Product of the roots = $(2 + \alpha)(2 + \beta)$ $= 4 + \alpha \beta + 2(\alpha + \beta)$

 $= 4 + \frac{c}{a} - \frac{2b}{a} = \frac{4a + c - 2b}{a}$ Hence, required equation is $x^{2} - x\left(4 - \frac{b}{a}\right) + \frac{4a + c - 2b}{a} = 0$ or, $ax^2 + (b - 4a)x + 4a - 2b + c = 0$ ALITER Required equation can be obtained by replacing x by x + 2 in the given equation 193 (c) Given, $\tan \alpha + \tan \beta + \tan \gamma = \tan \alpha \tan \beta \tan \gamma$...(i) $\therefore \tan(\alpha + \beta + \gamma)$ $=\frac{\tan\alpha+\tan\beta+\tan\gamma-\tan\alpha\tan\beta\tan\gamma}{1-\tan\alpha\tan\beta-\tan\beta-\tan\gamma-\tan\gamma\tan\alpha}$ $\Rightarrow \tan(\alpha + \beta + \gamma)$ $=\frac{0}{1-\tan\alpha\tan\beta-\tan\beta\tan\gamma-\tan\gamma\tan\alpha}$ [From Eq. (i)] $\Rightarrow \tan(\alpha + \beta + \gamma) = 0$ $\Rightarrow \alpha + \beta + \gamma = 0^{\circ} \text{ or } \pi$ $\therefore xyz = (\cos \alpha + i \sin \alpha)(\cos \beta + i \sin \beta)(\cos \gamma)$ $+i\sin\gamma$) $= \cos(\alpha + \beta + \gamma) + i\sin(\alpha + \beta + \gamma)$ $= \cos 0^\circ + i \sin 0^\circ = 1$ or $xyz = \cos \pi + i \sin \pi = -1$ 194 (c) We have, $\arg(z_1 \, z_2) = 0$ $\Rightarrow \arg(z_1) + \arg(z_2) = 0$ $\Rightarrow \arg(z_1) = -\arg(z_2)$ $\Rightarrow \arg(z_1) = \arg(\overline{z_2})$ Since, $|z_1| = |z_2| = 1$. Therefore, $|z_1| = |\bar{z}_2| = 1$ Hence, $z_1 = \bar{z}_2$ 195 (c) Let α be a common root of the two equations. Then. $2\alpha^2 - 7\alpha + 1 = 0$ $a \alpha^2 + b \alpha + 2 = 0$ $\Rightarrow \frac{\alpha^2}{-14-b} = \frac{\alpha}{a-4} = \frac{1}{2b+7a}$ $\Rightarrow \frac{a-4}{2b+7a} = \frac{b+14}{4-a}$ $\Rightarrow (7a + 2b)(b + 14) + (a - 4)^2 = 0$ Clearly, a = 4, b = -14 satisfy this equation 196 (b) We know that ω and ω^2 are roots of $x^2 + x + 1 =$ 0. Therefore, $x^{3m} + 3^{3n+1} + x^{3k+2}$ will be exactly divisible by $x^2 + x + 1$, if ω and ω^2 are its roots For $x = \omega$, we have $x^{3m} + x^{3n+1} + x^{3k+2} = \omega^{3m} + \omega^{3n+1} + \omega^{3k+2} =$ $1 + \omega + \omega^2 = 0$ provided that *m*, *n*, *k* are integers Similarly, $x = \omega^2$ will be a root of $x^{3m} + x^{3n+1} +$

1

197 (d)

$$\log_{10} \left(\frac{a + 10b + 10^{2}c}{10^{-4}a + 10^{-3}b + 10^{-2}c} \right)$$

$$= \log_{10} \left(\frac{a + 10b + 10^{2}c}{\frac{1}{10^{4}}(a + 10b + 10^{2}c)} \right)$$

$$= \log_{10} 10^{4} = 4$$
198 (a)
Since, tan 30° and tan 15° are the roots of
equation
 $x^{2} + px + q = 0$
 \therefore tan 30° + tan 15° = $-p$
And tan 30° tan 15° = q
Now, $2 + q - p = 2 + \tan 30^{\circ} + \tan 15^{\circ} + \tan 30^{\circ} + \tan 15^{\circ} = 2 + \tan 30^{\circ} + \tan 15^{\circ} + 1 - \tan 30^{\circ} \tan 15^{\circ}$
 $= 2 + \tan 30^{\circ} + \tan 15^{\circ} + 1 - \tan 30^{\circ} \tan 15^{\circ}$
 $\left(\because \tan 45^{\circ} = \frac{\tan 30^{\circ} + \tan 15^{\circ}}{1 - \tan 30^{\circ} \tan 15^{\circ}}\right)$
 $\Rightarrow 2 + q - p = 3$
199 (d)
Given, $z^{1/3} = p + iq$
 $\Rightarrow (x - iy) = (p + iq)^{3}$ [put $z = x - iy$]
 $\Rightarrow (x - iy) = (p^{3} - 3pq^{2}) + i(3p^{2}q - q^{3})$
 $\Rightarrow x = (p^{3} - 3pq^{2}) \text{ and } -y = 3p^{2}q - q^{3}$
 $\Rightarrow \frac{x}{p} = (p^{2} - 3q^{2}) \text{ and } \frac{y}{q} = (q^{2} - 3p^{2})$
 $\therefore \frac{x}{p} + \frac{y}{q} = -2p^{2} - 2q^{2}$
 $\Rightarrow \frac{\frac{x}{p} + \frac{y}{q}}{(p^{2} + q^{2})} = -2$
200 (c)
Here, sec α + cosec $\alpha = p$ and sec α . cosec $\alpha = q$

 $\Rightarrow \frac{\sin \alpha + \cos \alpha}{\sin \alpha \cos \alpha} = p \text{ and } \sin \alpha \cos \alpha = \frac{1}{q}$ $\Rightarrow (\sin \alpha + \cos \alpha)^2 = \left(\frac{p}{q}\right)^2$ $\Rightarrow \sin^2 \alpha + \cos^2 \alpha + 2\sin \alpha \cos \alpha = \frac{p^2}{\alpha^2}$ $\Rightarrow q^2 \left(1 + \frac{2}{q}\right) = p^2$ $\Rightarrow q(q+2) = p^2$ 201 (a) $\left(x+\frac{1}{r}\right)^3 + \left(x+\frac{1}{r}\right) = 0$ $\Rightarrow \left(x + \frac{1}{x}\right) \left[\left(x + \frac{1}{x}\right)^2 + 1 \right] = 0$ $\Rightarrow x + \frac{1}{x} = 0$

 $\Rightarrow x^2 = -1$ which is not possible Hence, no real roots exist

iy]

Let *D* be the discriminant of the given quadratic. Then,

$$D = 9b^{2} - 32 ac$$

$$\Rightarrow D = 9(-a-c)^{2} - 32ac \quad [\because a+b+c=0]$$

$$\Rightarrow D = 9a^{2} + 9c^{2} - 14ac$$

$$\Rightarrow D = c^{2} \left\{ 9\left(\frac{a}{c}\right)^{2} - 14\left(\frac{a}{c}\right) + 9 \right\}$$

$$= c^{2} \left\{ \left(\frac{3a}{c} - \frac{7}{3}\right)^{2} + \frac{32}{9} \right\} > 0$$

Hence, the roots are real

203 (d) Let $\alpha = 1, \beta = -1, \gamma = i$ and $\delta = -i$. Then, $\frac{a \alpha + b \beta + c \gamma + d \delta}{a \gamma + b \delta + c \alpha + d \beta} + \frac{a \gamma + b \delta + c \alpha + d \beta}{a \alpha + b \beta + c \gamma + d \delta}$ $=\frac{a-b+i(c-d)}{(a-b)i+(c-d)}+\frac{(a-b)i+(c-d)}{a-b+i(c-d)}$ $=\frac{\{(a-b)+i(c-d)\}^2+\{(a-b)i+(c-d)\}^2}{i\{(a-b)+i(c-d)\}\{(a-b)-i(c-d)\}}$ $=\frac{4(a-b)(c-d)}{(a-b)^2+(c-d)^2}$ 204 (a) Given, $\log_5 \log_5 \log_2 x = 0$ $\Rightarrow \log_5 \log_2 x = 5^0 = 1$ $\Rightarrow \log_2 x = 5 \Rightarrow x = 2^5 \Rightarrow x = 32$ 205 (d) $\left(\frac{1}{1-2i}+\frac{3}{1+i}\right)\left(\frac{3+4i}{2-4i}\right)$ $= \left[\frac{1+2i}{1^2+2^2} + \frac{3-3i}{1^2+1^2}\right] \left[\frac{6-16+12i+8i}{2^2+4^2}\right]$ $= \left[\frac{2+4i+15-15i}{10}\right] \left[\frac{-1+2i}{2}\right]$ $=\frac{(17-11i)(-1+2i)}{20}$ $=\frac{5+45i}{20}=\frac{1}{4}+\frac{9}{4}i$ 206 (a) Let α , β be the roots of $x^2 + px + q = 0$ $\Rightarrow \alpha + \beta = -p, \alpha \beta = q$ α^4 , β^4 are roots of $x^2 - rx + s = 0$ $\Rightarrow \alpha^4 + \beta^4 = r, \alpha^4 \beta^4 = s$ Let *D* be the discriminant of $x^2 - 4 qx + 2 q^2 - 4 qx + 2 q^2$ r = 0. Then, $D = 8q^2 + 4r$ $\Rightarrow D = 8 \alpha^{2} \beta^{2} + 4(\alpha^{4} + \beta^{4}) = 4(\alpha^{2} + \beta^{2})^{2} > 0$ So, the given equation has real roots 207 (a) Let $y = \frac{x^2 - x + 1}{x^2 + x + 1}$

 $\Rightarrow x^{2}(y-1) + x(y+1) + 1(y-1) = 0$

Here,
$$D \ge 0$$
 as x is real
 $\therefore (y + 1)^2 - 4(y - 1)^2 \ge 0$
 $\Rightarrow y^2 + 2y + (1 - 4y^2 + 1 - 2y) \ge 0$
 $\Rightarrow -3y^2 - 10y + 3 \ge 0$
 $\Rightarrow 3y^2 - 10y + 3 \le 0$
 $\Rightarrow (3y - 1)(y - 3) \le 0$
 $\Rightarrow \frac{1}{3} \le y \le 3$
208 (b)
Now, $x - 1 = a_i \Rightarrow x = a_i + 1$ for new equation,
 $i = 1, 2, 3, 4$
209 (d)
 $d = \frac{a \cdot 0 + 0 \cdot \overline{a} + |a|^2}{2|a|} = \frac{|a|}{2}$
210 (a)
We have
 $1 = a(1 - 2x)(1 - 3x) + b(1 - x)(1 - 3x) + c(1 - x)(1 - 2x)$
On putting $x = \frac{1}{2}$ we get
 $1 = 0 + b\left(1 - \frac{1}{2}\right)\left(1 - \frac{3}{2}\right) + 0$
 $\Rightarrow 1 = b\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)$
 $\Rightarrow b = -4$
On putting $x = 1$, we get
 $1 = a(1 - 2)(1 - 3) + 0 + 0$
 $\Rightarrow 1 = a(-1)(-2) \Rightarrow a = \frac{1}{2}$
On putting $x = \frac{1}{3}$, we get
 $1 = 0 + 0 + c\left(1 - \frac{1}{3}\right)\left(1 - \frac{2}{3}\right)$
 $\Rightarrow 1 = c\left(\frac{2}{3}\right)\left(\frac{1}{3}\right) \Rightarrow c = \frac{9}{2}$
Now, $\frac{a}{1} + \frac{b}{3} + \frac{c}{5} = \frac{1}{2} + \frac{(-4)}{3} + \frac{9}{5.2} = \frac{15 - 40 + 27}{30} = \frac{1}{15}$
211 (a)
The given equation is
 $2(1 + i)x^2 - 4(2 - i)x - 5 - 3i = 0$
 $\Rightarrow x = \frac{4(2 - i) \pm \sqrt{16(2 - i)^2 + 8(1 + i)(5 + 3i)}}{4(1 + i)}$
 $= \frac{i}{1 + i}$ or $\frac{3 - 5i}{2}$
Now, $\left|\frac{-1 - i}{2}\right| = \sqrt{\frac{1}{4} + \frac{1}{4}} = \sqrt{\frac{1}{2}}$
Also, $\sqrt{\frac{17}{2}} > \sqrt{\frac{1}{2}}$
Hence, required root is $\frac{3 - 5i}{2}$.
212 (c)

Using triangle inequality, we have $|z - 2i| \ge |2i| - |z| \Rightarrow |z - 2i| + |z| \ge 2$ Hence, the minimum value of |z - 2i| + |z| is 2 214 (d) We have, $x^{\frac{3}{4}(\log_2 x)^2 + (\log_2 x) - \frac{5}{4}} = \sqrt{2}$ $\Rightarrow \frac{3}{4} (\log_2 x)^2 + \log_2 x - \frac{5}{4} = \log_x \sqrt{2}$ $\Rightarrow \frac{3}{4} (\log_2 x)^2 + \log_2 x - \frac{5}{4} = \frac{1}{2} \log_x 2 = \frac{1}{2} \times \frac{1}{\log_2 x}$ $\Rightarrow \frac{3}{4} (\log x)^3 + (\log_2 x)^2 - \frac{5}{4} (\log_2 x) = \frac{1}{2}$ $\Rightarrow 3(\log_2 x)^3 + 4(\log_2 x)^2 - 5(\log_2 x) - 2 = 0$ $\Rightarrow 3y^{3} + 4y^{2} - 5y - 2 = 0$, where $y = \log_{2} x$ $\Rightarrow (y-1)(3y+1)(y+2) = 0$ $\Rightarrow y = 1, -\frac{1}{3}, -2$ $\Rightarrow \log_2 x = 1, -\frac{1}{3}, -2 \Rightarrow x = \frac{2,1}{2^{1/3}}, \frac{1}{4}$ 215 (b) We have, $x^2 - 3x + 2 = 0 \implies (x - 1)(x - 1)(x - 1)$ 2 = 0 $\Rightarrow x = 1.2$ For $x = 1, x^4 - px^2 + q = 0 \implies 1 - p + q = 0$...(i) For x = 2, 16 - 4p + q = 0 ...(ii) On solving Eqs. (i) and (ii), we get p = 5, q = 4216 (d) Let α , β be roots of $x^2 + px + q = 0$ and a, b be roots of $x^2 + lx + m = 0$. Then, $\alpha + \beta = -p, \alpha \beta = q, a + b = -l \text{ and } ab = m$ Now, $\frac{\alpha}{\beta} = \frac{a}{b}$ [Given] $\Rightarrow \frac{\alpha + \beta}{\alpha - \beta} = \frac{a + b}{a - b}$ $\Rightarrow \frac{(\alpha+\beta)^2}{(\alpha-\beta)^2} = \frac{(a+b)^2}{(a-b)^2}$ $\Rightarrow \frac{p^2}{p^2 - 2q} = \frac{l^2}{l^2 - 2m} \Rightarrow p^2 m = l^2 q$ 217 (b) We have, $\sum x_1 = \sin 2\beta$, $\sum x_1 x_2 = \cos 2\beta$ $\sum x_1 x_2 x_3 = \cos \beta$ and $x_1 x_2 x_3 x_4 = -\sin \beta$ $\tan^{-1} x_1 + \tan^{-1} x_2 + \tan^{-1} x_3 + \tan^{-1} x_4$ $= \tan^{-1} \left(\frac{\sum x_1 - \sum x_1 x_2 x_3}{1 - \sum x_1 x_2 + x_1 x_2 x_3 x_4} \right)$ $= \tan^{-1} \left(\frac{\sin 2\beta - \cos \beta}{1 - \cos 2\beta - \sin \beta} \right)$ $= \tan^{-1}\left(\frac{(2\sin\beta - 1)\cos\beta}{\sin\beta(2\sin\beta - 1)}\right) = \tan^{-1}(\cot\beta)$

$$=\tan^{-1}\left[\tan\left(\frac{\pi}{2}-\beta\right)=\frac{\pi}{2}-\beta\right]$$

218 (a)

We have, $a(b-c)x^{2} + b(c-a)x + c(a-b) = 0$ Clearly, x = 1 is a root of this equation. It is given that the equation has equal roots. So, both the roots are equal to 1 \therefore Product of the roots = 1 $\Rightarrow \frac{c(a-b)}{a(b-c)} = 1$ $\Rightarrow 2ac = ab + bc \Rightarrow b = \frac{2ac}{a+c} \Rightarrow a, b, c \text{ are in H.P.}$ 219 (d) Let α , β be the roots of the equation x^2 – (a-2)x - (a+1) = 0. Then, $\alpha + \beta = a - 2$ and $\alpha \beta = -(a + 1)$ $\therefore \alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2 \alpha \beta$ $\Rightarrow \alpha^{2} + \beta^{2} = (a - 2)^{2} + 2(a + 1) = a^{2} - 2a + 6$ $= (a-1)^2 + 5$ Clearly, it is least when a = 1220 (c) We know that $x^3 + y^3 = (x + y)(x \omega + y \omega^2)(x \omega^2 + y \omega)$ $\therefore (a + b \,\omega + c \,\omega^2)^3 + (a + b \,\omega^2 + c \,\omega)^3$ $= (a + b \omega + c \omega^{2} + a + b \omega^{2} + c \omega) \times (a \omega)$ $+ b \omega^{2} + c + a \omega^{2} + b \omega^{4} + c \omega^{3}$ $\times (a \omega^2 + b \omega^3 + c \omega^4 + a \omega)$ $+ b \omega^{3} + c \omega^{2}$) = (2a - b - c)(2c - a - b)(2b - c - a)221 (c) We have, $log_2(x^2 - 4x + 5) = (x - 2) \Rightarrow x^2 - 4x + 5$ $= 2^{x-2}$ Clearly, x = 2 and 3 satisfy this equation 222 (c) Solving the given equation, we get x = 3/5 or, x = -4/5 $\Rightarrow x = -4/5 \qquad [\because -1 < x < 0]$ $\Rightarrow \cos \alpha = -4/5 \Rightarrow \sin \alpha = -24/25$ 223 (a) Since, α , β , γ are the roots of the equation $2x^3 - 3x^2 + 6x + 1 = 0$ Here, $\alpha + \beta + \gamma = \frac{3}{2}$...(i) $\alpha\beta + \beta\gamma + \gamma\alpha = 3$...(ii) And $\alpha\beta\gamma = -\frac{1}{2}$...(iii) On squaring Eq. (i), we get 9 2 . 02 . . 2 . 0(. 0 . 0 . .

$$\alpha^{2} + \beta^{2} + \gamma^{2} + 2(\alpha\beta + \beta\gamma + \gamma\alpha) = \frac{1}{4}$$

$$\Rightarrow \quad \alpha^{2} + \beta^{2} + \gamma^{2} = \frac{9}{4} - 2(3) = -\frac{15}{4} \quad \text{[from Eq.]}$$

(ii)] 224 (b) Here, a = 2, b = -3 and $c = \pm 1$ Clearly a + b + c = 0Therefore, z_1, z_2, z_3 are collinear points ALITER We have, $2z_1 - 3z_2 + z_3 = 0$ $\Rightarrow z_2 = \frac{2 z_1 + z_3}{2 + 1}$ \Rightarrow z_2 divides the segment joining z_1 and z_3 in the ratio 1:2 \Rightarrow z_1, z_2, z_3 are collinear 225 (b) Let the roots be α and 2 α . Then, $3 \alpha = -\frac{b}{a}$ and $2 \alpha^2 = \frac{c}{a}$ $\Rightarrow \alpha = -\frac{b}{3a} \text{ and } \alpha^2 = \frac{c}{2a} \Rightarrow \left(-\frac{b}{3a}\right)^2 = \frac{c}{2a} \Rightarrow 2b^2$ 226 (a) We have, $z = i + 2i^{i\left(\theta + \frac{\pi}{4}\right)} \Rightarrow |z - i| = 2$ \Rightarrow Locus of z is a circle 227 (b) Given, $\alpha^2 - 5\alpha + 3 = 0$ and $\beta^2 - 5\beta + 3 = 0$ $\Rightarrow \alpha = \frac{5 \pm \sqrt{13}}{2} \text{ and } \beta = \frac{5 \pm \sqrt{13}}{2}$ Since, $\alpha \neq \beta$ $\therefore \alpha = \frac{5+\sqrt{13}}{2}$ and $\beta = \frac{5-\sqrt{13}}{2}$ $\alpha = \frac{5 - \sqrt{13}}{2}$ and $\beta = \frac{5 + \sqrt{13}}{2}$ Now, $\alpha^2 + \beta^2 = \frac{50+26}{4} = 19$ And $\alpha\beta = \frac{1}{4}(25 - 13) = 3$ ∴ Required equation is $x^{2} - x\left(\frac{\alpha}{\beta} + \frac{\beta}{\alpha}\right) + \frac{\alpha\beta}{\alpha\beta} = 0$ $\Rightarrow x^2 - x \left(\frac{\alpha^2 + \beta^2}{\alpha \beta} \right) + 1 = 0$ $\Rightarrow 3x^2 - 19x + 3 = 0$ 228 (b) We have, $2 - 3x - 2x^2 \ge 0$ $\Rightarrow 2x^{2} + 3x - 2 \le 0 \Rightarrow (2x - 1)(x + 2) \le 0$ $\Rightarrow -2 \le x \le \frac{1}{2}$ 229 (c) Let D_1 and D_2 be discriminates of $ax^2 + bx + c =$ 0 and $-ax^2 + bx + c = 0$ respectively. Then,

 $D_1 = b^2 - 4ac, D_2 = b^2 + 4ac$

Now, $ac \neq 0 \Rightarrow$ either ac > 0 or ac < 0

If ac > 0, then $D_2 > 0$. Therefore, roots of $-ax^2 + bx + c = 0$ are real If ac < 0, then $D_1 > 0$. Therefore, roots of $ax^2 + bx + c = 0$ are real. Thus, f(x)g(x) has at least two real roots

230 **(c)**

 $|z + 4| \le 3$ represents the interior and boundary of the circle with centre at (-4, 0) and radius=3. As -1 is an end point of a diameter of the circle, maximum possible value of |z + 1| is 6

Alternate

 $|z + 1| = |z + 4 - 3| \le |z + 4| + |-3| \le 6$ Hence, maximum value of |z + 1| is 6

231 **(a)**

Given, $x = \sqrt{7} - \sqrt{5}$ and $y = \sqrt{13} - \sqrt{11}$ $\therefore \quad x = 2.64 - 2.23$ And y = 3.60 - 3.31 $\Rightarrow x = 0.41$ and y = 0.29 $\therefore x > y$

232 **(c)**

Since, α and β be the roots of the equation $ax^2 + bx + c = 0$, then $\alpha + \beta = -\frac{b}{a}$ and $\alpha\beta = \frac{c}{a}$ Now, sum of roots = $|\alpha| + |\beta|$ $= -\alpha - \beta$ ($\because \beta < \alpha < 0$) $= -\left(-\frac{b}{a}\right) = \left|\frac{b}{a}\right|$ ($\because |\alpha| + |\beta| > 0$) and product of roots = $|\alpha||\beta| = \left|\frac{b}{a}\right|$ Hence, required equation is

$$x^{2} - \left|\frac{b}{a}\right| x + \left|\frac{c}{a}\right| = 0$$

$$\Rightarrow |a|x^{2} - |b|x + |c| = 0$$

233 **(a)**

(a) Here, x = 4, y = -3Let $x = r \cos \theta$, $y = r \sin \theta = -3$ Now, $r = \sqrt{x^2 + y^2} = \sqrt{16 + 9} = 5$ and $\theta = \tan^{-1} \left(-\frac{3}{4}\right)$ now, let *R* and ϕ be the magnitude and angle of resultant complex number. \therefore According to question. R = 3r and $\phi = \pi + \theta$ $\Rightarrow \phi = \pi + \tan^{-1} \left(-\frac{3}{4}\right)$

 $=\pi - \tan^{-1}\left(\frac{3}{4}\right) = -\tan^{-1}\left(\frac{3}{4}\right)$ $\therefore \quad \cos \phi = -\frac{4}{5}, \quad \sin \phi = \frac{3}{5}$ $\therefore \phi$ lies in IInd quadrant] Hence, new complex number will be $R(\cos\phi + i\sin\phi) = 3.5\left(-\frac{4}{r} + i\frac{3}{r}\right)$ $=\frac{3.5}{5}(-4+3i)=-12+9i$ 234 (a) We have, $z = r e^{i \theta} = r(\cos \theta + i \sin \theta)$ $\Rightarrow i z = r(-\sin\theta + i\cos\theta)$ $\Rightarrow e^{iz} = e^{-r\sin\theta}e^{ir\cos\theta}$ $\Rightarrow |e^{iz}| = e^{-r\sin\theta} |e^{ir\cos\theta}| = e^{-r\sin\theta}$ 235 (d) Given equation is $|2x - 1|^2 - 3|2x - 1| + 2 = 0$ Let |2x - 1| = t $\therefore t^2 - 3t + 2 = 0$ $\Rightarrow (t-1)(t-2) = 0 \Rightarrow t = 1,2$ $\Rightarrow |2x - 1| = 1 \text{ and } |2x - 1| = 2$ $\Rightarrow 2x - 1 = \pm 1$ and $2x - 1 = \pm 2$ $\Rightarrow x = 1,0 \text{ and } x = \frac{3}{2}, -\frac{1}{2}$ 236 (a) We have, |3x + 2| < 1 $\Rightarrow \left| x + \frac{2}{3} \right| < \frac{1}{3} \Rightarrow -\frac{1}{3} < x + \frac{2}{3} < \frac{1}{3} \Rightarrow x$ $\in (-1, -1/3)$ 237 (b) Given, $C = \{z: z\overline{z} + a\overline{z} + \overline{a}z + b = 0, b \in R \text{ and }$ $b < |a|^2$ Since, $z\bar{z} + a\bar{z} + \bar{a}z + b = 0$, $b \in R$ represents circle having centre at – *a* and radius $\sqrt{|a|^2 - b}$ Then, *z* lies on the circle having infinite points Hence, C represents infinite sets 238 (c) Given, $\bar{z} = \bar{a} + \frac{r^2}{z-a}$, r > 0 $\Rightarrow \bar{z}(z-a) = \bar{a}(z-a) + r^2$ $\Rightarrow \quad z\bar{z} - a\bar{z} - \bar{a}z + a\bar{a} + r^2 = 0$ This represents the equation of a circle

239 (d)

$$\frac{a + b\omega + c\omega^{2}}{c + a\omega + b\omega^{2}} + \frac{c + a\omega + b\omega^{2}}{a + b\omega + c\omega^{2}} + \frac{b + c\omega + a\omega^{2}}{b + c\omega^{4} + a\omega^{5}}$$

$$= \frac{\omega^{2}(a + b\omega + c\omega^{2})}{(a + b\omega + c\omega^{2})} + \frac{\omega(a\omega + b\omega^{2} + c)}{(a\omega + b\omega^{2} + c)} + \frac{(b + c\omega + a\omega^{2})}{(b + c\omega + a\omega^{2})}$$

$$= \omega^{2} + \omega + 1 = 0$$
240 (d)
Here, $\alpha + \beta = 2$ and $\alpha\beta = \frac{5}{3}$
Now, $\alpha + \beta + \frac{2}{\alpha + \beta} = 2 + \frac{2}{2} = 3$
And $(\alpha + \beta) \times \frac{2}{\alpha + \beta} = 2$
 \therefore Required equation is
 $x^{2} - \left((\alpha + \beta) + \frac{2}{(\alpha + \beta)}\right)x + \left((\alpha + \beta) \times \frac{2}{(\alpha + \beta)}\right) = 0$
 $\Rightarrow x^{2} - 3x + 2 = 0$
241 (b)
It is given that the equations $ax^{2} + 2bx + c = 0$
and $bx^{2} - 2\sqrt{ac}x + b = 0$ have real roots
 $\therefore b^{2} \ge ac$ and $b^{2} \le ac \Rightarrow b^{2} = ac$
242 (c)
We have,
 $\left|\frac{3}{x} + 1\right| > 2$
 $\Rightarrow \frac{3}{x} < -3 \text{ or, } \frac{3}{x} > 1$
 $\Rightarrow \frac{1}{x} < -1 \text{ or, } \frac{3 - x}{x} > 0$
 $\Rightarrow x \in (-1,0) \text{ or, } x \in (0,3) \Rightarrow x \in (-1,0) \cup (0,3)$
243 (b)
We have,
 $|x^{2} + 4x + 3| + 2x + 5 = 0$
Here two cases arise.
Case I When $x^{2} + 4x + 3 > 0$
 $\Rightarrow x^{2} + 6x + 8 = 0$
 $\Rightarrow (x + 2)(x + 4) = 0$
 $\Rightarrow x = -2, -4$
 $x = -2$ is not satisfying the condition
 $x^{2} + 4x + 3 > 0.$ So $x = -4$ is the only solution of the given equation.
Case II When $x^{2} + 4x + 3 < 0$

 $\Rightarrow -x^2 - 2x + 2 = 0$ $\Rightarrow x^2 + 2x - 2 = 0$ $\Rightarrow (x+1+\sqrt{3})(x+1-\sqrt{3}) = 0$ $\Rightarrow x = -1 + \sqrt{3}, -1 - \sqrt{3}$ Hence, $x = -(1 + \sqrt{3})$ satisfy the given condition. Since, $x^2 + 4x + 3 < 0$ while $x = -1 + \sqrt{3}$ is not satisfying the condition. Thus, number of real solutions are two. 244 (b) We have, $\left|\frac{z-a}{z+\bar{a}}\right| = 1$ $\Rightarrow |z-a| = |z+\bar{a}| \Rightarrow |z+a|^2 = |z+\bar{a}|^2$ $\Rightarrow (z-a)(\overline{z-a}) = (z+\overline{a})(\overline{z+\overline{a}})$ $\Rightarrow (z-a)(\bar{z}-\bar{a}) = (z+\bar{a})(\bar{z}+a) \quad [\because (\bar{\bar{a}}) = a]$ $\Rightarrow z\bar{z} - z\bar{a} - a\bar{z} + a\bar{a} = z\bar{z} + za + \bar{a}\bar{z} + \bar{a}a$ $\Rightarrow za + z\overline{a} + \overline{a}\overline{z} + a\overline{z} = 0$ $\Rightarrow (a + \bar{a})(z + \bar{z}) = 0$ $\Rightarrow z + \overline{z} = 0$ [:: $a + \overline{a} = 2 \operatorname{Re}(a) \neq 0$] \Rightarrow 2Re (z) = 0 \Rightarrow 2x = 0 $\Rightarrow x = 0 \Rightarrow y$ -axis 245 (a) Let z = x + iy. Then, $z^2 = x^2 - y^2 + 2 ixy$ $\therefore \operatorname{Re}(z^2) = 0 \Rightarrow x^2 - y^2 = 0 \Rightarrow y = \pm x$ Thus, $\operatorname{Re}(z^2) = 0$ represents a pair of straight lines 246 (a) Given, $\frac{x+iy-5i}{x+iy+5i} = 1$ $\Rightarrow |x + iy - 5i| = |x + iy + 5i|$ $\Rightarrow x^{2} + (y - 5)^{2}$

+
$$(5 + y)^2$$
 [: $\left|\frac{z_1}{z_2}\right| = \frac{|z_1|}{|z_2|}$]

 \Rightarrow z = x ie, then z lies on the axis of x. 247 (a) Since $2 + i\sqrt{3}$ is a root of $x^2 + px + q = 0$. Therefore, $2 - i\sqrt{3}$ is also its root Now, Sum of the roots = -p $\Rightarrow (2 + i\sqrt{3}) + (2 - i\sqrt{3}) = -p \Rightarrow p = -4$ and, Product of the roots = $q \Rightarrow 7 = q$ 248 (c) We have, $\sqrt{3x^2 - 7x - 30} + \sqrt{2x^2 - 7x - 5} = x + 5$ $\Rightarrow \sqrt{3x^2 - 7x - 30} = (x + 5) - \sqrt{2x^2 - 7x - 5}$ On squaring both sides, we get $3x^2 - 7x - 30 = x^2 + 25 + 10x + (2x^2 - 7x - 5)$ $-2(x+5)\sqrt{2x^2-7x-5}$ $\Rightarrow \sqrt{2x^2 - 7x - 5} = 5$

 $\Rightarrow y = 0$

 $\Rightarrow \alpha^2 + (a-2) + \alpha(b-3) + c - 4 = 0$ Again on squaring both sides, we get $2x^2 - 7x - 30 = 0$ $\Rightarrow a - 2 = 0, b - 3 = 0 \text{ and } c - 4 = 0$ \Rightarrow *a* = 2, *b* = 3 and *c* = 4 $\Rightarrow x = 6$ 249 (d) $\therefore a + b + c = 2 + 3 + 4 = 9$ Given, $\sqrt{x + iy} = \pm (a + ib)$ 255 (c) We have, \Rightarrow $x + iy = a^2 - b^2 + 2iab$ $\frac{x+4}{x-3} \le 2$ $\Rightarrow x = a^2 - b^2, y = 2ab$ $\therefore \quad \sqrt{-x - iy} = \sqrt{-(a^2 - b^2) - 2iab}$ $\stackrel{+}{\longleftarrow} \stackrel{-}{\longrightarrow} \stackrel{+}{\longrightarrow} \stackrel{+}{\longrightarrow}$ $=\sqrt{b^2 - a^2 - 2iab} = +(b - ia)$ 250 (d) $\Rightarrow \frac{x+4-2x+6}{x-3} \le 0$ Let α , β are the roots of the equation $x^2 - ax + b = 0.$ $\Rightarrow -\frac{(x-10)}{x-3} \le 0 \Rightarrow \frac{x-10}{x-3} \ge 0 \Rightarrow x$ $\therefore \alpha + \beta = a$...(i) and $\alpha\beta = b$...(ii) $\in (-\infty, 3) \cup [10, \infty)$ Roots are prime numbers, so clearly *b* cannot be a 256 (b) prime number as it is product of two prime Given, $f(x) = x^2 - ax + b$ has imaginary roots numbers [from Eq. (ii)]. Sum of two prime : Discriminant, $D < 0 \Rightarrow a^2 - 4b < 0$ numbers is always an even number except in one Now, f'(x) = 2x + asituation when one prime number is 2. a' can be f''(x) = 2a prime number and can be composite number. Also, f(x) + f'(x) + f''(x) = 0...(i) Now, $1 + a + b = 1 + \alpha\beta + \alpha + \beta = (1 + \alpha)(1 + \alpha)$ $\Rightarrow x^2 + ax + b + 2x + a + 2 = 0$ β) $\Rightarrow \quad x^2 + (a+2)x + b + a + 2 = 0$ $(1 + \alpha)$, $(1 + \beta)$ can be prime numbers, can be $\therefore x = \frac{-(a+2) \pm \sqrt{(a+2)^2 - 4(a+b+2)}}{2}$ composite numbers, so 1 + a + b is not certain. So, option (d) is correct. $=\frac{-(a+2)\pm\sqrt{a^2-4b-4}}{2}$ 251 **(b)** Let $z_1 = x_1 + iy_1$ and $z_2 = x_2 + iy_2$ Since, $a^2 - 4b < 0$ $\therefore |z_1 + z_2|^2 + |z_1 - z_2|^2$ $a^2 - 4b - 4 < 0$ $= (x_1 + x_2)^2 + (y_1 + y_2)^2 + (x_1 - x_2)^2$ Hence, Eq. (i) has imaginary roots $+(y_1 - y_2)^2$ 257 (b) $= 2(x_1^2 + y_1^2 + x_2^2 + y_2^2)$ Let $x = 7^{-20}$ $= 2(|z_1|^2 + |z_2|^2)$ $\log_{10} x = -20 \log_{10} 7$ 252 (d) = -20(0.8451) = -16.902Given that, $f(x) = x^2 + 2bx + 2c^2$ Hence, the first significant figure is 17 and $g(x) = -x^2 - 2cx + b^2$ 258 (d) $\min f(x) = -\frac{D}{4a} = -\frac{4b^2 - 8c^2}{4}$ Let $z = r_1 e^{i\theta} \Rightarrow \bar{z} = r_1 e^{-i\theta}$ and $w = r_2 e^{i\phi}$ $= -(b^2 - 2c^2)$ (upward parabola) Given, |zw| = 1 $\Rightarrow \quad |r_1 e^{i\theta} \cdot r_2 e^{i\phi}| = 1 \quad \Rightarrow \quad r_1 r_2 = 1$ $\max g(x) = -\frac{D}{4a} = \frac{4c^2 + 4b^2}{4}$...(i) $= b^2 + c^2$ (downward parabola) And $\arg(z) - \arg(w) = \frac{\pi}{2} \implies \theta - \phi = \frac{\pi}{2}$ Now, $2c^2 - b^2 > b^2 + c^2$...(ii) $\Rightarrow c^2 > 2b^2 \Rightarrow |c| > |b|\sqrt{2}$ Now, $\bar{z}w = r_1 e^{-i\theta} \cdot r_2 e^{i\phi} = r_1 r_2 r^{-i(\theta-\phi)}$ 253 (b) $= 1.e^{-i\pi/2} = \cos{\frac{\pi}{2}} - i\sin{\frac{\pi}{2}}$ z = 0 is the only complex number which satisfies the given relations [from Eqs. (i) and (ii)] 254 (d) $\Rightarrow \bar{z}w = -i$ Let α be the common root of the given equations 259 (a) Then, $a\alpha^2 + b\alpha + c = 0$ Sum of roots = $\frac{-2}{a}$ And $2\alpha^2 + 3\alpha + 4 = 0$

And product of the roots = $\frac{3a}{a} = 3$ Given, $-\frac{2}{a} = 3 \Rightarrow a = -\frac{2}{3}$ 260 **(b)** Here, $\alpha + \beta + \gamma = -2$...(i) $\alpha\beta + \beta\gamma + \gamma\alpha = -3$...(ii) And $\alpha\beta\gamma = 1$...(iii) On squaring Eq. (ii), we get $\alpha^{2}\beta^{2} + \beta^{2}\gamma^{2} + \gamma^{2}\alpha^{2} + 2\alpha\beta\gamma(\alpha + \beta + \gamma) = 9$ $\Rightarrow \alpha^{2}\beta^{2} + \beta^{2}\gamma^{2} + \gamma^{2}\alpha^{2} = 9 - 2(1)(-2) = 13$ Now, $\alpha^{-2} + \beta^{-2} + \gamma^{-2} = \frac{\beta^2 \gamma^2 + \gamma^2 \alpha^2 + \alpha^2 \beta^2}{(\alpha R \gamma)^2} = \frac{13}{1} = \frac{13}{1}$ 13 261 (c) Given equation $x^2 + 2x + 2xy + my - 3 = 0$ can be rewritten as $x^2 + 2x(1 + y) + (my - 3) = 0$. But factors are rational so discriminant $b^2 - 4ac$ is a perfect square. Now, $b^2 - 4ac = 4\{(1 + y)^2 - (my - 3)\} \ge 0$ $\Rightarrow 4\{y^2 + 1 + 2y - my + 3\} \ge 0$ $\Rightarrow y^2 + 2y - my + 4 \ge 0$ Hence, $2y - my = \pm 4y$ (as it is perfect square). $\Rightarrow 2y - my = 4y$ $\Rightarrow m = -2$ Now, taking (-)ve sign, we get m = 6262 (d) Here, $\alpha + \beta = -\frac{b}{a}$ and $\alpha\beta = \frac{c}{a}$ But $\alpha\beta = 3 \Rightarrow c = 3a$ Also, $b = \frac{a+c}{2} \implies b = \frac{a+3a}{2} = 2a$ Hence, $\alpha + \beta = -\frac{2a}{\alpha} = -2$ 263 (a) Let α , β are the roots of the equation $x^2 + ax - ax = ax^2 + ax^2$ b = 0 $\therefore \alpha + \beta = -a, \alpha\beta = -b$ And γ , δ are the roots of the equation $x^2 - px + q = 0$ $\therefore \gamma + \delta = p, \gamma \delta = q$ Given, $\alpha - \beta = \gamma - \delta \Rightarrow (\alpha - \beta)^2 = (\alpha - \beta)^2$ $\Rightarrow (\alpha + \beta)^2 - 4\alpha\beta = (\gamma + \delta)^2 - 4\gamma\delta$ $\Rightarrow a^2 + 4b = p^2 - 4a$ $\Rightarrow a^2 - p^2 = -4(b+q)$ 264 (b) Multiplying the numerator and denominator by ω and ω^2 respectively of I and II expression, we get $\frac{\omega(a+b\omega+c\omega^2)}{b\omega+c\omega^2+a} + \frac{\omega^2(a+b\omega+c\omega^2)}{c\omega^2+a+b\omega}$ $= \omega + \omega^2 = -1$ $[\because 1 + \omega + \omega^2 = 0]$ 265 (c) Let $z - 1 = r(\cos \theta + i \sin \theta) = re^{i\theta}$ 271 (d)

 \therefore Given expression = $re^{i\theta} \cdot e^{-i\alpha} + \frac{1}{re^{i\theta}} \cdot e^{i\alpha}$ $= re^{i(\theta-\alpha)} + \frac{1}{\pi}e^{-i(\theta-\alpha)}$ Since, imaginary part of given expression is zero, we have $r\sin(\theta - \alpha) - \frac{1}{r}\sin(\theta - \alpha) = 0$ $r^2 - 1 = 0 \implies r^2 = 1$ $\Rightarrow r = 1$ $\Rightarrow |z-1| = 1$ or $sin(\theta - \alpha) = 0 \Rightarrow \theta - \alpha = 0$ $\Rightarrow \theta = \alpha$ $\Rightarrow \arg(z-1) = \alpha$ 266 (a) Given, $\left|\frac{1-iz}{z-i}\right| = 1$ $\Rightarrow \quad \left|\frac{1-i(x+iy)}{x+iy-i}\right| = 1 \quad \Rightarrow \quad \left|\frac{(1+y)-ix}{x+i(y-1)}\right|$ $\Rightarrow \sqrt{(1+y)^2 + x^2} = \sqrt{x^2 + (y-1)^2}$ \Rightarrow $(1+y)^2 + x^2 = x^2 + (y-1)^2$ $\Rightarrow v = 0$ \therefore Locus of z is x-axis 267 (c) We have, $p + q = -m, pq = m^2 + a$ $\therefore p^2 + pq + q^2 = (p+q)^2 - pq = m^2 - (m^2 + a)$ 268 **(b)** We have, $|x|^2 + |x| - 6 = 0$ $\Rightarrow (|x| + 3)(|x| - 2) = 0$ $\Rightarrow |x| = 2$ $[\because |x| + 3 \neq 0]$ $\Rightarrow x = \pm 2$ 269 (c) We have, $\frac{z_1}{z_2} + \frac{z_2}{z_1} = 1$ $\Rightarrow z_1^2 + z_2^2 = z_1 z_2$ $\Rightarrow z_1^2 + z_2^2 + z_3^2 = z_1 z_2 + z_1 z_3 + z_2 z_3$, where $z_3 = 0$ \Rightarrow z_1 , z_2 and the origin form an equilateral triangle 270 (c) We have, $(x - a + b)^{2} + (x - b + c)^{2} = 0$ $\Rightarrow x - a + b = 0$ and x - b + c = 0 $\Rightarrow x = a - b$ and x = b - c

 $\Rightarrow a - b = b - c \Rightarrow 2 b = a + c \Rightarrow a, b, c$ are in

A.P.

We have,

$$z = i \log(2 - \sqrt{3})$$

 $\Rightarrow e^{iz} = e^{i^2} \log(2 - \sqrt{3}) = e^{-\log(2 - \sqrt{3})}$
 $\Rightarrow e^{iz} = e^{\log(2 - \sqrt{3})^{-1}} = e^{\log(2 + \sqrt{3})} = (2 + \sqrt{3})$
 $\Rightarrow \cos z = \frac{e^{iz} + e^{-iz}}{2} = \frac{(2 + \sqrt{3}) + (2 - \sqrt{3})}{2} = 2$
272 (b)
Given, $x = 3 + i$...(i)
Now, $x^3 - 3x^2 - 8x + 15$
 $= (3 + i)^3 - 3(3 + i)^2 - 8(3 + i) + 15$
 $= (27 + i^3 + 27i + 9i^2) - 3(9 + i^2 + 6i) - 24$
 $- 8i + 15$
 $= -15$
273 (c)
If $z_{1,2}$ are complex numbers, then
 $|z_1 + z_2| \le |z_1| + |z_2|$ [by triangle inequality]
274 (a)
Since, roots are equal
 $\therefore (2\sqrt{6})^2 = 4.2.a$
 $\Rightarrow 24 = 8a$
 $\Rightarrow a = 3$
275 (d)
We have, $a = \cos(\frac{2\pi}{7}) + i \sin(\frac{2\pi}{7})$
 $\Rightarrow a^7 = \left[\cos(\frac{2\pi}{7}) + i \sin(\frac{2\pi}{7})\right]^{-7}$
 $= \cos 2\pi + i \sin 2\pi = 1$...(i)
Let $S = a + \beta = (a + a^2 + a^4) + (a^3 + a^5 + a^6)$
 $[\because a = a + a^2 + a^3 + a^4 + a^5 + a^6 = \frac{a(1 - a^6)}{1 - a}$
 $\Rightarrow S = \frac{a - a^7}{1 - a} = \frac{a - 1}{1 - a} - 1$...(ii)
Let $P = a\beta = (a + a^2 + a^4)(a^3 + a^5 + a^6)$
 $= a^4 + a^6 + a^7 + a^5 + a^7 + a^8 + a^7 + a^9 + a^{10}$
 $= a^4 + a^6 + 1 + a^5 + 1 + a + 1 + a^2 + a^3$ [from
Eq.(i)]
 $a + (a + a^2 + a^3 + a^4 + a^5 + a^6) = 3 + S$
 $a - 1 = 2$ [from Eq.(ii)]
Required equation is, $x^2 - Sx + P = 0$
 $\Rightarrow x^2 + x + 2 = 0$
276 (b)
Let $z_1 = r_1(\cos \theta_1 + i \sin \theta_1)$. Then,
 $|z_2| = |z_1| \Rightarrow |z_2| = r_1$
And, $\arg(z_1) + \arg(z_2) = 0 \Rightarrow \arg(z_2) = -\arg(z_1 - e^{-1})$
 $\therefore z_2 = r_1\{\cos(-\theta_1) + i \sin(\theta_1)\}$
 $= r_1(\cos \theta_1 - i \sin \theta_1) = \bar{z}_1$
 $\Rightarrow \bar{z}_2 = (\bar{z}_1) = z_1$
277 (a)

We have. $|z - (z - 1)| \le |z| + |z - 1| \Rightarrow 1 \le |z| + |z - 1|$ Hence, the minimum value of |z| + |z - 1| is 1 278 (b) Given, $z\bar{z} + a\bar{z} + \bar{a}z + b = 0$, $b \in R$ On adding $a\bar{a}$ on both sides in the given equation, we get $z\bar{z} + a\bar{z} + \bar{a}z + a\bar{a} + b = a\bar{a}$ \Rightarrow $(z-a)(\bar{z}+\bar{a}) = a\bar{a}-b$ $\Rightarrow |z+a|^2 = |a|^2 - b$ This equation will represent a circle, if $|a|^2 - b > 0 \Rightarrow |a|^2 > b$ 279 (a) We have, $|z - z_1| = |z - z_2| = |z - z_3| = |z - z_3|$ z_4 Therefore, the point having affix z is equidistant from the four points having affixes z_1, z_2, z_3, z_4 . Thus *z* is the affix of either the centre of a circle or the point of intersection of diagonals of a square (or rectangle). Therefore, z_1 , z_2 , z_3 , z_4 are either concyclic or vertices of a square (of rectangle). Hence, z_1, z_2, z_3, z_4 are concyclic 280 (a) Since, α , β and γ , δ are the roots of the equation $ax^{2} + 2bx + c = 0$ and $px^{2} + 2qx + r = 0$ respectively, then $\alpha + \beta = -\frac{2b}{a}, \alpha\beta = \frac{c}{a}, \gamma + \delta = -\frac{2q}{p}, \gamma\delta = \frac{r}{p}$ As given α , β , γ and δ are in GP, therefore $\frac{\alpha}{\gamma} = \frac{\beta}{\delta}$...(i) But $\frac{\alpha\beta}{\gamma\delta} = \frac{pc}{ar} \Rightarrow \left(\frac{\beta}{\delta}\right)^2 = \frac{pc}{ar}$ [from Eq. (i)] Also, $\frac{\alpha}{\beta} = \frac{\gamma}{\delta} \Rightarrow \frac{\alpha+\beta}{\beta} = \frac{\gamma+\delta}{\delta} \Rightarrow \frac{\alpha+\beta}{\nu+\delta} = \frac{\beta}{\delta}$ $\Rightarrow \frac{bp}{aa} = \sqrt{\frac{pc}{ar}} \Rightarrow \frac{b^2 p^2}{a^2 a^2} = \frac{pc}{ar} \Rightarrow q^2 ac = b^2 pr$ 281 (c) Given, $\alpha + \beta + \gamma = 2$, $\alpha^2 + \beta^2 + \gamma^2 = 6$, $\alpha^3 + \beta^3 + \gamma^2 = 8$ Now, $(\alpha + \beta + \gamma)^2 = 2^2$ $\Rightarrow \alpha^{2} + \beta^{2} + \gamma^{2} + 2(\alpha\beta + \beta\gamma + \gamma\alpha) = 4$ $\Rightarrow 2(\alpha\beta + \beta\gamma + \gamma\alpha) = 4 - 6 = -2$ Also, $\alpha^3 + \beta^3 + \gamma^3 - 3\alpha\beta\gamma$ $= (\alpha + \beta + \gamma)(\alpha^2 + \beta^2 + \gamma^2 - \alpha\beta - \beta\gamma - \gamma\alpha)$ $\Rightarrow 8 - 3\alpha\beta\gamma = 2[6 - (-1)]$ $\Rightarrow 8 - 3\alpha\beta\gamma = 14$ $\Rightarrow 3\alpha\beta\gamma = 8 - 14$ $\Rightarrow \alpha\beta\gamma = -2$ Now, $\alpha^4 + \beta^4 + \gamma^4 = (\alpha^2 + \beta^2 + \gamma^2)^2 - 2\sum \alpha^2 \beta^2$

 $= (\alpha^{2} + \beta^{2} + \gamma^{2})^{2} - 2\left[\left(\sum \beta \gamma\right)^{2} - 2\alpha\beta\gamma\sum \alpha\right]$

$$= (6)^{2} - 2[(-1)^{2} - 2(-2)2] = 36 - 18 = 18$$
282 (a)
Given equation is $x^{2} - 2ax + a^{2} + a - 3 = 0$.
If roots are real then $D \ge 0$
 $\Rightarrow 4a^{2} - 4(a^{2} + a - 3) \ge 0$
 $\Rightarrow -a + 3 \ge 0$
 $\Rightarrow a - 3 \le 0 \Rightarrow a \le 3$
As roots are less than 3, hence $f(3) > 0$
 $9 - 6a + a^{2} + a - 3 > 0$
 $\Rightarrow a^{2} - 5a + 6 > 0$
 $\Rightarrow (a - 2)(a - 3) > 0$
 $\Rightarrow Either a < 2 \text{ or } a > 3$.
Hence, only $a < 2$ satisfy.
283 (b)
 $(|az_{1} - bz_{2}|)^{2} + |(bz_{1} + az_{2})|^{2}$
 $= a^{2}|z_{1}|^{2} + b^{2}|z_{2}|^{2} - 2ab \operatorname{Re}(\overline{z}_{1}z_{2}) + b^{2}|z_{1}|^{2}$
 $+ a^{2}|z_{2}|^{2} + 2ab\operatorname{Re}(\overline{z}_{1}z_{2})$
 $= (a^{2} + b^{2})(|z_{1}|^{2} + |z_{2}|^{2})$
284 (a)
We have,
 $\frac{1}{2} + \frac{3}{8} + \frac{9}{32} + \frac{27}{128} + \cdots$
 $= \frac{1}{2}\left(1 + \frac{3}{22} + \frac{3^{2}}{2^{4}} + 3^{3} + 2^{6} + \cdots\right) = \frac{1}{2}\left(\frac{1}{1 - \frac{3}{4}}\right)$
 $= 2$
 $\because \omega + \omega \left(\frac{1}{2^{4} + \frac{3}{8} + \frac{9}{32} + \frac{27}{128} - \cdots\right) = \omega + \omega^{2} = -1$
285 (b)
Here, $\alpha + \beta = -\frac{b}{a}, \ \alpha\beta = \frac{c}{a}$...(i)
The quadratic equation whose roots are $\frac{1-\alpha}{a}$ and $\frac{1-\beta}{\beta}$, is
 $x^{2} - \left(\frac{1-\alpha}{\alpha} + \frac{1-\beta}{\beta}\right)x + \frac{1-\alpha}{\alpha} \cdot \frac{1-\beta}{\beta} = 0$
 $\Rightarrow x^{2} - \left(\frac{\beta - \alpha\beta + \alpha - \alpha\beta}{\alpha\beta}\right)x + \frac{1-\beta - \alpha + \alpha\beta}{\alpha\beta}$
 $= 0$
 $\Rightarrow x^{2} - \left(\frac{\beta - \alpha\beta + \alpha - \alpha\beta}{\alpha\beta}\right)x + \frac{1-\beta - \alpha + \alpha\beta}{\alpha\beta}$
 $= 0$
 $\Rightarrow x^{2} - \left(\frac{(-b-2c)x}{c} + \frac{a+b+c}{c}\right) = 0$ (from Eq. (i)]
 $\Rightarrow x^{2} - \frac{(-b-2c)x}{c} + \frac{a+b+c}{c} = 0$
 $\Rightarrow cx^{2} + (b+2c)x + (a+b+c) = 0$
On comparing with $px^{2} + qx + r = 0$, we get $r = q + b + c$
286 (b)
We have,
 $1 + x^{2} = \sqrt{3}x$

$$\Rightarrow x^{2} - \sqrt{3} x + 1 = 0 \Rightarrow x = \frac{\sqrt{3} + i}{2} = -i \omega, i \omega^{2}$$
Clearly, $-i \omega$ and $i \omega^{2}$ are reciprocal of each other
and the given expression does not alter by
replacing x by $\frac{1}{x}$. So, we will compute its value for
one of these two values of x
For $x = i \omega^{2}$, we have

$$\sum_{n=1}^{24} \left(x^{n} - \frac{1}{x^{n}}\right)^{2} = \sum_{n=1}^{24} \{(i \omega^{2})^{n} - (-i \omega)^{n}\}^{2}$$

$$\Rightarrow \sum_{n=1}^{24} \left(x^{n} - \frac{1}{x^{n}}\right)^{2} = \sum_{n=1}^{24} (-1)^{n} \{\omega^{2n} - (-1)^{n} \omega^{n}\}^{2}$$

$$\Rightarrow \sum_{n=1}^{24} \left(x^{n} - \frac{1}{x^{n}}\right)^{2} = \sum_{n=1}^{24} (-1)^{3k} \{\omega^{6k} - (-1)^{3k} \omega^{3k}\}^{2}$$

$$+ \sum_{n=1}^{7} (-1)^{3k+1} \{\omega^{6k+2} - (-1)^{3k+1} \omega^{3k+1}\}$$

$$+ \sum_{k=0}^{7} (-1)^{3k+2} \{\omega^{6k+4} - (-1)^{3k+2} \omega^{3k+2}\}$$

$$= \sum_{k=1}^{8} (-1)^{3k} \{1 - (-1)^{3k}\}^{2}$$

$$+ \sum_{k=0}^{7} \{\omega - (-1)^{3k+2} \omega^{2}\}^{2}$$

$$= \sum_{k=1}^{8} (-1)^{3k} \{2 - 2(-1)^{3k}\}$$

$$+ \sum_{k=0}^{7} (-1)^{3k+1} \{\omega + \omega^{2}$$

$$- 2(-1)^{3k+1}\}$$

$$+ \sum_{k=0}^{7} (-1)^{3k+2} \{\omega^{2} + \omega$$

$$- 2(-1)^{3k+1}\}$$

$$= (-4) \times 4 + \sum_{k=0}^{7} (-1)^{3k-1} \{-1 + 2(-1)^{3k+3}\}$$

$$= -16 + \{-1 \times 4 + (-3) \times 4\} + \{-3 \times 4 + 4$$

$$\times -1\}$$
287 (d)
Since α, β are roots of $x^{2} + bx - c = 0$

 $\therefore \alpha + \beta = -b, \alpha\beta = -c$ The equation whose roots are *b*, *c* is $x^2 - x(b+c) + bc = 0$ $\Rightarrow x^{2} - x(-\alpha - \beta - \alpha \beta) + \alpha \beta(\alpha + \beta) = 0$ $\Rightarrow x^{2} + x(\alpha + \beta + \alpha \beta) + \alpha \beta(\alpha + \beta) = 0$ 288 (c) Here, $\alpha^2 - a\alpha + b = 0$ and $\beta^2 + a\beta + b = 0$ Now, $A_{n+1} - aA_n + bA_{n-1}$ 293 (c) $= \alpha^{n+1} + \beta^{n+1} - a(\alpha^n + \beta^n) + b(\alpha^{n-1} + \beta^{n-1})$ $= \alpha^{n-1}(\alpha^2 - a\alpha + b) + \beta^{n-1}(\beta^2 - a\beta + b)$ = 0289 (b) Let α be a common root of the equations 294 **(b)** $x^{2} + (a^{2} - 2)x - 2a^{2} = 0$ and $x^{2} - 3x + 2 = 0$ Then. $\alpha^{2} + (a^{2} - 2)\alpha - 2a^{2} = 0$ and $\alpha^{2} - 3\alpha + 2 = 0$ Now. 295 (b) $\alpha^2 - 3\alpha + 2 = 0 \Rightarrow \alpha = 1, 2$ Putting, $\alpha = 1$ in $\alpha^2 + (a^2 - 2)\alpha - 2a^2 = 0$, we get $\Rightarrow a^2 + 1 = 0$, which is not possible for any $a \in R$ Putting $\alpha = 2$ in $\alpha^2 + (a^2 - 2)\alpha - 2a^2 = 0$, we get 296 (b) $4 + 2(a^2 - 2) - 2a^2 = 0$, which is true for all $a \in R$ Thus, the two equations have exactly one common root for all $a \in R$ 290 (c) $(\log_b a \cdot \log_c a - \log_a a) + (\log_a b \cdot \log_c b - \log_b b)$ $+ (\log_a c \cdot \log_b c - \log_c c) = 0$ 297 (c) $\Rightarrow \left(\frac{\log a}{\log b}, \frac{\log a}{\log c}, -\frac{\log a}{\log a}\right) + \left(\frac{\log b}{\log a}, \frac{\log b}{\log c}, -\frac{\log b}{\log b}\right)$ $+\left(\frac{\log c}{\log a}, \frac{\log c}{\log b}, -\frac{\log c}{\log c}\right) = 0$ $\Rightarrow (\log a)^3 + (\log b)^3 + (\log c)^3$ $-3\log a \log b \log c = 0$ $\Rightarrow (\log a + \log b + \log c) = 0$ $\begin{pmatrix} \because \text{ if } a^3 + b^3 + c^3 = 3abc, \\ \text{ then } a + b + c = 0 \end{pmatrix}$ $\Rightarrow abc = 1$ 291 (b) Let the incorrect equation is $x^2 + 15x + b = 0$ Since, roots are -7 and -2 \therefore Product of roots, b = 14So, correct equation is $x^2 - 9x + 14 = 0$ 292 (c) Let $f(x) = x^2 + x + a$. Both the roots of f(x) = 0will exceed *a*, if (i) Discriminant > 0(ii) A lies outside the roots i.e. f(a) > 0

(iii) *a* < *x*-coordinate of vertex $\therefore a < \frac{1}{4}, a^2 + 2a > 0 \text{ and } a < -1/2$ $\Rightarrow a < -1/2 \text{ and } a^2 + 2 a > 0$ $\Rightarrow a < -1/2$ and a(a + 2) > 0 $\Rightarrow a < -\frac{1}{2}$ and a + 2 < 0 [: a < 0] $\Rightarrow a < -1/2$ and $a < -2 \Rightarrow a < -2$ Since *a*, *b*, *c* are positive $\therefore ax^2 + b|x| + c > 0$ Hence, the equation $ax^2 + b|x| + c = 0$ has no real roots By Rolle's Theorem, between any two roots of a polynomial f(x), there is a root of f'(x). Therefore, f'(c) = 0 for same $c \in (a, b)$ Given, $(x-1)^3 = (-2)^3 \Rightarrow \left(\frac{x-1}{-2}\right) = (1)^{1/3}$ \therefore Cube roots of $\left(\frac{x-1}{-2}\right)$ are 1, ω and ω^2 \Rightarrow Cube roots of (x - 1) are $-2, -2\omega$ and $-2\omega^2$ \Rightarrow Cube roots of x are -1, $1 - 2\omega$ and $1 - 2\omega^2$ Given equation is $x^2 - 2x(1+3k) + 7(2k+3) = 0$ For equal roots, discriminant=0 $\therefore 4(1+3k)^2 = 4 \times 7(2k+3)^2$ $\Rightarrow 9k^2 - 8k - 20 = 0 \Rightarrow k = 2, \frac{-10}{\alpha}$ $7^{2\log_7 5} = 7^{\log_7(5)^2}$ $= (5)^2 = 25$ [: $a^{\log_a x} = x; x > 0, x \neq 0, 1$]

298 **(b)**
We have,

$$\log\left(\frac{a-ib}{a+ib}\right)$$

$$= \log(a-ib) - \log(a+ib)$$

$$= \left[\log\sqrt{a^2+b^2} + i\tan^{-1}\left(\frac{-b}{a}\right)\right]$$

$$- \left[\log\sqrt{a^2+b^2} + i\tan^{-1}\left(\frac{b}{a}\right)\right]$$

$$= -2i\tan^{-1}\left(\frac{b}{a}\right)$$

$$= 2\tan^{-1}\left(\frac{b}{a}\right)$$

$$= 2\tan^{-1}\left(\frac{2\frac{b}{a}}{1-\frac{b^2}{a^2}}\right)$$

$$= \tan^{-1}\left(\frac{2ab}{a^2-b^2}\right)$$

$$\Rightarrow \tan\left\{i\log\left(\frac{a-ib}{a+ib}\right)\right\}$$

$$= \tan\left\{\tan^{-1}\left(\frac{2ab}{a^2-b^2}\right)\right\} = \frac{2ab}{a^2-b^2}$$
299 **(a)**
We have,
 $x^3 + 2x^2 + 2x + 1 = 0$

2

 $x^3 + 2x^2 + 2x + 1$ $\Rightarrow (x^3 + 1) + 2x(x + 1) = 0$ $\Rightarrow (x+1)(x^2+x+1) = 0 \Rightarrow x = -1, \omega, \omega^2$ Let $f(x) = 1 + x^{2002} + x^{2003}$. Then, $f(-1) = 1 + (-1)^{2002} + (-1)^{2003} = 1 + 1 - 1$ ≠ 0 $f(\omega) = 1 + (\omega)^{2002} + (\omega)^{2003} = 1 + \omega + \omega^2 = 0$ $f(\omega) = 1 + (\omega^2)^{2002} + (\omega^2)^{2003} = 1 + \omega^2 + \omega$ = 0

Hence, ω and ω^2 are common roots of the two equations

300 **(b)**

As
$$p < 0$$
, therefore $p = -q$, where $q > 0$
 $\therefore p^{1/3} = (-q)^{1/3} = q^{1/3}(-1)^{1/3}$
 $\Rightarrow p^{1/3} = -q^{1/3}, -q^{1/3}\omega, -q^{1/3}\omega^2$
Let $\alpha = -q^{1/3}, \beta = q^{1/3}\omega$, and $\gamma = -q^{1/3}\omega^2$
 $\therefore \frac{x\alpha + y\beta + z\gamma}{x\beta + y\gamma + z\alpha} = \frac{x + y\omega + z\omega^2}{x\omega + y\omega^2 + z} = \omega^2$
 $= \frac{-1 - i\sqrt{3}}{2}$

301 (d)

Since, $y^2 - y + a = \left(y - \frac{1}{2}\right)^2 + a - \frac{1}{4}$ and $-\sqrt{2} \le \sin x + \cos x \le \sqrt{2}$, given equation will have no real values of *x* for any *y*, if

$$a - \frac{1}{4} > \sqrt{2}$$

ie, $a \in \left(\sqrt{2} + \frac{1}{4}, \infty\right)$
 $\Rightarrow a \in (\sqrt{3}, \infty) \quad (as \sqrt{2} + \frac{1}{4} < \sqrt{3})$
302 (a)
Let $y = \sqrt{42 + \sqrt{42 + \sqrt{42} + \cdots}}$
 $\Rightarrow y = \sqrt{42 + y}$
On squaring both sides, we get
 $y^2 = 42 + y$
 $\Rightarrow y^2 - y - 42 = 0$
 $\Rightarrow (y - 7)(y + 6) = 0$
 $\Rightarrow y = 7, 6$
Since, $y = -6$ does not satisfy the given equation
 \therefore The required solution is $y = 7$
303 (b)
Let α and β be the roots of the given equation, then
 $\alpha + \beta = 10$ $\alpha \beta = 16$

 $\alpha + \beta = 10,$ $\alpha\beta = 16$ ∴ Required equation is $x^2 - (\alpha + \beta)x + \alpha\beta = 0$ $\Rightarrow x^2 - 10x + 16 = 0$

304 (a)

Here, |PQ| = |PS| = |PR| = 2: Shaded part represents the external part of circle having centre (-1, 0) and radius 2

As we know equation of circle having centre z_0 and radius r, is

$$\begin{aligned} |z - z_0| &= r \\ \therefore & |z - (-1 + 0i)| > 2 \\ \Rightarrow & |z + 1| > 2 \qquad \dots (i) \end{aligned}$$

Also, argument of z + 1 with represent to positive direction of *x*-axis is $\pi/4$

$$\therefore \arg(z+1) \leq \frac{\pi}{4}$$

And argument of z + 1 in anti-clockwise direction is $-\pi/4$.

$$\begin{array}{ll} \therefore & -\frac{\pi}{4} \le \arg(z+1) \\ \Rightarrow & |\arg(z+1)| \le \frac{\pi}{4} \end{array}$$

305 (a)

If ω and ω^2 are two imaginary cube roots of unity. Then, $1 + \omega + \omega^2 = 0$

 $\Rightarrow \omega + \omega^{2} = -1$ Now, $a\omega^{317} + a\omega^{382} = a(\omega^{317} + \omega^{382})$ $= a(\omega^{2} + \omega) = -a$ And $a\omega^{317} \times a\omega^{382} = a^{2}\omega^{699} = a^{2}$ Therefore, the required equation is $x^{2} - (a\omega^{317} + a\omega^{382}) + (a\omega^{317} \times a\omega^{382}) = 0$ $\Rightarrow x^{2} + ax + a^{2} = 0$

306 **(b)**

Let the given expression by y. $\therefore y = \frac{x+2}{2x^2+3x+6}$ $\Rightarrow 2x^2y + (3y-1)x + (6y-2) = 0$ If $y \neq 0$, then $\Delta \ge 0$ for real x. $ie, b^2 - 4ac \ge 0$ $\therefore (3y-1)^2 - 8y(6y-2) \ge 0$ $\Rightarrow -39y^2 + 10y + 1 \ge 0$ $\Rightarrow (13y+1)(3y-1) \le 0$ $\Rightarrow -\frac{1}{13} \le y \le \frac{1}{3}$ If y = 0, then x = -2 which is real and this value

of *y* is included in the above range.

307 (a)

We have, $z(\overline{z+\alpha}) + \overline{z}(z+\alpha) = 0$ $\Rightarrow z(\bar{z} + \bar{\alpha}) + \bar{z}(z + \alpha) = 0 \Rightarrow z\bar{z} + \frac{1}{2}z\bar{\alpha} + \frac{1}{2}\bar{z}\alpha$ Clearly, it represents a circle having centre at $-\frac{1}{2}\alpha$ and radius $=\frac{1}{2}|\alpha|$ 308 (a) On multiplying first equation by *x*, we get $x^4 + ax^2 + x = 0$ (i) and another given equation is $x^4 + ax^2 + 1 = 0$ (ii) On subtracting Eq. (ii) from Eq. (i), we get $x - 1 = 0 \Rightarrow x = 1$ Which is a common root. On putting this value in Eq. (ii), we get 1 + a + 1 = 0 $\Rightarrow a = -2$ 309 (d) Given, $x = \frac{-1+\sqrt{3}i}{2} = \omega$ $\therefore (1-x^2+x)^6 - (1-x+x^2)^6$ $=(1-\omega^{2}+\omega)^{6}-(1-\omega+\omega^{2})^{6}$ $= (-2\omega^2)^6 - (-2\omega)^6 \quad [:: 1 + \omega + \omega^2 = 0]$ $= 2^{6}\omega^{12} - 2^{6}\omega^{6} = 0$ [:: $\omega^{3} = 1$] 310 (d) We have. $(\alpha - \gamma)(\alpha - \delta) = \alpha^2 - \alpha(\gamma + \delta) + \gamma \delta$

$$\Rightarrow (\alpha - \gamma)(\alpha - \delta) = \alpha^{2} + p \alpha + r \quad [\because \gamma + \delta] \\= -p, \gamma \delta = r]$$

$$\Rightarrow (\alpha - \gamma)(\alpha - \delta) = q + r \quad \begin{bmatrix} \because x^{2} + px - q = 0 \\ \therefore \alpha^{2} + p \alpha = q \end{bmatrix}$$

311 (d)
Since the roots of the equation
 $x^{3} - 3 ax^{2} + 3 bx - c = 0$ are in H.P. Therefore,
the roots of the reciprocal equation i.e.
 $cy^{3} - 3by^{2} + 3by^{2} + 3ay - 1 = 0$ are in A.P.
i. e. $\frac{1}{\alpha}, \frac{1}{\beta}, \frac{1}{\gamma}$ are in A. P.
 $\therefore \frac{2}{\beta} = \frac{1}{\alpha} + \frac{1}{\gamma}$
 $\Rightarrow \frac{3}{\beta} = \frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} \Rightarrow \frac{3}{\beta} = \frac{3b}{c} \Rightarrow \beta$
 $c = \begin{bmatrix} 1 & 1 & 1 & 3b \end{bmatrix}$

 $=\frac{1}{b}\left[::\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}=\frac{1}{c}\right]$

312 (d)
Let
$$S = 1 + i^{2} + i^{4} + i^{6} + \dots + i^{2n}$$

 $= 1 - 1 + 1 - 1 + 1 - \dots + (-1)^{n}$
The value of S depends on n
 \therefore The value cannot be determined
313 (b)
Applying $C_{1} \rightarrow C_{1} + C_{2} + C_{3}$, we get
 $\Delta = \begin{vmatrix} 1 + \omega^{n} + \omega^{2n} & \omega^{n} & \omega^{2n} \\ \omega^{n} + \omega^{2n} + 1 & \omega^{2n} & 1 \\ \omega^{2n} + 1 + \omega^{n} & 1 & \omega^{n} \end{vmatrix}$
 $= (1 + \omega^{n} + \omega^{2n}) \begin{vmatrix} 1 & \omega^{n} & \omega^{2n} \\ 1 & \omega^{2n} & 1 \\ 1 & 1 & \omega^{n} \end{vmatrix}$
 $= (1 + \omega^{n} + \omega^{2n}) \begin{vmatrix} 1 & \omega^{n} & \omega^{2n} \\ 0 & \omega^{n} - 1 & \omega^{n} - \omega^{2n} \end{vmatrix} \begin{bmatrix} Applying \\ R_{2} \rightarrow R_{2} - R_{1} \\ R_{3} \rightarrow R_{3} - R_{1} \end{vmatrix}$
 $= (1 + \omega^{n} + \omega^{2n}) \{(\omega^{2n} - \omega^{n})(\omega^{n} - \omega^{2n}) - (\omega^{2n} - 1)(\omega^{n} - 1)\}$
 $= (1 + \omega^{n} + \omega^{2n}) \{(\omega^{2n} - \omega^{n})(\omega^{n} - \omega^{2n} + \omega^{3n} - \omega^{3n} + \omega^{2n} + \omega^{n} - 1\}$
 $= (1 + \omega^{n} + \omega^{2n})(1 - \omega^{n} - \omega^{2n} + 1 - 1 + \omega^{2n} + \omega^{n} - 1) = 0$

314 (c) 1 + $\sum_{i=1}^{14} \{ 0 \}$

$$1 + \sum_{k=0}^{14} \left\{ \cos \frac{(2k+1)}{15} \pi + i \sin \frac{(2k+1)}{15} \pi \right\}$$

= $1 + \sum_{k=0}^{14} e^{i \frac{(2k+1)}{15} \pi}$
= $1 + (\alpha + \alpha^3 + \alpha^5 + \dots + \alpha^{29})$ (where $\alpha = e^{i\pi/15}$)
= $1 + \alpha \left(\frac{1-\alpha^{30}}{1-\alpha^2}\right) = 1$ [: $\alpha^{30} = e^{i2\pi = 1}$]
315 (c)

 $(2l_{1} + 1)$

We know that, if $az_1 + bz_2 + cz_3 = 0$ and a + b + c = 0, then z_1, z_2, z_3 lie on a line

(21.

316	
	We have, $(1 + x)^2$
	$(1 + \omega)^7 = A + B \omega$ $\Rightarrow (-\omega^2)^7 = A + B \omega \qquad [\because 1 + \omega + \omega^2 = 0]$
	$\Rightarrow -\omega^{14} = A + B \omega$ [: 1 + ω + ω = 0] $\Rightarrow -\omega^{14} = A + B \omega$
	$\Rightarrow -\omega^2 = A + B \ \omega \Rightarrow 1 + \omega = A + B \ \omega \Rightarrow A = B$
	= 1
317	(c)
	Since the function $f(x) = 9^x - 3^x + 1$ is
	continuous for all <i>x</i> and every continuous
	function attains every value between its maximum and minimum values. Therefore, $f(x)$
	takes every value between its minimum and
	maximum values.
	We have,
	$f(x) = 9^{x} - 3^{x} + 1 = \left(3^{x} - \frac{1}{2}\right)^{2} + \frac{3}{4} > \frac{3}{4}$ for all x
	Thus, $f(x)$ assumes all real values greater than
318	3/4 (c)
510	Given, $ z - 1 = z - i $
	\Rightarrow z lies on the perpendicular bisector of the line
	joining (1, 0)
	And $(0, 1)$ and it is a straight line passing through
319	origin.
519	Since, $x^2 + 20 + \sqrt{x^4 + 20} = 22 + 20$
	Let $\sqrt{x^4 + 20} = y$
	$\therefore y^2 + y - 42 = 0$
	$\Rightarrow (y-6)(y+7) = 0 \Rightarrow y = 6 (\because y \neq -7)$
	$\Rightarrow \sqrt{x^4 + 20} = 6 \Rightarrow x^4 + 20 = 36$
	$\Rightarrow x^4 = 16 \Rightarrow x = \pm 2$
	Hence, the number of real roots of the equation is
220	2
320	Since, the roots of the given equation are real
	: Discriminant >0 \Rightarrow 16+4log ₃ $a \ge 0$
	$\Rightarrow \log_3 a \ge -4 \Rightarrow a \ge 3^{-4} \Rightarrow a \ge \frac{1}{81}$
	Hence, the least value of <i>a</i> is $\frac{1}{81}$
321	
	Since, $\frac{b-a}{x^2+(a+b)x+ab} = \frac{1}{x+c}$
	$\Rightarrow x^{2} + (a+b)x + ab \qquad x+c$ $\Rightarrow x^{2} + 2ax + ab + ca - bc = 0$
	Since, the product of roots is zero
	Then, $ab + ca - bc = 0 \Rightarrow a = \frac{bc}{b+c}$
	\therefore Sum of roots = $-2a = \frac{-2bc}{b+c}$
322	D+L
	Given, $\frac{3x+2}{(x+1)(2x^2+3)} = \frac{A}{(x+1)} + \frac{Bx+C}{(2x^2+3)}$
	(x, x)(x, x, y) (x, x) (x, x) (x, x) (x, y) (

 $\Rightarrow 3x + 2 = A(2x^2 + 3) + (Bx + C)(x + 1)$ On putting x + 1 = 0 ie, x = -1We get $3(-1) + 2 = A[2(-1)^2 + 3]$ $\Rightarrow A = -\frac{1}{5}$ Now, on comparing the coefficients of x^2 and x, we get 0 = 2A + B $\Rightarrow B = \frac{2}{5}$ And 3 = B + C $\Rightarrow C = 3 - \frac{2}{5} = \frac{13}{5}$ $\therefore \quad A + C - B = -\frac{1}{5} + \frac{13}{5} - \frac{2}{5} = \frac{10}{5} = 2$ 323 (a) Let $z = \alpha$ be a real root of $z^{2} + (p + iq)z + (r + is) = 0$. Then, $\alpha^2 + (p + iq)\alpha + (r + is) = 0$ $\Rightarrow \alpha^2 + p\alpha + r = 0$ and $q\alpha + s = 0$ $\Rightarrow \frac{s^2}{q^2} - \frac{ps}{q} + r = 0 \Rightarrow psq = s^2 + q^2r$ 324 **(c)** Let α , β be the roots of the equation $x^2 + px + px$ 8 = 0Then, $\alpha + \beta = -p$ and $\alpha\beta = 8$ It is given that $|\alpha - \beta| = 2$ $\Rightarrow |\alpha - \beta|^2 = 4$ $\Rightarrow (\alpha + \beta)^2 - 4\alpha\beta = 4 \Rightarrow p^2 - 32 = 4 \Rightarrow p = \pm 6$ 326 (d) Let $\alpha = \frac{3}{2} + \frac{7}{2}i$ $\beta = \frac{3}{2} - \frac{7}{2}i$ $\therefore \ \alpha + \beta = 3, \ \alpha \beta = \frac{9}{4} + \frac{49}{4} = \frac{29}{2}$ $\Rightarrow \frac{6}{a} = 3, \frac{b}{a} = \frac{29}{2}$ $\Rightarrow a = 2, b = 29$ $\Rightarrow a + b = 31$ 327 (b) Let z = x + iy $\Rightarrow z^2 = x^2 - y^2 + 2i xy$ $\Rightarrow \operatorname{Re}(z^2) = \operatorname{Re}(x^2 - y^2 + 2ixy)$ $\Rightarrow 1 = \mathbb{Z}^2 - \mathbb{Z}^2 \qquad [:: \operatorname{Re}(\mathbb{Z}^2) = 1 \text{ (given)}]$ 328 (d) Here, $\sum \alpha_1 = 0$, $\sum \alpha_1 \alpha_2 = (2 - \sqrt{3})$, $\sum \alpha_1 \alpha_2 \alpha_3 = 0$, $\sum \alpha_1 \alpha_2 \alpha_3 \alpha_4 = 2 + \sqrt{3}$ $(1 - \alpha_1)(1 - \alpha_2)(1 - \alpha_3)(1 - \alpha_4)$

$$= (1 + a_{1}a_{2} - a_{1} - a_{2})(1 - a_{3})(1 - a_{4})$$

$$= (1 + a_{1}a_{2} - a_{1} - a_{2} - a_{3} - a_{1}a_{2}a_{3} + a_{1}a_{3} + a_{2}a_{3})(1 - a_{4})$$

$$= 1 + \sum a_{1}a_{2} - \sum a_{1}a_{2}a_{3} - \sum a_{1} + a_{1}a_{2}a_{3}a_{4}$$

$$= 1 + 2 - \sqrt{3} - 0 - 0 + 2 + \sqrt{3} = 5$$
329 (a)

$$\therefore x = 8 + 3\sqrt{7}$$

$$\therefore y = \frac{1}{8 + 3\sqrt{7}} = 8 - 3\sqrt{7}$$
Now, $\frac{1}{x^{2}} + \frac{1}{y^{2}} = \frac{x^{2} + y^{2}}{(xy)^{2}}$

$$= (x + y)^{2} - 2 \qquad [\because xy = 1]$$

$$= (8 + 3\sqrt{7} + 8 - 3\sqrt{7})^{2} - 2$$

$$= (16)^{2} - 2 = 254$$
330 (a)
Let $z = \frac{12}{5} + \frac{16}{5}i$

$$\therefore d > 0$$
And $|z| = \sqrt{\left(\frac{12}{5}\right)^{2} + \left(\frac{16}{5}\right)^{2}} = \frac{1}{5}\sqrt{144 + 256} = 4$
Now, $|2 - 3i| < |z|$
331 (d)
Let $f(x) = 2x^{2} - 2(2a + 1)x + a(a + 1)$
Clearly, $y = f(x)$ is a parabola opening upward. It
is given that a lies between its roots

$$\therefore \text{ Discriminant} > 0 \text{ and } f(a) < 0$$

$$\Rightarrow 4(2a + 1)^{2} - 8a(a + 1) > 0 \text{ and } 2a^{2} - 2a(2a + 1) + a(a + 1) < 0$$

$$\Rightarrow 2a^{2} + 2a + 1 > 0 \text{ and } a(a + 1) > 0$$

$$\Rightarrow a(a + 1) > 0 \qquad [\because 2a^{2} + 2a + 1 > 0 \text{ for all } a \in R]$$

$$\Rightarrow a < -1 \text{ or } a > 0$$
332 (b)
Case I When $n \ge a$

$$\therefore x^{2} - 2a(x - a) - 3a^{2} = 0$$

$$\Rightarrow x = a(1 - \sqrt{2}) [\because x = a(1 + \sqrt{2}) < a] ...(i)$$
Case I When $x < a$

$$\therefore x^{2} + 2a(x - a) - 3a^{2} = 0$$

$$\Rightarrow x = a(1 - \sqrt{2}) [\because x = a(1 + \sqrt{2}) < a] ...(i)$$
Case I When $x < a$

$$\therefore x^{2} + 2a(x - a) - 3a^{2} = 0$$

$$\Rightarrow x = a(1 - \sqrt{2}) [\because x = a(1 + \sqrt{2}) < a] ...(i)$$
Case I When $x < a$

$$\therefore x^{2} + 2a(x - a) - 3a^{2} = 0$$

$$\Rightarrow x = a(\sqrt{6} - 1) ...(ii)$$

$$[\because x = -a(1 + \sqrt{6}) > a]$$
From Eqs. (i) and (ii),

$$x = \{a(1 - \sqrt{2}), a(\sqrt{6} - 1)\}$$
333 (c)
Since, $\frac{AB}{BC} = \sqrt{2}$
Considering the rotation about 'B', we get,
 $\frac{z_1 - z_2}{z_3 - z_2} = \frac{|z_1 - z_2|}{|z_3 - z_2|} e^{i\pi/4}$
 $= \frac{AB}{BC} e^{i\pi/4}$
 $= \sqrt{2} \left(\frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}}\right) = 1 + i$
 $\Rightarrow z_1 - z_2 = (1 + i)(z_3 - z_2)$
 $\Rightarrow z_1 - (1 + i)z_3 = z_2(1 - 1 - i)$
 $\Rightarrow iz_2 = -z_1 + (1 + i)z_3$
 $\Rightarrow z_2 = iz_1 - i(1 + i)z_3$
 $= z_3 + i(z_1 - z_3)$
334 (a)
Let $z = x + iy$
 $\therefore \frac{z + i}{z + 2} = \frac{x + iy + i}{x + iy + 2} = \frac{x + i(y + 1)}{(x + 2) + iy}$
 $= \left[\frac{x^2 + 2x + y^2 + y}{(x + 2)^2 + y^2}\right] + i\left[\frac{(y + 1)(x + 2) - xy}{(x + 2)^2 + y^2}\right]$
Since, it is purely imaginary, therefore real part
must be equal to zero
 $\therefore \frac{x^2 + y^2 + 2x + y}{(x + 2)^2 + y^2} = 0$
 $\Rightarrow x^2 + y^2 + 2x + y = 0$
It represents the equation of circle and its radius
 $= \sqrt{1 + \frac{1}{4} - 0} = \frac{\sqrt{5}}{2}$
Therefore, locus of z in argand diagram is a circle
of radius $\frac{\sqrt{5}}{2}$
335 (b)
The coordinates of the points representing
 $1 + i, i - 1$ and $2i$ are $(1,1), (-1,1)$ and $(0,2)$
respectively
 \therefore Required area $= \frac{1}{2} \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 0 & 2 & 1 \end{vmatrix} = 1$ sq. unit.
336 (b)
We have,
 $x = -5 + 4i$
 $\Rightarrow (x + 5)^2 = -16 \Rightarrow x^2 + 10 x + 41 = 0$...(i)
Now,
 $x^4 + 9x^3 + 35x^2 - x + 4$
 $= x^2(x^2 + 10x + 41) - x(x^2 + 10x + 41)$
 $+ 4(x^2 + 10x + 41) - 160$
 $= 0x^2 - 0x + 4 \times 0 - 160 = -160$ [Using

337 **(a)**

we have,

$$\arg\left(\frac{z-1}{z+1}\right) = k$$

$$\Rightarrow \arg\left(\frac{z-1}{-z-1}\right) = k$$

$$\Rightarrow \angle BPA = k$$

⇒ *P* lies on the circle passing through A(1,0) and B(-1,0). Clearly, the circle is symmetric about *y*-axis.

Hence, *P* lies on the circle having its centre of *y*-axis

338 **(b)**

We have, $|2x + 3|^2 - 3|2x + 3| + 2 = 0$ $\Rightarrow (|2x+3|-2)(|2x+3|-1) = 0$ $\Rightarrow |2x + 3| = 1, 2$ $\Rightarrow 2x + 3 = \pm 1, \pm 2 \Rightarrow x = -1, -2, -\frac{1}{2}, -\frac{5}{2}$ \therefore Product of roots = $\frac{5}{2}$ 339 (d) $\alpha = \omega, \beta = \omega^2$ will satisfy the given equation Now, $\alpha^{19} = \omega^{19} = \omega$ $\beta^7 = \omega^{14} = \omega^2$ \Rightarrow Required equation is $x^2 - (\omega + \omega^2)x + \omega^2 = 0$ $\Rightarrow x^2 + x + 1 = 0$ 340 (d) We have, z = 4 - 3i $\therefore |z| = \sqrt{4^2 + (-3)^2} = 5$ Let z_1 be the new complex number obtained by rotating z in the clockwise sense through 180°, therefore $z_1 = -4 + 3i$ Therefore required complex number is 3(-4+3i) = -12+9i341 (c) Sum of the roots of $x^2 - 2ax + b^2 = 0$ is 2a $\therefore A = A. M. of the roots = a$

Product of the roots of $x^2 - 2bx + a^2 = 0$ is a^2 $\therefore G = G.M.$ of the roots = a

Clearly, A = G342 (b) $\left|z + \frac{2}{z}\right| = 2 \Rightarrow \left|z\right| - \frac{2}{\left|z\right|} \le 2$ $\Rightarrow |z|^2 - 2|z| - 2 \le 0$ This is a quadratic equation in |z| $\therefore |z| \le \frac{2 \pm \sqrt{4+8}}{2} \le 1 \pm \sqrt{3}$ Hence, maximum value of |z| is $1 + \sqrt{3}$ 343 (b) Here, $\alpha + \beta = \frac{p+1}{2}$ and $\alpha\beta = \frac{p-1}{2}$ Now, $(\alpha - \beta)^2 = (\alpha + \beta)^2 - 4\alpha\beta$ $\Rightarrow (\alpha\beta)^2 = (\alpha + \beta) - 4\alpha\beta \quad [\because \ \alpha - \beta = \alpha\beta \text{ given}]$ $\Rightarrow \left(\frac{p-1}{2}\right)^2 = \left(\frac{p+1}{2}\right)^2 - 4\left(\frac{p-1}{2}\right)$ $\Rightarrow p^{2} + 1 - 2p = p^{2} + 1 + 2p - 8p + 8 \Rightarrow p = 2$ 344 (d) Here, $a = e^{i 2\pi/3} = \omega$ $\therefore \quad a + \frac{1}{a^2} = \omega + \frac{1}{\omega^2} = \omega + \omega = 2\omega$ Similarly, $a^2 + \frac{1}{a^2} = \omega^2 + \frac{1}{\omega^4} = 2\omega^2$ $\therefore \quad a + \frac{1}{a^2} + a^2 + \frac{1}{a^4} = 2\omega + 2\omega^2 = -2$ And $\left(a + \frac{1}{a^2}\right)\left(a^2 + \frac{1}{a^4}\right) = 2\omega \cdot 2\omega^2 = 4$ \therefore required equation is $x^2 + 2x + 4 = 0$ 345 (a) Given that, $x^2 + bx + c = 0$ and b = 17 ...(i) Since, roots of this equation are -2 and -15 \therefore $(x+2)(x+15) = x^2 + 17x + 30$...(ii) From Eqs. (i) and (ii), c = 30If b = 13, then $x^{2} + 13x + c = 0 \implies x^{2} + 13x + 30 = 0$ $\Rightarrow x = -3, -10$ 346 (a) Given that $x, y, z \in R$ and distinct and $u = x^2 + 4y^2 + 9z^2 - 6yz - 3zx - 2xy$ $=\frac{1}{2}(2x^{2}+8y^{2}+18z^{2}-12yz-6zx-4xy)$ $=\frac{1}{2}\{(x^2 - 4xy + 4y^2) + (x^2 - 6xz + 9z^2)\}$ $+(4y^2-12yz+9z^2)$ $=\frac{1}{2}\{(x-2y)^2+(x-3z)^2+(2y-3z)^2\}>0$ So, *u* is always non-negative. 347 (b) Here, $\alpha + \beta = \frac{5}{6}$ and $\alpha\beta = \frac{1}{6}$ $\therefore \tan^{-1} \alpha + \tan^{1} \beta = \tan^{-1} \left(\frac{\alpha + \beta}{1 - \alpha \beta} \right)$

$$= \tan^{-1}\left(\frac{\frac{5}{6}}{1-\frac{1}{6}}\right)$$
$$= \tan^{-1}1 = \frac{\pi}{4}$$

Given,
$$a^x = b^y = c^z = d^w$$

 $\Rightarrow x = y \log_a b = z \log_a c = w \log_a d$
 $\Rightarrow y = \frac{x}{\log_a b}, z = \frac{x}{\log_a c}, w = \frac{x}{\log_a d}$
Now, $x \left(\frac{1}{y} + \frac{1}{z} + \frac{1}{w}\right)$
 $= x \left[\frac{\log_a b}{x} + \frac{\log_a c}{x} + \frac{\log_a d}{x}\right]$
 $= \frac{x}{x} [\log_a bcd] = \log_a (bcd)$

349 (a)

We know that, if $\log_a m > \log_a n$ $\Rightarrow m > n$ or m < n according as a > 1 or 0 < a < 1 $\therefore \log_{\left(\frac{1}{3}\right)} |z + 1| > \log_{\left(\frac{1}{3}\right)} |z - 1|$ $\Rightarrow |z + 1| < |z - 1| \qquad \left(\because 0 < \frac{1}{3} < 1\right)$ Let z = x + iy |x + iy + 1| < |x + iy - 1| $\Rightarrow (x + 1)^2 + y^2 < (x - 1)^2 + y^2$ $\Rightarrow 4x < 0 \Rightarrow x < 0 \Rightarrow \operatorname{Re}(z) < 0$

350 **(c)**

We have, $b^2 = ac$

Let α , β be the roots of the equation $ax^2 + bx + c = 0$. Then,

$$\alpha, \beta = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$\Rightarrow \alpha, \beta = \frac{-\sqrt{ac} + i\sqrt{3} ac}{2a} \quad [\because b^2 = ac]$$

$$\Rightarrow \alpha = \left(-\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)\sqrt{\frac{c}{a}} \text{ and, } \beta = \left(-\frac{1}{2} - i\frac{\sqrt{3}}{2}\right)\sqrt{\frac{c}{a}}$$

$$\Rightarrow \alpha = \omega\sqrt{\frac{c}{a}} \text{ and, } \beta = \omega^2\sqrt{\frac{c}{a}} \Rightarrow \alpha : \beta = 1 : \omega$$

351 **(b)**

Since, $\tan \alpha$ and $\tan \beta$ are the roots of the equation $x^2 + ax + b = 0$, then $\tan \alpha + \tan \beta = -\frac{a}{1}$ and $\tan \alpha \cdot \tan \beta = b$

$$\Rightarrow \frac{\sin\alpha}{\cos\alpha} + \frac{\sin\beta}{\cos\beta} = -\frac{a}{1}$$

and $\frac{\sin\alpha\sin\beta}{\cos\alpha\cos\beta} = b$
 $\therefore \sin^2(\alpha + \beta) + a\sin(\alpha + \beta)\cos(\alpha + \beta)$
 $+ b\cos^2(\alpha + \beta)$
 $= \cos^2((\alpha + \beta) [\tan^2(\alpha + \beta) + b + a\tan(\alpha + \beta))]$

$$= \frac{\tan^{2}(\alpha + \beta) + b + a \tan(\alpha + \beta)}{1 + \tan^{2}(\alpha + \beta)}$$

$$= \frac{a}{b-1}\left(a + \frac{a}{b-1}\right)$$

$$= b$$
352 (a)
We have, $\omega^{10} + \omega^{23} = \omega + \omega^{2} = -1$

$$\therefore \left\{ (\omega^{10} + \omega^{23})\pi - \frac{\pi}{4} \right\} = \sin\left(\frac{-5\pi}{4}\right) = \sin\frac{\pi}{4} = \frac{1}{\sqrt{2}}$$
353 (b)
The equation formed by decreasing each root of
 $ax^{2} + bx + c = 0$ by 1 is
 $a(x + 1)^{2} + b(x + 1) + c = 0$
 $\Rightarrow ax^{2} + x(2a + b) + a + b + c = 0$
This is identical to the equation $2x^{2} + 8x + 2 = 0$
 $\therefore \frac{a}{2} = \frac{2a + b}{8} = \frac{a + b + c}{2}$
 $\Rightarrow 4a = 2a + b, a = a + b + c$ and $2a + b = 4a + 4b + 4c$
 $\Rightarrow 2a = b, b + c = 0$ and $2a + 3b + 4c = 0$
 $\Rightarrow b = 2a, b = -c$ and $c = -2a \Rightarrow 2a = b = -c$
354 (C)
 $|z - 2| = |mi||z - 1|, |z - 5|$
 $ie, |z - 2| = |z - 1|$, where $|z - 1| < |z - 5|$
Also, $|z - 2| = |z - 5|$, where $|z - 5| < |z - 1|$
 $\Rightarrow \operatorname{Re}(z) = \frac{2}{2}$ which satisfy $|z - 5| < |z - 1|$
 $\Rightarrow \operatorname{Re}(z) = \frac{7}{2}$ which satisfy $|z - 5| < |z - 1|$
 $\Rightarrow \operatorname{Re}(z) = \frac{7}{2}$ which satisfy $|z - 5| < |z - 1|$
 $\Rightarrow \operatorname{Re}(z) = \frac{7}{2}$ which satisfy $|z - 5| < |z - 1|$
 $\Rightarrow \operatorname{Re}(z) = \frac{7}{2}$ which satisfy $|z - 5| < |z - 1|$
 $\Rightarrow \operatorname{Re}(z) = \frac{7}{2}$ which satisfy $|z - 5| < |z - 1|$
 $\Rightarrow \operatorname{Re}(z) = \frac{7}{2}$ which satisfy $|z - 5| < |z - 1|$
 $\Rightarrow \operatorname{Re}(z) = \frac{7}{2}$ which satisfy $|z - 5| < |z - 1|$
 $\Rightarrow \operatorname{Re}(z) = \frac{7}{2}$ which satisfy $|z - 5| < |z - 1|$
 $\Rightarrow \operatorname{Re}(z) = \frac{7}{2}$ which satisfy $|z - 5| < |z - 1|$
 $\Rightarrow x = \frac{-(2a + b) \pm (2a - b)}{4a} \Rightarrow x = -1, -\frac{b}{2a}$
Hence, the roots are rational
356 (a)
Here, $\alpha + \beta = -\frac{m}{1}, \alpha\beta = \frac{n}{1}$
Now, $\alpha^{3}\beta + \alpha\beta^{3} = \alpha\beta(\alpha^{2} + \beta^{2})$
 $= \alpha\beta[(\alpha + \beta)^{2} - 2\alpha\beta]$
 $= \frac{n}{l}\left[\left(\frac{-m}{l}\right)^{2} - \frac{2n}{l}\right\right]$
 $= \frac{n}{l}\left(\frac{m^{2}}{l^{2}} - \frac{2n}{l}\right)$
And $\alpha^{3}\beta . \alpha\beta^{3} = (\alpha\beta)^{4} = \frac{n^{4}}{l^{4}} = 0$
 $\Rightarrow l^{4}x^{2} - nl(m^{2} - 2nl)x + n^{4} = 0$
357 (b)
Here, $\Sigma \alpha = 0$, $\Sigma \alpha\beta = -7$, $\alpha\beta\gamma = -7$

 $a_1 + 2a_2 - 3a_3 = \sqrt{\frac{2}{3}}$ and, $a_1 + 2a_2 - 3a_3 = -\sqrt{\frac{2}{3}}$ $-a_1 + 2a_2 + 3a_3 = \sqrt{6} - a_1 + 2a_2 + 3a_3 = -\sqrt{6}$ Hence, there are two triplets (a_1, a_2, a_3) 359 (d) Given, $z = \frac{11 - 3i}{1 + i} \times \frac{1 - i}{1 - i} = \frac{8 - 14i}{2} = 4 - 7i$ Since, $z = i\alpha$ is real, therefore $4 - 7i - i\alpha$ is real, if $\alpha = -7$ 360 (b) Let the equation (incorrectly written form) be $x^2 + 17x + q = 0$ Since, roots are -2, -15. $\therefore q = 30$ So, correct equation is $x^2 + 13x + 30 = 0$ $\Rightarrow x^{2} + 10x + 3x + 30 = 0$ $\Rightarrow (x+3)(x+10) = 0$ $\Rightarrow x = -3, -10$ 361 (b) Given. $z^2 + z + 1 = 0$ $\Rightarrow z = \omega, \omega^2$ Take $z = \omega$ $\therefore \quad \left(z + \frac{1}{z}\right)^{2} + \left(z^{2} + \frac{1}{z^{2}}\right)^{2} + \left(z^{3} + \frac{1}{z^{3}}\right)^{2}$ $+\left(z^{4}+\frac{1}{z^{4}}\right)^{2}+\left(z^{5}+\frac{1}{z^{5}}\right)^{2}$ $+\left(z^6+\frac{1}{z^6}\right)^2$ $=\left(\omega+\frac{1}{\omega}\right)^{2}+\left(\omega^{2}+\frac{1}{\omega^{2}}\right)^{2}+\left(\omega^{3}+\frac{1}{\omega^{3}}\right)^{2}$ $+\left(\omega^{4}+\frac{1}{\omega^{4}}\right)^{2}+\left(\omega^{5}+\frac{1}{\omega^{5}}\right)^{5}$ $+\left(\omega^{6}+\frac{1}{\omega^{6}}\right)^{2}$ $= (\omega + \omega^2)^2 + (\omega^2 + \omega)^2 + (1+1)^2$ $+ (\omega + \omega^2)^2 + (\omega^2 + \omega)^2$ $+(1+1)^{2}$ = 1 + 1 + 4 + 1 + 1 + 4 = 12Similarly, for $z = \omega^2$, we get the same result 362 (d) We have, $a^2 - 5a + 5 < 1$ and $2a^2 - 3a - 4 < 1$ $\Rightarrow a^2 - 5a + 4 < 0$ and $2a^2 - 3a - 5 < 0$ $\Rightarrow (a-1)(a-4) < 0 \text{ and } (2a-5)(a+1) < 0$ $\Rightarrow 1 < a < 4$ and $-1 < a < \frac{5}{2} \Rightarrow 1 < a < \frac{5}{2}$ 363 (d) Since, (x - 2) is a commom factor of the

expressions $x^2 + ax + b$ and $x^2 + cx + d$ \Rightarrow 4 + 2a + b = 0 ...(i) And 4 + 2c + d = 0 ...(ii) $\Rightarrow 2a + b = 2c + d$ $\Rightarrow b-d = 2(c-a)$ $\Rightarrow \frac{b-d}{c-a} = 2$ 364 (d) $\log_2 20 \log_2 80 - \log_2 5 \log_2 320$ $= \log_2(2^2 \times 5) \log_2(2^4 \times 5) - \log_2 5 \log_2(2^6 \times 5)$ $= (2 + \log_2 5)(4 + \log_2 5) - \log_2 5(6 + \log_2 5)$ $= 8 + 6 \log_2 5 + (\log_2 5)^2$ $-6 \log_2 5 - (\log_2 5)^2 = 8$ 365 (a) :: LCM of 3, 4, 6 is 12. $\therefore \sqrt[3]{9} = 9^{1/3} = (9^4)^{1/12} = (6561)^{1/12}$ $\sqrt[4]{11} = (11)^{1/4} = (11^3)^{1/12} = (1331)^{1/12}$ $\sqrt[6]{17} = (17)^{1/6} = (17^2)^{1/2} = (289)^{1/12}$ Hence, $\sqrt[3]{9}$ is the greatest number. 366 (d) We know, $\omega = \frac{-1+\sqrt{3}i}{2}$ $\therefore \quad \left(-\frac{1}{2} + \frac{\sqrt{3}i}{2}\right)^{1000} = (\omega)^{1000} = \omega \quad [\because \omega^3]$ 367 (a) Let the roots be α , β , β , γ and γ , α , then $\alpha\beta = b, \beta\gamma = c \text{ and } \gamma\alpha = a$ $\Rightarrow \alpha \beta \gamma = \sqrt{abc}$ 368 (c) of $\sum_{k=1}^{10} \left(\sin \frac{2k\pi}{11} + i \cos \frac{2k\pi}{11} \right) = i \sum_{k=1}^{10} \left(\cos \frac{2k\pi}{11} - \frac{2k\pi}{11} \right)$ *i*sin2kπ11 $=i\sum_{i=1}^{10}\left(e^{-\frac{2k\pi}{11}i}\right)$ $=i\sum_{k=1}^{\infty}r^{k}$ where $r=e^{\frac{-2\pi i}{11}}$ $= i(r + r^2 + r^3 + \dots r^{10})$ $=\frac{i.r(r^{10}-1)}{r-1}$ $=i\left(\frac{r^{11}-r}{r-1}\right)$ $=i\left(\frac{1-r}{r-1}\right)$:: $r^{11}=e^{-2i\pi}=1$ = -i369 (b) Let z = x + iy be such that Re (z) = 0. Then, $z = iy \Rightarrow z^2 = -y^2 \Rightarrow \text{Im}(z^2) = 0$ 370 (b)

 $z_1 - z_4 = z_2 - z_3$ $\Rightarrow \frac{z_1 + z_3}{2} = \frac{z_2 + z_4}{2}$ \Rightarrow Diagonals bisect each other Given that, $\arg\left(\frac{z_4-z_1}{z_2-z_1}\right) = \frac{\pi}{2}$ \Rightarrow Angle at $z_1 = \frac{\pi}{2}$ So, it form a rectangle 371 (d) Given, $x^3 + 6x + 9 = 0$ $\Rightarrow (x+3)(x^2-3x+3) = 0$ $\Rightarrow x = -3$ or $x^2 - 3x + 3 = 0$ Now, Discriminant, $D = \sqrt{9 - 4 \times 3} = \sqrt{-3}$ imaginary Hence, real roots of the given equation is -3372 (a) $T_r = r[(r+1) - \omega][(r+1) - \omega^2]$ $= r[(r+1)^{2} - (\omega + \omega^{2})(r+1) + \omega^{3}]$ $= r[(r+1)^{2} - (-1)(r+1) + 1] = r^{3} + 3r^{2} + 3r$ $\therefore \qquad \sum^{n-1} T_r = \sum^{n-1} (r^3 + 3r^2 + 3r)$ $=\frac{1}{4}(n-1)^{2}(n)^{2}+3.\frac{1}{6}(n-1)n(2n-1)$ $+3.\frac{1}{2}(n-1)n$ $=\frac{1}{4}(n-1)n(n^2+3n+4)$ 373 (b) We have, $|z_1| = |z_2| = |z_3| = 1$ \Rightarrow Origin is the circumcentre of the triangle with the circum radius 1 Also, $z_1 + z_2 + z_3 = 0$ $\Rightarrow \frac{z_1 + z_2 + z_3}{2} = 0$ \Rightarrow Centroid coincides with the origin Hence, the circumcenter and centroid coincides Consequently the triangle is equilateral 374 (b) Let $y = \frac{x+2}{2x^2+3x+6}$ $\Rightarrow 2yx^2 + (3y-1)x + x + 6y - 2 = 0$ But *x* is real, then $(3y-1)^2 - 4(2y)(6y-2) \ge 0$ [: $D \ge 0$] $\Rightarrow (13y+1)(3y-1) \le 0$ $\Rightarrow -\frac{1}{12} \le y \le \frac{1}{2}$ 375 (d) Since the field of complex numbers is not an ordered field. In other words, the order relation is not defined on the set of all complex numbers

376 (c)

Now,
$$(1 + \sqrt{3}i)^{n} + (1 - \sqrt{3}i)^{n}$$

$$= \left[2\left(\frac{1 + \sqrt{3}i}{2}\right)\right]^{n} + \left[2\left(\frac{1 - \sqrt{3}i}{2}\right)\right]^{n}$$

$$= (-2)^{n}[(\omega^{2})^{n+1} + (\omega)^{3n+1}]$$
[$\because n = 3r + 1$, where r is an integer]

$$= (-2)^{n}(\omega^{2} + \omega) = -(-2)^{n}$$
377 (d)
We have,
 $\left(\frac{\sqrt{3}/2 + (1/2)i}{\sqrt{3}/2 - (1/2)i}\right)^{120} = \left(\frac{1/2 - i\sqrt{3}/2}{-1/2 - i\sqrt{3}/2}\right)^{120}$

$$= \left(\frac{-\omega}{\omega^{2}}\right)^{120} = \left(\frac{1}{\omega}\right)^{120} = (\omega^{2})^{120} = \omega^{240} = 1 + oi$$
Hence, $p = 1, q = 0. = -48$
378 (b)
Let $|x - 2| = y$
 $\therefore y^{2} + y - 6 = 0$
 $\Rightarrow y = -3, 2$
 $\Rightarrow |x - 2| = -3, |x - 2| = 2$
 $\Rightarrow \pm (x - 2) = 2 \quad [\because |x - 2| \text{ cannot be negative]}$
 $\therefore x = 4, 0$
379 (d)
We have,
 $x^{2} - 4x - 77 < 0 \text{ and } x^{2} > 4$
 $\Rightarrow (x - 11)(x + 7) < 0 \text{ and } (x - 2)(x + 2) > 0$
 $\Rightarrow x \in (-7, -2) \cup (2, 11)$
Clearly, the largest negative integer belonging to
this set is -3
380 (b)
Given, $\frac{(1+i)x-2i}{3+i} + \frac{(2-3i)y+i}{3-i} = i$
 $\Rightarrow (4 + 2i)x + (9 - 7i)y - 3i - 3 = 10i$
Equating real and imaginary parts, we get
 $2x - 7y = 13$ and $4x + 9y = 3$, hence $x = 3$ and
 $y = -1$
381 (d)
Given, α, β are the roots of equation $x^{2} + 4x + 3 = 0$
 $\therefore \alpha + \beta = -4$ and $\alpha\beta = 3$
Now, $2\alpha + \beta + \alpha + 2\beta = 3(\alpha + \beta) = -12$
And $(2\alpha + \beta)(\alpha + 2\beta) = 2\alpha^{2} + 4\alpha\beta + \alpha\beta + 2\beta^{2}$
 $= 2(\alpha + \beta)^{2} + \alpha\beta$
 $= 2(-4)^{2} + 3 = 35$
Hence, required equation is
 $x^{2} - (\text{sum of roots})x + (\text{product of roots})=0$
 $\Rightarrow x^{2} + 12x + 35 = 0$
382 (c)
Here, $\tan \frac{p}{2} \tan \frac{q}{2} = \frac{c}{a} \dots(i)$

Also,
$$\frac{p}{2} + \frac{Q}{2} + \frac{R}{2} = \frac{\pi}{2}$$
 [: $P + Q + R = \pi$]

$$\Rightarrow \frac{P + Q}{2} = \frac{\pi}{4}$$
 [: $\angle R = \frac{\pi}{2}$, given]

$$\tan\left(\frac{P}{2} + \frac{Q}{2}\right) = 1 \Rightarrow \frac{\tan\frac{P}{2} + \tan\frac{Q}{2}}{1 - \tan\frac{P}{2}\tan\frac{Q}{2}} = 1$$

$$\Rightarrow \frac{-\frac{h}{a}}{1 - \frac{c}{a}} = 1 \Rightarrow -\frac{h}{a} = 1 - \frac{c}{a}$$
 [from Eq. (i)]

$$\Rightarrow c = a + b$$
383 (a)
We have,
 $x^{2} + ax + \sin^{-1}(x^{2} - 4x + 5)$
 $+ \cos^{-1}(x^{2} - 4x + 5) = 0$

$$\Rightarrow x^{2} + ax + \frac{\pi}{2} = 0$$
This equation will have real roots, if
 $a^{2} - 2\pi \ge 0$
 $\Rightarrow (a - \sqrt{2\pi})(a + \sqrt{2\pi}) \ge 0$
 $\Rightarrow a \in (-\infty, -\sqrt{2\pi}] \cup [\sqrt{2\pi}, \infty)$
384 (b)
We have,
 $|z - 1| = 1 \Rightarrow z - 1 = e^{i\theta} \Rightarrow z = 1 + e^{i\theta}$
 $\therefore \frac{z - 2}{z} = \frac{1 + e^{i\theta} - 2}{1 + e^{i\theta}} = \frac{(\cos\theta - 1) + i\sin\theta}{(\cos\theta + 1) + i\sin\theta}$
 $\Rightarrow \frac{z - 2}{z} = \tan\frac{\theta}{2} \left\{ \frac{-\sin\frac{\theta}{2} + i\cos\frac{\theta}{2}}{\cos\frac{\theta}{2} + i\sin\frac{\theta}{2}} \right\} = i\tan\frac{\theta}{2}$
 $\Rightarrow \frac{z - 2}{z}$ is purely imaginary
385 (c)
Since, α and β are the roots of $x^{2} - ax + a + b = 0$, then
 $a + \beta = a$ and $\alpha\beta = a + b$
 $\Rightarrow \alpha^{2} - a\alpha = -(a + b)$
And $\alpha\beta + \beta^{2} = a\beta$
 $\Rightarrow \beta^{2} - a\beta = -(a + b)$
And $\alpha\beta + \beta^{2} = a\beta$
 $\Rightarrow \beta^{2} - a\beta = -(a + b)$
 $\therefore \frac{1}{a^{2} - a\alpha} + \frac{1}{\beta^{2} - a\beta} + \frac{1}{a + b}$
 $= \frac{1}{-(a + b)} + \frac{1}{-(a + b)} + \frac{2}{(a + b)} = 0$
386 (b)
Given, $x = \log_{b} a = \frac{\log_{e} b}{\log_{e} c}$
And $z = \log_{a} c = \frac{\log_{e} c}{\log_{e} b}$, $\log_{e} c = 1$
387 (d)

We have,

$$\log_4 2 + \log_4 4 + \log_4 x + \log_4 16 = 6$$

$$\Rightarrow \log_4(2 \times 4 \times x \times 16) = 6$$

$$\Rightarrow 128x = 4^6$$

$$\Rightarrow x = \frac{4^3}{2} = 32$$
388 (a)
We have,
 $(1 + \cos 2\alpha) + i \sin 2\alpha$
 $= 2\cos^2 \alpha + 2 i \sin \alpha \cos \alpha$
 $= 2\cos \alpha [\cos \alpha + i \sin \alpha]$
 $= -2\cos \alpha [-\cos \alpha - i \sin \alpha]$
 $= -2\cos \alpha [\cos(\pi + \alpha)]$
 $+ i \sin(\pi + \alpha)] \qquad [\because \frac{\pi}{2} < \alpha]$
 $< 3\pi/2$

The given equation is $x^2 - 2x \cos \phi + 1 = 0$ $\therefore x = \frac{2\cos\phi \pm \sqrt{4\cos^2\phi - 4}}{2} = \cos\phi \pm i\sin\phi$ Let $\alpha = \cos \phi + i \sin \phi$, then $\beta = \cos \phi - i \sin \phi$ $\therefore \quad \alpha^n + \beta^n = (\cos \emptyset + i \sin \emptyset)^n$ $+(\cos \phi - i \sin \phi)^n$ $= 2 \cos n \emptyset$ *i*sin*nØ*) $=\cos^2 n\emptyset + \sin^2 n\emptyset = 1$: Required equation is $x^2 - 2x \cos n\phi + 1 = 0$ 390 (c) Here, $\sqrt{1-c^2} = nc - 1$ $\Rightarrow 1-c^2 = n^2c^2 - 2nc + 1$ $\therefore \frac{c}{2n} = \frac{1}{1+n^2} \quad \dots (i)$ $\frac{c}{2n}(1+nz)\left(1+\frac{n}{z}\right) = \frac{1}{1+n^2} \left\{1+n^2+\frac{n^2}{2n}\right\}$ or nz+1z $= \frac{1}{1+n^2} \left\{ 1 + n^2 + n(2\cos\theta) \right\}$ $=\frac{(1+n^2)+2n\cos\theta}{1+n^2}$ $= 1 + \left(\frac{2n}{1+n^2}\right) \cos \theta$ [using Eq.(i)] $= 1 + c \cos \theta$ 391 (a) Let z = x + iy. Then, $\text{Re}(z^2) = 0$ $\Rightarrow \operatorname{Re}(x^2 - y^2 + 2 ixy) = 0$ $\Rightarrow x^2 - y^2 = 0 \Rightarrow y = \pm x$...(i) and, $|z| = 2 \Rightarrow x^2 + y^2 = 4$...(ii) Solving (i) and (ii), we get $x = \pm \sqrt{2}$ Thus, the solutions are $(\sqrt{2}, \sqrt{2}), (-\sqrt{2}, \sqrt{2}), (\sqrt{2}, -\sqrt{2}), (-\sqrt{2}, -\sqrt{2})$

392 **(b)** We have, Max. amp (z) = amp(z_2), and Min.amp (z) = amp(z_1) $y \uparrow (z_1) = 0$ $y \uparrow (z_1) = 0$ $y \uparrow (z_1) = 0$ $y \uparrow (z_2) = \frac{\pi}{2} + 0$ xNow, $amp(z_1) = 0$ and, $amp(z_2) = \frac{\pi}{2} + 0$ $= \frac{\pi}{2} + \sin^{-1}(\frac{15}{25}) = \frac{\pi}{2} + \sin^{-1}(\frac{3}{5})$ $\therefore |Max. amp(z) - Min. amp(z)|$ $= |\frac{\pi}{2} + \sin^{-1}\frac{3}{5} - \cos^{-1}\frac{3}{5}|$ $= |\frac{\pi}{2} + \frac{\pi}{2} - \cos^{-1}\frac{3}{5} - \cos^{-1}\frac{3}{5}| = \pi - 2\cos^{-1}\frac{3}{5}$

393 (b)
Here,
$$\alpha + \beta = p$$
 and $\alpha\beta = q$
Also, $\alpha_1 + \beta_1 = q$ and $\alpha_1\beta_1 = p$
 \therefore Sum of given roots

$$= \left(\frac{1}{\alpha_1\beta} + \frac{1}{\alpha\beta_1}\right) + \left(\frac{1}{\alpha\alpha_1} + \frac{1}{\beta\beta_1}\right)$$

$$= \frac{\alpha\beta_1 + \alpha_1\beta + \beta\beta_1 + \alpha\alpha_1}{\alpha\beta\alpha_1\beta_1}$$

$$= \frac{(\alpha + \beta)(\alpha_1 + \beta_1)}{(\alpha\beta)(\alpha_1\beta_1)} = \frac{pq}{qp} = 1$$
and product of given roots

$$= \left(\frac{1}{\alpha_1\beta} + \frac{1}{\alpha\beta_1}\right) \left(\frac{1}{\alpha\alpha_1} + \frac{1}{\beta\beta_1}\right)$$

$$= \frac{(\alpha\beta_1 + \alpha_1\beta)(\alpha\alpha_1 + \beta\beta_1)}{\alpha^2\beta^2\alpha_1^2\beta_1^2}$$

$$= \frac{\alpha\beta(\alpha_1^2 + \beta_1^2) + \alpha_1\beta_1(\alpha^2 + \beta^2)}{\alpha^2\beta^2\alpha_1^2\beta_1^2}$$

$$= \frac{\alpha_1\beta_1[(\alpha + \beta)^2 - 2\alpha_1\beta] + \beta_1}{(\alpha\beta^2(\alpha_1\beta_1)^2)}$$

$$= \frac{q(q^2 - 2p) + p(p^2 - 2q)}{q^2p^2}$$
Hence, the required equation is given by
 $x^2 - (\text{sum of roots})x + (\text{product of roots}) = 0$
 $\Rightarrow (p^2q^2)x^2 - (p^2q^2)x + p^3 + q^3 - 4qp = 0$
394 (b)
Given, $iz^4 + 1 = 0$
 $\Rightarrow z^4 = i$

 $\Rightarrow z = \left(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\right)^{1/4}$ By using De-Moivre's theorem, we get $z = \cos\frac{\pi}{8} + i\sin\frac{\pi}{8}$

395 (a)

Let
$$z = \sqrt{3} + i$$

 \therefore $\arg(z) = \tan^{-1}\left(\frac{1}{\sqrt{3}}\right) = 30^{\circ}$

For making a right angled $\triangle OPQ$, point *Q* either in IInd quadrant or IVth quadrant If the point *Q* is in IInd quadrant, then we take $\theta = 120^{\circ}$

$$\therefore \tan 120^\circ = -\cot 30^\circ = \frac{\sqrt{3}}{-1}$$

$$\therefore \text{ Point } Q \text{ is } (-1, \sqrt{3}) \text{ and if the point } Q \text{ is in IVth}$$

quadrant then we take
 $\theta = -60^\circ$

$$\therefore \tan(-60^\circ) = -\tan 60^\circ = -\frac{1}{\sqrt{2}}$$

 $\sqrt{3}$

 \therefore Point Q is $(1, \sqrt{3})$ 396 (b) Let z = x + iyGiven, |z| - z = 1 + 2i $\Rightarrow \quad \sqrt{x^2 + y^2} - (x + iy) = 1 + 2i$ $\Rightarrow \sqrt{x^2 + y^2} - x = 1, \ y = -2$ $\Rightarrow \sqrt{x^2 + 4} - x = 1$ $\Rightarrow x^2 + 4 = (1 + x)^2$ $\Rightarrow 2x = 3 \Rightarrow x = \frac{3}{2}$ $\therefore \quad z = \frac{3}{2} - 2i$ 397 (d) Given, $\alpha + \beta = 4$ and $\alpha^3 + \beta^3 = 44$ $\Rightarrow (\alpha + \beta)^2 - 3\alpha\beta(\alpha + \beta) = 44$ $\Rightarrow 64 - 44 = 12\alpha\beta \Rightarrow \alpha\beta = \frac{5}{3}$ ∴ Required equation is $x^2 - (\alpha + \beta)x + \alpha\beta = 0 \Rightarrow x^2 - 4x + \frac{5}{3} = 0$ $\Rightarrow 3x^2 - 12x + 5 = 0$ 398 (d) Given, $|1 - i|^x = 2^x$ $\Rightarrow \ \left(\sqrt{1+1}\right)^x = 2^x \quad \Rightarrow \quad 2^{x/2} = 2^x$ $\Rightarrow \frac{x}{2} = x \quad \Rightarrow \quad \mathbf{x} = \mathbf{0}$ Therefore, the number of non-zero integral solutions is zero 399 (b) Here, $\alpha + \beta = 7$ and $\alpha\beta = 1$ $\therefore \alpha - 7 = -\beta, \quad \beta - 7 = -\alpha$ $\therefore \quad \frac{1}{(\alpha - 7)^2} + \frac{1}{(\beta - 7)^2} = \frac{1}{\beta^2} + \frac{1}{\alpha^2} = \frac{\alpha^2 + \beta^2}{(\alpha\beta)^2}$ $= (\alpha + \beta)^2 - 2\alpha\beta$ = 49 - 2 = 47400 (c) Let α be a common root of $x^2 + px + q = 0$ and $x^{2} + p'x + q' = 0$. Then, $\alpha^2 + p\alpha + q = 0$ and $\alpha^2 + p'\alpha + q' = 0$ $\Rightarrow \alpha = \frac{q-q'}{p-p'}$ [On subtracting] 401 (d) The vertices of the triangle are $A(0,1), B\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ and $C\left(-\frac{1}{2}, -\frac{\sqrt{3}}{2}\right)$: Area of $\triangle ABC = \frac{1}{2} \begin{vmatrix} 0 & 1 & 1 \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} & 1 \\ -\frac{1}{2} & -\frac{\sqrt{3}}{2} & 1 \end{vmatrix}$

 \Rightarrow Area of $\triangle ABC$ $=\frac{1}{2}\left[-\left(-\frac{1}{2}+\frac{1}{2}\right)+1\left(\frac{\sqrt{3}}{4}+\frac{\sqrt{3}}{4}\right)\right]$ \Rightarrow Area of $\triangle ABC = \frac{\sqrt{3}}{4}$ sq. units 403 (b) Let *ABCD* be a parallelogram such that affixes of A, B, C, D are z_1, z_2, z_3, z_4 respectively. Then, $\overrightarrow{AB} = \overrightarrow{DC} \Rightarrow z_2 - z_1 = z_3 - z_4 \Rightarrow z_2 + z_4$ $= z_1 + z_3$ Conversely, if $z_2 + z_4 = z_1 + z_3$, then $z_2 - z_1 = z_3 - z_4$ $\Rightarrow \overrightarrow{AB} = \overrightarrow{DC}$ \Rightarrow *ABCD* is a parallelogram Thus, $z_2 + z_4 = z_1 + z_3$ is a necessary and sufficient condition for the figure ABCD to be a parallelogram 404 **(b)** We have, $(x + 3)^4 + (x + 5)^4 = 16$ $\Rightarrow (y-1)^4 + (y+1)^4 = 16$, where y = $\frac{x+2+x+5}{2} = x + 4$ $\Rightarrow (y^{2} + 1 - 2y)^{2} + (y^{2} + 1 + 2y)^{2} = 16$ $\Rightarrow (v^2 + 1)^2 - 4v^2 = 16$ $\Rightarrow (v^2 - 1)^2 = 16$ $\Rightarrow y^2 - 1 = \pm 4 \Rightarrow y^2 = 5 \Rightarrow y = \pm \sqrt{5}$ 405 (a) The discriminant Δ of the given equation is given by $\Delta = 4(a + b - 2c)^2 - 4(a - b)^2$ $\Rightarrow \Delta = 4(a-c+b-c)^2 - 4(a-c+c-b)^2$ $\Rightarrow \Delta = 4[(a-c) + (b-c)]^2$ $-4[(a-c)-(b-c)]^2$ $\Rightarrow \Delta = 16(a - c)(b - c) < 0 \qquad [\because a < c < b]$ Hence, roots of the given equation are imaginary 406 (c) We have, $x^3 + 3x^2 + 3x + 2 = 0$ $\Rightarrow (x^3 - 1) + 3(x^2 + x + 1) = 0$ $\Rightarrow (x^{2} + x + 1)(x - 1 + 3) = 0$ \Rightarrow (x + 2)(x² + x + 1) = 0 \Rightarrow x = -2, ω , ω^{2} Since $x^3 + 3x^2 + 3x + 2 = 0$ and $ax^2 + bx + c = 0$ 0 have two common roots. Therefore, ω and ω^2 are common roots of the two equations. Hence, a = b = c = 1407 (a) Since, roots of the equation $(a-b)x^{2} + (c-a)x + (b-c) = 0$ are equal. : Discriminant, $B^2 - 4AC = 0$ $\Rightarrow (c-a)^2 - 4(a-b)(b-c) = 0$

 $\Rightarrow a^{2} + 4b^{2} + c^{2} + 2ac - 4ab - 4bc = 0$ $\Rightarrow (a + c - 2b)^2 = 0$ $\Rightarrow a + c = 2b$ Hence, *a*, *b*, *c* are in AP. 408 (c) We have, $\frac{1+i}{1-i} = \frac{(1+i)^2}{(1+i)(1-i)} = \frac{2i}{2} = i$ $\therefore \left(\frac{1+i}{1-i}\right)^n = 1 \Rightarrow i^n = 1 \Rightarrow n \text{ is a multiple of } 4$ Hence, the least positive integer *n* satisfying the above condition is 4 409 (d) It is given that *a*, *b* are roots of the equation $x^2 - 3x + 1 = 0$ $\therefore a + b = 3$ and ab = 1It is also given that a - 2 and b - 2 are the roots of the equation $x^2 + px + q = 0$ $\therefore a - 2 + b - 2 = -p$ and (a - 2)(b - 2) = q \Rightarrow a + b - 4 = -p and ab - 2(a + b) + 4 = q \Rightarrow 3 - 4 = -p and 1 - 6 + 4 = q \Rightarrow p = 1 and q = -1410 (c) We have, $\sec \alpha + \tan \alpha = -\frac{b}{a}$ and $\sec \alpha \tan \alpha = \frac{c}{a}$ $\therefore 1 = \sec^2 \alpha - \tan^2 \alpha$ $\Rightarrow 1 = (\sec \alpha + \tan \alpha)(\sec \alpha - \tan \alpha)$ $\Rightarrow 1 = (\sec \alpha + \tan \alpha)^2 \{(\sec \alpha + \tan \alpha)^2 \}$ $-4 \sec \alpha \tan \alpha$ $\Rightarrow 1 = \frac{b^2}{a^2} \left(\frac{b^2 - 4ac}{a^2} \right) \Rightarrow a^4 + 4ab^2c = b^4$ 411 (b) Given, $|(x - a) + iy|^2 + |(x + a) + iy|^2 = b^2$ (where z = x + iy) $(x-a)^2 + y^2 + (x+a)^2 + y^2 = b^2$ ⇒ $x^2 + y^2 = \frac{b^2 - 2a^2}{2}$ ⇒ Hence, it represents a equation of circle 412 (b) Given, $\log_{99}(\log_2(\log_3 x)) = 0$ $\Rightarrow \log_2(\log_3 x) = (99)^0 = 1$ $\Rightarrow \log_3 x = 2$ $\Rightarrow x = 3^2 = 9$ 413 (c) Let α and β are the roots then $\alpha + \beta = b, \alpha\beta = c$ Given, $|\alpha - \beta| = 1$ $\Rightarrow (\alpha + \beta)^2 - 4\alpha\beta = 1$ $\Rightarrow b^2 - 4c = 1$ 414 (a)

Let α be the common root for both the equations $x^{2} + ax + b = 0$ and $x^{2} + bx + a = 0$, then $\alpha^2 + a\alpha + b = 0$ And $\alpha^2 + b\alpha + a = 0$ $\Rightarrow \frac{\alpha^2}{(a^2 - b^2)} = \frac{\alpha}{b - a} = \frac{1}{b - a}$ $\therefore \alpha^2 = -(a+b)$ and $\alpha = 1$ Hence, a + b = -1415 **(b)** Let $f(x) = ax^2 + bx + c$ be a quadratic expression such that f(x) > 0 for all $x \in R$. Then, $f(x) > 0 \Rightarrow a < 0 \text{ and } b^2 - 4ac < 0$ Now. g(x) = f(x) + f'(x) + f''(x) $\Rightarrow g(x) = ax^2 + x(b + 2a) + (b + 2a + c)$ Let *D* be the discriminant of g(x). Then, $D = (b + 2a)^2 - 4a(b + 2a + c)$ $\Rightarrow D = b^{2} - 4a^{2} - 4ac = (b^{2} - 4ac) - 4a^{2} < 0$ $\therefore b^2 - 4ac < 01$ Thus, we have D < 0 and $a > 0 \Rightarrow g(x) > 0$ for all $x \in R$ 416 **(b)** Given, $\frac{b}{a} + \frac{c}{a} + \frac{a}{b} = 1$ $\Rightarrow \quad \frac{\cos\beta + i\sin\beta}{\cos\gamma + i\sin\gamma} + \frac{\cos\gamma + i\sin\gamma}{\cos\alpha + i\sin\alpha}$ $+\frac{\cos\alpha+i\sin\alpha}{\cos\beta+i\sin\beta}=1$ $\Rightarrow \cos(\beta - \gamma) + i\sin(\beta - \gamma)$ $+\cos(\gamma - \alpha)$ $+i\sin(\gamma-\alpha)$ $+\cos(\alpha - \beta) + i\sin(\alpha - \beta) = 1$ On equating real part on both sides, we get $\cos(\beta - \gamma) + \cos(\gamma - \alpha) + \cos(\alpha - \beta) = 1$ 417 (a) $\cos 30^\circ + i \sin 30^\circ$ $\cos 60^\circ - i \sin 60^\circ$ $= (\cos 30^\circ + i \sin 30^\circ)(\cos 60^\circ + i \sin 60^\circ)$ $= \cos 90^\circ + i \sin 90^\circ = i$ 418 (d) Since, $\alpha + \beta = -\frac{b}{a}$ and $\alpha\beta = \frac{c}{a}$ Also $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = \frac{b^2 - 2ac}{a^2}$ Now, $\frac{\alpha}{a\beta+b} + \frac{\beta}{a\alpha+b}$ $=\frac{a(\alpha^2+\beta^2)+b(\alpha+\beta)}{\alpha\beta a^2+ab(\alpha+\beta)+b^2}$ $=\frac{a\left(\frac{b^2-2ac}{a^2}\right)+b\left(-\frac{b}{a}\right)}{\left(\frac{c}{a}\right)a^2+ab\left(-\frac{b}{a}\right)+b^2}=-\frac{2}{a}$ 419 (a) Let α and β be the roots of the equation

 $x^2 - bx + c = 0.$ $\Rightarrow \alpha + \beta = b$ and $\alpha\beta = c$ $\therefore \alpha - \beta = \sqrt{(\alpha + \beta)^2 - 4\alpha\beta}$ $\Rightarrow 1 = \sqrt{b^2 - 4c}$ $\Rightarrow b^2 - 4c - 1 = 0$ 420 (a) Since the graph of $y = 16 x^2 + 8(a+5)x - 7 a -$ 5 is strictly above the *x*-axis $\therefore y > 0$ for all x $\Rightarrow 16x^2 + 8(a+5)x - 7a - 5 > 0$ for all x $\Rightarrow 64(a+5)^2 + 64(7 a + 5) < 0$ [: Disc < 0] $\Rightarrow a^{2} + 10 a + 25 + 7 a + 5 < 0$ $\Rightarrow a^2 + 17 a + 30 < 0 \Rightarrow -15 < a < -2$ 421 (a) Let $f(x) = x^2 - 3x + a$ Clearly, y = f(x) represents a parabola opening upward It is given that 1 lies between the roots of f(x) = 0Discriminant > 0 and f(1) < 0 $\Rightarrow 9 - 4a > 0 \text{ and } 1 - 3 + a < 0$ $\Rightarrow a < \frac{9}{4}$ and $a < 2 \Rightarrow a < 2 \Rightarrow a \in (-\infty, 2)$ 422 (c) Let $z = \left(\frac{1+i}{\sqrt{2}}\right)^{2/3} = \left(\frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}}\right)^{2/3}$ $= \left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)^{2/3}$ $=e^{(i\pi/4)^{2/3}}=e^{i\pi/6}$ $=\cos(2n+1)\frac{\pi}{6}+i\sin(2n+1)\frac{\pi}{6}$ Put n = 1, $z = \cos\left(\frac{3\pi}{6}\right) + i\sin\left(\frac{3\pi}{6}\right) = 0 + i = i$ 423 (a) Since *u*, *v* are roots of $x^2 + px + q = 0$. Therefore, the equation whose roots are 1/u and 1/v is $\frac{1}{x^2} + \frac{p}{x} + q = 0 \text{ or, } qx^2 + px + 1 = 0$ 424 (a) Since, *a*, *b* and *c* are in GP $\therefore b^2 = ac$ Given, equation $ax^2 + 2bx + c = 0$ becomes $ax^2 + 2\sqrt{acx} + c = 0$ $\Rightarrow (ax + \sqrt{c})^2 = 0$ $\Rightarrow x = -\sqrt{\frac{c}{a}}$ (respected roots) Since, this root satisfy the second equation $dx^2 + 2cx + f = 0$ $\therefore d\frac{c}{a} - 2e\sqrt{\frac{c}{a}} + f = 0$

$$\Rightarrow \frac{d}{a} + \frac{f}{c} = \frac{2e}{c} \sqrt{\frac{c}{a}} = \frac{2e}{b} \quad (\because b = \sqrt{ac})$$

$$\Rightarrow \frac{d}{a} \cdot \frac{e}{b} \cdot \frac{f}{c} \text{ are in GP}$$
425 (b)
We know that for given z_1, z_2 , the equation
 $|z - z_1|^2 + |z - z_2|^2 = \lambda$ represents a circle, if
 $\lambda \ge \frac{1}{2} |z_1 - z_2|^2$
Therefore, the equation
 $|z - \omega|^2 + |z - \omega^2|^2 = \lambda$ will represent a circle, if
 $\lambda \ge \frac{1}{2} |\omega - \omega^2|^2$
 $\Rightarrow \lambda \ge \frac{1}{2} |i\sqrt{3}|^2 \Rightarrow \lambda \ge \frac{3}{2} \Rightarrow \lambda \in [3/2, \infty)$
426 (d)
Put $x^{1/3=} = y$, then
 $y^2 + y - 2 = 0$
 $\Rightarrow y = 1 \text{ or } y = -2$
 $\Rightarrow x^{1/3} = 1 \text{ or } x^{1/3} = -2$
 $\therefore x = (1)^3 \text{ or } x = (-2)^3 = -8$
Hence, the real roots of the given equation are
 $1, -8$
427 (b)
Let *AD* be the attitude of ΔABC . Then, *D* is the
mid-point of *BC*
Now,
 $\angle ADC = 90^\circ$
 $\Rightarrow \arg\left(\frac{z_1 - z_3}{2z_1 - z_2 - z_3}\right) = \pm \frac{\pi}{2}$
 $\Rightarrow \arg\left(\frac{z_2 - z_3}{2z_1 - z_2 - z_3}\right) = \pm \frac{\pi}{2}$
 $\Rightarrow \frac{z_2 - z_3}{(2z_1 - z_2 - z_3)}$ is purely imaginary
 $A(z)$
428 (d)
Let $z = x + iy \Rightarrow \overline{z} = x - iy$
Since, $\arg(z) = \tan^{-1}\left(\frac{-y}{x}\right)$
 $\Rightarrow \arg(z) \neq \arg(\overline{z})$
430 (d)
We know that the expression $ax^2 + bx + c > 0$
for all x , if $a > 0$ and $b^2 < 4ac$.
 $\therefore (a^2 - 1)x^2 + 2(a - 1)x + 2$ is positive for all x , if

 $a^2 - 1 > 0$ and $4(a - 1)^2 - 8(a^2 - 1) < 0$ $\Rightarrow a^2 - 1 > 0$ and -4(a - 1)(a + 3) < 0 $\Rightarrow a^2 - 1 > 0$ and (a - 1)(a + 3) > 0 $\Rightarrow a^2 > 1$ and a < -3 or a > 1 $\Rightarrow a < -3$ or a > 1431 (a) Given equation is $x^4 - 2x^3 + x - 380 = 0$ \Rightarrow $(x-5)(x+4)(x^2-1+19) = 0$ Now, roots of $x^2 - x + 19$ are $\frac{1 \pm \sqrt{1 - 4 \times 19}}{2} = \frac{1 \pm 5\sqrt{-3}}{2}$: Roots are 5, $-4, \frac{1+5\sqrt{-3}}{2}, \frac{1-5\sqrt{-3}}{2}$ 432 (a) $(2-\omega)(2-\omega^2)(2-\omega^{10})(2-\omega^{11})$ $= (2 - \omega)(2 - \omega^2)(2 - \omega)(2 - \omega^2)$ $= [(2 - \omega)(2 - \omega^2)]^2$ $= [4 - 2(\omega + \omega^2) + 1]^2 = (4 + 2 + 1)^2 = 49$ 433 (a) Let z = x + iy $\therefore |z-1| = |z-2| = |z-i|$ $\Rightarrow |(x-1) \pm iy| = |(x-2) + iy|$ = |x + i(y - 1)| [put z = x + iy] $\Rightarrow \quad x^2 - 2x + 1 + y^2 = x^2 + 4 - 4x + y^2$ $= x^{2} + y^{2} + 1 - 2y$ Taking Ist and IInd terms $-2x + 1 = 4 - 4x \quad \Rightarrow \quad 2x = 3$...(i) Taking IInd and IIIrd terms $4-4x = 1-2y \Rightarrow 4x-2y = 3$...(ii) Taking Ist and IIIrd terms $-2x + 1 = 1 - 2y \implies x = y$...(iii) From Eq. (i), $x = \frac{3}{2}$ From Eqs. (i) and (iii), $y = \frac{3}{2}$ On putting the value of *x* and *y* in Eq. (ii), we get $4\left(\frac{3}{2}\right) - 2\left(\frac{3}{2}\right) = 3 \implies 3 = 3$ \therefore One solution exists. 434 (d) Let $y = x^2$. Then, $x = \sqrt{y}$ $\therefore x^3 + 8 = 0$ $\Rightarrow y^{3/2} + 8 = 0 \Rightarrow y^3 = 64 \Rightarrow y^3 - 64 = 0$ Thus, the equation having roots α^2 , β^2 and γ^2 is $x^3 - 64 = 0$ 435 (a) Here, $\sin 18^\circ + \cos^2 36^\circ$ $= \left(\frac{\sqrt{5}-1}{4}\right)^4 + \left(\frac{\sqrt{5}+1}{4}\right)^2$ $=\frac{5+1-2\sqrt{5}}{16}+\frac{5+1+2\sqrt{5}}{16}$

 $=\frac{12}{16}=\frac{3}{4}$ And $\sin^2 18^\circ \cdot \cos^2 36^\circ = \left(\frac{\sqrt{5}-1}{4}\right)^2 \left(\frac{\sqrt{5}+1}{4}\right)^2$ $=\left(\frac{5-1}{4\times 4}\right)^2=\frac{1}{16}$ Required equation is $x^2 - (\text{sum of roots})x + (\text{products of roots}) = 0$ $\Rightarrow x^2 - \frac{3}{4}x + \frac{1}{16} = 0$ $\Rightarrow 16x^2 - 12x + 1 = 0$ 436 (b) We have, $z = (-i \omega)^5 + (i \omega^2)^5$ $\Rightarrow z = -i \omega^5 + i \omega^{10}$ $\Rightarrow z = -i \,\omega^2 + i \,\omega = -i(\omega^2 - \omega) = i^2 \sqrt{3} = -\sqrt{3}$ 437 **(b)** Given, $lx^2 + mx + n = 0$...(i) Now, $D = m^2 - 4ln = 0 \quad (\because m^2 = 4 \ln \text{ given})$ It means roots of given equation are equal $\therefore \left(x - \frac{9}{2}\right)^2 = 0$ $\Rightarrow 4x^2 + 81 - 36x = 0$...(ii) On comparing Eqs. (i) and (ii), we get l = 4, m = -36, n = 81: l + n = 4 + 81 = 85

438 (a)
Given,

$$\frac{x^3}{(2x-1)(x+2)(x-3)}$$

$$= A + \frac{B}{(2x-1)} + \frac{C}{(x+2)}$$

$$+ \frac{D}{(x-3)}$$
Let $f(x) = \frac{x^3}{(2x-1)(x+2)(x-3)}$

$$= \frac{x^3}{2x^3 - 3x^2 - 11x + 6}$$
Here, the power of x are same in Nr and Dr
 \therefore First we divide the numerator by denominator
 $2x^3 - 3x^2 - 11x + 6\frac{1/2}{x^3}$

$$x^3 - \frac{3}{2}x^2 - \frac{11}{2}x + 3$$

$$- + + -$$

$$\frac{3}{2}x^2 + \frac{11}{2}x - 3$$
 $\therefore \frac{x^3}{(2x-1)(x+2)(x-3)}$

$$= \frac{1}{2} + \frac{\frac{3}{2}x^2 + \frac{11}{2}x - 3}{(2x-1)(x+2)(x-3)}$$

$$\Rightarrow A = \frac{1}{2}$$
439 (c)
Given, a, β and γ are the roots of $x^3 + 4x + 1 = 0$
 $\therefore a + \beta + \gamma = 0, a\beta + \beta\gamma + \gamma a = 4, a\beta\gamma = -1$
Now, $\frac{a^2}{\beta^2 + \frac{\gamma^2}{\gamma^2 a}} + \frac{\gamma^2}{a+\beta} = \frac{a^2}{-a} + \frac{\beta^2}{-\beta} + \frac{\gamma^2}{-\gamma}$

$$= -(\alpha + \beta + \gamma) = 0$$

$$\frac{a^2\beta^2}{(\beta + \gamma)(\gamma + \alpha)} + \frac{\beta^2\gamma^2}{(\gamma + \alpha)(\alpha + \beta)}$$

$$+ \frac{\gamma^2\alpha^2}{(\beta + \gamma)(\alpha + \beta)}$$

$$= a\beta + \beta\gamma + \gamma\alpha = 4$$

And $\frac{a^2\beta^2\gamma^2}{(\beta + \gamma)(\gamma + \alpha)(\alpha + \beta)}$

$$= a\beta + \beta\gamma + \gamma\alpha = 4$$

And $\frac{a^2\beta^2\gamma^2}{(\beta + \gamma)(\gamma + \alpha)(\alpha + \beta)} = -\alpha\beta\gamma = 1$ ($\because \alpha + \beta + \gamma = 0$)
 \therefore Required equation is
 $x^3 + 4x - 1 = 0$
440 (d)
The given equation is
 $pqx^2 - (p + q)^2x + (p + q)^2 = 0$
 $\therefore x = \frac{(p + q)^2 \pm \sqrt{(p^2 - q^2)}}{2pq}$

$$\Rightarrow x = \frac{(p + q)^2 \pm (p^2 - q^2)}{2pq}$$

р

q

442 (b) x = a + b, $y = a\alpha + b\beta$ and $z = a\beta + b\alpha$ Now, $xyz = (a + b)(a\omega + b\omega^2)(a\omega^2 + b\omega)$, Where $\alpha = \omega$ and $\beta = \omega^2$ $\therefore xyz = (a+b)(a^2 + ab\omega^2 + ab\omega + b^2),$ $= (a + b)(a^2 - ab + b^2) = a^3 + b^3$ 443 (d) We have, $\cos (\beta - \alpha)$ $\cos \alpha$ 1 $\cos(\alpha-\beta)$ 1 $\cos \beta$ $\cos \beta$ $\cos \alpha$ 1 $= \begin{vmatrix} \cos \alpha & \sin \alpha & 0 \\ \cos \beta & \sin \beta & 0 \end{vmatrix} \begin{vmatrix} \cos \alpha & \sin \alpha & 0 \\ \cos \beta & \sin \beta & 0 \end{vmatrix}$ 011 0 0 0 = (0)(0) = 0 for all values of α , β 444 (a) $\frac{1+i}{1-i} = \frac{(1+i)^2}{1-i^2} = \frac{2i}{2} = i$ So, $\left(\frac{1+i}{1-i}\right)^n = (i)^n \Rightarrow n = 2$ 445 (c) We have the following cases: CASE I When $x \in [0, 1)$ In this cases, we have [x] = 0 $\therefore x^2 - 3x + [x] = 0$ $\Rightarrow x^2 - 3x = 0 \Rightarrow x = 0, 3 \Rightarrow x = 0$ <u>CASE II</u> When $x \in [1, 2)$ In this case, we have [x] = 1 $\therefore x^3 - 3x + [x] = 0 \Rightarrow x^2 - 3x + 1 = 0 \Rightarrow x$ $=\frac{3\pm\sqrt{5}}{2}$ Clearly, these values of *x* do not belong to [1, 2]. So, the equation has no solution in [1, 2)<u>CASE III</u> When $x \in [2,3)$ $\therefore x^2 - 3x + [x] = 0$ $\Rightarrow x^2 - 3x + 2 = 0 \Rightarrow x = 1, 2 \Rightarrow x = 2$ Hence, the given equation has two solutions only 446 (c) Roots of the equation $2x^2 + 3x + 5 = 0$ are $x = \frac{-3 \pm \sqrt{9-40}}{6}$ (imaginary roots) Hence, both roots coincide, so on comparing $\frac{a}{2} = \frac{b}{3} = \frac{c}{5} = k$ $\Rightarrow a = 2k, b = 3k, c = 5k$ $\Rightarrow a + b + c = 10k$ So, maximum value does not exist. 447 (a) We have, $x = \sqrt{1 + \sqrt{1 + \sqrt{1 + \dots \infty}}}$ $\Rightarrow x = \sqrt{1 + x}$ $\Rightarrow x^2 = 1 + x \Rightarrow x^2 - x - 1 = 0$

$$\Rightarrow x = \frac{1 \pm \sqrt{1 + 4}}{2} = \frac{1 \pm \sqrt{5}}{2}$$
As $x > 0$, we take only $x = \frac{1 + \sqrt{5}}{2}$.
448 (c)
The equation $|z - a^2| + |z - 2a| = 3$ represents
an ellipse having foci at $S(a^2, 0)$ and $S'(2a, 0)$ and
major axis 3. If e is the eccentricity of this ellipse,
then
 $e = \frac{SS'}{Major axis} \Rightarrow e = \frac{|a^2 - 2a|}{3}$
But, $0 < e < 1$
 $\therefore 0 < \frac{|a^2 - 2a| < 3}{3} < 1$
 $\Rightarrow |a^2 - 2a| < 3$
 $\Rightarrow -3 < a^2 - 2a < 3$
 $\Rightarrow a^2 - 2a + 3 > 0$ and $a^2 - 2a - 3 < 0$
 $\Rightarrow a \in R$ and $a \in (-1,3) \Rightarrow a \in (-1,3)$
But, $a > 0$. Therefore, $a \in (0,3)$
449 (d)
Let $y = \frac{(x-a)(x-b)}{(x-c)}$
 $\Rightarrow y(x - c) = x^2 - (a + b)x + ab$
 $\Rightarrow x^2 - (a + b + y)x + ab + cy = 0$
Now, discriminant
 $D = (a + b + y)^2 - 4(ab + cy)$
 $= y^2 + 2y(a + b - 2c) + (a - b)^2$
Since, x is real and y assumes all real values, we
must have $D \ge 0$ for all real values of y .
 $\Rightarrow 4(a + b - 2c)^2 - 4(a - b)^2 \le 0$
 $\Rightarrow 4(a + b - 2c)^2 - 4(a - b)^2 < 0$
 $\Rightarrow 4(a + b - 2c)^2 - 4(a - b)^2 = 0$
 $\Rightarrow 4(a + b - 2c)^2 - 4(a - b)^2 = 0$
 $\Rightarrow 16(a - c)(b - c) \le 0$
 $\Rightarrow (c - a)(c - b) \le 0$
450 (b)
rth term of the given series
 $= r[(r + 1) - \omega][(r + 1) - \omega^2]$
 $= r[(r + 1)^2 - (-1)(r + 1) + 1]$
 $= r(r^2 + 3r + 3) = r^3 + 3r^2 + 3r$
Thus, sum of the give series
 $\binom{n-1}{r=1} = \sum_{r=1}^{n-1} (r^3 + 3r^2 + 3r)$
 $= \frac{1}{4}(n - 1)^2n^2 + 3, \frac{1}{6}(n - 1)(n)(2n - 1)$
 $+ 3, \frac{1}{2}(n - 1)n$
 $= \frac{1}{4}(n - 1)n(n^2 + 3n + 4)$

451 (c)

The cube roots or unity are 1, ω , ω^2 . Let *P*, *Q* and *R* represent 1, ω and ω^2 respectively. Clearly,

 $b) \leq 0$

 $PQ = |1 - \omega| = \sqrt{\left(\frac{3}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2} = \sqrt{3}$ $QR = |\omega - \omega^2| = \sqrt{3}, \text{ and } RP = |1 - \omega^2| = \sqrt{3}$ $\therefore PQ = QR = RP$ Thus, points representing 1, ω , ω^2 form an equilateral triangle. <u>ALITER</u> Let $z_i = 1, z_2 = \omega$ and $z_3 = \omega^2$. Then, $z_1^2 + z_2^2 + z_2^3 = z_1 z_2 + z_2 z_3 + z_3 z_1$ Hence, points representing 1, ω , ω^2 form an equilateral triangle

452 **(a)**

The equation $2x^2 + 3x + 4 = 0$ has complex roots which always occur in pairs. So, the two equations have both roots common

$$\frac{a}{2} = \frac{b}{3} = \frac{c}{4} \Rightarrow a : b : c = 2 : 3 : 4$$

454 (d)

We have,

 $x^{2} - 3|x| + 2 = 0$ $\Rightarrow (|x| - 2)(|x| - 1) = 0 \Rightarrow |x| = 1, 2 \Rightarrow x$ $= \pm 1, \pm 2$

So, the given equation has four real roots

455 **(c)**

We have,

$$0 < |3x + 1| < \frac{1}{3}$$

$$\Rightarrow |3x + 1| \neq 0 \text{ and } |3x + 1| < \frac{1}{3}$$

$$\Rightarrow x \neq -\frac{1}{3} \text{ and } -\frac{1}{3} < 3x + 1 < \frac{1}{3}$$

$$\Rightarrow -\frac{1}{3} < 3x + 1 < \frac{1}{3} \text{ and } x \neq -\frac{1}{3}$$

$$\Rightarrow -\frac{4}{3} < 3x < -\frac{2}{3} \text{ and } x \neq -\frac{1}{3}$$

$$\Rightarrow -\frac{4}{9} < x < -\frac{2}{9} \text{ and } x \neq -\frac{1}{3}$$

$$\Rightarrow x \in \left(-\frac{4}{9}, -\frac{2}{9}\right) \text{ and } x \neq -\frac{1}{3} \Rightarrow x$$

$$\in \left(-\frac{4}{9}, -\frac{2}{9}\right) - \left\{-\frac{1}{3}\right\}$$

456 **(b)**

$$x^{\log_{x}(1-x)^{2}} = 9$$

 $\Rightarrow 9 = (1 - x)^{2}$ $\Rightarrow x^{2} - 2x - 8 = 0$ $\Rightarrow (x + 2)(x - 4) = 0$ $\Rightarrow x = 4 \qquad [\because x \neq -2]$ 457 (d)

 $x^{2} + ax + 1 \text{ must divide } ax^{3} + bx + c.$ Now, $\frac{ax^{3}+bx+c}{x^{2}+ax+1} = \frac{a(x-a)+(b-a+a^{3})x+c+a^{2}}{x^{2}+ax+1}$ Reminder must be zero $\Rightarrow b - a + a^{3} = 0, a^{2} + c = 0$ 458 (a)

Let OA, OB be the sides of an equilateral $\triangle OAB$ and let OA, OB represent the complex numbers z_1, z_2 respectively

From the equilateral $\triangle OAB$,

AB =
$$z_2 - z_1$$

∴ $\arg\left(\frac{z_2 - z_1}{z_2}\right) = \arg(z_2 - z_1) - \arg z_2 = \frac{\pi}{3}$
and $\arg\left(\frac{z_2}{z_1}\right) = \arg(z_2) - \arg(z_1) = \frac{\pi}{3}$
Also, $\left|\frac{z_2 - z_1}{z_2}\right| = 1 = \left|\frac{z_2}{z_1}\right|$, since triangle is
equilateral. Thus, the complex numbers $\frac{z_2 - z_1}{z_2}$ and
 $\frac{z_2}{z_1}$ have same modulus and same argument, which
implies that the numbers are equal, that is
 $\frac{z_2 - z_1}{z_2} = \frac{z_2}{z_1} \Rightarrow z_1 z_2 - z_1^2 = z_2^2$
 $\Rightarrow z_1^2 + z_2^2 = z_1 z_2$
459 (c)
Given equations are comparing with $ax^2 + bx + c = 0$
And $a'x^2 + b'x + c' = 0$ respectively, we get
 $a = 1, b = 2a, c = a^2 - 1$
And $a' = 1, b' = 2b, c' = b^2 - 1$
Condition for common roots is
 $(ac' - a'c)^2 = (bc' - b'c)(ab' - a'b)$
 $\Rightarrow [1(b^2 - 1) - 1(a^2 - 1)]^2$
 $= [2a(b^2 - 1) - 2b(a^2 - 1)][1(2b) - 1(2a)]$
 $\Rightarrow (b^2 - a^2)^2 = 4(b - a)(b - a)(ab + 1)$
 $\Rightarrow (b - a)^2 = 4$
 $\Rightarrow a - b = 2$
460 (c)
Multiplying $x^2 - ax + b = 0$ by $x^{n-1} x^{n+1} - ax^n + bx^{n-1} = 0 ...(i)$
 a, β are the roots of $x^2 - ax + b = 0$, therefore
they will satisfy Eq. (i)
Also, $a^{n+1} - aa^n + ba^{n-1} = 0$
Adding Eqs. (ii) and (iii), we get
 $(a^{n+1} + \beta^{n+1}) - a(a^n + \beta^n) + b(a^{n-1} + \beta^{n-1})$
 $= 0$

or $V_{n+1} - aV_n + bV_{n-1} = 0$

Page | 115

or $V_{n+1} = aV_n - bV_{n-1} = 0$ (Given $\alpha^n + \beta^n =$ V_n) 461 (d) Let z = x + 0i be a real root of the given equation. Then, $x^2 + \alpha x + \beta = 0$ $\Rightarrow x^2 + (a + ib)x + (c + id) = 0$, where $\alpha = a + ib, \beta = c + id$ $\Rightarrow (x^2 + ax + c) + i(bx + d) = 0$ $\Rightarrow x^2 + ax + c = 0$ and bx + d = 0 $\Rightarrow x^2 + ax + c = 0$ and $x = -\frac{d}{h}$ $\Rightarrow \frac{d^2}{h^2} - \frac{ad}{h} + c = 0$ $\Rightarrow d^2 - abd + b^2c = 0$ $\Rightarrow \left(\frac{\beta - \bar{\beta}}{2i}\right)^2 - \left(\frac{\alpha + \bar{\alpha}}{2}\right) \left(\frac{\alpha - \bar{\alpha}}{2i}\right) \left(\frac{\beta - \bar{\beta}}{2i}\right)$ $+\left(\frac{\alpha-\bar{\alpha}}{2i}\right)^2\left(\frac{\beta+\beta}{2}\right)=0$ $\Rightarrow -2(\beta - \bar{\beta})^2 + (\alpha + \bar{\alpha})(\alpha - \bar{\alpha})(\beta - \bar{\beta}) \\ - (\alpha - \bar{\alpha})^2(\beta + \bar{\beta}) = 0$ $\Rightarrow 2 \big(\beta - \bar{\beta}\big)^2 = (\alpha - \bar{\alpha}) \big\{ (\alpha + \bar{\alpha}) \big(\beta - \bar{\beta}\big)$ $-(\alpha - \bar{\alpha})(\beta + \bar{\beta}) = 0$ $\Rightarrow 2(\beta - \bar{\beta})^2 = (\alpha - \bar{\alpha})(-2\,\alpha\,\bar{\beta} + 2\,\bar{\alpha}\beta)$ $\Rightarrow \left(\beta - \bar{\beta}\right)^2 = (\bar{\alpha} - \alpha)(\alpha \bar{\beta} - \bar{\alpha} \beta)$ 462 (a) Given, $2^x \cdot 3^{x+4} = 7^x$ Taking log on both sides, we get $x \log_e 2 + (x + 4) \log_e 3 = x \log_e 7$ $\Rightarrow x(\log_e 2 + \log_e 3 - \log_e 7) = -4\log_e 3$ $\Rightarrow x = \frac{4\log_e 3}{\log_e 7 - \log_e 6}$ 463 (d) Here, $\alpha + \beta + \gamma = 0$, $\alpha\beta + \beta\gamma + \gamma\alpha = -8$, $\alpha\beta\gamma =$ -8 ...(i) $\therefore (\alpha + \beta + \gamma)^2 = 0$ $\Rightarrow \alpha^{2} + \beta^{2} + \gamma^{2} + 2(\alpha\beta + \beta\gamma + \gamma\alpha) = 0$ $\Rightarrow \Sigma \alpha^2 = -2(-8) = 16$ [from Eq. (i)] And $\frac{1}{\alpha\beta} + \frac{1}{\beta\gamma} + \frac{1}{\gamma\alpha} = \frac{\alpha + \beta + \gamma}{\alpha\beta\gamma}$ $\Rightarrow \frac{1}{\Sigma \alpha \beta} = \frac{0}{-8} = 0$ [from Eq. (i)] 464 (a) Let $y = \frac{x^2 - 2x + 4}{x^2 + 2x + 4}$ Then, $x^2(y-1) + 2x(y+1) + 4(y-1) = 0$ Since, *x* is real, therefore Discriminant, $4(y + 1)^2 - 16(y - 1)^2 \ge 0$ $\Rightarrow (y+1)^2 - [2(y-1)]^2 \ge 0$ $\Rightarrow (3-y)(3y-1) \ge 0 \Rightarrow \frac{1}{3} \le y \le 3$

465 (b)
Let
$$x = 2 + \frac{1}{2^{1} + \frac{1}{2^{1} + ... \infty}}}$$

 $\Rightarrow x = 2 + \frac{1}{x}$
 $\Rightarrow x^{2} - 2x - 1 = 0$
 $\Rightarrow x = \frac{2 \pm \sqrt{4 + 4}}{2}$
 $\Rightarrow x = 1 \pm \sqrt{2}$
But the value of the given expression cannot be
negative or less than 2, therefore $1 + \sqrt{2}$ is
required answer.
466 (b)
We have, $|z_{1}| = 1$
 $\therefore |\frac{z_{1} - z_{2}}{|1 - z_{1}z_{2}}| = \frac{|z_{1} - z_{2}|}{|z_{1}\overline{z}_{1} - z_{1}z_{2}|}$ [$\because 1$
 $= z_{1}\overline{z_{1}}|$
 $= \frac{|z_{1} - z_{2}|}{|z_{1}|\overline{z}_{1} - z_{2}|} = \frac{1}{|z_{1}|} = 1$
467 (b)
Since a, β are roots of $x^{2} + px + q = 0$
 $\therefore a + \beta = -p$ and $\alpha \beta = q$...(i)
Now,
 a, β are roots of $x^{2n} + p^{n}x^{n} + q^{n} = 0$
 $\Rightarrow a^{2n} - \beta^{2n} + p^{n}a^{n} - p^{n}\beta^{n} = 0$
 $\Rightarrow (a^{n} - \beta^{n})(a^{n} - \beta^{n}) + P^{n}(a^{n} - \beta^{n}) = 0$
 $\Rightarrow (a^{n} - \beta^{n})(a^{n} + \beta^{n} + p^{n}) = 0$
 $\Rightarrow a^{n} + \beta^{n} = -p^{n}$...(ii)
Since $\frac{a}{\beta}, \frac{a}{a}$ are roots of $x^{n} + 1 + (x + 1)^{n} = 0$
 $\therefore a^{n} + \beta^{n} + (\alpha + \beta)^{n} = 0$
 $\Rightarrow a^{n} + \beta^{n} = -(\alpha + \beta)^{n}$
 $\Rightarrow -p^{n} = (-p^{n}) = n$ is even
468 (a)
Given, $x = (\frac{1+i}{2})$
 $\Rightarrow 2x - 1 = i \Rightarrow 4x^{2} + 1 - 4x = -1$
 $\Rightarrow 2x^{2} - 2x + 1 = 0$
Since, $2x^{4} - 2x^{2} + x + 3$
 $= (2x^{2} - 2x + 1)(x^{2} + x) + (3 - x^{2})$
 $= 0 + 3 - (\frac{1 + i}{2})^{2}$
 $= 3 - (\frac{i}{2})$
469 (c)
Since, a, a^{2} be the roots of $x^{2} + x + 1 = 0$.

 $\therefore \alpha + \alpha^2 = -1$...(i)

and
$$a^{3} = 1$$
 ...(ii)
Now, $a^{31} + a^{62} = a^{31}(1 + a^{31})$
 $\Rightarrow a^{31} + a^{62} = (a^{3})^{10} \cdot a\{1 + (a^{3})^{10} \cdot a\}$
 $\Rightarrow a^{31} + a^{62} = a(1 + a) [from Eq. (ii)]$
 $\Rightarrow a^{31} + a^{62} = a^{(1)} + a^{(1)} [from Eq. (ii)]$
Again $a^{31} \cdot a^{62} = a^{93}$
 $a^{31} \cdot a^{62} = [a^{3}]^{31} = 1$
 \therefore Required equation is
 $x^{2} - (a^{31} + a^{62})x + a^{31} \cdot a^{62} = 0$
 $\Rightarrow x^{2} + x + 1 = 0$
470 (d)
Let the roots be a, a^{2} . Then,
 $a + a^{2} = 6/8 \Rightarrow a = 1/2, -3/2$
Now,
Product the roots $= -\frac{a+3}{8}$
 $\Rightarrow a^{3} = -\frac{a+3}{8}$ or, $-\frac{27}{8} = -\frac{a+3}{8}$
 $\Rightarrow a^{3} = -\frac{a+3}{8}$ or, $-\frac{27}{8} = -\frac{a+3}{8}$
 $\Rightarrow a = -4$ or, $a = 24$
471 (c)
We have,
 $x_{n} = \cos(\frac{\pi}{3n}) + i \sin(\frac{\pi}{3n})$
 $\therefore x_{1} x_{2} x_{3} \dots x_{\infty}$
 $= \cos(\frac{\pi/3}{1-1/3}) + i \sin(\frac{\pi/3}{1-1/3})$
 $= \cos(\frac{\pi/3}{1-1/3}) + i \sin(\frac{\pi/3}{1-1/3})$
 $= \cos(\frac{\pi}{2} + i \sin\frac{\pi}{2} = 0 + i = i$
472 (d)
Given, $z = i$
Let $z_{1} = 1 + i(1 \pm \sqrt{3})$ and $z_{2} = 2 + i$
Now, $|z_{2} - z| = |1 + i - i| = 2$
As we know that the distance from the centre to
every vertices is equal
Now, $|z_{1} - z| = |1 + i(1 \pm \sqrt{3}) - i|$
 $= |1 \pm i\sqrt{3}|$
 $= \sqrt{1^{2} + (\sqrt{3})^{2}} = 2$
473 (a)
Let $z = x + iy$
 \therefore Re $(\frac{x - iy + 2}{(x - 1) - iy} \times \frac{(x - 1) + iy}{(x - 1) + iy}] = 4$
 $\Rightarrow (x + 2)(x - 1) + y^{2} = 4[(x - 1)^{2} + y^{2}]$
 $\Rightarrow x^{2} + y^{2} - 3x + 2 = 0$, which represents a

circle 474 (c) Since the equation $a x^2 + b x + c = 0$ has no real roots. Therefore, the curve $y = ax^2 + bc + c$ does not intersect with *x*-axis. Consequently, $\phi(x) = a x^2 + b x + c$ has same sign for all values of *x*. It is given that a+b+c<0 $\Rightarrow \phi(1) = a + b + c < 0$ $\Rightarrow \phi(x) < 0$ for all $x \Rightarrow \phi(0) < 0 \Rightarrow c < 0$ 475 (a) $\therefore 2\sin^2\frac{\pi}{8} = 1 - \cos\frac{\pi}{4} = 1 - \frac{1}{\sqrt{2}} = \frac{\sqrt{2}-1}{\sqrt{2}}$ (irrational root) So, other root is $\frac{\sqrt{2}+1}{\sqrt{2}}$. Sum of roots = $-a = 1 - \frac{1}{\sqrt{2}} + 1 + \frac{1}{\sqrt{2}} = 2 \Rightarrow a =$ -2Product of roots = $1 - \frac{1}{2} = \frac{1}{2} = b$ So, $a - b = -2 - \frac{1}{2} = -\frac{5}{2}$ 476 (a) Given equation is $\alpha^2 + \alpha + 1 = 0$ $\therefore \quad \alpha = \frac{-1 \pm \sqrt{1-4}}{2} = \frac{-1 \pm \sqrt{3}i}{2}$ Let $\alpha = \omega, \omega^2$ 1. If $\alpha = \omega$, then $\alpha^{31} = (\omega)^{31} = \omega = \alpha$ 2. If $\alpha = \omega^2$, then $\alpha^{31} = (\omega^2)^{31} = \omega^{62} = \omega^2 = \alpha$ Hence, α^{31} is equal to α 477 (d) $z_1. z_2. z_3, \dots \infty$ $= \cos\left(\frac{\pi}{2} + \frac{\pi}{2^2} + \frac{\pi}{2^3} + \dots\right)$ $+ i \sin\left(\frac{\pi}{2} + \frac{\pi}{2^2} + \frac{\pi}{2^3} + \dots\right)$ $=\cos\left(\frac{\frac{\pi}{2}}{1-\frac{1}{2}}\right)+i\sin\left(\frac{\frac{\pi}{2}}{1-\frac{1}{2}}\right)$ $=\cos \pi + i\sin \pi = -1$ 478 (c) Given, $\alpha_1 = |-i| = 1$ $\alpha_2 = \left|\frac{1}{3}(1+i)\right| = \frac{1}{3}\sqrt{2}$ and $\alpha_3 = |-1 + i| = \sqrt{2}$ \therefore The increasing order is $\alpha_2, \alpha_1, \alpha_3$

479 **(b)**

We have,

$$\frac{2x+4}{x-1} \ge 5$$

$$\Rightarrow \frac{2x+4-5x+5}{x-1} \ge 0 \Rightarrow \frac{x-3}{x-1} \le 0 \Rightarrow x \in (1,3]$$
480 (b)
We have,

$$x^{2} - x(a+b) + ab = ax + bx - 2ab$$

$$\Rightarrow x^{2} - 2x(a+b) + 3ab = 0$$
Since the roots are equal in magnitude but
opposite in sign

$$\therefore Sum of the roots = 0 \Rightarrow 2(a+b) = 0 \Rightarrow a + b = 0$$
481 (a)
Given equation is

$$x^{3} - 3x - 2 = 0 \Rightarrow (x+1)(x^{2} - x - 2) = 0$$

$$\Rightarrow (x+1)(x+1)(x-2) = 0$$

$$\Rightarrow x = -1, -1, 2$$
482 (c)
Let p, q be the roots of the given equation. Then,

$$p^{2} + q^{2} = (p+q)^{2} - 2pq$$

$$\Rightarrow p^{2} + q^{2} = (\sin \alpha - 2)^{2} + 2(1 + \sin \alpha)$$

$$\Rightarrow p^{2} + q^{2} = (\sin \alpha - 2)^{2} + 2(1 + \sin \alpha)$$

$$\Rightarrow p^{2} + q^{2} = \sin^{2} \alpha - 2 \sin \alpha + 6 = (\sin \alpha - 1)^{2} + 5$$
Clearly, $p^{2} + q^{2}$ is last when

$$\sin \alpha - 1 = 0 \Rightarrow \sin \alpha = 1 \Rightarrow \alpha = \pi/2$$
483 (c)

$$\left(\frac{-1 + \sqrt{-3}}{2}\right)^{100} + \left(\frac{-1 - \sqrt{-3}}{2}\right)^{100}$$

$$= \omega^{100} + \omega^{200} = \omega + \omega^{2} = -1$$
484 (b)
Since roots of the given equation are of opposite
signs. Therefore,
Product of roots < 0

$$\Rightarrow \frac{p(p-1)}{3} < 0 \Rightarrow p(p-1) < 0 \Rightarrow p \in (0,1)$$
485 (c)
Given, $(x - a)(x - a - 1) + (x - a - 1)(x - a - 2x - ax - a - 2=0)$
Let $x - a = t$, then
 $t(t - 1) + (t - 1)(t - 2) + t(t - 2) = 0$

$$\Rightarrow t^{2} - t + t^{2} - 3t + 2 + t^{2} - 2t = 0$$

$$\Rightarrow 3t^{2} - 6t + 2 = 0$$

$$\Rightarrow t = \frac{6 \pm \sqrt{36} - 24}{2(3)} = \frac{6 \pm 2\sqrt{3}}{2(3)}$$

$$\Rightarrow x - a = \frac{3 \pm \sqrt{3}}{3}$$
Hence, x is real and distinct

486 (a) We have, $z + z^{-1} = 1 \Rightarrow z^2 - z + 1 = 0 \Rightarrow z = -\omega, -\omega^2$ For $z = -\omega$, we have $z^n + z^{-n} = (-\omega)^n + (-\omega)^{-n}$ $\Rightarrow z^n + z^{-n} = (-1)^n \left(\omega^n + \frac{1}{\omega^n} \right)$ $\Rightarrow z^n + z^{-n} = (-1)^n (\omega^n + \omega^{2n})$ $\Rightarrow z^n + z^{-n}$ $=\begin{cases} (-1)^n \times -1, & \text{if, } n \text{ is not a multiple of 3} \\ 2(-1)^n, & \text{if } n \text{ is a multiple of 3} \end{cases}$ $\Rightarrow z^n + z^{-n}$ $=\begin{cases} (-1)^{n-1}, & \text{if } n \text{ is not a multiple of 3} \\ 2(-1)^n, & \text{if } n \text{ is a multiple of 3} \end{cases}$ Since ω and ω^2 are reciprocal of each other and $z^n + z^{-n}$ does not change when z is replaced by $\frac{1}{z}$. Therefore, the value of $z^n + z^{-n}$ remains same for $z = -\omega^2$ 487 (a) We have. $x^3 + a^3 = 0 \Rightarrow x^3 = -a^3 \Rightarrow -a, -a \omega, -a \omega^2,$ where ω is a complex cube root of unity Let $\alpha = -\alpha$, $\beta = -a \omega$ and $\gamma = -a \omega^2$. Then, $\left(\frac{\alpha}{\beta}\right)^2 = \left(\frac{-a}{a\,\omega}\right)^2 = \omega$ and, $\left(\frac{\alpha}{\nu}\right)^2 = \left(\frac{-a}{-a\,\omega^2}\right)^2 = \omega^2$ The equation whose roots are $\left(\frac{\alpha}{\alpha}\right)^2 = \omega$ and $\left(\frac{\alpha}{\gamma}\right)^2 = \omega^2$ is $x^2 + x + 1 = 0$ For other combinations of α , β and γ we obtain the same equation. Hence, there is only one equation 488 (b) $|z| = \left| \left(z - \frac{4}{z} \right) + \frac{4}{z} \right|$ $\Rightarrow |z| \le \left|z - \frac{4}{z}\right| + \frac{4}{|z|}$ $\Rightarrow |z| \le 2 + \frac{4}{|z|}$ $\Rightarrow \qquad \left(|z|^2 - \left(\sqrt{5} + 1\right)\right) \left(|z| - \left(1 - \sqrt{5}\right)\right) \le 0$ $\Rightarrow \quad 1 - \sqrt{5} \le |z| \le \sqrt{5} + 1$ 489 (c) $z\bar{z} = |z|^2 = 0$ (given) $\Rightarrow |z| = 0 \Rightarrow z = 0$ 490 (c) Since, $\bar{z} + i\bar{w} = 0 \implies \bar{z} = -i\bar{w}$ \Rightarrow z = -iw \Rightarrow w = -izAlso, $\arg(zw) = \pi \implies \arg(-iz^2) = \pi$

 $\Rightarrow \arg(-i) + 2\arg(z) = \pi$

Page | 118

$$\Rightarrow -\frac{\pi}{2}$$

$$+ 2 \arg(z)$$

$$= \pi \qquad [: \arg(-i) = -\frac{\pi}{2}]$$

$$\Rightarrow 2 \arg(z) = \frac{3\pi}{2}$$

$$\Rightarrow \arg(z) = \frac{3\pi}{4}$$
491 (c)
Since, *n* is not a multiple of 3, therefore $n = 3m + 1$, $n = 3m + 2$, where *m* is a positive integer.
For $n = 3m + 1$, $1 + \omega^n + \omega^{2n} = 1 + \omega^{3m+1} + \omega^{2(3m+1)}$

$$= 1 + \omega^{3m} + (\omega^3)^{2m} \omega^2 = 1 + \omega + \omega^2 = 0$$
Similarly, for $n = 3m + 2$

$$\therefore 1 + \omega^n + \omega^{2n} = 1 + \omega^{3m+2} + \omega^{2(3m+2)}$$

$$= 1 + \omega^{3m} . \omega^2 + (\omega^3)^{2m} . \omega^3 . \omega = 0$$
[: $\omega^3 = 1$]
492 (a)
Let the roots of $x^2 - 6x + a = 0$ be $\alpha, 4\beta$ and that of $x^2 - cx + 6 = 0$ be $\alpha, 3\beta$

$$\therefore \alpha + 4\beta = 6$$
 and $4\alpha\beta = a$
And $\alpha + 3\beta = c$ and $3\alpha\beta = 6$

$$\Rightarrow \frac{a}{6} = \frac{4}{3} \Rightarrow a = 8$$

$$\therefore x^2 - 6x + 8 = 0 \Rightarrow x = 2, 4$$

And $x^2 - cx + 6 = 0$ $\Rightarrow 2^2 - 2c + 6 = 0 \Rightarrow c = 5$

$$\therefore x^2 - 5x + 6 = 0$$

$$\Rightarrow x = 2, 3$$

Hence, common root is 2
493 (c)
Given, $\frac{|x+(y+1)i|}{|x+(y-1)i|} = \sqrt{3}$

$$\Rightarrow x^2 + (y + 1)^2 = 3[x^2 + (y - 1)^2]$$

$$\Rightarrow x^2 + y^2 - 4y + 1 = 0$$

On comparing with
 $x^2 + y^2 + 2gx + 2fy + c = 0$, we get
 $g = 0, f = -2, c = 1$

$$\therefore$$
 Radius of
circle= $\sqrt{g^2 + f^2 - c} = \sqrt{(-2)^2 - 1} = \sqrt{3}$
494 (a)
We have,
sin $\alpha + \cos \alpha = -\frac{q}{p}$ and sin $\alpha \cos \alpha = \frac{r}{p}$

$$\Rightarrow 1 + 2 \sin \alpha \cos \alpha = \frac{q^2}{p^2}$$
 and sin $\alpha \cos \alpha = \frac{r}{p}$

$$\Rightarrow 1 + 2 \sin \alpha \cos \alpha = \frac{q^2}{p^2}$$
 and sin $\alpha \cos \alpha = \frac{r}{p}$

$$\Rightarrow 1 + \frac{2r}{p} = \frac{q^2}{p^2} \Rightarrow p^2 - q^2 + 2pr = 0$$

The equation is meaningful for $x \neq 1$ Who $n \gamma \neq 1 v$ vo h

when
$$x \neq 1$$
, we have,

$$\frac{2x-3}{x-1} + 1 = \frac{6x^2 - x - 6}{x-1}$$

$$\Rightarrow 3x - 4 = 6x^2 - x - 6$$

$$\Rightarrow 6x^2 - 4x - 2 = 0$$

$$\Rightarrow 3x^2 - 2x - 1 = 0$$

$$\Rightarrow (3x + 1)(x - 1) = 0 \Rightarrow x = -\frac{1}{3} \quad [\because x \neq 1]$$
496 (b)
 $S = 1 + 3\alpha + 5\alpha^2 + ... + (2n - 1)\alpha^{n-1} ...(i)$

$$\Rightarrow \alpha S = \alpha + 3\alpha^2 + 5\alpha^3 + ... + (2n - 1)\alpha^n ...(ii)$$
On subtracting Eq.(ii) from Eq.(i), we get
 $(1 - \alpha)S = 1 + 2\alpha + 2\alpha^2 + ... + 2\alpha^{n-1}$
 $-(2n - 1)\alpha^n$

$$= 2(1 + \alpha + \alpha^2 + ... + \alpha^{n-1}) - 1 - (2n - 1)\alpha^n$$

$$= \frac{2(1 - \alpha)}{1 - \alpha} - 2n = -2n \quad (\because a^n = 1)$$

$$\Rightarrow S = \frac{-2n}{(1 - \alpha)}$$
497 (c)
We have, $(\frac{3+2i\sin\theta}{1-2i\sin\theta}) = \frac{(3+2i\sin\theta)(1+2i\sin\theta)}{(1-2i\sin\theta)(1+2i\sin\theta)}$
 $= (\frac{3 - 4\sin^2\theta}{1 + 4\sin^2\theta}) + i(\frac{8\sin\theta}{1 + 4\sin^2\theta})$
Since, it is real therefore Im (z) should be zero

$$\Rightarrow \frac{8\sin\theta}{1 + 4\sin^2\theta} = 0 \Rightarrow \sin\theta = 0$$
 $\therefore \theta = n\pi$, where $n = 0, 1, 2, 3, ...$
498 (c)
We have,
 $x^4 + x^3 - 4x^2 + x + 1 = 0$
 $\Rightarrow (x^4 - 2x^2 + 1) + x(x^2 - 2x + 1) = 0$
 $\Rightarrow (x^2 - 1)^2 + x(x - 1)^2 = 1$
 $\Rightarrow (x - 1)^2((x + 1)^2 + x) = 0$
 $\Rightarrow (x - 1)^2(x^2 + 3x + 1) = 0$
 $\Rightarrow x = 1$ (twice), $x = -\frac{3 \pm \sqrt{5}}{2}$
Thus, the given equation has two integral roots
499 (b)
Area of the triangle on the argand palne formed
by the complex numbers $-z, iz, z - iz$ is $\frac{3}{2}|z|^2$
 $\therefore \frac{3}{2}|z|^2 = 600 \Rightarrow |z| = 20$
500 (a)
 $\frac{3x^2+1}{x^2-6x+8} = 3 + \frac{18x-23}{x^2-6x+8}$ [On dividing] ...(i)
Now, $\frac{18x-23}{x^2-6x+8} = (0 - 4) + B(x - 2)$

 $\Rightarrow 18x - 23 = (A + B)x - 4A - 2B$

On equating the coefficient of x and constant

term, we get

$$A + B = 18$$

And $-4A - 2B = -23$
On solving these equations, we get
 $A = -\frac{13}{2}$, $B = \frac{49}{2}$
 $\therefore \frac{18x - 23}{(x - 2)(x - 4)} = -\frac{13}{2(x - 2)} + \frac{49}{2(x - 4)}$
Then, from Eq. (i), we get
 $\frac{3x^2 + 1}{x^2 - 6x + 8}$
 $= 3 - \frac{13}{2(x - 2)} + \frac{49}{2(x - 4)}$
501 **(b)**
Since $x - c$ is a factor of order m of the
polynomial $f(x)$
 $\therefore f(x) = (x - c)^m \Phi(x)$, where $\Phi(x)$ is a
polynomial of degree $n - m$
 $\Rightarrow f(x), f'(x) \dots f^{m-1}(x)$ are all zero for $x = c$ but
 $f^m(x) \neq 0$ at $x = c$
 $\Rightarrow x = c$ is root of $f(x), f'(x), \dots, f^{m-1}(x)$
502 **(b)**
Let $f(x) = (ax^2 + bx + c)(ax^2 - dx - c)$
 $\Rightarrow D_1 = b^2 - 4ac$ and $D_2 = d^2 + 4ac$
 $\Rightarrow D_1 + D_2 = b^2 - 4ac + d^2 + 4ac$
 $= b^2 + d^2 \ge 0$
 \therefore At least one of D_1 and D_2 is positive
Hence, the polynomial has at least two real roots
503 **(d)**
One of the roots of the given equation is $x = 1$, as
the sum of the coefficients is zero
504 **(d)**
Given, $|x^2 - x - 6| = x + 2$
Now, we have to consider two cases,
Case I When $x \le - \text{ or } x \ge 3$
 $\Rightarrow x^2 - x - 6 = x + 2$
 $\Rightarrow x^2 - 2x - 8 = 0 \Rightarrow x = -2, 4$
Case II When $-2 < x < 3$
 $\Rightarrow -(x^2 - x - 6) = x + 2 \Rightarrow x^2 = 4 \Rightarrow x = \pm 2$
Hence, the roots are $(-2, 2, 4)$
505 **(c)**
Let *ABC* be an equilateral triangle such that the
affixes of the vertices A, B and C are z_1, z_2 and z_3
respectively. Let the circumcentre of $\triangle ABC$ be at
the origin. Then, $OA = z_1, OB = z_2$ and $OC = z_3$
Now,
 $OB = OA e^{i2\pi/3}$ and $OC = OA e^{i4\pi/3}$
 $\Rightarrow z_2 = z_1e^{i2\pi/3}$ and $Z_3 = z_1e^{i4\pi/3}$
 $\Rightarrow z_2 = z_1e^{i2\pi/3}$ and $Z_3 = z_1e^{i4\pi/3}$
 $\Rightarrow z_1 + z_2 + z_3 = z_1(1 + \omega + \omega^2) = z_1 \times 0 = 0$
505 **(a)**

Let α be the common roots to the equations $x^{2} - kx - 21 = 0$ and $x^{2} - 3kx + 35 = 0$ $\therefore \alpha^2 - k\alpha - 21 = 0$ and $\alpha^2 - 3k\alpha + 35 = 0$ Now, by cross multiplication method, we get $\frac{\alpha^2}{(-35k-63k)} = \frac{\alpha}{(-21-35)} = \frac{1}{(-3k+k)}$ $\Rightarrow \frac{\alpha^2}{-98k} = \frac{\alpha}{-56} = \frac{1}{-2k}$ $\Rightarrow \frac{\alpha^2}{-98k} = \frac{1}{-2k} \Rightarrow \alpha^2 = 49 \quad \dots(i)$ And $\frac{\alpha}{-56} = -\frac{1}{2k} \Rightarrow \alpha = \frac{28}{k} \quad \dots(ii)$ From Eqs. (i) and (ii), $\frac{28 \times 28}{k^2} = 49$ $\Rightarrow k^2 = 16$ $\Rightarrow k = \pm 4$ 507 (d) $\{(1 - \cos \theta) + i. 2 \sin \theta\}^{-1}$ $=\left(2\sin^2\frac{\theta}{2}+i.4\sin\frac{\theta}{2}\cos\frac{\theta}{2}\right)^{-1}$ $=\left(2\sin\frac{\theta}{2}\right)^{-1}\left(\sin\frac{\theta}{2}+i2\cos\frac{\theta}{2}\right)^{-1}$ $= \left(2\sin\frac{\theta}{2}\right)\frac{1}{\sin\frac{\theta}{2} + i\,2\cos\frac{\theta}{2}} \times \frac{\sin\frac{\theta}{2} - i2\cos\frac{\theta}{2}}{\sin\theta - i\,2\cos\frac{\theta}{2}}$ $=\frac{\sin\frac{\theta}{2}-2\,i\cos\frac{\theta}{2}}{2\sin\frac{\theta}{2}\left(\sin^{2}\frac{\theta}{2}+4\cos^{2}\frac{\theta}{2}\right)}$ $=\frac{\sin\frac{\theta}{2}-2i\cos\frac{\theta}{2}}{2\sin\frac{\theta}{2}\left(1+3\cos^{2}\frac{\theta}{2}\right)}$ ∴ It's real part is $\frac{\sin\frac{\theta}{2}}{2\sin\frac{\theta}{2}\left(1+3\cos^2\frac{\theta}{2}\right)} = \frac{1}{2\left\{1+3\left(\frac{\cos\theta+1}{2}\right)\right\}}$ $=\frac{1}{5+3\cos\theta}$ 508 (c) Given, $x = \frac{1}{2} \left(\sqrt{7} + \frac{1}{\sqrt{7}} \right)$ $\Rightarrow x^{2} = \frac{1}{4} \left(7 + \frac{1}{7} + 2 \right) = \frac{16}{7}$ Now, $\frac{\sqrt{x^2-1}}{x-\sqrt{x^2-1}} = \frac{\sqrt{x^2-1}}{x-\sqrt{x^2-1}} \times \frac{(x+\sqrt{x^2-1})}{(x+\sqrt{x^2-1})}$ $=\frac{x\sqrt{x^2-1}+x^2-1}{1}$ $=\frac{1}{2}\left(\sqrt{7}+\frac{1}{\sqrt{7}}\right)\sqrt{\frac{16}{7}-1}+\frac{16}{7}-1$ $=\frac{1}{2}\left(\sqrt{7}+\frac{1}{\sqrt{7}}\right)\times\frac{3}{\sqrt{7}}+\frac{9}{7}$ $=\frac{1}{2}\left(3+\frac{3}{7}\right)+\frac{9}{7}$

= 3509 (a) Let the roots are α , β , so $\alpha + \beta = \frac{-b}{a}$ and $\alpha\beta = \frac{c}{a}$ Now, $\frac{1}{\alpha^2} + \frac{1}{\beta^2} = \frac{\alpha^2 + \beta^2}{\alpha^2 \beta^2}$ $=\frac{(\alpha+\beta)^2-2\alpha\beta}{(\alpha\beta)^2}$ $=\frac{\frac{b^2}{a^2} - \frac{2c}{a}}{\frac{c^2}{a}} = \frac{b^2 - 2ac}{c^2}$ Also, $\alpha + \beta = \frac{1}{\alpha^2} + \frac{1}{\beta^2}$ [given] $\Rightarrow -\frac{b}{a} = \frac{b^2 - 2ac}{c^2}$ $\Rightarrow -bc^2 = ab^2 - 2a^2c$ $\Rightarrow 2a^2c = ab^2 + bc^2$ $\Rightarrow ab^2, ca^2, bc^2$ Or bc^2 , ca^2 , ab^2 are in AP 510 (d) Let roots of the equation $ax^2 + bx + c = 0$ are α and β

$$\therefore \alpha + \beta = -\frac{b}{a} \text{ and } \alpha\beta = \frac{c}{a}$$
Now, $\frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha\beta}$

$$= \frac{-\frac{b}{a}}{\frac{c}{a}} = \frac{-b}{c}$$
And $\frac{1}{\alpha} \times \frac{1}{\beta} = \frac{1}{\frac{c}{a}} = \frac{a}{c}$

$$\therefore \text{ Required equation is}$$
 $x^{2} - \left(-\frac{b}{c}\right)x + \frac{a}{c} = 0$

$$\Rightarrow cx^{2} + bx + a = 0$$

Alternate To find the equation of reciprocal rots, interchange the coefficients of x^2 and constant term in the given equation then required equation is $cx^2 + bx + a = 0$

511 (a)

Let α be a root of the equation $ax^2 + bx + c = 0$. Then, $1/\alpha$ is a root of $a_1x^2 + b_1x + c_1 = 0$ $\Rightarrow a \alpha^2 + b \alpha + c = 0$... (i) and, $\frac{a_1}{\alpha^2} + \frac{b_1}{\alpha} + c_1 = 0 \Rightarrow c_1\alpha^2 + b_1\alpha + a_1$ = 0 ... (ii) from (i) and (ii), we have $\frac{\alpha^2}{ba_1 - b_1c} = \frac{\alpha}{cc_1 - aa_1} = \frac{1}{ab_1 - c_1b}$ $\Rightarrow \alpha^2 = \frac{ba_1 - b_1c}{ab_1 - c_1b'}, \alpha = \frac{cc_1 - aa_1}{ab_1 - c_1b}$ Now, $\alpha^2 = (\alpha)^2 \Rightarrow (ba_1 - b_1c)(ab_1 - c_1b) = (cc_1 - aa_1)^2$ 512 **(b)** We have, $z = (-1)^{1/7}, z \neq -1 \Rightarrow z^7 = -1$ $\therefore z^{86} + z^{175} + z^{289}$ $= (z^7)^{12}z^2 + (z^7)^{25} + (z^7)^{41}z^2 = z^2 - 1 - z^2$ = -1

513 **(b)**

Since, α and β the roots of the equation $x^2 - x - 1 = 0$ $\therefore \alpha + \beta = 1$ and $\alpha\beta = -1$ Hence, AM of A_{n-1} and $A_n = \frac{A_{n-1} + A_n}{2}$ $= \frac{\alpha^{n-1} + \beta^{n-1} + \alpha^n + \beta^n}{2}$ $= \frac{\alpha^{n-1} (1 + \alpha) + \beta^{n-1} (1 + \beta)}{2}$ $= \frac{\alpha^{n-1} \cdot \alpha^2 + \beta^{n-1} \beta^2}{2}$ $= \frac{1}{2} (\alpha^{n+1} + \beta^{n+1})$ $= \frac{1}{2} A^{n+1}$ (c)

515 (c)

It is given that

$$|z + 4| \le 3$$

 $\therefore |z + 1| = |z + 4 - 3|$
 $\Rightarrow |z + 1| \le |z + 4| + |3| \le 3 + 3$ [:: $|z + 4|$
 ≤ 3]

Hence, the greatest value of |z + 1| is 6 Since the least value of the modulus of a complex number is zero

 $\therefore |z + 1| = 0 \Rightarrow z = -1$ $\Rightarrow |z + 4| = |-1 + 4| = 3$ $\Rightarrow |z + 4| \le 3 \text{ is satisfied by } z = -1$ Therefore, the least value of |z + 1| is 0 <u>ALITER</u> Here, we have to find the greatest and least of distances of all points lying inside or the circle from the point A(-1, 0). It is evident from the Fig. S.3, that the greatest distance is 6 when *P* coincides with *B* and the least distance is 0 when *P* coindies with *A*

516 **(d)** $\frac{z-1}{2z+1} = \frac{(x)}{(2x)^2}$

$$\frac{z-1}{z+1} = \frac{(x-1)+iy}{(2x+1)+2iy} \times \frac{(2x+1)-2iy}{(2x+1)-2iy}$$

 ${(x+1)(2x+1)+2y^2}$ + $=\frac{iy\{-2x+2+2x+1\}}{(2x+1)^2+4y^2}$ Given, $\operatorname{Im}\left(\frac{z-1}{2z+1}\right) = -4$ $\frac{3y}{(2x+1)^2+4y^2} = -4$:. $\Rightarrow 16x^2 + 16y^2 + 16x + 3y + 4 = 0$ \therefore The locus of z is a circle. 517 (b) Let $z_1 = \frac{w - \overline{w_z}}{1 - z}$ be purely real $\Rightarrow \quad \begin{aligned} z_1 &= \bar{z_1} \\ \vdots &\quad \frac{w - \bar{w}z}{1 - z} = \frac{\bar{w} - w\bar{z}}{1 - \bar{z}} \end{aligned}$ $v - w\bar{z} - \bar{w}z + \bar{w}z \bar{z}$ ⇒ $= \overline{w} - z\overline{w} - w\overline{z} + wz\overline{z}$ $\Rightarrow (w - \overline{w}) + (\overline{w} - w)|z|^2 = 0$ \Rightarrow $(w - \overline{w}) + (1 - |z|^2) = 0$ $\Rightarrow |z|^2 = 1$ [as, $w - \overline{w} \neq 0$, since $\beta \neq 0$] |z| = 1 and $z \neq 1$ ⇒ 518 (d) Since, (x - 2) is a common factor of the expressions $x^2 + ax + b$ and $x^2 + cx + d$ \Rightarrow 4 + 2a + b = 0 ...(i) and 4 + 2c + d = 0 ...(ii) $\Rightarrow 2a + b = 2c + d$ $\Rightarrow b - d = 2(c - a)$ $\Rightarrow \frac{b-d}{c-a} = 2$ 519 (c) Since, $\alpha_0, \alpha_1, \alpha_2, \dots, \alpha_{n-1}$ are n^{th} roots of unity. Therefore. $x^{n} - 1 = (x - \alpha_{0})(x - \alpha_{1}) \dots (x - \alpha_{n} - 1)$ $\Rightarrow \log(x^n - 1) = \log(x - \alpha_0)$ $+\log(x-\alpha_1)+\cdots$ $+\log(x-\alpha_{n-1})$ Differentiating both sides w.r.t. *x*, we get $\frac{nx^{n-1}}{x^n - 1} = \frac{1}{3 - \alpha_0} + \frac{1}{x - \alpha_1} + \dots + \frac{1}{x - \alpha_{n-1}}$ Putting x = 3 on both sides, we get $\frac{n3^{n-1}}{3^n-1} = \frac{1}{3-\alpha_0} + \frac{1}{3-\alpha_1} + \dots + \frac{1}{3-\alpha_{n-1}} \dots (i)$ Now $\sum_{i=1}^{n-1} \frac{\alpha_i}{3-\alpha_i} = -\sum_{i=1}^{n-1} \frac{\{(3-\alpha_i)-3\}}{(3-\alpha_i)}$ $\Rightarrow \sum_{i=1}^{n-1} \frac{\alpha_i}{3 - \alpha_i} = -\sum_{i=1}^{n-1} 1 + 3\sum_{i=1}^{n-1} \frac{1}{3 - \alpha_i}$

 $\Rightarrow \sum_{i=0}^{n-1} \frac{\alpha_i}{3 - \alpha_i} = -n + 3$ $\times \frac{n \, 3^{n-1}}{3^n - 1}$ [Using (i)] $\Rightarrow \sum_{i=1}^{n-1} \frac{\alpha_i}{3 - \alpha_i} = -n + n \frac{3^n}{3^n - 1} = \frac{n}{3^n - 1}$ 520 (c) Let α , β be the roots of $x^2 - px + q^2 = 0$ and γ , δ be the roots of $x^2 - rx + s^2 = 0$. Then, $\alpha + \beta = p \text{ and } \gamma \delta = s^2 \Rightarrow \frac{\alpha + \beta}{2} = \frac{p}{2} \text{ and } \sqrt{\gamma \delta} = |s|$ It is given that $\frac{\alpha+\beta}{2} = \sqrt{\gamma \delta}$ $\Rightarrow \frac{p}{2} = |s| \Rightarrow p = 2|s| \Rightarrow p$ is an even integer 521 (a) Let the rots of the equation be α , β , γ . Also, $\alpha = -\beta$ [given] $\therefore \ \alpha + \beta + \gamma = p \ \Rightarrow \ -\beta + \beta + \gamma = p$ $\Rightarrow \gamma = p$...(i) Now, since γ is a root of the equation. \therefore It satisfies the given equation $\Rightarrow \gamma^3 - p\gamma^2 + q\gamma - r = 0$ $\Rightarrow p^3 - pp^2 + pq - r = 0$ [from Eq. (i)] $\Rightarrow r = pq$ 522 (c) Here, $\alpha + \beta = -\frac{b}{a}$, $\alpha\beta = \frac{c}{a}$ But given that $\beta = \alpha^{1/3}$ $\therefore \alpha + \alpha^{1/3} = -\frac{b}{a}$ and $\alpha \cdot \alpha^{1/3} = \frac{c}{a}$ $\Rightarrow \alpha^{4/3} = \frac{c}{a} \Rightarrow \alpha = \left(\frac{c}{a}\right)^{3/4}$ $\therefore \ \alpha + \alpha^{1/3} = -\frac{b}{a}$ $\Rightarrow \left(\frac{c}{a}\right)^{3/4} + \left(\frac{c}{a}\right)^{1/4} = -\frac{b}{a}$ $\Rightarrow (ac^3)^{1/4} + (a^3c)^{1/4} + b = 0$ 523 (a) From figure it is clear that, if a > 0, then f(-1) < 0 and f(1) < 0 and if a < 0, f(-1) > 0and f(1) > 0. In both cases af(-1) < 0 and af(1) < 0

524 (c)

Since the diagonals of a rhombus bisect each other at right-angle

$$\therefore \frac{z_1 + z_3}{2} = \frac{z_2 + z_4}{2} \Rightarrow z_1 + z_3 = z_2 + z_4$$
Also,

$$\angle AOB = \frac{\pi}{2} \Rightarrow \arg\left(\frac{z_2 - z_4}{z_1 - z_3}\right) = \frac{\pi}{2}$$

$$D(z_4)$$

$$C(z_3)$$

$$D(z_4)$$

$$D(z_4)$$

$$D(z_4)$$

$$D(z_4)$$

$$D(z_4)$$

$$D(z_4)$$

$$D(z_4)$$

$$D(z_3)$$

525 (a)

We have, $7^{\log_7(x^2-4x+5)} = x - 1$ $\Rightarrow x^2 - 4x + 5 = x - 1 \Rightarrow x^2 - 5x + 6 = x - 1$ $\Rightarrow x = 2, 3$

526 (c)

We have, $\frac{1}{|x| - 3} < \frac{1}{2}$ Clearly, $\frac{1}{|x| - 3}$ is not defined for |x| = 3 i. e. x = -3,3Now, $\frac{1}{|x| - 3} < \frac{1}{2}$ $\Rightarrow \frac{1}{|x| - 3} - \frac{1}{2} < 0$ $\Rightarrow \frac{2 - |x| + 3}{|x| - 3} < 0$

 $\Rightarrow \frac{|x|-5}{|x|-3} > 0$ $\Rightarrow |x| < 3 \text{ or, } |x| > 5$ $\Rightarrow x \in (-3,3) \text{ or, } x \in (-\infty,-5) \cup (5,\infty)$ $\Rightarrow x \in (-\infty, -5) \cup (-3, 3) \cup (5, \infty)$ 527 (d) Given, $z = \sqrt{3} + i$, $\arg(z^2 e^{z-i}) = \arg[(3-1+2\sqrt{3}i)e^{\sqrt{3}}]$ $= \arg\left[\left(2 + 2\sqrt{3}i \right) e^{\sqrt{3}} \right] = \tan^{-1} \left[\frac{2\sqrt{3}}{2} \right] = \frac{\pi}{3}$ 528 (d) Since the equations $a_1x^2 + b_1x + c_1 = 0$ and $a_2x^2 + b_2x + c_2 = 0$ have a common root α (say). Therefore, $a_1 \alpha^2 + b_1 \alpha + c_1 = 0$ and $a_2 \alpha^2 + b_2 \alpha + c_2 = 0$ $\therefore \frac{\alpha^2}{b_1 c_2 - b_2 c_1} = \frac{\alpha}{c_1 a_2 - c_2 a_1} = \frac{1}{a_1 b_2 - a_2 b_1}$ $\Rightarrow \alpha^{2} = \frac{b_{1}c_{2} - b_{2}c_{1}}{a_{1}b_{2} - \alpha_{2}b_{1}}, \alpha = \frac{c_{1}a_{2} - c_{2}a_{1}}{a_{1}b_{2} - a_{2}b_{1}}$ Now, $\alpha^2 = (\alpha)$ $\Rightarrow \left(\frac{c_1 a_2 - c_2 a_1}{a_1 b_2 - a_2 b_1}\right)^2 = \left(\frac{b_1 c_2 - b_2 c_1}{a_1 b_2 - a_2 b_1}\right)^2$ $\Rightarrow (c_1 a_2 - c_2 a_1)^2 = (a_1 b_2 - a_2 b_1)(b_1 c_2 - b_2 c_1)$ 530 (c) Given, $(x + iy)^{1/3} = 2 + 3i$ $\Rightarrow x + iy = (2 + 3i)^3$ $= 8 + 36i + 54i^2 + 27i^3$ = -46 + 9iEquating real and imaginary parts from both sides, we get x = -46, y = 9 \therefore 3x + 2y = -138 + 18 = -120 531 (b) Given equation $\frac{1}{x+n} + \frac{1}{x+q} = \frac{1}{r}$ can be rewritten as $x^{2} + x(p + q - 2r) + pq - pr - qr = 0$...(i) Let roots are α and $-\alpha$, then the product of roots $-\alpha^2 = pq - pr - qr - r(p+q)$ (ii) and sum of roots, 0 = -(p + q - 2r) $\Rightarrow r = \frac{p+q}{2}$...(iii) On solving Eqs. (ii) and (iii), we get $-\alpha^2 = pq - \frac{p+q}{2}(p+q)$ $=-\frac{1}{2}\{(p+q)^2-2pq\}$ $\Rightarrow \alpha^2 = -\frac{(p^2 + q^2)}{2}$ 532 (b) We have, $1 + i = \sqrt{2} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right)$

and, $1 - i = \sqrt{2} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right)$ $(1+i)^8 + (1-i)^8$ $= 2^{4} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right)^{8} + 2^{4} \left(\cos \frac{\pi}{4} - i \sin \frac{\pi}{4} \right)^{8}$ $= 2^4 (\cos 2\pi + i \sin 2\pi) + 2^4 (\cos 2\pi - i \sin 2\pi)$ $2^4(2\cos 2\pi) = 2^5$ 533 (a) The given equation is $x^{2}(\lambda + 1) - x\{b(\lambda + 1) + a(\lambda - 1)\} + c(\lambda - 1)$ = 0This equation has roots equal in magnitude but opposite in sign \therefore Sum of the roots = 0 $\Rightarrow \frac{b(\lambda+1) + a(\lambda-1)}{\lambda+1} = 0 \Rightarrow \lambda = \frac{a-b}{a+b}$ 534 (d) Since $x^2 + 5|x| + 4 > 0$ for all $x \in R$ Therefore, $x^2 + 5|x| + 4 = 0$ has no real roots 535 (d) Let $z_r = x_r + iy_r$; r = 0, 1, 3, 4, ..., 6We have, $(z_r + 1)^7 + z_r^7 = 0, r = 0, 1, ..., 6$ $\Rightarrow (z_r + 1)^7 = -z_r^7$ $\Rightarrow |z_r + 1|^7 = |z_r|^7$ $\Rightarrow |z_r + 1| = |z_r| \Rightarrow |z_r + 1|^2 = |z_r|^2$ $\Rightarrow (x_r+1)^2 + y_r^2 = x_r^2 + y_r^2 \Rightarrow 2x_r + 1 = 0 \Rightarrow x_r$ $=-\frac{1}{2}$ $\therefore \sum_{r=1}^{\infty} x_r = -\frac{7}{2} \Rightarrow \sum_{r=1}^{\infty} \operatorname{Re}(z_r) = -\frac{7}{2}$ 536 (d) Given that, $z^{2} + (p + iq)z + r + is = 0$...(i) Let $z = \alpha$ (where α is real) be a root of Eq. (i), then $\alpha^{2} + ((p + iq)\alpha + r + is = 0 ...(i))$ $\Rightarrow \alpha^2 + p\alpha + r + i(q\alpha + s) = 0$ On equating real and imaginary parts, we get $\alpha^2 + p\alpha + r = 0$...(ii) and $q\alpha + s = 0 \Rightarrow \alpha = \frac{-s}{\alpha}$ On putting the value of α in Eq.(ii), we get $\left(\frac{-s}{a}\right)^2 + p\left(\frac{-s}{a}\right) + r = 0$ $\Rightarrow s^2 - pqs + q^2r = 0$ $\Rightarrow pas = s^2 + a^2r$ 537 (d) The given condition suggest that *a* lies between

For a' to lie between the roots we must have Discriminant ≥ 0 and f(a) < 0Now, Discriminant ≥ 0 $\Rightarrow 4(2a+1)^2 - 8a(a+1) \ge 0$ $\Rightarrow 8\left(a^2 + a + \frac{1}{2}\right) \ge 0$, which is always true. Also, f(a) < 0 $\Rightarrow 2a^2 - 2a(2a+1) + a(a+1) < 0$ $\Rightarrow -a^2 - a < 0 \Rightarrow a^2 + a > 0 \Rightarrow a(1 + a) > 0$ $\Rightarrow a > 0$ or a < -1538 (d) We have, $a = \cos \alpha + i \sin \alpha, b = \cos \beta + i \sin \beta$ and $c = \cos \gamma + i \sin \gamma$ $\therefore a/b = \cos(\alpha - \beta) + i\sin(\alpha - \beta),$ $b/c = \cos(\beta - \gamma) + i\sin(\beta - \gamma)$ $c = \cos(\gamma - \alpha) + i\sin(\gamma - \alpha)$ $\therefore \frac{a}{b} + \frac{b}{c} + \frac{c}{a} = 1$ $\Rightarrow [\cos(\alpha - \beta) + \cos(\beta - \gamma) + \cos(\gamma - \alpha)]$ $+i[\sin(\alpha - \beta) + \sin(\beta - \gamma) + \sin(\gamma - \alpha)]$ = 1 + i 0 $\cos(\alpha - \beta) + \cos(\beta - \gamma) + \cos(\gamma - \alpha) = 1$ 539 (d) Since, α and β are the roots of equation (x-a)(x-b) = 5 $\text{Or } x^2 - (a+b)x + ab - 5 = 0$ Then, $\alpha + \beta = (a + b)$ and $\alpha\beta = ab - 5$ $\therefore \quad (x-\alpha)(x-\beta)+5=0$ (given) $\Rightarrow x^2 - (\alpha + \beta)x + \alpha\beta + 5 = 0$ $\Rightarrow x^2 - (a+b)x + ab - 5 + 5 = 0$ $\Rightarrow (x-a)(x-b) = 0$ Hence, *a* and *b* are the roots of equation $(x-\alpha)(x-\beta) + 5 = 0$ 540 (d) Here, $\sum \alpha = 0$, $\sum \alpha \beta = b$ and $\alpha \beta \gamma = -c$...(i) Now, $\sum \alpha \sum \alpha \beta = (\alpha + \beta + \gamma). (\alpha \beta + \beta \gamma + \gamma \alpha)$ $=\sum \alpha^2\beta + 3\alpha\beta\gamma$ $\Rightarrow \sum \alpha^2 \beta = \sum \alpha \sum \alpha \beta - 3\alpha \beta \gamma$ $= 0. \sum \alpha \beta - 3(-c)$ [from Eq. (i)] = 3c541 (c) $\left|\frac{1}{2}(z_1+z_2) + \sqrt{z_1 z_2}\right| + \left|\frac{1}{2}(z_1+z_2) - \sqrt{z_1 z_2}\right|$ $=\frac{1}{2}\left|\left(\sqrt{z_{1}}+\sqrt{z_{2}}\right)^{2}\right|+\frac{1}{2}\left|\left(\sqrt{z_{1}}-\sqrt{z_{2}}\right)^{2}\right|$

 $= \frac{1}{2} \left| \sqrt{z_1} + \sqrt{z_2} \right|^2 + \frac{1}{2} \left| \sqrt{z_1} - \sqrt{z_2} \right|^2 \quad [\because \ |z^2|$

 $= |z|^2$

the roots.

Let $f(x) = 2x^2 - 2(2a + 1)x + a(a + 1)$

 $= \frac{1}{2} \cdot 2 \left[\left| \sqrt{z_1} \right|^2 + \left| \sqrt{z_2} \right|^2 \right] = |z_1| + |z_2|$ 542 (c) We have, $px^2 + qx + 1 = 0$, for real roots discriminant ≥ 0 $\Rightarrow q^2 - 4p \ge 0 \Rightarrow q^2 \ge 4p$ For $p = 1, q^2 \ge 4 \Rightarrow q = 2, 3, 4$ $p = 2, q^2 \ge 8 \Rightarrow q = 3, 4$ $p = 3, q^2 \ge 12 \Rightarrow q = 4$ $p = 4, q^2 \ge 16 \Rightarrow q = 4$ Total seven solutions are possible. 543 (c) We have, |z| - 2 = |z - i| - |z + 5i| = 0 $\Rightarrow |z| = 2$ and |z - i| = |z + 5i| \Rightarrow *z* lies on the circle |z| = 2 and also on the perpendicular bisector of the line segment joining (0, -5) and (0, 1) i.e., y = -2Putting y = -2 in |z| = 2 i. e. $x^2 + y^2 = 4$, we get x = 0Hence, the locus of *z* is the single point (0, -2)544 (a) <u>CASE I</u> When $x - a \ge 0$ i.e. $x \ge a$: In this case, we have |x - a| = x - a $\therefore x^2 - 2a|x-a| - 3a^2 = 0$ $\Rightarrow x^2 - 2a(x-a) - 3a^2 = 0$ $\Rightarrow x^2 - 2ax - a^2 = 0 \Rightarrow x = a(1 \pm \sqrt{2})$ But, $a \le 0$ and x > a. Therefore, $x = a(1 - \sqrt{2})$ <u>CASE II</u> When (x - a) < 0 i.e. x < aIn this case, we have |x - a| = -(x - a) $\therefore x^2 - 2a|x - a| - 3a^2 = 0$ $\Rightarrow x^2 + 2a(x-a) - 3a^2 = 0$ $\Rightarrow x^2 + 2ax - 5a^2 = 0 \Rightarrow x = a(-1 \pm \sqrt{6})$ But, x < a and $a \le 0$ Therefore, $x = a(-1 + \sqrt{6})$ 545 (c) We have, $16 - 4a^3 < 0$ and $\frac{4}{a} = a$ $\Rightarrow 4 - a^2 < 0$ and $a^2 = 4$ $\Rightarrow a^3 - 4 > 0$ and $a = \pm 2 \Rightarrow a = 2$ 546 (a) Since, the roots of the equation $4x^3 - 12x +$ 11x + k = 0 are in AP which are $\alpha - a$, α , $\alpha + a$. \therefore Sum of roots, $3\alpha = \frac{12}{4} = 3 \Rightarrow \alpha = 1$ Since, α is a root, therefore it satisfies the given equation *ie*, $4x^3 - 12x^2 + 11x + k = 0$ $\therefore 4 - 12 + 11 + k = 0 \quad \Rightarrow \quad k = -3$ 547 (a) The equations $|z + \sqrt{2}| = \sqrt{a^2 - 3a + 2}$ and

 $|z + \sqrt{2}i| = a$ represent two circles having centre $C_1(-\sqrt{2}, 0)$ and $C_2(0, -\sqrt{2})$ and radii = $\sqrt{a^2 - 3a + 2}$ and a respectively. These two circles will intersect, if C_1C_2 < Sum of the radii $\Rightarrow 2 < \sqrt{a^2 - 3a + 2} + a$ $\Rightarrow (2-a)^2 < a^2 - 3a + 2 \Rightarrow -a + 2 < 0 \Rightarrow a > 2$ 548 (c) Let α , β be the roots of $ax^2 - bx - c = 0$ and let α', β' be the roots of $a'x^2 - b'x - c' = 0$ such that $|\alpha - \beta| = |\alpha' - \beta'|$ $\Rightarrow (\alpha - \beta)^2 = (\alpha' - \beta')^2$ $\Rightarrow (\alpha + \beta)^2 - 4 \alpha \beta = (\alpha' + \beta')^2 - 4 \alpha' \beta'$ $\Rightarrow \frac{b^2 + 4ac}{a^2} = \frac{b'^2 + 4a'c'}{a'^2}$ Hence, the expression $\frac{b^2+4ac}{a^2}$ does not vary in value 549 (b) We have, $x^{\log_x(1-x)^2} = 9$ Taking log on both sides, we get $\log_{x}(9) = \log_{x}(1-x)^{2} \quad (\because a^{x} = N \Rightarrow \log_{a} N = x)$ $\Rightarrow 9 = (1-x)^2$ $\Rightarrow 1 + x^2 - 2x - 9 = 0$ $\Rightarrow x^2 - 2x - 8 = 0$ $\Rightarrow x = -2.4$ $\Rightarrow x = 4$ ($\because x = -2$) 550 (d) |x + 1| $\begin{vmatrix} x+1 & \omega & \omega^{2} \\ \omega & x+\omega^{2} & 1 \\ \omega^{2} & 1 & x+\omega \end{vmatrix}$ $= \begin{vmatrix} x+1+\omega+\omega^{2} & \omega \\ \omega+x+\omega^{2}+1 & x+\omega^{2} \end{vmatrix}$ ω^2 1 $|\omega^2 + 1 + x + \omega|$ 1 $(\mathcal{C}_1 \rightarrow \mathcal{C}_1 + \mathcal{C}_2 + \mathcal{C}_3)$ $= x \begin{vmatrix} 1 & \omega & \omega^{2} \\ 1 & x + \omega^{2} & 1 \\ 1 & 1 & x + \omega \end{vmatrix} \quad (\because 1 + \omega + \omega^{2} = 0)$ $= x \begin{vmatrix} 1 & \omega \\ 0 & x + \omega^2 - \omega \end{vmatrix}$ $1-\omega$ $x + \omega - \omega^2$ $(R_2 \to R_2 - R_1, R_3 \to R_3 - R_1)$ $= x[(x + \omega^2 - \omega)(x + \omega - \omega^2)]$ $-(1-\omega)(1-\omega^2)$] = x[x + 3 - 3] $= x^{2}$ 551 (c) Using De-Moivre's Theorem, we have $\left[\sqrt{2}\left(\cos(56^{\circ} 15') + i\sin(56^{\circ} 15')\right)\right]^{8}$ $= 16(\cos 450^\circ + i \sin 450^\circ) = 16 i$ 552 (d)

We have,
$$\{(1 - \cos \theta) + i.2 \sin \theta\}^{-1}$$

= $\left(2 \sin^2 \frac{\theta}{2} + i.4 \sin \frac{\theta}{2} \cos \frac{\theta}{2}\right)^{-1}$
= $\left(2 \sin \frac{\theta}{2}\right)^{-1} \left(\sin \frac{\theta}{2} + i.2 \cos \frac{\theta}{2}\right)^{-1}$
= $\left(2 \sin \frac{\theta}{2}\right)^{-1} \cdot \frac{1}{\sin \frac{\theta}{2} + i.2 \cos \frac{\theta}{2}} \times \frac{\sin \frac{\theta}{2} - i.2 \cos \frac{\theta}{2}}{\sin \frac{\theta}{2} - i.2 \cos \frac{\theta}{2}}$
= $\frac{\sin \frac{\theta}{2} - i.2 \cos \frac{\theta}{2}}{2 \sin \frac{\theta}{2} \left(\sin^2 \frac{\theta}{2} + 4 \cos^2 \frac{\theta}{2}\right)}$
It's real part
= $\frac{\sin \frac{\theta}{2} + i.2 \cos \frac{\theta}{2}}{2 \sin \frac{\theta}{2} \left(1 + 3 \cos^2 \frac{\theta}{2}\right)} = \frac{1}{2 \left(1 + 3 \cos^2 \frac{\theta}{2}\right)}$
= $\frac{1}{2 + 3(\cos \theta + 1)} = \frac{1}{5 + 3 \cos \theta}$
553 (b)
Let the discriminant of the equation $x^2 + px + q = 0$ is D_1 , then $D_1 = p^2 - 4q$
and the discriminant of the equation $x^2 + rx + s = 0$ is D_2 , then $D_2 = r^2 - 4s$
 $\therefore D_1 + D_2 = p^2 + r^2 - 4(q + s) = p^2 + r^2 - 2pr$ (from the given relation)
 $\Rightarrow D_1 + D_2 = (p - r)^2 \ge 0$
Clearly, at least one of D_1 and D_2 must be non-
negative, consequently at least one of the
equation has real roots.
554 (c)
We know, $-\frac{1}{2} + \frac{i\sqrt{3}}{2} = \omega$
 $\therefore 4 + 5(\omega)^{314} + 3(\omega)^{365}$
 $= 4 + 5(\omega)^{3111} \cdot \omega^1 + 3(\omega^3)^{121} \cdot \omega^2$
 $= 4 + 5\omega + 3\omega^2$
 $= 3(1 + \omega + \omega^2) + 1 + 2\omega$
 $= 1 + (-1 + i\sqrt{3})$
 $= i\sqrt{3}$
555 (a)
We have,
 $(16)^{1/4} = (2^4)^{1/4} = 2(1)^{1/4}$
 $= 2(\cos \theta + i \sin 0)^{1/4}$
 $= 2(x + 3D + i \sin 0)^{1/4}$

the circle $|z| = \frac{1}{2}$. Let z_1, z_2, z_3 be the affixes of vertices A, B and C respectively in anti-clock wise sense. Clearly, O (origin) is the circumcentre of ΔABC $\therefore z_2 = z_1 e^{i2\pi/3} = (-\omega^2)(\omega) = -\omega^3 = -1$ 557 (d) $4(\cos 75^\circ + i \sin 75^\circ)$ $\overline{0.4(\cos 30^\circ + i \sin 30^\circ)}$ $= 10(\cos 75^\circ + i \sin 75^\circ)(\cos 30^\circ + i \sin 30^\circ)$ $= 10 e^{75i} \cdot e^{-30i} = 10 e^{45i}$ $= 10(\cos 45^\circ + i \sin 45^\circ) = \frac{10}{\sqrt{2}}(1+i)$ 558 (b) Let α and β be the roots, then $\alpha + \beta = (a - 2)$ and $\alpha\beta = -(a + 1)$ Now, $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$ $= (a-2)^2 + 2(a+1)$ $= (a - 1)^2 + 5$ $\Rightarrow \alpha^2 + \beta^2 \geq 5$

Thus, the minimum value of $\alpha^2 + \beta^2$ is 5 at a = 1559 (d)

Let
$$z = \frac{1 - i\sqrt{3}}{\sqrt{3} + i} = \frac{1 + i\sqrt{3}}{(\sqrt{3} + i)} \times \frac{(\sqrt{3} - i)}{(\sqrt{3} - i)} = \frac{\sqrt{3} + i}{2}$$

 $\therefore \text{ amp } (z) = \tan^{-1} \left(\frac{1}{\sqrt{3}}\right) = \frac{\pi}{6}$

560 (d)

Let $f(x) = 4 x^2 - 20 px + (25 p^2 + 15 p - 66)$ Clearly, y = f(x) represents a parabola opening upward. So, roots of the equation f(x) = 0 will be less than 2, if (i) Discriminant ≥ 0 (ii) 2 lies outside the roots i.e. f(2) > 0(iii) *x*-coordinate of vertex < 2 Now, (i) f(2) > 0 $\Rightarrow 16 - 40 p + 25 p^2 + 15 p - 66 > 0$ $\Rightarrow 25 p^2 - 25 p - 50 > 0 \Rightarrow p^2 - p - 2 > 0$ $\Rightarrow p < -1 \text{ or, } p > 2$...(i) (ii) Discriminant ≥ 0 $\Rightarrow 400 \ p^2 - 16(25 \ p^2 + 15 \ p - 66) \ge 0$ $\Rightarrow 15 p - 66 \le 0 \Rightarrow p \le 22/5$...(ii) (iii) *x*-coordinate of vertex < 2 $\Rightarrow -\left(\frac{-20p}{4}\right) < 2 \Rightarrow \frac{20 p}{4} < 4 \Rightarrow p < 4/5 \quad \dots \text{(iii)}$ From (i),(ii) and (iii), we have p < -1 i.e., $p \in (-\infty, -1)$

561 (d) Since, ω is a complex cube root of unity Now, $\omega^{10} + \omega^{23} = (\omega^3)^3 \omega + (\omega^3)^7 \omega^2$ $= \omega + \omega^2 = -1$ $\therefore \sin\left\{(\omega^{10} + \omega^{23})\pi - \frac{\pi}{6}\right\} = \sin\left(-\pi - \frac{\pi}{6}\right)$ $=\sin\frac{\pi}{6}=\frac{1}{2}$ 562 (b) Let $z = \frac{1+2i}{1-(1-i)^2} = 1$: |z| = 1 and $\operatorname{amp}(z) = \operatorname{tan}^{-1}\left(\frac{0}{1}\right) = 0$ 563 **(b)** Let $f(x) = x^2 - 2kx + k^2 + k - 5$ Since, both roots are less than 5 Then, $D \ge 0, -\frac{b}{2a} < 5$ and f(5) > 0Now, $D = 4k^2 - 4(k^2 + k - 5) = -4k + 20 \ge 0$ $\Rightarrow k \leq 5 \dots(i)$ $-\frac{b}{2a} < 5 \implies k < 5$...(ii) And f(5) > 0 $\Rightarrow 25 - 10k + k^2 + k - 5 > 0$ $\Rightarrow (k-5)(k-4) > 0$ \Rightarrow k > 4 and k > 5 ...(iii) From Eqs. (i), (ii) and (iii), we get *k* < 4 564 (d) $z = \frac{7-i}{3-4i} = \frac{(7-i)(3+4i)}{(3)^2 - (4i)^2} = (1+i)$ $\therefore \quad z^{14} = (1+i)^{14} = \left[\sqrt{2}\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)\right]^{14}$ $=2^{7}\left(\cos\frac{7\pi}{2}+i\sin\frac{7\pi}{2}\right)=-2^{7}i$ 565 (b) Since roots of the equation $x^3 + bx^2 + 3x - 1 = 0$ form a non-decreasing H.P. Therefore, roots of the equation $-x^3 + 3x^2 + bx + 1 = 0$ form a non-increasing A.P. Let the roots be a - d, a and a + d, where $d \le 0$ $\therefore a - d + a + a + d = 3$...(i) $a(a-d) + a(a+d) + a^2 - d^2 = -b$...(ii) $a(a^2 - d^2) = 1$...(iii) From (i), we have a = 1Putting a = 1 in (iii), we get d = 0Subtracting the values of *a* and *d* (ii), we get b = -3566 (a) Given equation can be reduced to a quadratic equation.

$$\therefore 2x^2 + x - 11 + \frac{1}{x} + \frac{2}{x^2} = 0$$

$$\Rightarrow 2\left(x^{2} + \frac{1}{x^{2}}\right) + \left(x + \frac{1}{x}\right) - 11 = 0$$

Put $x + \frac{1}{x} = y$
 $2(y^{2} - 2) + y - 11 = 0$
 $\Rightarrow 2y^{2} + y - 15 = 0$
 $\Rightarrow y = -3 \text{ and } \frac{5}{2}$
 $\Rightarrow x + \frac{1}{x} = -3, x + \frac{1}{x} = \frac{5}{2}$
 $\Rightarrow x^{2} + 3x + 1 = 0, 2x^{2} - 5x + 2 = 0$
Only 2nd equation has rational roots as $D = 9$ and roots are $\frac{1}{2}$ and 2.
567 **(b)**
Let $f(x) = a x^{2} + b x + c$. Then, $f(0) = c$

Let $f(x) = a x^2 + b x + c$. Then, f(0) = cThus, the curve y = f(x) meets *y*-axis at (0, c)If c > 0, then by hypothesis f(x) > 0. This means that the curve y = f(x) does not meet *x*-axis If c < 0, then by hypothesis, f(x) < 0, which means that the curve y = f(x) is always below *x*axis and so it does not intersect with *x*-axis Thus, in both the cases y = f(x) does not intersect with *x*-axis i. e. $f(x) \neq 0$ for any real *x* Hence, f(x) = 0 i.e. $ax^2 + bx + c = 0$ has imaginary roots and so we have $b^2 < 4ac$

568 **(d)**

Since, α and β are the roots of given equation. Let $f(x) = a^2x^2 + 2bx + 2c = 0$ Then, $f(\alpha) = a^2\alpha^2 + 2b\alpha + 2c = 0$ $= a^2\alpha^2 + 2(b\alpha + c) = a^2\alpha^2 - 2a^2\alpha^2$ $= -a^2\alpha^2 = -ve$ and $f(\beta) = a^2\beta^2 + 2(b\beta + c) = a^2\beta^2 + 2a^2\beta^2$ $= 3a^2\beta^2 = +ve$ Since, $f(\alpha)$ and $f(\beta)$ are of opposite signs therefore by theory of equations there lies a root

 γ of the equation f(x) = 0 between α and β , *ie*, $\alpha < \gamma < \beta$.

569 **(c)**

We have,

$$(1+i)^{2n} = (1-i)^{2n}$$

 $\Rightarrow \left(\frac{1+i}{1-i}\right)^{2n} = 1$
 $\Rightarrow \left\{\frac{(1+i)^2}{(1+i)(1-i)}\right\}^{2n} = 1$
 $\Rightarrow i^{2n} = 1$
 $\Rightarrow 2n \text{ is a multiple of } 4$
 $\Rightarrow \text{ The smallest positive value of } n \text{ is } 2$
570 (d)
Given, $2\alpha = -1 - i\sqrt{3} \text{ and } 2\beta = -1 + i\sqrt{3}$
 $\therefore \alpha + \beta = -1 \text{ and } \alpha\beta = 1$

Now,
$$5a^{4} + 5\beta^{4} + \frac{7}{a\beta}$$

= $5[\{(a + \beta)^{2} - 2a\beta\}^{2} - (a\beta)^{2} + \frac{7}{a\beta}$
= $5[\{(-1)^{2} - 2 \times 1\}^{2} - 2(1)^{2}] + \frac{7}{1}$
= $5(1 - 2) + 7 = 2$
571 (a)
 $\left[4\left(1 - \frac{1}{3} + \frac{1}{9} - \frac{1}{27} + ...\right)\right]^{\log_{2} x}$
= $\left[54\left(1 + \frac{1}{3} + \frac{1}{9} + \frac{1}{27} + ...\right)\right]^{\log_{x} 2}$
 $\Rightarrow \left[4\left(\frac{3}{(1 + 1)3}\right)\right]^{\log_{2} x} = \left[54 \times \frac{3}{2}\right]^{\log_{x} 2}$
 $\Rightarrow \left[4\left(\frac{3}{(4)}\right)\right]^{\log_{2} x} = \left[54 \times \frac{3}{2}\right]^{\log_{x} 2}$
 $\Rightarrow \log_{2} x = 4\log_{x} 2 = \frac{4}{\log_{2} x}$
 $\Rightarrow (\log_{2} x)^{2} = 4 \Rightarrow \log_{2} x = \pm 2$
If $\log_{2} x = 2$
 $\Rightarrow x = 2^{2} = 4$
And if $\log_{2} x = -2$
 $\Rightarrow x = 2^{-2} = \frac{1}{4}$
 \therefore Solution set of the equation is $\left\{4, \frac{1}{4}\right\}$
572 (c)
Let $z = r (\cos \theta + i \sin \theta)$
Given that $\left|z + \frac{1}{z}\right| = a \Rightarrow \left|z + \frac{1}{z}\right|^{2} = a^{2}$
 $\Rightarrow r^{2} + \frac{1}{r^{2}} + 2 \cos 2\theta = a^{2} ...(i)$
On differentiating w.r.t. θ , we get
 $2r\frac{dr}{d\theta} - \frac{2}{r^{3}}\frac{dr}{d\theta} - 4 \sin 2\theta = 0$
 $\Rightarrow \frac{dr}{d\theta} \left(2r - \frac{2}{r^{3}}\right) = 4 \sin 2\theta$
For maximum or minimum, put $\frac{dr}{d\theta} = 0$, we get
 $\theta = 0, \frac{\pi}{2}$
 $\therefore r$ is maximum for $\theta = \frac{\pi}{2}$, therefore from Eq.(i)
 $r^{2} + \frac{1}{r^{2}} - 2 = a^{2} \Rightarrow r - \frac{1}{r} = a$
 $\Rightarrow r^{2} - ar - 1 = 0$
 $\Rightarrow r = \frac{a + \sqrt{a^{2} + 4}}{2}$
573 (b)
We have,
 $6 + x - x^{2} > 0$
 $\Rightarrow x^{2} - x - 6 < 0 \Rightarrow (x - 3)(x + 2) < 0 \Rightarrow -2$
 $< x < 3$
574 (c)

 $(\cos \theta + i \sin \theta)(\cos 2\theta + i \sin 2\theta) \dots (\cos n\theta + i \sin 2\theta)$ $i \sin n\theta = 1$ $\Rightarrow \cos(\theta + 2\theta + 3\theta + ... + n\theta)$ $+ i \sin(\theta + 2\theta + 3\theta + ... + n\theta) = 1$ $\Rightarrow \cos\left(\frac{n(n+1)}{2}\theta\right) + i\sin\left(\frac{n(n+1)}{2}\theta\right) = 1$ On comparing the coefficients of real and imaginary on both sides, we get $\cos\left(\frac{n(n+1)}{2}\theta\right) = 1$ and $\sin\left(\frac{n(n+1)}{2}\theta\right) = 0$ $\Rightarrow \left(\frac{n(n+1)}{2}\theta\right) = 2m\pi$ $\Rightarrow \theta = \frac{4m\pi}{n(n+1)}$, where $m \in I$ 575 (b) Here, $\alpha + \beta + \gamma = 6$, $\alpha\beta + \beta\gamma + \gamma\alpha = 11$ And $\alpha\beta\gamma = -6$ Now, $\sum \alpha^2 \beta + \sum \alpha \beta^2 = \alpha^2 \beta + \beta^2 \alpha + \gamma^2 \alpha + \gamma^2 \alpha$ $\alpha\beta 2 + \beta\gamma 2 + \gamma\alpha 2$ $= \alpha\beta(\alpha + \beta) + \beta\gamma(\beta + \gamma) + \gamma\alpha(\gamma + \alpha)$ $= \alpha\beta(6-\gamma) + \beta\gamma(6-\alpha) + \gamma\alpha(6-\beta)$ $= 6(\alpha\beta + \beta\gamma + \gamma\alpha) - 3\alpha\beta\gamma$ = 6(11) + 3(6) = 84576 (b) We have, $z_k = r_k(\cos \alpha_k + i \sin \alpha_k)$ and $\omega_k = \frac{\cos 2\alpha_k + i \sin 2\alpha_k}{z_k}$ $\Rightarrow \omega_k = \frac{Z_k}{r_c^2}, k = 1, 2, 3$ $\Rightarrow \omega_1 = \frac{z_1}{|z_1|^2}, \omega_2 = \frac{z_2}{|z_2|^2}\omega_3 = \frac{z_3}{|z_3|^2}$ $\Rightarrow \omega_1 = \frac{1}{\overline{z_1}}, \omega_2 = \frac{1}{\overline{z_2}}, \omega_3 = \frac{1}{\overline{z_2}}$ $\Rightarrow \omega_1 + \omega_2 + \omega_3 = \frac{1}{\bar{z}_1} + \frac{1}{\bar{z}_2} + \frac{1}{\bar{z}_3}$ $\Rightarrow \omega_1 + \omega_2 + \omega_3 \Rightarrow \frac{\omega_1 + \omega_2 + \omega_3}{3} = 0$ Hence, the centroid of $\Delta A_1 A_2 A_3$ is at the origin 577 (c) Let z = x + iy $\therefore \left| \frac{z-25}{z-1} \right| = 5$ $\Rightarrow \left| \frac{(x-25)+iy}{(x-1)+iy} \right| = 5$ ⇒ |(x-25) + iy| = 5|(x-1) + iy|⇒ $\sqrt{(x-25)^2 + y^2} = 5\sqrt{(x-1)^2 + y^2}$ On squaring both sides, we get $(x-25)^2 + y^2 = 25\{(x-1)^2 + y^2\}$ $\Rightarrow \quad x^2 - 50x + 625 + v^2$ $= 25x^2 - 50x + 25 + 25y^2$

$$\Rightarrow 24x^{2} + 24y^{2} = 600$$

$$\Rightarrow x^{2} + y^{2} = 25$$

$$\Rightarrow \sqrt{x^{2} + y^{2}} = 5$$
[: $|z| = \sqrt{(x^{2} + y^{2})}$]
$$\Rightarrow |z| = 5$$
578 (c)
We have, $ax^{2} - bx(x - 1) + c(x - 1)^{2} = 0$...(i)

$$\Rightarrow a\left(\frac{x}{1-x}\right)^{2} + b\left(\frac{x}{1-x}\right) + c = 0$$
Also, α and β be the roots of $ax^{2} + bx + c = 0$.
 $\therefore \alpha = \frac{x}{1-x}$ and $\beta = \frac{x}{1-x}$
 $\Rightarrow x = \frac{\alpha}{\alpha+1}, x = \frac{\beta}{\beta+1}$
Hence, $\frac{\alpha}{\alpha+1}$ and $\frac{\beta}{\beta+1}$ are the required roots.
579 (b)
Let $z = \frac{13-5i}{4-9i} \times \frac{4+9i}{4+9i} = \frac{97+97i}{97} = 1 + i$
 \therefore arg(z) = $\tan^{-1}\left(\frac{1}{1}\right) = \frac{\pi}{4}$
580 (b)
It is given that $\sin \theta$, $\sin \alpha$, $\cos \theta$ are in G.P.
 $\therefore \sin^{2} \alpha = \sin \theta \cos \theta$
 $\Rightarrow 2 \sin^{2} \alpha = \sin 2 \cos \theta$
 $\Rightarrow 2 \sin^{2} \alpha = \sin 2 \theta \Rightarrow 1 - \cos 2 \alpha = \sin 2 \theta$...(i)
Let D be the discriminant of the equation
 $x^{2} + 2x \cot \alpha + 1 = 0$
Then,
 $D = 4 \cot^{2} \alpha - 4 = 4 \frac{\cos 2 \alpha}{\sin^{2} \alpha}$
 $= 4 \left(\frac{(1 - \sin 2 \theta)}{\sin \alpha}\right)^{2} > 0$
Hence, the roots of the given equation are real
581 (a)
Since, $(1 + 2i), (2 - \sqrt{3})$ and 5 are the some roots
of polynomial $f(x)$ of degree n. As we know that
conjugate are also the roots of the polynomial.
 \therefore The least value of n is 5
582 (b)
Given, $\frac{3x}{(x-a)(x-b)} = \frac{2}{(x-a)} + \frac{1}{(x-b)}$
 $\Rightarrow 3x = 2(x - b) + 1(x - a)$
On comparing the coefficient of constant term, we
get
 $-2b - a = 0$
 $\Rightarrow \frac{a}{b} = -\frac{2}{1}$ or $a: b = -2: 1$
583 (b)
Given, $x + iy = \left(\frac{1+2i}{3+4i}\right)^{\frac{1}{2}}$

we

 $\Rightarrow \quad (x+iy)^2 = \frac{1+2i}{3+4i}$ Taking modulus from both sides we get $|x + iy|^2 = \left|\frac{1+2i}{3+4i}\right|$ $\Rightarrow \quad x^2 + y^2 = \sqrt{\frac{1+4}{9+16}}$ \Rightarrow $(x^2 + y^2)^2 = \frac{5}{25} = \frac{1}{5}$ 584 (a) Given, f(x) = (x - 1)(x - 2)(x - 3)(x - 4)The real roots are 1, 2, 3, 4 Hence, only 2 lies in the interval (1, 3)585 (d) |3z - 1| = 3|z - 2| $\Rightarrow \left|z - \frac{1}{3}\right| = |z - 2|$ \Rightarrow z is perpendicular bisector of $\left(\frac{1}{3}, 0\right)$ and (2,0) $\Rightarrow x = \frac{7}{2}$ 586 (c) Let *P*, *Q*, *R* be the vertices of the triangle having affixes z_1 , z_2 and $(1 - i)z_1 + i z_2$ respectively. Then, $|PQ| = |z_2 - z_1|,$ $|QR| = |(1-i)z_1 - (1-i)z_2| = \sqrt{2}|z_1 - z_2|$ and, $|RP| = |(1 - i)z_1 + i z_2 - z_1| = |i(z_2 - z_1)|$ $= |z_2 - z_1|$ Clearly, |PQ| = |RP| and $|QR|^2 = |PQ|^2 + |RP|^2$ Hence, ΔPQR is isosceles right angled triangle 587 (c) $\therefore \quad x + \frac{1}{x} = 2\sin\alpha$ $\Rightarrow x^2 - 2x \sin \alpha + 1 = 0$ $\therefore \quad x = \frac{2 \sin \alpha \pm \sqrt{4 \sin^2 \alpha - 4}}{2}$ $\Rightarrow \quad x = \sin \alpha \pm i \, \cos \alpha$ Similarly, $y = \cos \beta \pm i \cos \beta$ $\therefore \quad xy = (\sin \alpha \pm i \cos \alpha)(\cos \beta \pm i \sin \beta)$ $= \sin(\beta - \alpha) \pm i\cos(\beta - \alpha)$ $xy = \pm i[\cos(\beta - \alpha) - i\sin(\beta - \alpha)]$ And $\frac{1}{xy} = \pm \frac{1}{i} [\cos(\beta - \alpha) + i \sin(\beta - \alpha)]$ Now, $(xy)^3 + \frac{1}{(xy)^3} = \pm i^3 [\cos 3(\beta - \alpha) - \alpha]$ *i*sin*3β–α* $\pm \frac{1}{i^3} [\cos 3(\beta - \alpha) + i \sin 3(\beta - \alpha)]$ = $\pm i [\cos 3(\beta - \alpha) - i \sin 3(\beta - \alpha)]$ $\pm \frac{1}{i} [\cos 3(\beta - \alpha) + i \sin 3(\beta - \alpha)]$

$$= \pm \frac{1}{i} [\{\cos 3(\beta - \alpha) - i \sin 3(\beta - \alpha)\} - \{\cos 3(\beta - \alpha) + i \sin 3(\beta - \alpha)\}]$$
$$= \pm \frac{1}{i} (-2i \sin 3(\beta - \alpha)) = 2 \sin 3(\beta - \alpha)$$

588 (a)

The three cube roots of
$$p(p < 0)$$
 (i.e. solutions of
 $x^3 - p = 0$) are $p^{1/3}, p^{1/3}\omega, p^{1/3}\omega^2$
Let $\alpha = p^{1/3}, \beta = p^{1/3}\omega, \gamma = p^{1/3}\omega^2$. Then,
 $\frac{x \alpha + y \beta + z \gamma}{x \beta + y \gamma + z \alpha} = \frac{x + y \omega + z \omega^2}{x \omega + y \omega^2 + z} = \omega^2$
If $\alpha = p^{1/3}, \gamma = p^{1/3}\omega^2$, then
 $\frac{x \alpha + y \beta + z \gamma}{x \beta + y \gamma + z \alpha} = \frac{x + y \omega^2 + z \omega}{x \omega^2 + y \omega + z}$
 $= \omega \frac{(x + y \omega^2 + z \omega)}{x \omega^3 + y \omega^2 + z \omega} = \omega$

Every other choice of a, β, γ will give its value as ω or ω^2

590 (c)

Since,
$$a = \cos \theta + i \sin \theta$$

$$\therefore \frac{1+a}{1-a} = \frac{1+\cos \theta + i \sin \theta}{1-\cos \theta - i \sin \theta}$$

$$= \frac{[(1+\cos \theta) + i \sin \theta][(1-\cos \theta) + i \sin \theta]}{[(1-\cos \theta) - i \sin \theta][(1-\cos \theta) + i \sin \theta]}$$

$$= \frac{2i \sin \theta}{(1-\cos \theta)^2 + \sin^2 \theta}$$

$$= \frac{i \cdot 4 \sin \frac{\theta}{2} \cos \frac{\theta}{2}}{4 \sin^2 \frac{\theta}{2}} = i \cot \frac{\theta}{2}$$

591 **(b)**

$$\frac{z}{\bar{z}} + \frac{\bar{z}}{z} = \frac{re^{i\theta}}{re^{-i\theta}} + \frac{re^{-i\theta}}{re^{i\theta}} = e^{i2\theta} + e^{-i2\theta} = 2\cos 2\theta$$
592 (a)

+

In a parallelogram
$$OP_1P_2P_3$$
, the mid point of
 P_1P_2 and OP_3 are the same. But mid point of
 P_1P_2 is $\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$.
So, that the coordinates of P_3 are $(x_1 + x_2, y_1 + y_2)$
Thus, the point P_3 corresponds to sum of the
complex numbers z_1 and z_2
 $\therefore \quad \overrightarrow{OP}_3 = \overrightarrow{OP}_1 + \overrightarrow{OP}_2 = z_1 + z_2$
593 (d)
Let $z = a + ib$
 $\therefore \quad \arg(z) = \theta = \tan^{-1}\frac{b}{a}$
 $\therefore \quad \overline{z} = a - ib$
 $\therefore \quad \arg(\overline{z}) = \tan^{-1}\left(-\frac{b}{a}\right) = -\tan^{-1}\left(\frac{b}{a}\right) = -\theta$
594 (a)
We know that, $|-z| = |z|$

and $|z_1 + z_2| \le |z_1| + |z_2|$

Now, |z| + |z - 1| = |z| + |1 - z| $\geq |z + (1 - z)| = |1| = 1$ Hence, minimum value of |z| + |z - 1| is 1 595 (d) Given numbers are conjugate to each other, $\therefore \sin x + i \cos 2x = \cos x - i \sin 2x$ $\sin x = \cos x$ And $\cos 2x = \sin 2x$ $\therefore \tan x = 1 \implies x = \frac{\pi}{4}, \frac{5\pi}{4}, \frac{9\pi}{4}, \dots \dots (i)$ And $\tan 2x = 1 \implies 2x = \frac{\pi}{4}, \frac{5\pi}{4}, \frac{9\pi}{4}, \dots$ $\Rightarrow x = \frac{\pi}{8}, \frac{5\pi}{8}, \frac{9\pi}{8}, \dots$ There exists no value of *x* common in Eqs. (i) and (ii) 596 (c) Let α be a common root of $x^2 + ax + b = 0$ and $x^{2} + bx + a = 0$. Then, $\alpha^2 + a \alpha + b = 0$ and $\alpha^2 + b \alpha + a = 0$ $\Rightarrow (\alpha^2 + a \alpha + b) - (\alpha^2 + b \alpha + a) = 0$ $\Rightarrow \alpha(a-b) = (a-b) \Rightarrow \alpha = 1$ Putting $\alpha = 1$, in either of these two, we get a + b = -1597 (c) $\arg\left(\frac{z-2}{z+2}\right) = \frac{\pi}{3}$ $\Rightarrow \arg(x-2+iy) - \arg(x+2+iy) = \frac{\pi}{3}$ $\Rightarrow \tan^{-1}\left(\frac{y}{x-2}\right) - \tan^{-1}\left(\frac{y}{x+2}\right) = \frac{\pi}{3}$ $\Rightarrow \tan^{-1}\left(\frac{\frac{y}{x-2} - \frac{y}{x+2}}{1 + \frac{y}{x-2} \cdot \frac{y}{x+2}}\right) = \frac{\pi}{3}$ $\Rightarrow \frac{4}{x^2 + y^2 - 4} = \tan\frac{\pi}{3} = \sqrt{3}$ $\Rightarrow 4y = \sqrt{3}(x^2 + y^2 - 4)$ $\Rightarrow \quad \sqrt{3}(x^2 + v^2) - 4\sqrt{3} - 4v = 0$ Which represents the equation of a circle. 598 (b) If $b^2 - 4ac \ge 0$, then the equation $ax^4 + bx^2 + bx^2$ c = 0 has all roots positive real, if b < 0, a > 00, *c* > 0 599 (b) We know that principle argument of a complex number lie between – π and π , but $\alpha + \beta > \pi$ Therefore, principle $\arg(z_1z_2) = \arg(z_1) + \arg(z_2) = \alpha + \beta$ is give by $\alpha + \beta - \pi$ 600 **(b)**

The given equation will represent a circle with the line segment joining $P(\omega)$ and $Q(\omega^2)$ as a diameter, if

 $\lambda = PO^2 = |\omega - \omega^2|^2 \Rightarrow \lambda = 3$ 602 (d) Let $z = (1)^{1/3}$ $z^3 - 1 = 0$ $\Rightarrow (z-1)(z^2+z+1) = 0$ $\Rightarrow \quad z = 1, \frac{-1 \pm \sqrt{1-4}}{2}$ $\Rightarrow z = 1, \frac{-1 \pm \sqrt{3}i}{2}$ Hence, $\frac{-1-\sqrt{3}i}{2}$ is one of the root of (1)^{1/3} 603 (a) Let α and 3 are the roots of the equation $x^2 + ax + 3 = 0$ $\therefore 3\alpha = 3 \Rightarrow \alpha = 1$ And $3 + \alpha = -a \implies a = -4$ Again, let β and 3β are the roots of the equation $x^2 + ax + b = 0$ $\therefore \ \beta + 3\beta = 4\beta = -a \ \Rightarrow \ \beta = 1$ And β . $3\beta = b \Rightarrow b = 3$ 604 **(b)** We have, $|z - 4 - 3i| \le 1$ But, $|z - 4 - 3i| = |z - (4 + 3i)| \ge ||z| -$ 4+3i $\Rightarrow 1 \geq ||z| - 5|$ $\Rightarrow ||z| - 5| \leq 1$ $\Rightarrow -1 \leq |z| - 5 \leq 1$ $\Rightarrow 4 \leq |z| \leq 6 \Rightarrow m = 4$ and n = 6Let $y = \frac{x^4 + x^2 + 4}{x}$ $\Rightarrow y = x^3 + x + \frac{4}{x}$ $\Rightarrow y = x^3 + x + \frac{1}{x} + \frac{1}{x} + \frac{1}{x} + \frac{1}{x} + \frac{1}{x}$ Clearly, the product of x^3 , x, $\frac{1}{x}$, $\frac{1}{x}$, $\frac{1}{x}$, $\frac{1}{x}$, $\frac{1}{x}$ is 1 i.e. a constant. So, their sum i.e. y will be least when they are equal i.e. $x^3 = x = \frac{1}{x} \Rightarrow x = 1$ \therefore Least value of y = 1 + 1 + 4 = 6Hence, $\lambda = 6$ 605 **(b)** Given equation is $(5 + \sqrt{2})x^2 - (4 + \sqrt{5})x + 8 +$ $2\sqrt{5} = 0.$ Let x_1 and x_2 are the roots of the equation. $\Rightarrow x_1 + x_2 = \frac{4 + \sqrt{5}}{5 \pm \sqrt{2}}$ (i) and $x_1 x_2 = \frac{8+2\sqrt{5}}{5+\sqrt{2}} = \frac{2(4+\sqrt{5})}{5+\sqrt{2}} = 2(x_1 + x_2)$...(ii) : Harmonic mean = $\frac{2x_1x_2}{x_1+x_2} = \frac{4(x_1+x_2)}{(x_1+x_2)} = 4$ [from

Eq. (ii)] 606 **(b)** We have, $\begin{vmatrix} a & u & 1 \\ b & v & 1 \\ c & w & 1 \end{vmatrix} = \begin{vmatrix} a & u & 1 \\ b & v & 1 \\ 0 & 0 & 0 \end{vmatrix} = 0$ Applying $R_3 \rightarrow R_3 - (1-r)R_1 - rR_2$ Hence, two triangle are similar 607 (c) It is given that the roots are of opposite signs \therefore Product of roots < 0 $\Rightarrow \frac{k^2 - 3k + 2}{2} < 0 \Rightarrow k^2 - 3k + 2 < 0 \Rightarrow k$ $\in (1, 2)$ 608 (b) Given, Re $\left(\frac{1}{z}\right) = k \Rightarrow \operatorname{Re}\left(\frac{1}{z+iy}\right) = k$ $\Rightarrow \operatorname{Re}\left(\frac{x}{x^2 + v^2} - \frac{iy}{x^2 + v^2}\right) = k$ $\Rightarrow k = \frac{x}{x^2 + y^2}$ $\Rightarrow x^2 + y^2 - \frac{1}{k}x = 0$ Which is an equation of circle. 609 **(b)** Let z = x + i y. Then, $z \neq 0 \Rightarrow x \neq 0, y \neq 0$ Now, $\arg(z) = \frac{\pi}{4}$ \Rightarrow *z* lies on the line *y* = *x* lying in the first quadrant $\therefore x = y > 0 \implies \operatorname{Re}(z) = Im(z) > 0$ 610 (c) Given, $|z_1| = |z_2| = \cdots |z_n| = 1$ $\Rightarrow |z_1|^2 = |z_1|^2 = \cdots |z_n|^2 = 1$ $\Rightarrow \quad z_1 \overline{z_1} = z_1 \overline{z_2} = \dots = z_n \overline{z_n} = 1$ $\Rightarrow \overline{z_1} = \frac{1}{z_1}, \ \overline{z_2} = \frac{1}{z_2}, \dots, \overline{z_n} = \frac{1}{z_n}$...(i) Now, $|z_1 + z_2 + ... + z_n|$ $= |\overline{z_1 + z_2 + \ldots + z_n}| = |\overline{z_1} + \overline{z_2} + \cdots + \overline{z_n}|$ $= \left| \frac{1}{z_1} + \frac{1}{z_2} + \dots + \frac{1}{z_n} \right|$ [using Eq. (i)] 611 (c) We have, $z_r = \cos \frac{r\alpha}{n^2} + i \sin \frac{r\alpha}{n^2}$ where r = 1, 2, 3, ..., n $\therefore z_1 = \cos \frac{\alpha}{n^2} + i \sin \frac{\alpha}{n^2};$ $z_2 = \cos\frac{2\alpha}{n^2} + i\sin\frac{2\alpha}{n^2}$ $z_n = \cos\frac{n\alpha}{n^2} + i\sin\frac{\alpha}{n^2}$ $\therefore \lim_{n\to\infty} (z_1 z_2 z_3 \dots z_n)$

$$= \lim_{n \to \infty} \left(\cos \frac{\alpha}{n^2} + i \sin \frac{\alpha}{n^2} \right) \left(\cos \frac{2\alpha}{n^2} + i \sin \frac{n\alpha}{n^2} \right) = \lim_{n \to \infty} \left[\cos \left\{ \frac{\alpha}{n^2} (1 + 2 + 3 + ... + n) \right\} + i \sin \left\{ \frac{\alpha}{n^2} (1 + 2 + 3 + ... + n) \right\} \right]$$

$$= \lim_{n \to \infty} \left[\cos \frac{\alpha n(n+1)}{2n^2} + i \sin \frac{\alpha n(n+1)}{2n^2} \right]$$

$$= \cos \frac{\alpha}{2} + i \sin \frac{\alpha}{2}$$

$$= e^{\frac{i\alpha}{2}}$$
612 (b)
Here, $\alpha + \beta + \gamma = 3$, $\alpha\beta + \beta\gamma + \gamma\alpha = 1$ and $\alpha\beta\gamma = -5$
Now, $\gamma = \alpha^2 + \beta^2 + \gamma^2 + \alpha\beta\gamma$

$$= (\alpha + \beta + \gamma)^2 - 2(\alpha\beta + \beta\gamma + \gamma\alpha) + \alpha\beta\gamma$$

$$= (3)^2 - 2(1) - 5$$

$$\Rightarrow \gamma = 2$$
So, $\gamma = 2$ satisfies the equation $\gamma^3 - \gamma^2 - \gamma - 2 = 0$
614 (C)
(1 + i)^n + (1 - i)^n)

$$= \left(\sqrt{2}\left(\frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}}\right)\right)^n + \left(\sqrt{2}\left(\frac{1}{\sqrt{2}} - \frac{i}{\sqrt{2}}\right)\right)^n$$

$$= 2^{n/2} \left(\cos \frac{n\pi}{4} + \sin \frac{n\pi}{4} + \cos \frac{n\pi}{4} - i \sin \frac{\pi}{4}\right)^n$$

$$= 2^{\frac{n}{2}+1} \cos \left(\frac{n\pi}{4}\right) = (\sqrt{2})^{n+2} \cos \left(\frac{n\pi}{4}\right)$$
615 (c)
Let $\gamma = \frac{3 - x + 2 - x}{2} = \frac{5 - 2x}{2}$. Then,
(3 - x)^4 + (2 - x)^4 = (5 - 2x)^4

$$\Rightarrow \left(\frac{2y - 1}{2}\right)^4 + \left(\frac{2y + 1}{2}\right)^4 = (2y)^4$$

$$\Rightarrow (4y^2 + 1 - 4y)^2 + (4y^2 + 1 + 4y)^2 = 256y^4$$

$$\Rightarrow 112y^4 - 24y^2 - 1 = 0$$

$$\Rightarrow (28y^2 + 1)(4y^2 - 1) = 0$$

$$\Rightarrow \gamma = \pm \frac{1}{2} \Rightarrow x = 2, 3 \qquad [\because x = \frac{5 - 2y}{2}]$$
The equation $7x^2 - 35x + 44 = 0$ has imaginary roots. Thus, the given equation has two real and two imaginary roots. 616 (c)
Let $z = \frac{1 + 2i}{1 - i} = \frac{(1 + 2i)(1 + i)}{(1 - i)(1 + i)} = -\frac{1}{2} + \frac{3}{2}i$
Here, coefficient of x is negative and y is positive, therefore it lies in the second quadrant

 $x^{2}(a-b+c) + x(b-2c) + c = 0$ Let, γ , δ be its roots. Then, $\gamma + \delta = -\frac{(b-2c)}{a-b+c} = \frac{-b+2c}{a-b+c} = \frac{-\frac{b}{a} + \frac{2c}{a}}{1-\frac{b}{a} + \frac{c}{a}}$ $\Rightarrow \gamma + \delta = \frac{\alpha + \beta + 2\alpha \alpha\beta}{1+\alpha + \beta + \alpha\beta} = \frac{\alpha}{\alpha + 1} + \frac{\beta}{\beta + 1}$ and, $\gamma \delta = \frac{c}{a-b+c} = \frac{\frac{c}{a}}{1-\frac{b}{a} + \frac{c}{a}}$ $= \frac{\alpha\beta}{1+\alpha + \beta + \alpha\beta} = \frac{\alpha}{\alpha + 1} \cdot \frac{\beta}{\beta + 1}$ Thus, the equation $a x^{2} - b x(x-1) + c(x-1)^{2} = 0$ has $\gamma = \frac{\alpha}{\alpha + 1}$ and $\delta = \frac{\beta}{\beta + 1}$ as its two

The equation $ax^{2} - bx(x - 1) + c(x - 1)^{2} = 0$

 $\therefore \alpha + \beta = -b/a, \alpha \beta = c/a$

can be written as

roots
618 **(b)**
Since,
$$\frac{\left(\sin\frac{x}{2} + \cos\frac{x}{2}\right) - i \tan x}{1 + 2i \sin\frac{x}{2}} \in R$$

$$\Rightarrow \frac{\left\{\sin\frac{x}{2} + \cos\frac{x}{2} - i \tan x\right\} \left\{1 - 2i \sin\frac{x}{2}\right\}}{\left(1 - 2i \sin\frac{x}{2}\right)} \in R$$

$$1 + 4\sin^2 \frac{x}{2}$$
It will be real, if imaginary part is zero
$$-2\sin\frac{x}{2}\left\{\sin\frac{x}{2} + \cos\frac{x}{2}\right\} - \tan x = 0$$

$$2\sin\frac{x}{2}\left\{\sin\frac{x}{2} + \cos\frac{x}{2}\right\} + \frac{\sin x}{\cos x} = 0$$

$$3 \sin\frac{x}{2}\left[\left\{\sin\frac{x}{2} + \cos\frac{x}{2}\right\}\left\{\cos^2\frac{x}{2} - \sin^2\frac{x}{2}\right\} + \cos\frac{x}{2}\right] = 0$$

$$3 \sin\frac{x}{2} = 0$$

$$3 \sin\frac{x}{2} = 0$$

$$3 x = 2n\pi \qquad ...(i)$$
or
$$\left\{\sin\frac{x}{2} + \cos\frac{x}{2}\right\}\left\{\cos^2\frac{x}{2} - \sin^2\frac{x}{2}\right\} + \cos\frac{x}{2} = 0$$
on dividing by $\cos^3\frac{x}{2}$

$$\left(\tan\frac{x}{2} + 1\right)\left(1 - \tan^2\frac{x}{2}\right) + \left(1 + \tan^2\frac{x}{2}\right) = 0$$

$$3 \tan^3\frac{x}{2} - \tan\frac{x}{2} - 2 = 0$$
Let
$$\tan\frac{x}{2} = t, \quad \text{then } f(t) = t^3 - t - 2,$$
Then
$$f(1) = -2 < 0 \text{ and } f(2) = 4 > 0$$
Thus,
$$f(t) \text{ changes sign from negative to positive.}$$

in (1, 2) \therefore Let t = k be the root for which f(k) = 0 and $k \in (1, 2)$ \therefore t = k or $\tan \frac{x}{2} = k = \tan \alpha$ Hence, $\frac{x}{2} = n\pi + \alpha$

$$\Rightarrow \begin{cases} x = 2n\pi + 2\alpha \quad \alpha = \tan^{-1}k \\ \text{or } x = 2n\pi \end{cases} \text{ where }$$

Since α , β are roots of $a x^2 + b x + c = 0$

617 (c)

Page | 132

 $k \in (1, 2)$ 619 (a) We have, $x^2 - 6x + 5 \le 0$ and $x^2 - 2x > 0$ $\Rightarrow (x-1)(x-5) \leq 0$ and x(x-2) > 0 $\Rightarrow 1 \le x \le 5$ and (x < 0 or x > 2) $\Rightarrow 2 < x \le 5 \Rightarrow x = 3, 4, 5 \quad [\because x \in Z]$ 620 (b) Now, $|(az_1 - bz_2)|^2 + |(bz_1 + az_2)|^2$ $= a^{2}|z_{1}|^{2} + b^{2}|z_{2}|^{2} - 2ab \operatorname{Re}|z_{1}\bar{z}_{2}| + b^{2}|z_{1}|^{2}$ $+ a^{2}|z_{2}|^{2} + 2ab \operatorname{Re}|\bar{z}_{1}z_{2}|$ $= (a^{2} + b^{2})(|z_{1}|^{2} + |z_{2}|^{2})$ 621 (b) It is given that α , β are roots of $6x^2 - 5x + 1 = 0$ $\therefore \alpha + \beta = \frac{5}{6} \text{ and } \alpha\beta = \frac{1}{6}$ $\therefore \tan^{-1} \alpha + \tan^{-1} \beta$ $= \tan^{-1}\left(\frac{\alpha + \beta}{1 - \alpha\beta}\right) = \tan^{-1}\left(\frac{\frac{5}{6}}{1 - \frac{1}{2}}\right) = \tan^{-1}1 = \frac{\pi}{4} \begin{vmatrix} 626 & (c) \\ \vdots & x^2 + 15|x| + 14 \end{vmatrix}$ 622 (c) We have, $|z_k| = 1, k = 1, 2 ..., n$ $\Rightarrow |z_k|^2 = 1 \Rightarrow z_k \bar{z}_k = 1 \Rightarrow \bar{z}_k = \frac{1}{z_k}$ $\therefore |z_1 + z_2 + \ldots + z_n| = |\overline{z_1 + z_2 + \ldots + z_n}| \quad (\because |z|)$ $= |\overline{z}|$ $= |\bar{z}_1 + \bar{z}_2 + \ldots + \bar{z}_n|$ $= \left| \frac{1}{Z_1} + \frac{1}{Z_2} + \ldots + \frac{1}{Z_n} \right|$ 623 (d) We have, $\sum_{k=1}^{\infty} \left(\sin \frac{2\pi k}{7} - i \cos \frac{2\pi k}{7} \right)$ $=\sum_{k=1}^{\infty}-i\left(\cos\frac{2\pi k}{7}+i\sin\frac{2\pi k}{7}\right)$ $=\sum_{k=1}^{\infty}-i e^{\frac{i2\pi k}{7}}=-i \sum_{k=1}^{\infty} r^{k}$, where $r=e^{\frac{i2\pi}{7}}$ $= -i\frac{r(1-r^{6})}{(1-r)} = -i\left(\frac{r-r^{7}}{1-r}\right) = -i\left(\frac{r-1}{1-r}\right) = i$ $r^7 = 1$ 624 (d) <u>CASE I</u> When $x \ge 0$ In this case, we have |x| = x $\therefore x^2 + x + |x| + 1 < 0$ $\Rightarrow x^2 + 2x + 1 < 0 \Rightarrow (x + 1)^2 < 0$, which is not true <u>CASE II</u> When x < 0In this case, we have |x| = -x $\therefore x^2 + x + |x| + 1 \le 0$

 $\Rightarrow x^2 + 1 \le 0$, which is not true for any x < 0Hence, there is no value of *x* satisfying the given inequation

625 (c) We have, $\omega_n = \cos\left(\frac{2\pi}{n}\right) + i\sin\left(\frac{2\pi}{n}\right)$ $\Rightarrow \omega_3 = \cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3}$ $=-\frac{1}{2}+\frac{i\sqrt{3}}{2}=\omega$ and $\omega_3^2 = \left(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}\right)^2$ $=\cos\frac{4\pi}{3}+i\sin\frac{4\pi}{3}$ $=-\frac{1}{2}-\frac{i\sqrt{3}}{2}=\omega^2$ $\therefore (x + y\omega_3 + z\omega_3^2)(x + y\omega_3^2 + z\omega_3)$ $= (x + y\omega + z\omega^2)(x + y\omega^2 + z\omega)$ $= x^{2} + y^{2} + z^{2} - xy - yz - zx$

$$= |x^{2}| + 15|x| + 14 > 0$$

For all real x
 \Rightarrow Given equation has no solution

627 (b)

It is given that α , β , γ are the roots of the equation $x^3 + ax^2 + bx + c = 0$ $\therefore \alpha + \beta + \gamma = -\alpha, \alpha \beta + \beta \gamma + \gamma \alpha = b$ and, $\alpha \beta \gamma = c$ Hence,

$$\alpha^{-1} + \beta^{-1} + \gamma^{-1} = \frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = \frac{\sum \alpha \beta}{\alpha \beta \gamma} = -\frac{b}{c}$$

628 (d)

Domain of the function $y = \sqrt{x(x-3)}$ is $x(x-3) \ge 0$ $\Rightarrow x \leq 0 \text{ or } x \geq 3 \dots(i)$ Given equation can be rewritten as $9|x|^2 - 19|x| + 2 = 0$ $\Rightarrow (9|x|-1)(|x|-2) = 0$ $\Rightarrow |x| = 2 \text{ or } |x| = \frac{1}{9}$ \therefore Solution of the given equation are $\pm 2, \pm \frac{1}{\alpha}$.

In the domain (i) the required solutions are $-2, -\frac{1}{2}$

629 (b)

Since, α is an imaginary cube root of unity. Let it be ω , then $\alpha^{3n+1} + \alpha^{3n+3} + \alpha^{3n+5} = (\omega)^{3n+1} + \alpha^{3n+5}$ $(\omega)^{3n+3} + (\omega)^{3n+5}$ $= \omega + 1 + \omega^5$ $= \omega + 1 + \omega^2 = 0$ 630 **(b)**

Given. $z^2 + \overline{z} = 0$ $\therefore \quad (x+iy)^2 + (x-iy) = 0$ $\Rightarrow \quad x^2 - y^2 + x + i(2xy - y) = 0$ \Rightarrow $x^2 - y^2 + x = 0$ and 2xy - y = 0Now, $2xy - y = 0 \Rightarrow y = 0, x = \frac{1}{2}$ When y = 0, $x^2 - 0 + x = 0 \Rightarrow x = 0, -1$ When $x = \frac{1}{2}$, $\left(\frac{1}{2}\right)^2 - y^2 + \frac{1}{2} = 0 \quad \Rightarrow \quad y^2 = \frac{1}{4} + \frac{1}{2} \quad \Rightarrow \quad y$ $=\pm\frac{\sqrt{3}}{2}$: Solutions are $(0, 0), (-1, 0), (\frac{1}{2}, \frac{\sqrt{3}}{2}), (\frac{1}{2}, \frac{-\sqrt{3}}{2})$ 631 (b) $\log_{\sqrt{3}}\left(\frac{|z|^2 - |z| + 1}{2 + |z|}\right) < 2$ $\Rightarrow \frac{|z|^2 - |z| + 1}{2 + |z|} < (\sqrt{3})^2$ $\Rightarrow |z|^2 - |z| + 1 < 3(2 + |z|)$ $\Rightarrow |z|^2 - 4|z| - 5 < 0$ $\Rightarrow (|z|+1)(|z|-5) < 0$ $\Rightarrow -1 < |z| < 5 \Rightarrow |z| < 5$ as |z| > 0 \therefore Locus of z is |z| < 5632 **(b)** Since, 2 and 3 are the roots of the equation $2x^3 + mx^2 - 13x + n = 0$: $f(2) = 2(2)^3 + m(2)^2 - 13(2) + n = 0$ And $f(3) = 2(3)^3 + m(3)^2 - 13(3) + n = 0$ $\Rightarrow 4m + n = 10$ and 9m + n = -15 $\Rightarrow m = -5, n = 30$ 633 (d) The affix of the centroid *G* of the triangle is $(z_1 + z_2 + z_3)/3$ Since the centroid *G* divides the line joining the circumcentre and orthocentre in the ratio 1 : 2. Therefore, if *z* is the affix of the orthocentre, then $\frac{z_1 + z_2 + z_3}{3} = \frac{1 \cdot z + 2 \cdot 0}{1 + 2} \Rightarrow z = z_1 + z_2 + z_3$ 634 (c) $xyz = (\alpha + \beta)(\alpha\omega + \beta\omega^2)(\alpha\omega^2 + \beta\omega)$ $= (\alpha + \beta)[\alpha^2 + \alpha\beta(\omega^2 + \omega) + \beta^2]$ $[:: 1 + \omega + \omega^2 = 0]$ and $\omega^3 = 1$ $= (\alpha + \beta)(\alpha^2 - \alpha\beta + \beta^2)$ $= \alpha^3 + \beta^3$ 635 (d) Given, n = 2006! $\therefore \frac{1}{\log_2 n} + \frac{1}{\log_3 n} + \dots + \frac{1}{\log_{2006} n}$ $= \log_n 2 + \log_n 3 + \ldots + \log_n 2006$

 $= \log_n(2.3.4....2006)$ $= \log_n(2006!) = \log_n n = 1$ 636 (a) We have, $a(p+q)^{2} + 2 bpq + c = 0$ and, $a(p+r)^{2} + c = 0$ $2 \, bpr + c = 0$ It is evident from these two equations, that *q* and *r* are roots of the equation $a(p+x)^2 + 2bpx + c = 0$ or, $ax^2 + 2x(a+b)p + ap^2 + c = 0$ $\therefore \text{ Product of the roots} = \frac{ap^2 + c}{c}$ $\Rightarrow qr = \frac{ap^2 + c}{a} = p^2 + \frac{c}{a}$ 637 (b) It is given that $\frac{2z_1}{3z_2}$ is purely imaginary. So, let $\frac{2z_1}{3z_2} = ki \Rightarrow \frac{z_1}{z_2} = \frac{3k}{2}i = mi$ $\therefore \left| \frac{z_1 - z_2}{z_1 + z_2} \right|^4 = \left| \frac{\frac{z_1}{z_2} - 1}{\frac{z_1}{z_1} + 1} \right|^4 = \left| \frac{mi - 1}{mi + 1} \right|^4 = \left| \frac{m + 1}{m - 1} \right|^4$ 638 (c) $4^{1/2}$, $4^{1/4}$, $4^{1/8}$, $4^{1/16}$, ... are given roots, then Sum of roots = $4^{\frac{1}{2}} + 4^{\frac{1}{4}} + 4^{\frac{1}{8}} + \dots = 5$ Product of roots = $4^{1/2}$, $4^{1/4}$, $4^{1/8}$... $= 4^{1/2+1/4+1/8+\cdots}$ $=4^{\frac{1/2}{1-1/2}}=4$: Required equation is $x^2 - 5x + 4 = 0$ 639 (b) It is given that x_1, x_2 are roots of $x^2 - 3x + p = 0$ \Rightarrow $x_1 + x_2 = 3$, $x_1 x_2 = p$ x_3, x_4 are roots of $x^2 - 12x + q = 0$ $\Rightarrow x_3 + x_4 = 12 \text{ and } x_3 x_4 = q$ It is given that x_1, x_2, x_3, x_4 form an increasing G.P. Therefore, $x_1 = a, x_2 = ar, x_3 = ar^2, x_4 = ar^3$, where r > 1Now. $\begin{array}{l} x_1 + x_2 = 3 \ \Rightarrow a(1+r) = 3 \\ x_3 + x_4 = 12 \Rightarrow ar^2(1+r) = 12 \end{array} \} \Rightarrow r = 2 \text{ and } a$ $\therefore x_1 = 1, x_2 = 2, x_3 = 4, x_4 = 8$ Thus, $p = x_1 x_2 = 2$ and $q = x_3 x_4 = 32$ 640 **(b)** We have, $x^2 - 3 kx + 2 \times e^{2 \log_e k} - 1 = 0$ $\therefore \log_e k$ is defined for k > 0] $\Rightarrow x^2 - 3kx + (2k^2 - 1) = 0$

Now. Product of roots = $7 \Rightarrow 2k^2 - 1 = 7 \Rightarrow k = 2$ [:: k > 01641 **(b)** We have, $(a+1)x^{2} + (2a+3)x + (3a+4) = 0$ Let α and β be the roots of the equation. According to the given condition $\alpha\beta = 2$ $\Rightarrow \frac{3a+4}{a+1} = 2$ \Rightarrow 3a + 4 = 2a + 2 $\Rightarrow a = -2$ Also, $\alpha + \beta = -\frac{2a+3}{a+1} = -\frac{-4+3}{-2+1} = -1$ 642 (d) $\sum_{k=1}^{5} \left[\sin\left(\frac{2k\pi}{7}\right) - i\cos\left(\frac{2k\pi}{7}\right) \right] = -i \sum_{k=1}^{6} \left(e^{\frac{2\pi i}{7}} \right)^k$ $= -i(r^1 + r^2 + ... + r^6) \quad \left[\text{let } r = e^{\frac{2\pi i^7}{7}} \right]$ $=-ir \frac{(1-r^6)}{1-r} = \frac{-i(r-r^7)}{1-r}$ $=\frac{-i(r-1)}{1-r}=i$ [: $r^7=e^{2\pi i}=1$] 643 (a) Since, $\sin \alpha$, $\sin \beta$ and $\cos \alpha$ are in GP, then $\sin^2 \beta = \sin \alpha \cos \alpha$...(i) Given equation is $x^2 + 2x \cot \beta + 1 = 0$. : Discriminant, $D = b^2 - 4ac$ $= (2 \cot \beta)^2 - 4 = 4(\csc^2 \beta - 2)$ = 4(cosec α sec α – 2) [from Eq. (i)] $= 4(2 \operatorname{cosec} 2\alpha - 2) \ge 0$ ∴ Roots are real. 644 (a) We have, $z^2 + pz + q = 0$ and let $p^2 = 3q$ $\Rightarrow \quad z = \frac{-p \pm \sqrt{p^2 - 4q}}{2}$ $=\frac{-p\pm\sqrt{3q-4q}}{2}$ $=\frac{-p\pm i\sqrt{q}}{2}$ Let $z_1 = \frac{-p + i\sqrt{q}}{2}$ And $z_2 = \frac{-p - i\sqrt{q}}{2}$ Further, let z_1 and z_2 be the affixes of points A and B respectively. Then, $OA = |z_1| = \sqrt{\left(-\frac{p}{2}\right)^2 + \left(\frac{\sqrt{q}}{2}\right)^2} = \sqrt{\frac{p^2}{4} + \frac{q}{4}}$

 $= \frac{3q}{4} + \frac{q}{4} = \sqrt{q}$

 $OB = |z_2| = \left| \left(-\frac{p}{2} \right)^2 + \left(+\frac{\sqrt{q}}{2} \right)^2 \right|$ $= \sqrt{\frac{p^2}{4} + \frac{q}{4}} = \sqrt{\frac{3q}{4} + \frac{q}{4}} = \sqrt{q}$ And $AB = |z_1 - z_2| = |i\sqrt{q}| = \sqrt{0 + (\sqrt{q})^2} =$ \sqrt{q} OA = OB = AB:. ΔAOB is an equilateral triangle. ⇒ Thus, $p^2 = 3q$ 645 (a) $(3 + \omega^2 + \omega^4)^6 = (3 + \omega^2 + \omega)^6 = (3 - 1)^6 = 64$ 646 **(b)** We have, $|\omega| = 1$ $\Rightarrow |1 - iz| = |z - i|$ $\Rightarrow |z + i| = |z - i|$ \Rightarrow *z* lies on the perpendicular bisector of the segment joining (0,1) and (0,-1) \Rightarrow z lies on x-axis 648 (b) We have , $\left|x + \frac{1}{x}\right| > 2$ We know that $x + \frac{1}{x} > 2$ for all $x > 0, x \neq 1$ and $x + \frac{1}{x} < -2$ for all $x < 0, x \neq -1$ $\therefore \left| x + \frac{1}{x} \right| > 2 \text{ for all } x \neq 0, -1, 1$ Hence, the solution set of the given inequation is $R - \{-1, 0, 1\}$ 649 (c) We have, $\operatorname{Re}\left(\frac{z+4}{2z-i}\right) = \frac{1}{2}$ $\Rightarrow \operatorname{Re}\left(\frac{z+4}{z-\frac{i}{2}}\right) = 1$ $\Rightarrow \operatorname{Re}\left(\frac{(x+4)+iy}{x+i(y-\frac{1}{2})}\right) = 1$ $\Rightarrow \operatorname{Re} \left| \frac{\{(x+4) + iy\} \left\{ x - i\left(y - \frac{1}{2}\right) \right\}}{x^2 + \left(y - \frac{1}{2}\right)^2} \right| = 1$ $\Rightarrow \operatorname{Re} \left\{ \frac{x(x+4) + y\left(y - \frac{1}{2}\right) + \left\{xy - (x+4)\left(y - \frac{1}{2}\right)^2 + \left(y - \frac{1}{$ = 1

$$\Rightarrow \frac{x(x+4)+y(y-\frac{1}{2})^2}{x^2+(y-\frac{1}{2})^2} = 1$$

$$\Rightarrow x^2+4x+y^2-\frac{y}{2} = x^2+y^2-y+\frac{1}{4}$$

$$\Rightarrow 4x+\frac{y}{2}-\frac{1}{4} = 0$$

$$\Rightarrow 16x+2y-1 = 0, \text{ which represents a straight line}$$

650 (a)
Since, sin *A*, sin *B*, cos *A* are in GP

$$\therefore \sin^2 B = \sin A \cos A \quad ...(i)$$

Also, $x^2 + 2x \cot B + 1 = 0$ [given]
Now, $b^2 - 4ac = 4 \cot^2 B - 4$

$$= \frac{4\cos^2 B - 4 \sin^2 B}{\sin^2 B}$$

$$= \frac{4(1-2\sin A \cos A)}{\sin^2 B}$$

$$= \frac{4(1-2\sin A \cos A)}{\sin^2 B}$$

$$= 4\left(\frac{(\sin A - \cos A)}{\sin^2 B}\right)^2 \text{ [from Eq. (i)]}$$

$$\ge 0$$

$$\therefore \text{ Roots of given equation are always real}$$

651 (d)
Here, $\alpha + \beta = -\frac{b}{a}$ and $\alpha\beta = \frac{c}{a}$

$$\therefore \frac{1}{a\alpha + b} + \frac{1}{a\beta + b} = \frac{a(\alpha + \beta) + 2b}{a^2\alpha\beta + ab(\alpha + \beta) + b^2}$$

$$= \frac{a\left(-\frac{b}{a}\right) + 2b}{a^2\left(\frac{c}{a}\right) + ab\left(-\frac{b}{a}\right) + b^2} = \frac{b}{ac}$$

652 (c)
From the figure it is clear that amplitude of point $B = \theta - \pi$

$$x' + \frac{\theta}{\theta} = \frac{|x|^2}{|x| + x_2|} = \left|\frac{(x_1/x_2) - 1}{(x_1/x_2) + 1}\right| = \left|\frac{(3ik/2) - 1}{(3ik/2) + 1}\right| = 1$$

654 (a)
The given equation will have real roots iff
Disc $\ge 0 \Rightarrow 16 - 4(k^2 - 1) \ge 0 \Rightarrow k^2 \le 5$

1\

1

655 (c) Let $z_1 = 1 + 4i$, $z_2 = 3 + i$, $z_3 = 1 - i$ and $z_4 = 2 - 3i$ 1

 \therefore $m_1|z_1|$, $m_2 = |z_2|$, $m_3 = |z_3|$ and $m_4 =$ $|Z_4|$ $\Rightarrow m_1 = \sqrt{1 + 4^2} = \sqrt{17}, \qquad m_2 = \sqrt{3^2 + 1^2} =$ $m_3 = \sqrt{1^2 + 1^2} = \sqrt{2}$ and $m_4 = \sqrt{2^2 + 3^2} =$ $\sqrt{13}$ $\Rightarrow m_3 < m_2 < m_4 < m_1$ 656 (c) Given, $(\cos \theta + i \sin \theta)(\cos 2\theta + i \sin 2\theta) \dots$ $(\cos n\theta + i\sin n\theta) = 1$ $\therefore \cos(\theta + 2\theta + 3\theta + \ldots + n\theta)$ $+i\sin(\theta + 2\theta + 3\theta + \ldots + n\theta) = 1$ $\Rightarrow \cos\left(\frac{n(n+1)}{2}\theta\right) + i\sin\left(\frac{n(n+1)}{2}\theta\right) = 1$ $\Rightarrow \cos\left(\frac{n(n+1)}{2}\theta\right) = 1 \text{ and } \sin\left(\frac{n(n+1)}{2}\theta\right) = 0$ $\therefore \quad \frac{n(n+1)}{2}\theta = 2m\pi \implies \theta = \frac{4m\pi}{n(n+1)}$ 657 (c) Let *O* is orthocenter, *G* is centroid and *C* is circumcentre, then O(z) $\frac{z_1 + z_2 + z_3}{3} = \frac{2 \times 0 + 1(z)}{3}$ $\Rightarrow z = z_1 + z_2 + z_3$ 658 (d) We have, $z_1 = \frac{\lambda z_2 + z_3}{\lambda + 1}$ This means that the point A divides BC internally in the ratio 1 : λ . So, *A* lies on the segment *BC* Hence, distance of A from BC is zero 659 (c) Given that, the vertices of quadrilateral are A = (1 + 2i), B = (-3 + i), C = (-2 - 3i) and D = (2 - 2i)Now, $AB = \sqrt{16 + 1} = \sqrt{17}$, $BC = \sqrt{1 + 16} =$ $\sqrt{17}$ $CD = \sqrt{16 + 1} = \sqrt{17}, DA = \sqrt{1 + 16} = \sqrt{17}$ $AC = \sqrt{9 + 25} = \sqrt{34}, BD = \sqrt{25 + 9} = \sqrt{34}$ \therefore Sides AB = BC = CD = DA and diagonals AC = BDHence, it is a square 660 **(b)** Given equation is $(p^{2} + q^{2})x^{2} - 2q(p+r)x + (q^{2} + r^{2}) = 0$ Since, roots are real and equal, then $b^2 - 4ac = 0$ $\Rightarrow 4q^{2}(p+r)^{2} - 4(p^{2}+q^{2})(q^{2}+r^{2}) = 0$

 $\Rightarrow q^2(p^2 + r^2 + 2pr)$ $-(p^{2}q^{2} + p^{2}r^{2} + q^{4} + q^{2}r^{2}) = 0$ $\Rightarrow q^{2}p^{2} + q^{2}r^{2} + 2pq^{2}r - p^{2}q^{2} - p^{2}r^{2} - q^{4}$ $-q^2r^2 = 0$ $\Rightarrow 2pq^2r - p^2r^2 - q^4 = 0$ $\Rightarrow (q^2 - pr)^2 = 0$ $\Rightarrow q^2 = pr$ \therefore *p*, *q* and *r* will be in GP. 661 (b) Since, $\left|\frac{z-i}{z+i}\right| = 2 \implies \left|\frac{x+iy-i}{x+iy+i}\right| = 2$ [where z = x + iy] $\Rightarrow |x+i(y-1)| = 2|x+(y+1)i|$ $\Rightarrow x^2 + (y-1)^2 = 4[x^2 + (y+1)^2]$ $\Rightarrow x^{2} + y^{2} - 2y + 1 = 4x^{2} + 4y^{2} + 8y + 4$ $\Rightarrow 3x^2 + 3y^2 + 10y + 3 = 0$ 662 (c) $|z_1| = \sqrt{2}, \qquad |z_2| = \sqrt{3}$ $|z_1 z_2| = |z_1| |z_2 = \sqrt{6}$ 663 (d) We have, $|z_1 - z_2| \le |z_1| + |z_2|$ $\therefore |1 + z + z^{2} + \dots + z^{n}| = \left|\frac{z^{n+1} - 1}{z - 1}\right| \le \frac{z^{n+1} + 1}{|z - 1|}$ $\Rightarrow |1 + z + z^2 + \dots + z^n|$ $\leq \frac{|z|^{n+1}+1}{|z|} \begin{bmatrix} \because \operatorname{Re}(z) < 0\\ \therefore |z-1| \geq |z| \end{bmatrix}$ $\Rightarrow |1 + z + z^2 + \dots + z^n| \le |z|^n + \frac{1}{|z|}$ (0, 1) $\frac{}{X'}$ Y'664 (d) Since, a + b = -p, ab = 1 ...(i) And c + d = -q, cd = 1Now, (a - c)(b - c) and (a + d)(b + d) are the roots of $x^2 + ax + \beta = 0$ $\therefore (a-c)(b-c)(a+d)(b+d) = \beta$ $\Rightarrow (ab - ac - bc + c^2)(ab + ad + bd + d^2) = \beta$

- ⇒ $\{1 c(a + b) + c^2\}\{1 + d(a + b) + d^2\} = \beta$ ⇒ $(1 + pc + c^2)(1 - pd + d^2) = \beta$
- $\Rightarrow (1 + pc + c)(1 pu + u) = p$ $\Rightarrow 1 - pd + d^2 + pc - p^2cd + pcd^2 + c^2 - pc^2d$ $+ c^2d^2 = \beta$

 $\Rightarrow 1 - pd + d^2 + pc - p^2 + pd + c^2 - pc + 1$ $= \beta$ $[\because cd = 1]$ \Rightarrow 2 + d² + c² - p² = β $\Rightarrow 2cd + c^2 + d^2 - p^2 = \beta \qquad [\because 1 = cd]$ $\Rightarrow (c+d)^2 - p^2 = \beta$ $\Rightarrow q^2 - p^2 = \beta$ (:: c + d = -q) 665 **(b)** We have, $x^{2} - 3x - 4 < 0 \Rightarrow (x - 4)(x + 1) < 0 \Rightarrow -1 < x$ < 4 Clearly, integers 0, 1, 2 and 3 satisfy this inequality 666 **(b)** According to the equation, $D \ge 0, -2 < -\frac{b}{2a} < 4, f(4) > 0 \text{ and } f(-2) > 0$ Now, $D \ge 0$; $4m^2 - 4m^2 + 4 \ge 0$ $\Rightarrow 4 > 0 \forall m \in R$...(i) $-2 < -\frac{b}{2a} < 4; -2 < \left(\frac{2m}{21}\right) < 4$ $\Rightarrow -2 < m < 4$...(ii) f(4) > 0 $\Rightarrow 16 - 8m + m^2 - 1 > 0 \Rightarrow (m - 3)(m - 5) > 0$ $\Rightarrow -\infty < m < 3$ and $5 < m < \infty$...(iii) And f(-2) > 0 $\Rightarrow 4 + 4m + m^2 - 1 > 0$ $\Rightarrow (m+3)(m+1) > 0$ $\Rightarrow -\infty < m < -3$ and $-1 < m < \infty$...(iv) \therefore From Eqs. (i), (ii), (iii) and (iv), we get *m* lie between -1 and 3

667 (c)

Given equation is $(p-q)x^{2} + (q-r)x + (r-p) = 0$ $\Rightarrow x = \frac{(r-q) \pm \sqrt{(q-r)^{2} - 4(r-p)(p-q)}}{2(p-q)}$ $= \frac{(r-q) \pm \sqrt{q^{2} + r^{2} - 2qr - 4(rp - rq - p^{2} + pq)}}{2(p-q)}$ $\Rightarrow x = \frac{(r-q) \pm (q+r-2p)}{2(p-q)}$ $\Rightarrow x = \frac{r-p}{p-a}, 1$

668 (b)

Since α , β , γ , δ are roots of $x^4 + x^2 + 1 = 0$. To obtain the equation whose roots are α^2 , β^2 , γ^2 , δ^2 , we put $x^2 = y$. Putting $x^2 = y$, the given equation reduces to $y^2 + y + 1 = 0$ Thus, the required equation is $(y^{2} + y + 1)^{2} = 0$ or, $(x^{2} + x + 1)^{2} = 0$ 669 (d) We have, $|x^2 - 10| \le 6 \Rightarrow -6 \le x^2 - 10 \le 6 \Rightarrow 4 \le x^2$ ≤ 16 $\Rightarrow x \in [-4, -2] \cup [2, 4]$

$$\begin{bmatrix} \because a^2 \le x^2 \le b^2 \\ \Leftrightarrow x \in [-b, -a] \cup [a, b] \end{bmatrix}$$

670 (a)

Given,
$$x = \sqrt{3018 + \sqrt{36 + \sqrt{169}}}$$

= $\sqrt{3018 + \sqrt{36 + 13}}$
= $\sqrt{3018 + 7} = \sqrt{3025} = 55$

 $\leq b^2$

671 (c)

Given equation is $(\cos p - 1)x^2 + (\cos p)x +$ $\sin p = 0$ Since, roots are real, its discriminant, $D \ge 0$ $\therefore \cos^2 p - 4(\cos p - 1)\sin p \ge 0$ $\Rightarrow \cos^2 p - 4 \cos p \sin p + 4 \sin p \ge 0$ $\Rightarrow (\cos p - 2\sin p)^2 - 4\sin^2 p + 4\sin p \ge 0$ $\Rightarrow (\cos p - 2\sin p)^2 + 4\sin p(1 - \sin p) \ge 0$(i) Now, $(1 - \sin p) \ge 0$ for all real p and $\sin p > 0$ for $0 . Therefore, <math>4 \sin p(1 - \sin p) \ge 0$ when $0 or <math>p \in (0, \pi)$. 672 **(b)** Let the two numbers are x_1 and x_2

Given, $\frac{x_1 + x_2}{2} = 9$ and $x_1 \cdot x_2 = 16$ $\Rightarrow x_1 + x_2 = 18 \text{ and } x_1 \cdot x_2 = 16$ Hence, required equation is x^2 –(sum of roots)x +product of roots=0

 $\Rightarrow x^2 - 18x + 16 = 0$ 673 (c) α and β are roots of the equation $x^2 - x + 1 = 0$ $\Rightarrow \alpha + \beta = 1, \alpha \beta = 1$ $\Rightarrow \alpha = -\omega, \beta = -\omega^2$ or $\alpha = -\omega^2$, $\beta = -\omega$ Taking $\alpha = -\omega, \beta = -\omega^2$ $\alpha^{2009} + \beta^{2009} = (-\omega)^{2009} - (-\omega^2)^{2009}$ $= -(\omega^2 + \omega)$ = 1 674 (a) $\alpha + \beta = -p, \alpha\beta = q$ $\therefore \quad \alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$ $= p^2 - 2q$ $\Rightarrow (\alpha - \beta)^2 = \alpha^2 + \beta^2 - 2\alpha\beta$ $= (p^2 - 2q) + 2q$ $= p^2 - 4q$ 675 (b) Conjugate of $\frac{2-3i}{4-i}$ is $\frac{2+3i}{4+i}$ $\therefore \quad \frac{2+3i}{4+i} = \frac{2+3i}{4+i} \times \frac{4-i}{4-i}$ $=\frac{8+3-2i+12}{16+1}$ $=\frac{11+10i}{17}$ 676 (d) Here, a = (p - q), b = 5(p + q) and c = -(2p - q)2q + r) Now, $b^2 - 4ac = 25(p+q)^2 + 4(p-q)(2p - q)^2$ 2q+r $= 25(p+q)^{2} + 8(p-q)^{2} + 4r(p-q)$

Hence, it depends on the value of p, q and r677 (a)

We have,

$$y = \sqrt{\frac{(x+1)(x-3)}{(x-2)}}$$
 here *x* cannot be 2.
 \therefore Either both N^r and D^r are positive.

 $x \ge -1, x \ge 3$ and x > 2 $\Rightarrow x \ge 3$ (i) or N^r is negative and D^r is negative. $x \ge -1$ and x > 2 $\Rightarrow -1 \leq x < 2$...(ii) From Eqs. (i) and (ii), we get $-1 \le x < 2 \text{ or } x \ge 3$ 678 (d) Let $\alpha = x^{1/3}$, then it reduces to $\alpha^2 - 7\alpha + 10 = 0$ $\Rightarrow (\alpha - 5)(\alpha - 2) = 0 \Rightarrow \alpha = 5, 2$ $\therefore \alpha^3 = x \Rightarrow x = 125$ and 8 679 (b) We know that only even prime is 2, then $(2)^{2} - \lambda(2) + 12 = 0 \implies \lambda = 8$...(i) and $x^2 + \lambda x + \mu = 0$ has equal roots. : $\lambda^2 - 4\mu = 0$ or $(8)^2 - 4\mu = 0$ [from Eq. (i)] $\therefore \mu = 16$ 680 **(b)** Given, $\arg\left(\frac{z-1}{z+1}\right) = \frac{\pi}{2}$ Let z = x + iy $\therefore \quad \frac{z-1}{z+1} = \frac{x+iy-1}{x+iy+1} \times \frac{(x+1)-iy}{(x+1)-iy}$ $=\frac{x^2+y^2-1+2iy}{(x+1)^2+y^2}$ $\therefore \arg\left(\frac{z-1}{z+1}\right) = \tan^{-1}\frac{2y}{x^2+y^2-1} = \frac{\pi}{3}$ $\Rightarrow \quad \frac{2y}{x^2 + y^2 - 1} = \sqrt{3}$ $\Rightarrow x^2 + y^2 - \frac{2}{\sqrt{2}}y - 1 = 0$ Which is the equation of a circle. 681 (d) $\Delta = \begin{vmatrix} 1 + \omega & \omega^2 & -\omega \\ 1 + \omega^2 & \omega & -\omega^2 \\ \omega^2 + \omega & \omega & -\omega^2 \end{vmatrix} = \begin{vmatrix} -\omega^2 & \omega^2 & -\omega \\ -\omega & \omega & -\omega^2 \\ -1 & \omega & -\omega^2 \end{vmatrix}$ $\Rightarrow \Delta = \begin{vmatrix} \omega^2 & \omega^2 & \omega \\ \omega & \omega & \omega^2 \\ 1 & \omega & \omega^2 \end{vmatrix} = \omega^2 \begin{vmatrix} \omega^2 & \omega & 1 \\ \omega & 1 & \omega \\ 1 & 1 & \omega \end{vmatrix}$ $\Rightarrow \Delta = \omega^2 \{ \omega^2 (\omega - \omega) - \omega (\omega^2 - \omega) + (\omega - 1) \}$ $\Rightarrow \Delta = \omega^2 \{0 - \omega^3 + \omega^2 + \omega - 1\} = -3 \ \omega^2$ 682 (a) We have, $|\alpha - \beta| > \sqrt{3a}$ $\Rightarrow |\alpha - \beta|^2 > 3a$ $\Rightarrow (\alpha + \beta)^2 - 4 \alpha \beta > 3a$ $\Rightarrow a^2 - 4 > 3a$ $\Rightarrow a^2 - 3a - 4 > 0 \Rightarrow (a - 4)(a + 1) > 0 \Rightarrow a$ $\in (-\infty, -1) \cup (4, \infty)$ 684 **(b)** The given equation is

 $3x^{2} - 2x(a + b + c) + (ab + bc + ca) = 0$ Let *D* be its discriminant. Then, $D = 4(a + b + c)^2 - 12(ab + bc + ca)$ $\Rightarrow D = 4(a^2 + b^2 + c^2 - ab - bc - ca)$ $\Rightarrow D = 2\{(a-b)^2 + (b-c)^2 + (c-a)^2\} \ge 0$ So, roots of the given equation are real 685 (b) Sum of roots = $\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{\alpha^2 + \beta^2}{\alpha\beta}$ and product = 1 Given, $\alpha + \beta = -p$ and $\alpha^3 + \beta^3 = q$ $\Rightarrow (\alpha + \beta)(\alpha^2 - \alpha\beta + \beta^2) = a$ $\therefore \ \alpha^2 + \beta^2 - \alpha\beta = \frac{-q}{n}$...(i) And $(\alpha + \beta)^2 = p^2$ $\Rightarrow \alpha^2 + \beta^2 + 2\alpha\beta = p^2$ From Eqs. (i) and (ii), we get $\alpha^2 + \beta^2 = \frac{p^3 - 2q}{2n}$ And $\alpha\beta = \frac{p^3+q}{3p}$: Required equation is $x^{2} - \frac{(p^{3} - 2q)x}{(p^{3} + q)} + 1 = 0$ $\Rightarrow (p^{3} + q)x^{2} - (p^{3} - 2q)x + (p^{3} + q) = 0$ 686 **(b)** Since, α and β are the roots of the equation $2x^2 + 2(a + b) + a^2 + b^2 = 0.$ $\therefore (\alpha + \beta)^2 = (a + b)^2$ and $\alpha\beta = \frac{a^2 + b^2}{2}$ Now, $(\alpha - \beta)^2 = (\alpha + \beta)^2 - 4\alpha\beta$ $= (a+b)^2 - 4\left(\frac{a^2+b^2}{2}\right)$ $= -(a - b)^{2}$ Now, the required equation whose roots are $(\alpha + \beta)^2$ and $(\alpha - \beta)^2$ is $x^2 - \{ (\alpha + \beta)^2 + (\alpha - \beta)^2 \} x + (\alpha + \beta)^2 (\alpha - \beta)^2$ $\Rightarrow x^2 - \{(a+b)^2 - (a-b)^2\}x$ $-(a+b)^2(a-b)^2 = 0$ $\Rightarrow x^2 - 4abx - (a^2 - b^2)^2 = 0$ 688 **(b)** Let z = x + iy, therefore given equation becomes (x + iy)(x - iy) + (2 - 3i)(x + iy)+(2+3i)(x-iy)+4=0 $\Rightarrow x^{2} + y^{2} + 2x + 3y - 3ix + 2iy + 2x - 2iy$ +3ix + 3y + 4 = 0 $\Rightarrow x^{2} + y^{2} + 4x + 6y + 4 = 0$ Therefore, given equation represents a circle with radius $=\sqrt{2^2+3^2-4}$ $=\sqrt{4+9-4}=\sqrt{9}=3$

689 (a) Here, $i\left\{\log\left(\frac{x-i}{x+i}\right)\right\} - \pi + 2\tan^{-1}x = k$ (say) $\therefore \log\left(\frac{x+i}{x-i}\right) = i(k+\pi-2\tan^{-1}x)$ or $\frac{x+i}{x-i} = e^{i\theta}$, where $\theta = k + \pi - 2 \tan^{-1} x$ $\Rightarrow x + i = (x \cos \theta + \sin \theta) + i(x \sin \theta - \cos \theta)$ $\Rightarrow x = x \cos \theta + \sin \theta$ and $1 = x \sin \theta - \cos \theta$ $\Rightarrow x = \cot \frac{\theta}{2} \Rightarrow \theta = 2 \cot^{-1} x$ or $k + \pi - 2 \tan^{-1} x = 2 \cot^{-1} x$ $\Rightarrow k + \pi = 2(\cot^{-1}x + \tan^{-1}x) = 2\left(\frac{\pi}{2}\right)$ \Rightarrow $k + \pi = \pi$ or k = 0690 **(b)** Now, $1 + x = \log_a a + \log_a bc = \log_a abc$ $\Rightarrow \frac{1}{1+r} = \log_{abc} a$ Similarly, $\frac{1}{1+v} = \log_{abc} b$ and $\frac{1}{1+z} = \log_{abc} c$ $\therefore \frac{1}{1+x} + \frac{1}{1+y} + \frac{1}{1+z}$ $= \log_{abc} a + \log_{abc} b + \log_{abc} c$ $= \log_{abc} abc = 1$ 691 (d) We have, $\left|\frac{z_1 - z_2}{1 - z_1 \bar{z}_2}\right| = 1$ $\Rightarrow |z_1 - z_2|^2 = |1 - z_1 \overline{z_2}|^2$ $\Rightarrow |z_1|^2 + |z_2|^2 - 2 \operatorname{Re}(z_1 \overline{z_2})|$ $= 1 + |z_1 \overline{z}_2|^2 - 2 \operatorname{Re}(z_1 \overline{z}_2)$ $\Rightarrow |z_1|^2 + |z_2|^2 = 1 + |z_1|^2 |z_2|^2$ $\Rightarrow (1 - |z_1|^2)(1 - |z_2|^2) = 0$ $\Rightarrow |z_1| = 1 \text{ or, } |z_2| = 1$ $\Rightarrow z_1 = e^{i \theta}$ or , $z_2 = e^{i \theta}$, where $\theta \in R$ 692 (b) $(\sin 40^{\circ} + i \cos 40^{\circ})^5$ $= i^5 (\cos 40^\circ - i \sin 40^\circ)^5$ $= i (\cos 200^{\circ} - i \sin 200^{\circ})$ $= i[\cos(180^\circ + 20^\circ) - i\sin(180^\circ + 20^\circ)]$ $= i(-\cos 20^\circ - i \sin 20^\circ)$ $= -i\cos 20^\circ - \sin 20^\circ$ $= \cos(-110^{\circ}) + i\sin(-110^{\circ})$ \therefore Principle amplitude= -110° 693 (a) We have, $|x^2 - 3x + 2| + |x - 1| = x - 3$ Therefore $x \ge 3$ $\therefore x^2 - 3x + 2 + x - 1 = x - 3$ $\Rightarrow x^2 - 3x + 4 = 0$ $\Rightarrow \left(x-\frac{3}{2}\right)^2 = -\frac{7}{4}$ Hence, no solution exist

694 (d)
We have,

$$\sum_{r=1}^{8} \left(\sin \frac{2r\pi}{9} + i \cos \frac{2r\pi}{9} \right)$$

$$= \sum_{r=1}^{8} i \left(\cos \frac{2r\pi}{9} - i \sin \frac{2r\pi}{9} \right)$$

$$= i \sum_{r=1}^{8} i \left(\cos \frac{2r\pi}{9} - i \sin \frac{2r\pi}{9} \right)$$

$$= i \sum_{r=1}^{8} a^{r}, \text{ when } \alpha = e^{-\frac{2\pi i}{9}}$$

$$= i \left(\frac{(1-\alpha^{8})}{(1-\alpha)} \right)$$

$$= i \left(\frac{(\alpha-\alpha^{9})}{1-\alpha} \right)$$

$$= i \left(\frac{(\alpha-\alpha^{9})}{1-\alpha} \right)$$

$$= 1 \right]$$

$$= -i$$
695 (a)
Given equation of circle is
 $z\bar{z} + (2+3i)\bar{z} + (2-3i)z + 12 = 0$
Here, centre is {-(2+3i)} and radius

$$= \sqrt{12 + 3i|^{2} - 12} = \sqrt{13 - 12} = 1$$
696 (d)
We have,
 $\alpha + \beta = -\frac{b}{\alpha}, \alpha \beta = \frac{c}{\alpha}$
The required equation is
 $x^{2} - 5x(\alpha + \beta) + (2\alpha + 3\beta)(3\alpha + 2\beta) = 0$
 $\Rightarrow x^{2} + \frac{5bx}{\alpha} + \{6(\alpha^{2} + \beta^{2}) + 13\alpha\beta\} = 0$
 $\Rightarrow x^{2} + \frac{5bx}{\alpha} + \{6(\alpha^{2} + \beta^{2}) + 13\alpha\beta\} = 0$
 $\Rightarrow x^{2} + \frac{5bx}{\alpha} + \{6(\alpha^{2} + \beta^{2}) + 13\alpha\beta\} = 0$
 $\Rightarrow x^{2} + \frac{5bx}{\alpha} + \{6(\alpha^{2} + \beta^{2}) + 13\alpha\beta\} = 0$
 $\Rightarrow x^{2} + \frac{5bx}{\alpha} + \{6(\alpha^{2} + \beta^{2}) + 13\alpha\beta\} = 0$
 $\Rightarrow x^{2} + \frac{5bx}{\alpha} + \{6(\alpha^{2} + \beta^{2}) + 13\alpha\beta\} = 0$
 $\Rightarrow x^{2} + \frac{5bx}{\alpha} + \{6(\alpha^{2} + \beta^{2}) + 13\alpha\beta\} = 0$
 $\Rightarrow x^{2} + \frac{5bx}{\alpha} + \{6(\alpha^{2} + \beta^{2}) + 13\alpha\beta\} = 0$
 $\Rightarrow x^{2} + \frac{5bx}{\alpha} + \{6(\alpha^{2} + \beta^{2}) + 13\alpha\beta\} = 0$
 $\Rightarrow x^{2} - 5x(x + (\beta^{2} + \alpha^{2})) = 0$
 $\Rightarrow x^{2} + \frac{5bx}{\alpha} + \{6(\alpha^{2} + \beta^{2}) + 13\alpha\beta\} = 0$
 $\Rightarrow x^{2} + \frac{5bx}{\alpha} + \{6(\alpha^{2} + \beta^{2}) + 13\alpha\beta\} = 0$
 $\Rightarrow x^{2} - \frac{5bx}{\alpha} + \{6(\alpha^{2} + \beta^{2}) + 13\alpha\beta\} = 0$
 $\Rightarrow x^{2} + \frac{5bx}{\alpha} + \{6(\alpha^{2} + \beta^{2}) + 13\alpha\beta\} = 0$
 $\Rightarrow x^{2} + \frac{5bx}{\alpha} + \{6(\alpha^{2} + \beta^{2}) + 13\alpha\beta\} = 0$
 $\Rightarrow x^{2} - (y + 4)x + (y^{2} - 4y + 16) = 0$
 $\Rightarrow x - 2 = \pm 1 \Rightarrow x = 3, 1$
 \therefore Sum of the roots = 4
698 (a)
Given, x^{2} - xy + y^{2} - 4x - 4y + 16 = 0
 $\Rightarrow x^{2} - (y + 4)x + y^{2} - 4y + 16 = 0$
 $\Rightarrow -3y^{2} + 24y - 48 = 0$

$$\Rightarrow y^{2} - 8y + 16 = 0$$

$$\Rightarrow (y - 4)^{2} = 0$$

$$\Rightarrow y = 4$$

$$\therefore x = 4$$

$$\Rightarrow (x, y) = (4, 4)$$
699 (a)
log_{0.3}(x - 1) < log_{0.09}(x - 1)
Here, x - 1 > 0
And log_{0.3}(x - 1) < log_{(0.3)²}(x - 1)

$$\Rightarrow x > 1 \text{ and } \log_{0.3}(x - 1) < \frac{1}{2}\log_{0.3}(x - 1)$$

$$\Rightarrow x > 1 \text{ and } \log_{0.3}(x - 1) < 0$$

$$\Rightarrow x > 1 \text{ and } x - 1 > 1$$

$$\Rightarrow x > 1 \text{ and } x > 2$$

$$\therefore x \in (2, \infty)$$
700 (c)
Given that, $\frac{2x}{2x^{2} + 5x + 2} > \frac{1}{(x + 1)}$

$$\Rightarrow \frac{2x}{(2x + 1)(x + 2)} > \frac{1}{(x + 1)} > 0$$

$$\Rightarrow \frac{2x(x + 1) - (2x + 1)(x + 2)}{(x + 1)(2x + 1)(x + 2)} > 0$$

$$\Rightarrow \frac{2x^{2} + 2x - 2x^{2} - 4x - x - 2}{(x + 1)(2x + 1)(x + 2)} > 0$$
Equating each factor equal to 0, we have

$$x = -2, -1, -\frac{2}{3}, -\frac{1}{2}$$
It is clear that $-\frac{2}{3} < x < -\frac{1}{2}$ or $-2 < x - 1$.
701 (b)
Let $y = \sqrt[3]{28}$
Taking log on both sides, we get
log $y = \frac{1}{3} \log 28$

$$= \frac{1}{3} \times 1.4472$$

$$= 0.4824$$

$$\Rightarrow y = \text{antilog (0.4824)}$$

$$= 3.037 (approximately)$$
702 (b)
As we know, the equation of the form $\left|\frac{z-2}{z+2}\right| = n$
a circle, if $n \neq 1$
703 (a)
The vertices of the triangle are $z, iz, z + iz$
or $x + iy, -y + ix, (x - y) + i(x + y)$

$$\therefore \text{ Required area} = \frac{1}{2} \begin{vmatrix} x & y & 1 \\ -y & x & 1 \\ x - y & x + y & 1 \end{vmatrix}$$

$$= \frac{1}{2} |[x(x - x - y) - y(-y - x + y) + 1(-yx - y^2 - x^2 + xy)]|$$
$$= \frac{1}{2} (x^2 + y^2) = \frac{1}{2} |z|^2$$

704 **(b)**

For rational roots $b^2 - 4ac$ must be a perfect square of a rational number and as a, b, c are natural numbers $b^2 - 4ac$ must be a perfect square of an integer.

$$b^{2} - 4ac = I^{2} \Rightarrow b^{2} = I^{2} = 4ac$$

$$\Rightarrow 4ac = (b - I)(b + I)$$

$$\Rightarrow ac = \frac{b - I}{2} \cdot \frac{b + I}{2}$$

b - I, b + I are both odd integers or both even integers but *ac* is an odd integer. So, b - I and b + I must be even integers. *b* is odd *I* must be odd. Now, let

b - I = 2m, (*m* odd integer) b + I = 2n, (*n* odd integer) I = (n - m), (*n* - *m* is an even integer) So, contradiction $\Rightarrow b^2 - 4ac$ is not a perfect square. So, all *a*, *b*, *c* cannot be odd integers.

705 **(b)**

is

708 (c)

We have, $|\lambda_1 a_1 + \cdots + \lambda_n a_n|$ $\leq |\lambda_1 a_1| + |\lambda_2 a_2| + \dots + |\lambda_n a_n|$ $= |\lambda_1| |a_1| + |\lambda_2| |a_2| + \dots + |\lambda_n| |a_n|$ $= \lambda_1 |a_1| + \lambda_2 |a_2| + \dots + \lambda_n |a_n| \quad [\because \lambda_i \ge 0]$ $<\lambda_1 + \lambda_2 + \dots + \lambda_n = 1 \qquad [\because |a_1| < 1]$ $|\lambda_1 a_1 + \dots + \lambda_n a_n| < 1$ 706 **(d)** Since, α , β are the roots of the equation $ax^2 + bx + c = 0.$ $\therefore ax^2 + bx + c = a(x - \alpha)(x - \beta)$ $\Rightarrow \alpha, \beta$ be the roots of $ax^2 + bx + c = 0$. Also $\alpha < k < \beta$ So, $a(k - \alpha)(k - \beta) < 0$ Also, $a^{2}k^{2} + abk + ac = a(ak^{2} + bk + c) =$ $a^2(k-\alpha)(k-\beta) < 0$ $\Rightarrow a^2k^2 + abk + ac < 0$ 707 (b) We have, $x = 2 + 2^{2/3} + 2^{1/3}$ $\Rightarrow x - 2 = 2^{2/3} + 2^{1/3}$ $\Rightarrow (x-2)^3 = 2^2 + 2 + 3 \times 2^{2/3} \times 2^{1/3} (2^{2/3})$ $+2^{1/3}$) $\Rightarrow x^{3} - 6x^{2} + 12x - 8 = 4 + 2 + 3 \times 2 \times (x - 2)$ $\Rightarrow x^3 - 6x^2 + 6x = 2$

Since, $z_2 = \frac{z_1 + z_3}{2}$ [: z_1, z_2 and z_3 are in AP] ⇒ *B* is the mid point of the line AC \Rightarrow A, B, C are collinear z_1, z_2, z_3 lie on a straight line \Rightarrow 709 (c) The equation $|z - (3 + 4i)|^2 + |z - 9 - 4 - 4i|^2$ 2i)|^2 = R will represent a circle iff $k \ge \frac{1}{2} |(3+4i) - (-4-2i)|^2$ Using: $k \ge 1$ 12z1-z22 i. e. $k \ge \frac{1}{2}|7 + 6i|^2 \Rightarrow k \ge \frac{85}{2}$ 711 (c) $\therefore \frac{k+1}{k} + \frac{k+2}{k+1} = -\frac{b}{a} \quad \dots(i)$ and $\frac{k+1}{k} \cdot \frac{k+2}{k+1} = \frac{c}{a}$ $\Rightarrow \frac{k+2}{k} = \frac{c}{a}$ $\Rightarrow \frac{2}{k} = \frac{c}{a} - 1 = \frac{c - a}{a}$ $\Rightarrow k = \frac{2a}{c-a}$ On putting the value of k in the Eq. (i), we get $\frac{c+a}{2a} + \frac{2c}{c+a} = -\frac{b}{a}$ $\Rightarrow (c+a)^2 + 4ac = -2b(a+c)$ $\Rightarrow (a+b+c)^2 = b^2 - 4ac$ 712 (a) $\left[\frac{1+\sin\frac{\pi}{8}+i\cos\frac{\pi}{8}}{1+\sin\frac{\pi}{8}-i\cos\frac{\pi}{8}}\right]^n$ $= \left[\frac{1+\cos\alpha+i\sin\alpha}{1+\cos\alpha-i\sin\alpha}\right]^n \qquad \left(\operatorname{Put} \alpha = \frac{\pi}{2} - \frac{\pi}{8}\right)$ $= \left[\frac{2\cos^2\frac{\alpha}{2} + 2i\sin\frac{\alpha}{2}\cos\frac{\alpha}{2}}{2\cos^2\frac{\alpha}{2} - 2i\sin\frac{\alpha}{2}\cos\frac{\alpha}{2}}\right]^n$ $= \left[\frac{\cos\frac{\alpha}{2} + i\sin\frac{\alpha}{2}}{\cos\frac{\alpha}{2} - i\sin\frac{\alpha}{2}} \right]$ $=\left(e^{2i\frac{a}{2}}\right)^n=e^{in^a}$ $=e^{in\left(\frac{3\pi}{8}\right)}=\cos\frac{3n\pi}{8}+i\sin\frac{3n\pi}{8}$ For n = 4, we get imaginary part 713 (a) Given, $\left|\frac{z-2i}{z+2i}\right| = 1$ $\left|\frac{x+iy-2i}{x+iy+2i}\right|=1$ \Rightarrow $\sqrt{x^2 + (y-2)^2} = \sqrt{x^2 + (y+2)^2}$ ⇒ $x^{2} + y^{2} + 4 - 4y = x^{2} + y^{2} + 4 + 4y$ ⇒ v = 0⇒

Thus, the locus of *z* is *x*-axis 714 (a) The given equations are $qx^2 + px + q = 0$...(i) and $x^2 - 4qx + p^2 = 0$...(ii) Since, root of the Eq. (i) are complex, therefore $p^2 - 4q^2 < 0$ Now, discriminant of Eq. (ii) is $16q^2 - 4p^2 = -4(p^2 - 4q^2) > 0$ Hence, roots are real and unequal. 715 (d) Let $e^{\cos x} = y$. Then, $e^{\cos x} - e^{-\cos x} = 4$ $\Rightarrow y - \frac{1}{y} = 4$ $\Rightarrow y^2 - 4y - 1 = 0$ $\Rightarrow v = 2 \pm \sqrt{5}$ $\Rightarrow v = 2 + \sqrt{5}$ as v > 0 $\Rightarrow e^{\cos x} = 2 + \sqrt{5} \Rightarrow \cos x = \log_e(2 + \sqrt{5})$ Clearly, $\log_e(2 + \sqrt{5}) > 1$ and $\cos x \le 1$ So, there is no value of cos *x* satisfying the given equation 716 (c) $\sqrt{12 - \sqrt{68 + 48\sqrt{2}}}$ $= \sqrt{12 - \sqrt{(6)^2 + (4\sqrt{2})^2 + 2 \times 6 \times 4\sqrt{2}}}$ $=\sqrt{12 - 6 - 4\sqrt{2}} = \sqrt{6 - 4\sqrt{2}}$ $=\sqrt{(2-\sqrt{2})^2}=2-\sqrt{2}$ 717 (b) Vertices of the triangle are 0 = 0 + i0, z = x + iyand $ze^{i\alpha} = (x + iy)(\cos \alpha + i \sin \alpha)$ $= (x \cos \alpha - y \sin \alpha) + i (y \cos \alpha + x \sin \alpha)$: Area of triangle $=\frac{1}{2}\begin{vmatrix} 0 & 0\\ x & y\\ (x\cos\alpha - y\sin\alpha) & (y\cos\alpha + x\sin\alpha) \end{vmatrix}$ 1 1 $=\frac{1}{2}[xy\cos\alpha + x^{2}\sin\alpha - xy\cos\alpha + y^{2}\sin\alpha]$ $= \frac{1}{2}(x^2 + y^2)\sin\alpha = \frac{1}{2}|z|^2\sin\alpha$ (:|z| $=\sqrt{x^2+y^2}$ 718 (d) We have, $(\cos\theta + i\sin\theta)(\cos 3\theta + i\sin 3\theta)$

... $[\cos(2n-1)\theta + i\sin(2n-1)\theta] = 1 + i0$

 $\Rightarrow \cos[\theta + 3\theta + 5\theta + \dots + (2n-1)\theta]$ $+ i \sin[\theta + 3\theta + 5\theta + \cdots]$ $+(2n-1)\theta$] = 1 + *i* 0 $\Rightarrow \cos(n^2\theta) + i\sin(n^2\theta) = 1 + i 0$ $\Rightarrow \cos n^2 \theta = 1$ and $\sin n^2 \theta = 0$ $\Rightarrow n^2 \theta = 2 r \pi \Rightarrow \theta = \frac{2 r \pi}{n^2}$ 719 (c) We have, $|x-1| + |x-2| + |x-3| \ge 6$ Following cases arise: CASE I When x < 1In this case, we have |x-1| = -(x-1), |x-2| = -(x-2)and |x - 3| = -(x - 3) $\therefore |x - 1| + |x - 2| + |x - 3| \ge 6$ $\Rightarrow -3x + 6 \ge 6 \Rightarrow x \le 0$ But, x < 1. Therefore, $x \le 0$ i.e. $x \in (-\infty, 0]$ <u>CASE II</u> When $1 \le x < 2$ In this case, we have |x-1| = x - 1, |x-2| = -(x-2)and, |x - 3| = -(x - 3) $\therefore |x - 1| + |x - 2| + |x - 3| \ge 6$ $\Rightarrow x - 1 - (x - 2) - (x - 3) \ge 6$ $\Rightarrow -x + 4 \ge 6 \Rightarrow -x - 2 \ge 0 \Rightarrow x + 2 \le 0 \Rightarrow x$ < -2But, $1 \le x < 2$. Therefore, $x \in [1, 2)$ <u>CASE III</u> When $2 \le x < 3$ In this case, we have |x-1| = x - 1, |x-2| = x - 2and, |x - 3| = -(x - 3) $\therefore |x - 1| + |x - 2| + |x - 3| \ge 6$ $\Rightarrow x - 1 + x - 2 - (x - 3) \ge 6 \Rightarrow x \ge 6$ But, $2 \le x < 3$. So, there is no solution in this case CASE IV When $x \ge 3$ In this case, we have |x-1| = x - 1, |x-2| = x - 2 and |x-3| = x - 23 $\therefore |x - 1| + |x - 2| + |x - 3| \ge 6$ $\Rightarrow x - 1 + x - 2 + x - 3 \ge 6 \Rightarrow 3x \ge 2 \Rightarrow x \ge 4$ But, $x \ge 3$. Therefore, $x \in [4, \infty)$ Hence, $x \in (-\infty, 0] \cup [4, \infty)$

720 (d)

Let *ABCDEF* be the regular hexagon having its centre at the origin O. Let 1 + 2i be the affix of vertex A. Then,

$$OA = |1 + 2i| = \sqrt{5}$$

$$\therefore \text{ Perimeter} = 6(\text{Side}) = 6 \times OA = 6\sqrt{5}$$
721 (c)
Given that, $|\beta| = 1$

$$\therefore \left| \frac{\beta - \alpha}{1 - \overline{\alpha}\beta} \right| = \left| \frac{\beta - \alpha}{\beta \overline{\beta} - \overline{\alpha}\beta} \right|$$

$$= \left| \frac{\beta - \alpha}{\overline{\beta}(\overline{\beta} - \overline{\alpha})} \right| = \frac{1}{|\beta|} \left| \frac{\beta - \alpha}{(\overline{\beta} - \overline{\alpha})} \right|$$

$$= \frac{1}{|\overline{\alpha}|} = 1 \quad (\because |z| = |\overline{z}|)$$

22 (c)
Here,
$$\alpha + \beta + \gamma = 0$$
, $\alpha\beta + \beta\gamma + \gamma\alpha = 4$
And $\alpha\beta\gamma = 1$
 $\therefore \frac{1}{\alpha + \beta} + \frac{1}{\beta + \gamma} + \frac{1}{\gamma + \alpha} = -\frac{1}{\gamma} - \frac{1}{\alpha} - \frac{1}{\beta}$
 $= -\left[\frac{1}{\gamma} + \frac{1}{\alpha} + \frac{1}{\beta}\right] = -\left[\frac{\alpha\beta + \beta\gamma + \gamma\alpha}{\alpha\beta\gamma}\right] = -4$

724 **(d)**

7

Given,
$$(3 + 2\sqrt{2})^{x^2 - 8} + (3 + 2\sqrt{2})^{8 - x^2} = 6$$

Let $(3 + 2\sqrt{2})^{x^2 - 8} = y$
 $\therefore y + y^{-1} = 6$
 $\Rightarrow y^2 - 6y + 1 = 0$
 $\Rightarrow y = \frac{6 \pm \sqrt{36 - 4}}{2 \times 1}$
 $= \frac{6 \pm 4\sqrt{2}}{2} = 3 \pm 2\sqrt{2}$
For positive sign
 $(3 + 2\sqrt{2})^{x^2 - 8} = 3 + 2\sqrt{2}$
 $\Rightarrow x^2 - 8 = 1 \Rightarrow x = \pm 3$
For negative sign

 $\left[\left(3 + 2\sqrt{2} \right)^{-1} \right]^{8-x^2} = 3 - 2\sqrt{2}$ $\Rightarrow \left(3 - 2\sqrt{2} \right)^{8-x^2} = 3 - 2\sqrt{2}$ $\Rightarrow 8 - x^2 = 1 \Rightarrow x^2 = 7$

 $\Rightarrow x = \pm \sqrt{7}$ 725 (a) Let roots be α and 2α $\therefore \ \alpha + 2\alpha = 3\alpha = -\frac{(3a-1)}{(a^2 - 5a + 3)}$ And $\alpha . 2\alpha = 2\alpha^2 = \frac{2}{(a^2 - 5a + 3)}$ $\Rightarrow \frac{(3a-1)^2}{9(a^2-5a+3)^2} = \frac{1}{(a^2-5a+3)}$ $\Rightarrow (3a-1)^2 = 9(a^2-5a+3)$ $\Rightarrow 45a - 6a = 27 - 1 \Rightarrow a = \frac{2}{3}$ 726 (a) Here, $\tan A + \tan B = p$ and $\tan A \tan B = q$ Now, $\tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B} = \frac{p}{1 - q}$ ∴ $\sin^2(A+B) = \frac{1-\cos[2(A+B)]}{2}$ $=\frac{1}{2}\left[1-\frac{1-\tan^{2}(A+B)}{1+\tan^{2}(A+B)}\right]$ $=\frac{1}{2}\left[1 - \frac{1 - \left(\frac{p}{1-q}\right)^{2}}{1 + \left(\frac{p}{1-q}\right)^{2}}\right]$ $=\frac{1}{2}\left[\frac{(1-q)^2+p^2-(1-q)^2+p^2}{(1-q)^2+p^2}\right]$ $=\frac{p^2}{p^2 + (1-q)^2}$ 727 (c) Given, $x + iy = \sqrt{-7 + 24i}$ $\therefore \quad x = \pm \sqrt{\frac{1}{2}[(-7)^2 + (24)^2 - 7]}$ $=\pm\sqrt{\frac{1}{2}[49+576-7]}$ $=\pm \sqrt{\frac{1}{2}[25-7]} = \pm \sqrt{9} = \pm 3$ 728 (d) Since the triangle is equilateral. Therefore,

$$(z_{2} - z_{1}) = e^{\frac{i\pi}{3}}(z_{3} - z_{1}) \text{ and } z_{1} - z_{3}$$

$$= e^{\frac{i\pi}{3}}(z_{2} - z_{3})$$

$$\Rightarrow \frac{z_{2} - z_{1}}{z_{1} - z_{3}} = \frac{z_{3} - z_{1}}{z_{2} - z_{3}}$$

$$\Rightarrow (z_{2} - z_{1})(z_{2} - z_{3}) = (z_{3} - z_{1})(z_{1} - z_{3})$$

$$\Rightarrow z_{1}^{2} + z_{2}^{2} + z_{3}^{2} = z_{1} z_{2} + z_{2} z_{3} + z_{3} z_{1}$$

$$\Rightarrow (z_{1} - z_{2})^{2} + (z_{2} - z_{3})^{2} + (z_{3} - z_{1})^{2} = 0$$
Again from (i), we have

$$\Rightarrow (z_{2} - z_{3})(z_{3} - z_{1}) + (z_{1} - z_{2})(z_{3} - z_{1}) + (z_{1} - z_{2})(z_{2} - z_{3}) = 0$$

$$\Rightarrow \frac{1}{z_1 - z_2} + \frac{1}{z_2 - z_3} + \frac{1}{z_3 - z_1} = 0$$
729 (a)
$$\left(\frac{1+i}{1-i}\right)^x = \left[\frac{(1+i)(1+i)}{(1-i)(1+i)}\right]^x = \left[\frac{(1+i)}{1-i^2}\right]^x$$

$$= \left[\frac{1-1+2i}{2}\right]^x$$

$$\Rightarrow \left(\frac{1+i}{1-i}\right)^x = (i)^x = 1 \quad [given]$$

$$\therefore x = 4n$$
730 (c)
Given, $z = x + iy$

$$\therefore \frac{z-1}{z+1} = \frac{x+iy-1}{x+iy+1}$$

$$\frac{(x-1)+iy}{(x+1)+iy} \times \frac{(x+1)-iy}{(x+1)-iy}$$

$$= \frac{x^2 + y^2 + 2iy - 1}{x^2 + 1 + 2x + y^2}$$

$$\therefore \arg\left(\frac{z-1}{z+1}\right) = \tan^{-1}\frac{2y}{x^2 + y^2 - 1}$$

$$\Rightarrow \tan^{-1}\frac{2y}{x^2 + y^2 - 1} = \frac{\pi}{4} \quad [given]$$

$$\Rightarrow \frac{2y}{x^2 + y^2 - 1} = \tan\frac{\pi}{4} = 1$$

$$\Rightarrow x^2 + y^2 - 2y = 1$$
731 (a)
Since, sin α and cos α are the roots of the equation $ax^2 + bx + c = 0$, then
sin $\alpha + \cos \alpha = -\frac{b}{a}$ and sin $\alpha \cos \alpha = \frac{c}{a}$
To eliminate α , we get
$$1 = \sin^2 \alpha + \cos^2 \alpha$$

$$\Rightarrow 1 = (\sin \alpha + \cos \alpha)^2 - 2\sin \alpha \cos \alpha$$

$$\Rightarrow 1 = \frac{b^2}{a^2} = \frac{2c}{a}$$

$$\Rightarrow a^2 - b^2 + 2ac = 0$$
732 (c)
$$\left(\frac{-1+3i}{2+i}\right) = \frac{-1-3i}{2+i} \times \frac{2-i}{2-i}$$

$$= \frac{-2+i-6i+3i^2}{4+1} = -1-i$$

$$\therefore \text{ Argument of } \left(\frac{-1-3i}{2+i}\right) = \tan^{-1}\left(\frac{-1}{-1}\right) = 225^{\circ}$$
[Since, the given complex number lies in IIIrd quadrant]
733 (a)
Let $f(x) = ax^2 + 2bx - 3c$
We have,
$$\frac{3c}{4} < a + b \Rightarrow 4a + 4b - 3c > 0 \Rightarrow f(2) > 0$$
Now,
$$f(x) = 0$$
 has no real root

 \Rightarrow f(x) > 0 for all x or, f(x) < 0 for all x

1

$$\Rightarrow f(x) > 0 \text{ for all } x \quad [\because f(2) > 0]$$

$$\Rightarrow f(0) > 0 \Rightarrow -3c > 0 \Rightarrow c < 0$$
734 **(b)**
We have,
$$\frac{1}{x+a} + \frac{1}{x+b} = \frac{1}{c}$$

$$\Rightarrow x^2 + x(a+b-2c) + ab - ac - bc = 0$$
Let its roots be α, β . Then,
$$\alpha + \beta = 0 \text{ (given)} \Rightarrow c = \frac{a+b}{2} \quad ... \text{ (i)}$$
Now,
$$\alpha\beta = ab - ac - bc = ab - c(a+b)$$

$$= -\frac{1}{2}(a^2 + b^2) \text{ [Using (i)]}$$
735 **(d)**
Given complex number is
$$\frac{(1+i)^2}{1-i} = \frac{(1+i^2+2i)}{1-i} \times \frac{1+i}{1+i} = \frac{2i+2i^2}{1+1}$$

$$\therefore \text{ Required conjugate is } -i - 1$$
736 **(a)**

$$\left|\frac{z-5i}{z+5i}\right| = 1 \quad \Rightarrow \quad \left|\frac{x+i(y-5)}{x+i(y+5)}\right| = 1$$

$$\Rightarrow \quad |x+i(y-5)| = |x+i(y+5)|$$

$$\Rightarrow \quad x^2 + 25 - 10y + y^2 = x^2 + y^2 + 25 + y^2 = 0$$

737 (a)

Clearly,

LHS = $2\cos^2(x/2)\sin^2 x \le 2$ and, RHS = $x^2 + \frac{1}{x^2} \ge 2$

Thus, the equality holds when each side is equal to 2. But, RHS is equal to 2 for x = 1 while LHS is less than 2 for this value of x. Consequently the equation has no solution

738 (c)

Using partial fractions, we have

$$\frac{\pi}{n(n+1)(n+2)} = \pi \left\{ \frac{1}{2n} - \frac{1}{n+1} + \frac{1}{2(n+2)} \right\}$$

$$\Rightarrow \frac{\pi}{n(n+1)(n+2)}$$

$$= \frac{\pi}{2} \left\{ \left(\frac{1}{n} - \frac{1}{n+1} \right) - \left(\frac{1}{n+1} - \frac{1}{n+2} \right) \right\}$$

$$\therefore z_n = \cos \frac{\pi}{2} \left\{ \left(\frac{1}{n} - \frac{1}{n+1} \right) - \left(\frac{1}{n+1} - \frac{1}{n+2} \right) \right\}$$

$$+ i \sin \frac{\pi}{2} \left\{ \left(\frac{1}{n} - \frac{1}{n+1} \right) - \left(\frac{1}{n+1} - \frac{1}{n+2} \right) \right\}$$

Now

Now, $z_1 z_2 \dots z_n$

$$= \cos \frac{\pi}{2} \left[\left\{ \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \cdots + \left(\frac{1}{n} - \frac{1}{n+1}\right) \right\} \\ - \left\{ \left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \cdots + \left(\frac{1}{n+1} - \frac{1}{n+2}\right) \right\} \right] \\ + i \sin \frac{\pi}{2} \left[\left\{ \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \cdots + \left(\frac{1}{n-1} - \frac{1}{n+1}\right) \right\} \\ - \left\{ \left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \cdots + \left(\frac{1}{n+1} - \frac{1}{n+2}\right) \right\} \right] \\ = \cos \frac{\pi}{2} \left[\left(1 - \frac{1}{n+1}\right) - \left(\frac{1}{2} - \frac{1}{n+2}\right) \right] \\ + i \sin \frac{\pi}{2} \left[\left(1 - \frac{1}{n+1}\right) - \left(\frac{1}{2} - \frac{1}{n+2}\right) \right] \\ + i \sin \frac{\pi}{2} \left[\left(1 - \frac{1}{n+1}\right) - \left(\frac{1}{2} - \frac{1}{n+2}\right) \right] \\ + i \sin \frac{\pi}{2} \left\{ \frac{n}{n+1} - \frac{n}{2(n+2)} \right\} \\ + i \sin \frac{\pi}{2} \left\{ \frac{n}{n+1} - \frac{n}{2(n+2)} \right\} \\ \div \lim_{n \to \infty} (z_1 z_2 \dots z_n) = \cos \frac{\pi}{2} \left\{ 1 - \frac{1}{2} \right\} + i \sin \frac{\pi}{4} = \frac{1 + i}{\sqrt{2}} \\ 739 \text{ (d)} \\ \text{Given, } x + iy = \left(\frac{a + ib}{c + id}\right)^{1/2} \\ \end{bmatrix}$$

 $\Rightarrow |x + iy| = \left|\frac{a + ib}{c + id}\right|^{1/2}$ (Taking modulus from both side a

(Taking modulus from both side and using $|z^n| = |z|^n$)

$$\Rightarrow |x + iy|^{2} = \left|\frac{a + ib}{c + id}\right|$$
$$\Rightarrow x^{2} + y^{2} = \sqrt{\frac{a^{2} + b^{2}}{c^{2} + d^{2}}}$$

740 **(b)**

10y

Let
$$z = x + iy$$

 $\therefore \arg(z) = \tan^{-1}\left(\frac{y}{x}\right)$
Then, $\arg(\bar{z}) = \tan^{-1}\left(-\frac{y}{x}\right) = 2\pi - \tan^{-1}\frac{y}{x}$
 $= 2\pi - \arg(z)$

Since, in argument of a conjugate of a complex, the real axis is unaltered, but imaginary axis be changed, hence it is given by $2\pi - \arg(z)$

742 (a)

We have,

 $z_1 = a + ib, z_2 = \frac{1}{-a + ib} = \frac{-a - ib}{a^2 + b^2}$ $=\frac{-a}{a^2+b^2}-\frac{i\,b}{a^2+b^2}$ The equation of a line passing through points having affixes z_1 and z_2 is $z(\overline{z_1} - \overline{z_2}) - \overline{z}(z_1 - z_2) + z_1\overline{z_2} - \overline{z_1}z_2 = 0$ So, the equation of the required line is $z\left[\left(a+\frac{a}{a^2+b^2}\right)+i\left(-b-\frac{b}{a^2+b^2}\right)\right]$ $-\overline{z}\left[\left(a+\frac{a}{a^2+b^2}\right)+i\left(b+\frac{b}{a^2+b^2}\right)\right]$ $+(a+ib)\left(-\frac{a}{a^2+b^2}+i\frac{b}{a^2+b^2}\right)$ $-(a-ib)\left(-\frac{a}{a^2+b^2}-\frac{b}{a^2+b^2}\right)$ $\Rightarrow z[(a^3 + ab^2 + a) - i(a^2b + b^3 + b)]$ $-\bar{z}[(a^3 + ab^2 + a) + i(a^2b + b)] = 0$ Clearly, it passes through the origin 743 (d) The discriminant *D* of the given equation is given bv $D = \cos^2 p - 4\sin p(\cos p - 1)$ $= \cos^2 p + 4 \sin p (1 - \cos p)$ Since the equation has real roots. Therefore, $D \ge 0$ $\Rightarrow \cos^2 p + 4 \sin p(1 - \cos p) \ge 0$ $\Rightarrow \sin p \ge 0$ $\Rightarrow p \in (0, \pi)$ 744 **(b)** If the roots of the equation $x^2 - 8x + a^2 - 6a = 0$ are real, then $\Rightarrow 64 - 4(a^2 - 6a) \ge 0 \quad [\because \text{Disc} \ge 0]$ $\Rightarrow a^2 - 6a - 16 \le a \in [-2, 8]$ 745 (d) $\overline{z_2}z_1 = (3-5i)(1+2i) = 13+i$ $\therefore \ \frac{\overline{z_2}z_1}{z_2} = \frac{(13+i)}{(3+5i)} \times \frac{(3-5i)}{(3-5i)} = \frac{44-62i}{34}$ $\therefore \text{ Real part of } \left(\frac{\overline{z_2}z_1}{z_2}\right) = \frac{44}{34} = \frac{22}{17}$ 746 (b) Let $S = \log_2 \log_3 \dots \log_{99} \log_{100} 100^{99^{98^{-2^1}}}$ $= \log_2 \log_3 \dots \log_{99} 99^{98^{\cdot^{2^1}}}$ $[\because \log_a a = 1]$ $= \log_2 2^1 = 1$ 747 (a) Let α and β be the roots of given equation $x^2 + ax + 1 = 0$ Then $\alpha + \beta = -a$ and $\alpha\beta = 1$

Now, $|\alpha - \beta| = \sqrt{(\alpha + \beta)^2 - 4\alpha\beta} = \sqrt{a^2 - 4}$ Given condition. $\sqrt{a^2 - 4} < \sqrt{5}$ $\Rightarrow a^2 - 4 < 5 \Rightarrow |a| < 3$ $\Rightarrow a \in (-3,3)$ 748 (b) We have, $\left|\frac{z_1 - z_2}{z_1 + z_2}\right| = 1$ $\Rightarrow \frac{z_1 - z_2}{z_1 + z_2} = \cos \alpha + i \sin \alpha$ $\Rightarrow \frac{2 z_1}{-2 z_2} = \frac{1 + \cos \alpha + i \sin \alpha}{\cos \alpha - 1 + i \sin \alpha}$ $\Rightarrow \frac{z_1}{z_2} = i \cot \frac{\alpha}{2} \Rightarrow z_1 = i k z_2$, where $k = \cot \frac{\alpha}{2}$ ALITER We have, $\left|\frac{z_1 - z_2}{z_1 + z_2}\right| = 1$ $\Rightarrow |z_1 - z_2| = |z_1 + z_2|$ \Rightarrow Diagonals of a parallelogram with sides z_1 and z_2 are equal \Rightarrow It is a rectangle $\Rightarrow z_2 = \left| \frac{z_2}{z_1} \right| e^{i \pi/2} = k i$ 749 (d) Since the lines are perpendicular $\therefore \frac{-\alpha}{\alpha} + \frac{-\beta}{\beta} = 0 \Rightarrow \alpha \overline{\beta} + \overline{\alpha} \beta = 0$ 750 (c) Since a quadratic equation with coefficients as odd integers cannot have rational roots. Therefore, the given equation has no rational root 752 (b) We have, $\arg(z - 1) - \arg(z + 1) = \frac{\pi}{2}$ It is clear from the figure that it a semi circle 753 (d) Since, quadratic equation $ax^2 + bx + c = 0$ has three distinct roots. So, it must be identity. So, a = b = c = 0.

754 (c) Since, (1, -p) is the root of given equation so it will satisfy the given equation $\therefore (1-p)^2 + p(1-p) + (1-p) = 0$ $\Rightarrow (1-p)[1-p+p+1] = 0$ $\Rightarrow p = 1$ On putting the value of *p* in given equation, we get $x^2 + x = 0 \implies x = 0, -1$ 755 (d) $\omega^{99} + \omega^{100} + \omega^{101}$ $= (\omega^3)^{33} + (\omega^3)^{33}\omega + (\omega^3)^{33}\omega^2$ $= 1 + \omega + \omega^2 = 0$ 756 (c) We have, $\alpha + \beta = -7/2$ and $\alpha \beta = c/2$ Now, $|\alpha^2 - \beta^2| = \frac{7}{4}$ $\Rightarrow \alpha^2 - \beta^2 = \pm \frac{7}{4}$ $\Rightarrow (\alpha + \beta)(\alpha - \beta) = \pm \frac{7}{4}$ $\Rightarrow -\frac{7}{2} \sqrt{\frac{49}{4} - 2} c = \pm \frac{7}{4}$ $\Rightarrow \sqrt{49 - 8c} = \mp 1 \Rightarrow 49 - 8c = 1 \Rightarrow c = 8$ 757 (c) We have, $\cos \alpha + \cos \beta + \cos \gamma = 0$...(i) and $\sin \alpha + \sin \beta + \sin \gamma = 0$...(ii) Let $a = \cos \alpha + i \sin \alpha$; $b = \cos \beta + i \sin \beta$ and $c = \cos \gamma + i \sin \gamma$ Therefore, $a + b + c = (\cos \alpha + \cos \beta + \cos \gamma)$ $+i(\sin\alpha + \sin\beta + \sin\gamma)$ = 0 + i0 = 0 [from Eqs.(i)and (ii)] If a + b + c = 0, then $a^3 + b^3 + c^3 = 3abc$ $\Rightarrow (\cos \alpha + i \sin \alpha)^3 + (\cos \beta + i \sin \beta)^3$ $+(\cos \gamma + i \sin \gamma)^3$ $= 3(\cos \alpha + i \sin \alpha) (\cos \beta + i \sin \beta) (\cos \gamma + i \sin \beta) (\sin \beta)$ $i \sin \gamma$ \Rightarrow (cos 3 α + *i* sin 3 α) + (cos 3 β + *i* sin 3 β) + $(\cos 3\gamma + i \sin 3\gamma)$ $= 3[\cos(\alpha + \beta + \gamma) + i\sin(\alpha + \beta + \gamma)]$ $\Rightarrow \cos 3\alpha + \cos 3\beta + \cos 3\gamma = 3\cos(\alpha + \beta + \gamma)$ 759 **(b)** We have, $\alpha_1 \alpha_2 = \beta_1 \beta_2 = 1 \Rightarrow \alpha_1 = \frac{1}{\alpha_2} \text{ and } \beta_1 = \frac{1}{\beta_2}$ This means that the roots of the equation $a_2x^2 + b_2x + c_2 = 0$ are reciprocal of the roots of the equation $a_1x^2 + b_1x + c_1 = 0$ Therefore, equations $a_1x^2 + b_1x + c_1 = 0$

and $c_2 x^2 + b_2 x + a_2 = 0$ have same roots $\therefore \frac{a_1}{c_2} = \frac{b_1}{b_2} = \frac{c_1}{a_2}$ 760 (c) Given, a + b + c = 0, $4ax^2 + 3bx + 2c = 0$ Now, $D = 9b^2 - 4(4a)(2c)$ $=9(a+c)^{2} - 32ac = 9(a-c)^{2} + 4ac > 0$ Hence, roots are real 761 (b) We have, $\arg\left(\frac{z-3\sqrt{3}}{z+3\sqrt{3}}\right) = \frac{\pi}{3}$ $\arg\left(\frac{3\sqrt{3}-z}{-3\sqrt{3}-2}\right) = \frac{\pi}{3}$ $\Rightarrow \arg\left(\frac{\overline{PA}}{\overline{PB}}\right) = \frac{\pi}{3}$ \Rightarrow *P* moves in such a way that when *PB* is rotated through $\frac{\pi}{2}$ in coincides with *PA* \Rightarrow *P* lies on the segment of the circle such that $\angle BPA = \frac{\pi}{2}$ and *P* is above *x*-axis Now, $\arg\left(\frac{z-3\sqrt{3}}{z+3\sqrt{3}}\right) = \frac{\pi}{3}$ $\Rightarrow \arg(z - 3\sqrt{3}) - \arg(z + 3\sqrt{3}) = \frac{\pi}{2}$ $\Rightarrow \tan^{-1} \frac{y}{x - 3\sqrt{3}}$ $-\tan^{-1}\frac{y}{x+3\sqrt{3}} = \frac{\pi}{3}$, where z = x + i v $\Rightarrow \tan^{-1}\left(\frac{\frac{y}{x-3\sqrt{3}} - \frac{y}{x+3\sqrt{3}}}{1 + \frac{y^2}{2} - 27}}\right) = \frac{\pi}{3}$ $\Rightarrow \frac{6\sqrt{3} y}{x^2 + y^2 - 27} = \sqrt{3}$ $\Rightarrow x^2 + y^2 - 6y - 27 = 0$ $\Rightarrow x^2 + (y-3)^2 = 36$ $\Rightarrow |(x + iy) - (0 + 3i)|^2 = 36 \Rightarrow |z - 3i| = 6$ Hence, the locus of z is |z - 3i| = 6, Im (z) > 0762 (b) Here, $\sin \alpha + \cos \alpha = -\frac{q}{p}$ and $\sin \alpha \cdot \cos \alpha = \frac{r}{p}$ $\therefore (\sin \alpha + \cos \alpha)^2 = \left(-\frac{q}{n}\right)^2$ $\Rightarrow \sin^2 \alpha + \cos^2 \alpha + 2 \sin \alpha \cos \alpha = \frac{q^2}{n^2}$ $\Rightarrow 1+2.\frac{r}{n}=\frac{q^2}{n^2}$ $\Rightarrow p(p+2r) = q^2$ $\Rightarrow p^2 - q^2 + 2rp = 0$ 763 (c)

For the given equation to be meaningful, we must have x > 0. For x > 0, the given equation can be written as $\frac{3}{4}(\log_2 x)^2 \log_2 x - \frac{5}{4} = \log_x \sqrt{2} = \frac{1}{2}\log_x 2$ Put $t = \log_2 x$ so that $\log_x 2 = \frac{1}{t}$ $\therefore \frac{3}{4}t^2 + t - \frac{5}{4} = \frac{1}{2}\left(\frac{1}{t}\right)$ $\Rightarrow 3t^3 + 4t^2 - 5t - 2 = 0$ $\Rightarrow (t-1)(t+2)(3t+1) = 0$ $\Rightarrow \log_2 x = t = 1, -2, -\frac{1}{3}$ $\Rightarrow x = 2, 2^{-2}, 2^{-\frac{1}{3}}$ or $x = 2, \frac{1}{4}, \frac{1}{2^{1/3}}$ Thus, the given equation has exactly three real solution out of which exactly one is irrational *ie*, $\frac{1}{2^{1/3}}$ 765 (a) Since, $z\bar{z}(z^2 + \bar{z}^2) = 350$ $\Rightarrow 2(x^2 + y^2)(x^2 - y^2) = 350$ \Rightarrow $(x^2 + y^2)(x^2 - y^2) = 175$ Since, $x, y \in I$, the only possible case which gives integral solution, is $x^2 + y^2 = 25$...(i) $x^2 - y^2 = 7$...(ii) From Eqs. (i) and (ii), we get $x^2 = 16$, $y^2 = 9$ $x = \pm 4$, $y = \pm 3$ ⇒ \therefore Area of rectangle= $8 \times 6 = 48$ 766 **(b)** Let $a_k + ib_k = r_k(\cos \theta_k + i \sin \theta_k), k = 1, 2, ..., n$. Then, $r_k = \sqrt{a_k^2 + b_k^2}$ and $\tan \theta_k = \frac{b_k}{a_k}$ $\therefore (a_1 + ib_1)(a_2 + ib_2) \dots (a_n + ib_n) = A + iB$ $\Rightarrow r_1 r_2 \dots r_n [\cos(\theta_1 + \theta_2 + \dots + \theta_n)]$ $+i\sin(\theta_1+\theta_2+\cdots+\theta_n)$] = A + iB $\Rightarrow r_1 r_2 r_3 \dots r_n = \sqrt{A^2 + B^2}$ and $\tan(\theta_1 + \theta_2 + \dots$ $(+ \theta_n) = \frac{B}{A}$ $\Rightarrow r_1^2 r_2^2 r_3^2 \dots r_n^2 = A^2 + B^2 \text{ and } \theta_1 + \theta_2 + \dots +$ $\theta_n = \tan^{-1} \frac{B}{r}$ $\Rightarrow (a_1^2 + b_1^2)(a_2^2 + b_2^2) \dots (a_n^2 + b_n^2) = A^2 + B^2$ and, $\tan^{-1}\frac{b_1}{a_1} + \dots + \tan^{-1}\frac{b_n}{a_n} = \tan^{-1}\frac{B}{A}$ 767 (d) Let $(\cos x - i \sin 2x) = \sin x + i \cos 2x$ $\Rightarrow \cos x + i \sin 2x = \sin x + i \cos 2x$ $\therefore \cos x = \sin x$ and $\sin 2x = \cos 2x$

 \Rightarrow tan x = 1 and tan 2x = 1Which is impossible 768 (b) Let the required number is *x*. According to given condition $x = \sqrt{x} + 12$ $\Rightarrow x - 12 = \sqrt{x}$ $\Rightarrow x^2 - 25x + 144 = 0$ $\Rightarrow x^2 - 16x - 9x + 144 = 0$ $\Rightarrow x = 16.9$ Since x = 9 does not hold the condition. $\therefore x = 16$ 769 (b) We have, $\frac{|x-2|}{|x-2|} = \begin{cases} \frac{x-2}{|x-2|} = 1, & \text{if } x > 2\\ \frac{-(x-2)}{|x-2|} = -1, & \text{if } x < 2 \end{cases}$ $\therefore \frac{|x-2|}{|x-2|} < 0 \text{ is true for all } x < 2$ Hence, the solution set of the given inequation is $(-\infty, 2)$ 770 (d) $(\cos \alpha + i \sin \alpha)^{3/5} = e^{i3/5} = e^{i(2n\pi + 3\alpha)/5}$: Required product = $e^{i3\alpha/5}$. $e^{i(2\pi+3\alpha)/5}$. $e^{i(4\pi+3\alpha)/5}, e^{i(6\pi+3\alpha)/5}, e^{i(8\pi+3\alpha)/5}$ $=e^{i(4\pi+3\alpha)}$ $= \cos(4\pi + 3\alpha) + i\sin(4\pi + 3\alpha)$ $= \cos 3\alpha + i \sin 3\alpha$ 771 (d) We have, $a = \cos \alpha + i \sin \alpha$; $b = \cos \beta + i \sin \beta$ and $c = \cos \gamma + i \sin \gamma$ Now, $\frac{b}{c} = \frac{\cos\beta + i\sin\beta}{\cos\gamma + i\sin\gamma} \times \frac{\cos\gamma - i\sin\gamma}{\cos\gamma - i\sin\gamma}$ $= \cos\beta\cos\gamma + \sin\beta\sin\gamma$ + $i [\sin \beta \cos \gamma - \sin \gamma \cos \beta]$ $\Rightarrow \frac{b}{c} = \cos(\beta - \gamma) + i\sin(\beta - \gamma) \quad ...(i)$ Similarly, $\frac{c}{a} = \cos(\gamma - \alpha) + i\sin(\gamma - \alpha)$...(ii) and $\frac{a}{b} = \cos(\alpha - \beta) + i\sin(\alpha - \beta)$...(iii) On adding Eqs. (i), (ii), (iii), we get $\cos(\beta - \gamma) + \cos(\gamma - \alpha) + \cos(\alpha - \beta)$ $+i[\sin(\beta - \gamma) + \sin(\gamma - \alpha) + \sin(\alpha - \beta)] = 1$ On equating real part on both sides, we get $\cos(\beta - \gamma) + \cos(\gamma - \alpha) + \cos(\alpha - \beta) = 1$

772 (a)

$$\frac{x-4}{x^2-5x+6} = \frac{x-4}{(x-2)(x-3)}$$

$$= \frac{2}{(x-2)} - \frac{1}{(x-3)}$$

$$= 2(x-2)^{-1} - (x-3)^{-1}$$

$$= 2(-2)^{-1} \left(1 - \frac{x}{2}\right)^{-1} - (-3)^{-1} \left(1 - \frac{x}{3}\right)^{-1}$$

$$= -\left[1 + \left(\frac{x}{2}\right) + \left(\frac{x}{2}\right)^2 + \left(\frac{x}{2}\right)^3 + ...\right]$$

$$+ \frac{1}{3} \left[1 + \left(\frac{x}{3}\right) + \left(\frac{x}{3}\right)^2 + \left(\frac{x}{3}\right)^3 + ...\right]$$

$$\therefore \text{ Coefficient of } x^3 \text{ in } \frac{x-4}{x^2-5x+6}$$

$$= -\left(\frac{1}{2}\right)^3 + \frac{1}{3} \left(\frac{1}{3}\right)^3 = -\frac{1}{8} + \frac{1}{81} = -\frac{73}{648}$$
773 (a)
Given, $a = \cos \theta + i \sin \theta$
Now, $\frac{1+a}{1-a} = \frac{1+\cos \theta + i \sin \theta}{1-\cos \theta - i \sin \theta}$

$$= \frac{(1 + \cos \theta) + i \sin \theta}{(1 - \cos \theta) + i \sin \theta} \times \frac{(1 - \cos \theta) + i \sin \theta}{(1 - \cos \theta) + i \sin \theta}$$

$$= \frac{\sin^2 \theta + 2i \sin \theta - \sin^2 \theta}{1 + \cos^2 \theta - 2 \cos \theta + \sin^2 \theta}$$

$$= \frac{i 4 \sin \frac{\theta}{2} \cdot \cos \frac{\theta}{2}}{4 \sin^2 \frac{\theta}{2}} = i \cot \frac{\theta}{2}$$
774 (a)
Given $\arg\left(\frac{z-2}{z-6i}\right) = \frac{\pi}{2}$

$$\Rightarrow \arg[(x-2) - \arg[z - 6i) = \frac{\pi}{2}$$

$$\Rightarrow \tan^{-1} \frac{y}{x-2} - \tan^{-1} \frac{y-6}{x} = \frac{\pi}{2}$$

$$\Rightarrow \left(\frac{\frac{y}{x-2} - \frac{y-6}{x}}{1 + \frac{y-2}{x-2} \cdot \frac{y-6}{x}}\right) = \tan \frac{\pi}{2}$$

$$\Rightarrow 1 + \frac{y}{x-2} \cdot \frac{y-6}{x} = 0$$

$$\Rightarrow x(x-2) + y(y-6) = 0$$
This is an equation of circle in diametric form.
775 (b)
 $\log_4(x-1) = \log_2(x-3)$

$$\Rightarrow \log_4(x-1) = 2\log_4(x-3) = \log_4(x-3)^2$$

$$\Rightarrow x - 1 = x^2 + 9 - 6x$$

$$\Rightarrow x^2 - 7x + 10 = 0$$

$$\Rightarrow x = 5 \text{ or } 2$$
Hence, $x = 5 [\because x = 2 \text{ makes } \log(x-3)$
undefined]

$$\therefore \text{ Number of solution is 1$$

Let $\alpha = \cos \alpha + i \sin \alpha$, $b = \cos \beta + i \sin \beta$ and,

776 (c)

 $c = \cos \gamma + i \sin \gamma$ Then, a + 2b + 3c $= (\cos \alpha + 2\cos \beta + 3\cos \gamma)$ $+i(\sin \alpha + 2\sin \beta + 3\sin \gamma) = 0$ $\Rightarrow a^3 + 8b^3 + 27c^3 = 18abc$ $\Rightarrow \cos 3 \alpha + 8 \cos 3 \beta$ $+27\cos 3\gamma = 18\cos(\alpha + \beta + \gamma)$ and, $\sin 3 \alpha + 8 \sin 3 \beta + 27 \sin 3 \gamma =$ $18\sin(\alpha+\beta+\gamma)$ 777 (b) We have. $\left(x-\frac{1}{k-1}\right)\left(x-\frac{1}{k}\right)$ $= x^{2} - x\left(\frac{1}{k-1} + \frac{1}{k}\right) + \frac{1}{k(k-1)}$ $= x^{2} - x\left(\frac{1}{k-1} + \frac{1}{k}\right) + \left(\frac{1}{k-1} - \frac{1}{k}\right)$ $\therefore f(x) = \sum_{k=0}^{n} \left(x - \frac{1}{k-1} \right) \left(x - \frac{1}{k} \right)$ $=\sum_{k=2}^{n} x^{2} - x \sum_{k=2}^{n} \left(\frac{1}{k-1} + \frac{1}{k}\right) + \sum_{k=2}^{n} \left(\frac{1}{k-1} - \frac{1}{k}\right)$ $= (n-1)x^{2} - x\left\{1 + 2\left(\frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}\right) + \frac{1}{n}\right\}$ $+(1-\frac{1}{n})$ \therefore Product of roots = $\frac{1}{n}$ Hence, product of roots as $n \to \infty$ is 0 778 (a) Since, $3p^2 = 5p + 2$ $\Rightarrow p = 2, -\frac{1}{3}$ And, $3q^2 = 5q + 2 \implies q = 2, -\frac{1}{2}$ $\therefore p \neq q$ Here, we assume that p = 2 and $q = -\frac{1}{3}$ Now, the given roots of the equation are (3p - 2q) and $(3q - 2p)ie, (\frac{20}{3}, -5)$ Sum of roots = $\frac{20}{3} - 5 = \frac{5}{3}$ And product of roots = $\frac{20}{3} \times (-5) = -\frac{100}{3}$ ∴ Required equation is $x^2 - \frac{5}{2}x - \frac{100}{3} = 0$ $\Rightarrow 3x^2 - 5x - 100 = 0$ 779 (c) We have, $x^3 + 3x^2 + 3x + 2 = 0$...(i) $\Rightarrow (x+1)^3 + 1 = 0$ $\Rightarrow x+1 = (-1)^{1/3}$ $\Rightarrow x + 1 = -1, -\omega, -1 - \omega^2 \Rightarrow x = -2, \omega^2, \omega$

It is given that equation (i) and $a x^2 + bx + c = 0$ have two common roots. Also, a quadratic equation has either both real roots or both nonreal complex conjugate roots. Therefore, ω and ω^2 are the common roots $\therefore \omega + \omega^2 = -\frac{b}{a}$ and $\omega \times \omega^2 = \frac{c}{a} \Rightarrow a = b = c$ 780 (a) $\left(\frac{1}{2} + \frac{i\sqrt{3}}{2}\right)^{1/4} = \left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)^{1/4}$ $=\cos\frac{\pi}{12}+i\sin\frac{\pi}{12}$ 781 (c) $(x+2)(x+12)(x+3)(x+8) = 4x^2$. $\Rightarrow (x^2 + 14x + 24)(x^2 + 11x + 24) = 4x^2$ $\Rightarrow \left(x + 14 + \frac{24}{x}\right)\left(x + 11 + \frac{24}{x}\right) = 4$ Put $x + \frac{24}{x} = y$ (y+14)(y+11) = 4 $\Rightarrow y^2 + 25y + 154 - 4 = 0$ $\Rightarrow y^2 + 25y + 150 = 0$ $\Rightarrow y^{2} + 15y + 10y + 150 = 0$ $\Rightarrow y(y+15) + 10(y+15) = 0$ $\Rightarrow v = -10, -15$ $\Rightarrow x + \frac{24}{x} = -10, x + \frac{24}{x} = -15$ $\Rightarrow x^{2} + 10x + 24 = 0, x^{2} + 15x + 24 = 0$ $\Rightarrow x^2 + 6x + 4x + 24 = 0$ $\Rightarrow x(x+6) + 4(x+6) = 0$ $\Rightarrow x = -4, -6$ and $x^2 + 15x + 24 = 0$ $\Rightarrow x = \frac{-15 \pm \sqrt{225 - 96}}{2}$ $=\frac{-15\pm\sqrt{129}}{2}$ Number of integer root is 2. 782 (c) Since, α , β and $\alpha - k$, $\beta - k$ are the roots of the equations $ax^2 + bx + c = 0$ and $Ax^2 + Bx + C =$ 0 respectively. $\Rightarrow \alpha + \beta = -\frac{b}{a}, \alpha\beta = \frac{c}{a}$ and $\alpha + \beta - 2k = -\frac{B}{4}$, $(\alpha - k)(\beta - k) = \frac{C}{4}$ Now, $(\alpha - \beta)^2 = (\alpha + \beta)^2 - 4\alpha\beta = \frac{(b^2 - 4ac)}{\alpha^2}$...(i) Also, $\{(\alpha - k) - (\beta - k)\}^2$ $= \{ (\alpha - k) + (\beta - k) \}^2 - 4(\alpha - k)(\beta - k)$ $=\left(-\frac{B}{4}\right)^2-4\left(\frac{C}{4}\right)$

 $=\frac{B^2-4AC}{A^2}$...(ii) From Eqs. (i) and (ii) $\frac{(b^2-4ac)}{a^2} = \frac{B^2-4AC}{A^2}$ $\therefore \frac{B^2 - 4AC}{h^2 - 4ac} = \left(\frac{A}{a}\right)^2$ 783 **(c**) Let $\frac{5z_2}{11z} = iy \Rightarrow \frac{z_2}{z} = \frac{11}{5}iy$ Now, $\left|\frac{2z_1+3z_2}{2z_1-3z_2}\right| = \left|\frac{2+3\frac{z_2}{z_1}}{2-3\frac{z_2}{z_2}}\right| = \left|\frac{2+\frac{33}{5}iy}{2-\frac{33}{5}iy}\right| = 1$ 784 (a) Let α be the root of equation $ax^2 + bx + c = 0$ then $\frac{1}{\alpha}$ be a root of second equation, therefore $a\alpha^2 + b\alpha + c = 0$ (i) and $a' \frac{1}{\alpha^2} + b' \frac{1}{\alpha} + c' = 0$ or $c' \alpha^2 + b' \alpha + a' = 0$...(ii) On solving Eqs. (i) and (ii), we get $\frac{\alpha^2}{ba'-b'c} = \frac{\alpha}{cc'-aa'} = \frac{1}{ab'-bc'}$ $\Rightarrow (cc' - aa')^2 = (ba' - cb')(ab' - bc')$ 785 (c) Given, |x + iy + 8| + |x + iy - 8| = 16|(x+8) + iy| = 16 - |(x-8) + iy| $\Rightarrow \sqrt{(x+8)^2 + y^2} = 16 - \sqrt{(x-8)^2 + y^2}$ $\Rightarrow x^2 + 64 + 16x + y^2 = 256 + x^2 + 64$ $-16x + y^2 - 32\sqrt{(x-8)^2 + y^2}$ $\Rightarrow 32x = 32[8 - \sqrt{(x-8)^2 + y^2}]$ $\Rightarrow \sqrt{(x-8)^2 + y^2} = 8 - x$ $\Rightarrow \quad (x-8)^2 + y^2 = (8-x)^2$ $\Rightarrow v^2 = 0 \Rightarrow y = 0$ Which, represents a straight line. 786 (d) Let another root of equation $x^{2} + (1 - 3i)x - 2(1 + i) = 0$ is α $\therefore \alpha + (-1 + i) = -(1 - 3i)$ $\Rightarrow \alpha = 2i$ 787 (b) The given equation is $(x^{2} + x - 2)(x^{2} + x - 3) = 12$ \Rightarrow (y - 2)(y - 3) = 12, where y = x² + x $\Rightarrow v^2 - 5v - 6 = 0$ $\Rightarrow y = 6, -1$ $\Rightarrow x^2 + x = 6 \text{ or } x^2 + x = 1$ $\Rightarrow x^{2} + x - 6 = 0$ or, $x^{2} + x - 1 = 0$ $\Rightarrow x = -3.2, \omega, \omega^2$ \therefore Sum of real roots = -3 + 2 = -1788 (a) Since x = 4 is a root of the equation $x^2 + px + px + px$

12 = 0. $\therefore 16 + 4p + 12 = 0 \Rightarrow p = -7$ The equation $x^2 + px + q = 0$ has equal roots $\therefore p^2 = 4q \Rightarrow 49 = 4q \Rightarrow q = 49/4$ 789 **(b)** We have, $\frac{3(x-2)}{5} \ge \frac{5(2-x)}{3}$ $\Rightarrow 9(x-2) \ge 25(2-x)$ $\Rightarrow 34x - 68 \ge 0 \Rightarrow x - 2 \ge 0 \Rightarrow x \in [2, \infty)$ 790 (a) If $ax^3 + bx + c$ is divisible by $x^2 + bx + c$, then the remainder must be zero when $ax^3 + bx + c$ is divided by $x^2 + bx + c$ We have. $ax^{3} + bx + c = (x^{2} + bx + c)(ax - ab)$ $+ \{x(b - ac + ab^2) + c - abc\}$ \therefore Remainder = 0 $\Rightarrow x(b - ac + ab^2) - c + abc = 0$ for all x $\Rightarrow b - ac + ab^2 = 0$ and -c + abc = 0 $\Rightarrow b - ac + ab^2 = 0$ and ab = 1 [:: $c \neq 0$] $\Rightarrow b - ac + a\left(\frac{1}{a}\right)^2 = 0$ [: $ab = 1 \Rightarrow b = 1/a$] $\Rightarrow ab - a^2c + 1 = 0$ $\Rightarrow a^2c - ab - 1 = 0$ \Rightarrow *a* is a root of $x^2c - bx - 1 = 0$ 791 (b) Since *p* and *q* are roots of the equation $x^2 + px + q = 0$ $\therefore p^{2} + p^{2} + q = 0$ and $q^{2} + pq + q = 0$ $\Rightarrow 2p^2 + q = 0$ and q(q + p + 1) = 0 $\Rightarrow 2 p^2 + q = 0$ and (q = 0 or, q = -p - 1)Now, q = 0 and $2p^2 + q = 0$ And q = -p - 1 and $2p^2 + q = 0$ $\Rightarrow 2p^2 - p - 1 = 0$ $\Rightarrow p = 1 \text{ or, } p = -1/2$ Hence, p = 0, 1, -1/2792 (a) Clearly, $(x - 4)(x - 9) \le 0$ for all $x \in (4, 9)$ 793 (a) We have, $\frac{6-x}{x-2} = 2 + \frac{x}{x+2}$... (i) Clearly, this is meaningful when $x \neq \pm 2$ Multiplying both sides of (i) by x + 2, we get $\frac{6-x}{x-2} = 2(x+2) + x$ $\Rightarrow 3x^2 - x - 14 = 0$

 $\Rightarrow (x+2)(3x-7) = 0 \Rightarrow x = \frac{7}{3} \quad [\because x+2 \neq 0]$ Hence, the given equation has only one real solution 794 (b) Since, |-z| = |z|And $|z_1 + z_2| \le |z_1| + |z_2|$ Now, $|z| + |z - 1| = |z| + |1 - z| \ge |z + |z|$ 1 - z = 1795 (a) Let roots of given equation are α , α + 2 and β $\therefore \alpha + \alpha + 2 + \beta = 13$...(i) $\alpha(\alpha + 2) + (\alpha + 2)\beta + \alpha\beta = 15$...(ii) And $\alpha(\alpha + 2)\beta = -189$...(iii) These three equations are satisfies by the option (a) 796 (b) We have $|z + 4| \le 3$ $-3 \le z + 4 \le 3$ $-6 \le z + 1 \le 0$ $0 \le -(z+1) \le 6$ $0 \le |z+1| \le 6$ Hence, greatest and least value of |z + 1| are 6 and 0 respectively 797 (c) The given equation is meaningful for $x \neq 1$. $x - \frac{2}{x - 1} = 1 - \frac{2}{x - 1} \Rightarrow x = 1$ But, the equation exist for $x \neq 1$ Hence, the equation has no solution 798 (b) We know that the equation $z\bar{z} + a\bar{z} + \bar{a}z + b = 0$ represents a circle of radius $\sqrt{|a|^2 - b}$ Here, a = 4 + 3i and b = 5: Radius = $\sqrt{|4+3i|^2-5} = \sqrt{20} = 2\sqrt{5}$ 799 (a) $x^2 - 5|x| + 6 = 0$ $\Rightarrow |x^2| - 5|x| + 6 = 0$ $\Rightarrow (|x| - 2)(|x| - 3) = 0$ \Rightarrow |x| = 2, |x| = 3 $\Rightarrow x = \pm 2, x = \pm 3$ Hence, the given equation has four solutions

Hence, the given equation has rour solutions 800 (a) Let roots of the equation $x^2 + px + q = 0$ be α and α^2 $\therefore \alpha + \alpha^2 = -p$ and $\alpha^3 = q$ $\Rightarrow \alpha(\alpha + 1) = -p$ $\Rightarrow \alpha^3[\alpha^3 + 1 + 3\alpha(\alpha + 1)] = -p$ $\Rightarrow q(q + 1 - 3p) = -p^3$

 $\Rightarrow p^3 - (3p - 1)q + q^2 = 0$ 801 (a) Since, the roots of the equation $8x^3 - 14x^2 +$ 7x - 1 = 0 are in GP. Let the roots be $\frac{\alpha}{\beta}$, α , $\alpha\beta$, $\beta \neq 0$. Then, the product of roots is $\alpha^3 = \frac{1}{8} \Rightarrow \alpha = \frac{1}{2}$ and hence, $\beta = \frac{1}{2}$. So, roots are 1, $\frac{1}{2}$, $\frac{1}{4}$. 802 (a) Given, $x^2 - xy + y^2 - 4x - 4y + 16 = 0$ $\Rightarrow x^2 - (y+4)x + y^2 - 4y + 16 = 0$ For real $x, (y + 4)^2 - 4(y^2 - 4y + 16) \ge 0$ $\Rightarrow -3v^2 + 24v - 48 = 0$ $\Rightarrow y^2 - 8y + 16 = 0$ $\Rightarrow (y-4)^2 = 0 \Rightarrow y = 4$: From given equation x = 4 \Rightarrow (x, y) = (4, 4) 803 (a) Since, α and β are the roots of $ax^2 + bx + c = 0$. $\Rightarrow \alpha + \beta = -\frac{b}{a}$ and $\alpha\beta = \frac{c}{a}$...(i) If roots are $\alpha + \frac{1}{\beta}$, $\beta + \frac{1}{\alpha}$, then Sum of roots = $\left(\alpha + \frac{1}{\beta}\right) + \left(\beta + \frac{1}{\alpha}\right) = (\alpha + \beta) + \beta$ $\alpha + \beta$ αβ $=\frac{-b}{ac}(a+c)$ [from Eq. (i)] $= \alpha\beta + 1 + 1 + \frac{1}{\alpha\beta} = 2 + \frac{c}{a} + \frac{a}{c}$ [from Eq. (i)] and product of roots = $\left(\alpha + \frac{1}{\beta}\right) + \left(\beta + \frac{1}{\alpha}\right)$ $=\frac{2ac+c^2+a^2}{ac}=\frac{(a+c)^2}{ac}$ Hence, required equation is given by $x^2 - (\text{sum of roots})x + (\text{prouduct of roots}) = 0$ $\Rightarrow x^2 + \frac{b}{ac}(a+c)x + \frac{(a+c)^2}{ac} = 0$ $\Rightarrow acx^2 + (a+c)bx + (a+c)^2 = 0$ 804 (b) $\left[1+\cos\frac{\pi}{5}+i\sin\frac{\pi}{5}\right]^{-1}$ $=\frac{1}{2\cos^2\frac{\pi}{10}+2i\sin\frac{\pi}{10}\cos\frac{\pi}{10}}$ $=\frac{1}{2\cos\frac{\pi}{10}\left(\cos\frac{\pi}{10}+i\sin\frac{\pi}{10}\right)}\times\frac{\cos\frac{\pi}{10}-i\sin\frac{\pi}{10}}{\left(\cos\frac{\pi}{10}-i\sin\frac{\pi}{10}\right)}$ $=\frac{\cos\frac{\pi}{10}-i\sin\frac{\pi}{10}}{2\cos\frac{\pi}{10}}$ \therefore Real part is $\frac{1}{2}$ 805 (a)

 $\Delta = \begin{vmatrix} 1 & \omega^n & \omega^{2n} \\ \omega^n & \omega^{2n} & 1 \\ \omega^{2n} & 1 & \omega^n \end{vmatrix}$ $= 1(\omega^{3n} - 1) - \omega^n(\omega^{2n} - \omega^{2n}) + \omega^{2n}(\omega^n - \omega^{2n})$ $-\omega^{4n}$) $= (1-1) - 0 + \omega^{2n} [\omega^n - (\omega^3)^n \omega^n] \quad (\because \omega^{3n}$ = 0 + 0 + 0 = 0806 (a) Let α , β be the two roots of the equation $ax^{2} + bx + c = 0$. Then, $\alpha + \beta = -b/a$ and $\alpha \beta = c/a$ $\Rightarrow -\frac{b}{a} = 0 \text{ and } \frac{c}{a} = 0$ [:: $\alpha = \beta = 0$] $\Rightarrow b = 0, c = 0$ 807 (b) Let the roots be α and α + 1. Then, $\alpha + \alpha + 1 = p \Rightarrow \alpha = \frac{p-1}{2}$... (i) and, $\alpha(\alpha + 1) = q \Rightarrow \alpha^2 + \alpha = q$... (ii) From (i) and (ii), we get $\left(\frac{p-1}{2}\right)^2 + \left(\frac{p-1}{2}\right) = q$ [On eliminating α] $\Rightarrow p^2 - 2p + 1 + 2p - 2 = 4q \Rightarrow p^2 = 4q + 1$ 808 (a) Since, |z| = 1 and $w = \frac{z-1}{z+1} \Rightarrow z = \frac{1+w}{1-w}$ $\Rightarrow |z| = \frac{|1+w|}{|1-w|} \Rightarrow |1-w| = |1+w|$ ſ |z| = 1 $1 + |w|^2 - 2 \operatorname{Re}(w) = 1 + |w|^2 + 2 \operatorname{Re}(w)$ ⇒ ⇒ ${\rm Re}(w) = 0$ 809 (b) We observe that $\sin^{-1}\left(\frac{1+x^2}{2x}\right)$ is defined for $-1 \le \frac{1+x^2}{2x} \le 1$ $\Rightarrow \left| \frac{1+x^2}{2x} \right| \le 1$ $\Rightarrow \left|\frac{1+x^2}{2}\right| \le |x|$ $\Rightarrow 1 + x^2 - 2|x| \le 0 \Rightarrow (|x| - 1)^2 \le 0 \Rightarrow |x|$ = 1 [:: x > 0]Thus, we have, $\left(\frac{1+i}{1-i}\right)^n = \frac{2}{\pi}\sin^{-1}(1)$ $\Rightarrow i^n = 1 \Rightarrow n$ is a multiple of 4 Hence, the least positive integral value of n is 4 810 (c) Here, $\alpha + \beta + \gamma = 0$, $\alpha\beta + \beta\gamma + \gamma\alpha = 1$ And $\alpha\beta\gamma = -1$

 $\therefore \alpha^3 + \beta^3 + \gamma^3$

 $= (\alpha + \beta + \gamma)[\alpha^{2} + \beta^{2} + \gamma^{2} - \alpha\beta - \beta\gamma - \gamma\alpha]$ $+ 3\alpha\beta\gamma$ = 0 + 3(-1) = -3811 (b) Let $z = r(\cos \theta + i \sin \theta)$. Then, $\left|z + \frac{1}{z}\right| = 1$ $\Rightarrow \left| z + \frac{1}{z} \right|^2 = 1$ $\Rightarrow \left| r(\cos\theta + i\sin\theta) + \frac{1}{r}(\cos\theta - i\sin\theta) \right|^2 = 1$ $\Rightarrow \left(r + \frac{1}{r}\right)^2 \cos^2 \theta + \left(r - \frac{1}{r}\right)^2 \sin^2 \theta = 1$ $\Rightarrow r^2 + \frac{1}{r^2} + 2\cos 2\theta = 1$ Since |z| = r is maximum. Therefore, $\frac{dr}{d\theta} = 0$ Differentiating (i) w. r. t. θ , we get $2r\frac{dr}{d\theta} - \frac{2}{r^3}\frac{dr}{d\theta} - 4\sin 2\theta = 0$ Putting $\frac{d r}{d \theta}$, we get $\sin 2\theta = 0 \Rightarrow \theta = \frac{\pi}{2} \Rightarrow z$ is purely imaginary $[\because \theta \neq 0]$ 812 (a) Since x = c is a root of order 2 of the polynomial f(x) $\therefore f(x) = (x - c)^2 \Phi(x)$ $\Rightarrow f'(x) = 2(x-c) \Phi(x) + (x-c)^2 \Phi'(x)$ \Rightarrow $f'(c) = 0 \Rightarrow x = c$ is a root of f'(x)814 (d) We have, $\frac{a+b\omega+c\omega^2}{c+a\omega+b\omega^2} + \frac{a+b\omega+c\omega^2}{b+c\omega+a\omega^2}$ $=\frac{\omega^2(a+b\,\omega+c\,\omega^2)}{(c\,\omega^2+a\,\omega^3+b\,\omega^4)}+\omega\frac{(a+b\,\omega+c\,\omega^2)}{(b\,\omega+c\,\omega^2+a\,\omega^3)}$ $=\omega^2 + \omega = -1$ 815 (c) Since, $(\alpha + \beta)$, $(\alpha^2 + \beta^2)$ and $(\alpha^3 + \beta^3)$ are in GP. $(\alpha^2 + \beta^2)^2 = (\alpha + \beta)(\alpha^3 + \beta^3)$ $\Rightarrow \alpha^4 + \beta^4 + 2\alpha^2\beta^2 = \alpha^4 + \beta^4 + \alpha\beta^3 + \beta\alpha^3$ $\Rightarrow \alpha\beta(\alpha^2+\beta^2-2\alpha\beta)=0$ $\Rightarrow \alpha\beta(\alpha-\beta)^2 = 0$ $\Rightarrow \alpha\beta = 0 \text{ or } \alpha = \beta$ *ie*, $\frac{c}{a} = 0$ or $\Delta = 0$ $\Rightarrow c\Delta = 0$ 816 (d) $i^{n}(1 + i + i^{2} + i^{3}) = i^{n}(1 + i - 1 - i) = 0$ 817 (b) If z = x + iy is the additive inverse of 1 - i, the x + iy + (1 - i) = 0

 $\Rightarrow x+1=0, y-1=0$ $\Rightarrow x = -1, y = 1$ Here required additive inverse is -1 + i818 (d) Given equation is $x^2 - 2\sqrt{2kx} + 2e^{2\log k} - 1 = 0$ Also, product of its root $2e^{2\log k} - 1 = 31$ $\Rightarrow 2 e^{2\log k} = 32 \Rightarrow k^2 = 16$ $\Rightarrow k = \pm 4$ [Since, log is not defined for k < 0] $\therefore k = 4$ 819 (b) Let z = x + i z $\therefore \frac{z-1}{z+1} = \frac{x+iy-1}{x+iy+1}$ $=\frac{(x^2+y^2-1)+2iy}{(x+1)^2+y^2}$ $\therefore \arg\left(\frac{z-1}{z+1}\right) = \tan^{-1}\frac{2y}{x^2+y^2-1}$ $\Rightarrow \tan^{-1}\frac{2y}{x^2+y^2-1} = \frac{\pi}{3}$ (given) $\Rightarrow \frac{2y}{x^2 + y^2 - 1} = \tan \frac{\pi}{3} = \sqrt{3}$ $\Rightarrow x^2 + y^2 - 1 = \frac{2}{\sqrt{3}}y$ $\Rightarrow x^2 + y^2 - \frac{2}{\sqrt{2}}y - 1 = 0$ Which is an equation of a circle 820 (c) Let $z = \frac{(-\sqrt{3}+3i)(1-i)}{(3i-\sqrt{3})\sqrt{3}(1+i)}$ $=\frac{1}{\sqrt{2}}\left(\frac{1-i}{1+i}\times\frac{1-i}{1-i}\right)=-\frac{i}{\sqrt{2}}$ The complex number *z* is represented on *y*-axis (imaginary axis) 821 (a) It is given that *a*, *b*, *c* are in G.P. $\therefore b^2 = ac$ Now, $ax^2 + 2bx + c = 0$ $\Rightarrow ax^2 + 2\sqrt{ac} x + c = 0$ [Using $b^2 = ac$] $\Rightarrow \left(\sqrt{ax} + \sqrt{c}\right)^2 = 0 \Rightarrow x = -\frac{\sqrt{c}}{\sqrt{c}}$ Thus, $x = -\sqrt{\frac{c}{a}}$ is a common root Putting $x = -\sqrt{\frac{c}{a}}$ in $dx^2 + 2 ex + f = 0$, we get $d\frac{c}{a} - 2e\sqrt{\frac{c}{a}} + f = 0$ $\Rightarrow \frac{d}{a} - 2 e \cdot \frac{1}{\sqrt{ac}} + \frac{f}{c}$ = 0 [Dividing both sides by *c*]

$$\Rightarrow \frac{d}{a} - \frac{2}{b} + \frac{f}{c} = 0 \qquad [\because b^{2} = ac]$$

$$\Rightarrow \frac{d}{a} + \frac{f}{c} = \frac{2e}{b} \Rightarrow \frac{d}{a}, \frac{e}{b}, \frac{f}{c} \text{ are in GP.}$$
822 (d)
Let $x = \sqrt{8 + 2x}$

$$\Rightarrow x^{2} = 8 + 2x \Rightarrow x^{2} - 2x - 8 = 0 \Rightarrow x = 4 \quad [\because x \\ > 0]$$
823 (b)
The given equation is $x^{2} - 2x \cos \phi + 1 = 0$.

$$\therefore x = \frac{2 \cos \phi \pm \sqrt{4 \cos^{2} \phi - 4}}{2} = \cos \phi \pm i \sin \phi$$
Let $a = \cos \phi + i \sin \phi$, then $\beta = \cos \phi - i \sin \phi$

$$\therefore a^{n} + \beta^{n} = (\cos n\phi + i \sin n\phi)^{n} + (\cos \phi - i \sin \phi)^{n}$$

$$= 2 \cos n\phi$$
and $a^{n}\beta^{n} = (\cos n\phi + i \sin n\phi)(\cos n\phi - i \sin n\phi)$

$$= \cos^{2} n\phi + \sin^{2} n\phi = 1$$

$$\therefore \text{ Required equation is $x^{2} - 2x \cos n\phi + 1 = 0$
824 (d)

$$\frac{(\cos \theta + i \sin \theta)^{4}}{(\sin \theta + i \cos \theta)^{5}} = \frac{(\cos \theta + i \sin \theta)^{4}}{i^{5}(\cos \theta - i \sin \theta)^{5}}$$

$$= -i (\cos \theta + i \sin \theta)^{9}$$

$$= \sin 9\theta - i \cos 9\theta$$
825 (c)
We have,
 $x^{3} - 2x^{2} + 2x - 1 = 0$

$$\Rightarrow (x - 1)(x^{2} - x + 1)$$

$$\Rightarrow x - 1 \text{ or } x = -\omega, -\omega^{2}$$
Since $ax^{2} + bx + a = 0$ and $x^{3} - 2x^{2} + 2x - 1 = 0$

$$\Rightarrow a(1 + \omega^{2}) - b\omega = 0 \Rightarrow -a\omega - b\omega = 0 \Rightarrow a + b$$

$$= 0$$
827 (c)
Equations $x^{3} + ax^{2} + bx + c = 0$
and $a^{3} + aa^{2} + ba + c = 0$
and $a^{3} + aa^{2} + ba + c = 0$
and $a^{3} + aa^{2} + ba + c = 0$
and $a^{3} + aa^{2} + ba + c = 0$
and $a^{3} + aa^{2} + ba + c = 0$
and $a^{3} + aa^{2} + ba + c = 0$
and $a^{3} + aa^{2} + ba + c = 0$

$$\Rightarrow a(1 + \omega^{2}) - b\omega = 0 \Rightarrow -a\omega - b\omega = 0 \Rightarrow a + b$$

$$= 0$$$$

828 (a)
Let
$$z = x + iy$$
. Then,
 $\frac{z - 8i}{z + 6} = \frac{x + (y - 8)i}{(x + 6) + iy}$
 $= \frac{\{x + (y - 8)i\}\{x + 6 - iy\}}{(x + 6)^2 + y^2}$
 $\Rightarrow \frac{z - 8i}{z + 6}$
 $= \frac{(x^2 + 6x + y^2 - 8y) + i(xy - 8x - xy)}{(x + 6)^2 + y^2}$
 $\therefore \text{Re}\left(\frac{z - 8i}{z + 6}\right) = 0 \Rightarrow x^2 + y^2 + 6x - 8y = 0$
Hence, $z = x + iy$ lies on the circle
ALITER We have,
 $\text{Re}\left(\frac{z - 8i}{z + 6}\right) = 0$
 $\Rightarrow \arg\left(\frac{z - (0 + 8i)}{z - (-6 + 0i)}\right) = \pm \frac{\pi}{2}$
 $\Rightarrow z$ lies on the circle having (0, 8) and (-6, 0) as
the end-points of the diameter
829 (b)
We have,
 $\alpha^2 = 5\alpha - 3 \Rightarrow \alpha^2 - 5\alpha + 3 = 0 \Rightarrow \alpha = \frac{5 \pm \sqrt{13}}{2}$
Similarly, $\beta^2 = 5\beta - 3 \Rightarrow \beta = \frac{5 \pm \sqrt{13}}{2}$
Similarly, $\beta^2 = 5\beta - 3 \Rightarrow \beta = \frac{5 \pm \sqrt{13}}{2}$
Since $\alpha \neq \beta$
 $\therefore \alpha = \frac{5 \pm \sqrt{13}}{2}$ and $\beta = \frac{5 - \sqrt{13}}{2}$
or, $\alpha = \frac{5 - \sqrt{13}}{2}$ and $\beta = \frac{5 - \sqrt{13}}{2}$
Thus, the either case, we have
 $\alpha^2 + \beta^2 = \frac{1}{4}(50 + 26) = 19$,
and, $\alpha \beta = \frac{1}{4}(25 - 13) = 3$, in both the cases
Thus, the equation having α/β and β/α as its
roots is
 $x^2 - x\left(\frac{\alpha^2 + \beta^2}{\alpha\beta}\right) + 1 = 0 \Rightarrow 3x^2 - 19x + 3$
 $= 0$
830 (d)
Given, $(x - 2)^3 = -27 = -3^3$
 $\Rightarrow (x - 2) = -3(1)^{1/3}$
 $\Rightarrow (x - 2) = -3(-3)\omega^2$
 $\Rightarrow x = -1, 2 - 3\omega, 2 - 3\omega^2$
831 (c)
Given equations are $2x^2 + 3x + 5\lambda = 0$ and $x^2 + 2x + 3\lambda = 0$ have a common root, if $\frac{x^2}{(9-10)\lambda} = \frac{x^2 + 3x + 5\lambda = 0$

 $\frac{x}{(5-6)\lambda} = \frac{1}{(4-3)}$ $\Rightarrow \frac{x^2}{-\lambda} = \frac{x}{-\lambda} = \frac{1}{1}$ $\Rightarrow x^2 = -\lambda, x = -\lambda \text{ or } \lambda = -1, 0$ 832 (d) Given, |x + iy - 2| + |x + iy + 2| = 8 $\Rightarrow (x-2)^2 + y^2 + (x+2)^2 + y^2 = 8$ $\Rightarrow x^2 - 4x + 4 + y^2 + x^2 + 4x + 4 + y^2 = 8$ $x^2 + y^2 = 0$ ⇒ Which represents a circle whose radius is zero. 833 (d) The equation $x^2 + x + 1 = 0$ has ω and ω^2 as its roots. Let $\alpha = \omega$ and $\beta = \omega^2$. Then, $\alpha^{19} = \omega^{19} = \omega$ and $\beta^7 = \omega^{14} = \omega^2$ Hence, α^{19} and β^7 are roots of the same equation 834 (b) Given relation is $3\alpha + 2\beta = 16 \Rightarrow 2(\alpha + \beta) + \alpha = 16$ $\Rightarrow 2 \times 6 + \alpha = 16 \Rightarrow \alpha = 4 [:: \alpha + \beta = 6, \alpha\beta]$ = a $\therefore \alpha^2 - 6\alpha + a = 0$ $\Rightarrow 16 - 24 + a = 0 \Rightarrow a = 8$ 835 (a) Given equation is |x - 4| + |x - 9| = 5 $\Rightarrow \begin{cases} 4 - x + 9 - x = 5, x \le 4 \\ x - 4 + 9 - x = 5, 4 < x \le 9 \\ x - 4 + x - 9 = 5, x > 9 \end{cases}$ $\Rightarrow \begin{cases} x = 4, x \le 4 \\ \text{no solution, } 4 < x \le 9 \\ x = 9, x > 9 \end{cases}$ So, x = 4, 9836 (a) Given, $a_n = i^{(n+1)^2}$ Here, $a_1 = i^{2^2} = 1$, $a_2 = i^{3^2} = i$, $a_3 = i^{4^2} = 1$, $a_4 = i^{5^2} = i$, $a_5 = i^{6^2} = 1, \dots$ Here, we see that for all odd values of *n*, we get the value of a_n is 1 $\therefore a_1 + a_3 + a_5 + \dots + a_{25} =$ 1+1+1+...+1=13 13 837 (d) We have, $\left(\frac{1-i\sqrt{3}}{2}\right)^n + \left(\frac{-1-i\sqrt{3}}{2}\right)^n$ $= \omega^{n} + (\omega^{2})^{n} = \omega^{6k} + \omega^{12k} = (\omega^{3})^{2k} + (\omega^{3})^{4k}$ = 2838 (a)

Given, $\left(\frac{\sqrt{3}}{2} + \frac{i}{2}\right)^n = 1$ $\Rightarrow \left(cis\frac{\pi}{6}\right)^n = 1 \Rightarrow n = 12$ 839 (c) We have, $\frac{x+1}{x^2+2} > \frac{1}{4}$ $\Rightarrow \frac{4x + 4 - x^2 - 2}{4(x^2 + 2)} > 0$ $\Rightarrow \frac{-x^2 + 4x + 2}{x^2 + 2} > 0$ $\Rightarrow \frac{x^2 - 4x - 2}{x^2 + 2} < 0$ $\Rightarrow x^2 - 4x - 2 < 0$ [: $x^2 + 2 > 0$ for all x] $\Rightarrow 4 - \sqrt{6} < x < 4 + \sqrt{6} \Rightarrow x = 2, 3, 4, 5, 6$ $[\because x \in Z]$ 840 (c) Here, $\alpha + \beta = -5$ and $\alpha\beta = 4$ Now, $\frac{\alpha+2}{3} + \frac{\beta+2}{3} = \frac{\alpha+\beta+4}{3} = \frac{-5+4}{3} = \frac{-1}{3}$ And $\left(\frac{\alpha+2}{3}\right)\left(\frac{\beta+2}{3}\right) = \frac{\alpha\beta+2(\alpha+\beta)+4}{9}$ $=\frac{4+2(-5)+4}{9}=\frac{-2}{9}$ Required equation is x^2 -(sum of roots)x +products of roots=0 $\therefore x^{2} + \frac{1}{3}x - \frac{2}{9} = 0 \implies 9x^{2} + 3x - 2 = 0$ 841 (d) $x^{2} + 5|x| + 4 = 0$ $\Rightarrow |x^2| + 4|x| + |x| + 4 = 0$ $\Rightarrow |x|(|x|+4) + 1(|x|+4) = 0$ \Rightarrow (|x| + 1)(|x| + 4) = 0 \Rightarrow |x| = -1 and |x| = -4Which is not possible Hence, no real root exist 842 (b) Here, $\alpha + \beta = \frac{-b}{a}$, $\alpha\beta = \frac{c}{a}$ So, $(1 + \alpha + \alpha^2)(1 + \beta + \beta^2)$ $= 1 + \beta + \beta^2 + \alpha + \alpha\beta + \alpha\beta^2 + \alpha^2 + \alpha^2\beta$ $+ \alpha^2 \beta^2$ $= 1 + (\alpha + \beta) + \alpha\beta + \alpha\beta(\alpha + \beta) + (\alpha\beta)^2 + \alpha^2$ $+\beta^2$ $= 1 + (\alpha + \beta) - \alpha\beta + \alpha\beta(\alpha + \beta) + (\alpha\beta)^2$ $+ (\alpha + \beta)^2$ $= 1 - \frac{b}{a} - \frac{c}{a} - \frac{bc}{a^2} + \frac{c^2}{a^2} + \frac{b^2}{a^2}$ $= \frac{a^2 + b^2 + c^2 - ab - bc - ca}{a^2}$ $=\frac{1}{2a^2}(2a^2+2b^2+2c^2-2ab-2bc-2ca)$

 $=\frac{1}{2a^{2}}[(a-b)^{2}+(b-c)^{2}+(c-a)^{2}]\geq 0$ 843 (a) We have, $\alpha + i\beta = \tan^{-1}(z)$ $\Rightarrow \alpha + i \beta = \tan^{-1}(x + i \gamma)$...(i) $\Rightarrow \alpha - i\beta = \tan^{-1}(x - iy)$... (ii) From (i) and (ii), we get $(\alpha + i\beta) + (\alpha - i\beta)$ $= \tan^{-1}(x + iy) + \tan^{-1}(x - iy)$ $\Rightarrow 2 \alpha = \tan^{-1} \left(\frac{x + iy + x - iy}{1 - (x + iy)(x - iy)} \right)$ $\Rightarrow \tan 2 \alpha = \frac{2 x}{1 - (x^2 + v^2)}$ $\Rightarrow 1 - x^2 - y^2 = 2 x \cot 2 \alpha$ $\Rightarrow x^2 + y^2 + 2x \cot 2\alpha = 1$ 844 (c) Given, $3x^2 - 2(a + b + c)x + (ab + bc + ca) = 0$ Now, $B^2 - 4AC = 4\{(a + b + c)^2 - 3(ab + bc + bc)\}$ ca) $= 4\{a^2 + b^2 + c^2 - ab - bc - ac\}$ $= 2\{(a-b)^2 + (b-c)^2 + (c-a)^2\} \ge 0$ Hence, both roots are always real 845 (c) Here, $b^2 - 4ac = 0$ $\Rightarrow 36p^2 - 4(4)(1) = 0$ $\Rightarrow 36p^2 = 16$ $\Rightarrow p = \pm \frac{2}{3}$ 846 (a) $\left|z - \frac{25}{z}\right| \ge \left||z| - \frac{25}{|z|}\right| \Rightarrow 24 \ge \left||z| - \frac{25}{|z|}\right|$ $\Rightarrow -24 \le |z| - \frac{25}{|z|} \le 24$ or $-24|z| \le |z|^2 - 25 \le 24|z|$ $\therefore |z|^2 + 24|z| - 25 \ge 0 \text{ and } |z|^2 - 24|z| - 25$ ≤ 0 \Rightarrow (|z|+25)(|z|-1) ≥ 0 and $(|z| - 25)(|z| + 1) \leq 0$ $|z| - 1 \ge 0$ and $|z| - 25 \le 0$ Hence, $1 \leq |z| \leq 25$ or $1 \le |z - 0| \le 25$ 847 (a) If (x + 1) is a factor of $x^{4} - (p-3)x^{3} - (3p-5)x^{2} + (2p-7)x + 6$ then by putting x = -1, we get 1 + (p-3) - (3p-5) - (2p-7) + 6 = 0 $\Rightarrow -4p = -16 \Rightarrow p = 4$ 848 (c) It is given that $f(x) = x^3 - 3b^2x + 2c^2$ is divisible

by x - a and x - b $\therefore f(a) = 0$ and f(b) = 0 $\Rightarrow a^3 - 3b^2a + 2c^3 = 0$...(i) and $b^3 - 3b^3 + 2c^3 = 0$...(ii) From (ii), we get b = cPutting, b = c in (i), we get $a^3 - 3ab^2 + 2b^3 = 0$ $\Rightarrow (a-b)(a^2+ab-2b^2) = 0$ $\Rightarrow a = b \text{ or } a^2 + ab = 2b^2$ Thus, a = b = c or, $a^2 + ab = 2b^2$ and b = cClearly, $a^2 + ab = 2b^2$ is satisfied by a = -2b $\therefore a^2 + ab = 2b^2$ and b = c $\Rightarrow a = -2b$ and $b = c \Rightarrow a = -2b = -2c$ 849 **(b)** Since *a*, *b*, *c* are in A.P. Therefore, c - b = d (common difference), b - a = d and c - a = 2dWe have, $(b-c)x^{2} + (c-a)x + a - b = 0$ $\Rightarrow -d x^2 + 2 dx - d = 0$ $\Rightarrow x^2 - 2x + 1 = 0$ $\Rightarrow x = 1$ (twice) Thus, x = 1 is a common root of the two equations Since, x = 1 is a root of $2(c + a)x^2 + (b + c)x = 0$ $\therefore 2(c+a) + b + c = 0$ $\Rightarrow 2a + b + 3c = 0$ $\Rightarrow 2a + \frac{a+c}{2} + 3c = 0 \qquad [\because a, b, c \text{ are in A. P.}]$ $\Rightarrow 5a + 7c = 0 \Rightarrow c = -\frac{5a}{7}$ Now, 2b = a + c and $c = -\frac{5a}{7} \Rightarrow b = \frac{a}{7}$: $b^2 = \frac{a^2}{49}$ and $c^2 = \frac{25a^2}{49}$ Clearly, $a^2 + b^2 = a^2 + \frac{a^2}{49} = \frac{50a^2}{49} = 2c^2$ $\therefore a^2, c^2, b^2$ are in A.P.

850 (c)
Let
$$z = x_1 + iy_1$$
 and $w = x_2 + iy_2$
As $|z| \le 1$ and $|w| \le 1$
 $\Rightarrow x_1^2 + y_1^2 < 1$ and $x_2^2 + y_2^2 \le 1$
Now, $|z + iw| = |x_1 + iy_1 + i(x_2 + iy_2)| = 2$
 $\Rightarrow (x_1 - y_2)^2 + (y_1 + x_2)^2 = 4$...(i)
And $|z - i\overline{w}| = |x_1 + iy_1 - i(x_2 - iy_2)| = 2$
 $\Rightarrow (x_1 - y_2)^2 + (y_1 - x_2)^2 = 4$...(ii)
On solving Eqs. (i) and (ii), we get
 $y_1x_2 = 0$
 \Rightarrow Either $y_1 = 0$ or $x_2 = 0$
When $y_1 = 0$, $x_1^2 \le 1$
 $\Rightarrow x = \pm 1$
 $\therefore z = \pm 1 + i0$
851 (c)
We have,
 $\log_{\tan 30^\circ} \left(\frac{2 |z|^2 + 2 |z| - 3}{|z| + 1}\right) < -2$
 $\Rightarrow \frac{2 |z|^2 + 2 |z| - 3}{|z| + 1} > (\tan 30^\circ)^{-2}$
 $\Rightarrow \frac{2 |z|^2 + 2 |z| - 3}{|z| + 1} > 3$
 $\Rightarrow 2 |z|^2 - |z| - 6 > 0$
 $\Rightarrow (|z| - 2)(2 |z| + 3) > 0 \Rightarrow |z| > 2$ [
 $\therefore 2 |z| + 3 > 0$]
852 (c)
Given that $x^2 + px + 1$ is a factor of $ax^3 + bx + c = 0$, then let $ax^3 + bx + c \equiv (x^2 + px + 1ax + \lambda)$ where λ is a constant. Then, equating the coefficients of like powers of x on both sides, we get
 $0 = ap + \lambda, b = p\lambda + a, c = \lambda$
 $\Rightarrow p = -\frac{\lambda}{a} = -\frac{c}{a}$
Hence, $b = (-\frac{c}{a})c + a \Rightarrow ab = a^2 - c^2$
853 (c)
Since $\operatorname{Im}(z_1 + z_2) = 0$, and $\operatorname{Im}(z_1 z_2) = 0$
 $\Rightarrow z_1 + z_2$ and $z_1 z_2$ both are real

Let $z_1 = a_1 + ib_1$, $z_2 = a_2 + ib_2$. Then, $z_1 + z_2$ is real $\Rightarrow b_2 = -b_1$ $z_1 z_2$ is real $\Rightarrow a_1 b_2 + a_2 b_1 = 0$ $\Rightarrow -a_1 b_1 + a_2 b_1 = 0 \qquad [\because b_2 = -b_1]$ $\Rightarrow a_1 = a_2$ So, $z_1 = a_1 + ib_1 = a_2 - ib_2 = \bar{z}_2$ 854 (d) $y^{x^2+7x+12} = 1$ $\Rightarrow x^2 + 7x + 12 = 0$ $\Rightarrow x = -3, -4$ $\Rightarrow y = 9,10 \quad (\text{when } y \neq 1)$

8

861 **(a)**

Let *A*, *B*, *C* be the points represented by the \therefore numbers z_1, z_2, z_3 and *P* be the point represented 864 (c)

Now, the four points A, B, C, P form a parallelogram in the following three orders. (i)*A*, *B*, *P*, *C* (ii)*B*,*C*,*P*,*A* and (iii)*C*,*A*,*P*,*B* In case (i), the condition for A, B, P, C to form a parallelogram is $\overline{AB} = \overline{CP}$ ie, $z_2 - z_1 = z - z - z - z_1 = z - z - z - z_1 = z - z - z - z - z$ z_3 or $z = z_2 + z_3 - z_1$ Similarly, in case (ii) and (iii), $\overrightarrow{BC} = \overrightarrow{AP}$ *ie*, $z_3 - z_2 = z - z_1$ or $z = z_3 + z_1 - z_2$ and $\overrightarrow{CA} = \overrightarrow{BP}$ *ie*, $z_1 - z_3 = z - z_2$ or $z = z_1 + z_2 - z_3$ 862 (c) Since *a*, *b* are roots of $x^2 + ax + b = 0$. Therefore, $a^{2} + a^{2} + b = 0$ and, $b^{2} + ab + b = 0$ $\Rightarrow b = -2 a^2$ and b + a + 1 = 0 $\Rightarrow -2 a^2 + a + 1 = 0$ $\Rightarrow 2 a^2 - a - 1 = 0 \Rightarrow a = 1 \text{ or, } a = -1/2$ Now, $a = 1, \Rightarrow b = -2$ [: b + a + 1 = 0] and, $a = -1/2 \Rightarrow b = -1/2$ But, $a \neq b$. Therefore, a = 1, b = -2: Least value of $x^2 + ax + b$ is $-\left(\frac{a^2 - 4b}{4}\right) = -\left(\frac{1+8}{4}\right) = -\frac{9}{4}$ 863 (a) Given, $\left|\frac{z_1 - 3z_2}{3 - z_1 \overline{z_2}}\right| = 1$, $|z_1| \neq 3$ $\left[\because \left| \frac{Z_1}{Z_2} \right| \right]$ $\Rightarrow |z_1 - 3z_2| = |3 - z_1 \overline{z_2}|$ $=\frac{|z_1|}{|z_2|}$ $\Rightarrow |z_1 - 3z_2|^2 = |3 - z_1 \overline{z_2}|^2$

 $(z_1 - 3z_2)(\overline{z_1} - 3\overline{z_2})$ $= (3 - z_1 \overline{z_2})(3 - \overline{z_1} z_2) \quad [\because \ \overline{\overline{z_2}}]$ $= Z_{2}$] $\Rightarrow |z_1|^2 - 3z_1\bar{z_2} - 3z_2\bar{z_1} + 9|z_2|^2$ $= 9 - 3\overline{z_1}z_2 - 3z_1\overline{z_2} + |z_1|^2|z_2|^2$ $\Rightarrow |z_1|^2 + 9|z_2|^2 - 9 - |z_1|^2|z_2|^2 = 0$ \Rightarrow $(9 - |z_1|^2)(1 - |z_2|^2) = 0$ $\Rightarrow |z_1|^2 = 9 \text{ or } |z_2|^2 = 1$ \Rightarrow $|z_1| = 3$ or $|z_2| = 1$ \therefore $|z_2| = 1$ [but $|z_1| \neq 3$ given] We have, $|1+i \ 1-1|$ $i \qquad 1+i \\ 1+i \qquad 1-i$ 1 – i 2 $\begin{array}{c|cccc} 1 & 1 & i & Applying \\ 1 & 1 + 2i & 1 + i \\ + 2i & 2 & 1 - i \\ 0 & 0 & i \\ \end{array} , C_1 \to C_1 + C_2, C_2 \to C_2 - C_2 -$ 1 + 2i $\begin{vmatrix} 0 & 0 & i \\ -1 - 4i & 3i & 1 + i \\ -3 + 2i & 3 + i & 1 - i \end{vmatrix}, C_1 \to C_1 - 2 C_2, C_2 \to C$ $=i\begin{vmatrix} -1-4i & 3i\\ -3+2i & 3+i \end{vmatrix} = 4+7i$ 865 (b) Since, $\left|\frac{z}{z-i/3}\right| = 1$ $\Rightarrow 3|z| = |3z - i|$ \Rightarrow 3|x + iy| = |3(x + iy) - i| [put z = x + iy] $3\sqrt{x^2 + y^2} = \sqrt{(3x)^2 + (3y - 1)^2}$ $\Rightarrow 9x^2 + 9y^2 = 9x^2 + 9y^2 + 1 - 6y$ $\Rightarrow y = \frac{1}{2}$ Which shows that *z* lies on a straight line. 866 (d) log₃ 5. log₂₅ 27. log₄₉ 7 log₈₁ 3 log5 3 log3 $\overline{\log 3 \cdot 2 \cdot \log 5 \cdot 2}$ = 3867 (b) Let α be a root of $x^2 - x + k = 0$. Then, 2 α is a root of $x^2 - x + 3 k = 0$ $\therefore \alpha^2 - \alpha + 3 k = 0 \text{ and } 4 \alpha^2 - 2 \alpha + 3 k = 0$ $\Rightarrow \frac{\alpha^2}{-3 \ k+2 \ k} = \frac{\alpha}{4 \ k-3 \ k} = \frac{1}{-2+4}$ $\Rightarrow \alpha^2 = -\frac{k}{2}$ and $\alpha = \frac{k}{2}$ Now, $\alpha^2 = (\alpha)^2 \Rightarrow -\frac{k}{2} = \left(\frac{k}{2}\right)^2 \Rightarrow k^2 + 2k = 0 \Rightarrow k$ = 0 or, -2

868 (a) Given equation can be rewritten as $3x^2 - (a + c + 2b + 2d)x + ac + 2bd = 0$ \therefore Discriminant, D $= (a + c + 2b + 2d)^2 - 4 \cdot 3(ac + 2bd)$ $= \{(a+2d) + (c+2b)\}^2 - 12(ac+2bd)$ $= \{(a+2d) + (c+2b)\}^2 + 4(a+2d)(c+2b)$ -12(ac + 2bd) $= \{(a + 2d) + (c + 2b)\}^2 - 8ac + 8ab - 8dc$ -8bd $= \{(a+2d) + (c+2b)\}^2 + 8(c-b)(d-a)$ Which is +ve, since a < b < c < d. Hence, roots are real and distinct. 869 (c) If $|z| = |z - 2| \Rightarrow z + \overline{z} = 2$ Also, $|z| = |z+2| \Rightarrow z + \overline{z} = -2$ Thus, $|z + \bar{z}| = 2$ 870 (b) Here, $\alpha + \beta + \gamma = -2$...(i) $\alpha \beta + \beta \gamma + \gamma \alpha = -3$...(ii) and $\alpha\beta\gamma = 1$...(iii) On solving Eq. (ii), we get $\alpha^{2}\beta^{2} + \beta^{2}\gamma^{2} + \gamma^{2}\alpha^{2} + 2\alpha\beta\gamma(\alpha + \beta + \gamma) = 9$ $\Rightarrow \alpha^2 \beta^2 + \beta^2 \gamma^2 + \gamma^2 \alpha^2 = 9 - 2(1)(-2) = 13$ Now, $\alpha^{-2} + \beta^{-2} + r^{-2} = \frac{\beta^2 \gamma^2 + \gamma^2 \alpha^2 + \alpha^2 \beta^2}{(\alpha \beta \gamma)^2} = \frac{13}{1} =$ 13 871 (b) Let $z = \frac{(1-i\sqrt{3})(2+2i)}{(\sqrt{3}-i)}$ $=\frac{(2-2\sqrt{3})+2i(1+\sqrt{3})}{(\sqrt{3}-i)}\times\frac{(\sqrt{3}-i)}{(\sqrt{3}-i)}$ $=\frac{2\sqrt{3}-6+2i-2\sqrt{3}i+2\sqrt{3}i+6i-2-2\sqrt{3}}{3+1}$ $=\frac{-8+8i}{4}=-2+2i$ \therefore Magnitude of $z = \sqrt{4+4} = 2\sqrt{2}$ And amplitude of $z = \tan^{-1}\left(\frac{2}{-2}\right) = \frac{3\pi}{4}$ 872 (b) The discriminant *D* of the given equation is given by $D = (2m - 1)^2 - 4m(m - 2) = 4m + 1$ If the given equation has rational roots, then the discriminant should be a perfect square of a rational number, say a i.e., $4m + 1 = a^2$ $\Rightarrow a^2$ is an integer [: 4m + 1 is an integer] \Rightarrow *a* is an integer Now, $4m + 1 = a^2$ $\Rightarrow 4m = (a^2 - 1)$ $\Rightarrow 4m = (a-1)(a+1)$

 \Rightarrow (a-1)(a+1) is an even integer of the form 4m $\Rightarrow a - 1$ and a + 1 are even integers [:: 4*m* is an even integer] \Rightarrow *a* is an odd integer Let a = 2n + 1, where $n \in Z$. Then, $a^2 = 4m + 1$ $\Rightarrow (2n+1)^2 = 4m+1 \Rightarrow m = n(n+1)$, where $n \in Z$ 873 (d) Let $z_1 = 1 - i$, $z_2 = i$ and $z_3 = 1 + i$ $\therefore |z_1| = \sqrt{1^2 + 1^2} = \sqrt{2}$ $|z_2| = \sqrt{1^2} = 1$ And $|z_3| = \sqrt{1^2 + 1^2} = \sqrt{2}$ Hence, given complex numbers form an isosceles triangle. 874 (c) Let *ABC* be the triangle such that the affixes of its vertices A, B, C are 1, $\frac{1+i}{\sqrt{2}}$ and *i* respectively. Then, $AB = \left|\frac{1+i}{\sqrt{2}} - 1\right| = \left|\frac{1-\sqrt{2}}{\sqrt{2}} + \frac{1}{\sqrt{2}}i\right| = \sqrt{2-\sqrt{2}}$ $BC = \left| i - \frac{1+i}{\sqrt{2}} \right| = \left| \frac{-1}{\sqrt{2}} + i \left(1 - \frac{1}{\sqrt{2}} \right) \right| = \sqrt{2 - \sqrt{2}}$ and, $CA = |1 - i| = \sqrt{2}$ Clearly AB = BC. So, the triangle is isosceles 875 (c) Let $x = |a + b\omega + c\omega^2|$ $\Rightarrow x^2 = (a^2 + b^2 + c^2 - ab - bc - ca)$ $\Rightarrow x^{2} = \frac{1}{2} \{ (a-b)^{2} + (b-c)^{2} + (c-a)^{2} \}$...(i) Since *a*, *b*, *c* are all integers but not all simultaneously equal \Rightarrow If a = b, then $a \neq c$ and $b \neq c$ As, difference of integers=integer $\Rightarrow (b-c)^2 \ge 1$ [as minimum difference of two consecutive integers is (± 1)] Also, $(c-a)^2 \ge 1$ ∴ From Eq. (i), $x^{2} = \frac{1}{2} [(a-b)^{2} + (b-c)^{2} + (c-a)^{2}]$ $\geq \frac{1}{2}[0+1+1]$ $\Rightarrow x^2 \ge 1$ Hence, minimum value of x is 1 876 (d)

We have, $\omega^1 \cdot \omega^2 \cdot \omega^3 \cdot \dots \cdot \omega^n$

 $=\omega^{1+2+3+\dots+n}=\omega^{\frac{n(n+1)}{2}}=S_n$ (say)

On putting $n = 1, 2, 3, \dots, n$, we get $S_1 = \omega^1 = \omega, S_2 = \omega^3 = 1,$ $S_3 = \omega^6 = 1, \dots, S_7 = \omega^{28} = \omega$ \therefore We always get 1 and ω 877 (a) The two equations can be written as $x^{2}(6k+2) + rx + (3k-1) = 0$... (i) and, $x^2(12k + 4) + px + (6k - 2) = 0$... (ii) Equation (ii) can be written as $x^{2}(6k+2) + \frac{p}{2}x + (3k-1) = 0$... (iii) Comparing (i) and (iii), we get $r = \frac{p}{2} \Rightarrow 2r - p = 0$ 878 (b) Given, $\frac{3}{2 + \cos \theta + i \sin \theta} = a + ib$ $\Rightarrow \frac{3[(2+\cos\theta)-i\sin\theta]}{(2+\cos\theta)^2+\sin^2\theta} = a+ib$ $\Rightarrow \frac{3[2 + \cos \theta - i \sin \theta]}{5 + 4 \cos \theta} = a + ib$ $\Rightarrow a = \frac{3(2 + \cos \theta)}{5 + 4 \cos \theta}, \qquad b = -\frac{3 \sin \theta}{5 + 4 \cos \theta}$ $\therefore (a-2)^2 + b$ $=\left(\frac{6+3\cos\theta}{5+4\cos\theta}-2\right)^2$ $+\frac{9\sin^2\theta}{(5+4\cos\theta)^2}$ $=\frac{(-4-5\cos\theta)^2+9\sin^2\theta}{(5+4\cos\theta)^2}$ $=\frac{16+25\cos^2\theta+40\cos\theta+9\sin^2\theta}{2}$ $(5 + 4 \cos \theta)^2$ $=\frac{16+16\cos^2\theta+40\cos\theta+9}{2}$ $(5+4\cos\theta)^2$ $=\frac{(5+4\cos\theta)^2}{(5+4\cos\theta)^2}=1$ 880 (a) Let z = x + iy $\Rightarrow \bar{z} = x - iy$ and $(\bar{z}^{-1}) = \frac{1}{x-iy} = \frac{x+iy}{x^2+y^2}$ $\therefore \ (\bar{z}^{-1})\bar{z} = \frac{x + iy}{x^2 + y^2} \times (x - iy) = 1$ 881 (b) We know that, is $|z_1 + z_2| = |z_1| + |z_2|$, then $\arg(z_1) = \arg(z_2)$ $|z^2 + (-1)| = |z^2| + |-1|$ $\Rightarrow \arg(z^2) = \arg(-1)$ $\Rightarrow 2 \arg(z) = \pi$ [: $\arg(-1) = \pi$] $\Rightarrow \arg(z) = \frac{\pi}{2}$ \Rightarrow z lies on y-axis (imaginary axis). 882 (d)

The given equation is $x^2 - 2ax + a^2 - 1 = 0$ $\Rightarrow (x-a)^2 - 1^2 = 0 \Rightarrow x - a = \pm 1 \Rightarrow x$ = a + 1, a - 1It is given that roots lie between 5 and 10 $\therefore 5 < a - 1 < 10$ and 5 < a + 1 < 10 $\Rightarrow 6 < a < 11$ and $4 < a < 9 \Rightarrow 6 < a < 9$ 883 (a) Let $e^{\cos x} = y$ Then, $y - \frac{1}{y} = 4 \implies y^2 - 4y - 1 = 0$ $\Rightarrow y = \frac{-(-4) \pm \sqrt{16 - 4 \times (-1)}}{2} \Rightarrow y = \frac{4 \pm 2\sqrt{5}}{2}$ $\Rightarrow y = 2 + \sqrt{5} = e^{\cos x}$ [: exponential is always positive] $\Rightarrow \cos x = \log(2 + \sqrt{5})$ 884 **(b)** Given, $z = -\bar{z}$ \Rightarrow $x + iy = -\overline{(x + iy)}$ [Put z = x + iy] \Rightarrow x + iy = -(x - iy) $\Rightarrow x = 0$ Hence, z is a purely imaginary. 886 (a) We have, $\omega = \frac{-1 + i\sqrt{3}}{2}$ and $\omega^2 = \frac{-1 - i\sqrt{3}}{2}$ $\Rightarrow \frac{\omega^2}{\omega} = \frac{1 + i\sqrt{3}}{1 - i\sqrt{3}} \text{ and } \frac{\omega}{\omega^2} = \frac{1 - i\sqrt{3}}{1 + i\sqrt{3}}$ $\therefore \left(\frac{1+i\sqrt{3}}{1-i\sqrt{3}}\right)^6 + \left(\frac{1-i\sqrt{3}}{1+i\sqrt{3}}\right)^6 = \left(\frac{\omega^2}{\omega}\right)^6 + \left(\frac{\omega}{\omega^2}\right)^6$ $= \omega^6 + \frac{1}{\omega^6} = 2$ 887 (d) It is given that α , β , γ are the roots of the equation $x^3 + qx + r = 0$ $\therefore \alpha + \beta + \gamma = 0 \Rightarrow \alpha + \beta = -\gamma, \beta + \gamma$ $= -\alpha, \gamma + \alpha = -\beta$ Hence. $\sum \frac{\alpha}{\beta + \gamma} = \frac{\beta}{\gamma + \alpha} + \frac{\gamma}{\alpha + \beta} = -\frac{\alpha}{\alpha} - \frac{\beta}{\beta} - \frac{\gamma}{\gamma} = -3$ 888 (c) Here, $\alpha + \alpha^2 = -1$...(i) And $\alpha^3 = 1$...(ii) Now. $\alpha^{31} + \alpha^{62} = \alpha^{31}(1 + \alpha^{31})$ $\Rightarrow \alpha^{31} + \alpha^{62} = \alpha^{30} \alpha (1 + \alpha^{30}.\alpha)$ $\Rightarrow \alpha^{31} + \alpha^{62} = (\alpha^3)^{10} \cdot \alpha \{1 + (\alpha^3)^{10} \cdot \alpha \}$ $\Rightarrow \alpha^{31} + \alpha^{62} = \alpha(1 + \alpha)$ [from Eq. (ii)] $\Rightarrow \alpha^{31} + \alpha^{62} = -1$ [from Eq. (i)] And α^{31} . $\alpha^{62} = \alpha^{93}$ $= (\alpha^3)^{31} = 1$

∴ Required equation is $x^{2} - (\alpha^{31} + \alpha^{62})x + \alpha^{31} \cdot \alpha^{62} = 0$ $\Rightarrow x^2 + x + 1 = 0$ 889 (a) If $\arg(z) = -\pi + \theta$ $\arg(\bar{z}) = \pi - \theta$ \Rightarrow $\arg(-\bar{z}) = -\theta$ $\arg(\bar{z}) - \arg(-\bar{z}) = \pi - \theta - (-\theta) = \pi - \theta + \theta$ $=\pi$ 890 (c) Given, $\frac{AB}{BC} = \sqrt{2}$ Consider the rotation about 'B', we get $\frac{z_1 - z_2}{z_3 - z_2} = \frac{|z_1 - z_2|}{|z_3 - z_2|} e^{i\pi/4}$ $=\frac{AB}{BC}e^{i\pi/4}$ $= \sqrt{2} \left(\frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}} \right) = 1 + i$ $\Rightarrow z_1 - z_2 = (1 + i)(z_3 - z_2)$ $\Rightarrow z_1 - (1+i)z_3 = z_2(1-1-i)$ $\Rightarrow iz_2 = -z_1 + (1+i)z_3$ $\Rightarrow z_2 = iz_1 - i(1+i)z_3$ $= z_3 + i(z_1 - z_3)$ 891 **(c)** We have, $z^2 = \bar{z}$ On multiplying by z both sides (if $z \neq 0$), $z^3 = 1$ has three solutions and z = 0 is also a solution So, total number of solution is 4 892 (d) Let z = x + iy. Then, $z^2 = x^2 - y^2 + 2ixy$ \therefore Im $(z^2) = k \Rightarrow 2xy = k \Rightarrow xy = \frac{k}{2}$, which is a hyperbola 893 (c) Let z = x + iy, then $\overline{z} = x - iy$ \therefore $z + \overline{z} = 2x$ and $z - \overline{z} = 2iy$ Given, $(3+i)(z+\bar{z}) - (2+i)(z-\bar{z}) + 14i = 0$ \Rightarrow (3 + i)2x - (2 + i)2iy + 14i = 0 $\Rightarrow 6x + 2ix - 4yi + 2y + 14i = 0 + oi$ On comparing real and imaginary part, we get 6x + 2y = 0And 2x - 4y + 14 = 0On solving, we get x = -1, y = 3 $\therefore \quad z\bar{z} = |z|^2 = \left(\sqrt{(-1)^2 + (3)^2}\right)^2 = 10$ 894 (d) Given that, $\alpha + \beta = -2$ and $\alpha^3 + \beta^3 = -56$ $\Rightarrow (\alpha + \beta)(\alpha^2 + \beta^2 - \alpha\beta) = -56$ $\Rightarrow \alpha^2 + \beta^2 - \alpha\beta = 28$ Also, $(\alpha + \beta)^2 = (-2)^2$

 $\Rightarrow \alpha^2 + \beta^2 + 2\alpha\beta = 4$ $\Rightarrow 28 + 3\alpha\beta = 4$ $\Rightarrow \alpha\beta = -8$: Required equation is $x^2 + 2x - 8 = 0$ 895 (c) We have, $|x - 1| \le 3$ and $|x - 1| \ge 1$ $\Rightarrow 1 - 3 \le x \le 1 + 3$ and $x \le 1 - 1$ or $x \ge 1 + 1$ $\Rightarrow -2 \le x \le 4$ and $(x \le 0 \text{ or, } x \ge 2)$ $\Rightarrow x \in [-2, 0] \cup [2, 4]$ 896 (c) We have, $\left|\frac{z_1 - z_2}{z_1 + z_2}\right| = 1$ $\Rightarrow \frac{z_1 - z_2}{z_1 + z_2} = \cos \alpha + is \sin \alpha$ $\Rightarrow \frac{2 z_1}{-2 z_2}$ $= \frac{\cos \alpha + i \sin \alpha + 1}{\cos \alpha - 1 + i \sin \alpha} \begin{bmatrix} \text{Applying componendo} \\ \text{and dividendo} \end{bmatrix}$ $\Rightarrow \frac{z_1}{z_2} = i \cot \frac{\alpha}{2}$ $\Rightarrow i z_1 = -\cot\frac{\alpha}{2}z_2$ $\Rightarrow k = -\cot\frac{\alpha}{2} \qquad [:: i \, z_1 = k \, z_2]$ $\Rightarrow \tan \alpha = \frac{2k}{k^2 - 1} \qquad \left[\because \tan \alpha = \frac{2\tan \alpha/2}{1 - \tan^2 \alpha/2} \right]$ $\Rightarrow \tan \alpha = \frac{-2k}{1-k^2} \Rightarrow \alpha$ $= \tan^{-1}\left(\frac{-2k}{1-k^2}\right) = -2\tan^{-1}k$ $\Rightarrow \alpha = -2 \tan^{-1} k$ is the angle between $z_1 - z_2$ and $z_1 + z_2$ 897 (a) Let $f(x) = ax^2 + bx + c$ If the roots of f(x) = 0 are imaginary, then we cannot say anything about b (i.e. it can be positive, negative or zero). So, options (b),(c) and (d) are not necessarily true Further, if a > 0, then the graph of y = f(x) is above *x*-axis and hence f(x) > 0 for all $x \in R \Rightarrow f(0) > 0 \Rightarrow c > 0$ $\therefore ac > 0$ Similarly, if a < 0, then the graph of y = f(x) is below *x*-axis and hence f(x) < 0 for all $x \in R \Rightarrow f(0) < 0 \Rightarrow c < 0$ $\therefore ac > 0$ 898 (a) Since, α and β are the roots of the equation $x^2 + px + q = 0$, therefore $\alpha + \beta = -p$ and $\alpha\beta = q$

Now,
$$(\omega \alpha + \omega^2 \beta)(\omega^2 \alpha + \omega \beta)$$

 $= \alpha^2 + \beta^2 + (\omega^4 + \omega^2)\alpha\beta \quad (\because \omega^3 = 1)$
 $= \alpha^2 + \beta^2 - \alpha\beta \quad (\because \omega + \omega^2 = -1)$
 $= (\alpha + \beta)^2 - 3\alpha\beta$
 $= p^2 - 3q$
Also, $\frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha} = \frac{\alpha^3 + \beta^3}{\alpha\beta}$
 $= \frac{(\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta)}{\alpha\beta}$
 $= \frac{p(3q - p^2)}{q}$
 \therefore The given expression $= \frac{(p^2 - 3q)}{\alpha\beta} = -\frac{q}{\alpha\beta}$

899 (a)

We have,

$$z_2 = \bar{z}_1 \text{ and } z_4 = \bar{z}_3,$$

 $\therefore z_1 z_2 = |z_1|^2 \text{ and } z_3 z_4 = |z_3|^2$
Now, $\arg\left(\frac{z_1}{z_4}\right) + \arg\left(\frac{z_2}{z_3}\right)$
 $= \arg\left(\frac{z_1 z_2}{z_4 z_3}\right) = \arg\left(\frac{|z_1|^2}{|z_3|^2}\right) = \arg\left(\left|\frac{z_1}{z_3}\right|^2\right) = 0$
900 (a)

Given,
$$x = \frac{1}{2} \left(\sqrt{3} + \frac{1}{\sqrt{3}} \right)$$

 $\therefore x^2 = \frac{1}{4} \left(3 + \frac{1}{3} + 2 \right) = \frac{4}{3}$
Now, $\frac{\sqrt{x^2 - 1}}{x - \sqrt{x^2 - 1}} \times \frac{x + \sqrt{x^2 - 1}}{x + \sqrt{x^2 - 1}}$
 $= \frac{x\sqrt{x^2 - 1} + (x^2 - 1)}{1}$
 $= \frac{1}{2} \left(\sqrt{3} + \frac{1}{\sqrt{3}} \right) \sqrt{\frac{4}{3} - 1} + \left(\frac{4}{3} - 1 \right)$
 $= \frac{1}{2} \left(\frac{4}{\sqrt{3}} \right) \frac{1}{\sqrt{3}} + \frac{1}{3} = \frac{2}{3} + \frac{1}{3} = 1$

901 **(b)**

 $|PQ| = \sqrt{(4-1)^2 + (1-6)^2} = \sqrt{9+25} = \sqrt{34}$ $|QR| = \sqrt{(1+4)^2 + (6-3)^2} = \sqrt{25+9} = \sqrt{34}$ $|RS| = \sqrt{(-4+1)^2 + (3+2)^2} = \sqrt{9+25} = \sqrt{34}$ $|SP| = \sqrt{(-1-4)^2 + (-2-1)^2} = \sqrt{25+9}$ $= \sqrt{34}$ $\Rightarrow |PQ| = |QR| = |RS| = |SP|$ Now, $|PR| = \sqrt{(-8)^2 + (2)^2} = \sqrt{68}$ And, $|QS| = \sqrt{(-2)^2 + (-8)^2} = \sqrt{68}$ Hence, it is a square.

902 (c)

The given expression is meaningful for $x \neq -1$ Let $y = \frac{x^2 - 6x + 5}{x^2 + 2x + 1}$. Then, $x^2(y-1) + 2(y+3)x + y - 5 = 0$

$$\Rightarrow 4(y+3)^2 - 4(y-1)(y-5) \ge 0 \quad [\because x \in R$$

$$\therefore \text{Disc} \ge 0]$$

$$\Rightarrow (y^2 + 6y + 9) - (y^2 - 6y + 5) \ge 0 \Rightarrow y$$

$$\ge -1/3$$

Hence, the given expression last value of the is $-\frac{1}{3}$

903 **(d)**

Given that $x^2 - 3x + 2$ be a factor of $x^4 - px^2 + q = 0$...(i) $\Rightarrow (x^2 - 3x + 2) = 0$ $\Rightarrow (x - 2)(x - 1) = 0$ $\Rightarrow x = 2, 1$ On putting these values in Eq. (i), we get 4p - q - 16 = 0 ...(ii) and p - q - 1 = 0 ...(iii) On solving Eqs.(ii) and (iii), we get p = 5 and q = 4 $\Rightarrow (p, q) = (5, 4)$

904 **(a)**

n

The RHS of the given equation is greater than or equal to 2 as it is the sum of a positive number and its reciprocal while the LHS is less than or equal to 2. Therefore, the equation holds true only when each side is equal to 2. LHS is equal to 2 when $x = \log \pi/2$ while RHS is

equal to 2 when x = 0

Thus, the given equation has no solution

Let
$$y = \frac{x^2 - 3x + 4}{x^2 + 3x + 4}$$

 $\Rightarrow (y - 1)x^2 + 3(y + 1)x + 4(y - 1) = 0$
 $\therefore x \text{ is real.}$
 $\therefore D \ge 0$
 $\Rightarrow 9(y + 1)^2 - 16(y - 1)^2 \ge 0$
 $\Rightarrow -7y^2 + 50y - 7 \ge 0$
 $\Rightarrow -7y^2 - 50y + 7 \le 0$
 $\Rightarrow (y - 7)(7y - 1) \le 0$...(i)
 $\Rightarrow y \le 7$ and $y \ge \frac{1}{7} \Rightarrow \frac{1}{7} \le y \le 7$
Hence, maximum value is 7 and minimum value is $\frac{1}{7}$.
907 (d)
Using $i^3 = -i^5$ and $i^7 = -i$, we can write the given expression as
 $(1 + i)^{n_1} + (1 - i)^{n_1} + (1 + i)^{n_2} + (1 - i)^{n_2}$
 $= 2 [^{n_1}C_0 + ^{n_1}C_2i^2 + ^{n_1}C_4i^4 + ...]$
 $+ 2 [^{n_2}C_0 + ^{n_2}C_2i^2 + ^{n_2}C_4i^4 + ...]$
 $= 2 [^{n_1}C_0 - ^{n_1}C_2 + ^{n_1}C_4 - ...]$

+ 2 $[n_2C_0-n_2C_2+n_2C_4-...]$ This is real number, if the values of n_1 and n_2 is greater than zero 908 (d) We have, $a = \cos\frac{2\pi}{7} + i\sin\frac{2\pi}{7}$ $\Rightarrow a^7 = \left(\cos\frac{2\pi}{7} + i\sin\frac{2\pi}{7}\right)^7$ $= \cos 2\pi + i \sin 2\pi = 1 + 0 i = 1$ Now, $\alpha + \beta = a + a^2 + a^3 + a^4 + a^5 + a^6$ $\Rightarrow \alpha + \beta = a \left\{ \frac{1 - a^6}{1 - a} \right\} = \frac{a - a'}{1 - a} = \frac{a - 1}{1 - a} = -1 \quad [$ 913 **(c)** $:: a^7 = 1$ and, $\alpha \beta = (a + a^2 + a^4)(a^3 + a^5 + a^6)$ $\Rightarrow \alpha \beta = a^4 (1 + a + a^3) (1 + a^2 + a^3)$ $\Rightarrow \alpha \beta = a^4 (1 + a^2 + a^3 + a + a^3 + a^4 + a^3 + a^5)$ $\Rightarrow \alpha \beta = a^4 (1 + a + a^2 + 3 a^3 + a^4 + a^5 + a^6)$ $\Rightarrow \alpha \beta = \alpha^4 + a^5 + a^6 + 3 a^7 + a^8 + a^9 + a^{10}$ $\Rightarrow \alpha \beta = 3 + a + a^2 + a^3 + a^4 + a^5$ $+ a^{6} \begin{bmatrix} \because a^{7} = 1 & \because a^{8} = a^{7} a = a, \\ a^{9} = a^{7} a^{2} = a^{2} \text{ and} \\ a^{10} = a^{7} a^{3} = a^{3} \end{bmatrix}$ $\Rightarrow \alpha \beta = 3 + a \left(\frac{1-a^6}{1-a}\right) = 3 + \frac{a-a^7}{1-a}$ $=3+\frac{a-1}{1-a}$ [: $a^7=1$] $\Rightarrow \alpha \beta = 3 - 1 = 2$ So, the required equation is $x^2 - (\alpha + \beta)x + \alpha\beta = 0 \Rightarrow x^2 + x + 2 = 0$ 914 (b) 909 (c) Here, $D \ge 0$ $\Rightarrow \cos^2 p - 4(\cos p - 1)\sin p \ge 0$ $\Rightarrow \cos^2 p - 4\cos p\sin p + 4\sin p \ge 0$ $\Rightarrow (\cos p - 2\sin p)^2 + 4\sin p(1 - \sin p) \ge 0$ 915 (b) ...(i) Since, $(1 - \sin p) \ge 0$ for all real *p* and $\sin p > 0$ for 0 $\therefore 4 \sin p(1 - \sin p) \ge 0$ when 0910 (d) We have. $5x - 1 < (x + 1)^2 < 7x - 3$ $\Rightarrow 5x - 1 < x^2 + 2x + 1$ and $x^2 + 2x + 1 < 7x - 1$ 916 (d) 3 $\Rightarrow x^2 - 3x + 2 > 0$ and $x^2 - 5x + 4 < 0$ $\Rightarrow (x-2)(x-1) > 0$ and (x-4)(x-1) < 0 $\Rightarrow x \in (2, 4) \Rightarrow x = 3$ [$\because x$ is an integer] 911 **(b)** Let the roots be α and $1/\alpha$. Then, Product of roots $=\frac{k}{5} \Rightarrow \alpha \left(\frac{1}{\alpha}\right) = \frac{k}{5} \Rightarrow k = 5$ 917 (b) 912 (a)

We have, Sum of the coefficients = 0Therefore, x = 1 is a rational root of the given equation. Let the other rational robe α . Then, Product of the roots $= \frac{2a-1}{a+2}$ $\Rightarrow \alpha \times 1 = \frac{2a-1}{a+2} \Rightarrow \alpha = \frac{2a-1}{a+2}$ Clearly, α is rational for all rational values of *a* except - 2Let $f(x) = (k-2)x^2 + 8x + k + 4$ If f(x) = 0 has both negative roots, then we must have (i) Discriminant > 0(ii) Vertex of y = f(x) is on left side of y-axis (iii) (k-2)f(0) > 0Now, (i) Discriminant > 0 $\Rightarrow 64 - 4(k-2)(k+4) > 0$ $\Rightarrow k^2 + 2k - 24 < 0 \Rightarrow -6 < k < 4$...(i) (ii) Vertex is on left side of y-axis $\Rightarrow -\frac{8}{2(k-2)} < 0 \Rightarrow k-2 > 0 \Rightarrow k > 2$...(ii) (iii) (k-2)f(0) > 0 $\Rightarrow (k-2)(k+4) > 0 \Rightarrow k < -4 \text{ or } k > 2 \dots$ (iii) From (i),(ii) and (iii), we obtain $k \in (2, 4)$ Hence, k = 3We have, $ax^2 + c = bx$ $\Rightarrow (ax^2 + c)^2 = b^2x^2 \Rightarrow (ay + c)^2 = b^2y$, where $v = x^2$ Thus, $(ay + c)^2 = b^2 y$ has its root as α^2, β^2 Given that $3^{2x^2-7x+7} = 3^2 \Rightarrow 2x^2 - 7x + 7 = 2$ $\Rightarrow 2x^2 + 7x + 5 = 0$ Now, $D = b^2 - 4ac$ $= (-7)^2 - 4 \times 2 \times 5$ = 49 - 40 = 9 > 0Hence, it has two real roots. Let α and 3α be the roots of the given equation, then $\therefore \alpha + 3\alpha = 4\alpha = -b$ And α . $3\alpha = 3\alpha^2 = 3$ $\Rightarrow \alpha = \pm 1$ $\therefore b = \pm 4$

$$\sqrt{2 + \sqrt{5} - \sqrt{6 - 3\sqrt{5} + \sqrt{14 - 6\sqrt{5}}}}$$

$$= \sqrt{2 + \sqrt{5} - \sqrt{6 - 3\sqrt{5} + \sqrt{(9 + 5 - 6\sqrt{5})}}}$$

$$= \sqrt{2 + \sqrt{5} - \sqrt{6 - 3\sqrt{5} + \sqrt{(3 - \sqrt{5})^2}}}$$

$$= \sqrt{2 + \sqrt{5} - \sqrt{9 - 4\sqrt{5}}}$$

$$= \sqrt{2 + \sqrt{5} - \sqrt{(-2 + \sqrt{5})^2}}$$

$$= \sqrt{2 + \sqrt{5} + 2 - \sqrt{5}} = 2$$
918 (b)
Let $x = \cos A + i \sin A, y = \cos B + i \sin B, z = \cos C + \sin C$. Then,
 $x + y + z = (\cos A + \cos B + \cos C) + i(\sin A + \sin B + \sin C)$
 $\Rightarrow x + y + z = 0 + i 0 = 0$
 $\Rightarrow x^3 + y^3 + z^3 = 3 xyz$
 $\Rightarrow (\cos 3 A + i \sin 3 A) + (\cos 3 B + i \sin 3 B) + (\cos 3 C + i \sin 3 C) = 3[\cos(A + B + C) + i \sin(A + B + C)]$
 $\Rightarrow \cos 3 A + \cos 3 B + \cos 3 C = 3 \cos(A + B + C)$
It is given that $A + B + C = 180^\circ$
 $\therefore \cos 3 A + \cos 3 B + \cos 3 C = 3 \cos 180^\circ = -3$
919 (b)
We have,
 $|\overline{BD}| = |(4 + 2i) - (1 - 2i)| = \sqrt{9 + 16} = 5$
Let the affix of A be $z = x + iy$. The affix of the mid point of BD is (5/2,0).
Since the diagonals of a parallelogram bisect each other. Therefore, the affix of the point of intersection of the diagonals is (5/2,0)

We have, $\overrightarrow{EA} = 2 \overrightarrow{EB} e^{i \pi/2}$ $\Rightarrow \overrightarrow{EA} = 2 \overrightarrow{EB}(-i)$

$$\Rightarrow z - (5/2 + 0i) = 2\left(-\frac{3}{2} - 2i\right)(-i) = -\frac{3}{2} + 3i$$
920 (a)
$$-x^{2} + ax + a = 0$$

$$\Rightarrow x^{2} - ax - a = 0$$
Let $f(x) = x^{2} - ax - a$

$$f(1) < 0$$

$$\Rightarrow 1 - a - a < 0$$

$$\Rightarrow 1 < 2a$$

$$\Rightarrow a > \frac{1}{2}$$
921 (c)
Let a and β are the roots of the given equation
Then, $\alpha + \beta = -\frac{b}{a}$ and $\alpha\beta = \frac{c}{a}$
Also given, $\alpha + \beta = \frac{1}{a^{2}} + \frac{1}{\beta^{2}}$

$$= \frac{(\alpha + \beta)^{2} - 2\alpha\beta}{a^{2}\beta^{2}}$$

$$\Rightarrow \left(-\frac{b}{a}\right) = \left(\frac{-b/a}{c/a}\right)^{2} - \frac{2}{c/a}$$

$$\Rightarrow -\frac{b}{a} = \left(\frac{b}{c}\right)^{2} - \frac{2a}{c}$$

$$\Rightarrow \frac{2a}{c} = \frac{b}{c}\left(\frac{b}{c} + \frac{c}{a}\right)$$

$$\Rightarrow \frac{2a}{b} = \frac{b}{c} + \frac{c}{a}$$

$$\Rightarrow \frac{c}{a}, \frac{b}{a}, \frac{c}{b}$$
 are in AP
$$\Rightarrow \frac{a}{c'}, \frac{b}{a}, \frac{c}{b}$$
 are in AP
$$\Rightarrow \frac{a}{c'}, \frac{b}{a}, \frac{c}{c}$$
 are ease.
$$\therefore \{2(bc + ad)\}^{2} = 4(a^{2} + b^{2})(c^{2} + d^{2})$$

$$\Rightarrow 4b^{2}c^{2} + 4a^{2}d^{2} + 8abcd$$

$$= 4a^{2}c^{2} + 4a^{2}d^{2} + 4b^{2}c^{2}$$

$$\Rightarrow 4a^{2}d^{2} + 4b^{2}c^{2} - 8abcd = 0$$

$$\Rightarrow 4(ad - bc)^{2} = 0$$

$$\Rightarrow ad = bc$$

$$\Rightarrow \frac{a}{b} = \frac{c}{d}$$
923 (b)
(1 - \omega + \omega^{2})^{5} + (1 + \omega - \omega^{2})^{5}
$$= -32\omega^{3}\omega^{2} - 32(\omega^{3})^{3}\omega$$

$$= -32(\omega^{2} + \omega) = 32$$
924 (b)
Clearly, $|z + 1| = |z - 1|$
Represents the perpendicular bisector of the

segment joining A(-1,0) and B(1,0) i.e. *y*-axis arg $\left(\frac{z-1}{z+1}\right) = \frac{\pi}{4}$ represents the segment of the circle passing through *A* and *B* and lying above *x*-axis such that angle in the segment is $\pi/4$ It is evident from the figure that point *Q* satisfies both the conditions

Let the affix of Q be $z = iy, y \in R$. Then, $\arg\left(\frac{z-1}{z+1}\right) = \frac{\pi}{4}$ $\Rightarrow \arg\left(\frac{iy-1}{iy+1}\right) = \frac{\pi}{4}$ $\Rightarrow \arg\left(\frac{y+i}{y-i}\right) = \frac{\pi}{4}$ $\Rightarrow \arg\left(\frac{y^2-1}{y^2+1} + \frac{2iy}{y^2+1}\right) = \frac{\pi}{4}$ $\Rightarrow \tan^{-1}\left(\frac{2y}{y^2-1}\right) = \frac{\pi}{4}$ $\Rightarrow \tan^{-1}\left(\frac{2y}{y^2-1}\right) = 1$ $\Rightarrow y - 2y - 1 = 0 \Rightarrow y = \sqrt{2} + 1$ [$\therefore y > 0$] Hence, $z = (\sqrt{2} + 1) i$

925 (c)

It is given that α , β are the roots of the equation $x^2 - ax + b = 0$ $\therefore \alpha + \beta = a$ and $\alpha \beta = b$ $\Rightarrow \alpha^2 + \beta^2 = a^2 - 2b$ $\Rightarrow \alpha^2 + \beta^2 = a(\alpha + \beta) - 2b$ $\Rightarrow A_2$ $= a A_1$ $-A_0 b \qquad \begin{bmatrix} \because A_n = \alpha^n + \beta^n \therefore A_2 = \alpha^2 + \beta^2 \\ A_1 = \alpha + \beta \text{ and } A_0 = 2 \end{bmatrix}$

Clearly, it is obtained from option (c) by replacing *n* by 2 Now.

$$a A_n - b A_{n-1} = (\alpha + \beta)(\alpha^n + \beta^n) - \alpha \beta(\alpha^{n-1} + \beta^{n-1})$$
$$\Rightarrow a A_n - b A_{n-1} = \alpha^{n+1} + \beta^{n+1} = A_{n+1}$$

 $\alpha\beta + \beta\gamma + \gamma\alpha = -q$

Let α , β , γ are the roots of the given equation. Then, $\alpha + \beta + \gamma = -p$

And $\alpha\beta\gamma = -r$ Now, $pq = (\alpha + \beta + \gamma)(\alpha\beta + \beta\gamma + \gamma\alpha)$ $= (0 + \gamma)[\alpha\beta + \gamma(\alpha + \beta)]$ (: $\alpha + \beta = 0$ is given) $= \alpha \beta \gamma$ = -r927 (b) $x^4 - 8x^2 - 9 = 0$ $\Rightarrow x^4 - 9x^2 + x^2 - 9 = 0$ $\Rightarrow x^2(x^2 - 9) + 1(x^2 - 9) = 0$ $\Rightarrow (x^2 + 1)(x^2 - 9) = 0$ $\Rightarrow x = +i.+3$ 928 (b) $\frac{1+a}{2} = \frac{1}{2} \left(1 + \cos \frac{4\pi}{3} + i \sin \frac{4\pi}{3} \right)$ $=\frac{1}{2}2\cos\frac{2\pi}{3}\left(\cos\frac{2\pi}{3}+i\sin\frac{2\pi}{3}\right)$ $=-\frac{1}{2}\left(\cos\frac{2\pi}{3}+i\sin\frac{2\pi}{3}\right)$ $\therefore \left(\frac{1+a}{2}\right)^{3n} = \left(\frac{-1}{2}\right)^{3n} \left(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}\right)^{3n}$ $=\frac{(-1)^n}{2^{3n}}$ 929 (b) Now, $a^2 - 3a + 2 = 0$ $\Rightarrow a = 1, 2 \dots (i)$ and $a^2 - 5a + 6 = 0$ $\Rightarrow a = 2.3 \dots$ (ii) $\Rightarrow a - 2 - r = 0$ At a = 2 [common value from Eqs. (i) and (ii)] r = 0So, a + r = 2930 (c) Given, $\left(a + \frac{b}{10}\right)^x = \left(\frac{a}{10} + \frac{b}{100}\right)^y = 1000$ Let a = 0And b = 1 $\therefore \quad \left(\frac{1}{10}\right)^x = \left(\frac{1}{100}\right)^y = 1000$ $\Rightarrow \quad 10^{-x} = 10^{-2y} = 10^3$ $\Rightarrow x = -3, y = -\frac{3}{2}$ Now, $\frac{1}{r} - \frac{1}{v} = -\frac{1}{3} + \frac{2}{3} = \frac{1}{3}$ 931 (c) We have, $z_1 - z_4 = z_2 - z_3$ $\Rightarrow z_1 + z_3 = z_2 + z_4$ $\Rightarrow \frac{z_1 + z_3}{2} = \frac{z_2 + z_4}{2}$ \Rightarrow Affix of the mid point of AC is same as that of BD \Rightarrow AC and BD bisect each other

Also,
$$\arg\left(\frac{z_4 - z_1}{z_2 - z_1}\right) = \pm \frac{\pi}{2}$$

 $\Rightarrow \angle BAD = \frac{\pi}{2}$
Thus, $ABCD$ is a rectangle and hence a cyclic quadrilateral also
932 (a)
We have,
 $x^2 + 2 \le 3x \le 2x^2 - 5$
 $\Rightarrow x^2 - 3x + 2 \le 0$ and $2x^2 - 3x - 5 \ge 0$
 $\Rightarrow (x - 1)(x - 2) \le 0$ and $(2x - 5)(x + 1) \ge 0$
 $\Rightarrow 1 \le x \le 2$ and $x \le -1$ or $x \ge \frac{5}{2}$
There is no value of x satisfying these conditions
933 (a)
Let $f(x) = -3 + x - x^2$
Now, $D = 1^2 - 4(3) = -11 < 0$
Here, coefficient of $x^2 < 0$
 $\therefore f(x) < 0$
Thus, LHS of the given equation is always positive whereas the RHS is always less than zero
Hence, the given equation has no solution
934 (c)
4.9^{x-1} = $3\sqrt{(2^{2x+1})}$
 $\Rightarrow 3^{2x-2-1} = 2^{\frac{2x+1}{2}}$
 $\Rightarrow 3^{2x-3} = 2^{\frac{2x-3}{2}}$
 $\Rightarrow 2^{\frac{2x-3}{2}} = (3^{\frac{2x-3}{2}})^2$
 $\Rightarrow 2x - 3 = 0$
 $\therefore x = \frac{3}{2}$
935 (c)
Given equation is $x^2 + (2 + \lambda)x - \frac{1}{2}(1 + \lambda) = 0$.
Let α and β are the roots of the given equation.
 $\Rightarrow \alpha + \beta = -(2 + \lambda)$ and $\alpha\beta = -(\frac{1+\lambda}{2})$
Now, $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$
 $\Rightarrow \alpha^2 + \beta^2 = [-(2 + \lambda)]^2 + 2\frac{(1+\lambda)}{2}$
 $\Rightarrow \alpha^2 + \beta^2 = [-(2 + \lambda)]^2 + 2\frac{(1+\lambda)}{2}$
 $\Rightarrow \alpha^2 + \beta^2 = [-(2 + \lambda)]^2 + 2\frac{(1+\lambda)}{2}$
 $\Rightarrow \alpha^2 + \beta^2 = 1-(2 + \lambda)$ and $\alpha\beta = -(\frac{1+\lambda}{2})$
Now, we take the option simultaneously.
 \Rightarrow It is minimum for $\lambda = \frac{1}{2}$.
936 (a)
Since, $2 + i\sqrt{3}$ is a root of equation $x^2 + px + q = 0$. Therefore, $2 - i\sqrt{3}$ will be other root.

=

 $C(z_3)$

 $D(z_4)$

9

9

9

9

Now, Sum of the roots = $(2 + i\sqrt{3}) + (2 - i\sqrt{3})$) = -p $\Rightarrow 4 = -p$ Product of roots = $(2 + i\sqrt{3}) + (2 - i\sqrt{3}) = q$ $\Rightarrow 7 = q$ Hence, (p, q) = (-4, 7)937 (b) Given equation is $4^{x} - 3^{x - \frac{1}{2}} = 3^{x + \frac{1}{2}} - 2^{2x - 1}$ $\Rightarrow 2^{2x} + 2^{2x-1} = 3^{x+\frac{1}{2}} + 3^{x-\frac{1}{2}}$ $\Rightarrow 2^{2x} \left(1 + \frac{1}{2} \right) = 3^{x - \frac{1}{2}} (3 + 1)$ $\Rightarrow 2^{2x} \cdot \frac{3}{2} = 3^{x-\frac{1}{2}} \cdot 4$ $\Rightarrow 2^{2x-3} = 3^{x-\frac{3}{2}}$ Taking log on both sides, we get $(2x-3)\log 2 = \left(x - \frac{3}{2}\right)\log 3$ $\Rightarrow 2x \log 2 - 3 \log 2 = x \log 3 - \frac{3}{2} \log 3$ $\Rightarrow x \log 4 - x \log 3 = 3 \log 2 - \frac{3}{2} \log 3$ $\Rightarrow x \log\left(\frac{4}{3}\right) = \log 8 - \log 3\sqrt{3}$ $\Rightarrow \log\left(\frac{4}{3}\right)^x = \log\frac{8}{3\sqrt{3}}$ $\Rightarrow \left(\frac{4}{3}\right)^{2} = \frac{8}{3\sqrt{3}}$ $\Rightarrow \left(\frac{4}{3}\right)^{x} = \left(\frac{4}{3}\right)^{3/2}$ $\therefore x = \frac{3}{2}$ 938 (d) We have $x^{1/3} - 7x^{1/3} + 10 = 0$ $\Rightarrow x^{1/3} = 2, x^{1/3} = 5 \Rightarrow x^{1/3} = 2, x^{1/3} = 5 \Rightarrow x^{1/3} = 5 \Rightarrow$ = 8.125939 (b) Let $P = (1 + z_0)(1 + z_0^2)(1 + z_0^2 \dots (1 + z_0^{2^n}))$ Then, $(1 - z_0)P = (1 - z_0^{2^{n+1}})$ $\Rightarrow P = \frac{1 - z_0^{2^{n+1}}}{1 - z_0} = \frac{1 - (z_0^2)^{2^n}}{1 - z_0}$ 5 $\Rightarrow P = \frac{1 - \left(-\frac{i}{2}\right)^{2n}}{\frac{1+i}{2}} \quad \left[\because z_0 = \frac{1-i}{2} \because z_0^2 = -\frac{i}{2}\right]$ $\Rightarrow P = \frac{2}{1+i} \left\{ 1 - \frac{(-1)^{2^n} (i)^{2^n}}{2^{2n}} \right\}$

$$\Rightarrow P = \begin{cases} (1-i)\left(1-\frac{1}{2^{2^n}}\right), \text{ if } n > 1\\ (1-i)\left(1+\frac{1}{4}\right), \text{ if } n = 1 \end{cases}$$
$$\Rightarrow P = \begin{cases} (1-i)\left(1-\frac{1}{2^{2^n}}\right), \text{ if } n > 1\\ \frac{5}{4}(1-i), \text{ if } n = 1 \end{cases}$$

940 (d)

Since, ABC is a right angled isosceles triangle

$$BC = AC \text{ and } \angle C = \frac{\pi}{2}$$

By rotation about *C* in anti-clockwise sense $CB = CA e^{i\pi/2}$ $\Rightarrow (z_2 - z_3) = (z_1 - z_3)e^{i\pi/2}$ $= i (z_1 - z_3) \quad (\because e^{i\pi/2} = i)$ On squaring both sides, we get $(z_2 - z_3)^2 = -(z_1 - z_3)^2$ $\Rightarrow z_2^2 + z_3^2 - 2z_2z_3 = -z_1^2 - z_3^2 + 2z_1z_3$ $\Rightarrow z_1^2 + z_2^2 - 2z_1z_2$ $= 2z_1z_3 + 2z_2z_3 - 2z_3^2 - 2z_1z_2$ $\Rightarrow (z_1 - z_2)^2 = 2[(z_1z_3 - z_3^2) - (z_1z_2 - z_2z_3)]$ $\Rightarrow (z_1 - z_2)^2 = 2(z_1 - z_3)(z_3 - z_2)$

941 **(b)**

Given equation is $(a+1)x^2 - (a+2)x + (a+3) = 0$ Since, roots are equal in magnitude and opposite in sign : Coefficient of x is zero *ie*, a + 2 = 0 $\Rightarrow a = -2$...(i) \therefore Equation is $(-2+1)x^2 - (-2+2)x + (-2+3) = 0$ $\Rightarrow -x^2 + 1 = 0$ $\Rightarrow x = \pm 1$...(ii) Only option (b) *i.e.*, $\pm \frac{1}{2}a$ satisfies Eqs. (i) and (ii) 942 (d) Given, $\log_{27} \log_3 x = \frac{1}{3}$ $\Rightarrow (\log_3 x) = (27)^{1/3} = 3$ $\Rightarrow x = (3)^3$ $\Rightarrow x = 27$ 943 (d) $\therefore \arg(z-3i) = \arg(x+iy-3i) = \frac{3\pi}{4}$ $\Rightarrow x < 0, y - 3 > 0 \quad \left(:: \frac{3\pi}{4} \text{ is in II quadrant}\right)$

 $\frac{y-3}{x} = \tan\frac{3\pi}{4} = -1$ $\Rightarrow y = -x + 3 \dots (i)$ $\forall x < 0 \text{ and } y > 3$ and $\arg(2z + 1 - 2i) = \arg[(2x + 1) +$ $i2\nu - 2 = \pi 4$ $\Rightarrow 2x + 1 > 0, 2y - 2 > 0$ (: $\frac{\pi}{4}$ is in I quadrant) $\therefore \frac{2y-2}{2x+1} = \tan \frac{\pi}{4} = 1$ $\Rightarrow 2y - 2 = 2x + 1$ $\Rightarrow y = x + \frac{3}{2}, \forall x > \frac{-1}{2}, y > 1$...(ii) From Eqs.(i) and(ii) (0, 3)It is clear from the graph that there is no point of intersection 944 (a) We have. $x^2 + 2 < 3x < 2x^2 - 5$ $\Rightarrow x^2 + 2 < 3x$ and $3x < 2x^2 - 5$ $\Rightarrow x^2 - 3x + 2 \le 0$ and $2x^2 - 3x - 5 \ge 0$ $\Rightarrow (x-1)(x-2) \le 0$ and $(2x-5)(x+1) \ge 0$ $\Rightarrow 1 \le x \le 2$ and $x \in (-\infty, -1] \cup [5/2, \infty)$ But, there is no value of *x* satisfying these two conditions 945 (c) $ax^2 + 2bx + c = 0$ $\Rightarrow ax^2 + 2\sqrt{ac}x + c = 0$ $[\because b^2 = ac]$ $\Rightarrow \left(\sqrt{ax} + \sqrt{c}\right)^2 = 0 \Rightarrow x = \frac{-\sqrt{c}}{\sqrt{a}}, \frac{-\sqrt{c}}{\sqrt{a}}$ $\Rightarrow a\alpha = a\beta$ Now, $cx^2 + 2bx + a = 0$ $\Rightarrow cx^2 + 2\sqrt{ac}x + a = 0$ $\Rightarrow \left(\sqrt{c}x + \sqrt{a}\right)^2 = 0$ $\Rightarrow \quad x = \frac{-\sqrt{a}}{\sqrt{c}} = \frac{-\sqrt{a}}{\sqrt{c}} \Rightarrow c\gamma = c\delta$ $\therefore a\alpha = a\beta = c\gamma = c\delta$

946 (c) The function $f(x) = \log(x^2 - x - 2)$ is defined for $x^{2} - x - 2 > 0 \Rightarrow x < -1 \text{ or } x > 2$...(i) Now. $9x^2 - 18|x| + 5 = 0$ $\Rightarrow 9|x|^2 - 18|x| + 5 = 0$ $\Rightarrow (3|x|-1)(3|x|-5) = 0$ $\Rightarrow |x| = 1.5/3 \Rightarrow |x| = \pm 1.\pm 5/3$ Thus, roots of $x^2 - 18|x| + 5 = 0$ are $\pm 5/3, \pm 1/3.$ Clearly, a root of the above equation lying in the domain of the definition of $\log(x^2 - x - 2)$ is -5/3947 (d) Since, α and β are the roots of $\lambda x^2 + (1 - \lambda)x + 5 = 0$ $\therefore \ \alpha + \beta = \frac{\lambda - 1}{\lambda}, \ \alpha \beta = \frac{5}{\lambda}$ Since, $\frac{\alpha}{\beta} + \frac{\beta}{\alpha} =$ $\Rightarrow \frac{(\alpha + \beta)^2 - 2\alpha\beta}{\alpha\beta} = \frac{4}{5}$ $\Rightarrow \frac{(\lambda - 1)^2 - 10\lambda}{5\lambda} = \frac{4}{5}$ $\Rightarrow \lambda^2 - 16\lambda + 1 = 0$ Now, $\lambda_1 + \lambda_2 = 16$ and λ_1 . $\lambda_2 = 1$ $\therefore \frac{\lambda_1}{\lambda^2} + \frac{\lambda_2}{\lambda^2} = \frac{\lambda_1^3 + \lambda_2^3}{(\lambda_1 \lambda_2)^2}$ $=\frac{(\lambda_1+\lambda_2)^3-3\lambda_1\lambda_2(\lambda_1+\lambda_2)}{(1)^2}$ $= (16)^3 - 3 \times 1(16)^3$ = 4048948 (a) Given equation $\frac{\alpha}{x-\alpha} + \frac{\beta}{x-\beta} = 1$ can be rewritten as $x^2 - 2(\alpha + \beta)x + 3\alpha\beta = 0$ Let its roots be α' and $-\alpha'$. $\Rightarrow \alpha' + (-\alpha') = 2(\alpha + \beta)$ $\Rightarrow 0 = 2(\alpha + \beta)$ $\Rightarrow \alpha + \beta = 0$ 949 (a) Let $C = \cos \theta$, $S = \sin \theta$. Then, $\frac{1+C+iS}{1+C-iS} = \frac{1+\cos\theta+i\sin\theta}{1+\cos\theta-i\sin\theta}$ $\Rightarrow \frac{1+C+iS}{1+C-iS} = \frac{2\cos^2\frac{\theta}{2} + 2i\sin\frac{\theta}{2}\cos\frac{\theta}{2}}{2\cos^2\frac{\theta}{2} - 2i\sin\frac{\theta}{2}\cos\frac{\theta}{2}}$ $\Rightarrow \frac{1+C+iS}{1+C-iS} = \frac{\cos\frac{\theta}{2} + i\sin\frac{\theta}{2}}{\cos\frac{\theta}{2} - i\sin\frac{\theta}{2}} = \frac{e^{i\theta/2}}{e^{-i\theta/2}}$ $\Rightarrow \frac{1+C+iS}{1+C-iS} = e^{i\theta} = \cos\theta + i\sin\theta$

950 (c) Given, |z - 3| = |z - 5| $\Rightarrow (z-3)(\overline{z}-3) = (z-5)(\overline{z}-5)$ [on squaring both sides] $\Rightarrow 2\bar{z} + 2z = 16$ \Rightarrow $z + \overline{z} = 8$ $\Rightarrow 2x = 8$ $\Rightarrow x = 4$ Hence, locus of z is a straight line parallel to y-axis 951 (b) We have, $\frac{4x+3}{2x-5} < 6$ $\Rightarrow \frac{4x+3-12x+30}{2x-5} < 0 \Rightarrow \frac{-8\left(x-\frac{33}{8}\right)}{2\left(x-\frac{5}{5}\right)} < 0$ $\Rightarrow \frac{x - \frac{33}{8}}{x - \frac{5}{2}} > 0 \Rightarrow x \in \left(-\infty, \frac{5}{2} \right) \cup \left(\frac{33}{8}, \infty \right)$ 952 (b) Let α , β be the roots of a quadratic and α^2 , β^2 be the roots of another quadratic. Since the quadratics remain same. $\therefore \alpha + \beta = \alpha^2 + \beta^2$... (i) and, $\alpha \beta = \alpha^2 \beta^2$... (ii) Now. $\alpha\beta = \alpha^2\beta^2$ $\Rightarrow \alpha\beta(\alpha\beta - 1) = 0 \Rightarrow \alpha = 0 \text{ or, } \beta = 0 \text{ or, } \alpha\beta = 1$ If $\alpha = 0$ then $\beta = \beta^2$ [Putting $\alpha = 0$ in (i)] $\Rightarrow \beta(1-\beta) = 0 \Rightarrow \beta = 0, \beta = 1$ Thus, we get two sets of values of α and β viz. $\alpha = 0, \beta = 0$ and $\alpha = 0, \beta = 1$ If $\alpha \beta = 1$, then $\alpha + \frac{1}{\alpha} = \alpha^2 + \frac{1}{\alpha^2}$ [Putting $\beta = \frac{1}{\alpha}$ in (i)] $\Rightarrow \alpha + \frac{1}{\alpha} = \left(\alpha + \frac{1}{\alpha}\right)^2 - 2$ $\Rightarrow \left(\alpha + \frac{1}{\alpha}\right)^2 - \left(\alpha + \frac{1}{\alpha}\right) - 2 = 0$ $\Rightarrow \alpha + \frac{1}{\alpha} = 2 \text{ or, } \alpha + \frac{1}{\alpha} = -1$ $\Rightarrow \alpha = 1 \text{ or } \alpha = \omega, \omega^2$ Putting $\alpha = 1$ in $\alpha \beta = 1$, we get $\beta = 1$ Putting $\alpha = \omega$ in $\alpha \beta = 1$, we get $\beta = \omega^2$ Putting $\alpha = \omega^2$ in $\alpha \beta = 1$, we get $\beta = \omega$ Thus, we get four pairs of values of α and β viz. $\alpha = 0, \beta = 0; \alpha = 0, \beta = 1; \alpha = \omega, \beta = \omega^2; \alpha$ $= 1, \beta = 1$ Hence, there are four quadratic equations which remains unchanged by squaring their roots 953 (d)

Given, $|z - z_1| = |z - z_2|$

It is perpendicular bisector of line joining z_1 and

 Z_2 954 (a) Here, $\alpha + \beta = -a$, $\alpha\beta = b$ $\therefore \quad \frac{1}{\alpha^2} + \frac{1}{\beta^2} = \frac{\alpha^2 + \beta^2}{(\alpha\beta)^2}$ $=\frac{(\alpha+\beta)^2-2\alpha\beta}{(\alpha\beta)^2}=\frac{a^2-2b}{b^2}$ 955 (b) Given, $(x + iy)^{1/3} = a - ib$ And $\frac{x}{a} - \frac{y}{b} = k(a^2 - b^2)$ $\therefore x + iy = (a - ib)^3$ $= (a^3 - 3ab^2) + i(b^3 - 3a^2b)$ $\therefore x = a^3 - 3ab^2, y = b^3 - 3a^2b$ $\Rightarrow \frac{x}{a} = a^2 - 3b^2, \qquad \frac{y}{b} = b^2 - 3a^2$ $\therefore \frac{x}{a} - \frac{y}{b} = a^2 - 3b^2 - b^2 + 3a^2 = 4(a^2 - b^2)$ But $\frac{x}{a} - \frac{y}{b} = k(a^2 - b^2)$ [given] :. k = 4956 (a) $z_1 + z_2 = -1$ and $z_1 z_2 = \frac{b}{2}$ As z_1, z_2 and origin form an equilateral triangle, we have, $z_1^2 + z_2^2 + z_3^2 = z_1 z_2 + z_2 z_3 + z_3 z_1$ $\Rightarrow z_1^2 + z_2^2 + 0 = z_1 z_2 + 0 + 0$ $\Rightarrow (z_1 + z_2)^2 = 3z_1z_2$ $\Rightarrow 1 = b$ 957 (a) $\frac{1}{\log_2 n!} + \frac{1}{\log_3 n!} + \frac{1}{\log_4 n!} + \dots + \frac{1}{\log_{2002} n!}$ $=\frac{\log 2}{\log n!}+\frac{\log 3}{\log n!}+\ldots+\frac{\log 2002}{\log n!}$ $=\frac{\log(2.3.4\dots 2002)}{\log n!}$ $=\frac{\log 2002!}{\log n!}$ $=\frac{\log 2002!}{\log 2002!}=1$ [: n = 2002, given] 958 (c) Since, $x^2 + px + 1$ is a factor of $ax^3 + bx + c$ $\therefore ax^3 + bx + c = (x^2 + px + 1)(lx + m)$ On equating the coefficients of like powers of *x*, we get l = a, m + lp = 0, b = pm + l and c = m $\Rightarrow c + ap = 0$ and b = pc + a $\Rightarrow b = -\frac{c^2}{a} + a \Rightarrow a^2 - c^2 = ab$ 959 (c) We have,

 $\left|\frac{z-12}{z-8i}\right| = \frac{5}{3}$ and $\left|\frac{z-4}{z-8}\right| = 1$ Let z = x + iy. Then, $\left|\frac{z-12}{z-8\,i}\right| = \frac{5}{3}$ $\Rightarrow 3|z - 12| = 5|z - 8i|$ $\Rightarrow 3|(x - 12) + i y| = 5|x + (y - 8) i|$ $\Rightarrow 9(x - 12)^2 + 9y^2 = 25x^2 + 25(y - 8)^2$ and, $\left| \frac{z-4}{z-8} \right| = 1$ $\Rightarrow |z-4| = |z-8|$ $\Rightarrow |x - 4 + iy| = |x - 8 + iy|$ $\Rightarrow (x-4)^2 + y^2 = (x-8)^2 + y^2$ $\Rightarrow x = 6$ Putting x = 6 in (i), we get $y^2 - 25 y - 136 = 0 \Rightarrow y = 17,8$ Hence, z = 6 + 17 i or, z = 6 + 8 i960 (d) Given equation is $e^{\sin x} - e^{-\sin x} - 4 = 0$ Let $e^{\sin x} = y$, then given equation can be written as $y^2 - 4y - 1 = 0 \Rightarrow y = 2 \pm \sqrt{5}$ But the value of $y = e^{\sin x}$ is always positive so we take only $y = 2 + \sqrt{5}$ $\Rightarrow \log_e y = \log_e (2 + \sqrt{5})$ $\Rightarrow \sin x = \log_e(2 + \sqrt{5}) > 1$ Which is impossible since sin *x* cannot be greater than 1. Hence, we cannot find any real value of *x* which satisfies each given equation. 961 (a) We have, $\sqrt{z} = \pm \left[\sqrt{\frac{1}{2} \{ |z| + \operatorname{Re}(z) \}} \pm i \sqrt{\frac{1}{2} \{ |z| - \operatorname{Re}(z) \}} \right],$ $\therefore \sqrt{i} = \pm \left(\frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}}\right) \Rightarrow \sqrt{2}i = \pm (1+i)$ Hence, $a = \sqrt{2i} = \pm (1+i)$ 962 (b) Since, $2 + i\sqrt{3}$ is a root of the equation $x^2 + px + q = 0$, then the other root will be $2 - i\sqrt{3}$ $\therefore 2 + i\sqrt{3} + 2 - i\sqrt{3} = -p$ $\Rightarrow p = -4$ And $(2 + i\sqrt{3})(2 - i\sqrt{3} = q)$ $\Rightarrow q = 7$ \therefore The value of (p, q) is (-4, 7)963 (a) Equation of circle whose centre is z_0 and radius is

$$r, is |z - z_{0}|^{2} = r^{2}$$

$$\Rightarrow (z - z_{0})(\overline{z} - \overline{z}_{0}) = r^{2}$$

$$\Rightarrow z\overline{z} - z\overline{z}_{0} - \overline{z}_{0} + z_{0}\overline{z}_{0} = r^{2}$$

$$\Rightarrow z\overline{z} - z\overline{z}_{0} - \overline{z}_{0} + z_{0}\overline{z}_{0} = r^{2}$$
964 (a)
$$\sum_{n=0}^{\infty} \left(\frac{2i}{3}\right)^{n} = 1 + \left(\frac{2i}{3}\right) + \left(\frac{2i}{3}\right)^{2} + \left(\frac{2i}{3}\right)^{3} + \dots$$

$$= \frac{1}{1 - \frac{2i}{3}} = \frac{3}{3 - 2i} \times \frac{3 + 2i}{3 + 2i}$$
965 (c)
Given, $y = 2^{1/\log_{x}(8)} = 2^{\log_{9}(x)}$

$$\Rightarrow y = 2^{\log_{2} \sqrt{x}} = \sqrt[3]{x}$$
966 (a)
Since, $1, \alpha, \alpha^{2}, \dots, \alpha^{n-1}$ are n, n^{th} roots of unity
$$\therefore \sum_{r=0}^{n-1} \alpha^{r} = 0 \text{ and}, \sum_{r=0}^{n-1} \alpha^{r} = 0$$
Now,
$$\sum_{r=0}^{n-1} |z_{1} + \alpha^{r} z_{2}|^{2}$$

$$= \sum_{r=0}^{n-1} (|z_{1}|^{2} + |\alpha|^{2r}|z_{2}|^{2} + z_{1}\overline{\alpha}^{r}\overline{z}_{2} + \overline{z}_{1}\alpha^{r} z_{2})$$

$$= \sum_{r=0}^{n-1} (|z_{1}|^{2} + |\alpha|^{2r}|z_{2}|^{2} + z_{1}\overline{\alpha}^{r}\overline{z}_{2} + \overline{z}_{1}\alpha^{r} z_{2})$$

$$= \sum_{r=0}^{n-1} |z_{1}|^{2} + |z_{2}|^{2} + z_{1}\overline{z}_{2}(\overline{\alpha})^{r} + \overline{z}_{1} z_{2}\sum_{r=0}^{n-1} \alpha^{r}$$
967 (d)
Since 8, 2 are roots of $x^{2} + ax + \beta = 0$ and 3, 3
are roots of $x^{2} + ax + b = 0$. Therefore,
8 + 2 = -a, 8 \times 2 = \beta \text{ and } 3 + 3 = -\alpha, 3 \times 3 = b
$$\Rightarrow a = -10, \beta = 16, \alpha = -6 \text{ and } b = 9$$
Thus, $x^{2} + ax + b = 0$, becomes $x^{2} - 10 x + 9 = 0$
owhose roots are 1, 9
968 (a)
We have,
$$\sqrt{z} = \left\{ \sqrt{\frac{|z| + \operatorname{Re}(z)}{2} + i \sqrt{\frac{|z| + \operatorname{Re}(z)}{2}} \right\}, \text{ if Im (z)}$$

$$> 0$$

and
$$\sqrt{z} = \pm \left\{ \sqrt{\frac{|z| + \operatorname{Re}(z)}{2}} - i \sqrt{\frac{|z| - \operatorname{Re}(z)}{2}} \right\}$$
, if $\operatorname{Im}(z) < 0$
 $\therefore \sqrt{2i} = \pm (1 + i)$ and $\sqrt{-2i} = \pm (1 - i)$
 $\Rightarrow \sqrt{2i} - \sqrt{-2i} = \pm 2$
 $\Rightarrow |\sqrt{2i} - \sqrt{-2i}| = 2$
269 (c)
 $a + b = -a$...(i)
 $ab = b$ (ii)
From Eq. (ii)
 $a = 1$ $\because b \neq 0$
From Eq. (i)
 $b = -2$
2770 (a)
 $z = (1 - i \cot 8)^3$
 $= \csc^3 8 \left(\cos \left(\frac{\pi}{2} - 8\right) - i \sin \left(\frac{\pi}{2} - 8\right) \right)^3$
 $= \csc^3 8 \left(\cos \left(\frac{3\pi}{2} - 24\right) - i \sin \left(\frac{3\pi}{2} - 24\right) \right)$
 $= \csc^3 8 \left(\cos \left(\frac{3\pi}{2} - 24\right) - i \sin \left(\frac{3\pi}{2} - 24\right) \right)$
 $= \csc^3 8 \cdot e^{i(24 - \frac{3\pi}{2})}$
2771 (a)
Since, one root of the equation
 $x^2 + px + q = 0$ is $2 + \sqrt{3}$, then the other root will
be
 $2 - \sqrt{3}$
 \therefore Since of roots $2 + \sqrt{3} + 2 - \sqrt{3} = -p$
 $\Rightarrow p = -4$
And product of roots
 $(2 + \sqrt{3})(2 - \sqrt{3}) = q$
 $\Rightarrow q = 1$
2772 (a)
7 $\log_2 \frac{16}{15} + 5 \log_2 \frac{25}{24} + 3 \log_2 \frac{81}{80}$
 $= 7[4 \log_2 2 - \log_2 3 - \log_2 5]$
 $+ 5[2 \log_2 5 - \log_2 3 - 3 \log_2 2]$
 $+ 3[4 \log_2 3 - 4 \log_2 2 - \log_2 5]$
 $= \log_2 2 = 1$
273 (c)
 $\because \sqrt{5x^2 - 8x + 3} - \sqrt{5x^2 - 9x + 4}$
 $= \sqrt{2x^2 - 2x} - \sqrt{2x^2 - 3x + 1}$
Also, $(5x^2 - 8x + 3) - (5x^2 - 9x + 4) = (2x^2 - 2x) - (2x^2 - 3x + 1)$
 $\Rightarrow x - 1 = x - 1$
 $\Rightarrow x = 1$ is the required value.

974 (c) We know that $ax^2 + bx + c \ge 0$ if a > 0 and $b^2 - bx + c \ge 0$ $4ac \leq 0$ Now, $mx - 1 + \frac{1}{x} \ge 0$ $\Rightarrow \frac{mx^2 - x + 1}{r} \ge 0$ $\Rightarrow mx^2 - x + 1 \ge 0$ and x > 0Now, $mx^2 - x + 1 \ge 0$, if m > 0 and $1 - 4m \le 0$ or if m > 0 and $m \ge \frac{1}{4}$. Thus, the minimum value of *m* is $\frac{1}{4}$. 975 (a) Given, $\log_e\left(\frac{a+b}{2}\right) = \frac{1}{2}(\log_e a + \log_e b)$ $\Rightarrow \therefore \quad \frac{a+b}{2} = \sqrt{ab}$ $\Rightarrow a + b - 2\sqrt{ab} = 0$ $\Rightarrow \sqrt{a} = \sqrt{b}$ $\Rightarrow a = b$ 976 (a) Let α be a negative common root of equations $ax^{2} + bx + c = 0$ and $cx^{2} + bx + a = 0$. Then, $a \alpha^2 + b \alpha + c = 0$ and $c \alpha^2 + b \alpha + a = 0$ $\Rightarrow (a - c)\alpha^2 + (c - a) = 0$ [On subtraction] $\Rightarrow \alpha^2 - 1 = 0$ $[\because a \neq c]$ $\Rightarrow \alpha = \pm 1$ $\Rightarrow \alpha = -1$ $[\because \alpha < 0]$ Putting $\alpha = -1$ in $\alpha \alpha^2 + b \alpha + c = 0$, we get a - b + c = 0977 (a) We have, $\frac{(1+i)^{2n} - (1-i)^{2n}}{(1+\omega^4 - \omega^2)(1-\omega^4 + \omega^2)}$ $=\frac{\{(1+i)^2\}^n - \{(1-i)^2\}^n}{(1+\omega^4-\omega^2)(1-\omega^4+\omega^2)}$ $=\frac{(2i)^{n}-(-2i)^{n}}{(1+\omega-\omega^{2})(1-\omega+\omega^{2})}$ $=\frac{(2i)^n - (-2i)^n}{(-2\,\omega^2)(-2\omega)}$ $= 2^{n-2} \{ i^n - (-i)^n \} = \begin{cases} 0 & \text{, if } n \text{ is even} \\ 2^{n-1} i^n, & \text{if } n \text{ is odd} \end{cases}$ 978 (c) Let α , $-\alpha$ and β be the roots of $x^3 - mx^2 + 3x - \alpha$ 2 = 0. Then, $\alpha + (-\alpha) + \beta = m \Rightarrow \beta = m$ But, $\beta = m$ is a root of $x^3 - mx^2 + 3x - 2 = 0$ $\therefore m^3 - m^3 + 3m - 2 = 0 \Rightarrow m = \frac{2}{3}$

979 (c) Given, $\frac{x+1}{(2x-1)(3x+1)} = \frac{A}{(2x-1)} + \frac{B}{(3x+1)}$ $\Rightarrow (x+1) = A(3x+1) + B(2x-1)$ $\Rightarrow (x+1) = x(3A+2B) + A - B$ On equating the coefficient of *x* and constant on both sides, we get 3A + 2B = 1...(i) And A - B = 1 ...(ii) On solving Eqs. (i) and (ii), we get $A = \frac{3}{5}, B = -\frac{2}{5}$ $\therefore 16A + 9B = 16\left(\frac{3}{5}\right) + 9\left(-\frac{2}{5}\right) = 6$ 980 (b) $x + iy = \frac{3}{2 + \cos \theta + i \sin \theta}$ $= \frac{3(2 + \cos \theta - i \sin \theta)}{(2 + \cos \theta)^2 + \sin^2 \theta}$ $6 + 3\cos\theta - 3i\sin\theta$ $=\frac{6+3\cos\theta}{4+\cos^2\theta+4\cos\theta+\sin^2\theta}$ $= \left[\frac{6+3\cos\theta}{5+4\cos\theta}\right] + i\left[\frac{-3\sin\theta}{5+4\cos\theta}\right]$ On equating the real and imaginary parts on both sides, we get $x = \frac{3(2 + \cos \theta)}{(5 + 4\cos \theta)}, \qquad y = \frac{-3\sin \theta}{5 + 4\cos \theta}$ $\therefore \ x^2 + y^2 = \frac{9}{(5 + 4\cos\theta)^2} [4]$ $+\cos^2\theta + 4\cos\theta + \sin^2\theta$] $=\frac{9}{5+4\cos\theta}=4\left[\frac{6+3\cos\theta}{5+4\cos\theta}\right]-3$ = 4x - 3981 (b) We have, $|z_1| = |z_2| = \dots = |z_n| = 1$ $\Rightarrow z_1 \bar{z_1} = z_2 \bar{z_2} = \dots = z_n \bar{z_n} = 1$ $\Rightarrow \bar{z_1} = \frac{1}{z_1}, \bar{z_2} = \frac{1}{z_2}, \dots, \bar{z_n} = \frac{1}{z_n}$ Now. $|z_1 + z_2 + \dots + z_n| = |\overline{z_1 + z_2 + \dots + z_n}|$ $\Rightarrow |z_1 + z_2 + \dots + z_n| = |\overline{z}_1 + \overline{z}_2 + \dots + \overline{z}_n|$ $\Rightarrow |z_1 + z_2 + \dots + z_n| = \left|\frac{1}{z_1} + \frac{1}{z_2} + \dots + \frac{1}{z_n}\right|$ 982 (d) Let $f(x) = x^3 + ax^2 + b$. If f(x) = 0 will have a root of order 2, then f(x) = 0 and f'(x) = 0 have a common root We have, $f'(x) = 3x^2 + 2ax$ $\therefore f'(x) = 0 \Rightarrow x = 0, x = -\frac{2a}{3}$

Clearly, x = 0 is not a root of f(x) = 0. Therefore,

 $x = -\frac{2a}{3}$ is a common root Putting $x = -\frac{2a}{3}$ in $x^3 + ax^2 + b = 0$, we get $\left(-\frac{2a}{3}\right)^3 + a\left(-\frac{2a}{3}\right)^2 + b = 0$ $\Rightarrow -8a^3 + 12a^3 + 27b = 0 \Rightarrow 4a^3 + 27b = 0$ 983 **(b)** Given equation is $2x^3 - x^2 - 22x - 24 = 0$ On putting x = 2, -2 only x = -2 satisfies this equation So, x = -2 is a root of this equation and from the given options only (b) has this root 984 (a) Let $z_1 = a + ib = (a, b)$ and $z_2 = c - id = (c, -d)$ where a > 0 and d > 0Given, $|z_1| = |z_2|$ $\Rightarrow a^2 + b^2 = c^2 + d^2$...(i) Now, $\frac{z_1+z_2}{z_1-z_2} = \frac{(a+ib)+(c-id)}{(a+ib)-(c-id)}$ $=\frac{(a+c)+i(b-d)}{(a-c)+i(b+d)}$ $=\frac{[(a+c)+i(b-d)]}{[(a-c)+i(b+d)]}\frac{[(a-c)-i(b+d)]}{[(a-c)-i(b+d)]}$ $=\frac{(a^2+b^2)-(c^2+d^2)-2(ad+bc)i}{a^2+c^2-2ac+b^2+d^2+2bd}$ $= \frac{-(ad+bc)i}{a^2+b^2-ac+bd} \quad \text{[from Eq. (i)]}$ $\therefore \frac{(z_1+z_2)}{(z_1-z_2)}$ is purely imaginary Alternative, Assume any two complex number satisfying both conditions, $z_1 \neq z_2$ and $|z_1| = |z_2|$ Let $z_1 = 2 + i$, $z_2 = 1 - 2i$, $\therefore \ \frac{z_1 + z_2}{z_1 - z_2} = \frac{3 - i}{1 + 3i} \times \frac{1 - 3i}{1 - 3i} = -\frac{10i}{10} = -i$ \therefore It is purely imaginary 985 (b) The roots of the equation $ax^2 + bx + c = 0$ are given by $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ (i) Let $b^2 - 4ac > 0, b > 0$ Now, if $a > 0, c > 0, b^2 - 4ac < b^2$ \Rightarrow The roots are negative. (ii) Let $b^2 - 4ac < 0$, then the roots are given by $x = \frac{-b \pm i \sqrt{(4ac - b^2)}}{2a}$ $(i = \sqrt{-1})$ Which are imaginary and have negative part. $(\because b > 0)$ \therefore In each case the root have negative real part. 986 (c) Since, the value of function at different points are

f(-2) < 0, f(-1) > 0, f(0) > 0, f(1) < 0, f(2)> 0Hence, one root lie in (-2, 1). \therefore 2nd root lie in (0, 1) and last root lie in (1, 2). $\therefore [\alpha] = -2, [\beta] = 0, [\gamma] = 1$ $\therefore [\alpha] + [\beta] + [\gamma] = -1$ 987 (d) Given, $\arg(x - a + iy) = \frac{\pi}{4}$ $\Rightarrow \tan^{-1}\left(\frac{y}{x-a}\right) = \frac{\pi}{4}$ $\Rightarrow \frac{y}{x-a} = \tan \frac{\pi}{4}$ $\Rightarrow y = x - a$ Which is an equation of straight line. 988 (a) The given equation $z^3 + 2z^2 + 2z + 1 = 0$ can be rewritten as $(z + 1)(z^2 + z + 1) = 0$. Its roots $-1, \omega$ and ω^2 $\operatorname{Let} f(z) = z^{1985} + z^{100} + 1$ Put z = -1, ω and ω^2 respectively, we have $f(-1) = (-1)^{1985} + (-1)^{100} + 1 \neq 0$ Therefore, -1 is not a root of the equation f(z) = 0Again, $f(\omega) = \omega^{1985} + \omega^{100} + 1$ $= (\omega^3)^{661} \omega^2 + (\omega^3)^{33} \omega + 1$ $= \omega^{2} + \omega + 1 = 0$ Therefore, ω is a root of the equation f(z)=0Similarly, $f(\omega^2) = 0$ Hence, ω and ω^2 are the common roots 989 (a) We know that, $||z_1| - |z_2|| \le |z_1 + z_2| \le |z_1| + |z_2|$ So, greatest and least value of $z_1 + z_2$, where $z_1 = 24 + 7i$ and $|z_2| = 6$ are 31 and 9 respectively 990 **(b)** Here, $\alpha + \beta = -\frac{b}{a}$ and $\alpha\beta = \frac{c}{a}$ Sum of the given roots = $\frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha \beta} = -\frac{b}{c}$ And product of the given roots $= \frac{1}{a} \cdot \frac{1}{b} = \frac{a}{c}$ ∴Required equation is x^2 –(sum of roots)x +product of roots=0 $\Rightarrow x^2 + \frac{b}{a}x + \frac{a}{a} = 0$ $\Rightarrow cx^2 + bx + a = 0$ 991 (d) $\log_2 \log_2 \log_4 256 + 2 \log_{\sqrt{2}} 2$ $= \log_2 \log_2 \log_4(4)^4 + 2 \frac{1}{\log_2 \sqrt{2}}$

 $= \log_2 \log_2 4 + \frac{4}{\log_2 2}$ $= \log_2 2 + 4 = 1 + 4 = 5$ 992 (d) For collinear points $\begin{vmatrix} z_1 & \bar{z_1} & 1 \\ z_2 & \bar{z_2} & 1 \\ z_3 & \bar{z_3} & 1 \end{vmatrix} = 0$ $\therefore \quad \begin{vmatrix} 1+2i & 1-2i & 1 \\ 2+3i & 2-3i & 1 \\ 3+4i & 3-4i & 1 \end{vmatrix} = \begin{vmatrix} 4i & 1-2i & 1 \\ 6i & 2-3i & 1 \\ 8i & 3-4i & 1 \end{vmatrix} \begin{bmatrix} C_1 \\ C_1 \end{bmatrix}$ $\rightarrow C_1 - C_2$] $= \begin{vmatrix} -2i & -1+i & 0 \\ -2i & -1+i & 0 \\ 8i & 3-4i & 1 \end{vmatrix} = 0$ $[R_1 \rightarrow R_1 - R_2, R_2 \rightarrow R_2 - R_3]$ 993 (d) Discriminant (D) = $\left(-2\sqrt{3}\right)^2 + 88$ = 100 $= 10^{2}$ \Rightarrow Roots are real, rational and unequal 994 (a) Here, $\alpha + \beta + \gamma = \frac{2}{1} = 2$, $\alpha\beta + \beta\gamma + \gamma\alpha = 3$ And $\alpha\beta\gamma = 4$ We know that $\alpha^2 \beta^2 + \beta^2 \gamma^2 + \gamma^2 \alpha^2$ $= (\alpha\beta + \beta\gamma + \gamma\alpha)^2 - 2(\alpha\beta\gamma)(\alpha + \beta + \gamma)$ $= (3)^2 - 2(4)(2) = -7$ 995 (d) We have, $\left|\frac{k-z_1\bar{z}_2}{z_1-kz_2}\right| = 1$ $\Rightarrow |k - z_1 \overline{z}_2| = |z_1 - k z_2|$ $\Rightarrow |k - z_1 \bar{z}_2|^2 = |z_1 - k z_2|^2$ $\Rightarrow k^2 + |z_1 \overline{z}_2|^2 - k z_1 \overline{z}_2 - k \overline{z_1 \overline{z}_2}$ $= |z_1|^2 + k^2 |z_2|^2 - k z_1 \bar{z}_2 - k \bar{z}_1 z_2$ $\Rightarrow k^{2} + |z_{1}|^{2}|z_{2}|^{2} = |z_{1}|^{2} + k^{2}|z_{2}|^{2}$ $\Rightarrow k^{2}(|z_{2}|^{2}-1)-|z_{1}|^{2}(|z_{2}|^{2}-1)=0$ $\Rightarrow (k^{2} - |z_{1}|^{2})(|z_{2}|^{2} - 1) = 0 \Rightarrow |z_{2}|^{2} = 1 \Rightarrow |z_{2}|$ 996 (d) Let $z = \frac{1}{i-1}$ Then, $\bar{z} = \overline{\left(\frac{1}{i-1}\right)} = \frac{1}{-i-1} = -\frac{1}{i+1}$ 997 (c) Since, α and β are the roots of $ax^2 + bx + c = 0$. Then, $\alpha + \beta = -\frac{b}{a}$ and $\alpha\beta = \frac{c}{a}$ Let the roots of $cx^2 + bx + a = 0$ be α', β' , then $\alpha' + \beta' = -\frac{b}{a}$ and $\alpha'\beta' = \frac{a}{a}$ Now, $\frac{\alpha + \beta}{\alpha \beta} = \frac{-\frac{b}{\alpha}}{\frac{c}{\alpha}} = \frac{-b}{c}$

 $\Rightarrow \frac{1}{\alpha} + \frac{1}{\beta} = \alpha' + \beta'$ Hence, $\alpha' = \frac{1}{\alpha}$ and $\beta' = \frac{1}{\beta}$ 998 (b) $A(z_1)$ $\pi/3$ $\pi/3$ $\therefore \overline{AC} = \overline{AB} e^{i\pi/3}$ By rotating $\frac{\pi}{3}$ in clockwise sense $\Rightarrow (z_3 - z_1) = (z_2 - z_1)e^{i\pi/3}$...(i) Also, $(z_1 - z_2) = (z_3 - z_2)e^{i\pi/3}$...(ii) On dividing Eq.(i) by Eq. (ii), we get $\frac{(z_3 - z_1)}{(z_1 - z_2)} = \frac{(z_2 - z_1)}{(z_3 - z_2)}$ $\Rightarrow z_1^2 + z_2^2 + z_3^2 = z_1 z_2 + z_2 z_3 + z_3 z_1$ 999 (a) Let $x - \alpha$ be the common factor of $x^2 - 11x + \alpha$ a = 0 and $x^2 - 14x + 2a = 0$. Then, $\alpha^2 - 11\alpha + a = 0$... (i) and, $\alpha^2 - 14\alpha + 2a = 0$... (ii) Subtracting (ii) from (i), we get $3\alpha - a = 0 \Rightarrow \alpha = a/3$ Putting $\alpha = a/3$ in (i), we get a = 0.24100 (c) 1 Let *O*, *G* and *C* be the orthocenter, centroid and circumcentre respectively, then $\frac{z_1 + z_2 + z_3}{3} = \frac{2 \times 0 + 1(z)}{3}$ $\Rightarrow \quad z = z_1 + z_2 + z_3$ 100 (a) Let $f(x) = ax^2 + 2bx - 3c$ and f(x) = 0 has nonreal roots, f(x) will have the same sign for all values of *x*. Also, $\frac{3c}{4} < (a+b) \Rightarrow 4a+4b-3c < 0$ $\Rightarrow f(2) > 0$ $\Rightarrow f(0) > 0$ $\Rightarrow c < 0$ 100 (d) $\omega^2(1+\omega)^3 - (1+\omega^2)\omega$ $= \omega^{2} (-\omega^{2})^{3} - (-\omega)\omega \qquad [\because 1 + \omega + \omega^{2} = 0]$ $= -\omega^{2} (\omega^{3})^{2} + \omega^{2} = 0 \qquad [\because \omega^{3} = 1]$ 100 (d) Let D_1 and D_2 be discriminants of $x^2 + b_1 x + c_1 =$ 0 and $x^2 + b_2 x + c_2 = 0$ respectively. Then $D_1 + D_2 = b_1^2 - 4c_1 + b_2^2 - 4c_2$

2

3

4

 $= (b_1^2 + b_2^2) - 4(c_1 + c_2)$ $= b_1^2 + b_2^2 - 2b_1b_2$ [:: $b_1b_2 = 2(c_1 + c_2)$, given] $=(b_1-b_2)^2 \ge 0$ $\Rightarrow D_1 \ge 0 \text{ or } D_2 \ge 0$ \Rightarrow D_1 and D_2 both are positive. 100 (d) 5 $\frac{(1+i)^2}{i(2i-1)} = \frac{2i}{i(2i-1)} = \frac{2(2i+1)}{4i^2-1} - \frac{4}{5}i - \frac{2}{5}i$ \therefore Imaginary part is $-\frac{4}{5}$ 100 **(b)** $\frac{3x^3 - 8x^2 + 10}{(x-1)^4}$ 6 $=\frac{A}{(x-1)}+\frac{B}{(x-1)^2}+\frac{C}{(x-1)^3}$ $+\frac{D}{(x-1)^4}$ $\Rightarrow 3x^3 - 8x^2 + 10$ $= A(x-1)^3 + B(x-1)^2$ +C(x-1)+DEquating coefficient of different powers of x, 3 = A $-8 = -3A + B \implies B = 1$ $0 = 3A - 2B + C \implies C = -7$ $10 = -A + B - C + D \quad \Rightarrow \quad D = 5$ ∴ Given expression $=\frac{3}{x-1}+\frac{1}{(x-1)^2}-\frac{7}{(x-1)^3}+\frac{5}{(x-1)^4}$ 100 (c) 7 $|z - i\operatorname{Re}(z)| = |z - \operatorname{Im}(z)|$ If z = x + iyThen |x + iy - ix| = |x + iy - y| $\sqrt{x^2 + (y - x)^2} = \sqrt{(x - y)^2 + y^2}$ or $x^{2} = y^{2}$ $\therefore x = \pm y$ $\Rightarrow \operatorname{Re}(z) = \pm \operatorname{Im}(z)$ $\Rightarrow \operatorname{Re}(z) + \operatorname{Im}(z) = 0$ and Re (z) – Im(z) = 0 100 (d) 8 It is given that $\alpha = -1 + i$ is a root of $x^{2} + (1 - 3i)x - 2(1 + i) = 0$. Let β be the orther root. Then, $\alpha + \beta = -(1 - 3i) \Rightarrow \beta = -1 + 3i + 1 - i = 2i$

100 (c) Let $z - 1 = re^{i\alpha}$ $\therefore (x-1) + iy = r(\cos \alpha + i \sin \alpha)$ $\therefore r^2 = (x-1)^2 + y^2$ and $\tan \alpha = \frac{y}{x-1}$ The expression $\frac{z-1}{e^{i\theta}} + \frac{e^{i\theta}}{z-1} = re^{i(\alpha-\theta)} + \frac{1}{r}e^{-i(\alpha-\theta)}$ Which is given as real $\therefore r\sin(\alpha-\theta) - \frac{1}{r}\sin(\alpha-\theta) = 0$ $\Rightarrow r - \frac{1}{r} = 0 \Rightarrow r^2 = 1$ $\Rightarrow (x-1)^2 + y^2 = 1$ Which is a circle with centre (1, 0) and radius 1 101 (a) Since, $\left|\frac{x+iy-1}{x+iy+1}\right| = 1$ $\Rightarrow \sqrt{(x-1)^2 + y^2} = \sqrt{(x+1)^2 + y^2}$ \Rightarrow $x^2 - 2x + 1 + y^2 = x^2 + 1 + 2x + y^2$ $\Rightarrow x = 0$ 101 **(b)** $\operatorname{Put}\frac{6-x+8-x}{2} = y \Rightarrow x = 7 - y$ $(y-1)^4 + (y+1)^4 = 16$ $\Rightarrow y^4 + 6y^2 + 1 = 8$ $\Rightarrow y^4 + 6y^2 - 7 = 0$ $\Rightarrow y^2 = 1, -7$ $\Rightarrow y^2 = 1$ (: $y^2 = -7$ is not possible) $\Rightarrow y = \pm 1$ $\Rightarrow x = 6,8$: Total number of real roots are 2. 101 (c) We have. $\left|\frac{x^2+6}{5x}\right| \ge 1$ $\Rightarrow \frac{x^2 + 6}{5x} \le -1 \text{ or, } \frac{x^2 + 6}{5x} \ge 1$ $\Rightarrow \frac{x^2 + 5x + 6}{5x} \le 0 \text{ or, } \frac{x^2 - 5x + 6}{5x} \ge 0$ $\Rightarrow \frac{(x+2)(x+3)}{(x-0)} \le 0 \text{ or, } \frac{(x-2)(x-3)}{x-0} \ge 0$ $\Rightarrow x \in (-\infty, -3] \cup [-2, 0) \text{ or, } x \in (0, 2] \cup [3, \infty)$ $\Rightarrow x \in (-\infty, -3] \cup [-2, 0) \cup (0, 2] \cup [3, \infty)$ 101 (a) Clearly, *P* and *Q* are on the opposite side of the origin O such that OP = OQ. Therefore, OP = OQ and $\overrightarrow{OQ} = \overrightarrow{OP} e^{i\pi}$ \Rightarrow |a + ib| = |c + id| and $c + id = e^{i\pi}(a + ib)$ \Rightarrow |a + ib| = |c + id| and c = -a, d = -b \Rightarrow |a + ib| = |c + id| and a + c = 0, b + d = 0

9

0

1

2

3

 \Rightarrow |a + ib| = |c + id| and a + c = b + d101 (d) Here, $\alpha + \beta = -\frac{b}{a}$, $\alpha\beta = \frac{c}{a}$ 4 The required equation is $x^2 - 5x(\alpha + \beta) + (2\alpha + 3\beta)(3\alpha + 2\beta) = 0$ $\Rightarrow \quad x^2 + \frac{5b}{\alpha} x[6(\alpha + \beta)^2] + [3\alpha\beta] = 0$ $\Rightarrow x^2 + \frac{5b}{a}x + \left[6\frac{b^2}{a^2} + \frac{c}{a}\right] = 0$ $\Rightarrow a^2x^2 + 5abx + 6b^2 + ac = 0$ 101 (a) $\frac{1+i\sqrt{3}}{1-i\sqrt{3}} = \frac{1+i\sqrt{3}}{1-i\sqrt{3}} \times \frac{1+i\sqrt{3}}{1+i\sqrt{3}}$ 5 $=\frac{\left(1+i\sqrt{3}\right)^2}{1+3}=-\frac{1}{2}+\frac{i\sqrt{3}}{2}$ $\therefore \quad \tan \theta = \frac{\sqrt{3}}{2} \times \frac{2}{-1} = -\sqrt{3} = -\tan \frac{\pi}{3}$ $\Rightarrow \tan \theta = \tan \left(\pi - \frac{\pi}{3} \right)$ $\Rightarrow \theta = \frac{2\pi}{2}$ 101 (b) We have, $|1 - i|^x = 2^x \Rightarrow (\sqrt{2})^x = 2^x$ 6 $\Rightarrow 2^{x/2} = 2^x$ $\Rightarrow \frac{x}{2} = x \Rightarrow x = 0$ Therefore, the number of non-zero integral solution is one 101 (d) $\frac{1+i}{1-i} = \frac{(1+i)^2}{1-i^2} = i$ 7 Since, $\left(\frac{1+i}{1-i}\right)^n = 1 \implies i^n = 1$ Hence, smallest positive integer is 4 101 (d) $\frac{x^{2}+x+1}{x^{2}+2x+1} = 1 - \frac{x}{x^{2}+2x+1}$ [on dividing] ...(i) 8 Now, $\frac{x}{x^2+2x+1} = \frac{A}{(x+1)} + \frac{B}{(x+1)^2}$ x = A(x+1) + B⇒ On equating the coefficient of *x* and constant, we get A = 1 and A + B = 0 \Rightarrow A = 1 and B = -1From Eq. (i), we get $\frac{x^2 + x + 1}{x^2 + 2x + 1} = 1 - \frac{1}{(x+1)} + \frac{1}{(x+1)^2}$ $\Rightarrow A + \frac{B}{(x+1)} + \frac{C}{(x+1)^2} = 1 - \frac{1}{(x+1)} + \frac{1}{(x+1)^2}$ [given] \Rightarrow A = 1, B = -1 and C = 1Now, A - B = 1 + 1 = 2 = 2C101 (a)

9 We have,

$$\begin{vmatrix} x + \frac{1}{x} \end{vmatrix} < 4$$

$$\Rightarrow -4 < x + \frac{1}{x} < 4$$

$$\Rightarrow x + \frac{1}{x} + 4 > 0 \text{ and } x + \frac{1}{x} - 4 < 0$$

$$\Rightarrow \frac{x^2 + 4x + 1}{x} > 0 \text{ and } \frac{x^2 - 4x + 1}{x} < 0$$

$$\Rightarrow \frac{(x + 2 + \sqrt{3})(x + 2 - \sqrt{3})}{x - 0} > 0$$
and, $\frac{(x - 2 - \sqrt{3})(x - 2 + \sqrt{3})}{x - 0} > 0$

$$\Rightarrow x \in (-2 - \sqrt{3}, -2 + \sqrt{3}) \cup (0, \infty)$$
and, $x \in (-\infty, 0) \cup (2 - \sqrt{3}, 2 + \sqrt{3})$

$$\Rightarrow x \in (2 - \sqrt{3}, 2 + \sqrt{3}) \cup (-2 - \sqrt{3}, -2 + \sqrt{3})$$
102 (d)
0 If α and β are roots of the equation $x^2 + 6x - 2 = 0$
0 Then,
 $\alpha + \beta = -6 \Rightarrow \beta = -6 - \alpha$
Since α is a root of $x^2 + 6x - 2 = 0$
 $\therefore \alpha^2 + 6\alpha - 2 = 0$
Now,
 $\beta = -6 - \alpha$
 $\Rightarrow \beta = -6 - \alpha + \alpha^2 + 6\alpha - 2$ [: $\alpha^2 + 6\alpha - 2 = 0$]
 $\Rightarrow \beta = \alpha^2 + 5\alpha - 8$
Now,
 $\alpha \beta = -2$
 $\Rightarrow \beta = \frac{-2}{\alpha}$
 $\Rightarrow \beta = \frac{-2 + 2(\alpha^2 + 6\alpha - 2)}{\alpha}$ [: $\alpha^2 + 6\alpha - 2$
 $= 0$]
 $\Rightarrow \beta = \frac{2\alpha^2 + 12\alpha - 6}{\alpha}$
Now,
 $\alpha + \beta = -6$ and, $\alpha\beta = -2$
 $\Rightarrow \frac{\alpha + \beta}{\alpha\beta} = 3 \Rightarrow \frac{1}{\alpha} + \frac{1}{\beta} = 3 \Rightarrow \beta = \frac{\alpha}{3\alpha - 1}$
102 (a)
1 $\omega + \omega(\frac{12}{3} + \frac{3}{3} + \frac{27}{128} + ...)$
 $= \omega + \omega(\frac{12}{3} + \frac{3}{3} + \frac{27}{128} + ...)$
 $= \omega + \omega(\frac{(\frac{1}{2} + \frac{3}{8} + \frac{27}{32} + \frac{27}{128} + ...)$
 $= \omega + \omega(\frac{(\frac{1}{2} - 3)}{\alpha}$
2 We have,
 $\left|\frac{2x - 1}{x - 1}\right| > 2$

$$\Rightarrow \frac{2x-1}{x-1} < -2 \text{ or }, \frac{2x-1}{x-1} > 2$$

$$\Rightarrow \frac{4x-3}{x-1} < 0 \text{ or }, \frac{1}{x-1} > 0$$

$$\Rightarrow \frac{4x-3}{x-1} < 0 \text{ or }, x-1 > 0$$

$$\Rightarrow 3/4 < x < 1 \text{ or }, x > 1 \Rightarrow x \in (3/4, 1) \cup (1, \infty)$$
102 (a)
3 If one root is 2 - *i*, then the other root will be
2 + *i*
Given equation is $ax^2 + 12x + b = 0$

$$\therefore 2 - i + 2 + i = \frac{-12}{a}$$

$$\Rightarrow a = -3$$
And $(2 - i)(2 + i) = \frac{b}{a}$

$$\Rightarrow 5 = \frac{b}{-3} \Rightarrow b = -15$$

$$\therefore ab = -3 \times (-15) = 45$$
102 (d)
4 Since, $f(1) + f(2) + f(3) = 0$
 $f(1), f(2), f(3)$ all cannot be of same sign.
$$\Rightarrow \text{ Roots are real and distinct.}$$
102 (d)
5 We have, $t^2x^2 + |x| + 9 > 0$ for all $x \in R$
So, given equation has no real root
102 (d)
6 Affix of A is z_1 means that $\overline{OA} = z_1$ and \overline{OB} and \overline{OC}
are obtained by rotating \overline{OA} through $\frac{\pi}{2}$ and π .
Therefore, affixes of B and C are $i z_1$ and $-z_1$
respectively. Hence, the affix of the centroid of triangle ABC is
$$\frac{z_1 + i z_1 + (-z_1)}{3} = \frac{i}{3} z_1 = \frac{1}{3} z_1 \left(\cos \frac{\pi}{2} + i \sin \frac{\pi}{2}\right)$$
If A, B, C are taken in clockwise sense, then the affix of the centroid is $\frac{1}{3} z_1 \left(\cos \frac{\pi}{2} - i \sin \frac{\pi}{2}\right)$
 $D(-iz_2)$
 $C(-z)$
 $i = \frac{C(-z)}{i = 2} = \frac{C(-z)}{i = 2} = \frac{C(-z)}{i = 2} = \frac{1}{3} = \frac{1}{3} z_1 \left(\cos \frac{\pi}{2} + i \sin \frac{\pi}{2}\right)$
102 (b)
7 Let $z = 4 + i$ when reflected along $y = x$ will become $z = 1 + 4i$
When rotated by angle $\pi/4$ in anti-clockwise direction will give

 $z = (3+4i)\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)$ $z = \frac{1}{\sqrt{2}} [3 - 4 + i(3 + 4)] = -\frac{1}{\sqrt{2}} + i\frac{7}{\sqrt{2}}$ 02 (b) Since *c* and *d* are roots of the equation 3 (x-a)(x-b)-k=0 $\therefore (x-a)(x-b) - k = (x-c)(x-d)$ $\Rightarrow (x-c)(x-d) + k = (x-a)(x-b)$ Clearly, *a*, *b* are the roots of (x - a)(x - b) = 0and (x - a)(x - b) = (x - c)(x - d) + k \therefore a, b are roots of (x - c)(x - d) + k = 002 (c) We have, $|x|^3 - 3x^2 + 3|x| - 2 = 0$ $\Rightarrow |x|^3 - 3|x|^2 + 3|x| - 2 = 0$ $\Rightarrow (|x| - 2)(|x|^2 - |x| + 1) = 0$ $\Rightarrow |x| = 2, |x|^2 - |x| + 1 = 0$ $\Rightarrow x = \pm 2 [:: |x|^2 - |x| + 1 = 0$ has imaginary roots] Thus, the given equation has two real roots .03 (d) Let z = x + i y. Then, $z^2 + |z|^2 = 0$ $\Rightarrow x^{2} - y^{2} + 2ixy + x^{2} + y^{2} = 0$ $\Rightarrow 2x^2 + 2ixy = 0$ $\Rightarrow x^2 = 0, 2xy = 0 \Rightarrow x = 0, y \in R$ Hence, there are infinitely many solution .03 (d) Discriminant of the equation $3x^2 + 8x + 15 = 0$ is given by D = 64 - 180 = -116 < 0So, its roots are imaginary and therefore roots are conjugate to each other. Therefore, one common root means both the roots are common. $\therefore \frac{a}{3} = \frac{2b}{8} = \frac{3c}{15}$ $\Rightarrow \frac{a}{3} = \frac{b}{4} = \frac{c}{5} = k$ (say), $k \neq 0$ $\Rightarrow a = 3k, b = 4k, c = 5k$ Now, $a^2 + b^2 = c^2$ $\Rightarrow \Delta ABC$ is right angled. $\therefore \sin^2 A + \sin^2 B = \sin^2 C$ $\Rightarrow \sin^2 A + \sin^2 B$ $+\sin^2 C = 2\sin^2 C$ $= 2 \sin^2 90^\circ = 2$.03 (d) We have, $(1 - \omega + \omega^2)^6 + (1 - \omega^2 + \omega)^6$ $= (-2 \omega)^6 + (-2 \omega^2)^6 = 2^6 + 2^6 = 2^7 = 128$

103 **(a)**

3 We have,
$$\tan^{-1}(\alpha + i\beta) = x + iy$$

 $\Rightarrow \alpha + i\beta = \tan(x + iy)$...(i)
Taking conjugate,
 $(\alpha + i\beta = \tan(x + iy)$...(ii)
 $\therefore \tan 2x = \tan[(x + iy) + (x - iy)]$
 $\Rightarrow \tan 2x = \frac{(\alpha + i\beta) + (\alpha - i\beta)}{1 - (\alpha + i\beta) + (\alpha - i\beta)}$
 $= \frac{2\alpha}{1 - (\alpha^2 + \beta^2)}$
 $\therefore x = \frac{1}{2}\tan^{-1}\left(\frac{2\alpha}{1 - \alpha^2 - \beta^2}\right)$
103 (d)

103 (d) 4 Given system of equation is $\frac{x^2}{z} + \frac{y^2}{z} - \frac{z^2}{z} = 1 \dots (i)$

$$\frac{x}{a^2} + \frac{y}{b^2} - \frac{z}{c^2} = 1 \quad ...(i)$$

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1 \quad ...(ii)$$
and $-\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1 \quad ...(iii)$
On adding all these equations, we get
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 3 \quad ...(iv)$$
On subtracting Eq. (i) from Eq. (iv), Eq. (ii) from
Eq. (iv) and Eq. (iii) from Eq. (iv), we get
$$\frac{2z^2}{c^2} = 2, \frac{2y^2}{b^2} = 2, \frac{2x^2}{a^2} = 2$$

$$\Rightarrow z = \pm c, y = \pm b, x = \pm a$$
103 (d)
5 Given, $\log_2[\log_3\{\log_4(\log_5 x)\}] = 0$

$$\Rightarrow \log_3\{\log_4(\log_5 x)\} = 2^0 = 1$$

$$\Rightarrow \log_4(\log_5 x) = 3$$

$$\Rightarrow \log_5 x = 4^3 = 64$$

$$\Rightarrow x = 5^{64}$$
103 (c)

6 As, 1,
$$a_1, a_2, ..., a_{n-1}$$
 are *n*th roots unity
 $\Rightarrow (x^n - 1) = (x - 1)(x - a_1)(x - a_2) ... (x - a_{n-1})$

$$\Rightarrow \frac{x^{n} - 1}{x - 1} = (x - a_{1})(x - a_{2}) \dots (x - a_{n-1})$$

$$\therefore x^{n-1} = x^{n-2} + \dots x^{2} + x + 1$$

$$= (x - a_{1})(x - a_{2}) \dots (x - a_{n-1})$$

$$\begin{bmatrix} as \frac{x^{n} - 1}{x - 1} = x^{n-1} + x^{n-2} + \dots + x + 1 \end{bmatrix}$$

Putting $x = 1$, we get
 $1 + 1 + \dots n$ times $= (1 - a_{1})(1 - a_{2}) \dots (1 - a_{n-1})$

$$\Rightarrow (1 - a_{1})(1 - a_{2}) \dots (1 - a_{n-1}) = n$$

103 (d)
7 $\overline{z} = \frac{4}{1 + i}$
103 (b)
8 $(q - r)x^{2} + (r - p)x + (p - q) = 0$
 $\Rightarrow (q - r)x^{2} + (r - q + q - p)x + (p - q) = 0$
 $\Rightarrow (q - r)x^{2} - (q - r)x - (p - q)x + (p - q) = 0$
 $\Rightarrow (q - r)x(x - 1) - (p - q)(x - 1) = 0$
 $\Rightarrow (x - 1)\{(q - r)x - (p - q)\} = 0$
 $\Rightarrow x = 1, \frac{p - q}{q - r}$

