Single Correct Answer Type

1. In $\triangle A B C, a^{2}\left(\cos ^{2} B-\cos ^{2} C\right)+b^{2}\left(\cos ^{2} C-\cos ^{2} A\right)+c^{2}\left(\cos ^{2} A-\cos ^{2} B\right)$ is equal to
a) 0
b) 1
c) $a^{2}+b^{2}+c^{2}$
d) $2\left(a^{2}+b^{2}+c^{2}\right)$
2. If $\sin A: \sin B: \sin C=3: 4: 5$, then $\cos A: \cos B$ is equal to
a) $4: 3$
b) 5:3
c) 3:4
d) $3: 5$
3. If A, B, C are the angles of a triangle, then $\cot \frac{A}{2}+\cot \frac{B}{2}+\cot \frac{C}{2}$ is equal to
a) $\frac{s}{R}$
b) $\frac{R}{S}$
c) $\frac{\Delta}{s^{2}}$
d) $\frac{s^{2}}{\Delta}$
4. Coordinates of the foot of the perpendicular drawn from $(0,0)$ to the line joining $(a \cos \alpha, a \sin \alpha)$ and $(a \cos \beta, a \sin \beta)$ are
a) $\left(\frac{a}{2}, \frac{b}{2}\right)$
b) $\left(\frac{a}{2}(\cos \alpha+\cos \beta), \frac{a}{2}(\sin \alpha+\sin \beta)\right)$
c) $\left(\cos \frac{\alpha+\beta}{2}, \sin \frac{\alpha+\beta}{2}\right)$
d) $\left(0, \frac{b}{2}\right)$
5. Three points are $A(6,3), B(-3,5), C(4,-2)$ and $P(x, y)$ is a point, then the ratio of area of $\triangle P B C$ and $\triangle A B C$ is
a) $\left|\frac{x+y-2}{7}\right|$
b) $\left|\frac{x-y+2}{2}\right|$
c) $\left|\frac{x-y-2}{7}\right|$
d) None of these
6. Two vertical poles 20 m and 80 m stands apart on a horizontal plane. The height of the point of intersection of the lines joining the top of each pole to the foot of the other is
a) 15 m
b) 16 m
c) 18 m
d) 50 m
7. A person on a ship sailing north sees two lighthouses which are 6 km apart, in a line due west. After an hour's tailing one of them bears south west and the other southern south west. The ship is travelling at a rate of
a) $12 \mathrm{~km} / \mathrm{hr}$
b) $6 \mathrm{~km} / \mathrm{hr}$
c) $3 \sqrt{2} \mathrm{~km} / \mathrm{hr}$
d) $(6+3 \sqrt{2}) \mathrm{km} / \mathrm{hr}$
8. If α, β, γ are the real roots of the equation
$x^{3}-3 p x^{2}+3 q x-1=0$,
Then the centroid of the triangle whose vertices are
$\left(\alpha, \frac{1}{\alpha}\right),\left(\beta, \frac{1}{\beta}\right)$ and $\left(\gamma, \frac{1}{\gamma}\right)$, is
a) (p, q)
b) (q, p)
c) $(-p, q)$
d) $(q,-p)$
9. If two vertices of a triangle are $(-2,3)$ and $(5,-1)$. Orthocentre lies at the origin and centroid on the line $x+y=7$, then the third vertex lies at
a) $(7,4)$
b) $(8,14)$
c) $(12,21)$
d) None of these
10. What is the equation of the locus of a point which moves such that 4 times its distance from the x-axis is the square of its distance from the origin?
a) $x^{2}+y^{2}-4 y=0$
b) $x^{2}+y^{2}-4|y|=0$
c) $x^{2}+y^{2}-4 x=0$
d) $x^{2}+y^{2}-4|x|=0$
11. If $a^{2}+b^{2}=c^{2}$, then $s(s-a)(s-b)(s-c)$ is equal to
a) $a^{2} b^{2}$
b) $\frac{1}{4} a^{2} b^{2}$
c) $\frac{1}{2} a^{2} b^{2}$
d) $\frac{1}{2} a b$
12. The harmonic conjugate of $(4,-2)$ with respect to $(2,-4)$ and $(7,1)$ is
a) $(-8,-14)$
b) $(2,3)$
c) $(-2,-3)$
d) $(13,-5)$
13. If O is the origin and $P\left(x_{1}, y_{1}\right), Q\left(x_{2}, y_{2}\right)$ are two points, then $O P . O Q \sin \angle P O Q=$
a) $x_{1} x_{2}+y_{1} y_{2}$
b) $x_{1} y_{2}+x_{2} y_{1}$
c) $\left|x_{1} y_{2}-x_{2} y_{1}\right|$
d) None of these
14. If $\triangle A B C$, if $a=3, b=4, c=5$, then the value of $\sin 2 B$ is
a) $4 / 5$
b) $3 / 20$
c) $24 / 25$
d) $1 / 50$
15. From an aeroplane vertically over a straight horizontal road, the angles of depression of two consecutive milestones on opposite sides of the aeroplane are observed to be α and β. The height of the aeroplane
above the road is
a) $\frac{\tan \alpha+\tan \beta}{\tan \alpha \tan \beta}$
b) $\frac{\tan \alpha \tan \beta}{\tan \alpha+\tan \beta}$
c) $\frac{\cot \alpha \cot \beta}{\cot \alpha+\cot \beta}$
d) None of these
16. In $\triangle A B C$, if $\angle A=45^{\circ}, \angle B=75^{\circ}$, then $a+c \sqrt{2}$ is equal to
a) 0
b) 1
c) b
d) $2 b$
17. Three vertical poles of heights h_{1}, h_{2} and h_{3} at the vertices A, B and C of a $\triangle A B C$ subtend angles α, β and γ respectively at the circumcentre of the triangle. If $\cot \alpha, \cot \beta$ and $\cot \gamma$ are in AP , then h_{1}, h_{2}, h_{3} are in
a) AP
b) GP
c) HP
d) None of these
18. The area enclosed within the curve $|x|+|y|=1$ is
a) 1 sq unit
b) $2 \sqrt{2}$ sq units
c) $\sqrt{2}$ sq units
d) 2 squnits
19. P is a point on the segment joining the feet of two vertical poles of height a and b.The angles of elevation of the top of the poles from P are 45° each. Then, the squre of the distance between the top of the poles is
a) $\frac{a^{2}+b^{2}}{2}$
b) $a^{2}+b^{2}$
c) $2\left(a^{2}+b^{2}\right)$
d) $4\left(a^{2}+b^{2}\right)$
20. By rotating the coordinates axes through 30° in anticlockwise sense the equation $x^{2}+2 \sqrt{3} x y-y^{2}=2 a^{2}$ changes to
a) $X^{2}-Y^{2}=3 a^{2}$
b) $X^{2}-Y^{2}=a^{2}$
c) $X^{2}-Y^{2}=2 a^{2}$
d) None of these
21. The x-coordinate of the incentre of the triangle where the mid points of the sides are $(0,1),(1,1)$ and $(1$, 0) is
a) $2+\sqrt{2}$
b) $1+\sqrt{2}$
c) $2-\sqrt{2}$
d) $1-\sqrt{2}$
22. Let $A(2,-3)$ and $B(-2,1)$ be vertices of a triangle $A B C$. If the centroid of this triangle moves on the line $2 x+3 y=1$, then the locus of the vertex C is the line
a) $2 x+3 y=9$
b) $2 x-3 y=7$
c) $3 x+2 y=5$
d) $3 x-2 y=3$
23. The angle of elevation of the top of a tower at a point on the ground is 30°. If on walking 20 m toward the tower the angle of elevation becomes 60°, then the height of the tower is
a) 10 m
b) $\frac{10}{\sqrt{3}} \mathrm{~m}$
c) $10 \sqrt{3} \mathrm{~m}$
d) None of these
24. In a $\triangle A B C$, if $2 s=a+b+c$ and $(s-b)(s-c)=x \sin ^{2} \frac{A}{2}$, then the value of x is
a) $b c$
b) $c a$
c) $a b$
d) $a b c$
25. If p_{1}, p_{2} denote the length of the perpendiculars from the origin on the lines $x \sec \alpha+y \operatorname{cosec} \alpha=2 a$ and $x \cos \alpha+y \sin \alpha=a \cos 2 \alpha$ respectively, then $\left(\frac{P_{1}}{P_{2}}, \frac{P_{2}}{P_{1}}\right)^{2}$ is equal to
a) $4 \sin ^{2} 4 \alpha$
b) $4 \cos ^{2} 4 \alpha$
c) $4 \operatorname{cosec}^{2} 4 \alpha$
d) $4 \sec ^{2} 4 \alpha$
26. The equation $\sqrt{(x-2)^{2}+(y-1)^{2}}+\sqrt{(x+2)^{2}+(y-4)^{2}}=5$ represents
a) Circle
b) Ellipse
c) Line segment
d) None of these
27. The value of $\frac{1}{r_{1}^{2}}+\frac{1}{r_{2}^{2}}+\frac{1}{r_{3}^{2}}+\frac{1}{r^{2}}$ is
a) 0
b) $\frac{a^{2}+b^{2}+c^{2}}{\Delta^{2}}$
c) $\frac{\Delta^{2}}{a^{2}+b^{2}+c^{2}}$
d) $\frac{a^{2}+b^{2}+c^{2}}{\Delta}$
28. The sides of a triangle are $4 \mathrm{~cm}, 5 \mathrm{~cm}$ and 6 cm . the area of the triangle is equal to
a) $\frac{15}{4} \mathrm{~cm}^{2}$
b) $\frac{15}{4} \sqrt{7} \mathrm{~cm}^{2}$
c) $\frac{4}{15} \sqrt{7} \mathrm{~cm}^{2}$
d) None of these
29. A vertical lamp-post, 6 m high, stands at a distance of 2 m from a wall, 4 m high. A 1.5 m tall man starts to walk away from the wall on the other side of the wall, in line with the lamp-post the maximum distance to which the man can walk remaining in the shadow is
a) $\frac{5}{2} \mathrm{~m}$
b) $\frac{3}{2} \mathrm{~m}$
c) 4 m
d) None of these
30. A tower subtends an angle α at a point A in the plane of its base and the angle of depression of the foot of the tower at a point b feet just above A is β. Then, the height of the tower is
a) $b \tan \alpha \cot \beta$
b) $b \cot \alpha \tan \beta$
c) $b \cot \alpha \cot \beta$
d) $b \tan \alpha \tan \beta$
31. In a $A B C$, if $b=2, \angle B=30^{\circ}$, then the area of the circumcircle of $\triangle A B C$ in square unit is
a) π
b) 2π
c) 4π
d) 6π
32. The base of a cliff is circular. From the extremities of a diameter of the base of angle of elevation of the top of the cliff are 30° and 60°. If the height of the cliff be 500 m , then the diameter of the base of the cliff is
a) $1000 \sqrt{3} \mathrm{~m}$
b) $\frac{2000}{\sqrt{3}} \mathrm{~m}$
c) $\frac{1000}{\sqrt{3}} \mathrm{~m}$
d) $\frac{2000}{\sqrt{2}} \mathrm{~m}$
33. If R denotes circumradius, then in $\triangle A B C, \frac{b^{2}-c^{2}}{2 a R}$ is equal to
a) $\cos (B-C)$
b) $\sin (B-C)$
c) $\cos B-\cos C$
d) None of these
34. The area between the curve $y=1-|x|$ and the x-axis is equal to
a) 1 sq unit
b) $\frac{1}{2}$ sq unit
c) $\frac{1}{3}$ sq unit
d) 2 squnits
35. Angles A, B and C of a triangle are in AP with common difference 15 degree, then angle A is equal to
a) 45°
b) 60°
c) 75°
d) 30°
36. In a triangle $\left(1-\frac{r_{1}}{r_{2}}\right)\left(1-\frac{r_{1}}{r_{3}}\right)=2$, then the triangle is
a) Right angled
b) Equilateral
c) Isosceles
d) None of these
37. The angle of elevation of the sun, if the length of the shadow of a tower is $\sqrt{3}$ times the height of the pole, is
a) 150°
b) 30°
c) 60°
d) 45°
38. If the equation $2 x^{2}+y^{2}-4 x-4 y=0$ is transformed to the equation $2 X^{2}+Y^{2}-8 X-8 Y+18=0$ by shifting the origin at a point P without rotating the coordinates axes, then the coordinates of P are
a) $(1,2)$
b) $(1,-2)$
c) $(-1,2)$
d) $(-1,-2)$
39. A vertical pole $P S$ has two marks Q and R such that the portions $P Q, P R$ and $P S$ subtend angles α, β, γ at a point on the ground distance x from the pole. If $P Q=a, P R=b, P S=c$ and $\alpha+\beta+\gamma=180^{\circ}$ then x^{2} is equal to
a) $\frac{a}{a+b+c}$
b) $\frac{b}{a+b+c}$
c) $\frac{c}{a+b+c}$
d) $\frac{a b c}{a+b+c}$
40. If in a $\triangle A B C,(s-a)(s-b)=s(s-c)$, then angle C is equal to
a) 90°
b) 45°
c) 30°
d) 75°
41. At a point on the ground the angle of elevation of a tower is such that its cotangent is $\frac{3}{5}$. On walking 32 m towards the tower the cotangent of the angle of elevation is $\frac{2}{5}$. The height of the tower is
a) 160 m
b) 120 m
c) 64 m
d) None of these
42. Area of quadrilateral whose vertices are $(2,3),(3,4),(4,5)$ and $(5,6)$, is equal to
a) 0
b) 4
c) 6
d) None of these
43. If the area of a triangle $A B C$ is Δ, then $a^{2} \sin 2 B+b^{2} \sin 2 A$ is equal to
a) 3Δ
b) 2Δ
c) 4Δ
d) -4Δ
44. Consider the following statements :
45. If in a $\triangle A B C, \frac{\sin A}{\sin C}=\frac{\sin (A-B)}{\sin (B-C)}$, then a^{2}, b^{2}, c^{2} are in AP
46. If exradius r_{1}, r_{2} and r_{3} of a $\triangle A B C$ are in HP, then the sides a, b, c are in AP

Which of these is/are correct?
a) Only (1)
b) Only (2)
c) Both (1) and (2)
d) None of these
45. If the sides of the triangle are $p, q, \sqrt{p^{2}+q^{2}+p q}$, then the greatest angle is
a) $\frac{\pi}{2}$
b) $\frac{5 \pi}{4}$
c) $\frac{2 \pi}{3}$
d) $\frac{7 \pi}{4}$
46. If x, y, z are perpendicular drawn from the vertices of triangle having sides a, b and c, then the value of $\frac{b x}{c}+\frac{c y}{a}+\frac{a z}{b}$ will be
a) $\frac{a^{2}+b^{2}+c^{2}}{2 R}$
b) $\frac{a^{2}+b^{2}+c^{2}}{R}$
c) $\frac{a^{2}+b^{2}+c^{2}}{4 R}$
d) $\frac{2\left(a^{2}+b^{2}+c^{2}\right)}{R}$
47. A balloon is observed simultaneously from three points A, B and C on a straight road directly under it. The angular elevation at B is twice and at C is thrice that of A. If the distance between A and B is 200 m and the
distance between B and C is 100 m , then the height of balloon is given by
a) 50 m
b) $50 \sqrt{3} \mathrm{~m}$
c) $50 \sqrt{2} \mathrm{~m}$
d) None of these
48. If the distance of any point P from the points $A(a+b, a-b)$ and $B(a-b, a+b)$ are equal, then the locus of P is
a) $x-y=0$
b) $a x+b y=0$
c) $b x-a y=0$
d) $x+y=0$
49. The length of altitude through A of the $\triangle A B C$, where $A \equiv(-3,0), B \equiv(4,-1), C \equiv(5,2)$, is
a) $\frac{2}{\sqrt{10}}$
b) $\frac{4}{\sqrt{10}}$
c) $\frac{11}{\sqrt{10}}$
d) $\frac{22}{\sqrt{10}}$
50. Triangle $A B C$ has vertices $(0,0),(11,60)$ and $(91,0)$. If the line $y=k x$ cuts the triangle into two triangles of equal area, then k is equal to
a) $\frac{30}{51}$
b) $\frac{4}{7}$
c) $\frac{7}{4}$
d) $\frac{30}{91}$
51. A pole stands at the centre of a rectangular field and it subtends angles of 15° and 45° at the mid points of the side of the field. If the length of its diagonal is 1200 m , then the height of flag staff is
a) 400 m
b) 200 m
c) $300 \sqrt{2+\sqrt{3}} \mathrm{~m}$
d) $300 \sqrt{2-\sqrt{3}} \mathrm{~m}$
52. What is the equation of the locus a point which moves such that 4 times its distance from the x-axis is the square of its distance from the origin?
a) $x^{2}-y^{2}-4 y=0$
b) $x^{2}+y^{2}-4|y|=0$
c) $x^{2}+y^{2}-4 x=0$
d) $x^{2}+y^{2}-4|x|=0$
53. A person standing on the bank of a river, observe that the angle of elevation of the top of a tree on the opposite bank of the river is 60° and when he retries 40 m a way from the tree the angle of elevation become 30°. The breadth of the river is
a) 20 m
b) 30 m
c) 40 m
d) 60 m
54. There exist a $\triangle A B C$ satisfying
a) $\tan A+\tan B+\tan C=0$
b) $\frac{\sin A}{2}=\frac{\sin B}{3}=\frac{\sin C}{1}$
$\sin A+\sin B=-\left(\frac{\sqrt{3}+1}{2 \sqrt{2}}\right) \cos A \cos B$
d) $(a+b)^{2}=c^{2}+a b$ and $\sqrt{2}(\sin A+\cos A)=\sqrt{3}$

$$
=\frac{\sqrt{3}}{4}=\sin A \sin B
$$

55. From a point a meters above a lake the angle of elevation of a cloud is α and the angle of depression of its reflection is β. The height of the cloud is
a) $\frac{a \sin (\alpha+\beta)}{\sin (\alpha+\beta)} \mathrm{m}$
b) $\frac{a \sin (\alpha+\beta)}{\sin (\beta-\alpha)} \mathrm{m}$
c) $\frac{a \sin (\beta-\alpha)}{\sin (\alpha+\beta)}$
d) None of these
56. The orthocentre of the triangle formed by $(0,0),(8,0),(4,6)$ is
a) $\left(4, \frac{8}{3}\right)$
b) $(3,4)$
c) $(4,3)$
d) $(-3,4)$
57. The x-coordinate of the incentre of the triangle where the mid point of the sides are $(0,1),(1,1)$ and $(1$, 0), is
a) $2+\sqrt{2}$
b) $1+\sqrt{2}$
c) $2-\sqrt{2}$
d) $1-\sqrt{2}$
58. The locus of the point (x, y) which is equidistant from the points $(a+b, b-a)$ and $(a-b, a+b)$ is
a) $a x=b y$
b) $a x+b y=0$
c) $b x+a y=0$
d) $b x-a y=0$
59. If the sum of the distances from two perpendicular lines in a plane is 1 , then its locus is
a) A square
b) A circle
c) A straight line
d) Two intersecting lines
60. A tower of x metres high, has a flagstaff at its top. The tower and the flagstaff subtend equal angles at a point distant y metres from the foot of the tower. Then the length of the flagstaff (in meters), is
a) $\frac{y\left(x^{2}-y^{2}\right)}{\left(x^{2}+y^{2}\right)}$
b) $\frac{x\left(y^{2}+x^{2}\right)}{\left(y^{2}-x^{2}\right)}$
c) $\frac{x\left(x^{2}+y^{2}\right)}{\left(x^{2}-y^{2}\right)}$
d) $\frac{x\left(x^{2}-y^{2}\right)}{\left(x^{2}+y^{2}\right)}$
61. In a $\triangle A B C, 2 a c \sin \frac{A-B+C}{2}$ is equal to
a) $a^{2}+b^{2}-c^{2}$
b) $c^{2}+a^{2}-b^{2}$
c) $b^{2}-a^{2}-c^{2}$
d) $c^{2}-a^{2}-b^{2}$
62. If $P=(1,0), Q=(-1,0)$ and $R=(2,0)$ are three given points, then the locus of the point $S(x, y)$ satisfying the relation $S Q^{2}++S R^{2}=2 S P^{2}$ is
a) A straight line parallel to x-axis
b) A circle through the origin
c) A circle with centre at the origin
d) A straight line parallel to y-axis
63. If orthocenter and circumcentre of a triangle are respectively $(1,1)$ and $(3,2)$, then the coordinates of its centroid are
а) $\left(\frac{7}{3}, \frac{5}{3}\right)$
b) $\left(\frac{5}{3}, \frac{7}{3}\right)$
c) $(7,5)$
d) None of these
64. The locus of the point of intersection of the lines $x \cot \theta+y \operatorname{cosec} \theta=2$ and $x \operatorname{cosec} \theta+y \cot \theta=6$ is
a) A straight line
b) Circle
c) A hyperbola
d) An ellipse
65. In $\triangle A B C$, if $\cot A, \cot B, \cot C$ be in AP , then a^{2}, b^{2}, c^{2} are in
a) HP
b) GP
c) AP
d) None of these
66. The angels of elevation of the cloud at a point 2500 m high from the lake is 15° and the angle of depression of its reflection to the lake is 45°. Then the height of cloud from the foot of lake is
a) $2500 \sqrt{3} \mathrm{~m}$
b) 2500 m
c) $500 \sqrt{3} \mathrm{~m}$
d) None of these
67. ABC is a triangular park with $A B=A C=100 \mathrm{~m}$. A clock tower is situated at the mid point of $B C$. The angle of elevation, if the top of the toper at A and B are $\cot ^{-1} 3.2$ and $\operatorname{cosec}^{-1} 2.6$ respectively. The height of the tower is
a) 16 m
b) 25 m
c) 50 m
d) None of these
68. In $\triangle A B C, b=\sqrt{3}, c=1$ and $\angle A=30^{\circ}$, then the largest angle of the triangle is
a) 60°
b) 135°
c) 90°
d) 120°
69. In an equilateral triangle, $R: r: r_{1}$ is equal to
a) $1: 1: 1$
b) $1: 2: 3$
c) $2: 1: 3$
d) $3: 2: 4$
70. In a triangle, if $r_{1}=2 r_{2}=3 r_{3}$, then $\frac{a}{b}+\frac{b}{c}+\frac{c}{a}$ is equal to
a) $\frac{75}{60}$
b) $\frac{155}{60}$
c) $\frac{176}{60}$
d) $\frac{191}{60}$
71. In a triangle $A B C, a: b: c=4: 5: 6$. The ratio of the radius of the circumcircle to that of the incircle is
a) $\frac{15}{4}$
b) $\frac{11}{5}$
c) $\frac{16}{7}$
d) $\frac{16}{3}$
72. An aeroplane flying with uniform speed horizontally one kilometer above the ground is observed at an elevation of 60°. After 10 s , if the elevation is observed to be 30°, then the speed of the plane (in km / h) is
a) $\frac{240}{\sqrt{3}}$
b) $200 \sqrt{3}$
c) $240 \sqrt{3}$
d) $\frac{120}{\sqrt{3}}$
73. The angle of elevation of the top of a tower standing on a horizontal plane from a point A is α. After walking a distance a towards the foot of the tower the angle of elevation is found to be β. The height of the tower is
a) $\frac{a \sin \alpha \sin \beta}{\sin (\beta-\alpha)}$
b) $\frac{a \sin \alpha \sin \beta}{\sin (\alpha-\beta)}$
c) $\frac{a \sin (\beta-\alpha)}{\sin \alpha \sin \beta}$
d) $\frac{a \sin (\alpha-\beta)}{\sin \alpha \sin \beta}$
74. If the vertices of a triangle have integral coordinates, the triangle cannot be
a) An equilateral triangle
b) A right angled triangle
c) An isosceles triangle
d) None of the above
75. In a $\triangle A B C$, among the following which one is true?
a) $(b+c) \cos \frac{A}{2}=a \sin \left(\frac{B+C}{2}\right)$
b) $(b+c) \cos \left(\frac{B+C}{2}\right)=a \sin \frac{A}{2}$
c) $(b-c) \cos \left(\frac{B-C}{2}\right)=a \cos \left(\frac{A}{2}\right)$
d) $(b-c) \cos \frac{A}{2}=a \sin \left(\frac{B-C}{2}\right)$
76. The upper $\left(\frac{3}{4}\right)$ th portion of a vertical pole subtends an angle $\tan ^{-1}\left(\frac{3}{5}\right)$ at a point in the horizontal plane through its foot and at a distance 40 m from the foot. A possible height of the vertical pole is
a) 20 m
b) 40 m
c) 60 m
d) 80 m
77. If C and D are the points of internal and external division of line segment $A B$ in the same ratio, then $A C, A B, A D$ are in
a) AP
b) GP
c) HP
d) AGP
78. A ladder rests against a vertical wall at angle α to the horizontal. If its foot is pulled away from the wall through a distance ' a ' so that it slides a distance ' b ' down the wall making an angle β with the horizontal, then $a=$
a) $b \tan \left(\frac{\alpha-\beta}{2}\right)$
b) $b \tan \left(\frac{\alpha+\beta}{2}\right)$
c) $b \cot \left(\frac{\alpha-\beta}{2}\right)$
d) None of these
79. The angles A, B and C of a $\triangle A B C$ are in A.P. If $A B=6, B C=7$, then $A C=$
a) 5
b) 7
c) 8
d) None of these
80. The locus of a point whose difference of distance from points $(3,0)$ and $(-3,0)$ is 4 , is
a) $\frac{x^{2}}{4}-\frac{y^{2}}{5}=1$
b) $\frac{x^{2}}{5}-\frac{y^{2}}{4}=1$
c) $\frac{x^{2}}{2}-\frac{y^{2}}{3}=1$
d) $\frac{x^{2}}{3}-\frac{y^{2}}{2}=1$
81. If a $\triangle A B C$, if $a^{4}+b^{4}+c^{4}=2 c^{2}\left(a^{2}+b^{2}\right)$, then $\angle C$ is equal to
a) 60°
b) 135°
c) 90°
d) 75°
82. Given the points $A(0,4)$ and $B(0,-4)$, then the equation of the locus of the point $P(x, y)$ such that, $|A P-B P|=6$, is
a) $\frac{x^{2}}{7}+\frac{y^{2}}{9}=1$
b) $\frac{x^{2}}{9}+\frac{y^{2}}{7}=1$
c) $\frac{x^{2}}{7}-\frac{y^{2}}{9}=1$
d) $\frac{y^{2}}{9}-\frac{x^{2}}{7}=1$
83. If in $\triangle A B C, \sin \frac{A}{2} \sin \frac{C}{2}=\sin \frac{B}{2}$ and $2 s$ is the perimeter of the triangle, then s is
a) $2 b$
b) b
c) $3 b$
d) $4 b$
84. The angle of depression of a ship from the top of a tower 30 m high is 60°.Then the distance of ship from the base of tower is
a) 30 m
b) $30 \sqrt{3} \mathrm{~m}$
c) $10 \sqrt{3} \mathrm{~m}$
d) 10 m
85. At a distance $2 h \mathrm{~m}$ from the foot of a tower of height $h \mathrm{~m}$ the top of the tower and a pole at the top of the tower subtend equal angles. Height of the pole should be
a) $\frac{5 h}{3} \mathrm{~m}$
b) $\frac{4 h}{3} \mathrm{~m}$
c) $\frac{7 h}{5} \mathrm{~m}$
d) $\frac{3 h}{2} \mathrm{~m}$
86. From the tower 60 m high angles of depression of the top and bottom of a house are α and β respectively. If the height of the house is $\frac{60 \sin (\beta-\alpha)}{x}$, then x is equal to
a) $\sin \alpha \sin \beta$
b) $\cos \alpha \cos \beta$
c) $\sin \alpha \cos \beta$
d) $\cos \alpha \sin \beta$
87. In a triangle, the lengths of the two larger sides are 10 cm and 9 cm respectively. If the angles of the triangle are in AP , then the length of the third side in cm can be
a) $5-\sqrt{6}$ only
b) $5+\sqrt{6}$ only
c) $5-\sqrt{6}$ or $5+\sqrt{6}$
d) Neither $5-\sqrt{6}$ nor $5+\sqrt{6}$
88. In $\triangle A B C$, if $\sin ^{2} \frac{A}{2}, \sin ^{2} \frac{B}{2}, \sin ^{2} \frac{C}{2}$ be in HP. Then, a, b, c will be in
a) AP
b) GP
c) HP
d) None of these
89. The angles of elevation of the top of a tower at the top and the foot of a pole of height 10 m are 30° and 60° respectively. The height of the tower is
a) 10 m
b) 15 m
c) 20 m
d) None of these
90. If the points $(1,1),(-1,-1),(-\sqrt{3}, \sqrt{3})$ are the vertices of a triangle, then this triangle is
a) Right angled
b) Isosceles
c) Equilateral
d) None of these
91. The vertices of a family of triangles have integer coordinates. If two of the vertices of all the triangles are $(0,0)$ and $(6,8)$, then the least value of areas of the triangles is
a) 1
b) $\frac{3}{2}$
c) 2
d) $\frac{5}{2}$
92. In a $\triangle A B C,\left(\cot \frac{A}{2}+\cot \frac{B}{2}\right)\left(a \sin ^{2} \frac{B}{2}+b \sin ^{2} \frac{A}{2}\right)$ is equal to
a) $\cot C$
b) $c \cot C$
c) $\cot \frac{C}{2}$
d) $c \cot \frac{C}{2}$
93. The intercepts on the straight line $y=m x$ by the line $y=2$ and $y=6$ is less than 5 , then m belongs to
a) $]-\frac{4}{3}, \frac{4}{3}[$
b) $] \frac{4}{3}, \frac{3}{8}[$
c) $]-\infty,-\frac{4}{3}[\cup] \frac{4}{3}, \infty[$
d) $] \frac{4}{3}, \infty[$
94. In $\triangle A B C,(b-c) \sin A+(c-a) \sin B+(a-b) \sin C$ is equal to
a) $a b+b c+c a$
b) $a^{2}+b^{2}+c^{2}$
c) 0
d) None of these
95. The inradius of the triangle whose sides are $3,5,6$ is
a) $\sqrt{\frac{8}{7}}$
b) $\sqrt{8}$
c) $\sqrt{7}$
d) $\sqrt{\frac{7}{8}}$
96. In a $\triangle A B C$, if the sides are $a=3, b=5$ and $c=4$, then $\sin \frac{B}{2}+\cos \frac{B}{2}$ is equal to
a) $\sqrt{2}$
b) $\frac{\sqrt{3}+1}{2}$
c) $\frac{\sqrt{3}-1}{2}$
d) 1
97. The elevation of an object on a hill is observed from a certain point in the horizontal plane through its base, to be 30°. After walking 120 m towards it on level ground the elevation is found to be 60°. Then the height of the object (in metres) is
a) 120
b) $60 \sqrt{3}$
c) $120 \sqrt{3}$
d) 60
98. If the area of the triangle with vertices $(x, 0),(1,1)$ and $(0,2)$ is 4 sq unit, then the value of x is
a) -2
b) -4
c) -6
d) 8
99. At a distance 12 metres from the foot A of a tower $A B$ of height 5 metres, a flagstaff $B C$ on top of $A B$ and the tower subtend the same angle. The, the height of flagstaff is
a) $\frac{1440}{119}$ metres
b) $\frac{475}{119}$ metres
c) $\frac{845}{119}$ metres
d) None of these
100. A tower 50 m high, stands on top of a mount, from a point on the ground the angles of elevation of the top and bottom of the tower are found to be 75° and 60° respectively. the height of the mount is
a) 25 m
b) $25(\sqrt{3}-1) \mathrm{m}$
c) $25 \sqrt{3} \mathrm{~m}$
d) $25(\sqrt{3}+1) \mathrm{m}$
101. Let $A B$ is divided internally and externally at P and Q in the same ratio. Then, $A P, A B, A Q$ are in
a) AP
b) GP
c) HP
d) None of these
102. If the sum of the distance of a point P from two perpendicular lines in a plane is 1 , then the locus of P is a
a) Rhombus
b) Circle
c) Straight line
d) Pair of straight lines
103. A flagpole stands on a building of height 450 ft and an observer on a level ground is 300 ft from the base of the building. The angle of elevation of the bottom of the flagpole is 30° and the height of the flagpole is 50 ft . If θ is the angle of elevation of the top of the flagpole, then $\tan \theta$ is equal to
a) $\frac{4}{3 \sqrt{3}}$
b) $\frac{\sqrt{3}}{2}$
c) $\frac{9}{2}$
d) $\frac{\sqrt{3}}{5}$
104. In $\triangle A B C, 2\left(a \sin ^{2} \frac{C}{2}+c \sin ^{2} \frac{A}{2}\right)$ is equal to
a) $a+b-c$
b) $c+a-b$
c) $b+c-a$
d) $a+b+c$
105. Orthocenter of triangle with vertices $(0,0),(3,4)$ and $(4,0)$ is
a) $\left(3, \frac{5}{4}\right)$
b) $(3,12)$
c) $\left(3, \frac{3}{4}\right)$
d) $(3,9)$
106. Three vertices of a parallelogram taken in order are $(-1,-6),(2,-5)$ and $(7,2)$. The fourth vertex is
a) $(1,4)$
b) $(4,1)$
c) $(1,1)$
d) $(4,4)$
107. If in a $\triangle A B C, \cos A \cos B+\sin A \sin B \sin C=1$, then the triangle is
a) Isosceles
b) Right angled
c) Isosceles right angled
d) Equilateral
108. If in a $\triangle A B C$, the sides $A B$ and $A C$ are perpendicular, then the true equation is
a) $\tan A+\tan B=0$
b) $\tan B+\tan C=0$
c) $\tan A+2 \tan C=0$
d) $\tan B \tan C=1$
109. The points $(1,1),(-5,5)$ and $(13, \lambda)$ lie on the same straight line, if λ is equal to
a) 7
b) -7
c) ± 7
d) 0
110. Circumcentre of triangle whose vertices are $(0,0),(3,0)$ and $(0,4)$ is
a) $\left(\frac{3}{2}, 2\right)$
b) $\left(2, \frac{3}{2}\right)$
c) $(0,0)$
d) None of these
111. The vertices of a triangle are $A(-1,-7), B(5,1)$ and $C(1,4)$. The equation of the bisector of angle $A B C$, is
a) $x+7 y-2=0$
b) $x-7 y-2=0$
c) $x-7 y+2=0$
d) None of these
112. A tower subtends angles $\alpha, 2 \alpha$ and 3α respectively at points A, B and C, all lying on a horizontal line through the foot of the tower, then $\frac{A B}{B C}$ is equal to
a) $\frac{\sin 3 \alpha}{\sin 2 \alpha}$
b) $1+2 \cos 2 \alpha$
c) $2 \cos 2 \alpha$
d) $\frac{\sin 2 \alpha}{\sin \alpha}$
113. A person standing on the bank of a river finds that the angle of elevation of the top of a tower on the opposite bank is 45°, then which of the following statements is correct?
a) Breadth of the river is twice the height of the tower
b) Breadth of the river and the height of the tower are the same
c) Breadth of the river is half of the height of the tower
d) None of these
114. The angular depression of the top and the foot of the chimney as seen from the top of a second chimney which is 150 m high and standing on the same level as the first are θ and ϕ respectively. The distance between their tops when $\tan \theta=\frac{4}{3}$ and $\tan \phi=\frac{5}{2}$ is equal to
a) 50 m
b) 100 m
c) 15 m
d) None of these
115. A round balloon of radius r subtends an angle α at the eye of the observer, While the angle of elevation of its centre is β. The height of the center of balloon is
a) $r \operatorname{cosec} \alpha \sin \frac{\beta}{2}$
b) $r \sin \alpha \operatorname{cosec} \frac{\beta}{2}$
c) $r \sin \frac{\alpha}{2} \operatorname{cosec} \beta$
d) $r \operatorname{cosec} \frac{\alpha}{2} \sin \beta$
116. In a $\triangle A B C, a, c, A$ are given and b_{1}, b_{2} are two values, if the third side b such that $b_{2}=2 b_{1}$, then $\sin A$ is equal to
a) $\frac{\sqrt{9 a^{2}-c^{2}}}{8 a^{2}}$
b) $\sqrt{\frac{9 a^{2}-c^{2}}{8 c^{2}}}$
c) $\frac{\sqrt{9 a^{2}+c^{2}}}{8 a^{2}}$
d) None of these
117. If a, b, c are sides of a triangle, then
a) $\sqrt{a}+\sqrt{b}>\sqrt{c}$
b) $|\sqrt{a}-\sqrt{b}|>\sqrt{c}$ (if c is smallest)
c) $\sqrt{a}+\sqrt{b}<\sqrt{c}$
d) None of the above
118. $A B C$ Is a triangle with $\angle A=30^{\circ}, B C=10 \mathrm{~cm}$. The area of the circumcircle of the triangle is
a) $100 \pi \mathrm{sq} \mathrm{cm}$
b) 5 sq cm
c) 25 sq cm
d) $\frac{100 \pi}{3} \mathrm{sq} \mathrm{cm}$
119. In a $\triangle A B C, a: b: c=4: 5: 6$. The ratio of the radius of the circumcircle to that of the incircle is
a) $\frac{16}{9}$
b) $\frac{16}{7}$
c) $\frac{11}{7}$
d) $\frac{7}{16}$
120. The incentre of the triangle formed by lines $x=0, y=0$ and $3 x+4 y=12$, is at
a) $\left(\frac{1}{2}, \frac{1}{2}\right)$
b) $(1,1)$
c) $\left(1, \frac{1}{2}\right)$
d) $\left(\frac{1}{2}, 1\right)$
121. Given points are $A(0,4)$ and $B(0,-4)$, the locus of $P(x, y)$ such that $|A P-B P|=6$, is
a) $9 x^{2}-7 y^{2}+63=0$
b) $9 x^{2}+7 y^{2}-63=0$
c) $9 x^{2}+7 y^{2}+63=0$
d) None of these
122. The angle of elevation of the top of a tower from a point A due South of the tower is α and from a point B due East of the tower is β. If $A B=d$, then the height of the tower is
a) $\frac{d}{\sqrt{\tan ^{2} \alpha-\tan ^{2} \beta}}$
b) $\frac{d}{\sqrt{\tan ^{2} \alpha+\tan ^{2} \beta}}$
c) $\frac{d}{\sqrt{\cot ^{2} \alpha+\cot ^{2} \beta}}$
d) $\frac{d}{\sqrt{\cot ^{2} \alpha-\cot ^{2} \beta}}$
123. Let P be the point $(1,0)$ and Q be the point on $y^{2}=8 x$. The locus of mid point of $P Q$ is
a) $x^{2}-4 y+2=0$
b) $x^{2}+4 y+2=0$
c) $y^{2}+4 x+2=0$
d) $y^{2}-4 x+2=0$
124. Let $A(k, 2)$ and $B(3,5)$ are points. The point (t, t) divide $\overline{A B}$ from A 's side in the ratio of k, then $k=\cdots, k \in R-\{0,-1\}$
a) -4
b) -2
c) 4
d) 2
125. If a, b, c the sides of a $\triangle A B C$ are in AP and a is the smallest side, then $\cos A$ equals
а) $\frac{3 c-4 b}{2 c}$
b) $\frac{3 c-4 b}{2 b}$
c) $\frac{4 c-3 b}{2 c}$
d) None of these
126. Area of the triangle formed by the lines $y=2 x, y=3 x$ and $y=5$ is equal to (in square unit)
a) $\frac{25}{6}$
b) $\frac{25}{12}$
c) $\frac{5}{6}$
d) $\frac{17}{12}$
127. The angles of depression of the top and the foot of a chimney as seen from the top of a second chimney, which is 150 m high and standing on the same level as the first are θ and ϕ respectively, then the distance between their tops when $\tan \theta=\frac{4}{3}$ and $\tan \phi=\frac{5}{2}$, is
a) $\frac{150}{\sqrt{3}} m$
b) $100 \sqrt{3} \mathrm{~m}$
c) 150 m
d) 100 m
128. If one side of a triangle is double the other and the angles opposite to these sides differ by 60°, then the triangle is
a) Obtuse angled
b) Acute angled
c) Isosceles
d) Right angled
129. If the three points $(3 q, 0),(0,3 p)$ and $(1,1)$ are collinear then which one is true?
a) $\frac{1}{p}+\frac{1}{q}=0$
b) $\frac{1}{p}+\frac{1}{q}=1$
c) $\frac{1}{p}+\frac{1}{q}=3$
d) $\frac{1}{p}+\frac{3}{q}=1$
130. If in a $\triangle A B C, a=15, b=36, c=39$, then $\sin \frac{c}{2}$ is equal to
a) $\frac{\sqrt{3}}{2}$
b) $\frac{1}{2}$
c) $\frac{1}{\sqrt{2}}$
d) $-\frac{1}{\sqrt{2}}$
131. In a $\triangle A B C$, let $\angle C=\frac{\pi}{2}$, if r is the inradius and R is the circumradius of the $\triangle A B C$, then $2(r+R)$ equals
a) $c+a$
b) $a+b+c$
c) $a+b$
d) $b+c$
132. From the top of a light house 60 m high with its base at the sea level the angle of depression of a boat is 15°. The distance of the boat from the foot of light house is
a) $\left(\frac{\sqrt{3}-1}{\sqrt{3}+1}\right) 60 \mathrm{~m}$
b) $\left(\frac{\sqrt{3}+1}{\sqrt{3}-1}\right) 60 \mathrm{~m}$
c) $\frac{\sqrt{3}+1}{\sqrt{3}-1} \mathrm{~m}$
d) None of these
133. If $\cos ^{2} A+\cos ^{2} C=\sin ^{2} B$, then $\triangle A B C$ is
a) Equilateral
b) Right angled
c) Isosceles
d) None of these
134. The sides of triangle are in the ratio $1: \sqrt{3}: 2$, then the angles of the triangle are in ratio
a) $1: 3: 5$
b) $2: 3: 1$
c) $3: 2: 1$
d) $1: 2: 3$
135. A tower stands at the top of a hill whose height is 3 times the height of the tower. The tower is found to subtend at a point 3 km away on the horizontal through the foot of the hill, an angle θ, where $\tan \theta=\frac{1}{9}$. The height of the tower is
a) 12
b) 3
c) $\frac{9 \pm \sqrt{33}}{8}$
d) None of these
136. Angles A, B and C of a $\triangle A B C$ are in AP. If $\frac{b}{c}=\frac{\sqrt{3}}{\sqrt{2}}$, then angle A is equal to
a) $\frac{\pi}{6}$
b) $\frac{\pi}{4}$
c) $\frac{5 \pi}{12}$
d) $\frac{\pi}{2}$
137. The angle of depression of a boat in a river is 30° from the top of a tower, 87 m high and the speed of the boat is $5.8 \mathrm{~km} / \mathrm{h}$. The time taken by the boat to reach at the base of the tower is
a) 9 min
b) $\frac{9 \sqrt{3}}{10} \mathrm{~min}$
c) 25 min
d) 15 min
138. If the centroid of the triangle formed by the points $(a, b),(b, c)$ and (c, a) is at the origin, then $a^{3}+b^{3}+$ $c^{3}=$
a) 0
b) $a b c$
c) $3 a b c$
d) $-3 a b c$
139. The sides of a $\triangle A B C$ are $B C=5, C A=4$ and $A B=3$. If A is at the origin and the bisector of the internal angle A meets $B C$ in $D(12 / 7,12 / 7)$, then the coordinates of the incentre, are
a) $(2,2)$
b) $(2,3)$
c) $(3,2)$
d) $(1,1)$
140. If a, b and c are the sides of a triangle such that $a^{4}+b^{4}+c^{4}=2 c^{2}\left(a^{2}+b^{2}\right)$, then the angles opposite to the side C is
a) 45° or 90°
b) 30° or 135°
c) 45° or 135°
d) 60° or 120°
141. In radius of a circle which is inscribed in a isosceles triangle one of whose angle is $2 \pi / 3$, is $\sqrt{3}$, then area of triangle is
a) $4 \sqrt{3}$
b) $12-7 \sqrt{3}$
c) $12+7 \sqrt{3}$
d) None of these
142. A triangular park is enclosed on two sides by a fence and on the third side by a straight river bank. The two sides having fence are of same length x. The maximum area enclosed by the park is
a) $\sqrt{\frac{x^{3}}{8}}$
b) $\frac{1}{2} x^{2}$
c) πx^{2}
d) $\frac{3}{2} x^{2}$
143. In a $\triangle A B C$, if $\tan \frac{A}{2}=\frac{5}{6}, \tan \frac{C}{2}=\frac{2}{5}$, then
a) a, b, c are in AP
b) a, b, c are in GP
c) b.a.c are in AP
d) a, b, c are in AP
144. The vertices P, Q, R of a triangle are $(2,1),(5,2)$ and $(3,4)$ respectively. Then, the circumcentre is
a) $\left(\frac{13}{4},-\frac{9}{4}\right)$
b) $\left(-\frac{13}{4}, \frac{9}{4}\right)$
c) $\left(-\frac{13}{4},-\frac{9}{4}\right)$
d) $\left(\frac{13}{4}, \frac{9}{4}\right)$
145. In a $\triangle A B C,(a+b+c)(b+c-a)=k b c$, if
a) $k<0$
b) $k>6$
c) $0<k<4$
d) $k>4$
146. If $A(6,-3), B(-3,5), C(4,-2), P(\alpha, \beta)$, then the ratio of the areas of the triangles $P B C, A B C$ is
a) $|\alpha+\beta|$
b) $|\alpha-\beta|$
c) $|\alpha+\beta+2|$
d) $|\alpha+\beta-2|$
147. $A B C$ is a triangular park with $A B=A C=100 \mathrm{~m}$. A clock tower is situated at the mid point of $B C$. The
 of the tower is
a) 50 m
b) 25 m
c) 40 m
d) None of these
148. In a $\triangle A B C, a \cot A+b \cot B+c \cot C$ is equal to
a) $r+R$
b) $r-R$
c) $2(r+R)$
d) $2(r-R)$
149. If $(1, a),(2, b)$, and ($3, c$); $a, b, c \in R$ are the vertices of a triangle, its centroid can
a) Not be on x-axis
b) Not be on y-axis
c) Be on $(0,0)$
d) None of these
150. The pair of lines $\sqrt{3} x^{2}-4 x y+\sqrt{3} y^{2}=0$ are rotated about the origin by $\pi / 6$ in the anti-clockwise sense. The equation of the pair in the new position is
a) $\sqrt{3} y^{2}-x y=0$
b) $\sqrt{3} x^{2}-x y=0$
c) $x^{2}-y^{2}=0$
d) $\sqrt{3} x^{2}+x y=0$
151. In triangle $A B C, a=2, b=3$ and $\sin A=\frac{2}{3}$ then B is equal to
a) 30°
b) 60°
c) 90°
d) 120°
152. If the sides of a right angle triangle form an $A P$, the ' \sin ' of the acute angles are
а) $\left(\frac{3}{5}, \frac{4}{5}\right)$
b) $\left(\sqrt{3}, \frac{1}{\sqrt{3}}\right)$
c) $\left(\sqrt{\frac{\sqrt{5}-1}{2}}, \sqrt{\frac{\sqrt{5}-1}{2}}\right)$
d) $\left(\sqrt{\frac{\sqrt{3}-1}{2}}, \sqrt{\frac{\sqrt{3}-1}{2}}\right)$
153. In a $\triangle A B C, 2 a^{2}+4 b^{2}+c^{2}=4 a b+2 a c$, then $\cos B$ is equal to
a) 0
b) $\frac{1}{8}$
c) $\frac{3}{8}$
d) $\frac{7}{8}$
154. The line joining $A(b \cos \alpha, b \sin \alpha)$ and $B(a \cos \beta, a \sin \beta)$ is produced to the point $M(x, y)$ so that
$A M: M B=b: a$, then
$x \cos \left(\frac{\alpha+\beta}{2}\right)+y \sin \left(\frac{\alpha+\beta}{2}\right)$ is
a) -1
b) 0
c) 1
d) $a^{2}+b^{2}$
155. A house of height 100 m subtends a right angle at the window of an opposite house. If the height of the window be 64 m , then the distance between the two houses is
a) 48 m
b) 36 m
c) 54 m
d) 72 m
156. A vertical tower stands on a declivity which is inclined at 15° to the horizon. From the foot of the tower a man ascends the declivity for 80 ft and them, finds that the tower subtends an angle of 30°. The height of tower is
a) $20(\sqrt{6}-\sqrt{2}) \mathrm{ft}$
b) $40(\sqrt{6}-\sqrt{2}) \mathrm{ft}$
c) $40(\sqrt{6}+\sqrt{2}) \mathrm{ft}$
d) None of these
157. $(0,-1)$ And $(0,3)$ are two opposite vertices of a square. The other two vertices are
a) $(0,1),(0,-3)$
b) $(3,-1),(0,0)$
c) $(2,1),(-2,1)$
d) $(2,2),(1,1)$
158. The points $(1,3)$ and $(5,1)$ are two opposite vertices of a rectangle. The other two vertices lie on the line $y=2 x+c$, are
a) $(2,0)$ and $(4,4)$
b) $(2,0)$ and $(-4,-4)$
c) $(2,0)$ and $(-4,4)$
d) $(-2,0)$ and $(4,4)$
159. If in a $\triangle A B C, r_{3}=r_{1}+r_{2}+r$, then $\angle A+\angle B$ is equal to
a) 120°
b) 100°
c) 90°
d) 80°
160. In a triangle $A B C$, if $a=3, b=4, c=5$, then the distance between its incentre and circumcentre is
a) $\frac{1}{2}$
b) $\frac{\sqrt{3}}{2}$
c) $\frac{3}{2}$
d) $\frac{\sqrt{5}}{2}$
161. One side of length $3 a$ of triangle of area a^{2} square unit lies on the line $x=a$. Then, one of the lines on which the third vertex lies, is
a) $x=-a^{2}$
b) $x=a^{2}$
c) $x=-a$
d) $x=\frac{a}{3}$
162. In a $\triangle A B C$, if D is the middle point $B C$ and $A D$ is perpendicular to $A C$, then $\cos B$ is equal to
a) $\frac{2 b}{a}$
b) $-\frac{b}{a}$
c) $\frac{b^{2}+c^{2}}{c a}$
d) $\frac{c^{2}+a^{2}}{c a}$
163. The angle of depression of a point situated at a distance of 70 metres from the base of a tower is 45°. The height of the tower is
a) 70 m
b) $70 \sqrt{2} \mathrm{~m}$
c) $\frac{70}{\sqrt{2}} \mathrm{~m}$
d) 35 m
164. The sides of a triangle are three consecutive natural numbers and its largest angle is twice the smallest one. Then, the sides of the triangle are
a) $1,2,3$
b) $2,3,4$
c) $3,4,5$
d) $4,5,6$
165. Consider the following statements :
166. $\frac{b^{2}-c^{2}}{a \sin (B-C)}=2 R$
167. $a \sin (B-C)+b \sin (C-A)+c \sin (A-B)=0$

Which of these is/are correct?
a) Only (1)
b) Only (2)
c) Both (1) and (2)
d) None of these
166. The four distinct point $(0,0),(2,0),(0,-2)$ and $(k,-2)$ are concyclic, if k is equal to
a) -2
b) 2
c) 1
d) 0
167. If origin is shifted to $(7,-4)$, then point $(4,5)$ shifted to
a) $(-3,9)$
b) $(3,9)$
c) $(11,1)$
d) None of these
168. In $\triangle A B C,(a+b+c)\left(\tan \frac{A}{2}+\tan \frac{B}{2}\right)$ is equal to
a) $2 c \cot \frac{C}{2}$
b) $2 a \cot \frac{A}{2}$
c) $2 b \cot \frac{B}{2}$
d) $\tan \frac{C}{2}$
169. In a $\triangle A B C$, sides a, b, c are in AP and $\frac{2}{1!9!}+\frac{2}{3!7!}+\frac{1}{5!5!}=\frac{8^{a}}{(2 b)!}$ then the maximum value of $\tan A \tan B$ is equal to
a) $\frac{1}{2}$
b) $\frac{1}{3}$
c) $\frac{1}{4}$
d) $\frac{1}{4}$
170. If the angle of elevation of two towers from the middle point of the line joining their feet be 60° and 30° respectively, then the ratio of their heights is
a) $2: 1$
b) $1: \sqrt{2}$
c) $3: 1$
d) $1: \sqrt{3}$
171. In a $\triangle A B C, \angle C=60^{\circ}$ then $\frac{1}{a+c}+\frac{1}{b+c}$ is equal to
a) $\frac{1}{a+b+c}$
b) $\frac{2}{a+b+c}$
c) $\frac{3}{a+b+c}$
d) None of these
172. In $\triangle A B C$, if $(a+b+c)(a-b+c)=3 a c$, then
a) $\angle B=60^{\circ}$
b) $\angle B=30^{\circ}$
c) $\angle C=60^{\circ}$
d) $\angle A+\angle C=90^{\circ}$
173. If a^{2}, b^{2}, c^{2} are in AP, then which of the following are also in AP?
a) $\sin A, \sin B, \sin C$
b) $\tan A, \tan B, \tan C$
c) $\cot A, \cot B, \cot C$
d) None of these
174. In a triangle $A B C$, if $\sin A \sin B=\frac{a b}{c^{2}}$, then the triangle is
a) Equilateral
b) Isosceles
c) Right angled
d) Obtuse angled
175. The perimeter of a $\triangle A B C$ is 6 times the arithmetic mean of the sine ratios of its angles. If $a=1$, then A is equal to
a) $\frac{\pi}{6}$
b) $\frac{\pi}{3}$
c) $\frac{\pi}{2}$
d) $\frac{2 \pi}{3}$
176. The centriod of the triangle $A B C$, where $A \equiv(2,3), B \equiv(8,10)$ and $C \equiv(5,5)$ is
a) $(5,6)$
b) $(6,5)$
c) $(6,6)$
d) $(15,18)$
177. The angle of elevation of the top of the tower observed from each of the tree point A, B, C on the ground forming a triangle is the same angle α. If R is the circumaradias of the triangle $A B C$, then the height of the tower is
a) $R \sin \alpha$
b) $R \cos \alpha$
c) $R \cot \alpha$
d) $R \tan \alpha$
178. The angle of elevation of the top of a hill from a point is α. After walking b metres towards the top up a slope inclined at an angle β to the horizon, the angle of elevation of the top becomes γ. Then, the height of the hill is
a) $\frac{b \sin \alpha \sin (\gamma-\beta)}{\sin (\gamma-\alpha)}$
b) $\frac{b \sin \alpha \sin (\gamma-\alpha)}{\sin (\gamma-\beta)}$
c) $\frac{b \sin (\gamma-\beta)}{\sin (\gamma-\alpha)}$
d) $\frac{\sin (\gamma-\beta)}{b \sin \alpha \sin (\gamma-\alpha)}$
179. The area of the $\triangle A B C$, in which $a=1, b=2, \angle C=60^{\circ}$, is
a) 4 sq unit
b) $\frac{1}{2}$ sq unit
c) $\frac{\sqrt{3}}{2}$ sq unit
d) $\sqrt{3}$ sq units
180. If t_{1}, t_{2} and t_{3} are distinct points $\left(t_{1}, 2 a t_{1}+a t_{1}^{3}\right),\left(t_{2}, 2 a t_{2}+a t_{2}^{3}\right)$ and $\left.t_{3}, 2 a t_{3}+a t_{3}^{3}\right)$ are collinear, if
a) $t_{1} t_{2} t_{3}=1$
b) $t_{1}+t_{2}+t_{3}=t_{1} t_{2} t_{3}$
c) $t_{1}+t_{2}+t_{3}=0$
d) $t_{1}+t_{2}+t_{3}=-1$
181. If A and B are two points having coordinates $(3,4)$ and $(5,-2)$ respectively and P is a point such that $P A=P B$ and area of triangle $P A B=10$ sq unit, then the coordinates of P are
a) $(7,4)$ and $(13,2)$
b) $(7,2)$ and $(1,0)$
c) $(2,7)$ and $(4,13)$
d) None of these
182. In $\triangle A B C, \angle A=\frac{\pi}{2}, b=4, c=3$, then the value of $\frac{R}{r}$ is equal to
a) $\frac{5}{2}$
b) $\frac{7}{2}$
c) $\frac{9}{2}$
d) $\frac{35}{24}$
183. In the angles A, B and C of a triangular are in the arithmetic progression and if a, b and c denotes the lengths of the sides opposite to A, B and C respectively, then the value of the expression $\frac{a}{c} \sin 2 C+\frac{c}{a} \sin 2 A$ is
a) $\frac{1}{2}$
b) $\frac{\sqrt{3}}{2}$
c) 1
d) $\sqrt{3}$
184. Two sides of a triangle are given by the roots of the equation $x^{2}-5 x+6=0$ and the angle between the sides is $\frac{\pi}{3}$. Then, the perimeter of the triangle is
a) $5+\sqrt{2}$
b) $5+\sqrt{3}$
c) $5+\sqrt{5}$
d) $5+\sqrt{7}$
185. In a triangle $A B C$, if $\angle A=60^{\circ}, a=5, b=4$, then c is a root of the equation
a) $c^{2}-5 c-9=0$
b) $c^{2}-4 c-9=0$
c) $c^{2}-10 c+25=0$
d) $c^{2}-5 c-41=0$
186. The angle of elevation of the top of vertical tower from a point A on the horizontal ground is found to be $\frac{\pi}{4}$. From A, a man walks 10 m up a path sloping at a angle $\frac{\pi}{6}$. After this the slope becomes steeper and after walking up another 10 m , the man reaches the top of the tower. Distance of A from the foot of the tower is
a) $5(1+\sqrt{3}) \mathrm{m}$
b) $\frac{5}{2}(1+\sqrt{3}) \mathrm{m}$
c) $5(\sqrt{3}-1) \mathrm{m}$
d) $\frac{5}{2}(\sqrt{3}-1) \mathrm{m}$
187. If the distance between the points $(a \cos \theta, a \sin \theta)$ and $(a \cos \phi, a \sin \phi)$ is $2 a$, then θ is equal to
a) $2 n \pi \pm \pi+\phi, n \in Z$
b) $n \pi+\frac{\pi}{2}+\phi, n \in Z$
c) $n \pi-\phi, n \in Z$
d) $2 n \pi+\phi, n \in Z$
188. If $A(0,0), B(12,0), C(12,2), D(6,7)$ and $E(0,5)$ are the vertices of the pendagon $A B C D E$, then its area in
square units, is
a) 58
b) 60
c) 61
d) 63
189. A flag is standing vertically on a tower of height b. On a point at a distance a from the foot of the tower, the flag and the tower subtend equal angles. The height of the flag is
a) $b \cdot \frac{a^{2}+b^{2}}{a^{2}-b^{2}}$
b) $a \cdot \frac{a^{2}-b^{2}}{a^{2}+b^{2}}$
c) $b \cdot \frac{a^{2}-b^{2}}{a^{2}+b^{2}}$
d) $a \cdot \frac{a^{2}+b^{2}}{a^{2}-b^{2}}$
190. A kite is flying at an inclination of 60° with the horizontal. If the length of the thread is 120 m , then the height of the kite is
a) $60 \sqrt{3} \mathrm{~m}$
b) 60 m
c) $\frac{60}{\sqrt{3}} \mathrm{~m}$
d) 120 m
191. $\frac{a \cos A+b \cos B+c \cos C}{a+b+c}$ is equal to
a) $1 / r$
b) r / R
c) R / r
d) $1 / R$
192. $A B$ is a vertical pole. The end A is on the level ground. C is the middle point of $A B . P$ is a point on the level ground. The portion $B C$ subtends an angle β at P. If $A P=n A B$, then $\tan \beta=$
a) $\frac{n}{2 n^{2}+1}$
b) $\frac{n}{n^{2}-1}$
c) $\frac{n}{n^{2}+1}$
d) None of these
193. If $P(3,7)$ is a point on the line joining $A(1,1)$ and $B(6,16)$, then the harmonic conjugate Q of point P has the coordinates
a) $(9,29)$
b) $(-9,29)$
c) $(9,-29)$
d) $(-9,-29)$
194. The angles of a triangle are in the ratio $3: 5: 10$. Then, the ratio of the smallest side to the greatest side is
a) $1: \sin 10^{\circ}$
b) $1: 2 \sin 10^{\circ}$
c) $1: \cos 10^{\circ}$
d) $1: 2 \cos 10^{\circ}$
195.

In $\triangle A B C$, if $\left|\begin{array}{lll}1 & a & b \\ 1 & c & a \\ 1 & b & c\end{array}\right|=0$, then
$\sin ^{2} A+\sin ^{2} B+\sin ^{2} C$ is equal to
a) $\frac{4}{9}$
b) $\frac{9}{4}$
c) $3 \sqrt{3}$
d) 1
196. From a station A due West of a tower the angle of elevation of the top of the tower is seen to be 45°. From a station $B, 10 \mathrm{~m}$ from A and in the direction 45° South of East of angle of elevation is 30°, the height of tower is
a) $5 \sqrt{2}(\sqrt{5}+1) \mathrm{m}$
b) $\frac{5(\sqrt{5}+1)}{2} \mathrm{~m}$
c) $\frac{5 \sqrt{2}(\sqrt{5}+1)}{2} \mathrm{~m}$
d) None of these
197. A straight line with negative slope passing through the point $(1,4)$ meets the coordinate axes at A and B. The minimum value of $O A+O B$ is equal to
a) 5
b) 6
c) 9
d) 8
198. An observer finds that the elevation of the top of a tower is $22 \frac{1^{\circ}}{2}$ and after walking 150 metres towards the foot of the tower he finds that the elevation of the top has increased to $67 \frac{1^{\circ}}{2}$. The height of the tower in metres is
a) 50
b) 75
c) 125
d) 175
199. In an isosceles $\triangle A B C, A B=A C$. If vertical angle A is 20°, then $a^{3}+b^{3}$ is equal to
a) $3 a^{2} b$
b) $3 b^{2} c$
c) $3 c^{2} a$
d) $a b c$
200. In a $\triangle A B C, a\left(\cos ^{2} B+\cos ^{2} C\right)+\cos A(c \cos C+b \cos B)$ is equal to
a) a
b) b
c) c
d) $a+b+c$
201. $A B C$ Is a triangle with vertices $A(-1,4), B(6,-2)$ and $C(-2,4) . D, E$ And F are the points which divide each $A B, B C$ and $C A$ respectively in the ratio 3:1 internally. Then, the centroid of the triangle $D E F$ is
a) $(3,6)$
b) $(1,2)$
c) $(4,8)$
d) $(-3,6)$
202. If in a $\triangle A B C, \frac{1}{a+c}+\frac{1}{b+c}=\frac{3}{a+b+c}$, then the value of the angle C is
a) 60°
b) 30°
c) 45°
d) None of these
203. A tower subtends an angle of 30° at a point distance d from the foot of the tower and on the same level as the foot of the tower. At a second point, h vertically above the first, the angle of depression of the foot of
the tower is 60°. The height of the tower is
a) $\frac{h}{3}$
b) $\frac{h}{3 d}$
c) $3 h$
d) $\frac{3 h}{d}$
204. Points D, E are taken on the side $B C$ of the $\triangle A B C$, such that $B D=D E=E C$. If $\angle B A D=x, \angle D A E=$ $y, \angle E A C=z$, then the value of $\frac{\sin (x+y) \sin (y+z)}{\sin x \sin z}$ is equal to
a) 1
b) 2
c) 4
d) None of these
205. $\sin A: \sin C=\sin (A-B): \sin (B-C)$, then a^{2}, b^{2}, c^{2} are in
a) AP
b) GP
c) HP
d) None of these
206. The point on the line $3 x+4 y=5$, which is equidistant from $(1,2)$ and $(3,4)$ is
a) $(7,-4)$
b) $(15,-10)$
c) $\left(\frac{1}{7}, \frac{8}{7}\right)$
d) $\left(0, \frac{5}{4}\right)$
207. If A and B are two fixed points, then the locus of a point which moves in such a way that the angle, $A P B$ is a right angle is
a) A circle
b) An ellipse
c) A parabola
d) None of these
208. If in a $\triangle A B C, a \cos ^{2}\left(\frac{C}{2}\right)+c \cos ^{2}\left(\frac{A}{2}\right)=\frac{3 b}{2}$, then the sides a, b and c
a) Are in AP
b) Are in GP
c) Are in HP
d) Satisfy $a+b=c$
209. For a regular polygon, let r and r be the radii of the inscribed and the circumscribed circles. A false statement among the following is
a) There is regular polygon with $\frac{r}{R}=\frac{1}{2}$
b) There is a regular polygon $\frac{r}{R}=\frac{1}{\sqrt{2}}$
c) There is a regular polygon with $\frac{r}{R}=\frac{2}{3}$
d) There is a regular polygon with $\frac{r}{R}=\frac{\sqrt{3}}{2}$
210. In a triangle vertex angles are A, B, C and side $B C$ are given. The area of $\triangle A B C$ is
a) $\frac{s(s-a)(s-b)(s-c)}{2}$
b) $\frac{b^{2} \sin C \sin A}{\sin B}$
c) $a b \sin C$
d) $\frac{1}{2} \cdot \frac{a^{2} \sin B \sin C}{\sin A}$
211. A flag staff in the centre of a rectangular field whose diagonal is 1200 m and subtends angle 15° and 45° at the mid point of the sides of the field. The height of the flag staff is
a) 200 m
b) $300 \sqrt{2+\sqrt{3}} \mathrm{~m}$
c) $300 \sqrt{2-\sqrt{3}} \mathrm{~m}$
d) 400 m
212. On the level ground the angle of elevation of the top of a tower is 30°. On moving 20 m nearer the tower, the angle of elevation is found to be 60°. The height of the tower is
a) 10 m
b) 20 m
c) $10 \sqrt{3} \mathrm{~m}$
d) None of these
213. The angle of elevation of the top of a tower at any point on the ground is 30° and moving 20 metres towards the tower it becomes 60°. The height of the tower is
a) 10 m
b) $10 \sqrt{3} \mathrm{~m}$
c) $\frac{10}{\sqrt{3}} \mathrm{~m}$
d) None of these
214. If angles A, B and C are in AP, then $\frac{a+b}{c}$ is equal to
a) $2 \sin \frac{A-C}{2}$
b) $2 \cos \frac{A-C}{2}$
c) $\cos \frac{A-C}{2}$
d) $\sin \frac{A-C}{2}$
215. If in a $\triangle A B C$, the altitude from the vertices A, B, C on opposite sides are in HP, then $\sin A, \sin B, \sin C$ are in
a) GP
b) Arithmetic-Geometric Progression
c) AP
d) HP
216. The area of an equilateral triangle that can be inscribed in the circle

$$
x^{2}+y^{2}-4 x-6 y-12=0, \text { is }
$$

a) $\frac{25 \sqrt{3}}{4}$ sq units
b) $\frac{35 \sqrt{3}}{4}$ sq units
c) $\frac{55 \sqrt{3}}{4}$ sq units
d) $\frac{75 \sqrt{3}}{4}$ sq units
217. The area of a triangle is 5 and its two vertices are $A(2,1)$ and $B(3,-2)$. The third vertex lies on $y=x+3$. Then, third vertex is
a) $\left(\frac{7}{2}, \frac{13}{2}\right)$
b) $\left(\frac{5}{2}, \frac{5}{2}\right)$
c) $\left(-\frac{3}{2}, \frac{3}{2}\right)$
d) $(0,0)$
218. The incentre of the triangle with vertices $(1, \sqrt{3}),(0,0)$ and $(2,0)$ is
a) $\left(1, \frac{\sqrt{3}}{2}\right)$
b) $\left(\frac{2}{3}, \frac{1}{\sqrt{3}}\right)$
c) $\left(\frac{2}{3}, \frac{\sqrt{3}}{2}\right)$
d) $\left(1, \frac{1}{\sqrt{3}}\right)$
219. The area (in square unit) of the triangle formed by the points with polar coordinates $(1,0),\left(2, \frac{\pi}{3}\right)$ and $\left(3, \frac{2 \pi}{3}\right)$ is
a) $\frac{11 \sqrt{3}}{4}$
b) $\frac{5 \sqrt{3}}{4}$
c) $\frac{5}{4}$
d) $\frac{11}{4}$
220. The points P is equidistant from $A(1,3), B(-3,5)$ and $C(5,-1)$, then $P A$ is equal to
a) 5
b) $5 \sqrt{5}$
c) 25
d) $5 \sqrt{10}$
221. A rod of length l slides with its ends on two perpendicular lines. The locus of a point which divides it in the ratio $1: 2$, is
a) $36 x^{2}+9 y^{2}=4 l^{2}$
b) $36 x^{2}+9 y^{2}=l^{2}$
c) $9 x^{2}+36 y^{2}=4 l^{2}$
d) $9 x^{2}-36 y^{2}=4 l^{2}$
222. The circumradius of the triangle whose sides are 13,12 and 5 , is
a) 15
b) $\frac{13}{2}$
c) $\frac{15}{2}$
d) 6
223. Locus of centroid of the triangle whose vertices are $(a \cos t, a \sin t),(b \sin t,-b \cos t)$ and (1, 0$)$, where t is a parameter, is
a) $(3 x-1)^{2}+(3 y)^{2}=a^{2}-b^{2}$
b) $(3 x-1)^{2}+(3 y)^{2}=a^{2}+b^{2}$
c) $(3 x+1)^{2}+(3 y)^{2}=a^{2}+b^{2}$
d) $(3 x+1)^{2}+(3 y)^{2}=a^{2}-b^{2}$
224. $A B$ is a vertical pole with B at the ground level and A at the top. A man finds that the angle of elevation of the point A from a certain point C on the ground is 60°. He moves away from the pole along the line $B C$ to a point D such that $C D=7 \mathrm{~m}$. From D the angle of elevation of the point A is 45°. Then the height of the pole is
a) $\frac{7 \sqrt{3}}{2}\left(\frac{1}{\sqrt{3}+1}\right) \mathrm{m}$
b) $\frac{7 \sqrt{3}}{2}\left(\frac{1}{\sqrt{3}-1}\right) \mathrm{m}$
c) $\frac{7 \sqrt{3}}{2}(\sqrt{3}+1) \mathrm{m}$
d) $\frac{7 \sqrt{3}}{2}(\sqrt{3}-1) \mathrm{m}$
225. If C is the reflection of $A(2,4)$ in x-aixs and B is the reflection of C in y-axis, then $|A B|$ is
a) 20
b) $2 \sqrt{5}$
c) $4 \sqrt{5}$
d) 4
226. $A B C$ is an isosceles triangle if the coordinates of the base are $B(1,3)$ and $C(-2,7)$, the coordinates of vertex A can be
a) $(1,6)$
b) $\left(-\frac{1}{2}, 5\right)$
c) $\left(\frac{5}{6}, 6\right)$
d) $\left(-8, \frac{1}{8}\right)$
227. Point $\left(\frac{1}{2},-\frac{13}{4}\right)$ divides the line joining the points $(3,-5)$ and $(-7,2)$ in the ratio of
a) $1: 3$ internally
b) $3: 1$ internally
c) $1: 3$ externally
d) 3: 1 externally
228. The orthocenter of the triangle with vertices $O(0,0), A\left(0, \frac{3}{2}\right), B(-5,0)$ is
а) $\left(\frac{5}{2}, \frac{3}{4}\right)$
b) $\left(\frac{-5}{2}, \frac{3}{4}\right)$
c) $\left(-5, \frac{3}{2}\right)$
d) $(0,0)$
229. Area of triangle formed by the lines $x+y=3$ and angle bisectors of the pair of straight lines $x^{2}-y^{2}+$ $2 y=1$ is
a) 2 squnits
b) 4 sq units
c) 6 sq units
d) 8 sq units
230. $A B C D$ is a rectangular field. A vertical lamp post of height 12 m stands at the corner A. If the angle of elevation of its top from B is 60° and from C is 45°, then the area of the field is
a) $48 \sqrt{2} \mathrm{sq} \mathrm{m}$
b) $48 \sqrt{3} \mathrm{sq} \mathrm{m}$
c) 48 sq m
d) $12 \sqrt{2} \mathrm{sq} \mathrm{m}$
231. If two adjacent sides of a cylinder quadrilateral are 2 and 5 and the angle between them is 60°. If the third side is 3 , then the remaining fourth side is
a) 2
b) 3
c) 4
d) 5
232. In $\triangle A B C, 2 R^{2} \sin A \sin B \sin C$ is equal to
a) s^{2}
b) $a b+b c+c a$
c) Δ
d) None of these
233. If in a $\triangle A B C$, the altitudes from the vertices A, B, C on opposite sides are in HP, then $\sin A, \sin B, \sin C$ are in
a) HP
b) Arithmetico-Geometric Progression
c) AP
d) GP
234. The middle point of the line segment joining $(3,-1)$ and $(1,1)$ is shifted by two units (in the sense of increasing y) perpendicular to the line segment. Then the coordinates of the point in the new position are
a) $(2-\sqrt{2}, 2)$
b) $(2,2-\sqrt{3})$
c) $(2+\sqrt{2}, \sqrt{3})$
d) None of these
235. If area of triangle with vertices $(0,0),(0,6)$ and (α, β) is 15 sq unit, then
a) $\alpha= \pm 5, \beta=5$
b) $\alpha= \pm 10, \beta=5$
c) $\alpha= \pm 5, \beta=2$
d) $\alpha= \pm 5, \beta$ can take any real value
236. Area of quadrilateral whose vertices are $(2,3),(3,4),(4,5)$ and $(5,6)$ is equal to
a) 0
b) 4
c) 6
d) None of the above
237. If the distance between $(2,3)$ and $(-5,2)$ is equal to the distance between $(x, 2)$ and $(1,3)$, then the values of x are
a) $-6,8$
b) 6,8
c) $-8,6$
d) $-7,7$
238. A circle is inscribed in a equilateral triangle of side a. The area of the circle is
a) $3 \pi a^{2}$ sq units
b) $2 a^{2}$ sq units
c) a^{2} sq units
d) None of these
239. The x-axis, y-axis and a line passing through the point $A(6,0)$ form a triangle $A B C$. If $\angle A=30^{\circ}$ then the area of the triangle, in sq units is
a) $6 \sqrt{3}$
b) $12 \sqrt{3}$
c) $4 \sqrt{3}$
d) $8 \sqrt{3}$
240. In a $\triangle A B C$, if $\frac{\cos A}{a}=\frac{\cos B}{b}=\frac{\cos C}{c}$ and the side $a=2$, then area of the triangle is
a) 1 sq unit
b) 2 sq unit
c) $\frac{\sqrt{3}}{2}$ sq unit
d) $\sqrt{3}$ sq unit
241. In an ambiguous case of solving a triangle when $a=\sqrt{5}, b=2, \angle A=\frac{\pi}{6}$, the two possible values of third side are c_{1} and c_{2}, then
a) $\left|c_{1}-c_{2}\right|=2 \sqrt{6}$
b) $\left|c_{1}-c_{2}\right|=4 \sqrt{6}$
c) $\left|c_{1}-c_{2}\right|=4$
d) $\left|c_{1}-c_{2}\right|=6$
242. In $\triangle A B C,(a-b)^{2} \cos ^{2} \frac{C}{2}+(a+b)^{2} \sin ^{2} \frac{C}{2}$ is equal to
a) a^{2}
b) b^{2}
c) c^{2}
d) None of these
243. In $\triangle A B C$, with usual notation, observe the two statements given below
I. $\quad r r_{1} r_{2} r_{3}=\Delta^{2}$
II. $r_{1} r_{2}+r_{2} r_{3}+r_{3} r_{1}=s^{2}$

Which of the following is correct?
a) Both I and III are true
b) I is true, II is false
c) I is false, II is true
d) Both I and II are false
244. If the angles of a triangle be in the ratio $1: 2: 7$, then the ratio of its greatest side to the least side is
a) $1: 2$
b) $2: 1$
c) $(\sqrt{5}+1):(\sqrt{5}-1)$
d) $(\sqrt{5}-1):(\sqrt{5}+1)$
245. From the top of a cliff 300 metres high, the top of a tower was observed at an angle of depression 30° and from the foot of the tower the top of the cliff was observed at an angle of elevation 45°, the height of the tower is
a) $50(3-\sqrt{3}) \mathrm{m}$
b) $200(3-\sqrt{3}) \mathrm{m}$
c) $100(3-\sqrt{3}) \mathrm{m}$
d) None of these
246. If x_{1}, x_{2}, x_{3} and y_{1}, y_{2}, y_{3} are both in GP with the same common ratio, then the points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)$
a) Lie on a straight line
b) Lie on an ellipse
c) One vertices of a triangle
d) Lie on a circle
247. The coordinates axes are rotated through an angle 135°. If the coordinates of a point P in the new system are known to be $(4,-3)$, then the coordinates of P in the original system are
a) $\left(\frac{1}{\sqrt{2}}, \frac{7}{\sqrt{2}}\right)$
b) $\left(\frac{1}{\sqrt{2}},-\frac{7}{\sqrt{2}}\right)$
c) $\left(-\frac{1}{\sqrt{2}},-\frac{7}{\sqrt{2}}\right)$
d) $\left(-\frac{1}{\sqrt{2}}, \frac{7}{\sqrt{2}}\right)$
248. The coordinate axes rotated though an angle 135°. If the coordinates of a point P in the new system are
known to be $(4,-3)$, then the coordinates of P in the original system are
a) $\left(\frac{1}{\sqrt{2}}, \frac{7}{\sqrt{2}}\right)$
b) $\left(\frac{1}{\sqrt{2}},-\frac{7}{\sqrt{2}}\right)$
c) $\left(-\frac{1}{\sqrt{2}},-\frac{7}{\sqrt{2}}\right)$
d) $\left(-\frac{1}{\sqrt{2}}, \frac{7}{\sqrt{2}}\right)$
249. When the elevation of sun changes from 45° to 30° the shadow of a tower increases by 60 m the height of the tower is
a) $30 \sqrt{3} \mathrm{~m}$
b) $30(\sqrt{2}+1) \mathrm{m}$
c) $30(\sqrt{3}-1) \mathrm{m}$
d) $30(\sqrt{3}+1) \mathrm{m}$
250. The angle of elevation of the top of a tower from a point $A \tan ^{-1} 6$ and that from B due West of it, is $\tan ^{-1} 7.5$. If h is the height of the tower, then $A B=\lambda h$, where λ^{2} is equal to
a) $\frac{21}{700}$
b) $\frac{42}{1300}$
c) $\frac{41}{900}$
d) None of these
251. In a triangle, if $r_{1}+r_{3}=k \cos ^{2} \frac{B}{2}$, then k is equal to
a) R
b) $2 R$
c) $3 R$
d) $4 R$
252. $A B$ is a vertical pole and C is its middle point. The end A is on the level ground and P is any point on the level ground other than A the portion $C B$ subtends an angle β at P. If $A P: A B=2: 1$, then $\beta=$
a) $\tan ^{-1} \frac{4}{9}$
b) $\tan ^{-1} \frac{1}{9}$
c) $\tan ^{-1} \frac{5}{9}$
d) $\tan ^{-1} \frac{2}{9}$
253. If the points $(x+1,2),(1, x+2),\left(\frac{1}{x+1}, \frac{2}{x+1}\right)$ are collinear, then x is
a) 4
b) 5
c) -4
d) None of these
254. If in a $\triangle A B C, C D$ is the angular bisector of the $\angle A C B$, then $C D$ is equal to
a) $\frac{a+b}{2 a b} \cos \frac{C}{2}$
b) $\frac{a+b}{a b} \cos \frac{C}{2}$
c) $\frac{2 a b}{a+b} \cos \frac{C}{2}$
d) None of these
255. A tower stands at the center of a circuit park. A and B are two points on the boundry of the park such that $A B(=a)$ subtends an angles of 60° at the foot of the tower and the angle of elevation of the top of the tower from A or B is 30°. The height of the tower is
a) $\frac{2 a}{\sqrt{3}}$
b) $2 a \sqrt{3}$
c) $\frac{a}{\sqrt{3}}$
d) $\sqrt{3}$
256. Consider three points
$P=(-\sin (\beta-\alpha),-\cos \beta)$
$\mathcal{Q}=(\cos (\beta-\alpha), \sin \beta)$
And $R=(\cos (\beta-\alpha+\theta), \sin (\beta-\theta))$,
Where $0<\alpha, \beta, \theta<\frac{\pi}{4}$. Then,
a) P lies on the line segment $R \mathcal{Q}$
b) Q lies on the line segment $P R$
c) R lies on the line segment $Q P$
d) P, Q, R are non-collinear
257. In $\triangle A B C$, if $8 R^{2}=a^{2}+b^{2}+c^{2}$, then the triangle is
a) Right angled
b) Equilateral
c) Acute angled
d) Obtuse angled
258. A triangle with vertices $(4,0),(-1,-1),(3,5)$ is
a) Isosceles and right angled
b) Isosceles but not right angled
c) Right angled but not isosceles
d) Neither right angled nor isosceles
259. In a $\triangle A B C$, the correct formulae among the following are
III. $r=4 R \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}$
IV. $r_{1}=(s-a) \tan \frac{A}{2}$
V. $r_{3}=\frac{\Delta}{s-c}$
a) Only I, II
b) Only II, III
c) Only I, III
d) I, II, III
260. The area (in square unit) of the triangle formed by the lines $x=0, y=0$ and $3 x+4 y=12$, is
a) 3
b) 4
c) 6
d) 12
261. Three distinct points A, B and C given in the two dimensional coordinate plane such that the ratio of the distance of any one of them from the point $(1,0)$ to the distance from the point $(-1,0)$ is equal to $\frac{1}{3}$. Then, the circumcentre of the triangle $A B C$ is at the point
a) $\left(\frac{5}{4}, 0\right)$
b) $\left(\frac{5}{2}, 0\right)$
c) $\left(\frac{5}{3}, 0\right)$
d) $(0,0)$
262. One possible condition for the three points $(a, b),(b, a)$ and $\left(a^{2},-b^{2}\right)$ to be collinear, is
a) $a-b=2$
b) $a+b=2$
c) $a=1+b$
d) $a=1-b$
263. Three vertical towers standing at A, B, C subtends the angle $\theta_{A}, \theta_{B}, \theta_{C}$ respectively at the circumcentre of the $\triangle A B C$, then $\tan \theta_{A}, \tan \theta_{B}$ and $\tan \theta_{C}$ are in
a) AP
b) GP
c) HP
d) None of these
264. The area of the triangle whose sides are $6,5, \sqrt{13}$ (in square unit) is
a) $5 \sqrt{2}$
b) 9
c) $6 \sqrt{2}$
d) 11
265. If points $A\left(x_{1}, y_{1}\right), B\left(x_{2}, y_{2}\right)$ and $C\left(x_{3}, y_{3}\right)$ are such that x_{1}, x_{2}, x_{3} and y_{1}, y_{2}, y_{3} are in AP, then
a) A, B and C are concyclic points
b) A, B and C are collinear points
c) A, B and C are vertices of an equilateral triangle
d) None of the above
266. Two points $P(a, 0)$ and $Q(-a, 0)$ are given, R is a variable point on one side of the line $P Q$ such that $\angle R P Q-\angle R Q P$ is 2α, then
a) Locus of R is $x^{2}-y^{2}+2 x y \cot 2 \alpha-a^{2}=0$
b) Locus of R is $x^{2}+y^{2}+2 x y \cot \alpha-a^{2}=0$
c) Locus of R is a hyperbola, if $\alpha=\frac{\pi}{4}$
d) Locus of R is a circle, if $\alpha=\frac{\pi}{4}$
267. In a $\triangle A B C$, medians, $A D$ and $B E$ are drawn. If $A D=4, \angle D A B=\frac{\pi}{6}$ and $\angle A B E=\frac{\pi}{3}$, then the area of the $\triangle A B C$ is
a) $\frac{8}{3}$ sq units
b) $\frac{16}{3}$ sq units
c) $\frac{32}{3 \sqrt{3}}$ sq units
d) $\frac{64}{3}$ sq units
268. Point Q is symmetric to $P(4,-1)$ with respect to the bisector of the first quadrant. The length of $P Q$ is
a) $3 \sqrt{2}$
b) $5 \sqrt{2}$
c) $7 \sqrt{2}$
d) $9 \sqrt{2}$
269. The area of triangle formed by the points $(a, b+c),(b, c+a),(c, a+b)$ is equal to
a) $a b c$
b) $a^{2}+b^{2}+c^{2}$
c) $a b+b c+c a$
d) 0
270. Let $0 \leq \theta \leq \frac{\pi}{2}$ and $x=X \cos \theta+Y \sin \theta, y=X \sin \theta-Y \cos \theta$ such that $x^{2}+4 x y+y^{2}=a X^{2}+b Y^{2}$, where a, b are constants, then
a) $a=-1, b=3, \theta=\frac{\pi}{4}$
b) $a=1, b=-3,2=\frac{\pi}{3}$
c) $a=3, b=-1, \theta=\frac{\pi}{4}$
d) $a=3, b=-1, \theta=\frac{\pi}{3}$
271. If a point $P(4,3)$ is shifted by a distance $\sqrt{2}$ unit parallel to the line $y=x$, then coordinates of p in new position are
a) $(5,4)$
b) $(5+\sqrt{2}, 4+\sqrt{2})$
c) $(5-\sqrt{2}, 4-\sqrt{2})$
d) None of these
272. From the top of a cliff 50 m high, the angles of depression of the top and bottom of a tower are observed to be 30° and 45°. The height of tower is
a) 50 m
b) $50 \sqrt{3} \mathrm{~m}$
c) $50(\sqrt{3}-1) \mathrm{m}$
d) $50\left(1-\frac{\sqrt{3}}{3}\right) \mathrm{m}$
273. The vertex of an equilateral triangle is $(2,-1)$ and the equation of its base is $x+2 y=1$, the length of its sides is
a) $\frac{2}{\sqrt{15}}$
b) $\frac{4}{3 \sqrt{3}}$
c) $\frac{1}{\sqrt{5}}$
d) $\frac{4}{\sqrt{15}}$
274. If the elevation of the sun is 30°, then the length of the shadow cast by a tower of 150 ft . height is
a) $75 \sqrt{3} \mathrm{ft}$.
b) $200 \sqrt{3} \mathrm{ft}$.
c) $150 \sqrt{3} \mathrm{ft}$.
d) None of these
275. The area of the triangle formed by the points $(2,2),(5,5),(6,7)$ is equal to (in square unit)
a) $\frac{9}{2}$
b) 5
c) 10
d) $\frac{3}{2}$
276. The orthocenter of the $\triangle O A B$, where O is the origin, $A(6,0)$ and $B(3,3 \sqrt{3})$ is
a) $(9 / 2, \sqrt{3} / 2)$
b) $(3, \sqrt{3})$
c) $(\sqrt{3}, 3)$
d) $(3,-\sqrt{3})$
277. In a $\triangle A B C, \cos A+\cos B+\cos C$ is equal to
a) $1+\frac{r}{R}$
b) $1-\frac{r}{R}$
c) $1-\frac{R}{r}$
d) $1+\frac{R}{r}$
278. If in a $\triangle P Q R, \sin P, \sin Q, \sin R$ are in AP, then
a) The altitudes are in $A P$
b) The altitudes are in HP
c) The medians are in GP
d) The medians are in AP
279. The angle of elevation of an object on a hill from a point on the ground is 30°. After walking 120 metres the elevation of the object is 60°. The height of the hill is
a) 120 m
b) $60 \sqrt{3} \mathrm{~m}$
c) $120 \sqrt{3} \mathrm{~m}$
d) 60 m
280. If the median $A D$ of $\triangle A B C$, makes an angle θ with side $A B$, then $\sin (A-\theta)$ is equal to
a) $\left(\frac{b}{c}\right) \operatorname{cosec} \theta$
b) $\left(\frac{b}{c}\right) \sin \theta$
c) $\left(\frac{c}{b}\right) \sin \theta$
d) $\left(\frac{c}{b}\right) \operatorname{cosec} \theta$
281. The angle of elevation of a cliff at a point A on the ground and a point $B, 100 \mathrm{~m}$ vertically at A are α and β respectively. The height of the cliff is
a) $\frac{100 \cot \alpha}{\cot \alpha-\cot \beta}$
b) $\frac{100 \cot \beta}{\cot \alpha-\cot \beta}$
c) $\frac{100 \cot \beta}{\cot \beta-\cot \alpha}$
d) $\frac{100 \cot \beta}{\cot \beta+\cot \alpha}$
282. A quadrilateral $A B C D$ in which $A B=a, B C=b, C D=c$ and $D A=d$ is such that one circle can be inscribed in it and another circle can be circumscribed about it, then $\cos A$ is equal to
a) $\frac{a d+b c}{a d-d c}$
b) $\frac{a d-b c}{a d+b c}$
c) $\frac{a c+b d}{a c-b d}$
d) $\frac{a c-b d}{a c+b d}$
283. If λ be the perimeter of the $\Delta A B C$, then $b \cos ^{2}\left(\frac{C}{2}\right)+c \cos ^{2}\left(\frac{B}{2}\right)$ is equal to
a) λ
b) 2λ
c) $\frac{\lambda}{2}$
d) None of these
284. If in the $\triangle A B C, \angle B=45^{\circ}$, then $a^{4}+b^{4}+c^{4}$ is equal to
a) $2 a^{2}\left(b^{2}+c^{2}\right)$
b) $2 c^{2}\left(a^{2}+b^{2}\right)$
c) $2 b^{2}\left(a^{2}+c^{2}\right)$
d) $2\left(a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}\right)$
285. The ratio in which the line $x+y=4$ divides the line joining the points $(1,-1)$ and $(5,7)$ is
a) $1: 2$
b) $2: 1$
c) $1: 3$
d) $3: 1$
286. The coordinates of the orthocenter of the triangle formed by $(0,0),(8,0),(4,6)$ is
a) $(4,0)$
b) $(6,3)$
c) $(6,0)$
d) None of these
287. If $\Delta=a^{2}-(b-c)^{2}$, where Δ is the area of $\Delta A B C$, then $\tan A$ is equal to
a) $\frac{15}{16}$
b) $\frac{8}{15}$
c) $\frac{8}{17}$
d) $\frac{1}{2}$
288. In $\triangle A B C, \frac{b+c}{a}$ is equal to
a) $\frac{\cos \frac{1}{2}(B-C)}{\sin \frac{1}{2} A}$
b) $\frac{\sin \frac{1}{2}(B-C)}{\cos \frac{1}{2} A}$
c) $\frac{\cos \frac{1}{2}(B+C)}{\sin \frac{1}{2} A}$
d) $\frac{\cos \frac{1}{2}(B+C)}{\cos \frac{1}{2} A}$
289. In a cubical hall $A B C D P Q R S$ with each side $10 \mathrm{~m}, G$ is the centre of the wall $B C R Q$ and T is the mid point of the side $A B$. The angle of elevation of G at the point T is
a) $\sin ^{-1}(1 / \sqrt{3})$
b) $\cos ^{-1}(1 / \sqrt{3})$
c) $\cot ^{-1}(1 / \sqrt{3})$
d) None of these
290. If p_{1}, p_{2}, p_{3} are respectively the perpendicular from the vertices of a triangle to the opposite sides, then p_{1}, p_{2}, p_{3} is equal to
a) $a^{2} b^{2} c^{2}$
b) $2 a^{2} b^{2} c^{2}$
c) $\frac{4 a^{2} b^{2} c^{2}}{R^{2}}$
d) $\frac{a^{2} b^{2} c^{2}}{8 R^{2}}$
291. An observer standing on a 300 m high tower observes two boats in the same direction their angles of depression are 60° and 30° respectively. The distance between boats is
a) 173.2 m
b) 346.4 m
c) 25 m
d) 72 m
292. If the length of the sides of a triangle are 3,4 and 5 unit, then R is
a) 3.5
b) 3.0
c) 2.0
d) 2.5
293. In a triangle $\left(1-\frac{r_{1}}{r_{2}}\right)\left(1-\frac{r_{1}}{r_{3}}\right)=2$, then the triangle is
a) Right angled
b) Isosceles
c) Equilateral
d) None of these
294. If in a $\triangle A B C, a \tan A+b \tan B=(a+b) \tan \frac{A+B}{2}$, then
a) $A=B$
b) $A=-B$
c) $A=2 B$
d) $B=2 A$
295. The coordinates of the circumcentre of the triangle with vertices $(8,6),(8,-2)$ and $(2,-2)$ are
a) $\left(6, \frac{2}{3}\right)$
b) $(8,2)$
c) $(5,-2)$
d) $(5,2)$
296. Points D, E are taken on the side $B C$ of a $\triangle A B C$ such that $B D=D E=E C$. If $\angle B A D=x, \angle D A E=$ $y, \angle E A C=z$, then the value of $\frac{\sin (x+y) \sin (y+z)}{\sin x \sin z}$ is equal to
a) 1
b) 2
c) 4
d) None of these
297. An observer on the top of tree, finds the angle of depression of a car moving towards the tree to be 30°. After 3 min this angle becomes 60°. After how much more time, the car will reach the tree?
a) 4 min
b) 4.5 min
c) 1.5 min
d) 2 min
298. If $P Q$ be a vertical tower subtending angles α, β and γ at the points A, B and C respectively on the line in the horizontal plane through the foot D of tower and on the same side of it, then $B C \cot \alpha-C A \cot \alpha+$ $A B \cot \gamma$ is equal to
a) 0
b) 1
c) 2
d) None of these
299. The equation of the three sides of a triangle are $x=2, y+1=0$ and $x+2 y=4$. The coordinates of the circumcentre of the triangles are
a) $(4,0)$
b) $(2,-1)$
c) $(0,4)$
d) $(-1,2)$
300. On one bank of river there is a tree. On another bank, an observer makes an angle of elevation of 60° at the top of the tree. The angle of elevation of the top of the tree at a distance 20 m away the bank is 30°. The width of the river is
a) 20 m
b) 10 m
c) 5 m
d) 1 m
301. Consider the following statements :

1. In $\triangle A B C, a=\sqrt{3}+1, \angle B=30^{\circ}, \angle C=45^{\circ}$, then c is equal to
2. In a triangle, if $a^{2}+b^{2}+c^{2}=8 R^{2}$, then the triangle is right angled
3. In a $\triangle A B C, a=2, b=3, c=4$, then $\cos A=\frac{7}{8}$

Which of the statements given above is/are correct?
a) Only (1)
b) Only (2)
c) Only (3)
d) All of these
302. If A is the area and $2 s$ the sum of three sides of a triangle, then
a) $A \leq \frac{s^{2}}{3 \sqrt{3}}$
b) $A \leq \frac{s^{2}}{2}$
c) $A>\frac{s^{2}}{\sqrt{3}}$
d) None of these
303. A flag staff of 5 m high stands on a building of 25 m high. At an observer at a height of 30 m , the flag staff and the building subtend equal angles. the distance of the observer from the top of the flag staff is
a) $\frac{5 \sqrt{3}}{2} \mathrm{~m}$
b) $5 \sqrt{\frac{3}{2}} \mathrm{~m}$
c) $5 \sqrt{\frac{2}{3}} \mathrm{~m}$
d) None of these
304. A tower of height b subtends an angle at a point O on the level of the foot of the tower and at a distance ' a ' from the foot of the tower. If the pole mounted on the tower also subtends an equal angle at O, the height of the pole is
a) $b\left(\frac{a^{2}-b^{2}}{a^{2}+b^{2}}\right)$
b) $b\left(\frac{a^{2}+b^{2}}{a^{2}-b^{2}}\right)$
c) $a\left(\frac{a^{2}-b^{2}}{a^{2}+b^{2}}\right)$
d) $a\left(\frac{a^{2}+b^{2}}{a^{2}-b^{2}}\right)$
305. If the angles of a triangle are in the ratio $4: 1: 1$, then the ratio of the longest side to the perimeter is
a) $\sqrt{3}:(2+\sqrt{3})$
b) $1: 6$
c) $1:(2+\sqrt{3})$
d) $2: 3$
306. If two angles of a triangle are 45° and $\tan ^{-1}$ (2), then the third angle is
a) 60°
b) 75°
c) $\tan ^{-1} 3$
d) 90°
307. The angle of elevation of top of a tower form a point on the ground is 30° and it is 60° when it is viewed from a point located 40 m away the initial point towards the tower. The height of the tower is
a) $-20 \sqrt{3} \mathrm{~m}$
b) $\frac{\sqrt{3}}{20} \mathrm{~m}$
c) $-\frac{\sqrt{3}}{20} \mathrm{~m}$
d) $20 \sqrt{3} \mathrm{~m}$
308. The orthocentre of the triangle formed by the points $(0,0),(4,0)$ and $(3,4)$ is
a) $(2,0)$
b) $\left(\frac{3}{2}, 2\right)$
c) $\left(\frac{3}{4}, 3\right)$
d) $\left(3, \frac{3}{4}\right)$
309. In order to remove $x y$-term from the equation $5 x^{2}+4 \sqrt{3} x y+9 y^{2}-8=0$ the coordinate axes must be rotated through an angle
a) $\pi / 6$
b) $\pi / 4$
c) $\pi / 3$
d) $\pi / 2$
310. If C is a point on the line segment joining $A(-3,4)$ and $B(2,1)$ such that $A C=2 B C$, then the coordinate of C is
a) $\left(\frac{1}{3}, 2\right)$
b) $\left(2, \frac{1}{3}\right)$
c) $(2,7)$
d) $(7,2)$
311. The image of the centre of the circle $x^{2}+y^{2}=a^{2}$ with respect to the mirror image $x+y=1$, is
a) $\left(\frac{1}{\sqrt{2}}, \sqrt{2}\right)$
b) $(\sqrt{2}, \sqrt{2})$
c) $(\sqrt{2}, 2 \sqrt{2})$
d) None of these
312. In a $\triangle A B C, \operatorname{cosec} A(\sin B \cos C+\cos B \sin C)$ is equal to
a) $\frac{c}{a}$
b) $\frac{a}{c}$
c) 1
d) $\frac{c}{a b}$
313. If $A(3,5), B(-5,-4), C(7,10)$ are the vertices of a parallelogram, taken in the order, then the coordinates of the fourth vertex are
a) $(10,19)$
b) $(15,19)$
c) $(19,10)$
d) $(19,15)$
314. Two pillars of equal height stand on either side of a road-way which is 60 m wide. At a point in the roadway between the pillars, the elevation of the top of pillars are 60° and 30°.The height of the pillars is
a) $15 \sqrt{3} \mathrm{~m}$
b) $\frac{15}{\sqrt{3}} \mathrm{~m}$
c) 15 m
d) 20 m
315. From the top of a cliff of height a, the angle of depression of the foot of a certain tower is found to be double the angle of elevation of the top of the tower of height h. If θ be the angle of elevation, then its value is
a) $\cos ^{-1} \sqrt{\frac{2 h}{a}}$
b) $\sin ^{-1} \sqrt{\frac{2 h}{a}}$
c) $\sin ^{-1} \sqrt{\frac{a}{2-h}}$
d) $\tan ^{-1} \sqrt{3-\frac{2 h}{a}}$
316. The points $A(2 a, 4 a), B(2 a, 6 a)$ and $C(2 a+\sqrt{3} a, 5 a), a>0$ are the vertices of
a) An isosceles triangle
b) A right angled triangle
c) An acute angled triangle
d) None of the above
317. If a vertex of a triangle is $(1,1)$ and the mid points of two sides through the vertex are $(-1,2)$ and $(3,2)$, then the centroid of the triangle is
a) $\left(1, \frac{7}{3}\right)$
b) $\left(\frac{1}{3}, \frac{7}{3}\right)$
c) $\left(-\frac{1}{3}, \frac{7}{3}\right)$
d) $\left(-1, \frac{7}{3}\right)$
318. P, Q, R and S are the points on the line joining the points $P(a, x)$ and $T(b, y)$ such that $P Q=Q R=R S=$ $S T$, then $\left(\frac{5 a+3 b}{8}, \frac{5 x+3 y}{8}\right)$ is the mid point of
a) $P Q$
b) $Q R$
c) $R S$
d) $S T$
319. Orthocenter of the triangle formed by the lines $x+y=1$ and $x y=0$ is
a) $(0,0)$
b) $(0,1)$
c) $(1,0)$
d) $(-1,1)$
320. The circumcentre of the triangle with vertices $(0,30),(4,0)$ and $(30,0)$ is
a) $(10,10)$
b) $(10,12)$
c) $(12,12)$
d) $(17,17)$
321. A vertical pole (more than 100 m high) consists of two portions, the lower being-one third of the whole, if the upper portion subtends and angle $\tan ^{-1} \frac{1}{2}$ at a point in a horizontal plane through the foot of the pole and distance 40 ft from it, then the height of the pole is
a) 100 ft
b) 120 ft
c) 150 ft
d) None of these
322. If a point $P(4,3)$ is rotated through an angle 45° in anti-clockwise direction about origin, then coordinates of P in new position are
a) $\left(\frac{1}{\sqrt{2}}, \frac{7}{\sqrt{2}}\right)$
b) $\left(-\frac{7}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)$
c) $\left(-\frac{1}{\sqrt{2}}, \frac{7}{\sqrt{2}}\right)$
d) $\left(\frac{1}{\sqrt{2}},-\frac{7}{\sqrt{2}}\right)$
323. The horizontal distance between two towards is 60 m and the angle of depression of the top of the first
tower as seen from the top of the second is 30°. If the height of the second tower be 150 m , then the height of the first tower is
a) 90 m
b) $(150-60 \sqrt{3}) \mathrm{m}$
c) $(150+20 \sqrt{3}) \mathrm{m}$
d) None of the above
324. In a $\triangle A B C$, if $\sin A+\sin B+\sin C)(\sin A+\sin B-\sin C)=3 \sin A \sin B$, then the angle C is equal to
a) $\frac{\pi}{2}$
b) $\frac{\pi}{3}$
c) $\frac{\pi}{4}$
d) $\frac{\pi}{6}$
325. From the bottom of a pole of height h the angle of elevation of the top of a tower is α and the pole subtends an angle β at the top of the tower. The height of the tower is
a) $\frac{h \tan (\alpha-\beta)}{\tan (\alpha-\beta)-\tan \alpha}$
b) $\frac{h \cot (\alpha-\beta)}{\cot (\alpha-\beta)-\cot \alpha}$
c) $\frac{\cot (\alpha-\beta)}{\cot (\alpha-\beta)-\cot \alpha}$
d) None of these
326. A variable line through the point $\left(\frac{1}{5}, \frac{1}{5}\right)$ cuts the coordinate axes in the points
A and B. If the point P divides $A B$ internally in the ratio $3: 1$, then the locus of P is
a) $3 y+x=20 x y$
b) $y+3 x=20 x y$
c) $x+y=20 x y$
d) $3 x+3 y=20 x y$
327. If the points $(1,2)$ and $(3,4)$ were to be on the same side of the line $3 x-5 y+a=0$, then
a) $1<a<6$
b) $7<a<11$
c) $a>11$
d) $a<7$ or $a>11$
328. The area of the region bounded by the lines $y=|x-2|, x=1, x=3$ and the x-axis is
a) 1
b) 2
c) 3
d) 4
329.

In triangle $A B C$, the value of $\frac{\cot \frac{A}{2} \cot \frac{B}{2}-1}{\cot \frac{A}{2} \cot \frac{B}{2}}$ is
a) $\frac{a}{a+b+c}$
b) $\frac{c}{a+b+c}$
c) $\frac{2 a}{a+b+c}$
d) $\frac{2 c}{a+b+c}$
330. If the coordinates of the centroid and a vertex of an equilateral triangle are $(1,1)$ and $(1,2)$ respectively, then the coordinates of another vertex, are
a) $\left(\frac{2-\sqrt{3}}{2},-\frac{1}{2}\right)$
b) $\left(\frac{2+3 \sqrt{3}}{2},-\frac{1}{2}\right)$
c) $\left(\frac{2+\sqrt{3}}{2}, \frac{1}{2}\right)$
d) None of these
331. In any triangle $A B C, c^{2} \sin 2 B+b^{2} \sin 2 C$ is equal to
a) $\frac{\Delta}{2}$
b) Δ
c) 2Δ
d) 4Δ
332. A house of height 100 m subtends a right angle at the window of an opposite house. If the height of the window be 64 m , then the distance between the two houses is
a) 48 m
b) 36 m
c) 54 m
d) 72 m
333. The angle of elevation of the top of a vertical pole when observed from each vertex of a regular hexagon is $\frac{\pi}{3}$. If the area of the circle circumscribing the hexagon be A metre ${ }^{2}$, then the area of the hexagon is
a) $\frac{3 \sqrt{3} A}{8} \mathrm{~m}^{2}$
b) $\frac{\sqrt{3} A}{\pi} \mathrm{~m}^{2}$
c) $\frac{3 \sqrt{3} A}{4 \pi} \mathrm{~m}^{2}$
d) $\frac{3 \sqrt{3} A}{2 \pi} \mathrm{~m}^{2}$
334. The area of the segment of a circle of radius a subtending an angle of 2α at the centre is
a) $a^{2}\left(\alpha+\frac{1}{2} \sin 2 \alpha\right)$
b) $\frac{1}{2} a^{2} \sin 2 \alpha$
c) $a^{2}\left(\alpha+\frac{1}{2} \sin 2 \alpha\right)$
d) $a^{2} \alpha$
335. A man of height 6 ft . observes the top of a tower and the foot of the tower at angles of 45° and 30° of elevation and depression respectively. The height of the tower is
a) 13.79 m
b) 14.59 m
c) 14.29 m
d) None of these
336. If the sides of the triangles are $5 k, 6 k, 5 k$ and radius of incircle is 6 , the value of k is equal to
a) 4
b) 5
c) 6
d) 7
337. At the foot of the mountain the elevation of its summit is 45°, after ascending 100 m towards the mountain up a slope of 30° inclination, the elevation is found to be 60°. The height of the mountain is
a) $\frac{\sqrt{3}+1}{2} m$
b) $\frac{\sqrt{3}-1}{2} \mathrm{~m}$
c) $\frac{\sqrt{3}+1}{2 \sqrt{3}} \mathrm{~m}$
d) None of these
338. At each end of a horizontal line of length $2 a$, the angular elevation of the peak of a vertical tower is θ and that at its middle point it is ϕ. The height of the peak is
a) $a \sin \theta \sin \phi$
b) $\frac{a \sin \theta \sin \phi}{\sqrt{\sin (\theta+\phi) \sin (\phi-\theta)}}$
c) $\frac{a \cos \theta \cos \phi}{\sqrt{\cos (\phi+\theta) \cos (\phi-\theta)}}$
d) None of the above
339. In a triangle $A B C, \frac{\cos A}{a}=\frac{\cos B}{b}=\frac{\cos C}{c}$. if $a=\frac{1}{\sqrt{6}}$, then the area of the triangle (in square unit) is
a) $1 / 24$
b) $\sqrt{3} / 24$
c) $\frac{1}{8}$
d) $\frac{1}{\sqrt{3}}$
340. A ladder leavs again a wall at an angle α to the horizontal. Its foot is pulled away through a distance a_{1} so that it slides a distance b_{1} down the wall and rests inclined at angle β with the horizontal. It foot is further pulled aways through a_{2}, so that it slides a further distance b_{2} down the wall and is now, inclined at an angle γ. If $a_{1} a_{2}=b_{1} b_{2}$, then
a) $\alpha+\beta+\gamma$ is greater than π
b) $\alpha+\beta+\gamma$ is equal to π
c) $\alpha+\beta+\gamma$ is less than π
d) Nothing can be said about $\alpha+\beta+\gamma$
341. In a $\triangle A B C, \frac{(a+b+c)(b+c-a)(c+a-b)(a+b-c)}{4 b^{2} c^{2}}$ equals
a) $\cos ^{2} A$
b) $\cos ^{2} B$
c) $\sin ^{2} A$
d) $\sin ^{2} B$
342. The locus of a point P which moves such that $2 P A=3 P B$, where $A(0,0)$ and $B(4,-3)$ are points, is
a) $5 x^{2}-5 y^{2}-72 x+54 y+225=0$
b) $5 x^{2}+5 y^{2}-72 x+54 y+225=0$
c) $5 x^{2}+5 y^{2}+72 x-54 y+225=0$
d) $5 x^{2}+5 y^{2}-72 x-54 y-225=0$
343. The incentre of the triangle formed by $(0,0),(5,12),(16,12)$ is
a) $(7,9)$
b) $(9,7)$
c) $(-9,7)$
d) $(-7,9)$
344. In $\triangle A B C$, if $\tan \frac{A}{2} \tan \frac{C}{2}=\frac{1}{2}$, then a, b, c are in
a) AP
b) GP
c) HP
d) None of these
345. In $\triangle A B C$, if $\sin ^{2} \frac{A}{2}, \sin ^{2} \frac{B}{2}, \sin ^{2} \frac{C}{2}$ be in HP, then a, b, c will be in
a) AP
b) GP
c) HP
d) None of these
346. If O is the origin and $P(2,3)$ and $Q(4,5)$ are two points, then $O P \cdot O Q \cos \angle P O Q=$
a) 8
b) 15
c) 22
d) 23
347. If in a $\triangle A B C, 2 b^{2}=a^{2}+c^{2}$, then $\frac{\sin 3 B}{\sin B}$ is equal to
a) $\frac{c^{2}-a^{2}}{2 c a}$
b) $\frac{c^{2}-a^{2}}{c a}$
c) $\left(\frac{c^{2}-a^{2}}{c a}\right)^{2}$
d) $\left(\frac{c^{2}-a^{2}}{2 c a}\right)^{2}$
348. A spherical balloon of radius r subtends an angle α at the eye of an observer. If the angle of elevation of the centre of the balloon be β, then height of the centre of the balloon is
a) $r \operatorname{cosec}\left(\frac{\alpha}{2}\right) \sin \beta$
b) $r \operatorname{cosec} \alpha \sin \left(\frac{\beta}{2}\right)$
c) $r \sin \left(\frac{\alpha}{2}\right) \operatorname{cosec} \beta$
d) $r \sin \alpha \operatorname{cosec}\left(\frac{\beta}{2}\right)$
349. A point $P(2,4)$ transtates to the point Q along the parallel to the positive direction of x-axis by 2 units. If O be the origin, then $\angle O P Q$ is
a) $\sin ^{-1} \sqrt{\frac{399}{400}}$
b) $\cos ^{-1}\left(\frac{1}{20}\right)$
c) $-\sin ^{-1}\left(\sqrt{\frac{399}{400}}\right)$
d) None of these
350. From the top of a hill h meters high, the angles of depressions of the top and the bottom of a pillar are α and β respectively. The height (in meters) of the pillar is
a) $\frac{h(\tan \beta-\tan \alpha)}{\tan \beta}$
b) $\frac{h(\tan \alpha-\tan \beta)}{\tan \alpha}$
c) $\frac{h(\tan \beta+\tan \alpha)}{\tan \beta}$
d) $\frac{h(\tan \beta+\tan \alpha)}{\tan \alpha}$
351. If $G(1,4)$ is the centroid of triangle $A B C$ having its two vertices A and B at $(4,-3)$ and $(-9,7)$ respectively, then area of the triangle $A B C$ in square units, is
a) $\frac{138}{2}$
b) $\frac{319}{2}$
c) $\frac{183}{2}$
d) $\frac{381}{2}$
352. If $a=2 \sqrt{2}, b=6, A=45^{\circ}$, then
a) No triangle is possible
b) One triangle is possible
c) Two triangles are possible
d) Either no triangle or two triangles are possible
353. Two poles of equal height stand on either side of a 100 m wide road. At a point between the poles the angles of elevation of the topes of the poles are 30° and 60°. The height of each pole is
a) 25 m
b) $25 \sqrt{3} \mathrm{~m}$
c) $\frac{100}{\sqrt{3}} \mathrm{~m}$
d) None of these
354. Area (in sq unit) enclosed by $y=1,2 x+y=2$ and $x+y=2$ is
a) $\frac{1}{2}$ sq unit
b) $\frac{1}{4}$ sq unit
c) 1 sq unit
d) 2 sq units
355. The feet of the perpendicular drawn from P to the sides of a $\triangle A B C$ are collinear, then P is
a) Circumcentre of $\triangle A B C$
b) Lies on the circumcircle of $\triangle A B C$
c) Excentre of $\triangle A B C$
d) None of the above
356. Let $O(0,0), P(3,4), Q(6,0)$ be the vertices of the triangle $O P Q$. The point R inside the triangle $O P Q$ is such that the triangles $O P R, P Q R, O Q R$ are of equal area. The coordinates of R are
a) $\left(\frac{4}{3}, 3\right)$
b) $\left(3, \frac{2}{3}\right)$
c) $\left(3, \frac{4}{3}\right)$
d) $\left(\frac{4}{3}, \frac{2}{3}\right)$
357. A tree is broken by wind, its upper part touches the ground at a point 10 metres from the foot of the tree and makes an angle of 45° with the ground. The entire length of the tree is
a) 15 metres
b) 20 metres
c) $10(1+\sqrt{2})$ metres
d) $10\left(1+\frac{\sqrt{3}}{2}\right)$ metres
358. Without change of axes the origin is shifted to (h, k), then from the equation $x^{2}+y^{2}-4 x+6 y-7=0$ the terms containing linear powers are missing. The point (h, k) is
a) $(3,2)$
b) $(-3,2)$
c) $(2,-3)$
d) $(-2,-3)$
359. The horizontal distance between two towers is 60 m and the angle of depression of the top of the first tower as seen from the top of the second is 30°. If the height of the second tower be 150 m , then the height of the first tower is
a) $(150-60 \sqrt{3}) \mathrm{m}$
b) 90 m
c) $(150-20 \sqrt{3}) \mathrm{m}$
d) None of these
360. Let $a>0, b>0$. The sum of the distance of the point (a, b) from the lines $\frac{x}{a}+\frac{y}{b}=1$ and $\frac{x}{b}+\frac{y}{a}=1$ is
a) $\frac{a+b}{2}$
b) $\sqrt{a b}$
c) $\frac{2 a b}{a+b}$
d) $\sqrt{a^{2}+b^{2}}$
361. In $\triangle A B C$, if $\frac{1}{b+c}+\frac{1}{c+a}=\frac{3}{a+b+c}$, then C is equal to
a) 90°
b) 60°
c) 45°
d) 30°
362. If in a $\triangle A B C, 4 \sin A=4 \sin B=3 \sin C$, then $\cos C$ is equal to
a) $1 / 3$
b) $1 / 9$
c) $1 / 27$
d) $1 / 18$
363. In a $\triangle A B C,(b+c)(b c) \cos A+(a+c)(a c) \cos B+(a+b)(a b) \cos C$ is
a) $a^{2}+b^{2}+c^{2}$
b) $a^{3}+b^{3}+c^{3}$
c) $(a+b+c)\left(a^{2}+b^{2}+c^{2}\right)$
d) $(a+b+c)(a b+b c+c a)$
364. If a flag staff of 6 m high placed on the top of a tower throws a shadow of $2 \sqrt{3} \mathrm{~m}$ along the ground, then the angle (in degrees) that the sun makes with the ground is
a) 60°
b) 80°
c) 75°
d) None of these
365. If the angles of a $\triangle A B C$ be in AP , then
a) $c^{2}=a^{2}+b^{2}-a b$
b) $b^{2}=a^{2}+c^{2}-a c$
c) $a^{2}=b^{2}+c^{2}-a c$
d) $b^{2}=a^{2}+c^{2}$
366. The sides of a triangle are respectively $7 \mathrm{~cm}, 4 \sqrt{3} \mathrm{~cm}$ and $\sqrt{13} \mathrm{~cm}$, then the smallest angle of the triangle is
a) $\frac{\pi}{6}$
b) $\frac{\pi}{3}$
c) $\frac{\pi}{4}$
d) $\frac{\pi}{5}$
367. The straight lines $x+y=0,3 x+y-4=0$ and $x+3 y-4=0$ form a triangle which is
a) Right angled
b) Equilateral
c) Isosceles
d) None of these
368. A tower of x metres height has flag staff at its top. The tower and the flag staff subtend equal angles at a point distant y metres from the foot of the tower. Then, the length of the flag staff in metres is
a) $y\left(\frac{x^{2}-y^{2}}{x^{2}+y^{2}}\right)$
b) $x\left(\frac{x^{2}+y^{2}}{y^{2}-x^{2}}\right)$
c) $x\left(\frac{x^{2}+y^{2}}{x^{2}-y^{2}}\right)$
d) $x\left(\frac{x^{2}-y^{2}}{x^{2}+y^{2}}\right)$
369. If $\left|\begin{array}{lll}x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \\ x_{3} & y_{3} & 1\end{array}\right|=0$, then the points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ and $\left(x_{3}, y_{3}\right)$ are
a) Vertices of an equilateral triangle
b) Vertices of a right angled triangle
c) Vertices of an isosceles triangle
d) None of the above
370. If two angles of $\triangle A B C$ are 45° and 60°, then the ratio of the smallest and the greatest sides are
a) $(\sqrt{3}-1): 1$
b) $\sqrt{3}: \sqrt{2}$
c) $1: \sqrt{3}$
d) $\sqrt{3}: 1$
371. An aeroplane flying horizontally 1 km above the ground is observed at an elevation of 60° and after 10 s the elevation is observed to be 30°. The uniform speed of the aeroplane (in km / h) is
a) 240
b) $240 \sqrt{3}$
c) $60 \sqrt{3}$
d) None of these
372. The angle of elevation of the top of a tower from the top and bottom of a building of height ' a^{\prime} are 30° and 45° respectively. If the tower and the building stand at the same level, the height of the tower is
a) $\frac{a(3+\sqrt{3})}{2}$
b) $a(\sqrt{3}+1)$
c) $a \sqrt{3}$
d) $a(\sqrt{3}-1)$
373. If in a $\triangle A B C, 2 b^{2}=a^{2}+c^{2}$, then $\frac{\sin 3 B}{\sin B}$ is equal to
a) $\frac{c^{2}-a^{2}}{2 c a}$
b) $\frac{c^{2}-a^{2}}{c a}$
c) $\left(\frac{c^{2}-a^{2}}{c a}\right)^{2}$
d) $\left(\frac{c^{2}-a^{2}}{2 c a}\right)^{2}$
374. The angle of elevation of a cloud from a point $h \mathrm{mt}$. above is θ° and the angle of depression of its reflection in the lake is ϕ. Then, the height is
a) $\frac{h \sin (\phi-\theta)}{\sin (\phi+\theta)}$
b) $\frac{h \sin (\phi+\theta)}{\sin (\phi-\theta)}$
c) $\frac{h \sin (\theta+\phi)}{\sin (\theta-\phi)}$
d) None of these
375. In a $\triangle A B C, \angle B=\frac{\pi}{3}$ and $\angle C=\frac{\pi}{4}$. If D divides $B C$ internally in ratio $1: 3$, then the value of $\frac{\sin \angle B A D}{\sin \angle C A D}$ is
a) $\frac{1}{\sqrt{3}}$
b) $\frac{1}{\sqrt{6}}$
c) $\sqrt{\frac{2}{3}}$
d) $\frac{1}{3}$
376. Let equation of the side $B C$ of a $\triangle A B C$ be $x+y+2=0$. If coordinates of its orthocentre and circumcentre are $(1,1)$ and $(2,0)$ respectively, then radius of the circumcircle of $\triangle A B C$ is
a) 3
b) $\sqrt{10}$
c) $2 \sqrt{2}$
d) None of these
377. In a $\triangle A B C$, if $b+c=2 a$ and $\angle A=60^{\circ}$, then $\triangle A B C$ is
a) Equilateral
b) Right angled
c) Isosceles
d) Scalene
378. The orthocenter of the triangle with vertices $(-2,-6),(-2,4)$ and $(1,3)$ is
a) $(3,1)$
b) $(1,1 / 3)$
c) $(1,3)$
d) None of these
379. If $a>0, b>0$ the maximum area of the triangle formed by the points $O(0,0), A(a \cos \theta, b \sin \theta)$ and $B(a \cos \theta,-b \sin \theta)$ is (in sq unit)
a) $\frac{a b}{2}$ when $\theta=\frac{\pi}{4}$
b) $\frac{3 a b}{2}$ when $\theta=\frac{\pi}{4}$
c) $\frac{a b}{2}$ when $\theta=-\frac{\pi}{4}$
d) $a^{2} b^{2}$
380. If the coordinates of orthocentre O^{\prime} and centroid G of a $\triangle A B C$ are $(0,1)$ and $(2,3)$ respectively, then the coordinates of the circumcentre are
a) $(3,2)$
b) $(1,0)$
c) $(4,3)$
d) $(3,4)$
381. The point P is equidistant from $A(1,3), B(-3,5)$ and $C(5,-1)$, then $P A$ is equal to
a) 5
b) $5 \sqrt{5}$
c) 25
d) $5 \sqrt{10}$
382. The coordinates of the incentre of the triangle having sides
$3 x-4 y=0,5 x+12 y=0$
and $y-15=0$ are
a) $-1,8$
b) $1,-8$
c) 2,6
d) None of these
383. The mid point of the line joining the points $(-10,8)$ and $(-6,12)$ divides the line joining the points $(4,-2)$ and $(-2,4)$ in the ratio
a) $1: 2$ internally
b) 1:2 externally
c) 2: 1 internally
d) 2: 1 externally
384. The centre of circle inscribed in square formed by the lines $x^{2}-8 x+12=0$ and $y^{2}-14 y+45=0$, is
a) $(4,7)$
b) $(7,4)$
c) $(9,4)$
d) $(4,9)$
385. If A, A_{1}, A_{2}, A_{3} be the areas of the incircle and excircles, then $\frac{1}{\sqrt{A_{1}}}+\frac{1}{\sqrt{A_{2}}}+\frac{1}{\sqrt{A_{3}}}$ is equal to
a) $\frac{1}{\sqrt{A}}$
b) $\frac{2}{\sqrt{A}}$
c) $\frac{3}{\sqrt{A}}$
d) $\frac{4}{\sqrt{A}}$
386. If $x=X \cos \theta-Y \sin \theta, y=X \sin \theta+Y \cos \theta$ and $x^{2}+4 x y+y^{2}=A X^{2}+B Y^{2}, 0 \leq \theta \leq \frac{\pi}{2}$, then
a) $\theta=\frac{\pi}{6}$
b) $\theta=\frac{\pi}{4}$
c) $A=-6$
d) $B=1$
387. If $P(1,0), Q=(-1,0)$ and $R=(2,0)$ are three given points, then the locus of a point S satisfying the relation $S Q^{2}+S R^{2}=2 S P^{2}$ is
a) A straight line parallel to x-axis
b) A circle through origin
c) A circle with centre at the origin
d) A straight line parallel to y-axis
388. The triangle formed by $x^{2}-3 y^{2}=0$ and $x=4$ is
a) Isosceles
b) Equilateral
c) Right angled
d) None of these
389. The angle of elevation of the top of an incomplete vertical pillar at a horizontal distance of 100 m from its base is 45°. If the angle of elevation of the top of the complete pillar at the same point is to be 60°, then the height of the incomplete pillar is to be increased by
a) $50 \sqrt{2} \mathrm{~m}$
b) 100 m
c) $100(\sqrt{3}-1) \mathrm{m}$
d) $100(\sqrt{3}+1) \mathrm{m}$
390. If $O(0,0), A(4,0)$ and $B(0,3)$ are the vertices of a triangle $O A B$, then the coordinates of the excentre opposite to the vertex $O(0,0)$ are
a) $(12,12)$
b) $(6,6)$
c) $(3,3)$
d) None of these
391. A tower subtends an angle α at a point A in the plane of its base and angle of depression of the foot of the tower at a point l metres just above A is β. The height of the tower is
a) $l \tan \beta \cot \alpha$
b) $l \tan \alpha \cot \beta$
c) $l \tan \alpha \tan \beta$
d) $l \cot \alpha \cot \beta$
392. Observe the following statements
I. In $\triangle A B C b \cos ^{2} \frac{C}{2}+c \cos ^{2} \frac{B}{2}=s$
II. $\triangle A B C, \cot \frac{A}{2}=\frac{b+c}{2} \Rightarrow B=90^{\circ}$

Which of the following is correct?
a) Both I and II are true
b) I is true, II is false
c) I is false, II is false
d) Both I and II are false
393. If A and B are two points on one bank of a straight river and C, D are two other points on the other bank of river. If direction from A to B is same as that from C to D and $A B=a, \angle C A D=\alpha, \angle D A B=\beta, \angle C B A=\gamma$, then $C D$ is equal to
a) $\frac{a \sin \beta \sin \gamma}{\sin \alpha \sin (\alpha+\beta+\gamma)}$
b) $\frac{a \sin \alpha \sin \gamma}{\sin \beta \sin (\alpha+\beta+\gamma)}$
c) $\frac{a \sin \alpha \sin \beta}{\sin \gamma \sin (\alpha+\beta+\gamma)}$
d) None of these
394. $A B C D$ is a square plot. The angle of elevation of the top of a pole standing at D from A or C is 30° and that from B is θ, then $\tan \theta$ is equal to
a) $\sqrt{6}$
b) $1 / \sqrt{6}$
c) $\sqrt{3} / 2$
d) $\sqrt{2 / 3}$
395. In a $\triangle A B C$, if $(\sqrt{3}-1) a=2 b, A=3 B$, then $\angle C$ is
a) 60°
b) 120°
c) 30°
d) 45°
396. The angle of elevation of an object from a point on the level ground is α. Moving d meters on the ground towards the object, the angle of elevation is found to be β. Then the height (in meters) of the object is
a) $d \tan \alpha$
b) $d \cot \beta$
c) $\frac{d}{\cot \alpha+\cot \beta}$
d) $\frac{d}{\cot \alpha-\cot \beta}$
397. In a $\triangle P Q R$ as shown in figure given that $x: y: z=2: 3: 6$, then the value of $\angle Q P R$ is

a) $\frac{\pi}{6}$
b) $\frac{\pi}{4}$
c) $\frac{\pi}{3}$
d) None of these
398. If by shifting the origin at $(1,1)$ the coordinates of a point P become $(\cos \theta, \cos \phi)$, then the original coordinates of P were
a) $\left(2 \cos ^{2} \theta / 2,2 \cos ^{2} \phi / 2\right)$
b) $\left(2 \sin ^{2} \theta / 2,2 \sin ^{2} \phi / 2\right)$
c) $(2 \cos \theta / 2,2 \cos \phi / 2)$
d) $(2 \sin \theta / 2,2 \sin \phi / 2)$
399. In a $\triangle A B C$, if $r_{1}=2 r_{2}=3 r_{3}$, then
a) $\frac{a}{b}=\frac{4}{5}$
b) $\frac{a}{b}=\frac{5}{4}$
c) $a+b-2 c=0$
d) $2 a=b+c$
400. In a $\triangle A B C$, if a, b, c are in AP, then the value of $\frac{\sin \frac{A}{2} \sin \frac{C}{2}}{\sin \frac{B}{2}}$ is
a) 1
b) $\frac{1}{2}$
c) 2
d) -1
401. The top of a hill observed from the top and bottom of a building h is at angles of elevation p and q respectively. The height of hill is
a) $\frac{h \cot q}{\cot q-\cot p}$
b) $\frac{h \cot p}{\cot p-\cot q}$
c) $\frac{h \tan p}{\tan p-\tan q}$
d) None of these
402. In a triangle, if $b=20, c=21$ and $\sin A=\frac{3}{5}$, then a is equal to
a) 12
b) 13
c) 14
d) 15
403. In $\triangle A B C, a=2, b=4$ and $\angle C=60^{\circ}$, then $\angle A$ and $\angle B$ are equal to
a) $90^{\circ}, 30^{\circ}$
b) $60^{\circ}, 60^{\circ}$
c) $30^{\circ}, 90^{\circ}$
d) $60^{\circ}, 45^{\circ}$
404. If in an equilateral triangle $R=\sqrt{3} \mathrm{~cm}$, then the length of each side of the triangle is
a) 1 cm
b) 2 cm
c) 3 cm
d) None of these
405. In a $\triangle A B C, \frac{b-c \cos A}{c-b \cos A}$ is equal to
a) $\frac{\sin B}{\sin C}$
b) $\frac{\cos C}{\cos B}$
c) $\frac{\cos B}{\cos C}$
d) None of these
406. In a $\triangle A B C$, if $2 s=a+b+c$, then the value of the $\frac{s(s-a)}{b c}-\frac{(s-b)(s-c)}{b c}$ is equal to
a) $\sin A$
b) $\cos A$
c) $\tan A$
d) None of these
407. The centroid of a triangle is $(2,7)$ and two of its vertices are $(4,8)$ and $(-2,6)$. The third vertex is
a) $(0,0)$
b) $(4,7)$
c) $(7,4)$
d) $(7,7)$
408. Each side of a square subtends an angle of 60° at the top of a tower h metres high standing in the centre of the square. If a is the length of each side of the square, then
a) $2 a^{2}=h^{2}$
b) $2 h^{2}=a^{2}$
c) $3 a^{2}=2 h^{2}$
d) $2 h^{2}=3 a^{2}$
409. In $\triangle A B C,(a-b)^{2} \cos ^{2} \frac{c}{2}+(a+b)^{2} \sin ^{2} \frac{C}{2}$ is equal to
a) a^{2}
b) b^{2}
c) c^{2}
d) None of these
410. If the area of a $\triangle A B C$ is given by $\Delta=a^{2}-(b-c)^{2}$, then $\tan \left(\frac{A}{2}\right)$ is equal to
a) -1
b) 0
c) $\frac{1}{4}$
d) $\frac{1}{2}$
411. If $O^{\prime}(4,8 / 3)$ is the orthocentre of the triangle $A B C$ the coordinates of whose vertices are $O(0,0), A(8,0)$ and $B(4,6)$, then the coordinates of the orthocentre of $\triangle O^{\prime} A B$ are
a) $(0,0)$
b) $(8,0)$
c) $(4,6)$
d) None of these
412. In a $\triangle A B C$, if $b^{2}+c^{2}=3 a^{2}$, then $\cot B+\cot C-\cot A$ is equal to
a) 1
b) $\frac{a b}{4 \Delta}$
c) 0
d) $\frac{a c}{4 \Delta}$
413. From the top of a tower, the angle of depression of a point on the ground is 60°.If the distance of this point from the tower is $\frac{1}{\sqrt{3}+1} m$, then the height of the tower is
a) $\frac{4 \sqrt{3}}{2} \mathrm{~m}$
b) $\frac{\sqrt{3}+3}{2} \mathrm{~m}$
c) $\frac{3-\sqrt{3}}{2} \mathrm{~m}$
d) $\frac{\sqrt{3}}{2} \mathrm{~m}$
414. If in a $\triangle A B C, a=6 \mathrm{~cm}, b=8 \mathrm{~cm}, c=10 \mathrm{~cm}$, then the value of $\sin 2 A$ is
a) $6 / 25$
b) $8 / 25$
c) $10 / 25$
d) $24 / 25$
415. In $\triangle A B C, \frac{1+\cos (A-B) \cos C}{1+\cos (A-C) \cos B}$ is equal to
a) $\frac{a-b}{a+b}$
b) $\frac{a+b}{a+c}$
c) $\frac{a^{2}-b^{2}}{a^{2}-c^{2}}$
d) $\frac{a^{2}+b^{2}}{a^{2}+c^{2}}$
416. The base of a cliff is circular. From the extremities of a diameter of the base angles of elevation of the top of the cliff are 30° and 60°. If the height of the cliff be 500 m , then the diameter of the base of the cliff is
a) $\frac{2000}{\sqrt{3}} \mathrm{~m}$
b) $\frac{1000}{\sqrt{3}} \mathrm{~m}$
c) $\frac{2000}{\sqrt{2}} \mathrm{~m}$
d) $1000 \sqrt{3} \mathrm{~m}$
417. The sides $B C, C A$ and $A B$ of a triangle $A B C$ are of lengths a, b and c respectively. If D is the mid point of $B C$ and $A D$ is perpendicular to $A C$, then the value of $\cos A \cos C$ is
a) $\frac{3\left(a^{2}-c^{2}\right)}{2 a c}$
b) $\frac{2\left(a^{2}-c^{2}\right)}{3 b c}$
c) $\frac{\left(a^{2}-c^{2}\right)}{3 a c}$
d) $\frac{2\left(c^{2}-a^{2}\right)}{3 a c}$
418. The mid points of the sides of a triangle are $D(6,1), E(3,5)$ and $F(-1,-2)$, then the vertex opposite to D is
a) $(-4,2)$
b) $(-4,5)$
c) $(2,5)$
d) $(10,8)$
419. The locus of a points which moves such that the sum of the squares of its distance from three vertices of the triangle is constant is a/an
a) Circle
b) Straight line
c) Ellipse
d) None of the above
420. The angles A, B and C of a $\triangle A B C$ are in AP. if $b: c=\sqrt{3}: \sqrt{2}$, then the angle A is
a) 30°
b) 15°
c) 75°
d) 45°
421. If the three points $(0,1),(0,-1)$ and $(x, 0)$ are vertices of an equilateral triangle, then the values of x are
a) $\sqrt{3}, \sqrt{2}$
b) $\sqrt{3},-\sqrt{3}$
c) $-\sqrt{5}, \sqrt{3}$
d) $\sqrt{2},-\sqrt{2}$
422. The sides of a triangle are $\sin \alpha \cos \alpha$ and $\sqrt{1+\sin \alpha \cos \alpha}$ for some $0<\alpha<\frac{\pi}{2}$. Then, the greatest angle of the triangle is
a) 60°
b) 90°
c) 120°
d) 150°
423. From an aeroplane flying, vertically above a horizontal road, the angles of depression of two consecutive stones on the same side of the aeroplane are observed to be 30° and 60° respectively. The height at which the aeroplane is flying in km , is
a) $\frac{4}{\sqrt{3}}$
b) $\frac{\sqrt{3}}{2}$
c) $\frac{2}{\sqrt{3}}$
d) 2
424. A flag staff 20 m long standing on a wall 10 m high subtends an angle whose tangent is 0.5 at a point on the ground. If θ is the angle subtended by the wall at this point, then
a) $\tan \theta=1$
b) $\tan \theta=3$
c) $\tan \theta=\frac{1}{2}$
d) None of these
425. The angle of elevation of the top of a vertical tower from two points distance a and b from the base and in the same line with it, are complimentary. If θ is the angle subtended at the top of the tower by the line joining these points then $\sin \theta=$
a) $\frac{a-b}{\sqrt{2}(a+b)}$
b) $\frac{a+b}{a-b}$
c) $\frac{a-b}{a+b}$
d) None of these
426. In a triangle with one angle if 120°, the length of the sides forms an AP. If the length of the greatest sides is 7 cm , then area of triangle is
a) $\frac{3 \sqrt{15}}{4} \mathrm{~cm}^{2}$
b) $\frac{15 \sqrt{3}}{4} \mathrm{~cm}^{2}$
c) $\frac{15}{4} \mathrm{~cm}^{2}$
d) $\frac{3 \sqrt{3}}{4} \mathrm{~cm}^{2}$
427. If in a $\triangle A B C, \frac{b+c}{11}=\frac{c+a}{12}=\frac{a+b}{13}$, then $\cos A$ is equal to
a) $\frac{1}{5}$
b) $\frac{5}{7}$
c) $\frac{19}{35}$
d) None of these
428. If two vertices of an equilateral triangle are $(0,0)$ and $(3,3 \sqrt{3})$, then the third vertex lies at
a) $(3,-3)$
b) $(-3,3)$
c) $(-3,3 \sqrt{3})$
d) None of these
429. In an isosceles right angled $\triangle A B C, \angle B=90^{\circ}, A D$ is the median, then $\frac{\sin \angle B A D}{\sin \angle C A D}$ is
a) $\frac{1}{\sqrt{2}}$
b) $\sqrt{2}$
c) 1
d) None of these
430. If $P(1,2), Q(4,6), R(5,7)$ and $S(a, b)$ are the vertices of a parallelogram $P Q R S$, then
a) $a=2, b=4$
b) $a=b, b=4$
c) $a=2, b=3$
d) $a=3, b=5$
431. Angles of a triangle are in the ratio4: $1: 1$. The ratio between its greatest side and perimeter is
a) $\frac{3}{2+\sqrt{3}}$
b) $\frac{1}{2+\sqrt{3}}$
c) $\frac{\sqrt{3}}{\sqrt{3}+2}$
d) $\frac{2}{2+\sqrt{3}}$
432. From the top of a cliff h metres above sea level an observer notices that angles of depression of an object A and its image B are complementary. If the angle of depression at A is θ. The height of A above sea level is
a) $h \sin \theta$
b) $h \cos \theta$
c) $h \sin 2 \theta$
d) $h \cos 2 \theta$
433. The radius of the incircle of triangle when sides are 18,24 and 30 cm is
a) 2 cm
b) 4 cm
c) 6 cm
d) 9 cm
434. The points $(1,3)$ and $(5,1)$ are the opposite vertices of a rectangle. The other two vertices lie on the line $y=2 x+c$, then the value of c will be
a) 4
b) -4
c) 2
d) -2
435. If the vertices of a triangle at $O(0,0), A(a, 0)$ and $B(0, a)$. Then, the distance between its circumcentre and orthocentre is
a) $\frac{a}{2}$
b) $\frac{a}{\sqrt{2}}$
c) $\sqrt{2} a$
d) $\frac{a}{4}$
436. The straight lines $x=y, x-2 y=3$ and $x+2 y=-3$ form a triangle, which is
a) Isosceles
b) Equilateral
c) Right angled
d) None of these
437. The vertices of a triangle are $(6,0),(0,6)$ and $(6,6)$. The distance between its circumcentre and centroid is
a) 2
b) $\sqrt{2}$
c) 1
d) $2 \sqrt{2}$
438. In a $\triangle A B C, a=5, b=7$ and $\sin A=\frac{3}{4}$, then the number of possible triangles are
a) 1
b) 0
c) 2
d) Infinite
439. The points $(k, 2-2 k),(-k+1,2 k),(-4-k, 6-2 k)$ are collinear, then k is equal to
a) 2,3
b) 1,0
c) $\frac{1}{2}, 1$
d) 1,2
440. If the vertices P, Q, R of a $\triangle P Q R$ are rational points, which of the following points of the $\triangle P Q R$ is (are) always rational points?
(A rational point is a point both of whose coordinates are rational numbers)
a) Centroid
b) Incentre
c) Circumcentre
d) Orthocentre
441. Which of the following pieces of data does not uniquely determine acute angled $\triangle A B C$ ($R=$ circumradius)?
a) $a, \sin A, \sin B$
b) a, b, c
c) $a, \sin B, R$
d) $a, \sin A, R$
442. If a $\triangle A B C, 2 c a \sin \frac{A-B+C}{2}$ is equal to
a) $a^{2}+b^{2}-c^{2}$
b) $c^{2}+a^{2}-b^{2}$
c) $b^{2}-c^{2}-a^{2}$
d) $c^{2}-a^{2}-b^{2}$
443. In any $\triangle A B C$ under usual notation, $a(b \cos C-c \cos B)$ is equal to
a) $b^{2}-c^{2}$
b) $c^{2}-b^{2}$
c) $\frac{b^{2}-c^{2}}{2}$
d) $\frac{c^{2}-b^{2}}{2}$
444. In $\triangle A B C, G$ is he centroid, D is the mid point of $B C$. If $A=(2,3)$ and $G(7,5)$, then the point D is
a) $\left(\frac{9}{2}, 4\right)$
b) $\left(\frac{19}{2}, 6\right)$
c) $\left(\frac{11}{2}, \frac{11}{2}\right)$
d) $\left(8, \frac{13}{2}\right)$
445. The transformed equation of $3 x^{2}+3 y^{2}+2 x y=2$, when the coordinate axes are rotated through an angle of 45°, is
a) $x^{2}+2 y^{2}=1$
b) $2 x^{2}+y^{2}=1$
c) $x^{2}+y^{2}=1$
d) $x^{2}+3 y^{2}=1$
446. The equation of the locus of a point equidistant from the points $\left(a_{1}, b_{1}\right)$ and $\left(a_{2}, b_{2}\right)$ is $\left(a_{1}-a_{2}\right) x+$ $\left(b_{1}-b_{2}\right) y+c=0$, then the value of c is
a) $\sqrt{\left(a_{1}^{2}+b_{1}^{2}+c_{1}^{2}\right)}$
b) $a_{1}^{2}-b_{1}^{2}-c_{1}^{2}$
c) $\frac{1}{2}\left(a_{2}^{2}+b_{2}^{2}-a_{1}^{2}-b_{1}^{2}\right)$
d) None of the above
447. $A B C$ is a right angled triangle with $\angle B=90^{\circ}, a=6 \mathrm{~cm}$. If the radius of the circumcircle is 5 cm . Then the area of $\triangle A B C$ is
a) $25 \mathrm{~cm}^{2}$
b) $30 \mathrm{~cm}^{2}$
c) $36 \mathrm{~cm}^{2}$
d) $24 \mathrm{~cm}^{2}$
448. The transformed equation of $x^{2}+6 x y+8 y^{2}=10$ when the axes are rotated through an angle $\frac{\pi}{4}$ is
a) $15 x^{2}-14 x y+3 y^{2}=20$
b) $15 x^{2}+14 x y-3 y^{2}=20$
c) $15 x^{2}+14 x y+3 y^{2}=20$
d) $15 x^{2}-14 x y-3 y^{2}=20$
449. The angle of elevation of the top of a TV tower from three points A, B and C in a straight line through the foot of the tower are $\alpha, 2 \alpha$ and 3α respectively. If $A B=a$, then height of the tower is
a) $a \tan \alpha$
b) $a \sin \alpha$
c) $a \sin 2 \alpha$
d) $a \sin 3 \alpha$
450. The ratio in which the x-axis divides the line segment joining $(3,6)$ and $(4,-3)$ is
a) $2: 1$
b) $1: 2$
c) $3: 4$
d) None of these
451. $A B$ is vertical tower. The point A is on the ground and C is the middle point of $A B$. The part $C B$ subtend an angle α at a point P on the ground. If $A P=n A B$, then the correct relation is
a) $n=\left(n^{2}+1\right) \tan \alpha$
b) $n=\left(2 n^{2}-1\right) \tan \alpha$
c) $n^{2}=\left(2 n^{2}+1\right) \tan \alpha$
d) $n=\left(2 n^{2}+1\right) \tan \alpha$
452. If the points $(-2,-5),(2,-2),(8, a)$ are collinear, then the value of a is
a) $-\frac{5}{2}$
b) $\frac{5}{2}$
c) $\frac{3}{2}$
d) $\frac{1}{2}$
453. If in a $\triangle A B C, \cos A+2 \cos B+\cos C=2$, then a, b, c are in
a) AP
b) GP
c) HP
d) None of these
454. In a $\triangle A B C, a=5, a=4$ and $\cos (A+B)=\frac{31}{32}$. In this triangle, c is equal to
a) $\sqrt{6}$
b) 36
c) 6
d) None of these
455. In a triangle $r_{1}>r_{2}>r_{3}$, then
a) $a>b>c$
b) $a<b<c$
c) $a>b$ and $b<c$
d) $a<b$ and $b>c$
456. In a $\triangle A B C$, if $a=2 x, b=2 y$ and $\angle C=120^{\circ}$, then the area of the triangle is
a) $x y$ sq unit
b) $x y \sqrt{3}$ sq unit
c) $3 x y$ sq unit
d) $2 x y$ sq unit
457. If the points $(a, b),\left(a^{\prime}, b^{\prime}\right)$ and $\left(a-a^{\prime}, b-b^{\prime}\right)$ are collinear, then
a) $a b^{\prime}=a^{\prime} b$
b) $a b=a^{\prime} b^{\prime}$
c) $a a^{\prime}=b b^{\prime}$
d) $a^{2}+b^{2}=1$
458. If $A(-a, 0)$ and $B(a, 0)$ are two fixed points, then the locus of the point at which $A B$ subtends a right angle, is
a) $x^{2}+y^{2}=2 a^{2}$
b) $x^{2}-y^{2}=a^{2}$
c) $x^{2}+y^{2}+a^{2}=0$
d) $x^{2}+y^{2}=a^{2}$
459. If the coordinates of two vertices of an equilateral triangle ae $(2,4)$ and $(2,6)$, then the coordinates of its third vertex are
a) $(\sqrt{3}, 5)$
b) $(2 \sqrt{3}, 5)$
c) $(2+\sqrt{3}, 5)$
d) $(2,5)$
460. If point (x, y) is equidistant from $(a+b, b-a)$ and $(a-b, a+b)$, then
a) $a x+b y=0$
b) $a x-b y=0$
c) $b x+a y=0$
d) $b x-a y=0$
461. If A, B, C, D are the angles of a quadrilateral, then $\frac{\sum \tan A}{\sum \cot A}$ is equal to
a) $\prod \tan A$
b) $\prod \cot A$
c) $\sum \tan ^{2} A$
d) $\sum \cot ^{2} A$
462. If the angles of a triangle are in the ratio $3: 4: 5$, then the sides are in the ratio
a) $2: \sqrt{6}: \sqrt{3}+1$
b) $\sqrt{2}: \sqrt{6}: \sqrt{3}+1$
c) $2: \sqrt{3}: \sqrt{3}+1$
d) $3: 4: 5$
463. A line joining $A(2,0)$ and $B(3,1)$ is rotated about A in anti-clockwise direction through 15°. Find the equation of the line in the new position. If B goes to C in the new position, then coordinates of C are
a) $\left(2+\frac{1}{\sqrt{2}}, \frac{\sqrt{3}}{\sqrt{2}}\right)$
b) $\left(2-\frac{1}{\sqrt{2}}, \frac{\sqrt{3}}{\sqrt{2}}\right)$
c) $\left(2+\frac{1}{\sqrt{2}}, \frac{\sqrt{3}}{2}\right)$
d) None of these
464. $A B C$ is a triangle with vertices $A(-1,4), B(6,-2)$ and $C(-2,4) . D, E$ and F are the points which divide each $A B, B C$, and $C A$ respectively in the ratio $3: 1$ internally. Then, the centroid of $\triangle D E F$ is
a) $(3,6)$
b) $(1,2)$
c) $(4,8)$
d) $(-3,6)$
465. A house subtends a right angle at the window of an opposite house and the angle of elevation of the window from the bottom of the first house is 60°. If the distance between the two house be 6 m , then the height of the first house is
a) $8 \sqrt{3} \mathrm{~m}$
b) $6 \sqrt{3} \mathrm{~m}$
c) $4 \sqrt{3} \mathrm{~m}$
d) None of these
466. The orthocentre of the triangle whose vertices are
$\left\{a t_{1} t_{2}, a\left(t_{1}+t_{2}\right)\right\},\left\{a t_{2} t_{3}, a\left(t_{2}+t_{3}\right)\right\},\left\{a t_{3} t_{1}, a\left(t_{3}+t_{1}\right)\right\}$ is
a) $\left\{-a, a\left(t_{1}+t_{2}+t_{3}+t_{1}+t_{2} t_{3}\right)\right\}$
b) $\left\{-a, a\left(t_{1}+t_{2}+t_{3}+t_{1} t_{2} t_{3}\right)\right\}$
c) $\left\{-a, a\left(t_{1}-t_{2}-t_{3}-t_{1} t_{2} t_{3}\right)\right\}$
d) $\left\{-a, a\left(t_{1}+t_{2}-t_{3}-t_{1} t_{2} t_{3}\right)\right\}$
467. A flag staff is upon the top of a building. If at a distance of 40 m from the base of building the angles of elevation of the topes of the flag staff and building are 60° and 30° respectively, then the height of the flag staff is
a) 46.19 m
b) 50 m
c) 25 m
d) None of these
468. A person observes the angle of elevation of a building as 30°. The persons proceeds towards the building with a speed of $25(\sqrt{3}-1) \mathrm{m} / \mathrm{h}$. After two hours, he observes the angle of elevation as 45°. The height of the building (in metres)is
a) $50(\sqrt{3}-1)$
b) $50(\sqrt{3}+1)$
c) 50
d) 100
469. In a $\triangle A B C, \sum(b+c) \tan \frac{A}{2} \tan \left(\frac{B-C}{2}\right)$ is equal to
a) a
b) b
c) c
d) 0
470. In a $\triangle A B C$, angle A is greater than angle B. If the measures of angles A and B satisfy the equation $3 \sin x-4 \sin ^{3} x-k=0,0<k<1$, then the measure of angle C is
a) $\frac{\pi}{3}$
b) $\frac{\pi}{2}$
c) $\frac{2 \pi}{3}$
d) $\frac{5 \pi}{6}$
471. In a $\triangle A B C, a, c, A$ are given and b_{1}, b_{2} are two values of third side b such that $b=2 b_{1}$. Then, $\sin A$ is equal to
a) $\sqrt{\frac{9 a^{2}-c^{2}}{8 a^{2}}}$
b) $\sqrt{\frac{9 a^{2}-c^{2}}{8 c^{2}}}$
c) $\sqrt{\frac{9 a^{2}+c^{2}}{8 a^{2}}}$
d) None of these
472. The incentre of a triangle with vertices $(7,1),(-1,5)$ and $(3+2 \sqrt{3}, 3+4 \sqrt{3})$ is
a) $\left(3+\frac{2}{\sqrt{3}}, 3+\frac{4}{\sqrt{3}}\right)$
b) $\left(1+\frac{2}{3 \sqrt{3}}, 1+\frac{4}{3 \sqrt{3}}\right)$
c) $(7,1)$
d) None of the above
473. In any triangle $A B C, \frac{\tan \frac{A}{2}-\tan \frac{B}{2}}{\tan \frac{A}{2}+\tan \frac{B}{2}}$ is equal to
a) $\frac{a-b}{a+b}$
b) $\frac{a-b}{2}$
c) $\frac{a-b}{a+b+c}$
d) $\frac{c}{a+b}$
474. If orthocentre and circumcentre of triangle are respectively $(1,1)$ and $(3,2)$, then the coordinates of its centroid are
a) $\left(\frac{7}{3}, \frac{5}{3}\right)$
b) $\left(\frac{5}{3}, \frac{7}{3}\right)$
c) $(7,5)$
d) None of these
475. In $\triangle A B C, A D$ is median and $\angle A=60^{\circ}$, then $4 A D^{2}$ is equal to

a) $b^{2}+c^{2}-b c$
b) $2 b^{2}+c^{2}-2 b c$
c) $b^{2}+c^{2}+2 b c$
d) None of these
476. The circumcentre of the triangle formed by the lines $y=x, y=2 x$ and $y=3 x+4$ is
a) $(6,8)$
b) $(6,-8)$
c) $(3,4)$
d) $(-3,-4)$
477. If in a $\triangle A B C, \cot \frac{A}{2}=\frac{b+c}{a}$, then the $\triangle A B C$ is
a) Isosceles
b) Equilateral
c) Right angled
d) None of these
478. Area of the triangle formed by the lines $3 x^{2}-4 x y+y^{2}=0,2 x-y=6$ is
a) 16 sq units
b) 25 sq units
c) 36 sq units
d) 49 sq units
479. The shadow of a tower is found to be 60 m shorter when the sun's altitude changes from 30° to 60°. The height of the tower from the ground is approximately equal to
a) 62 m
b) 301 m
c) 101 m
d) 52 m
480. Let $0<\alpha<\frac{\pi}{2}$ be a fixed angle. If $P=(\cos \theta, \sin \theta)$ and $Q=\{\cos (\alpha-\theta), \sin (\alpha-\theta)\}$. Then Q is obtained from P by
a)

Clockwise rotation around the origin through angle α
c) Reflection in the line through the origin with slope
c) $\tan \alpha$
b) Anti-clockwise rotation around origin through angle α
Reflection in the line through the origin with slope d) $\tan \frac{\alpha}{2}$
481. The equation of the base of an equilateral triangle is $x+y=2$ and the vertex is $(2,-1)$. The area of triangle is
a) $2 \sqrt{3}$
b) $\frac{\sqrt{3}}{6}$
c) $\frac{1}{\sqrt{3}}$
d) $\frac{2}{\sqrt{3}}$
482. If $(0,1)$ is the orthocentre and $(2,3)$ is the centroid of a triangle. Then, its circumcentre is
a) $(3,2)$
b) $(1,0)$
c) $(4,3)$
d) $(3,4)$
483. The angle of elevation of the top of the tower observed from each of the three points A, B, C on the ground forming a triangle is the same angle α. If R is the circumradius of the $\triangle A B C$, then the height of the tower is
a) $R \sin \alpha$
b) $R \cos \alpha$
c) $R \cot \alpha$
d) $R \tan \alpha$
484. The circumcentre of a triangle formed by the lines $x y+2 x+2 y+4=0$ and $x+y+2=0$ is
a) $(-1,-1)$
b) $(0,-1)$
c) $(1,1)$
d) $(-1,0)$
485. If the distance of any point P from the points $A(a+b, a-b)$ and $B(a-b, a+b)$ are equal, then the locus of P is
a) $a x+b y=0$
b) $x-y=0$
c) $x+y=0$
d) $b x-a y=0$
486. In an equilateral triangle of side $2 \sqrt{3} \mathrm{~cm}$, the circumcentre is
a) 1 cm
b) $\sqrt{3} \mathrm{~cm}$
c) 2 cm
d) $2 \sqrt{3} \mathrm{~cm}$
487. Let $A B C$ be a triangle, two of whose vertices are $(15,0)$ and $(0,10)$. If the orthocenter is $(6,9)$, then the third vertex is
a) $(15,10)$
b) $(10,-15)$
c) $(0,0)$
d) None of these
488. An aeroplane flying at a height of 300 metres above the ground passes vertically above another plane at an instant when the angles of elevation of the two planes from the same point on the ground are 60° and 45° respectively. The height of the lower plane from the ground (in metres) is
a) $100 \sqrt{3}$
b) $\frac{100}{\sqrt{3}}$
c) 50
d) $150(\sqrt{3}+1)$
489. If the sides of a triangle are in ratio 3:7:8, then $R: r$ is equal to
a) $2: 7$
b) $7: 2$
c) $3: 7$
d) $7: 3$
490. In a $\triangle A B C,(b+c-a) \tan \frac{A}{2}$ is equal to
a) $\frac{2 \Delta}{s}$
b) $\frac{\Delta}{S}$
c) $\frac{\Delta s}{b c}$
d) $\frac{s}{a} R$
491. The sum of the radii of inscribed and circumscribed circles for an n sides regular polygon of side a, is
a) $a \cot \left(\frac{\pi}{n}\right)$
b) $\frac{a}{2} \cot \left(\frac{\pi}{2 n}\right)$
c) $a \cot \left(\frac{\pi}{2 n}\right)$
d) $\frac{a}{4} \cot \left(\frac{\pi}{2 n}\right)$
492. If $\Delta=a^{2}-(b-c)^{2}$, where Δ is the area of $\Delta A B C$, then $\tan A$ is equal to
a) $\frac{15}{16}$
b) $\frac{8}{17}$
c) $\frac{8}{15}$
d) $\frac{1}{2}$
493. The median $B E$ and $A D$ of a triangle with vertices $A(0, b), B(0,0), C(a, 0)$ are perpendicular to each other, if
a) $a=\frac{b}{2}$
b) $b=\frac{a}{2}$
c) $a b=1$
d) $a= \pm \sqrt{2} b$
494. If a, b, c be the sides of $a A B C$ and if roots of the equation $a(b-c) x^{2}+b(c-a) x+c(a-b)=0$ are equal, then $\sin ^{2}\left(\frac{A}{2}\right), \sin ^{2}\left(\frac{B}{2}\right), \sin ^{2}\left(\frac{C}{2}\right)$ are in
a) AP
b) GP
c) HP
d) AGP
495. In $\triangle A B C, \frac{1+\cos (A-B) \cos C}{1+\cos (A-C) \cos B}$ is equal to
a) $\frac{a-b}{a-c}$
b) $\frac{a+b}{a+c}$
c) $\frac{a^{2}-b^{2}}{a^{2}-c^{2}}$
d) $\frac{a^{2}+b^{2}}{a^{2}+c^{2}}$
496. In a $\triangle A B C, a=13 \mathrm{~cm}, b=12 \mathrm{~cm}$ and $c=5 \mathrm{~cm}$. The distance of A from $B C$ is
a) $\frac{144}{13}$
b) $\frac{65}{12}$
c) $\frac{60}{13}$
d) $\frac{25}{13}$
497. If in a $\triangle A B C, r_{1}<r_{2}<r_{3}$, then
a) $a<b<c$
b) $a>b>c$
c) $b<a<c$
d) $a<c<b$
498. A ladder rests against a wall making an angle α with the horizontal. The foot of the ladder is pulled away from the wall through a distance x, so that it slides a distance y down the wall making an angle β with the horizontal. The correct relation is
a) $x=y \tan \left(\frac{\alpha+\beta}{2}\right)$
b) $y=x \tan \left(\frac{\alpha+\beta}{2}\right)$
c) $x=y \tan (\alpha+\beta)$
d) $y=x \tan (\alpha+\beta)$
499. Let $A(h, k), B(1,1)$ and $C(2,1)$ be the vertices of a right angled triangle with $A C$ as its hypotenuse. If the area of the triangle is 1 , then the set of values which ' k ' can take is given by
a) $\{1,3\}$
b) $\{0,2\}$
c) $\{-1,3\}$
d) $\{-3,-2\}$
500. A variable line $\frac{x}{a}+\frac{y}{b}=1$ is such that $a+b=4$. The locus of the mid point of the portion of the line intercepted between the axes is
a) $x+y=4$
b) $x+y=8$
c) $x+y=1$
d) $x+y=2$
501. If in a $\triangle A B C, \tan \left(\frac{A}{2}\right), \tan \left(\frac{B}{2}\right), \tan \left(\frac{C}{2}\right)$ are in HP, then the sides a, b, c are in
a) AP
b) GP
c) HP
d) None of these
502. The shadow of tower standing on a level ground is x metres long when the sun's altitude is 30°, while it is y metres long when the altitude is 60°. If the height of the tower is $45 \cdot \frac{\sqrt{3}}{2} \mathrm{~m}$, then $x-y$ is
a) 45 m
b) $45 \sqrt{3} \mathrm{~m}$
c) $\frac{45}{\sqrt{3}} \mathrm{~m}$
d) $45 \cdot \frac{\sqrt{3}}{2} \mathrm{~m}$
503. All points lying inside the triangle formed by the points $(1,3),(5,0)$ and $(-1,2)$ satisfy
a) $3 x+2 y \geq 0$
b) $2 x+y-13<0$
c) $2 x-3 y-12 \leq 0$
d) All of these
504. If the area of the triangle with vertices $(x, 0),(1,1)$ and $(0,2)$ is 4 sq unit, then the value of x is
a) -2
b) -4
c) -6
d) 8
505. If the centroid of the triangle formed by the points $(0,0),(\cos \theta, \sin \theta)$ and $(\sin \theta,-\cos \theta)$ lies on the line $y=2 x$, then θ is equal to
a) $\tan ^{-1} 2$
b) $\tan ^{-1} 3$
c) $\tan ^{-1}(-3)$
d) $\tan ^{-1}(-2)$
506. In order to remove first degree terms from the equation $2 x^{2}+7 y^{2}+8 x-14 y+4=0$, the origin is shifted at the point
a) $(-2,1)$
b) $(1,2)$
c) $(2,1)$
d) $(1,-2)$
507. If $t_{1}+t_{2}+t_{3}=-t_{1} t_{2} t_{3}$, then orthocentre of the triangle formed by the points $\left[a t_{1} t_{2}, a\left(t_{1}+t_{2}\right)\right],\left[a t_{2} t_{3}, a\left(t_{2}+t_{3}\right)\right]$ and $\left[a t_{3} t_{1}, a\left(t_{3}+t_{1}\right)\right]$, lies on
a) $(a, 0)$
b) $(-a, 0)$
c) $(0, a)$
d) $(0,-a)$
508. If $A(-5,0)$ and $B(3,0)$ are two vertices of a triangle $A B C$. Its area is 20 sq cm . The vertex C lies on the line $x-y=2$. The coordinates of C are
a) $(-7,-5)$ or $(3,5)$
b) $(-3,-5)$ or $(-5,7)$
c) $(7,5)$ or $(3,5)$
d) $(-3,-5)$ or $(7,5)$
509. The locus of a point P which moves such that $2 P A=3 P B$, where coordinates of points A and B are $(0,0)$ and $(4,-3)$, is
a) $5 x^{2}-5 y^{2}-72 x+54 y+225=0$
b) $5 x^{2}+5 y^{2}-72 x+54 y+225=0$
c) $5 x^{2}+5 y^{2}+72 x-54 y+225=0$
d) $5 x^{2}+5 y^{2}-72 x-54 y-225=0$
510. The coordinates of the centroid of a triangle having its circumcentre and orthocentre at $(7 / 2,5 / 2)$ and $(2,1)$ respectively, are
a) $(3,2)$
b) $(13 / 6,3 / 2)$
c) $(5 / 2,3 / 2)$
d) $(3 / 2,5 / 2)$
511. The base angle of triangle are $22 \frac{1}{2} \circ$ and $112 \frac{1}{2} \circ$. If b is the base and h is the height of the triangle, then
a) $b=2 h$
b) $b=3 h$
c) $b=(1+\sqrt{3}) h$
d) $b=(2+\sqrt{3}) h$
512. Let $A B C$ be a triangle such that $\angle A C B=\frac{\pi}{6}$ and let a, b and c denote the lengths of the sides opposite to A, B and C respectively. The value (s) of x for which $a=x^{2}+x+1, b=x^{2}-1$ and $c=2 x+1$ is (are)
a) $-(2+\sqrt{3})$
b) $1+\sqrt{3}$
c) $2+\sqrt{3}$
d) $4 \sqrt{3}$
513. If the distance between the points $P\left(a \cos 48^{\circ}, 0\right)$ and $Q\left(0, a \cos 12^{\circ}\right)$ is d, then $d^{2}-a^{2}=$
a) $\frac{a^{2}}{4}(\sqrt{5}-1)$
b) $\frac{a^{2}}{4}(\sqrt{5}+1)$
c) $\frac{a}{8}(\sqrt{5}-1)$
d) $\frac{a^{2}}{8}(\sqrt{5}+1)$
514. In a $\triangle A B C, a(b \cos C-c \cos B)$ is equal to
a) a^{2}
b) $b^{2}-c^{2}$
c) 0
d) None of these
515. If the points $\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right)$ and $\left(a_{3}, b_{3}\right)$ are collinear, then lines $a_{i} x+b_{i} y+1=0$ for $i=1,2,3$ are
a) Concurrent
b) Identical
c) Parallel
d) None of these
516. In $\triangle A B C,(b+c) \cos A+(c+a) \cos B+(a+b) \cos C$ is equal to
a) 0
b) 1
c) $a+b+c$
d) $2(a+b+c)$
517. If in a $\triangle A B C$ a $a=5, b=4, A=\frac{\pi}{2}+B$, then C
a) is $\tan ^{-1}\left(\frac{1}{9}\right)$
b) is $\tan ^{-1}\left(\frac{9}{40}\right)$
c) Cannot be evaluated
d) is $2 \tan ^{-1}\left(\frac{1}{9}\right)$
518. If p_{1}, p_{2}, p_{3} are altitudes of a $\triangle A B C$ drawn from the vertices A, B, C and Δ the area of the triangle, then $p_{1}^{-2}+p_{2}^{-2}+p_{3}^{-2}$ is equal to
a) $\frac{a+b+c}{\Delta}$
b) $\frac{a^{2}+b^{2}+c^{2}}{4 \Delta^{2}}$
c) $\frac{a^{2}+b^{2}+c^{2}}{\Delta^{2}}$
d) None of these
: ANSWER KEY:

1)	a	2)	a	3)	d	4)	b	189)	a	190)	a	191)	b	192)
5)	a	6)	b	7)	d	8)	a	193)	d	194)	d	195)	b	196)
9)	d	10)	b	11)	b	12)	a	197)	c	198)	b	199)	c	200)
13)	c	14)	c	15)	b	16)	d	201)	b	202)	a	203)	a	204)
17)	c	18)	d	19)	c	20)	b	205)	a	206)	b	207)	a	208)
21)	c	22)	a	23)	c	24)	a	209)	c	210)	d	211)	c	212)
25)	c	26)	c	27)	b	28)	b	213)	b	214)	b	215)	c	216)
29)	a	30)	a	31)	c	32)	b	217)	a	218)	d	219)	b	220)
33)	b	34)	a	35)	b	36)	a	221)	a	222)	b	223)	b	224)
37)	b	38)	d	39)	d	40)	a	225)	c	226)	c	227)	a	228)
41)	a	42)	a	43)	c	44)	c	229)	a	230)	a	231)	a	232)
45)	c	46)	a	47)	d	48)	a	233)	c	234)	d	235)	d	236)
49)	d	50)	a	51)	d	52)	b	237)	a	238)	d	239)	a	240)
53)	a	54)	d	55)	b	56)	a	241)	c	242)	c	243)	a	244)
57)	c	58)	d	59)	a	60)	b	245)	a	246)	a	247)	d	248)
61)	b	62)	d	63)	a	64)	c	249)	d	250)	d	251)	d	252)
65)	c	66)	a	67)	b	68)	d	253)	c	254)	c	255)	c	256)
69)	c	70)	d	71)	c	72)	c	257)	a	258)	a	259)	c	260)
73)	a	74)	a	75)	d	76)	b	261)	a	262)	c	263)	d	264)
77)	c	78)	b	79)	d	80)	a	265)	b	266)	a	267)	c	268)
81)	b	82)	d	83)	a	84)	c	269)	d	270)	c	271)	a	272)
85)	a	86)	d	87)	c	88)	c	273)	a	274)	d	275)	d	276)
89)	c	90)	c	91)	a	92)	d	277)	a	278)	b	279)	b	280)
93)	c	94)	c	95)	a	96)	a	281)	c	282)	b	283)	c	284)
97)	b	98)	c	99)	c	100)	c	285)	a	286)	d	287)	b	288)
101)	a	102)	a	103)	a	104)	b	289)	a	290)	d	291)	b	292)
105)	c	106)	b	107)	c	108)	d	293)	a	294)	a	295)	d	296)
109)	b	110)	a	111)	c	112)	b	297)	c	298)	a	299)	a	300)
113)	a	114)	b	115)	d	116)	b	301)	d	302)	a	303)	b	304)
117)	a	118)	a	119)	b	120)	b	305)	a	306)	c	307)	d	308)
121)	a	122)	c	123)	d	124)	b	309)	c	310)	a	311)	d	312)
125)	c	126)	b	127)	d	128)	d	313)	b	314)	a	315)	d	316)
129)	c	130)	c	131)	c	132)	b	317)	a	318)	b	319)	a	320)
133)	b	134)	d	135)	c	136)	c	321)	b	322)	c	323)	c	324)
137)	b	138)	c	139)	d	140)	c	325)	b	326)	b	327)	d	328)
141)	c	142)	b	143)	d	144)	d	329)	d	330)	c	331)	d	332)
145)	c	146)	d	147)	b	148)	c	333)	d	334)	d	335)	a	336)
149)	b	150)	a	151)	c	152)	a	337)	a	338)	b	339)	b	340)
153)	d	154)	b	155)	a	156)	b	341)	c	342)	b	343)	a	344)
157)	c	158)	a	159)	c	160)	d	345)	c	346)	d	347)	d	348)
161)	d	162)	c	163)	d	164)	d	349)	d	350)	a	351)	c	352)
165)	c	166)	b	167)	a	168)	a	353)	b	354)	b	355)	b	356)
169)	b	170)	c	171)	c	172)	a	357)	c	358)	c	359)	d	360)
173)	c	174)	c	175)	a	176)	a	361)	b	362)	b	363)	b	364)
177)	d	178)	a	179)	c	180)	c	365)	b	366)	a	367)	c	368)
181)	b	182)	a	183)	d	184)	d	369)	d	370)	a	371)	b	372)
185)	b	186)	a	187)	a	188)	d	373)	d	374)	b	375)	b	376)

377)	a	378)	c	379)	a	380) d
381)	d	382)	a	383)	d	384) a
385)	a	386)	b	387)	d	388) b
389)	c	390)	b	391)	b	392) b
393)	b	394)	b	395)	b	396) d
397)	b	398)	a	399)	b	400) b
401)	b	402)	b	403)	c	404) c
405)	b	406)	b	407)	b	408) b
409)	c	410)	c	411)	a	412) c
413)	c	414)	d	415)	d	416) a
417)	d	418)	a	419)	a	420) c
421)	b	422)	c	423)	b	424) a
425)	c	426)	b	427)	a	428) c
429)	b	430)	c	431)	c	432) d
433)	c	434)	b	435)	b	436) d
437)	b	438)	b	439)	c	440) a
441)	d	442)	b	443)	a	444) b
445)	b	446)	c	447)	d	448) c
449)	c	450)	a	451)	d	452) b
453)	a	454)	d	455)	a	456) b
457)	a	458)	d	459)	c	460) d
461)	a	462)	a	463)	a	464) b
465)	a	466)	b	467)	a	468) c
469)	d	470)	c	471)	b	472) a
473)	b	474)	a	475)	d	476) b
477)	c	478)	c	479)	d	480) d
481)	b	482)	d	483)	d	484) a
485)	b	486)	c	487)	c	488) a
489)	b	490)	a	491)	b	492) c
493)	d	494)	c	495)	d	496) c
497)	a	498)	a	499)	c	500) d
501)	a	502)	a	503)	d	504) c
505)	c	506)	a	507)	b	508) d
509)	b	510)	a	511)	a	512) b
513)	d	514)	b	515)	a	516) c
517)	b	518)	b			

: HINTS AND SOLUTIONS :

1 (a)
$a^{2}\left(\cos ^{2} B-\cos ^{2} C\right)+b^{2}\left(\cos ^{2} C-\cos ^{2} A\right)$

$$
+c^{2}\left(\cos ^{2} A-\cos ^{2} B\right)
$$

$=a^{2}\left(1-\sin ^{2} B-1+\sin ^{2} C\right)$

$$
+b^{2}\left(1-\sin ^{2} C-1+\sin ^{2} A\right)
$$

$+c^{2}\left(1-\sin ^{2} A-1+\sin ^{2} B\right)$
$=a^{2}\left(\sin ^{2} C-\sin ^{2} B\right)+b^{2}\left(\sin ^{2} A-\sin ^{2} C\right)$

$$
+c^{2}\left(\sin ^{2} B-\sin ^{2} A\right)
$$

$=k^{2} a^{2}\left(c^{2}-b^{2}\right)+k^{2} b^{2}\left(a^{2}-c^{2}\right)+k^{2} c^{2}\left(b^{2}\right.$

$$
\left.-c^{2}\right)
$$

$=0$
2 (a)
Let $\sin A=3 k, \sin B=4 k, \sin C=5 k$
$\because \frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}=p \quad[$ say $]$
$\Rightarrow \frac{3 k}{a}=\frac{4 k}{b}=\frac{5 k}{c}=p$
$\Rightarrow a=3\left(\frac{k}{p}\right), b=4\left(\frac{k}{p}\right), c=5\left(\frac{k}{p}\right)$
$\Rightarrow a=3 l, b=4 l, c=5 l \quad\left[\right.$ let $\left.l=\frac{k}{p}\right]$
$\therefore \cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$
$=\frac{16+25-9}{2 \times 4 \times 5}=\frac{32}{40}=\frac{4}{5}$
$\therefore \quad \cos B=\frac{c^{2}+a^{2}-b^{2}}{2 a c}$
$=\frac{25+9-16}{2 \times 3 \times 5}=\frac{18}{30}=\frac{3}{5}$
Now, $\cos A: \cos B=\frac{4}{5}: \frac{3}{5}=4: 3$
4 (b)
Slope of perpendicular to the line joining the points
$(a \cos \alpha, a \sin \alpha)$ and $(a \cos \beta, a \sin \beta)=$
$-\frac{\cos \alpha-\cos \beta}{\sin \alpha-\sin \beta}$
$=\tan \frac{\alpha+\beta}{2}$
Hence, equation of perpendicular is
$y=\tan \left(\frac{\alpha+\beta}{2}\right) x$
Now, on solving the equation of line with Eq. (i), we get
$\left[\frac{a}{2}(\cos \alpha+\cos \beta), \frac{a}{2}(\sin \alpha+\sin \beta)\right]$
(a)

Area of $\frac{\triangle P B C}{\triangle A B C}=\left[\frac{\{-3(-2-y)+4(y-5)+x(5+2)\}}{\{6(5+2)-3(-2-3)+4(3-5)\}}\right]$
$=\left|\frac{7 x+7 y-14}{49}\right|=\left|\frac{x+y-2}{7}\right|$
(b)

Let $P Q$ and $R S$ be the poles of height 20 m and 80 m subtending angles α and β at R and P respectively. Let h be the height of the point T, the intersection of $Q R$ and $P S$

Then, $P R=h \cot \alpha+h \cot \beta$
$=20 \cot \alpha=80 \cot \beta$
$\Rightarrow \cot \alpha=4 \cot \beta$
$\Rightarrow \frac{\cot \alpha}{\cot \beta}=4$
Again, $h \cot \alpha+h \cot \beta=20 \cot \alpha$
$\Rightarrow(h-20) \cot \alpha=-h \cot \beta$
$\Rightarrow \frac{\cot \alpha}{\cot \beta}=\frac{h}{20-h}=4$
$\Rightarrow h=80-4 h$
$\Rightarrow h=16 \mathrm{~m}$
8 (a)
Since, α, β, γ are the roots of the equation
$x^{3}-3 p x^{2}+3 q x-1=0$
$\therefore \alpha+\beta+\gamma=3 p$
$\alpha \beta+\beta \gamma+\gamma \alpha=3 q$
and $\alpha \beta \gamma=1$
Let $G(x, y)$ be the centroid of the given triangle
$\therefore \quad x=\frac{\alpha+\beta+\gamma}{3}=p$
and $y=\frac{\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}}{3}$
$=\frac{\beta \gamma+\gamma \alpha+\alpha \beta}{3 \alpha \beta \gamma}=q$
Hence, coordinates of the centroid of triangle are (p, q)
9 (d)
Let $O(0,0)$ be the orthocenter, $A(h, k)$ be the third vertex and $B(-2,3)$ and $C(5,-1)$ the other two vertices. Then, the slope of the line through A and O is $\frac{k}{h}$, while the line through B and C has the slope $\frac{(-1-3)}{(5+2)}=-\frac{4}{7}$. By the property of the orthocenter, these two lines must be perpendicular, so we have
$\left(\frac{k}{h}\right)\left(-\frac{4}{7}\right)=-1 \Rightarrow \frac{k}{h}=\frac{7}{4}$

Also, $\frac{5-2+h}{3}+\frac{-1+3+k}{3}=7$
$\Rightarrow h+k=16$
Which is not satisfied by the points given in the options (a), (b) or (c)
10 (b)
Let (h, k) be the point
According to question,
$4 \sqrt{(h-h)^{2}+k}=h^{2}+k^{2}$
$\Rightarrow 4|k|=h^{2}+k^{2}$
Locus of the point is
$4|y|=x^{2}+y^{2} \Rightarrow x^{2}+y^{2}-4|y|=0$
12 (a)
Given points are $P(4,-2), A(2,-4)$ and $B(7,1)$ Suppose P divides $A B$ in the ratio $\lambda: 1$. Then,
$\frac{7 \lambda+2}{\lambda+1}=4 \Rightarrow \lambda=\frac{2}{3}$
Thus, P divides $A B$ internally in the ratio $2: 3$
The coordinates of the point dividing $A B$
externally in the ratio $2: 3$ are
$\left(\frac{2 \times 7-3 \times 2}{2-3}, \frac{2 \times 1-3 \times-4}{2-3}\right)=(-8,-14)$
Hence, the harmonic conjugate of R with respect to A and B is $(-8,-14)$
13 (c)
If O is the origin and $P\left(x_{1}, y_{1}\right), Q\left(x_{2}, y_{2}\right)$ are two points, then
$O P \times O Q \cos \angle P O Q=x_{1} x_{2}+y_{1} y_{2}$
$\therefore O P \times O Q \times \sin \angle P O Q$
$=\sqrt{O P^{2} \times O Q^{2}-O P^{2} \times O Q^{2} \times \cos ^{2} \angle P O Q}$
$=\sqrt{\left(x_{1}^{2}+y_{1}^{2}\right)\left(x_{2}^{2}+y_{2}^{2}\right)-\left(x_{1} x_{2}+y_{1} y_{2}\right)^{2}}$
$=\sqrt{\left(x_{1} y_{2}-x_{2} y_{1}\right)^{2}}=\left|x_{1} y_{2}-x_{2} y_{1}\right|$
14 (c)
$\cos B=\frac{(3)^{2}+(5)^{2}-(4)^{2}}{2 \times 3 \times 5}=\frac{3}{5}$
$\Rightarrow \sin B=\sqrt{1-\frac{9}{25}}=\frac{4}{5}$
$\therefore \sin 2 B=2 \sin B \cos B$
$=2 \times \frac{4}{5} \times \frac{3}{5}=\frac{24}{25}$
16 (d)
Given that, $\angle A=45^{\circ}, \angle B=75^{\circ}$
$\angle c=180^{\circ}-45^{\circ}-75^{\circ}=60^{\circ}$
$\therefore \quad a+c \sqrt{2}=k(\sin A+\sqrt{2} \sin C)$
$=k\left(\sin 45^{\circ}+\sqrt{2} \sin 60^{\circ}\right)$
$=k\left(\frac{1}{\sqrt{2}}+\sqrt{2} \frac{\sqrt{3}}{2}\right)=k\left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)$
And $k=\frac{b}{\sin B}$
$=\frac{b}{\sin 75^{\circ}}=\frac{2 \sqrt{2} b}{\sqrt{3}+1}$
On putting the value of k in Eq. (i), we get
$a+c \sqrt{2}=2 b$
18 (d)
From figure $A B C D$ is s square

Whose diagonals $A C$ and $B D$ are of length 2 unit Hence, required area $=\frac{1}{2} A C \times B D$
$=\frac{1}{2} \times 2 \times 2=2$ sq units
19
(c)

In $\triangle A P D$,
$\tan 45^{\circ}=\frac{a}{A P} \Rightarrow A P=a$

and in $\triangle B P C$,
$\tan 45^{\circ}=\frac{b}{P B}$
$\Rightarrow P B=b$
$\therefore D E=a+b$ and $C E=b-a$
In $\triangle D E C$,
$D C^{2}=D E^{2}+E C^{2}$
$=\left(a+b^{2}\right)+\left(b-a^{2}\right)$
$=2\left(a^{2}+b^{2}\right)$
20 (b)
If the axes are rotated through 30°, we have
$x=X \cos 30^{\circ}-Y \sin 30^{\circ}=\frac{\sqrt{3} X-4}{2}$
and, $y=X \sin 30^{\circ}+Y \cos 30^{\circ}=\frac{X+\sqrt{3} Y}{2}$
Substituting these values in $x^{2}+2 \sqrt{3} x y-y^{2}=$
$2 a^{2}$, we get

$$
\begin{aligned}
\begin{aligned}
(\sqrt{3} X-Y)^{2}+ & 2 \sqrt{3}(\sqrt{3} X-Y)(X+\sqrt{3} Y) \\
& -(X+\sqrt{3} Y)^{2}=8 a^{2} \\
\Rightarrow & X^{2}-Y^{2}=
\end{aligned} a^{2}
\end{aligned}
$$

21 (c)
Since, F, E and D are the mid points of the sides
$A B, A C$ and $B C$ of triangle $A B C$ respectively, then the vertices of triangle are $A(0,0), B(0,2), C(2,0)$

Now, $A B=c=\sqrt{0^{2}+2^{2}}=2$
$B C=a=\sqrt{2^{2}+2^{2}}=2 \sqrt{2}$
And $C A=b=\sqrt{2^{2}+0^{2}}=2$
$\therefore x$ coordinates of incentre
$=\frac{a x_{1}+b x_{2}+c x_{3}}{a+b+c}$
$=\frac{2 \sqrt{2}(0)+2(0)+2(2)}{2 \sqrt{2}+2+2}$
$=\frac{2}{2+\sqrt{2}}=2-\sqrt{2}$
22 (a)
Let (x, y) be the coordinates of vertex C and
(x_{1}, y_{1}) be the coordinates of centroid of the triangle.
$\therefore \quad x_{1}=\frac{x+2-2}{3}$ and $y_{1}=\frac{y-3+1}{3}$
$\Rightarrow \quad x_{1}=\frac{x}{3}$ and $y_{1}=\frac{y-2}{3}$
Since, the centriod lies on the line $2 x+3 y=1$
$\therefore \quad 2 x_{1}+3 y_{1}=1$
$\Rightarrow \quad \frac{2 x}{3}+\frac{3(y-2)}{3}=1$
$\Rightarrow \quad 2 x+3 y=9$
This equation represents the locus of the vertex C
23 (c)
Let the height of the tower be h

In $\triangle P A O, \tan 60^{\circ}=\frac{h}{O A}$
$\Rightarrow O A=h \cot 60^{\circ}=\frac{h}{\sqrt{3}}$
In $\triangle P B O, \tan 30^{\circ}=\frac{h}{O B}$
$\Rightarrow O B=\frac{h}{\frac{1}{\sqrt{3}}}$
$\Rightarrow A B+A O=\sqrt{3} h$
$\Rightarrow 20+\frac{h}{\sqrt{3}}=\sqrt{3} h \quad$ [using Eq.(i)]
$\Rightarrow h=\frac{20}{\sqrt{3}-\frac{1}{\sqrt{3}}}$
$\Rightarrow h=\frac{20 \sqrt{3}}{2}$
$\Rightarrow h=10 \sqrt{3} \mathrm{~m}$
(a)

We have, $\sin \frac{A}{2}=\sqrt{\frac{(s-b)(s-c)}{b c}}$
$\Rightarrow b c \sin ^{2} \frac{A}{2}=(s-b)(s-c)$
On comparing with $x \sin ^{2} \frac{A}{2}=(s-b)(s-c)$
We get, $x=b c$
(c)
$\therefore p_{1}^{2}+p_{2}^{2}=\frac{4 a^{2}}{\sec ^{2} \alpha+\operatorname{cosec}^{2} \alpha}+\frac{a^{2} \cos ^{2} 2 \alpha}{\cos ^{2} \alpha+\sin ^{2} \alpha}$
$=a^{2}\left(\frac{4 \cos ^{2} \alpha \sin ^{2} \alpha}{\cos ^{2} \alpha+\sin ^{2} \alpha}+\frac{\cos ^{2} 2 \alpha}{1}\right)$
$=a^{2}\left(\sin ^{2} 2 \alpha+\cos ^{2} 2 \alpha\right)=a^{2}$
and $p_{1}^{2} p_{2}^{2}=a^{4} \sin ^{2} 2 \alpha \cos ^{2} 2 \alpha=\left(\frac{1}{4}\right) a^{4} \sin ^{2} 4 \alpha$
$\therefore\left(\frac{p_{1}}{p_{2}}+\frac{p_{2}}{p_{1}}\right)^{2}=\frac{\left(p_{1}^{2}+p_{2}^{2}\right)^{2}}{p_{1}^{2} p_{2}^{2}}$
$=\frac{4}{\sin ^{2} 4 \alpha}=4 \operatorname{cosec}^{2} 4 \alpha$
(c)

Let $A(2,1), B(-2,4)$
$\therefore A B=5$
Hence, the locus is the line segment $A B$
27
(b)
$\frac{1}{r^{2}}+\frac{1}{r_{1}^{2}}+\frac{1}{r_{2}^{2}}+\frac{1}{r_{3}^{2}}$
$=\frac{s^{2}+(s-a)^{2}+(s-b)^{2}+(s-c)^{2}}{\Delta^{2}}$
$=\frac{4 s^{2}+a^{2}+b^{2}+c^{2}-2 s(a+b+c)}{\Delta^{2}}$
$=\frac{a^{2}+b^{2}+c^{2}}{\Delta^{2}}$
28
(b)

Let $a=4 \mathrm{~cm}, \mathrm{~b}=5 \mathrm{~cm}$ and $\mathrm{c}=6 \mathrm{~cm}$
$\therefore s=\frac{4+5+6}{2}=\frac{15}{2}$
Hence, area of triangle $=\sqrt{s(s-a)(s-b)(s-c)}$
$=\sqrt{\left(\frac{15}{2}\right)\left(\frac{15}{2}-4\right)\left(\frac{15}{2}-5\right)\left(\frac{15}{2}-6\right)}$
$=\sqrt{\frac{15}{2} \times \frac{7}{2} \times \frac{5}{2} \times \frac{3}{2}}=\frac{15}{4} \sqrt{7} \mathrm{~cm}^{2}$
30 (a)
Let CD be the tower
In $\triangle A C M, \tan \beta=\frac{b}{A C}$
$\Rightarrow A C=b \cot \beta$
and in $\triangle A D C, \tan \alpha=\frac{C D}{A C}$
$\Rightarrow C D=b \cot \beta \tan \alpha$

31
(c)

Since, $R=\frac{b}{2 \sin B}=\frac{2}{2 \sin 30^{\circ}}=\frac{2}{1}$
Area of circumcircle $=\pi R^{2}$
$=\pi \times(2)^{2}=4 \pi$ sq unit
33
(b)
$\frac{b^{2}-c^{2}}{2 a R}=\frac{4 R^{2}\left(\sin ^{2} B-\sin ^{2} C\right)}{4 R^{2} \sin A}$
$=\frac{\sin (B+C) \sin (B-C)}{\sin A}$
$=\sin (B-C)$
34 (a)
Given curve is
$y=1-|x|$

\therefore Area of $\triangle A B C=2$ area of $\triangle A O B$
$=2 \times \frac{1}{2} \times 1 \times 1=1$ sq unit
35 (b)
Given, angles A, B, C of $\triangle A B C$ are in AP with d
$($ common difference $)=15^{\circ}$
$\therefore \quad B=A+15^{\circ}$ and $C=A+30^{\circ}$
Also, $A+B+C=180^{\circ}$
$\Rightarrow A+A+15^{\circ}+A+30^{\circ}=180^{\circ}$
$\Rightarrow \angle A=45^{\circ}$
$\therefore \angle B=45^{\circ}+15^{\circ}=60^{\circ}$
36 (a)
Since, $\left(1-\frac{r_{1}}{r_{2}}\right)\left(1-\frac{r_{1}}{r_{3}}\right)=2$
$\therefore\left(1-\frac{s-b}{s-a}\right)\left(1-\frac{s-c}{s-a}\right)=2$
$\Rightarrow \quad \frac{(b-a)(c-a)}{(s-a)^{2}}=2$
$\Rightarrow 2 b c-2 a b-2 a c+2 a^{2}$

$$
=b^{2}+c^{2}+a^{2}+2 b c-2 a b-2 a c
$$

$\Rightarrow a^{2}=b^{2}+c^{2}$

So, triangle is right angled
37 (b)
Let the height of the tower be $B C=h$,then length of shadow of tower $A B=\sqrt{3} h$.
In $\triangle A B C, \tan \alpha=\frac{B C}{A B}$
$\Rightarrow \tan \alpha=\frac{h}{\sqrt{3 h}}$
$\Rightarrow \tan \alpha=\tan 30^{\circ}$
$\Rightarrow \alpha=30^{\circ}$

38
(d)

Let the coordinates of P be (h, k). Then,
$x=X+h, y=Y+k$
Substituting these in $2 x^{2}+y^{2}-4 x-4 y=0$, we get
$2 X^{2}+Y^{2}+4(h-1) \times+2(k-2) Y+2 h^{2}+k^{2}$

$$
-4 h-4 k=0
$$

Comparing this equation with
$2 X^{2}+Y^{2}-8 X-8 Y+18=0$, we get
$h-1=-2,(k-2)=-4$ and $2 h^{2}+k^{2}-4 h-$
$4 k=18$
$\Rightarrow h=-1, k=-2$
40 (a)
We have, $\tan \frac{C}{2}=\sqrt{\frac{(s-a)(s-b)}{s(s-c)}}$
$\because(s-a)(s-b)=s(s-c) \quad$ (given)
$\therefore \tan \frac{C}{2}=\sqrt{\frac{s(s-c)}{s(s-c)}}$
$\Rightarrow \tan \frac{C}{2}=\tan \frac{\pi}{4}$
$\Rightarrow \angle C=90^{\circ}$
41 (a)
Given that, $\cot \alpha=\frac{3}{5}$ and $\cot \beta=\frac{2}{5}$
In $\triangle B C D, \tan \beta=\frac{h}{B C}$

$\Rightarrow B C=h \cot \beta \Rightarrow B C=\frac{2 h}{5}$
and in $\triangle A C D, \tan \alpha=\frac{h}{32+B C}$
$\Rightarrow \quad h=\left(32+\frac{2 h}{5}\right) \frac{5}{3}$ [using Eq.(i)]
$\Rightarrow 3 h=160+2 h$
$\Rightarrow h=160 \mathrm{~m}$
42 (a)
The vertices of quadrilateral $A B C D$ is
$A(2,3), B(3,4), C(4,5)$
and $D(5,6)$
$\therefore A B=\sqrt{(3-2)^{2}+(4-3)^{2}}$
$=\sqrt{(1)^{2}+(1)^{2}}=\sqrt{2}$
Similarly, $B C=\sqrt{2}, C D=\sqrt{2}$, and $D A=3 \sqrt{2}$
$\therefore \quad a=b=c=\sqrt{2}$ and $d=3 \sqrt{2}$
and $s=\frac{a+b+c+d}{2}$
$=\frac{\sqrt{2}+\sqrt{2}+\sqrt{2}+3 \sqrt{2}}{2}$
$=\frac{6 \sqrt{2}}{2}=3 \sqrt{2}$
\therefore Area of quadrilateral
$=\sqrt{(s-a)(s-b)(s-c)(s-d)}$
$=\sqrt{(3 \sqrt{2}-\sqrt{2})(3 \sqrt{2}-\sqrt{2})}$ $(3 \sqrt{2}-\sqrt{2})(3 \sqrt{2}-\sqrt{2})$
$=0$
43 (c)
We have, $\Delta=\frac{1}{2} b c \sin A$
$\Rightarrow \frac{1}{2} k^{2} \sin B \sin C \sin A=\Delta$
$\therefore a^{2} \sin 2 B+b^{2} \sin 2 A$
$=2\left(a^{2} \sin B \cos B+b^{2} \sin A \cos A\right)$
$=2 k^{2}\left(\sin ^{2} A \sin B \cos B+\sin ^{2} B \sin A \cos A\right)$
$=2 k^{2}(\sin A \sin B \sin C)=4 \Delta \quad$ [from Eq. (i)]
$44 \quad$ (c)

1. $\frac{\sin A}{\sin C}=\frac{\sin (A-B)}{\sin (B-C)}$
$\Rightarrow \sin (B+C) \sin (B-C)=\sin (A+B) \sin (A-B)$
$\Rightarrow \sin ^{2} B-\sin ^{2} C=\sin ^{2} A-\sin ^{2} B$
$\Rightarrow b^{2}-c^{2}=a^{2}-b^{2}$
$\Rightarrow 2 b^{2}=a^{2}+c^{2}$
$\Rightarrow a^{2}, b^{2}, c^{2}$ are in AP
2. r_{1}, r_{2}, r_{3} are in HP
$\Rightarrow \frac{1}{r_{1}}, \frac{1}{r_{2}}, \frac{1}{r_{3}}$ are in AP
$\Rightarrow \frac{2}{r_{2}}=\frac{1}{r_{1}}+\frac{1}{r_{3}}$
$\Rightarrow 2(s-b)=s-a+s-c$
$\Rightarrow \quad 2 b=(a+c)$
$\Rightarrow a, b, c$ are in AP

Hence, both of these statements are correct

(c)

The largest side of triangle is $\sqrt{p^{2}+q^{2}+p q}$
Greatest angle will be opposite to largest side. Let θ be greatest angle, then
$\cos \theta=\frac{p^{2}+q^{2}-p^{2}-q^{2}-p q}{2 p q}=-\frac{1}{2}$
$\Rightarrow \theta=\frac{2 \pi}{3}$
46 (a)
Let area of triangle be Δ, then according to question
$\Delta=\frac{1}{2} a x=\frac{1}{2} b y=\frac{1}{2} c z$
$\therefore \frac{b x}{c}+\frac{c y}{a}+\frac{a z}{b}=\frac{b}{c}\left(\frac{2 \Delta}{a}\right)+\frac{c}{a}\left(\frac{2 \Delta}{b}\right)+\frac{a}{b}\left(\frac{2 \Delta}{c}\right)$
$=\frac{2 \Delta\left(b^{2}+c^{2}+a^{2}\right)}{a b c}$
$=\frac{2\left(a^{2}+b^{2}+c^{2}\right)}{a b c} \cdot \frac{a b c}{4 R}\left(\because \Delta=\frac{a b c}{4 R}\right)$
$=\frac{a^{2}+b^{2}+c^{2}}{2 R}$
49 (d)
In $\triangle A B C$ the vertices are $A(-3,0), B(4,-1)$ and $C(5,2)$
$(4,-1) B \quad L \quad C(5,2)$
$\therefore \quad B C=\sqrt{(5-4)^{2}+(2+1)^{2}}$
$=\sqrt{1+9}=\sqrt{10}$
Area of $\triangle A B C$
$=\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]$
$=\frac{1}{2}[-3(-1-2)+4(2-0)+5(0+1)]$
$=\frac{1}{2}[9+8+5]=11$
As we know that, area of $\Delta=\frac{1}{2} \times B C \times A L$
$\Rightarrow \quad 11=\frac{1}{2} \times \sqrt{10} \times A L$
$\Rightarrow A L=\frac{2 \times 11}{\sqrt{10}}=\frac{22}{\sqrt{10}}$
50 (a)
As the line divides the $\triangle A B C$ in equal to area. Mid point of $A B(51,30)$ which lies on $y=k x$

$\therefore 30=51 k \Rightarrow k=\frac{30}{51}$
52 (b)
Let (h, k) be the point
According to question, $4 \sqrt{(h-h)^{2}+k^{2}}=h^{2}+$ k^{2}
$\Rightarrow \quad 4|k|=h^{2}+k^{2}$
Locus of the point is $4|y|=x^{2}+y^{2}$
$\Rightarrow \quad x^{2}+y^{2}-4|y|=0$
53 (a)
In $\triangle C B D, \tan 60^{\circ}=\frac{h}{x}$

$\Rightarrow h=x \sqrt{3}$
and in $\triangle C A D, \tan 30^{\circ}=\frac{h}{40+x}$
$\Rightarrow h \sqrt{3}=40+x$
$\Rightarrow 3 x=40+x$ [from Eq. (i)]
$\Rightarrow x=20 \mathrm{~m}$
54 (d)
(a) We know, $\tan A+\tan B+\tan C=$
$\tan A \tan B \tan C$
Since, $\tan A+\tan B+\tan C=0$
\Rightarrow Let either of $\tan A, \tan B$ or $\tan C$ is zero ie, one angle is 0

So, it cannot be a triangle
(b) $\frac{\sin A}{2}=\frac{\sin B}{3}=\frac{\sin C}{1}$
$\Rightarrow a: b: c=2: 3: 1$
Let $a=2 k, b=3 k, c=k, a+c=b$ (so triangle not possible)
(c) $\sin A \sin B=\frac{\sqrt{3}}{4}=\cos A \cos B$

Either $\sin A, \sin B$ are both positive or both negative but, if both are positive $\sin A+\sin B>0$ but $\sin A+\sin B$ is negative so both negative but, if both are negative, then $\angle A$ and $\angle B$ are more than 90°, so it cannot be a triangle
(d) $(a+b)^{2}=c^{2}+a b$
$\Rightarrow a^{2}+b^{2}+2 a b=c^{2}+a b$
$\Rightarrow a^{2}+b^{2}-c^{2}=-a b$
$\Rightarrow \frac{a^{2}+b^{2}-c^{2}}{2 a b}=-\frac{1}{2}=\cos C$
$\Rightarrow \angle C=120^{\circ}$
$\sin A+\cos A=\frac{\sqrt{3}}{\sqrt{2}}$
$\Rightarrow 1+\sin 2 A=\frac{3}{2} \Rightarrow \sin 2 A=\frac{1}{2}$
$\Rightarrow 2 A=30^{\circ} \Rightarrow \angle A=15^{\circ}$
So, it can form a triangle

55 (b)
In $\triangle P M C, \tan \alpha=\frac{h-a}{P M}$

$\Rightarrow P M=(h-a) \cot \alpha \quad \ldots$ (i)
In $\Delta P M C^{\prime}, \tan \beta=\frac{h+a}{P M}$
$\Rightarrow h+a=P M \tan \beta$
$\Rightarrow h=(h-a) \cot \alpha \tan \beta-a$
$\Rightarrow h(1-\cot \alpha \cot \beta)=-a(1+\cot \alpha \tan \beta)$
$\Rightarrow h=\frac{a(\sin \alpha \cos \beta+\cos \alpha \sin \beta)}{\sin \beta \cos \alpha-\sin \alpha \cos \beta}$
$=\frac{a \sin (\alpha+\beta)}{\sin (\beta-\alpha)} \mathrm{m}$
56 (a)
Line perpendicular to $O A$ passing through B is $x=4$

Slope of $A B=-\frac{3}{2}$
Line perpendicular to $A B$ through origin is $y=\frac{2}{3} x$
\therefore The point of intersection of a line $x=4$ and $y=\frac{2}{3} x$ is $\left(4, \frac{8}{3}\right)$
57 (c)
Since, $(0,1),(1,1)$ and $(1,0)$ are mid points of sides $A B, B C$ and $C A$ respectively

\therefore Coordinates of A, B and C are $(0,0),(0,2)$ and $(2,0)$ respectively
Now, $A B=2, B C=2 \sqrt{2}, C A=2$
$\therefore x$-coordinate of incentre
$=\frac{0+0+2.2}{2+2 \sqrt{2}+2} \quad\left(\because \quad x=\frac{a x_{1}+b x_{2}+c x_{3}}{a+b+c}\right)$ $=\frac{2}{2+\sqrt{2}}=2-\sqrt{2}$

Let $P(x, y)$ is equidistant from the mid points

$$
\begin{aligned}
& A(a+b, b-a) \text { and }(a-b, a+b) \\
& \therefore \quad P A^{2}=P B^{2} \\
& \Rightarrow \quad(a+b-x)^{2}+(b-a-y)^{2} \\
& \quad=(a-b-x)^{2}+(a+b-y)^{2} \\
& \Rightarrow \quad b x-a y=0
\end{aligned}
$$

59 (a)
Let the locus of a point in a plane be $P(h, k)$

According to the question,
$|P A|+|P B|=1 \quad \Rightarrow \quad|h|+|k|=1$
Hence, locus of a point is
$|x|+|y|=1$
Which represents the equation of square
(b)

Let $B C$ be the height of tower and $C D$ be height of the flagstaff

In $\triangle B A C, \tan \theta=\frac{x}{y} \ldots$ (i)
In $\triangle D A B, \tan 2 \theta=\frac{x+h}{y}$
$\Rightarrow \frac{2 \tan \theta}{1-\tan ^{2} \theta}=\frac{x+h}{y} \Rightarrow \frac{2\left(\frac{x}{y}\right)}{1-\frac{x^{2}}{y^{2}}}=\frac{x+h}{y}$ [from Eq. (i)]
$\Rightarrow 2 x y^{2}-x y^{2}+x^{3}=\left(y^{2}-x^{2}\right) h$
$\Rightarrow h=\frac{x\left(x^{2}+y^{2}\right)}{\left(y^{2}-x^{2}\right)}$
61 (b)
$2 a c \sin \left(\frac{A-B+C}{2}\right)$
$=2 a c \sin \left(\frac{180^{\circ}-2 B}{2}\right)$
$=2 a c \sin \left(90^{\circ}-B\right)=2 a c \cos B=a^{2}+c^{2}-b^{2}$
62 (d)
$(x+1)^{2}+y^{2}+(x-2)^{2}+y^{2}=2\left[(x-1)^{2}+y^{2}\right]$
On simplification, we get $2 x+3=0$

We know that centroid divides the line segment
joining orthocenter and circumcentre in the ratio2: 1. Since, the coordinates of orthocenter and circumcentre are $(1,1)$ and $(3,2)$
respectively
\therefore The coordinates of centroid are
$\left(\frac{2.3+1.1}{2+1}, \frac{2.2+1.1}{2+1}\right)=\left(\frac{7}{3}, \frac{5}{3}\right)$
64 (c)
Given equation are
$x \cot \theta+y \operatorname{cosec} \theta=2$
And $x \operatorname{cosec} \theta+y \cot \theta=6$
On squaring and subtracting Eq. (i) from Eq. (ii), we get
$x^{2}\left(\operatorname{cosec}^{2} \theta-\cot ^{2} \theta\right)+y^{2}\left(\cot ^{2} \theta-\operatorname{cosec}^{2} \theta\right)=$
$(6)^{2}-(2)^{2}$
$\Rightarrow x^{2}-y^{2}=32$
It represents an equation of hyperbola
65 (c)
Since, $\cot A+\cot C=2 \cot B$
$\Rightarrow \frac{\cos A}{\sin A}+\frac{\cos C}{\sin C}=\frac{2 \cos B}{\sin B}$
$\Rightarrow \frac{b^{2}+c^{2}-a^{2}}{2 b c(k a)}+\frac{a^{2}+b^{2}-c^{2}}{2 a b(k c)}=2 \frac{a^{2}+c^{2}-b^{2}}{2 a c(k b)}$
$\Rightarrow a^{2}+c^{2}=2 b^{2}$
Hence, a^{2}, b^{2}, c^{2} are in AP
66
(a)

In $\triangle A B C, A C=(H-h) \cot 15^{\circ}$
and in $\triangle A C D, A C=(H+h) \cot 45^{\circ} \ldots$ (ii)

From Eqs. (i) and (ii).
$(H-h) \cot 15^{\circ}=(H+h) \cot 45^{\circ}$
$\Rightarrow H=\frac{h\left(\cot 15^{\circ}+1\right)}{\cot 15^{\circ}-1}$
$\therefore H=\frac{2500(2+\sqrt{3}+1)}{(2+\sqrt{3}-1)}$
$=\frac{2500(3+\sqrt{3)}}{(\sqrt{3}+1)} \times \frac{(\sqrt{3}-1)}{(\sqrt{3}-1)}$
$=2500 \sqrt{3} \mathrm{~m}$
67
(b)

Let $O P$ be the clock tower standing at the mid point O of side $B C$ of $\triangle A B C$. Let $\alpha=\angle P A O=$ $\cot ^{-1} 3.2$ and $\beta=\angle P B O=\operatorname{cosec}^{-1} 2.6$
Then, $\cot \alpha=3.2$ and $\operatorname{cosec} \beta=2.6$
$\therefore \cot \beta=\sqrt{\operatorname{cosec}^{2} \beta-1}=\sqrt{(2.6)^{2}-1}=2.4$

In $\triangle P A O$ and $\triangle P B O$, we have

$A O=h \cot \alpha=3.2 h$
and $B O=h \cot B=2.4 h$
In $\triangle A B O, A B^{2}=O A^{2}+O B^{2}$
$\Rightarrow 100^{2}=(3.2 h)^{2}+(2.4 h)^{2}$
$\Rightarrow 100^{2}=16 h^{2}$
$\Rightarrow h^{2}=625 \Rightarrow h=25 \mathrm{~m}$
68 (d)
$\because \cos 30^{\circ}=\frac{3+1-a^{2}}{2 \sqrt{3}}\left[\because \cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}\right]$
$\Rightarrow \frac{\sqrt{3}}{2}=\frac{4-a^{2}}{2 \sqrt{3}} \Rightarrow a^{2}=1$
$\Rightarrow \quad a=1$
Here, we see side b is largest, so
$\angle B$ must be greatest
\therefore By sine rule, $\frac{b}{\sin B}=\frac{a}{\sin A}$
$\Rightarrow \frac{\sqrt{3}}{\sin B}=\frac{1}{\sin 30^{\circ}}$
$\Rightarrow \sin B=\frac{\sqrt{3}}{2}$
$\Rightarrow \angle B=120^{\circ}$
69 (c)
Let each side of equilateral triangle $=a$
$\therefore \Delta=\frac{\sqrt{3}}{4} a^{2}, \quad S=\frac{3 a}{2}$
Now, $r=\frac{\Delta}{5}=\frac{\sqrt{3}}{4} a^{2} \cdot \frac{2}{3 a}=\frac{a}{2 \sqrt{3}}$
$R=\frac{a b c}{4 \Delta}=\frac{a^{3}}{\sqrt{3} a^{2}}=\frac{a}{\sqrt{3}}$
$r_{1}=\frac{\Delta}{s-a}=\frac{\sqrt{3}}{4} a^{2} \cdot \frac{2}{a}=\frac{\sqrt{3}}{2} a$
$\therefore R: r_{1}: r_{1}=\frac{a}{\sqrt{3}}: \frac{a}{2 \sqrt{3}}: \frac{\sqrt{3}}{2} a$
$=2: 1: 3$
70 (d)
Given, $r_{1}=2 r_{2}=3 r_{3}$
$\therefore \frac{\Delta}{s-a}=\frac{2 \Delta}{s-b}=\frac{3 \Delta}{s-c}=\frac{\Delta}{k}$ [say]
Then, $s-a=k, s-b=2 k, s-c=3 k$
$\Rightarrow 3 s-(a+b+c)=6 k \Rightarrow s=6 k$
$\therefore \frac{a}{5}=\frac{b}{4}=\frac{c}{3}=k$
$\therefore \frac{a}{b}+\frac{b}{c}+\frac{c}{a}=\frac{5}{4}+\frac{4}{3}+\frac{3}{5}=\frac{191}{60}$

71 (c)
Let sides of the triangle are $4 x, 5 x, 6 x$
$s=\frac{4 x+5 x+6 x}{2}=\frac{15}{2} x$
$\Delta=\sqrt{\frac{15}{2} \times\left(\frac{15}{2} x-4 x\right)\left(\frac{15}{2} x-5 x\right)\left(\frac{15}{2} x-6 x\right)}$
$=\sqrt{\frac{15}{2} x \times \frac{7}{2} x \times \frac{5}{2} x \times \frac{3}{2} x}$
$=\frac{15 \sqrt{7} x^{2}}{4}$
Circumradius, $R=\frac{4 x \times 5 x \times 6 x}{4 \times \frac{15 \sqrt{7} x^{2}}{4}}$
$=\frac{8}{\sqrt{7}} x$
Inradius, $r=\frac{\frac{15 \sqrt{7}}{4} x^{2}}{\frac{15}{2} x}$
$=\frac{\sqrt{7}}{2} x$
$\frac{R}{r}=\frac{\frac{8 x}{\sqrt{7}}}{\frac{\sqrt{7} x}{2}}=\frac{16}{7}$
72 (c)
In $\triangle D A P, \tan 60^{\circ}=\frac{1}{A P} \quad[\because E Q=D P=1]$

$\Rightarrow \quad A P=\frac{1}{\sqrt{3}}$
In $\triangle E A Q, \tan 30^{\circ}=\frac{E Q}{A P+P Q}$
$\Rightarrow \frac{1}{\sqrt{3}}+P Q=\sqrt{3}$
$\Rightarrow P Q=\frac{2}{\sqrt{3}} \mathrm{~km}$
\therefore Speed of plane $=\frac{\text { Distance }}{\text { Time }}$
$=\frac{\frac{2}{\sqrt{3}}}{\frac{10}{60 \times 60}}=240 \sqrt{3} \mathrm{~km} / \mathrm{h}$
74 (a)
Area of triangle $=\frac{1}{2}\left|\begin{array}{lll}x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \\ x_{3} & y_{3} & 1\end{array}\right|$
$=\mathrm{A}$ rational number if vertices have integral coordinates only
If triangle is equilateral, then area
$=\frac{\sqrt{3}}{4}\left[\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}\right]$
=irrational quantity
So, triangle cannot be equilateral
(d)
$\frac{b-c}{a}=\frac{k(\sin B+\sin C)}{k \sin A}$
$=\frac{2 \sin \left(\frac{B+C}{2}\right) \cos \left(\frac{B-C}{2}\right)}{2 \sin \frac{A}{2} \cos \frac{A}{2}}$
$\Rightarrow \frac{b+c}{a}=\frac{\cos \left(\frac{B-C}{2}\right)}{\sin \frac{A}{2}}$
Similarly, $\frac{b-c}{a}=\frac{\sin \left(\frac{B-C}{2}\right)}{\cos \frac{A}{2}}$
76 (b)
Given, $\theta=\tan ^{-1} \frac{3}{5} \Rightarrow \tan \theta_{2}=\frac{3}{5}$

In $\triangle A O C, \tan \theta_{1}=\frac{A C}{A O}=\frac{h}{160} \quad \ldots$ (ii)
and in $\triangle A O B, \tan \left(\theta_{1}+\theta_{2}\right)=\frac{h}{40}$
$\Rightarrow \frac{\tan \theta_{1}+\tan \theta_{2}}{1-\tan \theta_{1} \tan \theta_{2}}=\frac{h}{40}$
$\Rightarrow \frac{\frac{h}{160}+\frac{3}{5}}{1-\frac{h}{160} \times \frac{3}{5}}=\frac{h}{40} \quad$ [from Eqs. (i) and (ii)]
$\Rightarrow \frac{5[h+96]}{800-3 h}=\frac{h}{40}$
$\Rightarrow h^{2}-200 h+6400=0$
$\Rightarrow(h-160)(h-40)=0$
$\Rightarrow h=160$ or $h=40$
Hence, height of the vertical pole is 40 m

77 (c)
Let $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ be two points. Let C and D be the points of internal and external division of $A B$ in the ratio $\lambda: 1$. Then, the coordinates of C and D are
$\left(\frac{\lambda x_{2}+x_{1}}{\lambda+1}, \frac{\lambda y_{2}+y_{1}}{\lambda+1}\right)$ and $\left(\frac{\lambda x_{2}-x_{1}}{\lambda-1}, \frac{\lambda y_{2}-y_{1}}{\lambda-1}\right)$ respectively
$\therefore A C=\frac{\lambda}{\lambda+1} A B$ and $A D=\frac{\lambda}{\lambda-1} A B$
Clearly, $\frac{1}{A C}+\frac{1}{A D}=\frac{2}{A B} \Rightarrow A C, A B, A D$ are in H.P.

79 (d)
We have,
$A+B+C=180^{\circ}$
$\Rightarrow 3 B=180 \quad[\because A, B, C$ are in AP $]$
$\Rightarrow B=60^{\circ}$
$\Rightarrow \cos B=\frac{1}{2}$
$\Rightarrow \frac{A B^{2}+B C^{2}-A C^{2}}{2 A B \cdot B C}=\frac{1}{2}$
$\Rightarrow 36+49-A C^{2}=6 \times 7 \Rightarrow A C^{2}=43 \Rightarrow A C$

$$
=\sqrt{43}
$$

80 (a)
Let the point be $P(h, k)$
It is given that difference of the distance from points $A(3,0)$
and $B(-3,0)$ is $4 i e, P A-P B=4$
$\Rightarrow \sqrt{(h-3)^{2}+k^{2}}-\sqrt{(h+3)^{2}+k^{2}}=4$

$\Rightarrow \sqrt{(h-3)^{2}+k^{2}}=4+\sqrt{(h+3)^{2}+k^{2}}$
On squaring both sides, we get

$$
\begin{aligned}
&(h-3)^{2}+k^{2}= 16+(h+3)^{2}+k^{2} \\
&+8 \sqrt{(h+3)^{2}+k^{2}} \\
& \Rightarrow h^{2}+9-6 h+k^{2} \\
&=16+h^{2}+9+6 h+k^{2} \\
&+8 \sqrt{(h+3)^{2}+k^{2}} \\
& \Rightarrow-6 h=16+6 h+8 \sqrt{(h+3)^{2}+k^{2}} \\
& \Rightarrow-8 \sqrt{(h+3)^{2}+k^{2}}=12 h+16
\end{aligned}
$$

Again , squaring both sides, we get
$64(h+3)^{2}+k^{2}=(12 h+16)^{2}$
$\Rightarrow 64\left(h^{2}+9+6 h+k^{2}\right)$

$$
=144 h^{2}+256+2.16 .12 h
$$

$\Rightarrow 64\left(h^{2}+9+6 h+k^{2}\right)=16\left(9 h^{2}+16+24 h\right)$
$\Rightarrow 4\left(h^{2}+9+6 h+k^{2}\right)=9 h^{2}+16+24 h$
$\Rightarrow 4 h^{2}+36+24 h+4 k^{2}=9 h^{2}+16+24 h$
$\Rightarrow 5 h^{2}-4 k^{2}=20$
$\Rightarrow \frac{h^{2}}{4}-\frac{k^{2}}{5}=1$
Hence, the locus of points P is $\frac{x^{2}}{4}-\frac{y^{2}}{5}=1$
$81 \quad$ (b)

$$
\begin{aligned}
& \because \cos C=\frac{a^{2}+b^{2}-c^{2}}{2 a b} \\
& \Rightarrow \cos ^{2} C=\left(\frac{a^{2}+b^{2}-c^{2}}{2 a b}\right)^{2} \\
& \Rightarrow \cos ^{2} C \\
& =\frac{\left[a^{4}+b^{4}+c^{4}+2 a^{2} b^{2}-2 c^{2}\left(a^{2}+b^{2}\right)\right]}{4 a^{2} b^{2}} \\
& \Rightarrow \cos ^{2} C=\frac{1}{2}\left[\because a^{4}+b^{4}+c^{4}\right. \\
& \left.=2 c^{2}\left(a^{2}+b^{2}\right) \text { given }\right] \\
& \Rightarrow \cos C= \pm \frac{1}{\sqrt{2}} \\
& \Rightarrow \angle C=45^{\circ} \text { or } 135^{\circ}
\end{aligned}
$$

82 (d)
Locus, of P is $\mid \sqrt{x^{2}+y^{2}-8 y+16}-$
$x 2+y 2+8 y+16=6$
On squaring, we get
$x^{2}+y^{2}-2$
$=\sqrt{x^{2}+y^{2}+8 y+16} \sqrt{x^{2}+y^{2}-8 y+16}$
$\Rightarrow \quad\left(x^{2}+y^{2}-2\right)^{2}=\left(x^{2}+y^{2}+16\right)^{2}-(8 y)^{2}$
On simplification, we get
$\frac{y^{2}}{9}-\frac{x^{2}}{7}=1$
83

(a)

Given, $\sin \frac{A}{2} \sin \frac{C}{2}=\sin \frac{B}{2}$
$\Rightarrow \sqrt{\frac{(s-b)(s-c)}{b c}} \sqrt{\frac{(s-a)(s-b)}{a b}}$
$=\sqrt{\frac{(s-a)(s-c)}{a c}}$
$\Rightarrow \frac{s-b}{b}=1$
$\Rightarrow s=2 b$
84 (c)
In $\triangle P R Q$
$\tan 60^{\circ}=\frac{30}{x}$
$\Rightarrow x=10 \sqrt{3} \mathrm{~m}$

85 (a)
In $\triangle A B D, \tan \alpha=\frac{h}{2 h}$

$\Rightarrow \tan \alpha=\frac{1}{2}$
In $\triangle A B C, \tan 2 \alpha=\frac{h+p}{2 h}$
$\Rightarrow \frac{2 \tan \alpha}{1-\tan ^{2} \alpha}=\frac{h+p}{2 h}$
$\Rightarrow \frac{2\left(\frac{1}{2}\right)}{1-\left(\frac{1}{2}\right)^{2}}=\frac{h+p}{2 h}$
$\Rightarrow \frac{4}{3}=\frac{h+p}{2 h}$
$\Rightarrow 8 h=3 h+3 p$
$\Rightarrow 5 h=3 p \Rightarrow p=\frac{5 h}{3} \mathrm{~m}$
(d)

In $\triangle A B D, \tan \beta=\frac{60}{d}$

$\Rightarrow d=60 \cot \beta$...(i)
In $\triangle D E C, \tan \alpha=\frac{D C}{E C}$
$\Rightarrow D C=d \tan \alpha$
$\Rightarrow 60-h=d \tan \alpha \quad(\because B C=E A=h)$
$\Rightarrow 60-h=60 \cot \beta \tan \alpha$ [from Eq.(i)]
$\Rightarrow h=60\left(1-\frac{\cos \beta}{\sin \beta} \cdot \frac{\sin \alpha}{\cos \alpha}\right)$
$\Rightarrow h=\frac{60 \sin (\beta-\alpha)}{\cos \alpha \sin \beta}$
$\Rightarrow \frac{60 \sin (\beta-\alpha)}{x}=\frac{60 \sin (\beta-\alpha)}{\cos \alpha \sin \beta}$ (given)
$\Rightarrow x=\cos \alpha \sin \beta$
87 (c)
We know that, in triangle larger side has an larger angle opposite to it. Since, angles $\angle A, \angle B$ and $\angle C$
are in AP
$\Rightarrow 2 B=A+C$
$\because \quad A+B+C=\pi$
$\Rightarrow B=60^{\circ}$
$\therefore \cos B=\frac{a^{2}+c^{2}-b^{2}}{2 a c}$
$\Rightarrow \cos 60^{\circ}=\frac{1}{2}=\frac{100+a^{2}-81}{20 a}$
$\Rightarrow a^{2}+19=10 a$
$\Rightarrow a^{2}-10 a+19=0$
$\therefore a=\frac{10 \pm \sqrt{100-76}}{2}=5 \pm \sqrt{6}$
88 (c)
Here, $\frac{1}{\sin ^{2} \frac{A}{2}}, \frac{1}{\sin ^{2} \frac{B}{2}}, \frac{1}{\sin ^{2} \frac{C}{2}}$ are in AP
$\Rightarrow \frac{1}{\sin ^{2} \frac{C}{2}}-\frac{1}{\sin ^{2} \frac{B}{2}}=\frac{1}{\sin ^{2} \frac{B}{2}}-\frac{1}{\sin ^{2} \frac{A}{2}}$,
$\Rightarrow \frac{a b}{(s-a)(s-b)}-\frac{a c}{(s-a)(s-c)}$

$$
=\frac{a c}{(s-a)(s-c)}-\frac{b c}{(s-b)(s-c)}
$$

$\Rightarrow\left(\frac{a}{s-a}\right)\left(\frac{b(s-c)-c(s-b)}{(s-b)(s-c)}\right)$
$=\left(\frac{c}{s-c}\right)\left(\frac{a(s-b)-b(s-a)}{(s-a)(s-b)}\right)$
$\Rightarrow a b+b c=2 a c \Rightarrow \frac{1}{c}+\frac{1}{a}=\frac{2}{b}$
Hence, a, b, c are in HP
(c)

Let the vertices of triangle be $P(1,1), Q(-1,-1)$
and $R(-\sqrt{3}, \sqrt{3})$
$\therefore P Q=\sqrt{(1+1)^{2}+(1+1)^{2}}=2 \sqrt{2}$
$Q R=\sqrt{(-\sqrt{3}+1)^{2}+(\sqrt{3}+1)^{2}}$
$=\sqrt{3+1-2 \sqrt{3}+3+1+2 \sqrt{3}}=2 \sqrt{2}$
and $R P=\sqrt{(-\sqrt{3}-1)^{2}+(\sqrt{3}-1)^{2}}$
$=\sqrt{3+1+2 \sqrt{3}+3+1-2 \sqrt{3}}$
$=2 \sqrt{2}$
$\Rightarrow \quad P Q=Q R=R P$
\therefore Triangle is an equilateral triangle
91 (a)
Let the third vertex be (a, b)
\therefore Area of $\Delta=\frac{1}{2}\left|\begin{array}{lll}0 & 0 & 1 \\ a & b & 1 \\ 6 & 8 & 1\end{array}\right|=\frac{1}{2}|[8 a-6 b]|$
As (a, b) are integers, so we take
$(0,0),(1,1),(1,2)$
At $(0,0), \Delta=0$, it is not possible

At $(1,1) \Delta=1$
At (1,2), $\Delta=2$
Here, we see that minimum area is 1
92 (d)

$$
\begin{aligned}
& \left(\cot \frac{A}{2}+\cot \frac{B}{2}\right)\left(a \sin ^{2} \frac{B}{2}+b \sin ^{2} \frac{A}{2}\right) \\
& =\left(\frac{\cos \frac{A}{2}+\sin \frac{B}{2}+\cos \frac{B}{2}+\sin \frac{A}{2}}{\sin \frac{A}{2} \sin \frac{B}{2}}\right)\left(a \sin ^{2} \frac{B}{2}\right. \\
& \left.+b \sin ^{2} \frac{A}{2}\right) \\
& =\frac{\sin \left(\frac{A+B}{2}\right)\left(a \sin ^{2} \frac{B}{2}+b \sin ^{2} \frac{A}{2}\right)}{\sin \frac{A}{2} \sin \frac{B}{2}} \\
& =\left(\cos \frac{C}{2}\right)\left(a \frac{\sin \frac{B}{2}}{\sin \frac{A}{2}}+b \frac{\sin \frac{A}{2}}{\sin \frac{B}{2}}\right)
\end{aligned}
$$

$$
=\sqrt{\frac{s(s-c)}{a b}}\left(a \frac{\sqrt{\frac{(s-a)(s-c)}{a c}}}{\sqrt{\frac{(s-b)(s-c)}{b c}}}+b \frac{\sqrt{\frac{(s-b)(s-c)}{b c}}}{\sqrt{\frac{(s-a)(s-c)}{a c}}}\right)
$$

$$
=\sqrt{\frac{s(s-c)}{a b}}\left(\sqrt{\left(\frac{s-a}{s-b}\right) a b}+\sqrt{\left(\frac{s-b}{s-a}\right) a b}\right)
$$

$$
=\sqrt{s(s-c)}\left(\frac{s-a+s-b}{\sqrt{(s-a)(s-b)}}\right)
$$

$$
=\sqrt{s(s-c)}\left(\frac{2 s-a-b}{\sqrt{(s-a)(s-b)}}\right)
$$

$$
=c \sqrt{\frac{s(s-c)}{(s-a)(s-b)}}=c \cot \frac{C}{2}
$$

(c)

Given lines $y=m x, y=2, y=6$

Coordinates of points A and B are $\left(\frac{2}{m}, 2\right),\left(\frac{6}{m}, 6\right)$ respectively
$\therefore A B=\sqrt{\left(\frac{2}{m}-\frac{6}{m}\right)^{2}+(2-6)^{2}}<5$ [given]
$\Rightarrow\left(\frac{2}{m}-\frac{6}{m}\right)^{2}+(4)^{2}<25$
$\Rightarrow\left(\frac{2}{m}-\frac{6}{m}\right)^{2}<9 \Rightarrow-3<\frac{2}{m}-\frac{6}{m}<3$
$\Rightarrow-\frac{4}{3}>m>\frac{4}{3}$
$\therefore \quad m \in]-\infty,-\frac{4}{3}[U] \frac{4}{3}, \infty[$
94 (c)
By sine rule
$\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c} \quad$ (say)
$\therefore(b-c) \sin A+(c-a) \sin B+(a-b) \sin C$
$=(b-c) a k+(c-a) b k+(a-b) k c$
$=k[a b-a c+b c-a b+a c-b c]$
$=0$
95 (a)
Given that, $a=3, b=5, c=6$
Now, $s=\frac{a+b+c}{2}=7$
$\therefore \quad \Delta=\sqrt{s(s-a)(s-b)(s-c)}$
$=\sqrt{7(7-3)(7-5)(7-6)}$
$=\sqrt{7 \cdot 4 \cdot 2 \cdot 1}=2 \sqrt{14}$
$\therefore r=\frac{\Delta}{s}=\frac{2 \sqrt{14}}{7}=\sqrt{\frac{8}{7}}$
$96 \quad$ (a)
$\cos B=\frac{3^{2}+4^{2}-5^{2}}{2(3)(4)}=\frac{9+16-25}{2(3)(4)}=0$
$\Rightarrow \angle B=90^{\circ}$
$\therefore \sin \frac{B}{2}+\cos \frac{B}{2}=\sin 45^{\circ}+\cos 45^{\circ}$
$=\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}=\sqrt{2}$
(b)

In $\triangle C A D, \tan 30^{\circ}=\frac{C D}{A C}$

$\Rightarrow \frac{1}{\sqrt{3}}=\frac{h}{120+x}$
$\Rightarrow \sqrt{3} h=120+x$
and in $\triangle C B D, \tan 60^{\circ}=\frac{C D}{B C}$
$\Rightarrow \sqrt{3}=\frac{h}{x} \Rightarrow h=\sqrt{3} x$
From Eqs. (i) and (ii), we get, $x=60 \mathrm{~m}$
On putting $x=60$ in Eq.(i), we get
$h=60 \sqrt{3} \mathrm{~m}$

Area of triangle $=\frac{1}{2}[x(1-2)+1(2-0)+0(0-$
1)]
$=\frac{1}{2}[-x+2+0]=4 \quad$ [given]
$\Rightarrow 2-x=8 \Rightarrow x=-6$
102 (a)
The sum of the distance of a point P from two perpendicular lines in aplane is 1 , then the locus of P is a rhombus
103 (a)
In $\triangle D C E, \tan 30^{\circ}=\frac{150}{C D}$
$\Rightarrow C D=\sqrt{3} \times 150$

Now, In $\triangle D C F$,
$\tan \theta=\frac{D F}{C D}=\frac{200}{\sqrt{3} .150}=\frac{4}{3 \sqrt{3}}$
104 (b)
$2\left(a \sin ^{2} \frac{C}{2}+c \sin ^{2} \frac{A}{2}\right)$
$=2\left(a \frac{(s-a)(s-b)}{a b}+c \frac{(s-b)(s-c)}{b c}\right)$
$=2\left(\frac{(s-b)}{b}(s-a+s-c)\right)$
$=\frac{2}{b}(s-b) b$
$=2(s-b)=a-b+c$
105 (c)
Let H be the orthocenter of $\triangle O A B$

$\therefore \quad($ slope of $O P) .($ slope of $B A)=-1$
$\Rightarrow \quad\left(\frac{y-0}{3-0}\right) \cdot\left(\frac{4-0}{3-4}\right)=-1$
$\Rightarrow-\frac{4}{3} y=-1$
$\Rightarrow y=\frac{3}{4}$
\therefore Required orthocentre $=(3, y)=\left(3, \frac{3}{4}\right)$
106 (b)
Let the fourth vertex be $D(x, y)$

We know that two diagonals of a parallelogram are bisect each other
$\therefore \frac{-1+7}{2}=\frac{2+x}{2} \Rightarrow x=4$
and $\frac{-6+2}{2}=\frac{-5+y}{2} \Rightarrow y=1$
\therefore Fourth vertex of D is $(4,1)$
107 (c)
We have, $\cos A \cos B+\sin A \sin B \sin C=1$
$\Rightarrow 2 \cos A \cos B+2 \sin A \sin B \sin C=2$
$\Rightarrow 2 \cos A \cos B+2 \sin A \sin B \sin C$
$=\cos ^{2} A+\sin ^{2} A+\cos ^{2} B+\sin ^{2} B$
$\Rightarrow(\cos A-\cos B)^{2}+(\sin A-\sin B)^{2}$
$+2 \sin A \sin B(1-\sin C)=0$
$\Rightarrow \cos A-\cos B=0, \quad \sin A-\sin B=0$
and $1-\sin C=0$
$\Rightarrow A=B$ and $C=90^{\circ}$
$\Rightarrow \quad a=b$ and $C=90^{\circ}$
108 (d)
We have, $A+B+C=180^{\circ}$
$\Rightarrow \quad A=180^{\circ}-(B+C)$
$\Rightarrow \tan A=\tan \left(180^{\circ}-B-C\right)$
$\Rightarrow \tan 90^{\circ}=-\tan (B+C)$
$\Rightarrow \infty=-\frac{\tan B+\tan C}{1-\tan B \tan C}$
$\Rightarrow 1-\tan B \tan C=0$
$\Rightarrow \tan B \tan C=1$
109 (b)
Since, the given points lies on a line, then
$\left|\begin{array}{ccc}1 & 1 & 1 \\ -5 & 5 & 1 \\ 13 & \lambda & 1\end{array}\right|=0$
$\Rightarrow 1(5-\lambda)-1(-5-13)+1(-5 \lambda-65)=0$
$\Rightarrow-6 \lambda=42 \Rightarrow \lambda=-7$
110 (a)
The vertices of triangle are $(0,0),(3,0)$ and $(0,4)$.
It is a right angled triangle, therefore
circumcentre is $\left(\frac{3}{2}, 2\right)$
111 (c)
$B C=5, B A=10$

Let D divides $A C$ in the ratio 2:1
\therefore Coordinate of D is $\left(\frac{1}{3}, \frac{1}{3}\right)$
The bisector is the line joining B and D is $\frac{y-1}{x-5}=\frac{1}{7}$ or $x-7 y+2=0$
112 (b)
In $\triangle E C D, \tan 3 \alpha=\frac{h}{C D}$

$\Rightarrow C D=h \cot 3 \alpha \ldots$ (i)
In $\triangle E B D, \tan 2 \alpha=\frac{h}{B D}$
$\Rightarrow B D=h \cot 2 \alpha \ldots$ (ii)
In $\triangle E A D, \tan \alpha=\frac{h}{A D}$
$\Rightarrow A D=h \cot \alpha$
From Eqs. (ii) and (iii),
$A D-B D=h \cot \alpha-h \cot 2 \alpha$
$A B=h(\cot \alpha-\cot 2 \alpha) \ldots$ (iv)
From Eqs. (i) and (ii),
$B D-C D=h \cot 2 \alpha-h \cot 3 \alpha$
$\Rightarrow B C=h(\cot 2 \alpha-\cot 3 \alpha) \ldots$ (v)
From Eqs. (iv) and (v),
$\frac{A B}{B C}=\frac{h(\cot \alpha-\cot 2 \alpha)}{h(\cot 2 \alpha-\cot 3 \alpha)}$
$=\frac{\frac{\cos \alpha}{\sin \alpha}-\frac{\cos 2 \alpha}{\sin 2 \alpha}}{\frac{\cos 2 \alpha}{\sin 2 \alpha}-\frac{\cos 3 \alpha}{\sin 3 \alpha}}$
$=\frac{\frac{\sin (2 \alpha-\alpha)}{\sin \alpha \sin 2 \alpha}}{\frac{\sin (3 \alpha-2 \alpha)}{\sin 2 \alpha \sin 3 \alpha}}$
$=\frac{\sin 3 \alpha}{\sin \alpha}=3-4 \sin ^{2} \alpha$
$=3-2(1-\cos 2 \alpha)$
$=1+2 \cos 2 \alpha$
114 (b)

In $\triangle A E F, \tan \phi=\frac{A E}{E F}=\frac{150}{E F}$
$\frac{5}{2}=\frac{150}{E F}$
$\Rightarrow E F=60 \mathrm{~m}$
and in $\triangle A C D$
$\tan \theta=\frac{A C}{C D}$
$\Rightarrow \frac{4}{3}=\frac{150-h}{60} \quad[\because C D=E F]$
$\Rightarrow 80=150-h$
$\Rightarrow h=70 \mathrm{~m}$
$\therefore A C=80 \mathrm{~m}$ and $C D=60 \mathrm{~m}$
$\Rightarrow A D=\sqrt{A C^{2}+C D^{2}}$
$=\sqrt{6400+3600}$
$=\sqrt{10000}=100 \mathrm{~m}$
115 (d)
In $\triangle A P C, \quad \sin (\angle P A C)=\frac{C P}{A C}$

$\Rightarrow A C=\frac{r}{\sin \frac{\alpha}{2}}=r \operatorname{cosec} \frac{\alpha}{2} \ldots$ (i)
Again, in $\triangle A B C, \sin \beta=\frac{B C}{A C}$
$\Rightarrow B C=A C \sin \beta$
$\Rightarrow H=r \operatorname{cosec}\left(\frac{\alpha}{2}\right) \sin \beta[$ from Eq.(i)]
116 (b)
Since, $\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$
$\Rightarrow b^{2}-2 b c \cos A+\left(c^{2}-a^{2}\right)=0$
It is given that b_{1} and b_{2} are the roots of this equation
Therefore, $b_{1}+b_{2}=2 c \cos A$ and $b_{1} b_{2}=c^{2}-$ a^{2}
$\Rightarrow 3 b_{1}=2 c \cos A$ and $2 b_{1}^{2}=c^{2}-a^{2}$
$\left[\because b_{2}=2 b_{1}\right]$
$\Rightarrow 2\left(\frac{2 c}{3} \cos A\right)^{2}=c^{2}-a^{2}$
$\Rightarrow 8 c^{2}\left(1-\sin ^{2} A\right)=9 c^{2}-9 a^{2}$
$\Rightarrow \sin A=\sqrt{\frac{9 a^{2}-c^{2}}{8 c^{2}}}$
117 (a)

$$
\begin{aligned}
& \because(\sqrt{a}+\sqrt{b}+\sqrt{c})(\sqrt{a}+\sqrt{b}-\sqrt{c}) \\
& \quad=(\sqrt{a}+\sqrt{b})^{2}-c \\
& =a+b-c+2 \sqrt{a b}>0 \\
& \therefore \sqrt{a}+\sqrt{b}>\sqrt{c}
\end{aligned}
$$

118 (a)
In $\triangle A B C, \angle A=30^{\circ}, B C=10 \mathrm{~cm}$
O is the centre of circle
$\therefore \angle B O C=60^{\circ}$
and $O B$ and $O C$ are the radius
$\therefore \angle O B C=\angle O C B=60^{\circ}$
$\Rightarrow \triangle O B C$ is an equilateral triangle
\therefore radius of circle is
$O B=O C=B C=10 \mathrm{~cm}$
Now, area of the circumcircle is πr^{2}
$=\pi(10)^{2}=100 \pi \mathrm{sq} \mathrm{cm}$

119 (b)
We have, $R=\frac{a b c}{4 \Delta}$ and $r=\frac{\Delta}{s}$
$\therefore \frac{R}{r}=\frac{a b c}{4 \Delta} \cdot \frac{s}{\Delta}$
$=\frac{a b c}{4(s-a)(s-b)(s-c)}$
Since, $a: b: c=4: 5: 6$
$\Rightarrow \frac{a}{4}=\frac{b}{5}=\frac{c}{6}=k \quad$ (say)
Thus, $\frac{R}{r}=\frac{(4 k)(5 k)(6 k)}{4\left(\frac{15 k}{2}-4 k\right)\left(\frac{15 k}{2}-5 k\right)\left(\frac{15 k}{2}-6 k\right)}$
$=\frac{120 k^{3} \cdot 2}{k^{3} \cdot 7 \cdot 5 \cdot 3}=\frac{16}{7}$
120 (b)
Given equation of lines are
$x=0, y=0$ and $3 x+4 y=12$
Incentre is on the line $y=x$ (Angled bisector of
$O A$ and $O B$)

Angle bisector of $y=0$ and $3 x+4 y=12$ is
$\pm 5 y=3 x+4 y-12$
$\Rightarrow 3 x+9 y=12$
and $3 x-y=12$
Here, $3 x+9 y=12$ internal bisector
So, intersection point of $y=x$ and $3 x+9 y=12$
is $(1,1)$
\therefore The required point of the incentre of triangle is $(1,1)$
121 (a)
$B P-A P= \pm 6$ or $B P=A P \pm 6$
$\Rightarrow \sqrt{x^{2}+(y+4)^{2}}=\sqrt{x^{2}+(y-4)^{2}} \pm 6$
Squaring and simplification, we get
$4 y-9= \pm 3 \sqrt{x^{2}+(y-4)^{2}}$

Again squaring, we get
$9 x^{2}-7 y^{2}+63=0$
122 (c)
Let $O P$ be the tower whose height is h metres
In $\triangle O A P, \tan \alpha=\frac{O P}{O A}$
$\Rightarrow O A=h \cot \alpha \ldots$ (i)
In $\triangle O B P, \tan \beta=\frac{O P}{O B}$

$\Rightarrow O B=h \cot \beta \quad$...(ii)
Now, in $\triangle O A B, A B^{2}=O A^{2}+O B^{2}$
$\Rightarrow d^{2}=h^{2}\left(\cot ^{2} \alpha+\cot ^{2} \beta\right)$ [from Eq. (i) and
(ii)]
$\Rightarrow h=\frac{d}{\sqrt{\cot ^{2} \alpha+\cot ^{2} \beta}}$
123 (d)
Since, the coordinates of P are $(1,0)$
Let any point Q on $y^{2}=8 x$ is $\left(2 t^{2}, 4 t\right)$
Again, let mid point of $P Q$ is (h, k), so
$h=\frac{2 t^{2}+1}{2} \Rightarrow 2 h=2 t^{2}+1$
and $k=\frac{4 t+0}{2} \Rightarrow t=\frac{k}{2}$
on putting the value of t from Eq. (ii) in Eq. (i), we get
$2 h=\frac{2 k^{2}}{4}+1 \Rightarrow 4 h=k^{2}+2$
Hence, locus of (h, k) is $y^{2}-4 x+2=0$
124 (b)
Let $P(t, t)$ divides $A B$ in the ratio $k: 1$, then
$\frac{3 k+k}{k+1}=t$ and $\frac{5 k+2}{k+1}=t$

$\Rightarrow \frac{3 k+k}{k+1}=\frac{5 k+2}{k+1}$
$\Rightarrow \quad 4 k-5 k=2$
$\Rightarrow \quad k=-2$
125 (c)
Since, a, b and c, the sides of a triangle are in AP
$\therefore 2 b=a+c$
We know that, $\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$
$\Rightarrow \cos A=\frac{b^{2}+c^{2}-(2 b-c)^{2}}{2 b c}$ [from Eq. (i)]
$\Rightarrow \cos A=\frac{b^{2}+c^{2}-4 b^{2}-c^{2}+4 b c}{2 b c}$
$\Rightarrow \cos A=\frac{4 c-3 b}{2 c}$
126 (b)
The intersection points of given lines are
$(0,0),\left(\frac{5}{2}, 5\right),\left(\frac{5}{3}, 5\right)$
\therefore Area of $\Delta=\frac{1}{2}\left|\begin{array}{lll}0 & 0 & 1 \\ \frac{5}{2} & 5 & 1 \\ \frac{5}{3} & 5 & 1\end{array}\right|$
$=\frac{1}{2}\left[1\left(\frac{25}{2}-\frac{25}{3}\right)\right]$
$=\frac{1}{2} \times \frac{25}{6}=\frac{25}{12}$ sq units
127 (d)
Given that,
$\tan \theta=\frac{4}{3}$ and $\tan \phi=\frac{5}{2}$

In $\triangle A B E, \tan \phi=\frac{150}{d}$
$\Rightarrow d=150 \cot \phi$
$=150 \times \frac{2}{5}=60 \mathrm{~m}$
In $\triangle D C E, \tan \theta=\frac{h}{d}$
$\Rightarrow \frac{4}{3}=\frac{h}{d} \quad$ [from Eq.(i)]
$\Rightarrow h=\frac{4}{3}$ (60) [from Eq.(ii)]
$\Rightarrow h=80 \mathrm{~m}$
Now, in $\triangle D C E, D E^{2}=D C^{2}+C E^{2}$
$\Rightarrow x^{2}=60^{2}+80^{2}=10000$
$\Rightarrow x=100 \mathrm{~m}$
128 (d)
Given, $A-B=60^{\circ}$

By sine rule,
$\frac{2 a}{\sin A}=\frac{a}{\sin B}$
$\Rightarrow \sin A-2 \sin B=0$
$\Rightarrow \sin \left(60^{\circ}+B\right)-2 \sin B=0$
$\Rightarrow \frac{\sqrt{3}}{2} \cos B+\frac{1}{2} \sin B-2 \sin B=0$
$\Rightarrow \frac{\sqrt{3}}{2} \cos B-\frac{3}{2} \sin B=0$
$\Rightarrow \sqrt{3}\left(\frac{1}{2} \cos B-\frac{\sqrt{3}}{2} \sin B\right)=0$
$\Rightarrow \sqrt{3}\left[\cos \left(60^{\circ}+B\right)\right]=0$
$\Rightarrow 60^{\circ}+B=90^{\circ}$
$\Rightarrow B=30^{\circ}$
$\Rightarrow A=90^{\circ}$
Hence, it is right angled triangle
129 (c)
$\left|\begin{array}{ccc}3 q & 0 & 1 \\ 0 & 3 p & 1 \\ 1 & 1 & 1\end{array}\right|=0$
$\Rightarrow 3 q(3 p-1)+1(0-3 p)=0$
$\Rightarrow \quad 9 p q=3 p+3 q$
$\Rightarrow \frac{1}{p}+\frac{1}{q}=3$
130 (c)
Here, $s=\frac{15+36+39}{2}=45$
$\therefore \sin \frac{C}{2}=\sqrt{\frac{(s-a)(s-b)}{a b}}$
$\Rightarrow \sin \frac{C}{2}=\sqrt{\frac{(45-15)(45-36)}{15 \times 36}}$
$=\sqrt{\frac{30 \times 9}{15 \times 36}}=\frac{1}{\sqrt{2}}$
131 (c)
Since, $\frac{c}{\sin C}=2 R \Rightarrow c=2 R \quad\left[\because C=90^{\circ}\right]$
And $\tan \frac{C}{2}=\frac{r}{s-c}$
$\Rightarrow \tan \frac{\pi}{4}=\frac{r}{s-c}$
$\therefore \quad r=s-c$
$\Rightarrow a+b-c=2 r$
From Eqs. (i) and (ii), we get
$2(r+R)=a+b$
132 (b)
Let $B C$ be the light house

In $\triangle A B C, \tan 15^{\circ}=\frac{60}{d}$
$\Rightarrow d=60 \cot 15^{\circ}=60\left(\frac{\sqrt{3}+1}{\sqrt{3}-1}\right) \mathrm{m}$
133 (b)

Given that, $\cos ^{2} A+\cos ^{2} C=\sin ^{2} B$
Obviously it is not an equilateral triangle because $A=B=C=60^{\circ}$ does not satisfy the given condition. But $B=90^{\circ}$, then $\sin ^{2} B=1$ and
$\cos ^{2} A+\cos ^{2} C=\cos ^{2} A+\cos ^{2}\left(\frac{\pi}{2}-A\right)$
$=\cos ^{2} A+\sin ^{2} A=1$
Hence, this satisfies the condition, so it is a right angled triangle but not necessary isosceles triangle
134 (d)
Given, $a: b: c=1: \sqrt{3}: 2$
Here, $c^{2}=a^{2}+b^{2}$
\therefore Triangle is right angled at C
$\therefore \angle C=90^{\circ}$
and $\frac{a}{b}=\frac{1}{\sqrt{3}}$
$\Rightarrow \tan A=\frac{1}{\sqrt{3}}$
$\Rightarrow \angle A=30^{\circ}$ and $\angle B=60^{\circ}$ [as $\angle A+\angle B=90^{\circ}$]
\therefore Ratio of angles $=\angle A: \angle B: \angle C=90^{\circ}$
$=30^{\circ}: 60^{\circ}: 90^{\circ}=1: 2: 3$
135 (c)
Given, $\tan \theta=\frac{1}{9}$
In $\triangle A B C, \tan \phi=\frac{3 h}{3}=h$

In $\triangle A B D, \tan (\theta+\phi)=\frac{4 h}{3}$
$\Rightarrow \frac{\tan \theta+\tan \phi}{1-\tan \phi \tan \theta}=\frac{4 h}{3}$
$\Rightarrow \frac{\frac{1}{9}+h}{1-\frac{h}{9}}=\frac{4 h}{3}$
$\Rightarrow \frac{1+9 h}{9-h}=\frac{4 h}{3}$
$\Rightarrow 3+27 h=36 h-4 h^{2}$
$\Rightarrow 4 h^{2}-9 h+3=0$
$\Rightarrow h=\frac{9 \pm \sqrt{81-48}}{2 \times 4}=\frac{9 \pm \sqrt{33}}{8}$
136 (c)
Let $a=60^{\circ}-d, B=60^{\circ}, C=60^{\circ}+d$
$\therefore \frac{b}{c}=\frac{\sin B}{\sin C}=\sqrt{\frac{3}{2}}$
$\Rightarrow \frac{\sin 60^{\circ}}{\sin \left(60^{\circ}+d\right)}=\sqrt{\frac{3}{2}}$
$\Rightarrow \frac{\sqrt{3}}{2 \sin \left(60^{\circ}+d\right)}=\sqrt{\frac{3}{2}}$
$\Rightarrow \sin \left(60^{\circ}+d\right)=\frac{1}{\sqrt{2}}$
$\Rightarrow 60^{\circ}+d=45^{\circ} \Rightarrow d=-15^{\circ}$
So, $\angle A=75^{\circ}$
137 (b)
In $\triangle A B C, \tan 30^{\circ}=\frac{87}{x}$
$\Rightarrow x=87 \times \sqrt{3}$

\therefore Speed $=\frac{\text { Diatance }}{\text { Time }}$
\Rightarrow Time $=\frac{87 \times \sqrt{3} \times 60}{5.8 \times 1000}=\frac{9 \sqrt{3}}{10} \mathrm{~min}$
138 (c)
It is given that the centroid of the triangle formed by the points $(a, b),(b, c)$ and (c, a) is at the origin
$\therefore\left(\frac{a+b+c}{3}, \frac{a+b+c}{3}\right)=(0,0)$
$\Rightarrow a+b+c=0 \Rightarrow a^{3}+b^{3}+c^{3}=3 a b c$
139 (d)
We have,
$\Delta=$ Area of $\Delta \mathrm{ABC}$
$\Rightarrow \Delta=\frac{1}{2} \times A B \times=\frac{1}{2} \times 3 \times 4=6$ sq. units
$s=$ Semi - perimeter $=\frac{1}{2}(3+4+5)=6$ units
$\therefore r=$ In - radius $=\frac{\Delta}{s}=1$
Hence, the coordinates of the incentre are $(1,1)$

(c)

Given, $a^{4}+b^{4}+c^{4}=2 c^{2}\left(a^{2}+b^{2}\right)$
$\because \cos C=\frac{a^{2}+b^{2}-c^{2}}{2 a b}$
$\Rightarrow \cos ^{2} C$
$=\left[\frac{a^{4}+b^{4}+c^{4}+2 a^{2} b^{2}-2 c^{2}\left(a^{2}+b^{2}\right)}{4 a^{2} b^{2}}\right]$
$=\left[\frac{2 c^{2}\left(a^{2}+b^{2}\right)+2 a^{2} b^{2}-2 c^{2}\left(a^{2}+b^{2}\right)}{4 a^{2} b^{2}}\right]$
[from Eq. (i)]
$\Rightarrow \cos ^{2} C=\frac{1}{2}$
$\Rightarrow \cos C= \pm \frac{1}{\sqrt{2}}$
$\Rightarrow \angle C=45^{\circ}$ or 135°
141 (c)
Let $A B=A C$ and $\angle A=120^{\circ}$
\therefore Area of triangle $=\frac{1}{2} a^{2} \sin 120^{\circ}$

Where, $a=A D+B D$
$=\sqrt{3} \tan 30^{\circ}+\sqrt{3} \cot 15^{\circ}$
$=1+\sqrt{3}\left(\frac{1+\tan 45^{\circ} \tan 30^{\circ}}{\tan 45^{\circ}-\tan 30^{\circ}}\right)$

$$
=1+\sqrt{3}\left(\frac{\sqrt{3}+1}{\sqrt{3}-1}\right)
$$

$\therefore \quad a=4+2 \sqrt{3}$
\Rightarrow Area of triangle $=\frac{1}{2}(4+2 \sqrt{3})^{2}\left(\frac{\sqrt{3}}{2}\right)=12+$ $7 \sqrt{3 l}$
142 (b)
Area $=\frac{1}{2} \times$ base \times altitude
$=\frac{1}{2} \times(2 x \cos \theta) \times(x \sin \theta)$
$=\frac{1}{2} x^{2} \sin 2 \theta$
(Since, maximum value of $\sin 2 \theta$ is 1)
$\therefore \quad$ Maximum area $=\frac{1}{2} x^{2}$

143 (d)
Here, $\tan \frac{A}{2} \tan \frac{C}{2}=\frac{1}{3}$
$\Rightarrow \sqrt{\frac{(s-b)(s-c)}{s(s-a)} \cdot \frac{(s-b)(s-a)}{s(s-c)}}=\frac{1}{3}$
$\Rightarrow \frac{s-b}{s}=\frac{1}{3} \Rightarrow 2 s=3 b$
$\Rightarrow 2 b=a+c$
$\Rightarrow a, b, c$ are in AP
(d)

Let the vertices of a triangle are $P(2,1), Q(5,2)$ and $R(3,4)$ and $A(x, y)$ be the circumcentre of $\triangle P Q R$
$\therefore \quad A P^{2}=A Q^{2}$
$\Rightarrow(2-x)^{2}+(1-y)^{2}=(5-x)^{2}+(2-y)^{2}$
$\Rightarrow \quad 4+x^{2}-4 x+1+y^{2}-2 y$

$$
=25+x^{2}-10 x+4+y^{2}-4 y
$$

$\Rightarrow \quad 6 x+2 y=24$
$\Rightarrow \quad 3 x+y=12$
and $A P^{2}=A R^{2}$
$\Rightarrow(2-x)^{2}+(1-y)^{2}=(3-x)^{2}+(4-y)^{2}$
$\Rightarrow 4+x^{2}-4 x+1+y^{2}-2 y$

$$
=9+x^{2}-6 x+16+y^{2}-8 y
$$

$\Rightarrow \quad 2 x+6 y=20$
$\Rightarrow \quad x+3 y=10$
On solving Eqs. (i) and (ii), we get
$x=\frac{13}{4}$ and $y=\frac{9}{4}$
\therefore Circumcentre is $\left(\frac{13}{4}, \frac{9}{4}\right)$

145 (c)

$(a+b+c)(b+c-a)=k b c$
$\Rightarrow 2 s(2 s-2 a)=k b c$
$\Rightarrow \frac{s(s-a)}{b c}=\frac{k}{4}$
$\Rightarrow \cos ^{2}\left(\frac{A}{2}\right)=\frac{k}{4}$
$\because 0<\cos ^{2}\left(\frac{A}{2}\right)<1$
$\therefore 0<\frac{k}{4}<1$
$\Rightarrow 0<k<4$
146 (d)
\because Area of $\triangle P B C=\frac{1}{2} \left\lvert\, \begin{array}{ccc}\alpha & \beta & 1 \\ -3 & 5 & 1 \\ 4 & -2 & 1\end{array}\right. \|$

$$
=\frac{1}{2}|7 \alpha+7 \beta-14|
$$

Also, Area of $\triangle A B C=\frac{1}{2} \left\lvert\, \begin{array}{ccc}6 & -3 & 1 \\ -3 & 5 & 1 \\ 4 & -2 & 1\end{array}\right. \|$
$=\frac{1}{2}|42-21-14|=\frac{7}{2}$
$\therefore \frac{\text { Area of } \triangle P B C}{\text { Area of } \triangle A B C}=\frac{\frac{7}{2}|\alpha+\beta-2|}{\frac{7}{2}}$
$=|\alpha+\beta-2|$
147
(b)

Let $D P$ is clock tower standing at the middle point

D of $B C$

Let $\angle P A D=\alpha=\cot ^{-1} 3.2 \Rightarrow \cot \alpha=3.2$

and $\angle P B D=\beta=\operatorname{cosec}^{-1} 2.6$
$\Rightarrow \quad \operatorname{cosec} \beta=2.6$
$\therefore \cot \beta=\sqrt{\left(\operatorname{cosec}^{2} \beta-1\right)}$
$=\sqrt{5.76}=2.4$
In $\triangle P A D$ and $P B D$,
$A D=h \cot \alpha=3.2 h$
and $B D=h \cot \beta=2.4 h$
In $\triangle A B D, A B^{2}=A D^{2}+B D^{2}$
$\Rightarrow 100^{2}=\left[(3.2)^{2}+(2.4)^{2}\right] h^{2}=16 h^{2}$
$\Rightarrow h=\frac{100}{4} \Rightarrow h=25 \mathrm{~m}$
148 (c)
$a \cot A+b \cot B+c \cot C$
$=\frac{a}{\sin A} \cos A+\frac{b}{\sin B} \cos B+\frac{c}{\sin C} \cos C$
$=2 R(\cos A+\cos B+\cos C)$
$=2 R\left(1+\frac{r}{R}\right)=2(r+R)$
150 (a)
Given pair of lines are rotated about the origin by $\pi / 6$ in the anti-clockwise sense.
$\therefore \quad x=x^{\prime} \cos \frac{\pi}{6}-y^{\prime} \sin \frac{\pi}{6}=\frac{\sqrt{3} x^{\prime}-y^{\prime}}{2}$
and $y=x^{\prime} \sin \frac{\pi}{6}+y^{\prime} \cos \frac{\pi}{6}=\frac{x^{\prime}+\sqrt{3} y^{\prime}}{2}$
on putting the values of x and y in given pair of
lines, we get

$$
\begin{gathered}
\sqrt{3}\left(\frac{\sqrt{3} x^{\prime}-y^{\prime}}{2}\right)^{2}-4\left(\frac{\sqrt{3} x^{\prime}-y^{\prime}}{2}\right)\left(\frac{x^{\prime}+\sqrt{3} y^{\prime}}{2}\right) \\
+\sqrt{3}\left(\frac{x^{\prime}+\sqrt{3} y^{\prime}}{2}\right)^{2}=0 \\
\Rightarrow \sqrt{3}\left(3 x^{\prime 2}+y^{\prime 2}-2 \sqrt{3} x^{\prime} y^{\prime}\right) \\
\quad-4\left(\sqrt{3} x^{\prime 2} 3 x^{\prime} y^{\prime}-x^{\prime} y^{\prime}-\sqrt{3} y^{\prime 2}\right) \\
\quad+\sqrt{3}\left(x^{\prime 2}+3 y^{\prime 2}+2 \sqrt{3} x^{\prime} y^{\prime}\right)=0 \\
\Rightarrow 3 \sqrt{3} x^{\prime 2}+\sqrt{3} y^{\prime 2}-6 x^{\prime} y^{\prime}-4 \sqrt{3} x^{\prime 2}-8 x^{\prime} y^{\prime} \\
\quad+4 \sqrt{3} y^{\prime 2}+\sqrt{3} x^{\prime 2}+3 \sqrt{3} y^{\prime 2} \\
\quad+6 x^{\prime} y^{\prime}=0 \\
\Rightarrow 8 \sqrt{3} y^{\prime 2}-8 x^{\prime} y^{\prime}=0 \\
\Rightarrow \sqrt{3} y^{\prime 2}-x^{\prime} y^{\prime}=0
\end{gathered}
$$

\therefore Required equation is $\sqrt{3} y^{2}-x y=0$

151 (c)

Using sine rule,
$\frac{\sin A}{a}=\frac{\sin B}{b}$
$\Rightarrow \frac{\frac{2}{3}}{2}=\frac{\sin B}{3}$
$\Rightarrow \sin B=1$
$\Rightarrow B=90^{\circ}$
152 (a)
since, b, c and a are in AP
By sine rule, $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
$\Rightarrow a=\frac{b}{\sin B}=\frac{c}{\sin C} \quad\left[\because \angle A=90^{\circ}\right]$
$\Rightarrow \sin B=\frac{b}{a}, \sin C=\frac{c}{a}$
153 (d)
$2 a^{2}+4 b^{2}+c^{2}=4 a b+2 a c$
$\Rightarrow a^{2}+(2 b)^{2}-4 a b+a^{2}+c^{2}-2 a c=0$
$\Rightarrow(a-2 b)^{2}+(a-c)^{2}=0$
$\Rightarrow a=2 c=c$
$\cos B=\frac{a^{2}+c^{2}-b^{2}}{2 a c}$
$=\frac{c^{2}+c^{2}-\left(\frac{c}{2}\right)^{2}}{2 \times c \times c}=\frac{2 c^{2}-\frac{c^{2}}{4}}{2 c^{2}}$
$\Rightarrow \cos B=\frac{7}{8}$
154 (b)
Given, M divides $A B$ in the ratio $b: a$ (externally)
$\therefore x=\frac{b a \cos \beta-b a \cos \alpha}{b-a}$
and $y=\frac{a b \sin \beta-a b \sin \alpha}{b-a}$
$\Rightarrow \frac{x}{y}=\frac{\cos \beta-\cos \alpha}{\sin \beta-\sin \alpha}$
$\Rightarrow \frac{x}{y}=\frac{2 \sin \left(\frac{\alpha+\beta}{2}\right) \sin \left(\frac{\alpha-\beta}{2}\right)}{2 \cos \left(\frac{\alpha+\beta}{2}\right) \sin \left(\frac{\beta-\alpha}{2}\right)}$
$\Rightarrow x \cos \left(\frac{\alpha+\beta}{2}\right)+y \sin \left(\frac{\alpha+\beta}{2}\right)=0$
155 (a)
In $\triangle D A B, \tan \theta=\frac{64}{d}$

$\Rightarrow d=64 \cot \theta \ldots$ (i)
In $\triangle C D E, \tan \left(90^{\circ}-\theta\right)=\frac{(100-64)}{d}$
$\Rightarrow d=36 \tan \theta$
On multiplying Eqs. (i) and (ii), we get $d^{2}=36 \times 64 \Rightarrow d=48$
156 (b)
Let $B C$ be the declivity and $B A$ be the tower
\therefore In $\triangle A B C$, on applying sine rule
$\frac{B C}{\sin 75^{\circ}}=\frac{A B}{\sin 30^{\circ}}$
$\Rightarrow A B=\frac{80 \sin 30^{\circ}}{\sin 75^{\circ}}$
$=\frac{40 \times 2 \sqrt{2}}{\sqrt{3}+1}=40(\sqrt{6}-\sqrt{2}) \mathrm{ft}$

157 (c)
Let the points be $B\left(x_{1}, y_{1}\right)$ and $D\left(x_{2}, y_{2}\right)$ and coordinates of mid point of $B D$ are $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$

And coordinates of mid point of $A C$ are $(0,1)$
We know that mid point of both the diagonals lie on the same point E.
$\therefore \quad \frac{x_{1}+x_{2}}{2}=0$ and $\frac{y_{1}+y_{2}}{2}=1$
$\Rightarrow x_{1}+x_{2}=0$
and $y_{1}+y_{2}=2$
also, slope of $B D \times$ slope of $A C=-1$
$\frac{\left(y_{1}-y_{2}\right)}{\left(x_{1}-x_{2}\right)} \times \frac{(3+1)}{(0-0)}=-1$
$\Rightarrow \quad y_{1}-y_{2}=0$
On solving Eqs. (ii) and (iii), we get
$y_{1}=1, y_{2}=1$
Now, slope of $A B \times$ slope of $B C=-1$
$\Rightarrow \quad \frac{\left(y_{1}+1\right)}{\left(x_{1}-0\right)} \times \frac{\left(y_{1}-3\right)}{\left(x_{1}-0\right)}=-1$
$\Rightarrow \quad\left(y_{1}+1\right)\left(y_{1}-3\right)=-x_{1}^{2}$
$\Rightarrow \quad 2(-2)=-x_{1}^{2} \quad\left[\because y_{1}=1\right]$
$\Rightarrow x_{1}= \pm 2$
\therefore The required points are $(2,1)$ and $(-2,1)$
158 (a)
The diagonals meet at the mid point of $A C, i e$ at
$(3,2)$ which lies on $y=2 x+c$

$\therefore \quad c=-4$
Let $B=(\alpha, 2 \alpha-4)$
$\because A B \perp B C$
$\Rightarrow\left(\frac{2 \alpha-7}{\alpha-1}\right)\left(\frac{2 \alpha-5}{\alpha-5}\right)=-1$
$\therefore \quad \alpha^{2}-6 \alpha+8=0$
$\Rightarrow \quad \alpha=2,4$
The other two vertices are $(2,0)$ and $(4,4)$
159 (c)
Given, $r_{3}-r=r_{1}+r_{2}$
$\Rightarrow 4 R \sin \frac{C}{2}\left(\cos \frac{A}{2} \cos \frac{B}{2}-\sin \frac{B}{2} \sin \frac{A}{2}\right)$
$=4 R \cos \frac{C}{2}\left[\sin \frac{A}{2} \cos \frac{B}{2}+\cos \frac{A}{2} \sin \frac{B}{2}\right]$
$\Rightarrow \sin \frac{C}{2}\left[\cos \left(\frac{A+B}{2}\right)\right]=\cos \frac{C}{2}\left[\sin \left(\frac{A+B}{2}\right)\right]$
$\Rightarrow \sin \frac{C}{2}\left[\cos \left(\frac{\pi}{2}-\frac{C}{2}\right)\right]=\cos \frac{C}{2}\left[\sin \left(\frac{\pi}{2}-\frac{C}{2}\right)\right]$
$\left[\because A+B+C=\pi \Rightarrow \frac{A}{2}+\frac{B}{2}=\frac{\pi}{2}-\frac{C}{2}\right]$
$\Rightarrow \sin ^{2} \frac{C}{2}=\cos ^{2} \frac{C}{2} \Rightarrow \tan \frac{C}{2}=1$
$\Rightarrow \angle C=\frac{\pi}{2}$
We know, $A+B+C=\pi \Rightarrow A+B=\frac{\pi}{2}$
160 (d)
Given $a=3, b=4, c=5$
$\Rightarrow c^{2}=a^{2}+b^{2}$

Therefore, it is a right angled triangle at C
$\therefore \quad R=\frac{1}{2} c=\frac{5}{2}$
and $r=\frac{\Delta}{s}=\frac{\frac{1}{2} \times 3 \times 4}{\frac{12}{2}}=1$
\therefore Distance between incentre and circumcentre
$=\sqrt{R^{2}-2 R r}$
$=\sqrt{\left(\frac{5}{2}\right)^{2}-2 \cdot \frac{5}{2} .1}$
$=\sqrt{\frac{5}{2}} \sqrt{\frac{5}{2}-2}=\frac{\sqrt{5}}{2}$

161 (d)
Area of $\triangle A B C=a^{2}$

$\Rightarrow \quad \frac{1}{2}(a-x) 3 a=a^{2}$
$\Rightarrow a-x=\frac{2}{3} a$
$\Rightarrow \quad x=\frac{a}{3}$
Hence, one of the line on which third vertex lies is $x=\frac{a}{3}$
162 (c)
Draw $B E$ perpendicular to $C A$ produced, then
$B D=D C=\frac{a}{2}$ and $E A=A C=b$
In $\triangle A E B$,
$\cos (\pi-A)=\frac{b}{c}$
$\Rightarrow \cos A=-\frac{b}{c}$
$\Rightarrow \frac{b^{2}+c^{2}-a^{2}}{2 b c}=-\frac{b}{c}$
$\Rightarrow \quad a^{2}=3 b^{2}+c^{2}$
$\therefore \cos B=\frac{c^{2}+a^{2}-b^{2}}{2 a c}$
$=\frac{c^{2}+3 b^{2}+c^{2}-b^{2}}{2 c a}=\frac{b^{2}+c^{2}}{c a}$

164 (d)
Let the sides of $\triangle A B C$ be $a=n, b=n+1, c=$ $n+2$, where n is a natural number. Then, C is the greatest and A is the least angle
As given $C=2 A$
$\therefore \sin C=\sin 2 A=2 \sin A \cos A$
$\therefore k c=2 k a \frac{b^{2}+c^{2}-a^{2}}{2 b c}$
$\Rightarrow b c^{2}=a\left(b^{2}+c^{2}-a^{2}\right)$
On substituting the values of a, b, c, we get
$(n+1)(n+2)^{2}=n\left[(n+1)^{2}+(n+2)^{2}-n^{2}\right]$
$=n\left(n^{2}+6 n+5\right)$
$=n(n+1)(n+5)$
$\Rightarrow(n+1)\left[(n+2)^{2}-n(n+5)\right]=0$

Since, $n \neq 1$
Thus, $(n+2)^{2}=n(n+5)$
$\Rightarrow n^{2}+4 n+4=n^{2}+5 n$
$\Rightarrow \quad n=4$
Hence, the sides of the triangle are 4,5 and 6
3. $\frac{b^{2}-c^{2}}{a \sin (B-C)}=\frac{2 R^{2}\left(\sin ^{2} B-\sin ^{2} C\right)}{2 R \sin A \sin (B-C)}$
$=\frac{2 R \sin (B+C) \sin (B-C)}{\sin (B+C) \sin (B-C)}=2 R$
4. $a \sin (B-C)+b \sin (C-A)+$
$c \sin (A-B)=0$
$=2 R[\sin A \sin (B-C)+\sin B \sin (C-A)$ $+\sin C \sin (A-B)]$
$=2 R[\sin (B+C) \sin (B-C)$ $+\sin (C+A) \sin (C-A)$ $+\sin (A+B) \sin (A-B)]$
$=2 R\left[\sin ^{2} B-\sin ^{2} C+\sin ^{2} C-\sin ^{2} A+\sin ^{2} A\right.$ $\left.-\sin ^{2} B\right]$
$=2 R(0)=0$
Hence, both of statements are correct

166 (b)

Let the general equation of the circle be
$x^{2}+y^{2}+2 \mathrm{~g} x+2 f y+c=0$
The equation of circle passing through (0,0), (2 ,
0) and ($0,-2$)
$c=0$
$4+4 \mathrm{~g}+c=0$
and $4-4 f+c=0$
On solving Eqs. (i), (ii) and (iii), we get
$c=0, \quad \mathrm{~g}=-1, f=1$
\therefore The equation of circle becomes $x^{2}+y^{2}-2 x+$ $2 y=0$
Since, it is passes through $(k,-2)$, we get
$k^{2}+4-2 k-4=0 \Rightarrow k=0,2$
We have already take a point $(0,-2)$, so we take only $k=2$
167 (a)
Let $X=x-h, Y=y-k$
$\Rightarrow \quad 0=7-h, \quad 0=-4-k$
$\Rightarrow \quad h=7, \quad k=-4$
Hence, $X=x-7$ and $Y=y+4$, then the point $(4,5)$ shifted to $(-3,9)$

168 (a)

$$
\begin{aligned}
& (a+b+c)\left(\tan \frac{A}{2}+\tan \frac{B}{2}\right) \\
& =2\left(s \tan \frac{A}{2}+s \tan \frac{B}{2}\right) \\
& =2\left(\frac{\Delta}{s-a}+\frac{\Delta}{s-b}\right) \\
& =2 \Delta \frac{2 s-(a+b)}{(s-a)(s-b)} \\
& =2 \Delta\left(\frac{c}{(s-a)(s-b)}\right) \\
& =2 c \cot \frac{C}{2}
\end{aligned}
$$

$$
\because \frac{2}{1!9!}+\frac{2}{3!7!}+\frac{1}{5!5!}=\frac{8^{a}}{(2 b)!}
$$

$$
\Rightarrow \frac{1}{1!9!}+\frac{1}{3!7!}+\frac{1}{5!5!}+\frac{1}{3!7!}+\frac{1}{9!1!}=\frac{8^{a}}{(2 b)!}
$$

$$
\Rightarrow \frac{1}{10!}\left(\frac{10!}{1!9!}+\frac{10!}{3!7!}+\frac{10!}{5!5!}+\frac{10!}{7!3!}+\frac{10!}{9!1!}\right)
$$

$$
=\frac{8^{a}}{(2 b)!}
$$

$$
\Rightarrow \frac{1}{10!}\left({ }^{10} C_{1}+{ }^{10} C_{3}+{ }^{10} C_{5}+{ }^{10} C_{7}+{ }^{10} C_{9}\right)
$$

$$
=\frac{8^{a}}{(2 b)!}
$$

$\Rightarrow \frac{2^{9}}{10!}=\frac{8^{a}}{(2 b)!}=\frac{2^{3 a}}{(2 b)!}$
$\Rightarrow a=3, \quad b=5$
Also, $2 b=a+c \Rightarrow 10=3+c \quad \Rightarrow c=7$
$\therefore a=3, \quad b=5, \quad c=7$
$\because \frac{\tan A+\tan B}{2} \geq \sqrt{\tan A \tan B}$
Also, $\cos C=\frac{a^{2}+b^{2}-c^{2}}{2 a b}$
$=\frac{9+25-49}{30}=-\frac{1}{2}$
$\Rightarrow \angle C=120^{\circ}$ and $A, B<60^{\circ}$
$\tan A+\tan B+\tan C=\tan A \tan B \tan C$
$\Rightarrow \tan A+\tan B-\sqrt{3}=-\sqrt{3} \tan A \tan B$
$\therefore \tan A+\tan B=\sqrt{3}(1-\tan A \tan B)$
Also, $\tan A+\tan B>0$
$\Rightarrow \sqrt{3}(1-\tan A \tan B)>0$
$\Rightarrow \tan A \tan B<1 \quad$... (iii)
From Eq. (i) and (ii),
$\frac{\sqrt{3}(1-\tan A \tan B)}{2} \geq \sqrt{(\tan A \tan B)}$
Let $\tan A \tan B=\lambda$
$\therefore \sqrt{3}(1-\lambda) \geq 2 \sqrt{\lambda}$
$\Rightarrow 3 \lambda^{2}-10 \lambda+3 \geq 0$
$\Rightarrow(3 \lambda-1)(\lambda-3) \geq 0$
$\because \lambda-3<0$ [from Eq. (iii)]
$\therefore 3 \lambda-1 \leq 0$
$\Rightarrow \lambda \leq \frac{1}{3}$
$\Rightarrow \tan A \tan B \leq \frac{1}{3}$
170 (c)
In $\triangle B C D, \tan 60^{\circ}=\frac{H_{1}}{d}$

$\Rightarrow H_{1}=d \tan 60^{\circ}$
and in $\triangle A B E, \tan 30^{\circ}=\frac{H_{2}}{d}$
$\Rightarrow \quad H_{2}=d \tan 30^{\circ}$
$\therefore \frac{H_{1}}{H_{2}}=\frac{\tan 60^{\circ}}{\tan 30^{\circ}}=\frac{\sqrt{3}}{1 / \sqrt{3}}=\frac{3}{1}$
171 (c)
We have, $\cos C=\frac{a^{2}+b^{2}-c^{2}}{2 a b}$
$\Rightarrow \cos 60^{\circ}=\frac{a^{2}+b^{2}-c^{2}}{2 a b}$
$\Rightarrow a^{2}+b^{2}-c^{2}=a b$
$\Rightarrow b^{2}+b c+a^{2}+a c=a b+a c+b c+c^{2}$
On dividing by $(a+c)(b+c)$ and add 2 on both sides, we get
$1+\frac{b}{a+c}+1+\frac{a}{b+c}=3$
$\Rightarrow \frac{1}{a+c}+\frac{1}{b+c}=\frac{3}{a+b+c}$
172 (a)
$(a+c)^{2}-b^{2}=3 a c \Rightarrow a^{2}+c^{2}-b^{2}=a c$
But $\cos B=\frac{a^{2}+c^{2}-b^{2}}{2 a c}=\frac{1}{2} \Rightarrow \angle B=\frac{\pi}{3}=60^{\circ}$
173 (c)
Given, a^{2}, b^{2}, c^{2} are in AP
$\Rightarrow \sin ^{2} B-\sin ^{2} A=\sin ^{2} C-\sin ^{2} B$
$\Rightarrow \sin (B+A) \sin (B-A)=\sin (C+B) \sin (C-B)$
$\Rightarrow \sin C(\sin B \cos A-\cos B \sin A)$
$=\sin A(\sin C \cos B-\cos C \sin B)$
On dividing by $\sin A \sin B \sin C$, we get
$2 \cot B=\cot A+\cot C$
$\Rightarrow \cot A, \cot B, \cot C$ are in AP
174 (c)
Given, $\sin A \sin B=\frac{a b}{c^{2}}$
$\Rightarrow c^{2}=\frac{a b}{\sin A \sin B}=\left(\frac{a}{\sin A}\right)\left(\frac{b}{\sin B}\right)$
$\Rightarrow c^{2}=\left(\frac{c}{\sin C}\right)^{2}$
$\because\left(\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}\right)$
$\Rightarrow \sin ^{2} C=1$
$\Rightarrow c=90^{\circ}$
Hence, $\triangle A B C$ is a right angled triangle
175 (a)
Let a, b, c be the sides of triangle, then
$a+b+c=\frac{6}{3}(\sin A+\sin B+\sin C)$
$\Rightarrow a+b+c=2(\sin A+\sin B+\sin C)$
$\Rightarrow \frac{a}{2}=\sin A$
But $a=1$
$\therefore \sin A=\frac{1}{2} \Rightarrow \angle A=\frac{\pi}{6}$
176 (a)
The centroid of $\triangle A B C=\left(\frac{2+8+5}{3}, \frac{3+10+5}{3}\right)=(5,6)$

Since, the tower $O P$ makes equal angle at the vertices of the triangle, therefore foot of the tower is the circumcentre

In $\triangle O A P, \tan \alpha=\frac{O P}{O A}$
$\Rightarrow O P=O A \tan \alpha$
$\Rightarrow O P=R \tan \alpha$
178 (a)
In $\triangle A B E$,
$\sin \beta=\frac{B E}{b}$
$\Rightarrow B E=h_{1}=b \sin \beta$
Using sine rule in $\triangle A E D$,
$\frac{\sin (\alpha-\beta)}{E D}=\frac{\sin (\gamma-\alpha)}{b}$
$\Rightarrow E D=\frac{b \sin (\alpha-\beta)}{\sin (\gamma-\alpha)}$

Now, in $\triangle F E D$,
$\sin \gamma=\frac{h_{2}}{E D}$
$\Rightarrow h_{2}=\frac{b \sin (\alpha-\beta) \sin \gamma}{\sin (\gamma-\alpha)}$
\therefore Total height, $C D$
$=h_{1}+h_{2}=b \sin \beta+\frac{b \sin (\alpha-\beta) \sin \gamma}{\sin (\gamma-\alpha)}$
$=\frac{b[\sin \beta \sin (\gamma-\alpha)+\sin (\alpha-\beta) \sin \gamma]}{\sin (\gamma-\alpha)}$
$b[\sin \beta\{\sin \gamma \cos \alpha-\cos y \sin \alpha\}+\sin \gamma$
$=\frac{\{\sin \alpha \cos \beta \cos \alpha\}]}{\sin (\gamma-\alpha)}$
$b[\sin \beta \sin \gamma \cos \alpha-\sin \beta \cos \gamma \sin \alpha+$
$=\frac{\{\sin \gamma \sin \alpha \cos \beta-\sin \gamma \sin \beta \cos \alpha\}]}{\sin (\gamma-\alpha)}$
$=\frac{b \sin \alpha \sin (\gamma-\beta)}{\sin (\gamma-\alpha)}$
179
(c)

Given, $a=1, b=2, \angle C=60^{\circ}$
\therefore Area of triangle $=\frac{1}{2} a b \sin C$
$=\frac{1}{2} \times 1 \times 2 \times \sin 60^{\circ}$
$=\frac{\sqrt{3}}{2}$ sq unit
180 (c)
The given points are collinear
If $\left|\begin{array}{lll}t_{1} & 2 a t_{1}+a t_{1}^{3} & 1 \\ t_{2} & 2 a t_{2}+a t_{2}^{3} & 1 \\ t_{3} & 2 a t_{3}+a t_{3}^{3} & 1\end{array}\right|=0$
$\Rightarrow a\left|\begin{array}{lll}t_{1} & 2 t_{1}+t_{1}^{3} & 1 \\ t_{2} & 2 t_{2}+t_{2}^{3} & 1 \\ t_{3} & 2 t_{3}+t_{3}^{3} & 1\end{array}\right|=0$
Applying $R_{2} \rightarrow R_{2}-R_{1}, R_{3} \rightarrow R_{3}-R_{1}$, we get

$$
\begin{aligned}
& \left|\begin{array}{ccc}
t_{1} & 2 t_{1}+t_{1}^{3} & 1 \\
t_{2}-t_{1} & 2\left(t_{2}-t_{1}\right)+\left(t_{2}^{3}-t_{1}^{3}\right) & 0 \\
t_{3}-t_{1} & 2\left(t_{3}-t_{1}\right)+\left(t_{3}^{3}-t_{1}^{3}\right) & 0
\end{array}\right|=0 \\
& \Rightarrow \quad\left(t_{2}-t_{1}\right)\left(t_{3}-t_{1}\right)\left|\begin{array}{ccc}
t_{1} & 2 t_{1}+t_{1}^{3} & 1 \\
1 & 2+t_{2}^{2}+t_{1}^{2}+t_{1} t_{2} & 0 \\
1 & 2+t_{3}^{2}+t_{1}^{2}+t_{3} t_{1} & 0
\end{array}\right| \\
& \quad=0 \\
& \Rightarrow \quad\left(t_{2}-t_{1}\right)\left(t_{3}-t_{1}\right)\left(t_{3}-t_{2}\right)\left(t_{3}+t_{2}+t_{1}\right)=0 \\
& \Rightarrow t_{1}+t_{2}+t_{3}=0 \\
& {\left[\because t_{1} \neq t_{2} \neq t_{3}\right]}
\end{aligned}
$$

181 (b)
Let P is a point on the perpendicular bisector of $A B$, its equation is
$(y-1)=\frac{1}{3}(x-4) \Rightarrow x-3 y-1=0$
So, general point is $P(3 h+1, h)$
Area $=\frac{1}{2}\left[\begin{array}{ccc}3 h+1 & h & 1 \\ 3 & 4 & 1 \\ 5 & -2 & 1\end{array}\right]= \pm 10$
$\Rightarrow h=2,0$

Or position of points is $(7,2)$ and $(1,0)$
182 (a)
Given, $\angle A=\frac{\pi}{2}$, then $a^{2}=b^{2}+c^{2}=4^{2}+3^{2}=25$ and $\frac{a}{\sin A}=2 R \Rightarrow a=2 R$ and $a=5$
also, $r=\frac{\Delta}{s}=\frac{b c}{a+b+c} \quad\left(\because \Delta=\frac{b c}{2}\right)$
$\therefore \frac{R}{r}=\frac{a(a+b+c)}{2 b c}=\frac{5 \times 12}{2 \times 4 \times 3}=\frac{5}{2}$
183 (d)
Since A, B, C are in AP
$\Rightarrow 2 B=A+C \Rightarrow \angle B=60^{\circ}$
$\therefore \frac{a}{2}(2 \sin C \cos C)+\frac{c}{a}(2 \sin A \cos A)$
$=2 k(a \cos C+c \cos A)$
$=2 k(b)$
$=2 \sin B$ [using, $b=a \cos C+c \cos A$]
$=\sqrt{3}$
184 (d)
Given equation is
$x^{2}-5 x+6=0$
$\Rightarrow(x-3)(x-2)=0$
$\Rightarrow \quad x=3,2$
These are the sides of a triangle
Let $a=3, b=2, \angle C=\frac{\pi}{3}$
$\Rightarrow \cos \left(\frac{\pi}{3}\right)=\frac{3^{2}+2^{2}-c^{2}}{2.3 .2}[\because \cos C$

$$
\left.=\frac{a^{2}+b^{2}-c^{2}}{2 a b}\right]
$$

$\Rightarrow \frac{1}{2}=\frac{13-c^{2}}{12} \Rightarrow c^{2}=7$
$\Rightarrow c=\sqrt{7}$ [sides cannot be negative]
\therefore Perimeter of a triangle $=a+b+c$
$=3+2+\sqrt{7}=5+\sqrt{7}$
185 (b)
Given, $\angle A=60^{\circ}, a=5, b=4$
$\therefore \cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$
$\Rightarrow \cos 60^{\circ}=\frac{1}{2}=\frac{16+c^{2}-25}{8 c}$
$\Rightarrow 4 c=c^{2}-9$
$\Rightarrow c^{2}-4 c-9=0$
186 (a)
Let $P Q$ be the height h of the tower and A, B are the points of observations

We have, $\angle Q A P=\frac{\pi}{4}, \angle B A P=\frac{\pi}{6}$,
$A B=10 \mathrm{~m}, B Q=10 \mathrm{~m}$
$\therefore \angle Q A B=\frac{\pi}{12}=\angle A Q B$
$\Rightarrow \angle A B Q=\pi-\frac{\pi}{6}=\frac{5 \pi}{6}$
On applying cosine rule in $\triangle A B Q$, we get
$A Q^{2}=A B^{2}+B Q^{2}-2 A B \cdot B Q \cos \frac{5 \pi}{6}$
$=100+100+200 \cdot \frac{\sqrt{3}}{2}$
$=100(2+\sqrt{2})$
$\Rightarrow \quad A Q=10 \sqrt{2+\sqrt{3}}$
In $\triangle A P Q, A P=A Q \cos \frac{\pi}{4}=\frac{10 \sqrt{2+\sqrt{3}}}{\sqrt{2}}$
$=5 \sqrt{4+2 \sqrt{3}}=5 \sqrt{(\sqrt{3}+1)^{2}}$
$\Rightarrow A P=5(1+\sqrt{3}) \mathrm{m}$
187 (a)
Let the points be $A=(a \cos \theta, a \sin \theta)$ and $B=(a \cos \phi, \mathrm{a} \sin \phi)$
$\therefore A B$
$=\sqrt{(a \cos \theta-a \cos \phi)^{2}+(a \sin \theta-a \sin \phi)^{2}}$
$=\sqrt{a^{2} \cos ^{2} \theta+a^{2} \cos ^{2} \phi-2 a^{2} \cos \theta \cos \phi+\mathrm{a}^{2} \sin }$
$+a^{2} \sin ^{2} \phi-2 a^{2} \sin \theta \sin \phi$
$=\sqrt{2 a^{2}-2 a^{2}(\cos \theta \cos \phi+\sin \theta \sin \phi)}$
$=\sqrt{2} a(\sqrt{1-\cos (\theta-\phi)})$
$\Rightarrow 2 a=\sqrt{2} a \sqrt{2} \sin \left(\frac{\theta-\phi}{2}\right)$
$\Rightarrow \sin \left(\frac{\theta-\phi}{2}\right)=1$
$\Rightarrow \quad \frac{\theta-\phi}{2}=n \pi \pm \frac{\pi}{2}$
$\Rightarrow \quad \theta-\phi=2 n \pi \pm \pi$
$\Rightarrow \theta=2 n \pi \pm \pi-\phi$
Where $n \in Z$
188 (d)
Area of pentagon
$=\frac{1}{2}\left[\begin{array}{c}x_{1} y_{2}+x_{2} y_{3}+x_{3} y_{4}+x_{4} y_{5} \\ +x_{5} y_{1}-\left(y_{1} x_{2}+y_{2} x_{3}+y_{3} x_{4}\right. \\ \left.+y_{4} x_{5}+y_{5} x_{1}\right)\end{array}\right]$
$=\frac{1}{2}[0(0)+12(2)+12(7)+6(5)+0(0)-\{0$ $+0+2(6)+7(0)+5(0)\}]$
$=\frac{1}{2}[(24+84+30-12)]$
$=63$ sq unit
189 (a)
Let the height of the flag be h

In $\triangle A R Q, \tan \alpha=\frac{b}{a} \ldots$ (i)
and in $\triangle P R Q, \tan 2 \alpha=\frac{h+b}{a} \ldots$ (ii)
$\Rightarrow \frac{2 \tan \alpha}{1-\tan ^{2} \alpha}=\frac{h+b}{a}$
$\Rightarrow \frac{2 \times \frac{b}{a}}{1-\frac{b^{2}}{a^{2}}}=\frac{h+b}{2}$ [from Eq. (i)]
$\Rightarrow \frac{2 a b}{a^{2}-b^{2}}=\frac{h+b}{a} \Rightarrow h=\frac{b\left(a^{2}+b^{2}\right)}{\left(a^{2}-b^{2}\right)}$
190 (a)
Let $B C$ be the height of kite
(b)
$a \cos A+b \cos B+c \cos C$
$=\frac{(2 R \sin A) \cos A+(2 R \sin B) \cos B+2 R \sin C(\cos C)}{2 R \sin A+2 R \sin B+2 R \sin C}$
$\left(\because R=\frac{a}{2 \sin A}=\frac{b}{2 \sin B}=\frac{c}{2 \sin C}=\frac{a b c}{4 \Delta}\right)$
$=\frac{R[2 \sin A \cos A+2 \sin B \cos B+2 \sin C \cos C}{2 R[\sin A+\sin B+\sin C]}$
$=\frac{1}{2} \cdot \frac{(\sin 2 A+\sin 2 B+\sin 2 C)}{(\sin A+\sin B+\sin C)}$
$=\frac{4 \sin A \sin B \sin C}{2[4 \cos (A / 2) \cos (B / 2) \cos (C / 2)]}$
$\binom{\because \sin 2 \alpha+\sin 2 \beta+\sin 2 \gamma=4 \sin \alpha \sin \beta \sin \gamma}{$ and $\sin \alpha+\sin \beta+\sin \gamma=4 \cos \frac{\alpha}{2} \cos \frac{\beta}{2} \cos \frac{\gamma}{2}}$
$=\frac{4\left[2 \sin \frac{A}{2} \cos \frac{A}{2} \times 2 \sin \frac{B}{2} \cos \frac{B}{2} \times 2 \sin \frac{C}{2} \times \cos \frac{C}{2}\right]}{2 \times 4\left[\cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2}\right]}$
$=4 \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}$
$=\frac{r}{R}\left[\because r=4 R \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}\right]$

Let $\angle A P C=\alpha$. Then,

In $\triangle A B C, \sin 60^{\circ}=\frac{h}{120}$
$\Rightarrow \frac{\sqrt{3}}{2}=\frac{h}{120}$
$\Rightarrow h=60 \sqrt{3} \mathrm{~m}$
The height of the kite is $60 \sqrt{3} \mathrm{~m}$

In $\triangle A P B$, we have
$\tan (\alpha+\beta)=\frac{A B}{A P}=\frac{A B}{n A B}=\frac{1}{n}$
Now, $\beta=\alpha+\beta-\alpha$
$\Rightarrow \tan \beta=\frac{\tan (\alpha+\beta)-\tan \alpha}{1+\tan (\alpha+\beta) \tan \alpha}$
$\Rightarrow \tan \beta=\frac{1 / n-1 / 2 n}{1+1 / n \cdot 1 / 2 n}=\frac{n}{2 n^{2}+1}$
193 (d)
Suppose $P(3,7)$ divides the segment joining
$A(1,1)$ and $B(6,16)$ in the ratio $\lambda: 1$. Then,
$\frac{6 \lambda+1}{\lambda+1}=3$ and $\frac{16 \lambda+1}{\lambda+1}=7$
$\Rightarrow \lambda=\frac{2}{3}$
$\Rightarrow P$ divides $A B$ internally in the ratio $2: 3$
Thus, Q divides $A B$ externally in the ratio $2: 3$
and hence its coordinates are
$\left(\frac{2 \times 6-3 \times 1}{2-3}, \frac{2 \times 16-3 \times 1}{2-3}\right) \equiv(-9,-29)$
194 (d)
Let the angles of a triangle are $3 x, 5 x$ and $10 x$
$\therefore 3 x+5 x+10 x=180^{\circ} \Rightarrow x=10^{\circ}$
\therefore Smallest angle of a triangle $=30^{\circ}$
And the greatest angle $=100^{\circ}$
Required ratio $=\sin 30^{\circ}: \sin 100^{\circ}$
$=\frac{1}{2}: \cos 10^{\circ}=1: 2 \cos 10^{\circ}$
(b)

Given, $\left|\begin{array}{lll}1 & a & b \\ 1 & c & a \\ 1 & b & c\end{array}\right|=0$
$\Rightarrow c^{2}-a b-a(c-a)+b(b-c)=0$
$\Rightarrow a^{2}+b^{2}+c^{2}-a b-b c-c a=0$
$\Rightarrow \frac{1}{2}\left[2 a^{2}+2 b^{2}+2 c^{2}-2 a b-2 b c-2 c a\right]=0$
$\Rightarrow \frac{1}{2}\left[(a-b)^{2}+(b-c)^{2}+(c-a)^{2}=0\right.$
$\Rightarrow a=b=c$
$\Rightarrow \angle A=60^{\circ}, \angle B=60^{\circ}, \angle C=60^{\circ}$
$\therefore \sin ^{2} A+\sin ^{2} B+\sin ^{2} C$
$=\sin ^{2} 60^{\circ}+\sin ^{2} 60^{\circ}+\sin ^{2} 60^{\circ}$
$=\left(\frac{\sqrt{3}}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}=\frac{9}{4}$

197 (c)
Let $\angle O A B=\theta$

Then, $O A+A B=1+4 \cot \theta+4+\tan \theta$
$=5+4 \cot \theta+\tan \theta \geq 5+4=9$
(using $\mathrm{AM} \geq \mathrm{GM}$)
199 (c)
Given $\angle A=20^{\circ}$
$\therefore \angle B=\angle C=80^{\circ}$
Then, $b=c$

$$
\begin{align*}
& \therefore \frac{a}{\sin 20^{\circ}}=\frac{b}{\sin 80^{\circ}}=\frac{c}{\sin 80^{\circ}} \\
& \Rightarrow \frac{a}{\sin 20^{\circ}}=\frac{b}{\cos 10^{\circ}} \\
& \Rightarrow a=2 b \sin 10^{\circ} \ldots(\mathrm{i}) \tag{i}\\
& \therefore a^{3}+b^{3}=8 b^{3} \sin ^{3} 10^{\circ}+b^{3} \\
& =b^{3}\left\{2\left(4 \sin ^{3} 10^{\circ}\right)+1\right\} \\
& =b^{3}\left\{2\left(3 \sin 10^{\circ}-\sin 30^{\circ}\right)+1\right\} \\
& =b^{3}\left\{6 \sin 10^{\circ}\right\} \\
& =3 b^{2}\left\{2 b \sin 10^{\circ}\right\} \\
& =3 b^{2} a \quad[\text { from Eq. (i) }) \\
& =3 a c^{2} \quad(\because b=c)
\end{align*}
$$

200 (a)

$$
\begin{aligned}
& a\left(\cos ^{2} B+\cos ^{2} C\right)+\cos A(c \cos C+b \cos B) \\
& =\cos B(a \cos B+b \cos A) \\
& \quad \quad \quad+\cos C(a \cos C+c \cos A) \\
& =(\cos B) c+(\cos C) b \\
& =a
\end{aligned}
$$

201 (b)
Let $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ and $\left(x_{3}, y_{3}\right)$ are the coordinates of the points D, E and F

$\therefore \quad x_{1}=\frac{3 \times 6-1 \times 1}{4}=\frac{17}{4}$
and $y_{1}=\frac{-2 \times 3+4}{4}=-\frac{2}{4}=-\frac{1}{2}$
similarly, $x_{2}=0, y_{2}=\frac{5}{2}$
and $x_{3}=-\frac{5}{4}, y_{3}=4$
let (x, y) be the coordinates of centroid of $\triangle D E F$
$\therefore \quad x=\frac{1}{3}\left(\frac{17}{4}+0-\frac{5}{4}\right)=1$
and $y=\left(-\frac{1}{2}+\frac{5}{2}+4\right) \frac{1}{3}=2$
\therefore Coordinates of centroid are $(1,2)$
202 (a)
We have, $\frac{1}{a+c}=\frac{1}{b+c}=\frac{3}{a+b+c}$
$\Rightarrow \frac{a+b+2 c}{(a+c)(b+c)}=\frac{3}{a+b+c}$
$\Rightarrow a^{2}+a b+a c+a b+b^{2}+b c+2 c a+2 b c$

$$
+2 c^{2}
$$

$=3\left(a b+a c+b c+c^{2}\right)$
$\Rightarrow a^{2}+b^{2}-c^{2}=a b$
$\Rightarrow \frac{a^{2}+b^{2}-c^{2}}{2 a b}=\frac{1}{2}=\cos C$
$\Rightarrow \angle C=60^{\circ}$
203 (a)
Let $C D$ be the tower of height H metre

From $\triangle B C D, \frac{H}{d}=\tan 30^{\circ}$
and from $\triangle A B D$,
$\frac{h}{d}=\tan 60^{\circ}$
$\therefore \frac{H / d}{h / d}=\frac{\tan 30^{\circ}}{\tan 60^{\circ}} \Rightarrow H=\frac{h}{3}$
204 (c)
Using sine rule in $\triangle A D C$,
$\frac{\sin (y+z)}{D C}=\frac{\sin C}{A D}$
In $\triangle A B D, \frac{\sin x}{B D}=\frac{\sin B}{A D}$
In $\triangle A E C, \frac{\sin z}{E C}=\frac{\sin C}{A E}$
In $\triangle A B E, \frac{\sin (x+y)}{B E}=\frac{\sin B}{A E}$

$\therefore \frac{\sin (x+y) \sin (y+z)}{\sin x \sin z}=\frac{B E}{A E} \times \frac{D C}{A D} \times \frac{A D}{B D} \times \frac{A E}{E C}$
$=\frac{2 B D \times 2 E C}{B D \times E C}=4$
205 (a)
$\because \frac{\sin A}{\sin C}=\frac{\sin (A-B)}{\sin (B-C)}$
$\Rightarrow \frac{\sin A}{\sin C}=\frac{\sin A \cos B-\cos A \sin B}{\sin B \cos C-\cos B \sin C}$
$\Rightarrow \frac{a}{c}=\frac{a \cos B-b \cos A}{b \cos C-c \cos B}$
$\Rightarrow a b \cos C+b c \cos A=2 a c \cos B$
$\Rightarrow \frac{a^{2} 2+b^{2}-c^{2}}{2}+\frac{b^{2}+c^{2}-a^{2}}{2}=2 \frac{c^{2}+a^{2}-b^{2}}{2}$
$\Rightarrow a^{2}+c^{2}=2 b^{2}$
$\Rightarrow a^{2}, b^{2}, c^{2}$ are in AP
206 (b)
Let point $\left(x_{1}, y_{1}\right)$ be on the line $3 x+4 y=5$
$\therefore \quad 3 x_{1}+4 y_{1}=5$...(I)
Also, $\left(x_{1}-1\right)^{2}+\left(y_{1}-2\right)^{2}=\left(x_{1}-3\right)^{2}+$
$\left(y_{1}-4\right)^{2}$
$\Rightarrow x_{1}^{2}+y_{1}^{2}-2 x_{1}-4 y_{1}+5$

$$
\begin{equation*}
=x_{1}^{2}+y_{1}^{2}-6 x_{1}-8 y_{1}+25 \tag{ii}
\end{equation*}
$$

$\Rightarrow 4 x_{1}+4 y_{1}=20$
On solving Eqs. (i) and (ii), we get
$x_{1}=15, y_{1}=-10$
207 (a)
Let $A\left(x_{1}, y_{1}\right), B\left(x_{2}, y_{2}\right)$ be two fixed points and let $P(h, k)$ be a variable point such that
$\angle A P B=\frac{\pi}{2}$
Then, slope of $A P \times$ slope of $B P=-1$
$\Rightarrow \quad \frac{k-y_{1}}{h-x_{1}} \cdot \frac{k-y_{1}}{h-x_{2}}=-1$
$\Rightarrow \quad\left(h-x_{1}\right)\left(h-x_{2}\right)+\left(k-y_{1}\right)\left(k-y_{2}\right)=0$
Hence, locus of (h, k) is
$\left(x-x_{1}\right)\left(x-x_{2}\right)+\left(y-y_{1}\right)\left(y-y_{2}\right)=0$
Which is a circle having $A B$ as diameter
208 (a)
Given, $a \cos ^{2} \frac{C}{2}+c \cos ^{2} \frac{A}{2}=\frac{3 b}{c}$
$\Rightarrow a\left[\frac{s(s-c)}{a b}\right]+c\left[\frac{s(s-a)}{b c}\right]=\frac{3 b}{2}$
$\Rightarrow \frac{s(s-c+s-a)}{b}=\frac{3 b}{2}$
$\Rightarrow 2 s(2 s-c-a)=3 b^{2}$
$\Rightarrow(a+b+c) b=3 b^{2}$
$\Rightarrow 2 b=a+c$
209

$\because \frac{a}{2 R}=\sin \frac{\pi}{n}$
and $\frac{a}{2 r}=\tan \frac{\pi}{n} \quad \therefore \frac{r}{R}=\cos \frac{\pi}{n}$
For $n=3$ gives $\frac{r}{R}=\frac{1}{2}$
For $n=4$ gives $\frac{r}{R}=\frac{1}{\sqrt{2}}$

For $n=6$ gives $\frac{r}{R}=\frac{\sqrt{3}}{2}$
210 (d)
Given, the vertex angles are A, B, C are side $B C$
$\therefore \quad$ Area $=\frac{1}{2} a(k \sin C) \sin B$
$=\frac{1}{2} \cdot \frac{a^{2} k \sin C \sin B}{a}$
$=\frac{1}{2} \cdot \frac{a^{2} k \sin C \sin B}{k \sin A}$
$=\frac{1}{2} a^{2} \cdot \frac{\sin B \sin C}{\sin A}$
211 (c)
Let $O P$ be the flag staff of height h standing at the centre O of the field

In $\triangle O E P, O E=h \cot 15^{\circ}=h(2+\sqrt{3})$
and in $\triangle O F P, O F=h \cot 45^{\circ}=h$
$\therefore E F=h \sqrt{1+(2+\sqrt{3})^{2}}$
$=2 h \sqrt{2+\sqrt{3}}$
Since, $A C=1200$
$\Rightarrow 2 E F=4 h \sqrt{(2+\sqrt{3})}$
$\Rightarrow h=\frac{300}{\sqrt{2+\sqrt{3}}}$
$=300 \sqrt{2-\sqrt{3}} \mathrm{~m}$
214 (b)
$A+B+C=\pi$
$2 B=A+C$
$\Rightarrow 3 B=\pi$
$\Rightarrow B=\frac{\pi}{3}$
$\therefore \frac{a+c}{b}=\frac{\sin A+\sin C}{\sin B}$
$=\frac{2 \sin \frac{A+C}{2} \cos \frac{A-C}{2}}{\sin \frac{\pi}{3}}$
$=\frac{2 \sin \frac{\pi}{3} \cos \frac{A-C}{2}}{\sin \frac{\pi}{3}}$
$=2 \cos \frac{A-C}{2}$
215 (c)
The altitudes from the vertices A, B and C are $\frac{2 \Delta}{a}, \frac{2 \Delta}{b}$ and $\frac{2 \Delta}{c}$ respectively

Also, these are in HP
$\Rightarrow \frac{1}{a}, \frac{1}{b}, \frac{1}{c}$ are in HP
$\Rightarrow a, b, c$ are in AP
$\Rightarrow \sin A, \sin B, \sin C$ are in AP
(d)

Given, the equation of circle is
$x^{2}+y^{2}-4 x-6 y-12=0$
Radius of this circle $=\sqrt{4+9+12}$
$=5$ unit

In $\triangle B O D$,
$\cos 30^{\circ}=\frac{B D}{O B}$
$\Rightarrow \quad B D=\frac{\sqrt{3}}{2} \times 5=\frac{5 \sqrt{3}}{2}$ unit
$\therefore \quad B C=2 B D=5 \sqrt{3}$
Hence, area of $\triangle A B C=\frac{\sqrt{3}}{4}(5 \sqrt{3})^{2}=\frac{75}{4} \sqrt{3} \mathrm{sq}$ units
218 (d)
Let $A(1, \sqrt{3}), B(0,0), C(2,0)$ be the given points
$\therefore \quad B C=\sqrt{(2-0)^{2}+(0-0)^{2}}=2$
$C A=\sqrt{(2-1)^{2}+(0-\sqrt{3})^{2}}=2$
and $A B=\sqrt{1+3}=2$
\therefore Triangle is equilateral
We know that in equilateral triangle incentre is the same as Centroid of the triangle
\therefore Incentre is $\left(\frac{1+0+2}{3}, \frac{\sqrt{3}+0+0}{3}\right)=\left(1, \frac{1}{\sqrt{3}}\right)$
219 (b)
We know that area of the triangle with polar coordinates
$=\frac{1}{2}\left|\sum r_{1} r_{2} \sin \left(\theta_{1}-\theta_{2}\right)\right|$
$=\frac{1}{2} \left\lvert\, 2.1 \sin \left(0-\frac{\pi}{3}\right)+2.3 \sin \left(\frac{\pi}{3}-\frac{2 \pi}{3}\right)\right.$

$$
+3.1 \sin \left(\frac{2 \pi}{3}-0\right)
$$

$=\frac{1}{2}\left|-2 \cdot \frac{\sqrt{3}}{2}-\frac{6 \sqrt{3}}{2}+\frac{3 \sqrt{3}}{2}\right|=\frac{5 \sqrt{3}}{4}$ sq units
(d)

For finding the distance $A P$, first we find out the perpendicular bisector of $A B$ and $A C$

Perpendicular bisector of $A(1,3)$ and $B(-3,5)$ is $2 x\left(x_{1}-x_{2}\right)+2 y\left(y_{1}-y_{2}\right)$

$$
=\left(x_{1}^{2}+y_{1}^{2}\right)-\left(x_{2}^{2}+y_{2}^{2}\right)
$$

$\Rightarrow 2 x(1+3)+2 y(3-5)=(1-9)-(9-25)$
$\Rightarrow 2 x-y+6$
Similarly, perpendicular bisector of $A(1,3)$ and
$C(-3,5)$ is
$2 x(1-5)+2 y(3+1)=(1+9)-(25+1)$
$\Rightarrow-8 x+8 y=-16$
$\Rightarrow x-y-2=0$
Point of intersection of Eqs. (i) and (ii) is
$P=(-8,-10)$
Then, the distance between P and A is
$P A=\sqrt{(1+8)^{2}+(3+10)^{2}}$
$=\sqrt{81+169}$
$=\sqrt{250}=\sqrt{25 \times 10}=5 \sqrt{10}$
222 (b)
Let sides are $a=13, b=12, c=5$
Now, $a^{2}=b^{2}+c^{2}$
$\Rightarrow(13)^{2}=(12)^{2}+5^{2}$
$\Rightarrow 169=169$
$\therefore \angle A=90^{\circ}$
Since, $R=\frac{a}{2 \sin A}=\frac{13}{2 \sin 90^{\circ}}=\frac{13}{2}$
223 (b)
Since, the vertices of the triangle are
$(a \cos t, a \sin t),(b \sin t,-\cos t)$ and $(1,0)$
Let the coordinate of centroid be
$x=\frac{a \cos t+b \sin t+1}{3}$
$\Rightarrow \quad 3 x-1=a \cos t+b \sin t$
and $y=\frac{a \sin t-b \cos t+0}{3}$
$3 y=a \sin t-b \cos t$
On squaring and adding Eqs. (i) and (ii), we get $(3 x-1)^{2}+(3 y)^{2}$

$$
=a^{2}\left(\cos ^{2} t+\sin ^{2} t\right)+b^{2}\left(\sin ^{2} t\right.
$$

$$
\left.+\cos ^{2} t\right)
$$

$\Rightarrow(3 x-1)^{2}+(3 y)^{2}=a^{2}+b^{2}$
224 (c)
In $\triangle A B C, B C=h \cot 60^{\circ}$
and in $\triangle A B D, B D=h \cot 45^{\circ}$
Since, $B D-B C=D C$
$\Rightarrow h \cot 45^{\circ}-h \cot 60^{\circ}=7$

$\Rightarrow h=\frac{7}{\cot 45^{\circ}-\cot 60^{\circ}}=\frac{7}{\left(1-\frac{1}{\sqrt{3}}\right)}$
$=\frac{7 \sqrt{3(} \sqrt{3}+1)}{2} \mathrm{~m}$
225 (c)
Here, coordinates are $A(2,4), B(-2,-4)$ and $C(2,-4)$

Now, $|A B|=\sqrt{(-2-2)^{2}+(-4-4)^{2}}$
$=\sqrt{16+64}=\sqrt{80}=4 \sqrt{5}$
226 (c)
Let the vertex $A(x, y)$ is equidistant from B and C
$\therefore(x-1)^{2}+(y-3)^{2}=(x+2)^{2}+(y-7)^{2}$
$\Rightarrow \quad 6 x-8 y+43=0$
Only the option (c) satisfy it
227 (a)
Let the ratio be k : 1
$\therefore \frac{-7 k+3}{k+1}=\frac{1}{2} \Rightarrow k=\frac{1}{3}$
Hence, ratio is $1: 3$ internally
228 (d)
We know that orthocenter of the right angled triangle $A B C$, right angled at A is A
Here, triangle is right angled at $O(0,0)$
\therefore Orthocentre $=(0,0)$
229 (a)
Here, $x^{2}-y^{2}+2 y=1$
$\Rightarrow \quad x^{2}=(y-1)^{2}$
$\Rightarrow \quad x=y-1$ and $x=-y+1$

Which could be graphically as shown in figure Which gives angle bisector as $y=1$ and $x=0$ \therefore Required area $=\frac{1}{2} \times 2 \times 2=2$ sq units
230 (a)
In $\triangle A B E, \tan 60^{\circ}=\frac{12}{A B} \Rightarrow A B=4 \sqrt{3} \mathrm{~m}$

and in $\triangle A C E$
$\tan 45^{\circ}=\frac{12}{A C} \Rightarrow A C=12 \mathrm{~m}$
In $\triangle A B C, B C=\sqrt{A C^{2}-A B^{2}}=\sqrt{144-48}=$ $4 \sqrt{6} \mathrm{~m}$
\therefore Area of rectangular field $=A B \times B C$
$=4 \sqrt{3} \times 4 \sqrt{6}=48 \sqrt{2} \mathrm{sqm}$
231 (a)
In $\triangle A B D$,
$\cos 60^{\circ}=\frac{2^{2}+5^{2}-B D^{2}}{2(2)(5)}$
$\Rightarrow \quad B D^{2}=19$
Now, in $\triangle B C D$

$\cos 120^{\circ}=\frac{C D^{2}+9-19}{(2)(3)(C D)}$
$\Rightarrow C D^{2}+3 C D-10=0$
$\Rightarrow C D=-5,2$
$\Rightarrow C D=2(\because C D \neq-5)$
232 (c)
We have, $\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}=\frac{1}{2 R}$
$\Rightarrow \sin A=\frac{a}{2 R}$
$\therefore 2 R^{2} \sin A \sin B \sin C=2 R^{2} \frac{a}{2 R} \cdot \frac{b}{2 R} \cdot \frac{c}{2 R}$ $=\frac{a b c}{4 R}=\Delta$
233 (c)

In $\triangle B A D$,
$\cos \left(90^{\circ}-B\right)=\frac{A D}{c}$
$\Rightarrow A D=c \sin B$
Similarly, $B E=a \sin C$ and $C F=b \sin A$
Since, $A D, B E, C F$ are in $H P$
$\therefore c \sin B, a \sin C, b \sin A$ are in HP
$\Rightarrow \frac{1}{\sin C \sin B}, \frac{1}{\sin A \sin C}, \frac{1}{\sin B \sin A}$ are in AP
$\Rightarrow \sin A, \sin B, \sin C$ are in AP
(d)

Let P be the middle point of the line segment joining $A(3,-1)$ and $B(1,1)$ is $(2,0)$

Let P be shifted to Q by 2 unit and y-coordinate of Q is greater than that of P
Now, slope of $A B=\frac{1-(-1)}{1-3}=1$
then slope of $P Q=-1$
The coordinate of Q becomes ($2 \pm 2 \cos \theta, 0 \pm$
$2 \sin \theta$, where $\tan \theta=1$
$i e,(2 \pm \sqrt{2}, \pm \sqrt{2})$
As, y-coordinates of Q is greater than that of P
\therefore We take $Q=(2+\sqrt{2}, \sqrt{2})$
235 (d)
Area of triangle $=\frac{1}{2} \times 6 \times|\alpha|=15$
$\Rightarrow|\alpha|=5 \Rightarrow \alpha= \pm 5$
and β can take any real value
236 (a)
Let points are $A(2,3), B(3,4), C(4,5), D(5,6)$
$\therefore \quad A B=a=\sqrt{(3-2)^{2}+(4-3)^{2}}=\sqrt{2}$
Similarly, $B C=b=\sqrt{2}, C D=c=\sqrt{2}$
And $D A=d=3 \sqrt{2}$
Now, $s=\frac{a+b+c+d}{2}$
$=\frac{\sqrt{2}+\sqrt{2}+\sqrt{2}+3 \sqrt{2}}{2}=3 \sqrt{2}$
\therefore Area $=\sqrt{(s-a)(s-b)(s-c)(s-d)}$
$=\sqrt{(3 \sqrt{2}-\sqrt{2})(3 \sqrt{2}-\sqrt{2})(3 \sqrt{2}-\sqrt{2})(3 \sqrt{2}-3 \sqrt{ }}$
$=0$
237 (a)
$\sqrt{(2+5)^{2}+(3-2)^{2}}=\sqrt{(x-1)^{2}+(2-3)^{2}}$
$\Rightarrow \quad 49+1=(x-1)^{2}+1$
$\Rightarrow x-1= \pm 7 \Rightarrow x=-6,8$
238
(d)

In an equilateral triangle length of median
$C D=\frac{\sqrt{3}}{2} a$

Also, centroid of triangle lies on the centre of circle
$\therefore O C=\frac{2}{3} \times \frac{\sqrt{3}}{2} a=\frac{a}{\sqrt{3}}$
\therefore Area of circle $=\pi(O C)^{2}=\frac{\pi a^{2}}{3}$ sq units

239 (a)

In $\triangle A B C, \tan 30^{\circ}=\frac{C B}{C A}$
$\Rightarrow \frac{1}{\sqrt{3}}=\frac{C B}{6}$
$\Rightarrow \quad C B=\frac{6 \sqrt{3}}{3}=2 \sqrt{3}$

\therefore Area of $\triangle A C B=\frac{1}{2} \times C A \times C B$
$=\frac{1}{2} \times 6 \times 2 \sqrt{3}=6 \sqrt{3}$ sq units
240 (d)
We have, $\frac{\cos A}{a}=\frac{\cos B}{b}=\frac{\cos C}{c}$
$\Rightarrow \frac{\cos A}{k \sin A}=\frac{\cos B}{k \sin B}=\frac{\cos C}{k \sin C}$
$\Rightarrow \cot A=\cot B=\cot C$
$\Rightarrow A=B=C=60^{\circ}$
$\triangle A B C$ is an equilateral triangle
$\therefore \Delta=\frac{\sqrt{3}}{4} a^{2}=\frac{\sqrt{3}}{4}(2)^{2} \quad[\because a=2$ (given) $]$ $=\sqrt{3}$
241 (c)
We have, $\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$
or $c^{2}-2 b c \cos A+b^{2}-a^{2}=0$
$\therefore c_{1}+c_{2}=2 b \cos A=2 \times 2 \times \frac{\sqrt{3}}{2}=2 \sqrt{3}$
and $c_{1} c_{2}=b^{2}-a^{2}=4-5=-1$
$\therefore\left|c_{1}-c_{2}\right|=\sqrt{\left(c_{1}+c_{2}\right)^{2}-4 c_{1} c_{2}}$
$=\sqrt{12+4}=\sqrt{16}=4$
242 (c)
$(a-b)^{2} \cos ^{2} \frac{C}{2}+(a+b)^{2} \sin ^{2} \frac{C}{2}$
$=\left(a^{2}+b^{2}-2 a b\right) \cos ^{2} \frac{C}{2}$

$$
+\left(a^{2}+b^{2}+2 a b\right) \sin ^{2} \frac{C}{2}
$$

$=a^{2}+b^{2}+2 a b\left(\sin ^{2} \frac{C}{2}-\cos ^{2} \frac{C}{2}\right)$
$=a^{2}+b^{2}-2 a b \cos C$
$=a^{2}+b^{2}-\left(a^{2}+b^{2}-c^{2}\right)=c^{2}$
243 (a)

1. $\quad r r_{1} r_{2} r_{3}=\frac{\Delta}{s} \cdot \frac{\Delta}{(s-a)} \cdot \frac{\Delta}{(s-b)} \cdot \frac{\Delta}{(s-c)}=\frac{\Delta^{4}}{\Delta^{2}}=\Delta^{2}$
2. Now, $r_{1} r_{2}+r_{2} r_{3}+r_{3} r_{1}$
$=\frac{\Delta \Delta}{(s-a)(s-b)}+\frac{\Delta \Delta}{(s-b)(s-c)}$

$$
+\frac{\Delta \Delta}{(s-c)(s-a)}
$$

$=\Delta^{2}\left[\frac{(s-c)+(s-a)+(s-b)}{(s-a)(s-b)(s-c)}\right]$
$=\frac{\Delta^{2}[3 s-(a+b+c)]}{\Delta^{2} / s}=s^{2}$
244 (c)
Let angles of a triangle are $x, 2 x$ abd $7 x$ respectively
$\therefore x+2 x+7 x=180^{\circ} \Rightarrow x=18^{\circ}$
Hence, the angles are $18^{\circ}, 36^{\circ}, 126^{\circ}$
Greatest side $\propto \sin 18^{\circ}$
\therefore Required ratio $=\frac{\sin 126^{\circ}}{\sin 18^{\circ}}$
$=\frac{\sin \left(90^{\circ}+36^{\circ}\right)}{\sin 18^{\circ}}$
$=\frac{\cos 36^{\circ}}{\sin 18^{\circ}}=\frac{\sqrt{5}+1}{\sqrt{5}-1}$
246 (a)
Area of triangle $=\frac{1}{2}\left|\begin{array}{ccc}x_{1} & y_{1} & 1 \\ r x_{1} & r y_{1} & 1 \\ r^{2} x_{1} & r^{2} y_{1} & 1\end{array}\right|=0$
\therefore Points are collinear
247 (d)
Given, new coordinates $=(4,-3)$ and $\theta=135^{\circ}$
$\therefore \quad 4=x \cos 135^{\circ}+y \sin 135^{\circ}$
$\Rightarrow \quad 4=-\frac{x}{\sqrt{2}}+\frac{y}{\sqrt{2}}$
and $-3=-x \sin 135^{\circ}+y \cos 135^{\circ}$
$\Rightarrow \quad-3=-\frac{x}{\sqrt{2}}-\frac{y}{\sqrt{2}}$
On adding Eqs. (i) and (ii), we get
$1=-\frac{2 x}{\sqrt{2}} \Rightarrow x=-\frac{1}{\sqrt{2}}$

On subtracting Eqs. (i) and (ii), we get
$7=\frac{2 y}{\sqrt{2}} \Rightarrow y=\frac{7}{\sqrt{2}}$
Thus $(x, y)=\left(-\frac{1}{\sqrt{2}}, \frac{7}{\sqrt{2}}\right)$
248 (d)
We know, if coordinate axes are rotated, then
$p=(x \cos \theta-y \sin \theta, x \sin \theta+y \cos \theta)$
It is rotated at an angle 135° ie, $\theta=135^{\circ}$ and the new point be
$p=\left[4 \cos \left(90^{\circ}+45^{\circ}\right)\right]$

$$
\begin{aligned}
& +3 \sin \left(90^{\circ}+45^{\circ}\right), 4 \sin \left(90^{\circ}\right. \\
& \left.\left.+45^{\circ}\right)-3 \cos \left(90^{\circ}+45^{\circ}\right)\right]
\end{aligned}
$$

$=\left[-4 \sin 45^{\circ}+3 \cos 45^{\circ}, 4 \cos 45^{\circ}+3 \sin 45^{\circ}\right]$
$=\left[4 \cdot\left(\frac{-1}{\sqrt{2}}\right)+3 \cdot \frac{1}{\sqrt{2}}, 4 \cdot \frac{1}{\sqrt{2}}+3 \cdot \frac{1}{\sqrt{2}}\right]=\left(-\frac{1}{\sqrt{2}}, \frac{7}{\sqrt{2}}\right)$
249 (d)
Let the height of the tower be h meters

In $\triangle B C D, \tan 45^{\circ}=\frac{h}{B C}$
$\Rightarrow B C=h$
In $\triangle A C D, \tan 30^{\circ}=\frac{h}{A C}$
$\Rightarrow A C=\frac{h}{\tan 30^{\circ}}$
$\Rightarrow A B+B C=\sqrt{3} h$
$\Rightarrow 60+h=\sqrt{3} h \quad$ [from Eq.(i)]
$\Rightarrow h=\frac{60}{\sqrt{3}-1}$
$\Rightarrow h=\frac{60(\sqrt{3}+1)}{2}$
$\Rightarrow h=30(\sqrt{3}+1) \mathrm{m}$
251 (d)
Given, $r_{1}+r_{3}=k \cos ^{2} \frac{B}{2}$
ie, $\quad s \tan \frac{A}{2}+s \tan \frac{C}{2}=k \cos ^{2} \frac{B}{2}$
$\Rightarrow s\left[\sqrt{\frac{(s-b)(s-c)}{s(s-a)}}+\sqrt{\frac{(s-a)(s-b)}{s(s-c)}}\right]$
$=k \frac{s(s-b)}{a c}$
$\Rightarrow k=\frac{a c}{s-b}\left[\sqrt{\frac{(s-b)(s-c)}{s(s-a)}}\right.$

$$
\left.+\sqrt{\frac{(s-a)(s-b)}{s(s-c)}}\right]
$$

$=\frac{a c}{s-b} \times \frac{\sqrt{s-b}}{\sqrt{s}}\left[\frac{\sqrt{(s-c)}}{\sqrt{(s-a)}}+\frac{\sqrt{(s-a)}}{\sqrt{(s-c)}}\right]$
$=\frac{a c(2 s-a-c)}{\sqrt{s(s-a)(s-b)(s-c)}}$
$=\frac{a c(b)}{\Delta}=4 R$
254 (c)
Area of $\triangle C A B=$ area of $\triangle C A D+$ area of $\triangle C D B$
$\Rightarrow \frac{1}{2} b a \sin C=\frac{1}{2} b \cdot C D \sin \frac{C}{2}+\frac{1}{2} a \cdot C D \sin \frac{C}{2}$
$\Rightarrow C D+\frac{2 a b}{a+b} \cos \frac{C}{2}$
255 (c)
Let h be the height of a tower.
Since, $\angle A O B=60^{\circ}$
$\therefore \triangle O A B$ is an equilateral triangle.
$\therefore O A=O B=A B=a$

In $\triangle O A C, \tan 30^{\circ}=\frac{h}{a} \Rightarrow h=\frac{a}{\sqrt{3}}$
256 (d)
$\Delta=\left|\begin{array}{ccc}-\sin (\beta-\alpha) & -\cos \beta & 1 \\ \cos (\beta-\alpha) & \sin \beta & 1 \\ \cos (\beta-\alpha+\theta) & \sin (\beta-\theta) & 1\end{array}\right|$
Clearly, $\Delta \neq 0$ for any value of α, β, θ, Hence, points are non-collinear
257 (a)
Given, $8 R^{2}=a^{2}+b^{2}+c^{2}$
$=4 R^{2}\left(\sin ^{2} A+\sin ^{2} B+\sin ^{2} C\right)$
$\Rightarrow \sin ^{2} A+\sin ^{2} B+\sin ^{2} C=2$
$\Rightarrow\left(\cos ^{2} A-\sin ^{2} C\right)+\cos ^{2} B=0$
$\Rightarrow \cos (A-C) \cos (A+C)+\cos ^{2} B=0$
$\Rightarrow 2 \cos B \cos A \cos C=0$
$\Rightarrow \cos A=0$ or $\cos B=0$ or $\cos C=0$
$\Rightarrow \quad A=\frac{\pi}{2}$ or $B=\frac{\pi}{2}$ or $C=\frac{\pi}{2}$
258 (a)
$\because A B+\sqrt{(4+1)^{2}+(0+1)^{2}}=\sqrt{26}$
$B C=\sqrt{(3+1)^{2}+(5+1)^{2}}=\sqrt{52}$
$C A=\sqrt{(4-3)^{2}+(0+5)^{2}}=\sqrt{26}$

So, in isosceles triangle side $A B=C A$
Also, $(\sqrt{26})^{2}+(\sqrt{26})^{2}=52$
So, triangle is right angled and also is isosceles triangle
259 (c)
By Standard results,
3. $r=4 R \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}$
4. $r_{1}=s \tan \frac{A}{2}$
5. $\quad r_{3}=\frac{\Delta}{s-c}$

260 (c)

On solving given equation of lines, we get the points $A(4,0),(0,3) B(0,3)$ and $O(0,0)$

\therefore Area of $\triangle O A B$
$=\frac{1}{2} \times O A \times O B$
$=\frac{1}{2} \times 4 \times 3$
$=6$ sq units
261 (a)
Let (x, y) denotes the coordinates in A, B and C plane
Then, $\frac{(x-1)^{2}+y^{2}}{(x+1)^{2}+y^{2}}=\frac{1}{9}$
$\Rightarrow 9 x^{2}+9 y^{2}-18 x+9=x^{2}+y^{2}+2 x+1$
$\Rightarrow 8 x^{2}+8 y^{2}-20 x+8=0$
$\Rightarrow x^{2}+y^{2}-\frac{5}{2} x+1=0$
$\therefore \quad A, B, C$ lie on a circle with $C\left(\frac{5}{4}, 0\right)$
262 (c)
Since, points $(a, b),(b, a)$ and $\left(a^{2},-b^{2}\right)$ are collinear
$\therefore \quad\left|\begin{array}{ccc}a & b & 1 \\ b & a & 1 \\ a^{2} & -b^{2} & 1\end{array}\right|=0$
Applying, $R_{2} \rightarrow R_{2}-R_{1}$ and $R_{3} \rightarrow R_{3}-R_{1}$, we get
$\left|\begin{array}{ccc}a & b & 1 \\ b-a & a-b & 0 \\ a^{2}-a & -b^{2}-b & 0\end{array}\right|=0$
$\Rightarrow(a-b)\left(b^{2}+b-a^{2}+a\right)=0$
$\Rightarrow(a-b)(a+b)(b+1-a)=0$
\Rightarrow Either $a-b=0$ or $(a+b)=0$ or $(b+1-a)$

$$
=0
$$

$\Rightarrow \quad a=b+1$
263 (d)
Let $A A_{1}, B B_{1}$ and $C C_{1}$ be the towers and O be the circumcentre of $\triangle A B C$
$\angle A_{1} O A=\theta_{A}, \angle B_{1} O B=\theta_{B}, \angle C_{1} O C=\theta_{C}$
Now, $O A=A A_{1} \cot \theta_{A}$
$O B=B B_{1} \cot \theta_{B}$
and $O C=C C_{1} \cot \theta_{C}$

Since, O is the circumcentre of a triangle
$\therefore O A=O B=O C$
$\Rightarrow A A_{1} \cot \theta_{A}=B B_{1} \cot \theta_{B}=C C_{1} \cot \theta_{c}$
$\Rightarrow \frac{\tan \theta_{A}}{A A_{1}}=\frac{\tan \theta_{B}}{B B_{1}}=\frac{\tan \theta_{C}}{C C_{1}}$
Any other relationship between $\tan \theta_{A}, \tan \theta_{B}$ and $\tan \theta_{C}$ cannot be establish
264 (b)
Let $a=6, b=5, c=\sqrt{13}$
$\therefore \cos C=\frac{6^{2}+5^{2}-13}{2 \times 6 \times 5}=\frac{4}{5}$
Now, $\sin C=\sqrt{1-\frac{16}{25}}=\frac{3}{5}$
\therefore Area of $\triangle A B C=\frac{1}{2} a b \sin C$
$=\frac{1}{2} \times 6 \times 5 \times \frac{3}{5}=9$ sq unit
265 (b)
Since, y_{1}, y_{2}, y_{3} and x_{1}, x_{2}, x_{3} are in AP
$\therefore y_{2}-y_{1}=y_{3}-y_{2}$ and $x_{2}-x_{1}=x_{3}-x_{2}$
So, $\frac{y_{3}-y_{2}}{x_{3}-x_{2}}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
So, points are collinear
266 (a)
Let $\angle R P Q=\theta$ and $\angle R Q P=\phi$

$\therefore \theta-\phi=2 \alpha$
Let $R M \perp P Q$, so that $R M=k$,
$M P=a-h$ and $M Q=a+h$
Then, $\tan \theta=\frac{R M}{M P}=\frac{k}{a-h}$
and $\tan \phi=\frac{R M}{M Q}=\frac{k}{a+h}$
Again now, $2 \alpha=\theta-\phi$
$\therefore \tan 2 \alpha=\tan (\theta-\phi)$
$=\frac{\tan \theta-\tan \phi}{1+\tan \theta \tan \phi}$
$=\frac{k(a+h)-k(a-h)}{a^{2}-h^{2}+k^{2}}$
$\Rightarrow a^{2}-h^{2}+k^{2}=2 h k \cot 2 \alpha$
Hence, the locus is $x^{2}-y^{2}+2 x y \cot 2 \alpha-a^{2}=0$
267 (c)
Since, the centroid G divide the line $A D$ in the ratio 2:1

$\therefore A G=\frac{8}{3}$ and $D G=\frac{4}{3}$
In $\triangle A B G, \tan \frac{\pi}{3}=\frac{A G}{B G}$
$\Rightarrow B G=A G \cot \frac{\pi}{3}$
$\Rightarrow \quad B G=\frac{8}{3} \times \frac{1}{\sqrt{3}}=\frac{8}{3 \sqrt{3}}$
Area of $\triangle A D B=\frac{1}{2} \times A D \times B G$
$=\frac{1}{2} \times 4 \times \frac{8}{3 \sqrt{3}}=\frac{16}{3 \sqrt{3}}$
Since, median divides a triangle into two triangle of equal area. Therefore,
Area of $\triangle A B C=2 \times$ area of $\triangle A D B$
$=2 \times \frac{16}{3 \sqrt{3}}=\frac{32}{3 \sqrt{3}}$ sq units
(b)

Since, Q is the image of P

$\therefore P Q=2 P P^{\prime \prime}$
$=\frac{2|4-(-1)|}{\sqrt{1^{2}+1^{2}}}=5 \sqrt{2}$
269
(d)

Area $=\frac{1}{2}\left|\begin{array}{lll}a & b+c & 1 \\ b & c+a & 1 \\ c & a+b & 1\end{array}\right|=\frac{1}{2}\left|\begin{array}{lll}a & a+b+c & 1 \\ b & a+b+c & 1 \\ c & a+b+c & 1\end{array}\right|$
$=\frac{(a+b+c)}{2}\left|\begin{array}{lll}a & 1 & 1 \\ b & 1 & 1 \\ c & 1 & 1\end{array}\right|=0$
270 (c)
We have,
$x^{2}+4 x y+y^{2}=a X^{2}+b Y^{2}$
$\Rightarrow(X \cos \theta+Y \sin \theta)^{2}$

$$
\begin{aligned}
& +14(X \cos \theta+Y \sin \theta)(X \sin \theta \\
& -Y \cos \theta)+(X \sin \theta-Y \cos \theta)^{2} \\
& =a X^{2}+b Y^{2}
\end{aligned}
$$

$\Rightarrow a=1+4 \sin \theta \cos \theta, b=1-4 \sin \theta \cos \theta$ and $\sin ^{2} \theta-\cos ^{2} \theta=0$
$\Rightarrow a=1+4 \sin \theta \cos \theta, b=1-4 \sin \theta \cos \theta$ and $\theta=\frac{\pi}{4}$
$\Rightarrow a=3, b=-1$
271 (a)
Given, distance $r=\sqrt{2}$ and $\theta=45^{\circ}$
$\therefore \quad x=4+\sqrt{2} \cos 45^{\circ}=4+\sqrt{2} \cdot \frac{1}{\sqrt{2}}=5$
and $y=3+\sqrt{2} \sin 45^{\circ}=3+\sqrt{2} \cdot \frac{1}{\sqrt{2}}=4$
272 (d)
Let the height of the cliff be $B D=50 \mathrm{~m}$ and height of the tower be $A E=h$ metre.
In $\triangle D E C$,
$\tan 30^{\circ}=\frac{50-h}{x}$
$\Rightarrow x=\frac{50-h}{\frac{1}{\sqrt{3}}}=\sqrt{3}(50-h)$

and in $\triangle B A D$,
$\tan 45^{\circ}=\frac{50}{x} \Rightarrow x=50 \mathrm{~m}$
From Eq. (i),
$50=\sqrt{3}(50-h)$
$\Rightarrow h=\frac{50(\sqrt{3}-1)}{\sqrt{3}} \mathrm{~m}$
$\Rightarrow h=50\left(1-\frac{\sqrt{3}}{3}\right) \mathrm{m}$
273 (a)
Let the vertex of triangle be $A(2,-1)$ and
equation of $B C$ is
$x+2 y=1$

Since, the triangle is equilateral triangle
$\therefore \angle A B C=60^{\circ}$
and $A D=\left|\frac{2(1)+2(-1)-1}{\sqrt{1+2^{2}}}\right|=\frac{1}{\sqrt{5}}$
In $\triangle A B D, \frac{A D}{A B}=\sin 60^{\circ}$
$\Rightarrow A B=\frac{\frac{1}{\sqrt{5}}}{\frac{\sqrt{3}}{2}}=\frac{2}{\sqrt{15}}$
$\Rightarrow \quad A B=B C=A C=\frac{2}{\sqrt{15}}$
275 (d)
Area of $\Delta=\frac{1}{2}\left|\begin{array}{lll}2 & 2 & 1 \\ 5 & 5 & 1 \\ 6 & 7 & 1\end{array}\right|$
$=\frac{1}{2}[2(5-7)-2(5-6)+1(35-30)]$
$=\frac{1}{2}(-4+2+5)=\frac{3}{2}$ sq units
276 (b)
Line perpendicular to $O A$ passing through B is $x=3$

Slope of $A B+\frac{3 \sqrt{3}-0}{3-6}=-\sqrt{3}$
Line perpendicular to $A B$ through origin is
$y=\frac{1}{\sqrt{3}} x$
\therefore The point of intersection of a line $x=3$ and $y=\frac{1}{\sqrt{3}} x$ is $(3, \sqrt{3})$, which is the required orthocenter
277 (a)
We know that, in any $\triangle A B C$
$\cos A+\cos B+\cos C=1+4 \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}$
and $r=4 R \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}$
$\therefore \cos A+\cos B+\cos C=1+\frac{r}{R}$
278 (b)
Given, $\sin P, \sin Q, \sin R$ are in AP
$\Rightarrow \quad a, b, c$ are in AP
$\because \frac{\sin P}{a}=\frac{\sin Q}{b}=\frac{\sin R}{c}=\lambda \quad$ (say)

Let p_{1}, p_{2}, p_{3} be altitudes from P, Q, R
$\therefore p_{1}=c \sin Q=\lambda b c$,
$p_{2}=a \sin R=\lambda a c$,
$p_{3}=b \sin P=\lambda a b$
Since, a, b, c are in AP,
$\therefore \frac{1}{a}, \frac{1}{b}, \frac{1}{c}$ are in HP
$\Rightarrow \frac{a b c}{a}, \frac{a b c}{b}, \frac{a b c}{c}$ are in HP
$\Rightarrow b c, a c, a b$ are in HP
$\Rightarrow \lambda b c, \lambda a c, \lambda a b$ are in HP
$\Rightarrow p_{1}, p_{2}, p_{3}$ are in HP
(c)

In $\triangle A B D, \frac{B D}{\sin \theta}=\frac{A D}{\sin B}$
$\Rightarrow \quad B D=A D=\frac{\sin \theta}{\sin B}$

In $\triangle A C D, \frac{C D}{\sin (A-\theta)}=\frac{A D}{\sin C}$
$\Rightarrow C D=A D \frac{\sin (A-\theta)}{\sin C}$
$\therefore B D=C D$
$\Rightarrow A D \frac{\sin \theta}{\sin B}=A D \frac{\sin (A-\theta)}{\sin C}$
$\Rightarrow \sin (A-\theta)=\frac{\sin C}{\sin B} \sin \theta=\frac{c}{b} \sin \theta$
282 (b)
Since, circle is inscribed in the quadrilateral $A B C D$, then
$a+c=b+d$
And quadrilateral is cyclic, then
$A+C=\pi$
or $C=\pi-A$
now, in $\triangle A B D$
$\cos A=\frac{a^{2}+d^{2}-(B D)^{2}}{2 a d}$
$\Rightarrow B D^{2}=a^{2}+d^{2}-2 a d \cos A$
And in $\triangle B C D$,
$\cos C=\frac{b^{2}+c^{2}-(B D)^{2}}{2 b c}$
$\Rightarrow(B D)^{2}=b^{2}+c^{2}-2 b c \cos C$
$=b^{2}+c^{2}-2 b c \cos (\pi-A)$ [from Eq.(ii)]
$\Rightarrow(B D)^{2}=b^{2}+c^{2}+2 b c \cos A$
From Eqs. (iii) and (iv), we get
$\cos A=\frac{a^{2}+d^{2}-b^{2}-c^{2}}{2(b c+a d)}$
Now, from Eq. (i),
$(a-d)^{2}=(b-c)^{2}$
$\Rightarrow a^{2}+d^{2}-b^{2}-c^{2}=2(a d-b c) \ldots(\mathrm{vi})$
\therefore From Eqs. (v) and (vi),
$\cos A=\left(\frac{a d-b c}{a d+b c}\right)$
283 (c)
We have, $a+b+c=\lambda=2 s$
$\therefore s=\frac{\lambda}{2}$
$b \cos ^{2} \frac{C}{2}+c \cos ^{2} \frac{B}{2}=b \frac{s(s-c)}{a b}+c \frac{s(s-b)}{a c}$
$=\frac{s}{a}\{s-c+s-b\}$
$=\frac{s}{a} \cdot a=s=\frac{\lambda}{2}$
284
$\cos B=\frac{1}{\sqrt{2}}=\frac{c^{2}+a^{2}-b^{2}}{2 a c}$
$\Rightarrow \sqrt{2} a c=c^{2}+a^{2}-b^{2}$
$\Rightarrow 2 a^{2} c^{2}=c^{4}+a^{4}+b^{4}+2 c^{2} a^{2}$

$$
-2\left(c^{2}+a^{2}\right) b^{2}
$$

$\Rightarrow c^{4}+a^{4}+b^{4}=2\left(c^{2}+a^{2}\right) b^{2}$
285 (a)
Let the point of the line divides the line in the ratio m : 1
\therefore Coordinates of point are $\left(\frac{5 m+1}{m+1}, \frac{7 m-1}{m+1}\right)$
Which lies on $y+x=4$
$\Rightarrow \quad \frac{7 m-1+5 m+1}{m+1}=4$
$\Rightarrow \frac{12 m}{m+1}=4 \Rightarrow 12 m=4 m+4$
$\Rightarrow 8 m=4 \Rightarrow m=\frac{1}{2}$
\therefore Required ratio is $1: 2$
286 (d)
Since, line perpendicular to $O A$ passing through B
is $x=4$
Slope of $A B=-\frac{3}{2}$
Line perpendicular to $A B$ through origin is, $y=\frac{2}{3} x$

\therefore The point of intersection of lines $x=4$

And $y=\frac{2}{3} x$ is $\left(4, \frac{8}{3}\right)$. Which is the required orthocenter
288 (a)
We have, $\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}$
$\therefore \frac{b+c}{a}=\frac{\sin B+\sin C}{\sin A}$
$=\frac{\sin \left(\frac{B+C}{2}\right) \cos \left(\frac{B-C}{2}\right)}{\sin \frac{A}{2} \cos \frac{A}{2}}=\frac{\cos \left(\frac{B-C}{2}\right)}{\sin \frac{A}{2}}$
$[A+B+C=\pi \Rightarrow A=\pi-(B+C)]$
289 (a
Let h be the mid point of $B C$. Since, $\angle T B H=90^{\circ}$,
then $T H^{2}=B T^{2}+B H^{2}=5^{2}+5^{2}=50$
Also since,
$\angle T H G=90^{\circ}, T G^{2}=T H^{2}+G H^{2}=50+25=75$
Let θ be the required angle of elevation of G at T
Then, $\sin \theta=\frac{G H}{T G}$

$$
\begin{aligned}
& =\frac{5}{5 \sqrt{3}}=\frac{1}{\sqrt{3}} \\
& \Rightarrow \theta=\sin ^{-1}(1 / \sqrt{3})
\end{aligned}
$$

290 (d)
Given, $\Delta=\frac{1}{2} a p_{1}=\frac{1}{2} b p_{2}=\frac{1}{2} c p_{3}$
$\therefore \quad p_{1}=\frac{2 \Delta}{a}, p_{2}=\frac{2 \Delta}{b}, p_{3}=\frac{2 \Delta}{c}$
$\therefore p_{1} p_{2} p_{3}=\frac{8 \Delta^{3}}{a b c}=\frac{8}{a b c}\left(\frac{a b c}{4 R}\right)^{3}=\frac{a^{2} b^{2} c^{2}}{8 R^{2}}$
291 (b)
In $\triangle B C D, \cot 60^{\circ}=\frac{B C}{300}$

$\Rightarrow B C=300 \times \frac{1}{\sqrt{3}}$
In $\triangle A C D, \cot 30^{\circ}=\frac{A C}{300}$
$\Rightarrow A C=300 \sqrt{3}$
\therefore Distance between two boats $=A B$
$=A C-B C=300 \sqrt{3}-\frac{300}{\sqrt{3}} \quad$ [using Eqs.(i)and
(ii)]
$=300 \frac{(3-1)}{\sqrt{3}}=\frac{600 \times \sqrt{3}}{3}=346.4 \mathrm{~m}$
292 (d)
$\because 3^{2}+4^{2}=5^{2}$
\Rightarrow Given triangle is a right angled triangle whose length of hypotenuse is 5 unit
$\therefore R=\frac{5}{2}=2.5$
293 (a)
Given, $\left(1-\frac{r_{1}}{r_{2}}\right)\left(1-\frac{r_{1}}{r_{3}}\right)=2$
$\therefore\left(1-\frac{s-b}{s-a}\right)\left(1-\frac{s-c}{s-a}\right)=2$
$\Rightarrow \frac{(b-a)(c-a)}{(s-a)^{2}}=2$
$\Rightarrow a^{2}=b^{2}+c^{2}$
Hence, triangle is a right angled triangle
294 (a)
From given, we get
$a\left(\tan A-\tan \frac{A+B}{2}\right)=b\left(\tan \frac{A+B}{2}-\tan B\right)$
$\Rightarrow a \cdot \frac{\sin \left(A-\frac{A+B}{2}\right)}{\cos A \cdot \cos \frac{A+B}{2}}=b \cdot \frac{\sin \left(\frac{A+B}{2}-B\right)}{\cos \frac{A+B}{2} \cos B}$
$\Rightarrow \frac{a \sin \left(\frac{A-B}{2}\right)}{\cos A}=\frac{b \sin \left(\frac{A-B}{2}\right)}{\cos B}$
$\Rightarrow \sin \left(\frac{A-B}{2}\right)\{a \cos B-b \cos A\}=0$
\Rightarrow Either $\sin \frac{A-B}{2}=0$ or $a \cos B=b \cos A$
When, $\sin \frac{A-B}{2}=0 \Rightarrow A=B$
or when $a \cos B=b \cos A$
$\Rightarrow \sin A \cos B-\cos A \sin B=0$
$\Rightarrow \sin (A-B)=0$
$\Rightarrow A=B$
295 (d)
Triangle is right angled triangle. In right angled triangle mid point of hypotenuse is circumcentre So, coordinates of the circumcentre are $(5,2)$

296 (c)
From $\triangle A B C, \frac{\sin (y+z)}{D C}=\frac{\sin C}{A D}$
From $\triangle A B D, \frac{\sin x}{B D}=\frac{\sin B}{A D}$
From $\triangle A E C, \frac{\sin z}{E C}=\frac{\sin C}{A E}$
From $\triangle A B E, \frac{\sin (x+y)}{B E}=\frac{\sin B}{A E}$

$\therefore \frac{\sin (x+y) \sin (y+z)}{\sin x \sin z}=\frac{\frac{B E \sin B}{A E} \times \frac{D C \sin C}{A D}}{\frac{B D \sin B}{A D} \times \frac{E C \sin C}{A E}}$
$=\frac{B E}{A E} \times \frac{D C}{A D} \times \frac{A D}{B D} \times \frac{A E}{E C}$
$=\frac{2 B D \times 2 E C}{B D \times E C}=4$
297 (c)
In $\triangle A B C, \tan 60^{\circ}=\frac{h}{B C}$
$\Rightarrow B C=h \cot 60^{\circ}$
In $\triangle A B D, \tan 30^{\circ}=\frac{h}{B D}$

$\Rightarrow B D=h \cot 30^{\circ}$
$\Rightarrow B C+C D=h \cot 30^{\circ}$
$\Rightarrow C D=h \cot 30^{\circ}-B C$
$\Rightarrow d=h \cot 30^{\circ}-h \cot 60^{\circ} \quad$ [from Eq. (i)]
\therefore Speed of car $=\frac{\text { distance from } \mathrm{D} \text { to } \mathrm{C}}{\text { time taken }}$
$=\frac{d}{3}=\frac{h \cot 30^{\circ}-h \cot 60^{\circ}}{3}$
\therefore Time taken from C to $B=\frac{\text { distance }}{\text { speed }}$
$=\frac{h \cot 60^{\circ}}{h\left(\cot 30^{\circ}-\cot 60^{\circ}\right)}$
$=\frac{\frac{1}{\sqrt{3}} \times 3}{\left(\sqrt{3}-\frac{1}{\sqrt{3}}\right)}$
$=\frac{3}{2}=1.5 \mathrm{~min}$
298
(a)

Let h be the height of the tower, then
$h=A Q \tan \alpha=B Q \tan \beta=C Q \tan \gamma$

$\Rightarrow \quad B C=B Q-C Q=h(\cot \beta-\cot \gamma)$,
$C A=h(\cot \alpha-\cot \gamma)$
and $A B=h(\cot \alpha-\cot \beta)$
Now, $B C \cot \alpha-C A \cot \beta+A B \cot \gamma$ $=h[\cot \alpha(\cot \beta-\cot \gamma)-\cot \beta(\cot \alpha-\cot \gamma)$

$$
+\cot \gamma(\cot \alpha-\cot \beta)]
$$

$=0$
299 (a)
On solving the given equations of sides, we get the coordinates of the vertices of the triangle,
$A(2,-1), B(6,-1)$ and $C(2,1)$

The circumcentre of $\triangle A B C$ is the mid point of $B C$ ie, $M \equiv\left(\frac{8}{2}, \frac{0}{2}\right)=(4,0)$
300 (b)
Let h metres be the height of tree $C D$ and x meters be the width of river

In $\triangle B C D, \tan 60^{\circ}=\frac{h}{x} \Rightarrow h=\sqrt{3 x} \ldots$ (i)
and in $\triangle A C D, \tan 30^{\circ}=\frac{h}{x+20}$
$\Rightarrow \frac{1}{\sqrt{3}}=\frac{h}{x+20}$
$\Rightarrow 3 x=x+20$ [from Eq. (i)]
$x=10 \mathrm{~m}$
302 (a)
We have,
$2 s=a+b+c, A^{2}=s(s-a)(s-b)(s-c)$
$\because \quad \mathrm{AM} \geq \mathrm{GM}$
$\Rightarrow \frac{s-a+s-b+s-c}{3}$

$$
\geq \sqrt[3]{(s-a)(s-b)(s-c)}
$$

$\Rightarrow \frac{3 s-2 s}{3} \geq \frac{\left(A^{2}\right)^{1 / 3}}{s^{1 / 3}}$
$\Rightarrow \frac{s^{3}}{27} \geq \frac{A^{2}}{s} \Rightarrow A \leq \frac{s^{2}}{3 \sqrt{3}}$
303
(b)

In $\triangle D B C, \tan \alpha=\frac{5}{x} \quad \ldots$ (i)
and in $\triangle D A C, \tan 2 \alpha=\frac{30}{x}$

$\Rightarrow \frac{2 \tan \alpha}{1-\tan ^{2} \alpha}=\frac{30}{x}$
$\Rightarrow \frac{2\left(\frac{5}{x}\right)}{1-\frac{25}{x^{2}}}=\frac{30}{x}$
$\Rightarrow \frac{10 x}{x^{2}-25}=\frac{30}{x}$
$\Rightarrow 10 x^{2}=30 x^{2}-750$
$\Rightarrow 20 x^{2}=750$
$\Rightarrow x^{2}=\frac{75}{2}$
$\Rightarrow x=5 \sqrt{\frac{3}{2}} \mathrm{~m}$
305 (a)
Here, ratio of angles are 4:1:1
$\Rightarrow 4 x+x+x=180^{\circ}$
$\Rightarrow=30^{\circ}$
$\therefore \angle A=120^{\circ}, \quad \angle B=\angle C=30^{\circ}$

Thus, the ratio of longest side to the perimeter $=\frac{a}{a+b+c}$
Let $b=c=x$
$\therefore \quad a^{2}=b^{2}+c^{2}-2 b c \cos A$
$\Rightarrow a^{2}=2 x^{2}-2 x^{2} \cos A=2 x^{2}(1-\cos A)$
$\Rightarrow \quad a^{2}=4 x^{2} \sin ^{2} \frac{A}{2}$
$\Rightarrow a=2 x \sin \frac{A}{2}$
$\Rightarrow a=2 x \sin 60^{\circ}=\sqrt{3} x$
Thus, required ratio is
$\frac{a}{a+b+c}=\frac{\sqrt{3} x}{x+x+\sqrt{3} x}=\frac{\sqrt{3}}{2+\sqrt{3}}$
306 (c)
Let the third angle is θ
In a triangle, $\frac{\pi}{4}+\tan ^{-1} 2+\theta=\pi$
$\Rightarrow \theta=\pi-\frac{\pi}{4}-\tan ^{-1} 2$
$\Rightarrow \tan \theta=\tan \left[\pi-\left(\frac{\pi}{4}+\tan ^{-1} 2\right)\right]$
$=-\tan \left(\frac{\pi}{4}+\tan ^{-1} 2\right)$
$\Rightarrow \tan \theta=-\frac{1+2}{1-2}=3$
$\Rightarrow \theta=\tan ^{-1} 3$
307 (d)
In $\triangle B C D, \tan 60^{\circ}=\frac{C D}{B C}=\frac{h}{x} \Rightarrow h=\sqrt{3 x}$

and in $\triangle A C D$,
$\tan 30^{\circ}=\frac{C D}{A C}=\frac{h}{x+40} \Rightarrow \frac{1}{\sqrt{3}}=\frac{h}{40+x}$
$40+x=h \sqrt{3}$
$\Rightarrow 40+x=3 x \quad$ [using Eq.(i)]
$\Rightarrow x=20$
On putting this value is Eq.(i), we get $h=20 \sqrt{3} \mathrm{~m}$ 308 (d)

Let $H(3, \alpha)$ is the orthocenter

\therefore Slope of $B H \times$ Slope of $A C=-1$
$\Rightarrow-\alpha \cdot \frac{4}{3}=-1$
$\Rightarrow \quad \alpha=\frac{3}{4}$
Hence, orthocenter of a triangle is $\left(3, \frac{3}{4}\right)$
309 (c)
Let the axes be rotated through an angle θ. Then, $\tan 2 \theta=\frac{2 h}{a-b}=\frac{4 \sqrt{3}}{5-9}=-\sqrt{3} \Rightarrow 2 \theta=\frac{2 \pi}{3} \Rightarrow \theta$

$$
=\frac{\pi}{3}
$$

310 (a)
Since, $A C=2 B C$
\therefore Coordinates of C are

$\left(\frac{4-3}{2+1}, \frac{2+4}{2+1}\right)$ ie, $\left(\frac{1}{3}, 2\right)$

(d)

Let P be the image of the origin about the line $x+y=1$. Since, $O A=O B$, therfore Q is mid point of $A B$

\therefore Coordinates of Q are $\left(\frac{1}{2}, \frac{1}{2}\right)$
Let the coordinates of P are $\left(x_{1}, y_{1}\right)$
Also, Q is the mid point of $O P$
$\therefore \quad \frac{0+x_{1}}{2}=\frac{1}{2}$ and $\frac{0+y_{1}}{2}=\frac{1}{2}$
$\Rightarrow x_{1}=1, \quad y_{1}=1$
\therefore The cordiantes of P are $(1,1)$
312 (c)
We have, $\operatorname{cosec} A(\sin B \cos C+\cos B \sin C)$
$=\left(\frac{\sin B}{\sin A} \cos C+\frac{\sin C}{\sin A} \cos B\right)$
$=\left(\frac{b}{a} \cos C+\frac{c}{a} \cos B\right)=1$
$(\because a=b \cos C+c \cos B)$
313 (b)
Let coordinates of fourth vertex are (x, y)
$\therefore \frac{x-5}{2}=\frac{7+3}{2}$
$\Rightarrow \quad x=15$
and $\frac{y-4}{2}=\frac{10+5}{2}$
$\Rightarrow y=19$
\therefore Coordinates of fourth vertex are $(15,19)$
314 (a)
Let $A B$ and $D E$ be two towers of equal height ' h '

\therefore In $\triangle A B C, \tan 60^{\circ}=\frac{h}{x} \Rightarrow x=\frac{h}{\sqrt{3}} \ldots$ (i)
Again, in $\triangle C D E, \tan 30^{\circ}=\frac{h}{60-x}$
$\Rightarrow 60-x=h \sqrt{3}$
$\Rightarrow 60=h \sqrt{3}+\frac{h}{\sqrt{3}} \quad$ [from Eq. (i)]
$\Rightarrow h=15 \sqrt{3} \mathrm{~m}$
315 (d)
In $\triangle D E C, \tan \theta=\frac{D E}{C E}$
$\Rightarrow \tan \theta=\frac{h-a}{C E}$
$\Rightarrow C E=\frac{h-a}{\tan \theta}$

In $\triangle A B C$,
$\tan 2 \theta=\frac{a}{A B}=\frac{a}{C E} \quad(\because C E=A B)$
$\Rightarrow \frac{2 \tan \theta}{1-\tan ^{2} \theta}=\frac{a}{\frac{h-a}{\tan \theta}}$ [from Eq.(i)]
$\Rightarrow a \tan \theta=(h-a) \times \frac{2 \tan \theta}{1-\tan ^{2} \theta}$
$\Rightarrow a \tan \theta\left(1-\tan ^{2} \theta\right)-2(h-a) \tan \theta=0$
$\Rightarrow \tan \theta\left(a-a \tan ^{2} \theta-2 h+2 a\right)=0$
$\because \tan \theta \neq 0$
$\therefore \tan ^{2} \theta=\frac{-2 h+3 a}{a}$
$\Rightarrow \quad \theta=\tan ^{-1} \sqrt{\frac{-2 h+3 a}{a}}$
$=\tan ^{-1} \sqrt{3-\frac{2 h}{a}}$
316 (c)
Given vertices are $A(2 a, 4 a), B(2 a, 6 a)$ and $C(2 a+\sqrt{3} a, 5 a), a>0$
Now, $A B=\sqrt{(2 a+2 a)^{2}+(4 a-6 a)^{2}}=2 a$
$B C=\sqrt{(\sqrt{3} a)^{2}+a^{2}}=2 a$
and $C A=\sqrt{(\sqrt{3} a)^{2}+(-a)^{2}}=2 a$
$\therefore A B=B C=C A$
Hence, triangle is an equilateral triangle, therefore it is an acute angled triangle
317 (a)
Let D and E are the mid points of $A B$ and $A C$. So, coordinates of B and C are $(-3,3)$ and $(5,3)$ respectively

Centroid of triangle $=\left(\frac{1-3+5}{3}, \frac{1+3+3}{3}\right)$
$=\left(1, \frac{7}{3}\right)$
(b)
R is mid point of $P T$
$P(\mathrm{a}, \mathrm{x}) \longleftrightarrow \stackrel{+}{Q} \quad \stackrel{+}{R} \quad \stackrel{S}{\longrightarrow} T(b, y)$
Point $\left(\frac{5 a+3 b}{8}, \frac{5 x+3 y}{8}\right)$ divides $P T$ in ratio $3: 5$ and that is mid point of $Q R$
319 (a)

On solving the given equations of lines, we get the coordinates of the vertices of a $\triangle O P Q$ which are $O(0,0), P(1,0)$ and $Q(0,1)$. Since, the triangle is right angled at $O(0,0)$, therefore $O(0,0)$ is its orthocenter
320 (d)
Let the circumcentre of triangle be $P(x, y)$ and let the vertices of a $\triangle A B C$ be $A(0,30), B(4,0)$ and C $(30,0)$
$\therefore \quad P A^{2}=P B^{2}=P C^{2}$
$\Rightarrow(x-0)^{2}+(y-30)^{2}=(x-4)^{2}+(y-0)^{2}$
$=(x-30)^{2}+(y-0)^{2}$
From Ist and IInd terms,
$x^{2}+y^{2}-60 y+900=x^{2}+y^{2}-8 x+16$
$\Rightarrow 8 x-60 y+884=0$
From IInd and IIIrd terms,
$x^{2}-8 x+16+y^{2}=x^{2}-60 x+900+y^{2}$
$\Rightarrow 52 x=884 \Rightarrow x=17$
On putting $x=17$ in Eq. (i), we get
$y=17$
Hence, required point is $(17,17)$
321 (b)
Since, $\tan \theta=\frac{1}{2}$
In $\triangle A B C, \tan \alpha=\frac{\frac{h}{3}}{A B}=\frac{h}{120} \quad .$. (i)

In $\triangle A D B, \tan \beta=\frac{3 h}{120}$
$\therefore \tan \theta=\tan (\beta-\alpha)$
$\Rightarrow \tan \theta=\frac{\tan \beta-\tan \alpha}{1-\tan \beta \tan \alpha}$
$\Rightarrow \frac{1}{2}=\frac{\frac{3 h}{120}-\frac{h}{120}}{1+\frac{3 h^{2}}{14400}} \quad\left(\because \tan \theta=\frac{1}{2}\right.$, given $)$
$\Rightarrow \frac{1}{2}=\frac{\frac{2 h}{120}}{\frac{14400+3 h^{2}}{14400}}$
$\Rightarrow \frac{1}{2}=\frac{240 h}{14400+3 h^{2}}$
$\Rightarrow 14400+3 h^{2}=480 h$
$\Rightarrow 4800+h^{2}-160 h=0$
$\Rightarrow(h-40)(h-120)=0$
Since, the height of the pole is more than 100 m
$\therefore h=120 \mathrm{ft}$
322 (c)
Slope of line $O P=\frac{3}{4}$, let new position is $Q(x, y)$
slope of $O Q=\frac{y}{a}$ also $x^{2}+y^{2}=O Q^{2}=25=$
$\left(O P^{2}\right)$
$\tan 45^{\circ}=\left|\frac{\frac{y}{x}-\frac{3}{4}}{1+\frac{3 y}{4 x}}\right| \Rightarrow \pm 1=\frac{4 y-3 x}{4 x+3 y}$
Straight lines and pair of straight lines
$4 x+3 y=4 y-3 x$
or $-4 x-3 y=4 y-3 x$
$x=\frac{1}{7} y$
$-x=7 y$
Correct relation is $x=\frac{1}{7} y$ as new point must lies in Ist quadrant
$x^{2}+49 x^{2}=25$
$\Rightarrow x=-\frac{1}{\sqrt{2}}, y=\frac{7}{\sqrt{2}}$
323 (c)
In $\triangle A B C, \tan 30^{\circ}=\frac{B C}{A C}$

$\Rightarrow \frac{1}{\sqrt{3}}=\frac{h-150}{60}$
$\Rightarrow h=(150+20 \sqrt{3}) \mathrm{m}$
324 (b)
Since, $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=k \quad$ (say)
$\therefore \quad(a+b+c)(a+b-c)=3 a b$
$\Rightarrow a^{2}+b^{2}+2 a b-c^{2}=3 a b$
$\Rightarrow \frac{a^{2}+b^{2}-c^{2}}{2 a b}=\frac{1}{2} \Rightarrow \cos C=\cos \frac{\pi}{3}$
$\Rightarrow \angle C=\frac{\pi}{3}$
325 (b)
In $\triangle A B D, \tan \alpha=\frac{H}{d}$

In $\triangle E C D, \tan (\alpha-\beta)=\frac{H-h}{d}$
$\Rightarrow \tan (\alpha-\beta)=\frac{H-h}{H \cot \alpha} \quad[$ from Eq.(i)]
$\Rightarrow H[1-\cot \alpha \tan (\alpha-\beta)]=h$
$\Rightarrow H=\frac{h \cot (\alpha-\beta)}{\cot (\alpha-\beta)-\cot \alpha}$
326 (b)
Let the equation of line be
$\frac{x}{a}+\frac{y}{b}=1$
Since, it passes through $\left(\frac{1}{5}, \frac{1}{5}\right)$
$\therefore \quad \frac{1}{5 a}+\frac{1}{5 b}=1$
$\Rightarrow a+b=5 a b$
Since, the point $P(x, y)$ divides $A B$ joining $A(a, 0)$ and $B(0, b)$ internally in ratio $3: 1$
$\therefore x=\frac{a}{4}, y=\frac{3 b}{4} \Rightarrow a=4 x$ and $b=\frac{4 y}{3}$
On putting the value of a and b in Eq. (i), we get
$4 x+\frac{4 y}{3}=5(4 x)\left(\frac{4 y}{3}\right)$
$\Rightarrow 3 x+y=20 x y$
327 (d)
$(3-10+a)(9-20+a)>0$
or $(a-7)(a-11)>0$
$\therefore \quad a \in(-\infty, 7) \cup(11, \infty)$
328 (a)
$y=|x-2| \Rightarrow y=x-2$ and $y=2-x$

Area of shaded region $=2 A B C=2 \cdot \frac{1}{2} \cdot 1 \cdot 1=1$
$\frac{\cot \frac{A}{2} \cot \frac{B}{2}-1}{\cot \frac{a}{2} \cot \frac{B}{2}}=1-\tan \frac{A}{2} \tan \frac{B}{2}$
$=1-\sqrt{\frac{(s-b)(s-c)}{s(s-a)}} \sqrt{\frac{(s-a)(s-c)}{s(s-b)}}$
$=1-\frac{s-c}{s}=\frac{c}{s}$
$=\frac{2 c}{a+b+c}$
330 (c)
We have, $A G=1$
$\therefore G D=\frac{1}{2} A G=\frac{1}{2}$
Hence, the coordinates of D are $(1,1 / 2)$
Clearly, $A G$ is parallel to y-axis and the triangle $A B C$ is equilateral. Therefore, $B C$ is parallel to x axis at a distance of $\frac{1}{2}$ unit from it

Let a be the length of each side of $\triangle A B C$. Then,
$A D=\frac{\sqrt{3}}{2} a \Rightarrow \frac{\sqrt{3}}{2} a=\frac{3}{2} \Rightarrow a=\sqrt{3}$
Since D is the mid-point of $B C$ and $B C=\sqrt{3}$
$\therefore B D=C D=\frac{\sqrt{3}}{2}$
Hence, the coordinates of B and C are $\left(1-\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$ and $\left(1+\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$ respectively
331 (d)
$c^{2} \sin 2 B+b^{2} \sin 2 C$
$=c^{2}(2 \sin B \cos B)+b^{2}(2 \sin C \cos C)$
$=2 c^{2}\left(\frac{2 \Delta}{a c} \cos B\right)+2 b^{2}\left(\frac{2 \Delta}{a b} \cos C\right)$
$=4 \Delta\left(\frac{c \cos B+b \cos C}{a}\right)$
$=4 \Delta\left(\frac{a}{a}\right)=4 \Delta$
332 (a)
In $\triangle D A B, \tan \theta=\frac{64}{d}$

$\Rightarrow d=64 \cot \theta$
In $\triangle C D E, \tan \left(90^{\circ}-\theta\right)=\frac{(100-64)}{d}$
$\Rightarrow d=36 \tan \theta$
From Eqs. (i) and (ii), we get
$d^{2}=36 \times 64 \Rightarrow d=48 \mathrm{~m}$
(d)

We know that area of circle is πr^{2}
If radius, $r=a$, then $A=\pi a^{2}$
And the area of the segment of angle $2 \pi=\pi a^{2}$
\therefore Area of 1 angle $=\frac{\pi a^{2}}{2 \pi}$
\therefore Area of 2α angle $=\frac{2 \alpha \pi a^{2}}{2 \pi}=\alpha a^{2}$
336 (a)
Let $a=5 k, b=6 k$ and $c=5 k$
$s=\frac{5 k+6 k+5 k}{2}=8 k$
$\therefore r=\frac{\Delta}{s}$
$=\sqrt{\frac{8 k(8 k-5 k)(8 k-6 k)(8 k-5 k)}{8 k}}$
$=\sqrt{\frac{8 k \cdot 3 k \cdot 2 k \cdot 3 k}{8 k}}=\frac{3 k}{2}$
$\Rightarrow k=\frac{2 r}{3}=\frac{2 \times 6}{3}=4$
338 (b)
Let the height of the vertical tower $P Q=h, C$ is the middle point of line segment $A B$. Since, $P Q$ is perpendicular to the plane $Q A B$,
$\therefore \angle P Q A=\angle P Q C=\angle P Q B=90^{\circ}$, we get

$\frac{P Q}{Q A}=\tan \theta \Rightarrow Q A=h \cot \theta$
Similarly, $Q B=h \cot \theta$ and $Q C=h \cot \phi$
Since, $Q A=Q B$, the $\triangle Q A B$ is an isosceles triangle

Here, $Q C A$ is a right angled triangle in which
$\angle Q C A=90^{\circ}$
$\therefore O C^{2}+A C^{2}=Q A^{2}$
$\Rightarrow h^{2} \cot ^{2} \phi+a^{2}=h^{2} \cot ^{2} \theta$
or $h^{2}=\frac{a^{2}}{\cot ^{2} \theta-\cot ^{2} \phi}$
$\Rightarrow h^{2}=\frac{a^{2}}{\left(\operatorname{cosec}^{2} \theta-1\right)-\left(\operatorname{cosec}^{2} \phi-1\right)}$
$=\frac{a^{2}}{\operatorname{cosec}^{2} \theta-\operatorname{cosec}^{2} \phi}$
$=\frac{a^{2}}{\frac{1}{\sin ^{2} \theta}-\frac{1}{\sin ^{2} \phi}}$
$\Rightarrow h^{2}=\frac{a^{2} \sin ^{2} \theta \sin ^{2} \phi}{\sin ^{2} \phi-\sin ^{2} \theta}=\frac{a^{2} \sin ^{2} \theta \sin ^{2} \phi}{\sin (\phi-\theta) \sin (\phi-\theta)}$
Hence, the required height h of the peak
$=\frac{a \sin \theta \sin \phi}{\sqrt{\sin (\phi+\theta) \sin (\phi-\theta)}}$
339 (b)
Given, $\frac{\cos A}{K \sin A}=\frac{\cos B}{K \sin B}=\frac{\cos C}{K \sin C}$
$\Rightarrow \cot a=\cot B=\cot C$
$\Rightarrow A=B=C=60^{\circ}$
$\Rightarrow \triangle A B C$ is an equilateral triangle.
$\therefore \Delta \frac{\sqrt{3}}{4} a^{2}=\frac{\sqrt{3}}{4} \times \frac{1}{6}=\frac{\sqrt{3}}{24}$ sq unit
340 (c)
$\because \frac{a_{1}}{b_{1}}=\tan \left(\frac{\alpha+\beta}{2}\right)$
and $\frac{a_{2}}{b_{2}}=\tan \left(\frac{\beta+\gamma}{2}\right)$

Since, $a_{1} a_{2}=b_{1} b_{2}$
$\Rightarrow \frac{a_{1}}{b_{1}}=\frac{b_{2}}{a_{2}}$
$\Rightarrow \tan \left(\frac{\alpha+\beta}{2}\right)=\frac{1}{\tan \left(\frac{\beta+\gamma}{2}\right)}$
$\Rightarrow \tan \left(\frac{\alpha+\beta}{2}\right) \tan \left(\frac{\beta+\gamma}{2}\right)=1$
$\therefore \frac{\alpha+\beta}{2}+\frac{\beta+\gamma}{2}=\frac{\pi}{2}$
$\Rightarrow \alpha+\beta+\gamma=\pi-\beta<\pi$
(c)

We know that, $2 s=a+b+c$
$\therefore \frac{(a+b+c)(b+c-a)(c+a-b)(a+b-c)}{4 b^{2} c^{2}}$
$=\frac{2 s(2 s-2 a)(2 s-2 b)(2 s-2 c)}{4 b^{2} c^{2}}$
$=4 \frac{s(s-a)}{b c} \times \frac{(s-b)(s-c)}{b c}$
$=4 \cos ^{2} \frac{A}{2} \times \sin ^{2} \frac{A}{2}=\sin ^{2} A$
342 (b)
Let $P(h, k)$ be the required point, then $2 P A=3 P B$
$\Rightarrow 4 P A^{2}=9 P B^{2}$
$\Rightarrow 4\left[(h-0)^{2}+(k-0)^{2}\right]$ $=9\left[(h-4)^{4}+(k+3)^{2}\right]$
$\Rightarrow 4\left(h^{2}+k^{2}\right)=9\left[h^{2}+16-8 h+k^{2}+9+6 k\right]$
$\Rightarrow 5 h^{2}+5 k^{2}-72 h+54 k+225=0$
\therefore Required locus of $P(h, k)$ is
$5 x^{2}+5 y^{2}-72 x+54 y+225=0$
343 (a)
Here, $a=\sqrt{(16-5)^{2}+(12-12)^{2}}=11$
$b=\sqrt{(16-0)^{2}+(12-0)^{2}}=20$
And $c=\sqrt{(5-0)^{2}+(12-0)^{2}}=13$
\therefore
Incentre $=\left(\frac{11 \times 0+20 \times 5+13 \times 16}{11+20+13}, \frac{11 \times 0+20 \times 12+13 \times 12}{11+20+13}\right)=$
(d)

We have, $\tan \frac{A}{2} \tan \frac{C}{2}=\frac{1}{2}$

$$
\begin{aligned}
& \Rightarrow \quad \sqrt{\frac{(s-b)(s-c)}{s(s-a)}} \sqrt{\frac{(s-a)(s-b)}{s(s-c)}}=\frac{1}{2} \\
& \Rightarrow \quad \frac{s-b}{s}=\frac{1}{2} \Rightarrow 2 s-2 b-s=0 \\
& \Rightarrow \quad a+c-3 b=0
\end{aligned}
$$

345 (c)
Since, $\sin ^{2} \frac{A}{2}, \sin ^{2} \frac{B}{2}, \sin ^{2} \frac{C}{2}$ be in HP
$\Rightarrow \frac{1}{\sin ^{2} \frac{A}{2}}, \frac{1}{\sin ^{2} \frac{B}{2}}, \frac{1}{\sin ^{2} \frac{C}{2}}$ are in AP
$\Rightarrow \frac{1}{\sin ^{2} \frac{C}{2}}-\frac{1}{\sin ^{2} \frac{B}{2}}=\frac{1}{\sin ^{2} \frac{B}{2}}-\frac{1}{\sin ^{2} \frac{A}{2}}$
$\Rightarrow \frac{a b}{(s-a)(s-b)}-\frac{a c}{(s-a)(s-c)}$
$=\frac{a c}{(s-a)(s-c)}-\frac{b c}{(s-b)(s-c)}$
$\Rightarrow \quad\left(\frac{a}{s-a}\right)\left(\frac{b(s-c)-c(s-b)}{(s-b)(s-c)}\right)$
$=\left(\frac{c}{s-c}\right)\left(\frac{a(s-b)-b(s-a)}{(s-a)(s-b)}\right)$
$\Rightarrow a b s-a b c-a c s+a b c$
$=a c s-a b c-b c s+a b c$
$\Rightarrow a b-a c=a c-b c \Rightarrow a b+b c=2 a c$
$\Rightarrow \frac{1}{c}+\frac{1}{a}=\frac{2}{b}$
$\Rightarrow a, b, c$ are in HP
346 (d)
It is given that O is the origin and $P(2,3)$ and $Q(4,5)$ are two points
$\therefore \cos \angle P O Q=\frac{O P^{2}+O Q^{2}-P Q^{2}}{2(O P)(O Q)}$
$\Rightarrow O P \times O Q \cos \angle P O Q=\frac{1}{2}\left\{O P^{2}+O Q^{2}-P Q^{2}\right\}$
$\Rightarrow O P \times O Q \cos \angle P O Q=\frac{1}{2}\{13+41-8\}=23$
ALITER If O is the origin and $P\left(x_{1}, y_{1}\right), Q\left(x_{2}, y_{2}\right)$
are two points, then
$O P \times O Q \times \cos \angle P O Q=x_{1} x_{2}+y_{1} y_{2}$
Here, $x_{1}=2, y_{1}=3, x_{2}=4$ and $y_{2}=5$
$\therefore O P \times O Q \times \cos \angle P O Q=8+15=23$
347 (d)
$\frac{\sin 3 B}{\sin B}=\frac{3 \sin B-4 \sin ^{3} B}{\sin B}=3-4 \sin ^{2} B$
$=3-4\left(1-\cos ^{2} B\right)$
$=-1+\frac{4\left(a^{2}+c^{2}-b^{2}\right)^{2}}{4(a c)^{2}}$
$=-1+\frac{\left(\frac{a^{2}+c^{2}}{2}\right)^{2}}{(a c)^{2}}$
$=-1+\frac{\left(a^{2}+c^{2}\right)^{2}}{4(a c)^{2}} \quad\left[\because 2 b^{2}=a^{2}+c^{2}\right.$ (given) $]$
$=\frac{\left(a^{2}+c^{2}\right)^{2}-4 a^{2} c^{2}}{4(a c)^{2}}=\left(\frac{c^{2}-a^{2}}{2 a c}\right)^{2}$
348 (a)
Since, $\angle Q P C=\alpha$

$\therefore \angle Q P B=\angle B P C=\frac{\alpha}{2}$
In $\triangle P Q B, \sin \frac{\alpha}{2}=\frac{r}{l}$
$\Rightarrow l=r \sec \frac{\alpha}{2}$
and in $\triangle P O B, \sin \beta=\frac{h}{l}$
$\Rightarrow h=l \sin \beta$
$\Rightarrow h=r \operatorname{cosec} \frac{\alpha}{2} \sin \beta \quad$ [from Eq.(i)]

349 (d)
$\cos O P Q=\frac{O P^{2}+P Q^{2}-O Q^{2}}{2 O P \cdot P Q}$
$=\frac{\left(4^{2}+2^{2}\right)+2^{2}-\left(4^{2}+4^{2}\right)}{2 \sqrt{4^{2}+2^{2}} \cdot \sqrt{2^{2}}}$
$=\frac{24-32}{42 \sqrt{5}}$

$\Rightarrow \angle O P Q=\cos ^{-1}\left(-\frac{1}{\sqrt{5}}\right)$
350 (a)
Let $A B$ be a hill whose height is h metres and $C D$ be a pillar of height h ' meters.
In $\triangle E D B, \tan \alpha=\frac{h-h^{\prime}}{E D} \ldots$ (i)
and in $\triangle A C B, \tan \beta=\frac{h}{A C}=\frac{h}{E D} \ldots$ (ii)

\therefore From Eqs. (i) and (ii),
$\frac{\tan \alpha}{\tan \beta}=\frac{h-h^{\prime}}{h}$
$\Rightarrow h \cdot \frac{\tan \alpha}{\tan \beta}=h-h^{\prime} \Rightarrow h^{\prime}=\frac{h(\tan \beta-\tan \alpha)}{\tan \beta}$
351 (c)
We have,
Area of $\triangle A B C=3$ Area of $\triangle G A B$
Now,
Area of $\triangle G A B=\frac{1}{2}$

$$
\times \text { Absolute value of }\left|\begin{array}{ccc}
1 & 4 & 1 \\
4 & -3 & 1 \\
-9 & 7 & 1
\end{array}\right|
$$

\Rightarrow Area of $\triangle G A B=\frac{1}{2}|-10-52+1|=\frac{61}{2}$ sq. units
Hence, Area of $\triangle A B C=\frac{183}{2}$ sq. units
352 (a)
Using sine rule,
$\frac{a}{\sin A}=\frac{b}{\sin B}$
$\Rightarrow \frac{2 \sqrt{2}}{\sin 45^{\circ}}=\frac{6}{\sin B}$
$\Rightarrow \sin B=\frac{6}{2 \sqrt{2}} \times \frac{1}{\sqrt{2}}$
$=\frac{6}{4}=\frac{3}{2}>1$
Which is not possible
Hence, no triangle is possible
353 (b)
Let the height of pole $A D=B C=h$
In $\triangle O B C, \tan 60^{\circ}=\frac{h}{x}$
$\Rightarrow x=\frac{h}{\sqrt{3}}$
In $\triangle A O D, \tan 30^{\circ}=\frac{h}{100-x}$

$\Rightarrow h=(100-x) \frac{1}{\sqrt{3}}$
$=\left(100-\frac{h}{\sqrt{3}}\right) \frac{1}{\sqrt{3}}$
$\Rightarrow 3 h=100 \sqrt{3}-h \quad$ [from Eq.(i)]
$\Rightarrow h=\frac{100 \sqrt{3}}{4}$
$\Rightarrow h=25 \sqrt{3} \mathrm{~m}$
354
(b)

The vertices of a triangle are $(0,2),\left(\frac{1}{2}, 1\right),(1,1)$
\therefore Area of triangle $=\frac{1}{2}\left|\begin{array}{lll}0 & 2 & 1 \\ \frac{1}{2} & 1 & 1 \\ 1 & 1 & 1\end{array}\right|$
$=\frac{1}{2}\left[-2\left(\frac{1}{2}-1\right)+1\left(\frac{1}{2}-1\right)\right]$
$=\frac{1}{4}$ squnit
356 (c)
Since, triangle is isosceles, hence centriod is the desired point

\therefore Coordinates of $R\left(3, \frac{4}{3}\right)$
357 (c)
Let $A Q(=P Q)$ be the broken part of the tree $O P$.

It is given that $O A=10 \mathrm{~m}$ and $\angle O A Q=45^{\circ}$
In $\triangle O A Q$, we have
$\tan 45^{\circ}=\frac{O Q}{O A} \Rightarrow O Q=10^{\circ}$

Also, $A Q^{2}=O A^{2}+O Q^{2}$
$\Rightarrow A Q=\sqrt{100+100}=10 \sqrt{2}$
$\therefore O P=O Q+P Q=O Q+A Q=10+10 \sqrt{2}$

$$
=10(\sqrt{2}+1) \mathrm{mts}
$$

358 (c)
Let the new coordinates be $P\left(x^{\prime}, y^{\prime}\right)$ after shifting origin to $P\left(x^{\prime}, y^{\prime}\right)$ ie, $x=x^{\prime}+h$ and $y=y^{\prime}+k$

$$
\begin{aligned}
& \therefore\left(x^{\prime}+h\right)^{2}+\left(y^{\prime}+k\right)^{2}-4\left(x^{\prime}+h\right)+6\left(y^{\prime}+k\right) \\
& \quad-7=0 \\
& \Rightarrow\left(x^{\prime}\right)^{2}+\left(y^{\prime}\right)^{2}+2(h-2) x^{\prime}+2(k+3) y^{\prime} \\
& \quad+\left(h^{2}+k^{2}-4 h+6 k-7\right)=0
\end{aligned}
$$

According to the question,
$h-2=0$ and $k+3=0$
$\Rightarrow \quad(h, k)=(2,-3)$
359 (d)
In $\triangle A B C, \tan 30^{\circ}=\frac{B C}{A C}$
$\Rightarrow \frac{1}{\sqrt{3}}=\frac{h-150}{60}$
$\Rightarrow \quad h-150=\frac{60}{\sqrt{3}}$

$\Rightarrow h=(150+20 \sqrt{3}) \mathrm{m}$
360
(d)

The sum of the distance
$=\frac{\frac{a}{a}+\frac{b}{a}-1}{\sqrt{\left(\frac{1}{a}\right)^{2}+\left(\frac{1}{b}\right)^{2}}}+\frac{\frac{a}{b}+\frac{b}{a}-1}{\sqrt{\left(\frac{1}{b}\right)^{2}+\left(\frac{1}{a}\right)^{2}}}$
$=\left(\frac{a}{b}+\frac{b}{a}\right) \frac{1}{\sqrt{\frac{1}{a^{2}}+\frac{1}{b^{2}}}}$
$=\sqrt{a^{2}+b^{2}}$
361 (b)
Given, $\frac{1}{b+c}+\frac{1}{c+a}=\frac{3}{a+b+c}$
$\Rightarrow 1+\frac{b}{a+c}+1+\frac{a}{b+c}=3$
$\Rightarrow b(b+c)+a(a+c)=(a+c)(b+c)$
$\Rightarrow a^{2}+b^{2}-c^{2}=a b$
$\therefore \cos C=\frac{a^{2}+b^{2}-c^{2}}{2 a b}=\frac{a b}{2 a b} \Rightarrow \angle C=60^{\circ}$
362 (b)
Given, $\frac{\sin A}{1 / 4}=\frac{\sin B}{1 / 4}=\frac{\sin C}{1 / 3}$
$\therefore \frac{\sin A}{3}=\frac{\sin B}{3}=\frac{\sin C}{4}$
Here, $a=3 k, b=3 k$ and $c=4 k$, where k is a proportionality constant
$\therefore \cos C=\frac{9 k^{2}+9 k^{2}-16 k^{2}}{2 \times 3 k \times 3 k}=\frac{1}{9}$
363 (b)

$$
\begin{aligned}
& (b+c)(b c) \cos A+(a+c)(a c) \cos B \\
& +(a+b)(a b) \cos C \\
& =(b+c)(b c)\left(\frac{b^{2}+c^{2}-a^{2}}{2 b c}\right)+(a+c)(a c) \\
& \times\left(\frac{a^{2}+c^{2}-b^{2}}{2 c a}\right) \\
& +(a+b)(a b)\left(\frac{a^{2}+b^{2}-c^{2}}{2 a b}\right) \\
& =\frac{1}{2}\left\{(b+c)\left(b^{2}+c^{2}-a^{2}\right)+(a+c)\right. \\
& \times\left(a^{2}+c^{2}-b^{2}\right)+(a+b)\left(a^{2}\right. \\
& \left.\left.+b^{2}-c^{2}\right)\right\} \\
& =\frac{1}{2}\left\{2 a^{3}+2 b^{3}+2 c^{3}\right\}=a^{3}+b^{3}+c^{3}
\end{aligned}
$$

364 (a)
In $\triangle D C B, \tan \theta=\frac{h}{x}$

and in $\triangle E C A, \tan \theta=\frac{h+6}{2 \sqrt{3}+x}$
$\Rightarrow \frac{h}{x}=\frac{h+6}{2 \sqrt{3}+x}$ [from Eq.(i)]
$\Rightarrow 2 \sqrt{3} h+h x=h x+6 x$
$\Rightarrow 2 \sqrt{3} h=6 x$
$\Rightarrow h=\frac{6 x}{2 \sqrt{3}}$

From Eq. (i), we get
$\tan \theta=\frac{6 x}{2 \sqrt{3} x}=\sqrt{3}$
$\Rightarrow \theta=60^{\circ}$
365 (b)
Since, angles A, B, C are in AP
$\therefore 2 B=A+C$
$\because A+B+C=180^{\circ}$
$\Rightarrow B=60^{\circ}$
Now, $\cos B=\frac{a^{2}+c^{2}-b^{2}}{2 a c}$
$\Rightarrow \frac{1}{2}=\frac{a^{2}+c^{2}-b^{2}}{2 a c}$
$\Rightarrow a^{2}+c^{2}-b^{2}=a c$
$\Rightarrow b^{2}=a^{2}+c^{2}-a c$
366 (a)
Let $a=7 \mathrm{~cm}, b=4 \sqrt{3} \mathrm{~cm}$ and $c=\sqrt{13} \mathrm{~cm}$
Here, we see that the smallest side is c
Therefore, the smallest angle will be C
$\therefore \cos C=\frac{(7)^{2}+(4 \sqrt{3})^{2}-(\sqrt{13})^{2}}{2 \times 7 \times 4 \sqrt{3}}=\frac{\sqrt{3}}{2}$
$\Rightarrow \angle C=\frac{\pi}{6}$
367 (c)
On solving the given straight lines, we get vertices of $\triangle A B C$
Which are $A(2,-2), B(1,1), C(-2,2)$
$\therefore \quad A B=\sqrt{(1-2)^{2}+(1+2)^{2}}=\sqrt{10}$
$B C=\sqrt{(-2-1)^{2}+(2-1)^{2}}=\sqrt{10}$
And $C A=\sqrt{(2+2)^{2}+(-2-2)^{2}}=\sqrt{32}$
Here, $A B=B c$
\Rightarrow Triangle is isosceles triangle
369 (d)
If $\left|\begin{array}{lll}x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \\ x_{3} & y_{3} & 1\end{array}\right|=0$, then the points are collinear
370 (a)
Let $\angle A=45^{\circ}$ and $\angle B=60^{\circ}$
$\therefore \angle C=75^{\circ}$
Let smallest and greatest sides are a and c
$\therefore a: c=\sin 45^{\circ}: \sin 75^{\circ}$
$=\frac{1}{\sqrt{2}}: \frac{\sqrt{3}+1}{2 \sqrt{2}}=2: \sqrt{3}+1$
$=2(\sqrt{3}-1):(\sqrt{3}+1)(\sqrt{3}-1)$
$=(\sqrt{3}-1): 1$
371 (b)
In $\triangle A D F, \tan 60^{\circ}=\frac{1}{A F}$

$\Rightarrow A F=\cot 60^{\circ}=\frac{1}{\sqrt{3}}$
In $\triangle A B C, \tan 30^{\circ}=\frac{1}{A B}$
$\Rightarrow A B=\cot 30^{\circ}$
$\Rightarrow A F+F B=\sqrt{3}$
$\Rightarrow d=\sqrt{3}-\frac{1}{\sqrt{3}}=\frac{2}{\sqrt{3}} \quad$ [using Eq.(i)]
\therefore Speed of aeroplane $=\frac{\text { distance from } D \text { to } C}{\text { time taken }}$
$=\frac{\frac{2}{\sqrt{3}}}{10} \times 60 \times 60=240 \sqrt{3} \mathrm{~km} / \mathrm{h}$
372 (a)
Let $C D$ is a tower of height $h . A B$ is building of height a

In $\triangle B L D, \tan 30^{\circ}=\frac{h-a}{L B}$
$\therefore L B=\frac{(h-a)}{\tan 30^{\circ}}=\sqrt{3}(h-a)$
In $\triangle A C D, \tan 45^{\circ}=\frac{h}{L B}$
or $h(\sqrt{3}-1)=\sqrt{3} a$
$\therefore h=\frac{\sqrt{3} a}{\sqrt{3}-1}=\frac{\sqrt{3}(\sqrt{3}+1) a}{2}$
$\therefore \quad h=\left(\frac{3+\sqrt{3}}{2}\right) a$
373 (d)
$\frac{\sin 3 B}{\sin B}=\frac{3 \sin B-4 \sin ^{3} B}{\sin B}$
$=3-4\left(1-\cos ^{2} B\right)$
$=-1+4\left(\frac{a^{2}+c^{2}-b^{2}}{2 a c}\right)^{2}=-1+\frac{\left(\frac{a^{2}+c^{2}}{2}\right)^{2}}{(a c)^{2}}$
$=\frac{\left(a^{2}+c^{2}\right)^{2}-4 a^{2} c^{2}}{4(a c)^{2}}=\left(\frac{c^{2}-a^{2}}{2 a c}\right)^{2}$

(b)

Since, $\frac{B D}{D C}=\frac{1}{3}$

In $\triangle A B D$, by sine rule
$A D=\frac{\sin \frac{\pi}{3}}{\sin \angle B A D} \cdot B D$
In $\triangle A D C$, by sine rule
$A D=\frac{\sin \frac{\pi}{4}}{\sin \angle D A C} . D C$
From Eqs. (ii) and (iii),
$\frac{\sin \angle B A D}{\sin \angle D A C}=\frac{\sin \frac{\pi}{3}}{\sin \frac{\pi}{4}} \cdot \frac{B D}{D C}=\frac{\sqrt{3}}{2} \cdot \sqrt{2} \cdot \frac{1}{3}=\frac{1}{\sqrt{6}}$
376 (b)
Since, reflection of the orthocenter of $\triangle A B C$ in base $B C$ will always lie on the circumcircle of the triangle $A B C$, therefore coordinate of a point lying on the circumcircle is
$\left(1-\frac{1 \times 4}{2}, 1-\frac{1 \times 4}{2}\right)$ ie, $(-1,-1)$ and coordinates of the circumcentre is $(2,0)$
\therefore Radius of the circumcentre of $\triangle A B C$
$=\sqrt{(2+1)^{2}+(1)^{2}}=\sqrt{10}$
377 (a)
Given, $b+c=2 a, \angle A=60^{\circ}$
Since, $\angle A=60^{\circ} \angle B+\angle C=120^{\circ}$
Also, $b+c=2 a$ [given]
$\sin B+\sin C=2 \sin 60^{\circ}$
$\Rightarrow\left[\because \frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}=k\right]$
$\Rightarrow 2 \sin \left(\frac{B+C}{2}\right) \cos \left(\frac{B-C}{2}\right)=\frac{2 \sqrt{3}}{2}$
$\Rightarrow 2 \sin 60^{\circ} \cos \left(\frac{B-C}{2}\right)=\sqrt{3}\left[\because \sin 60^{\circ}=\frac{\sqrt{3}}{2}\right]$
$\Rightarrow \cos \left(\frac{B-C}{2}\right)=1 \Rightarrow \frac{B-C}{2}=0$
$\Rightarrow \angle B=\angle C$
Hence, triangle is an equilateral triangle
(c)

Let the vertices of the triangle are
$A(-2,-6), B(-2,4)$ and $C(1,3)$
Now, $A B=\sqrt{(-2+2)^{2}+(-6-4)^{2}}=10$
$B C=\sqrt{(-2-1)^{2}+(4-3)^{2}}=\sqrt{10}$
and $C A=\sqrt{(1+2)^{2}+(3+6)^{2}}=\sqrt{90}$
Here, $A B^{2}=B C^{2}+C A^{2}$
\therefore Triangle is right angled triangle at C
$\therefore \quad \angle C=90^{\circ}$
So, orthocenter is $(1,3)$

379 (a)
Area of $\Delta=\frac{1}{2}\left\|\begin{array}{ccc}0 & 0 & 1 \\ a \cos \theta & b \sin \theta & 1 \\ a \cos \theta & -b \sin \theta & 1\end{array}\right\|$
$\Rightarrow \Delta=\frac{1}{2}|[1(-a b \sin \theta \cos \theta-a b \sin \theta \cos \theta)]|$
$=\frac{a b \sin 2 \theta}{2}$
Since, maximum value of $\sin 2 \theta$ is 1 , when $\theta=\frac{\pi}{4}$
$\therefore \quad \Delta_{\max }=\frac{a b}{2}$
380 (d)
Let $O(x, y)$ be the circumcentre. Then, G divides $O^{\prime} O$ in the ratio 2:1
$\therefore \frac{2 x+0}{2+1}=2$ and $\frac{2 y+1}{2+1}=3 \Rightarrow x=3$ and $y=4$
Hence, the coordinates of O are $(3,4)$
381 (d)
Perpendicular bisector of $A(1,3)$ and $B(-3,5)$ is $2 x-y+6=0$
And perpendicular bisector of $A(1,3)$ and
$C(5,-1)$ is
$x-y-2=0$
On solving Eqs. (i) and (ii), we get
$x=-8, y=-10$
\therefore Coordinates of P are $(-8,-10)$
Thus, $P A=\sqrt{(1+8)^{2}+(3+10)^{2}}$
$=\sqrt{81+169}=5 \sqrt{10}$
382 (a)
Given sides are $3 x-4 y=0,5 x+12 y=0$
and $y-15=0$. The vertices of a triangle are
$A(0,0), B(20,15), C(-36,15)$
Now, $A B=c=\sqrt{(20-0)^{2}+(15-0)^{2}}$
$=\sqrt{400+225}$
$=25$
$B C=a=\sqrt{(20+36)^{2}+(15-15)^{2}}$
$=56$
$C A=b=\sqrt{(-36-0)^{2}+(15-0)^{2}}$
$=\sqrt{1296+225}=39$
\therefore Incentre
$=\left(\frac{a x_{1}+b x_{2}+c x_{3}}{a+b+c}, \frac{a y_{1}+b y_{2}+c y_{2}}{a+b+c}\right)$
$=\binom{\frac{56 \times 0+39 \times 20-36 \times 25}{56+39+25}}{\frac{56 \times 0+39 \times 15+25 \times 15}{56+39+25}}$
$=\left(\frac{-120}{120}, \frac{960}{120}\right)$
$=(-1,8)$
383 (d)
The mid point of the line joining the points
$(-10,8)$ and $(-6,-12)$
is $\left(\frac{-10-6}{2}, \frac{8+12}{2}\right)$ ie, $(-8,10)$. Let $(-8,10)$ divides the line joining the points $(4, .-2)$ and $(-2,4)$ in the ratio m : n
Then, $\frac{m(-2)+n(4)}{m+n}=-8$
$\Rightarrow-2 m+4 n=-8 m-8 n$
$\Rightarrow 6 m=-12 n \Rightarrow \frac{m}{n}=\frac{-2}{1}$
\therefore Required ratio $2: 1$ externally.
384 (a)
Given the circle is inscribed in square formed by the lines
$x^{2}-8 x+12=0$ and $y^{2}-14 y+45=0$
$\Rightarrow \quad x=6$ and $x=2, y=5$ and $y=9$

$A B C D$ clearly forms a square
\therefore Centre of inscribed circle
=point of intersection of diagonals
$=$ mid point of $A C$ or $B D$
$=\left(\frac{2+6}{2}, \frac{5+9}{2}\right)$
\Rightarrow Centre of inscribed circle $=(4,7)$
385 (a)
Area of a circle $=\pi \times(\text { radius })^{2}$
$\therefore \quad A=\pi r^{3}, A_{1}=\pi r_{1}^{2}, A_{2}=\pi r_{2}^{2}, A_{3}=\pi r_{3}^{2}$
$\therefore \frac{1}{\sqrt{A_{1}}}+\frac{1}{\sqrt{A_{2}}}+\frac{1}{\sqrt{A_{3}}}$
$=\frac{1}{r_{1} \sqrt{\pi}}+\frac{1}{r_{2} \sqrt{\pi}}+\frac{1}{r_{3} \sqrt{\pi}}$
$=\frac{1}{\sqrt{\pi}}\left(\frac{1}{r_{1}}+\frac{1}{r_{2}}+\frac{1}{r_{3}}\right)$
$=\frac{1}{\sqrt{\pi}}\left(\frac{s-a}{\Delta}+\frac{s-b}{\Delta}+\frac{s-c}{\Delta}\right)$
$=\frac{1}{\sqrt{\pi}}\left(\frac{3 s-(a+b+c)}{\Delta}\right)$
$=\frac{1}{\sqrt{\pi}} \cdot \frac{3 s-2 s}{\Delta}=\frac{1}{\sqrt{\pi}} \cdot \frac{s}{\Delta}$
$=\frac{1}{r \sqrt{\pi}}=\frac{1}{\sqrt{A}}$
386 (b)
We have,
$x^{2}+4 x y+y^{2}=a X^{2}+b Y^{2}$
$\Rightarrow(X \cos \theta+Y \sin \theta)^{2}$
$+14(X \cos \theta+Y \sin \theta)(X \sin \theta$
$-Y \cos \theta)+(X \sin \theta-Y \cos \theta)^{2}$
$=a X^{2}+b Y^{2}$
$\Rightarrow a=1+4 \sin \theta \cos \theta, b=1-4 \sin \theta \cos \theta$ and $\sin ^{2} \theta-\cos ^{2} \theta=0$
$\Rightarrow a=1+4 \sin \theta \cos \theta, b=1-4 \sin \theta \cos \theta$ and $\theta=\frac{\pi}{4}$
$\Rightarrow a=3, b=-1$
387
(d)

Let $S(x, y)$, then
$(x+1)^{2}+y^{2}+(x-2)^{2}+y^{2}=2\left[(x-1)^{2}+y^{2}\right]$
$\Rightarrow 2 x+1+4-4 x=-4 x+2$
$\Rightarrow x=\frac{-3}{2}$
Hence, it is a straight line parallel to y-axis
388
(b)

Given lines are

$x^{2}-3 y^{2}=0$
$x^{2}-3 y^{2}=0$
And $x=4$
Put $x=4$ from Eq. (ii) in Eq. (i), we get
$16-3 y^{2}=0$
$\Rightarrow \quad y^{2}=\frac{16}{3} \Rightarrow y= \pm \frac{4}{\sqrt{3}}$
The vertices of the triangle are
$O(0,0), P\left(4, \frac{4}{\sqrt{3}}\right), Q\left(4,-\frac{4}{\sqrt{3}}\right)$
$O P=\sqrt{4^{2}+\left(\frac{4}{\sqrt{3}}\right)^{2}}=\frac{8}{\sqrt{3}}$
$O Q=\sqrt{4^{2}+\left(\frac{4}{\sqrt{3}}\right)^{2}}=\frac{8}{\sqrt{3}}$
$P Q=\sqrt{\left(\frac{4}{\sqrt{3}}+\frac{4}{\sqrt{3}}\right)^{2}}=\frac{8}{\sqrt{3}}$
$\Rightarrow \quad O P=Q P=P Q=\frac{8}{\sqrt{3}}$
$\therefore \triangle O P Q$ is an equilateral triangle

389 (c)
Let $B C$ be the incomplete and $B D$ be the complete pillar. In $\triangle^{s} A B C$ and $A B D$, we have
$\tan 45^{\circ}=\frac{B C}{A B}$ and $\tan 60^{\circ}=\frac{B D}{A B}$
$\Rightarrow B C=100 \mathrm{~m}$ and $B D=100 \sqrt{3}$
$\Rightarrow B C+C D=100 \sqrt{3}$
$\Rightarrow 100+x=100 \sqrt{3} \Rightarrow x=100(\sqrt{3}-1) \mathrm{m}$

390 (b)
The coordinates of the vertices of $\triangle O A B$ are $O(0,0), A(4,0)$ and $B(0,3)$
$\therefore O A=4, O B=3$ and $A B=5$

Hence, the coordinates of the excentre opposite to the vertex O are

$$
\begin{gathered}
\left(\frac{-5 \times 0+3 \times 4+4 \times 0}{-5+3+4}, \frac{-5 \times 0+3 \times 0+4 \times 3}{-5+3+4}\right) \\
=(6,6)
\end{gathered}
$$

391 (b
In $\triangle A O T, \tan \alpha=\frac{h}{O A}$
$\Rightarrow O A=h \cot \alpha$
In $\triangle A O P, \tan \beta=\frac{l}{A O}$

$\Rightarrow \tan \beta=\frac{l}{h \cot \alpha}$ [from Eq.(i)]
$\Rightarrow h=l \tan \alpha \cot \beta$

392
(b)
6. $b \cos ^{2} \frac{C}{2}+c \cos ^{2} \frac{B}{2}=b \cdot \frac{s(s-c)}{a b}+c \cdot \frac{s(s-b)}{a c}$
$=\frac{s}{a}[2 s-(b+c)]=s$
Hence, statement I is true
7. Let $\cot \frac{A}{2}=\frac{b+c}{2}$
$\Rightarrow \frac{\cos \frac{A}{2}}{\sin \frac{A}{2}}=\frac{\sin B+\sin C}{\sin A}$
$\Rightarrow \frac{\cos \frac{A}{2}}{\sin \frac{A}{2}}=\frac{2 \sin \left(\frac{B+C}{2}\right) \cos \left(\frac{B-C}{2}\right)}{2 \sin \frac{A}{2} \cos \frac{A}{2}}$
$\Rightarrow \cos \frac{A}{2}=\cos \left(\frac{B-C}{2}\right)$
$\Rightarrow \frac{A}{2}=\frac{B-C}{2} \Rightarrow A+C=B$
But $A+B+C=\pi$, therefore $B=\frac{\pi}{2}$
But given statement is
$\cot \frac{A}{2}=\frac{b+c}{2} \Rightarrow \angle B=90^{\circ}$
Hence, statement II is not true
393 (b)
$\because \angle C D A=\beta, \angle D C B=\gamma$,
and $\angle A C B=\pi-(\alpha+\beta+\gamma)$

In $\triangle A B C$, on applying sine rule, we get
$\frac{A B}{\sin [\pi-(\alpha+\beta+\gamma)]}=\frac{C A}{\sin \gamma}$
$\Rightarrow C A=\frac{a \sin \gamma}{\sin (\alpha+\beta+\gamma)}$
Now, in $\triangle C A D$, on applying sine rule
$\frac{C A}{\sin \beta}=\frac{C D}{\sin \alpha}$
$\Rightarrow C D=\frac{C A \cdot \sin \alpha}{\sin \beta}$
$=\frac{a \sin \gamma \sin \alpha}{\sin \beta \sin (\alpha+\beta+\gamma)}$
394 (b)
Let $P D$ be a pole
In $\triangle D A P, \tan 30^{\circ}=\frac{D P}{A D}$
$\Rightarrow D P=\frac{a}{\sqrt{3}}$
In $\triangle P D B, \tan \theta=\frac{D P}{B D}$
$\Rightarrow \tan \theta=\frac{a / \sqrt{3}}{\sqrt{2} a}=\frac{1}{\sqrt{6}}$

395
(b)

Since, $\frac{a}{b}=\frac{2}{\sqrt{3}-1}$ and $A=3 B$
By sine rule, $\frac{\sin A}{\sin B}=\frac{a}{b}$
$\Rightarrow \frac{\sin 3 B}{\sin B}=\frac{2}{\sqrt{3}-1}$
$\Rightarrow \frac{3 \sin B-4 \sin ^{3} B}{\sin B}=\frac{2}{\sqrt{3}-1}$
$\Rightarrow 3-4 \sin ^{2} B=\frac{2(\sqrt{3}+1)}{2}$
$\Rightarrow \frac{2-\sqrt{3}}{4}=\sin ^{2} B$
$\Rightarrow \sin B=\frac{\sqrt{3}-1}{2 \sqrt{2}}$
$\Rightarrow \angle B=15^{\circ}, \angle A=45^{\circ}$ and $\angle C=120^{\circ}$
(d)

In $\triangle A B C, \tan \alpha=\frac{h}{x+d}$
$\Rightarrow x+d=h \cot \alpha$

and in $\triangle A B D$,
$\tan \beta=\frac{h}{x} \Rightarrow x=h \cot \beta$
On putting this value in Eq. (i), we get $h \cot \beta+d=h \cot \alpha$

$$
\Rightarrow h=\frac{d}{\cot \alpha-\cot \beta}
$$

397 (b)
$\tan (\alpha+\beta)=\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta}$
$=\frac{\frac{y}{z}+\frac{x}{z}}{1-\frac{y}{z} \times \frac{x}{z}}$
$=\frac{\frac{3}{6}+\frac{2}{6}}{1-\frac{3}{6} \times \frac{2}{6}}=1$

$\Rightarrow \alpha+\beta=\angle Q P R=\frac{\pi}{4}$
398 (a)
Let (x, y) be the original coordinates of P. Then,
$x=1+\cos \theta$ and $y=1+\cos \phi$
$\Rightarrow x=2 \cos ^{2} \frac{\theta}{2}, y=2 \cos ^{2} \frac{\phi}{2}$
399 (b)
Given, $r_{1}=2 r_{2}=3 r_{3}$
$\Rightarrow \frac{\Delta}{(s-a)}=\frac{2 \Delta}{(s-b)}=\frac{3 \Delta}{(s-c)}$
$\Rightarrow(s-b)=2(s-a)$ and $(s-c)=3(s-a)$
$\Rightarrow \frac{a+b+c}{2}-b=2\left(\frac{a+b+c}{2}-a\right)$
and $\frac{a+b+c}{2}-c=3\left(\frac{a+b+c}{2}-a\right)$
$\Rightarrow a+c-b=2(-a+b+c)$
and $a+b-c=3(-a+b+c)$
$\Rightarrow 3 a=3 b+c$ and $2 a=b+2 c$
$\Rightarrow 4 a=5 b \Rightarrow \frac{a}{b}=\frac{5}{4}$
400 (b)
Since a, b and x are in AP
$\Rightarrow 2 b=a+c$
$\Rightarrow 3 b=2 s \Rightarrow s=\frac{3 b}{2}$
Now, $\frac{\sin \frac{A}{2} \sin \frac{C}{2}}{\sin \frac{B}{2}}=\sqrt{\frac{a c(s-b)(s-c)(s-b)(s-a)}{(s-a)(s-c) \times b c \times a b}}$
$=\frac{s-b}{b}=\frac{\frac{3 b}{2}-b}{b}=\frac{1}{2}$
401 (b)
Let $A D$ be the building of height h and $B P$ be the hill. Then,
$\tan q=\frac{h+x}{y}$
and $\tan p=\frac{x}{y}$
$\Rightarrow \quad y=x \cot p$

From Eq. (i) and (ii), we get
$\tan q=\frac{h+x}{x \cot p}$
$\Rightarrow \quad x \cot p=(h+x) \cot q$
$\Rightarrow x=\frac{h \cot q}{\cot p-\cot q}$
$\Rightarrow h+x=\frac{h \cot q}{\cot p-\cot q}+h$
\therefore Height of hill $=\frac{h \cot p}{\cot p-\cot q}$
402 (b)
$\cos ^{2} A=1-\sin ^{2} A=1-\left(\frac{3}{5}\right)^{2}=\frac{16}{25}$
$\Rightarrow \cos A=\frac{4}{5}$
$\Rightarrow \frac{(20)^{2}+(21)^{2}-a^{2}}{2.20 .21}=\frac{4}{5}$
$\Rightarrow a^{2}=169 \Rightarrow a=13$
403 (c)
Given, $\angle C=60^{\circ}, a=2, b=4$
$\therefore \cos C=\frac{a^{2}+b^{2}-c^{2}}{2 a b}$
$\Rightarrow 2 a b \cos 60^{\circ}=a^{2}+b^{2}-c^{2}$
$\Rightarrow a b=a^{2}+b^{2}-c^{2}$
$\Rightarrow 8=4+16-c^{2} \Rightarrow c^{2}=12$
$\Rightarrow c=\sqrt{12}=2 \sqrt{3}$
We have, $\sin A=\frac{a \sin C}{c}=\frac{2 \frac{\sqrt{3}}{2}}{2 \sqrt{3}}=\frac{1}{2}$
$\Rightarrow A=30^{\circ}$
and $\sin B=\frac{b \sin C}{c}=\frac{4 \frac{\sqrt{3}}{2}}{2 \sqrt{3}}=1 \Rightarrow B=90^{\circ}$
405 (b)
$\frac{b-c \cos A}{c-b \cos A}=\frac{b-\frac{b^{2}+c^{2}-a^{2}}{2 b}}{c-\frac{b^{2}+c^{2}-a^{2}}{2 c}}$
$=\left(\frac{b^{2}+a^{2}-c^{2}}{c^{2}+a^{2}-b^{2}}\right)=\frac{c}{b}$
$=\frac{b^{2}+a^{2}-c^{2}}{2 a b} \cdot \frac{2 a c}{c^{2}+a^{2}-b^{2}}=\frac{\cos C}{\cos B}$
406 (b)
We have, $\frac{s(s-a)}{b c}-\frac{(s-b)(s-c)}{b c}$
$=\cos ^{2} \frac{A}{2}-\sin ^{2} \frac{A}{2}$
$=\cos \frac{2 A}{2}=\cos A$
407 (b)
Let the third vertex of the triangle be (x, y), then $\frac{x+4+(-2)}{3}=2 \Rightarrow x=4$
and $\frac{y+8+6}{3}=7 \Rightarrow y=7$
\therefore The coordinates of the third vertex are $(4,7)$
408 (b)
Let $A B C D$ be a square of each side of length a. It is given that $\angle B P C=60^{\circ}$. Let M be the midpoint of
$B C$. Then $\angle B P M=\angle C P M=30^{\circ}$
In $\triangle B P M$, we have
$\tan \angle B P M=\frac{B M}{P M}$
$\Rightarrow P M=\sqrt{3} B M=\frac{\sqrt{3}}{2} a$
In $\triangle O P M$, we have

$P M^{2}=O M^{2}+O P^{2} \Rightarrow \frac{3 a^{2}}{4}=\frac{a^{2}}{4}+h^{2} \Rightarrow a^{2}$

$$
=2 h^{2}
$$

409 (c)
$(a-b)^{2} \cos ^{2} \frac{C}{2}+(a+b)^{2} \sin ^{2} \frac{C}{2}$
$=\left(a^{2}+b^{2}-2 a b\right) \cos ^{2} \frac{C}{2}$

$$
+\left(a^{2}+b^{2}+2 a b\right) \sin ^{2} \frac{C}{2}
$$

$=a^{2}+b^{2}+2 a b\left(\sin ^{2} \frac{C}{2}-\cos ^{2} \frac{C}{2}\right)$
$=a^{2}+b^{2}-2 a b \cos C$
$=a^{2}+b^{2}-\left(a^{2}+b^{2}-c^{2}\right)$
$=c^{2} \quad\left(\because \cos C=\frac{a^{2}+b^{2}-c^{2}}{2 a b}\right)$
410 (c)
Given, $\Delta=a^{2}-(b-c)^{2}$
$=(a+b-c)(a-b+c)$
$=2(s-c) \cdot 2(s-b)$
$\sqrt{s(s-a)(s-b)(s-c)}=4(s-b)(s-c)$
$\Rightarrow \frac{1}{4}=\sqrt{\frac{(s-b)(s-c)}{s(s-a)}}=\tan \frac{A}{2}$
$\therefore \tan \frac{A}{2}=\frac{1}{4}$
411 (a)
If O^{\prime} is the orthocentre of a $\triangle A B C$, then the points O^{\prime}, A, B, C are such that each point is the orthocentre of the triangle formed by the remaining three points. So, the coordinates of the orthocentre of $\triangle O^{\prime} A B$ are $(0,0)$
412 (c)
$\cot B+\cot C-\cot A$
$=\frac{\cos B}{\sin B}+\frac{\cos C}{\sin C}-\cot A$
$=\frac{\sin C \cos B+\cos C \sin B}{\sin B \sin C}-\cot A$
$=\frac{\sin (B+C)}{\sin B \sin C}-\frac{\cos A}{\sin A}$
$=\frac{\sin ^{2} A-\sin B \sin C \cos A}{\sin A \sin B \sin C} \quad(\because A+B+C=\pi)$
$=\frac{a^{2}-b c \cos A}{k(a b c)}$
$=\frac{a^{2}-b c \frac{\left(b^{2}+c^{2}-a^{2}\right)}{2 b c}}{(a b c) k}$
$=\frac{2 a^{2}-\left(3 a^{2}-a^{2}\right)}{2(a b c) k} \quad\left(\because b^{2}+c^{2}+=3 a^{2}\right.$ given $)$
$=\frac{\left(a^{2}-a^{2}\right)}{a b c k}=0$
413 (c)
Let h be the height of the tower.

$=\frac{h}{1}$
$\Rightarrow h=\frac{\sqrt{3}(\sqrt{3}-1)}{3-1}$
$=\frac{3-\sqrt{3}}{2} \mathrm{~m}$
414 (d)
$\because \cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$
$=\frac{(8)^{2}+(10)^{2}-(6)^{2}}{2 \times 8 \times 10}=\frac{4}{5}$
$\Rightarrow \sin A=\frac{3}{5}$
$\therefore \sin 2 A=2 \sin A \cos A$
$=2 \times \frac{3}{5} \times \frac{4}{5}=\frac{24}{25}$
415 (d)
$\frac{1+\cos (A+B) \cos C}{1+\cos (A-C) \cos B}$
$=\frac{1+\cos [\pi-(A+B)] \cos (A-B)}{1+\cos [\pi-(A+C)] \cos (A-C)}$
$=\frac{1-\cos (A+B) \cos (A-B)}{1-\cos (A-C) \cos (A+C)}$
$=\frac{1-\cos ^{2} A+\sin ^{2} B}{1-\cos ^{2} A+\sin ^{2} C}=\frac{\sin ^{2} A+\sin ^{2} B}{\sin ^{2} A+\sin ^{2} C}$
$\therefore \frac{1+\cos (A-B) \cos C}{1+\cos (A-C) \cos B}=\frac{a^{2}+b^{2}}{a^{2}+c^{2}}$ [by sine rule]
416 (a)
$\operatorname{In} \triangle A E C, \tan 60^{\circ}=\frac{500}{d_{1}} \Rightarrow d_{1}=\frac{500}{\sqrt{3}} \mathrm{~m}$

and in $\triangle B E C, \tan 30^{\circ}=\frac{500}{d_{2}}$
$\Rightarrow d_{2}=500 \sqrt{3} \mathrm{~m}$
\therefore Required diameter,
$A B=d_{1}+d_{2}=\frac{500}{\sqrt{3}}+500 \sqrt{3}=\frac{2000}{\sqrt{3}} \mathrm{~m}$
417 (d)
Using sine rule in $\triangle A C D$,

$\frac{\sin \left(90^{\circ}-C\right)}{b}=\frac{\sin 90^{\circ}}{\frac{a}{c}} \Rightarrow \cos C=\frac{2 b}{a}$
And in $\triangle A B D$,
$\frac{\sin \left(A-90^{\circ}\right)}{\frac{a}{2}}=\frac{\sin \left(90^{\circ}+C\right)}{c}$
$\Rightarrow-\frac{\cos A}{\frac{a}{2}}=\frac{\cos C}{c} \Rightarrow \cos A=-\frac{b}{c}$
$\Rightarrow \frac{b^{2}+c^{2}-a^{2}}{2 b c}=-\frac{b}{c} \Rightarrow c^{2}-a^{2}=3 b^{2}$
$\therefore \cos A \cos C=-\frac{2 b^{2}}{a c}=\frac{2}{3 a c}\left(c^{2}-a^{2}\right)$
418 (a)
Let the vertices of triangle of A, B, C are $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)$ respectively Given mid points of the sides $A B, B C$ and $C A$ of $\triangle A B C$ are $D(6,1), E(3,5)$ and $F(-1,-2)$ respectively

$\therefore \quad \frac{x_{1}+x_{2}}{2}=6, \frac{y_{1}+y_{2}}{2}=1$
$\left.\Rightarrow \begin{array}{c}x_{1}+x_{2}=12, \\ y_{1}+y_{2}=2\end{array}\right\}$
Similarly, $\left.\begin{array}{c}x_{2}+x_{3}=6, \\ y_{2}+y_{3}=10\end{array}\right\}$
And $\left.\begin{array}{l}x_{1}+x_{3}=-2, \\ y_{1}+y_{3}=-4\end{array}\right\}$
On solving Eqs. (i), (ii) and (iii), we get
$x_{1}=2, \quad x_{2}=10, \quad x_{3}=-4$
And $y_{1}=-6, y_{2}=8, y_{3}=2$
Now, the vertex opposite to D is $C i e,(-4,2)$
419 (a)
Let $A\left(x_{1}, y_{1}\right), B\left(x_{2}, y_{2}\right)$ and $C\left(x_{3}, y_{3}\right)$ be the
vertices of the triangle $A B C$ and let $P(h, k)$ be any point on the locus,
Then, $P A^{2}+P B^{2}+P C^{2}=c$ (constant)

$$
\begin{aligned}
& \Rightarrow \quad \sum_{i=1}^{3}\left[\left(h-x_{i}\right)^{2}+\left(k-y_{i}\right)^{2}\right]=c \\
& \Rightarrow \quad h^{2}+k^{2}- \frac{2 h}{3}\left(x_{1}+x_{2}+x_{3}\right) \\
&-\frac{2 k}{3}\left(y_{1}+y_{2}+y_{3}\right) \\
&+\sum_{i=1}^{3}\left(x_{i}^{2}+y_{i}^{2}\right)-c=0
\end{aligned}
$$

So, locus of (h, k) is
$x^{2}+y^{2}-\frac{2 x}{3}\left(x_{1}+x_{2}+x_{3}\right)-\frac{2 y}{3}\left(y_{1}+y_{2}+y_{3}\right)$

$$
+\lambda=0
$$

Where $\lambda=\sum_{i=1}^{3}\left(x_{i}^{2}+y_{i}^{2}\right)-c=0$ (constant)
Clearly, the locus of a point is a circle with, centre at
$\left(\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3}\right)$

Since, $B=\frac{A+C}{2}$
$\Rightarrow B=90^{\circ}-\frac{B}{2} \Rightarrow B=60^{\circ}[\therefore A+B+C$

$$
\left.=180^{\circ}\right]
$$

$\therefore \frac{\sin 60^{\circ}}{\sqrt{3}}=\frac{\sin C}{\sqrt{2}} \quad$ [by sine rule]
$\Rightarrow \sin C=\frac{1}{\sqrt{2}} \Rightarrow C=45^{\circ}$
$\therefore \angle A=180^{\circ}-\left(60^{\circ}+45^{\circ}\right)=75^{\circ}$
421 (b)
Since, $A(0,1), B(0,-1)$ and $C(x, 0)$ are the vertices of an equilateral $\triangle A B C$.
$\therefore \quad A B=B C$
$\Rightarrow \quad \sqrt{0+4}=\sqrt{x^{2}+1}$
$\Rightarrow \quad x^{2}=3$
$\Rightarrow x= \pm \sqrt{3}$
422 (c)
Let $a=\sin \alpha, b=\cos \alpha, c=\sqrt{1+\sin \alpha \cos \alpha}$
Here, we see that the greatest side is c
$\therefore \cos C=\frac{a^{2}+b^{2}-c^{2}}{2 a b}$
$\Rightarrow \cos C=\frac{\sin ^{2} \alpha \cos ^{2} \alpha-1-\sin \alpha \cos \alpha}{2 \sin \alpha \cos \alpha}$
$\Rightarrow \cos C=-\frac{\sin \alpha \cos \alpha}{2 \sin \alpha \cos \alpha}$
$\Rightarrow \cos C=-\frac{1}{2} \Rightarrow \angle C=120^{\circ}$
423 (b)
Let the distance of two consecutive stones are $x, x+1$

In $\triangle B C D$,
$\tan 60^{\circ}=\frac{h}{x} \Rightarrow x=\frac{h}{\sqrt{3}} \ldots$ (i)
In $\triangle A B C, \tan 30^{\circ}=\frac{h}{x+1}$
$\Rightarrow \frac{1}{\sqrt{3}}=\frac{h}{x+1} \Rightarrow \frac{h}{\sqrt{3}}+1=\sqrt{3 h} \quad$ [from Eq. (i)]
$\Rightarrow h=\frac{\sqrt{3}}{2} \mathrm{~km}$
424 (a)
Given, $\tan \phi=0.5=\frac{1}{2}$
In $\triangle A B C, \tan \theta=\frac{10}{A B}$
$\Rightarrow A B=\frac{10}{\tan \theta}$

In $\triangle A B D$,
$\tan (\theta+\phi)=\frac{30}{A B}$
$\Rightarrow \frac{\tan \theta+\tan \phi}{1-\tan \theta \tan \phi}=\frac{30 \tan \theta}{10}$
$\Rightarrow \tan \theta+\frac{1}{2}=3 \tan \theta-\frac{3}{2} \tan ^{2} \theta$
$\Rightarrow 3 \tan ^{2} \theta-4 \tan \theta+1=0$
$\Rightarrow(3 \tan \theta-1)(\tan \theta-1)=0$
$\Rightarrow \tan \theta=\frac{1}{3}, 1$
$\therefore \tan \theta=1$
426 (b)
Since, the sides of a triangle are in AP
$\therefore 2 b=a+c$ and $c=7 \mathrm{~cm}$
$\because \cos C=\frac{a^{2}+b^{2}-c^{2}}{2 a b}$
$\Rightarrow \cos 120^{\circ}=-\frac{1}{2}=\frac{a^{2}+\frac{a^{2}+c^{2}+2 a c}{4}-c^{2}}{2 a \frac{(a+c)}{2}}$
$\Rightarrow-2 a(a+c)=4 a^{2}+a^{2}+c^{2}+2 a c-4 c^{2}$
$\Rightarrow-2 a^{2}-2 a c=5 a^{2}-3 c^{2}+2 a c$
$\Rightarrow 7 a^{2}+4 a c-3 c^{2}=0$
$\Rightarrow 7 a^{2}+28 a-147=0 \quad(\because c=7)$
$\Rightarrow a^{2}+4 a-21=0$
$\Rightarrow(a+7)(a-3)=0$
$\Rightarrow \quad a=3$ and $a \neq-7$
$\because \quad b=5$
Now, $s=\frac{a+b+c}{2}=\frac{3+5+7}{2}=\frac{15}{2}$
\therefore Area of triangle $=\sqrt{s(s-a)(s-b)(s-c)}$
$=\sqrt{\frac{15}{2}\left(\frac{15}{2}-3\right)\left(\frac{15}{2}-5\right)\left(\frac{15}{2}-7\right)}$
$=\sqrt{\frac{15}{2} \cdot \frac{9}{2} \cdot \frac{5}{2} \cdot \frac{1}{2}}=\frac{15}{4} \sqrt{3} \mathrm{~cm}^{2}$
427 (a)
Given, $\frac{b+c}{11}=\frac{a+c}{12}=\frac{a+b}{13}=k \quad[$ say $]$
$\Rightarrow b+c=11 k, c+a=12 k, a+b=13 k$
$\Rightarrow 2(a+b+c)=36 k$
$\Rightarrow a+b+c=18 k$
$\Rightarrow a=7 k, b=6 k, c=5 k$
$\therefore \cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$
$=\frac{36+25-49}{2 \times 6 \times 5}=\frac{1}{5}$
428 (c)

Angle $A O M$ is 30°. Hence, required point of B is $(-3,3 \sqrt{3})$
429 (b)
Let $A B=B C=2 x$,
Then $B D=D C=x$ and $A D=(\sqrt{5}) x$

Applying sine rule, $\frac{x}{\sin \beta}=\frac{A D}{\sin 45^{\circ}}$
$\Rightarrow \sin \beta=\frac{\frac{x}{\sqrt{2}}}{(\sqrt{5}) x}=\frac{1}{\sqrt{10}}$
and $\sin \alpha=\frac{x}{\sqrt{5} x}=\frac{1}{\sqrt{5}} \Rightarrow \frac{\sin \alpha}{\sin \beta}=\frac{\sqrt{2}}{1}$
430 (c)
We know that, in a parallelogram diagonals cut each other at middle point

$\therefore \frac{a+4}{2}=\frac{1+5}{2} \Rightarrow a=2$
and $\frac{b+6}{2}=\frac{2+7}{2} \Rightarrow b=3$
431 (c)
Assume that angles are $4 x, x$ and x
As $4 x+x+x=180^{\circ}\left[\therefore \angle A+\angle B+\angle C=180^{\circ}\right]$
$\Rightarrow x=30^{\circ}$
\therefore Angles are $120^{\circ}, 30^{\circ}$ and 30°
Ratio of sides $=\sin A: \sin B: \sin C$
$=\sin 120^{\circ}: \sin 30^{\circ}: \sin 30^{\circ}$
$=\sqrt{3}: 1: 1$
\therefore Required ratio $=\frac{\sqrt{3}}{1+1+\sqrt{3}}=\frac{\sqrt{3}}{2+\sqrt{3}}$
433 (c)
Here, $s=\frac{18+24+30}{2}=36$
Now, $\Delta=\sqrt{36(36-18)(36-24)(36-30)}$
$\Delta=\sqrt{36 \times 18 \times 12 \times 6}=216$

So, radius of the incircle
$r=\frac{\Delta}{s}=\frac{216}{36}=6 \mathrm{~cm}$
434 (b)
We know that the mid point of diagonals lies on line $y=2 x+c$, here mid point is $(3,2)$, hence $c=-4$
435 (b)
Clearly, $\triangle O A B$ is an isosceles right angled triangle. So, its orthocentre is at $O(0,0)$ and the circumcentre is the mid-point of $A B$ having coordinates ($a / 2, a / 2$)
Hence, required distance $=\sqrt{\frac{a^{2}}{4}+\frac{a^{2}}{4}}=\frac{a}{\sqrt{2}}$
436 (d)
The lines of a triangle are $x=y, x-2 y=3$ and $x+2 y=-3$. Intersection points at sides are
$A(-3,-3), B(-1,-1)$ and $C\left(0,-\frac{3}{2}\right)$
$\therefore A B=\sqrt{4+4}=2 \sqrt{2}$
$A C=\sqrt{9+\frac{9}{4}}=\frac{3 \sqrt{5}}{2}$
and $B C=\sqrt{1+\frac{1}{4}}=\frac{\sqrt{5}}{2}$
437 (b)
Let the vertices of a triangle be $A(6,0), B(0,6)$
and $C(6,6)$
Now, $A B=\sqrt{6^{2}+6^{2}}=6 \sqrt{2}$
$B C+\sqrt{6^{2}+0}=6$
And $C A=\sqrt{0+6^{2}}=6$
Also, $A B^{2}=B C^{2}+C A^{2}$
Therefore, $\triangle A B C$ is right angled at C. So, mid point of $A B$ is the circumcentre of $\triangle A B C$
\therefore Coordinate of circumcentre are $(3,3)$
Coordinates of centroid are,
$G\left(\frac{6+0+6}{3}, \frac{0+6+6}{3}\right), i e,(4,4)$
\therefore Required distance $=\sqrt{(4-3)^{2}+(4-3)^{2}}=$ $\sqrt{2}$

438 (b)
Given that, $a=5, b=7$ and $\sin A=\frac{3}{4}$
As we know, $\frac{\sin A}{a}=\frac{\sin B}{b}$
$\Rightarrow \frac{3}{4 \times 5}=\frac{\sin B}{7} \Rightarrow \sin B=\frac{21}{20}$
Which is not possible because its value is greater than one
440 (a)
Since, coordinates of the centroid are
$\left(\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3}\right)$, the centroid is always a
rational point
441
\because In a $\triangle A B C$,
$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin \{\pi-(A+B)\}}=2 R$
$\Rightarrow \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin (A+B)}=2 R$
8. If we know $a, \sin A, \sin B$, then we can find b, c, A, B and C
9. We can find A, B, C by using cosine rule
10. $\because a, \sin B, R$ are given, then we can find $\sin A, b$
11. $a, \sin A, R$ are given, then we know only the ratio $\frac{b}{\sin B}$
or $\frac{c}{\sin (A+B)}$; we cannot determine the values of $b, c, \sin B, \sin C$ separately
$\therefore \triangle A B C$ cannot be determined in this case

442 (b)
Since, $A+C=\pi-B \Rightarrow \frac{A-B+C}{2}=\frac{\pi}{2}-B$
$\therefore 2 a c \sin \left(\frac{A-B+C}{2}\right)=2 a c \cos B$
$=2 c a \cdot \frac{c^{2}+a^{2}-b^{2}}{2 c a}$
$=a^{2}+c^{2}-b^{2}$
443 (a)
$a(b \cos C-c \cos B)$
$=a b\left(\frac{a^{2}+b^{2}-c^{2}}{2 a b}\right)-a c\left(\frac{a^{2}+c^{2}-b^{2}}{2 a c}\right)$
$=\frac{a^{2}+b^{2}-c^{2}}{2}-\frac{a^{2}+c^{2}-b^{2}}{2}$
$=b^{2}-c^{2}$
444
(b)

Since, D is the midpoint of $B C$. So, coordinate of D are $\left(\frac{x_{2}+x_{3}}{2}, \frac{y_{2}+y_{3}}{2}\right)$
Given, $G(7,5)$ is the centroid of $\triangle A B C$
$\therefore \quad 7=\frac{2+x_{2}+x_{3}}{3}$ and $5=\frac{3+y_{2}+y_{3}}{3}$

$\Rightarrow x_{2}+x_{3}=21-2$ and $y_{2}+y_{3}=15-3$
$\Rightarrow \quad \frac{x_{2}+x_{3}}{2}=\frac{19}{2}$ and $\frac{y_{2}+y_{3}}{2}=6$
\therefore Coordinates of $D\left(\frac{19}{2}, 6\right)$
445 (b)
Since, the axes are rotated through an angle 45°, then we replace (x, y) by $\left(x \cos 45^{\circ}-\right.$
$y \sin 45^{\circ}, x \sin 45^{\circ}+y \cos 45^{\circ} i e, x 2-y 2, x 2+y 2$ in the given equation

$$
\begin{aligned}
& 3 x^{2}+3 y^{2}+2 x y=2 \\
& \begin{aligned}
& \therefore \quad 3\left(\frac{x}{\sqrt{2}}-\frac{y}{\sqrt{2}}\right)^{2}+3\left(\frac{x+y}{\sqrt{2}}\right)^{2} \\
&+2\left(\frac{x-y}{\sqrt{2}}\right)\left(\frac{x+y}{\sqrt{2}}\right)=2 \\
& \Rightarrow \frac{3}{2}\left(x^{2}-y^{2}-2 x y\right)+\frac{3}{2}\left(x^{2}+y^{2}+2 x y\right) \\
&+\frac{2}{2}\left(x^{2}-y^{2}\right)=2 \\
& \Rightarrow \quad 4 x^{2}+2 y^{2}=2 \\
& \Rightarrow 2 x^{2}+y^{2}=1
\end{aligned}
\end{aligned}
$$

446 (c)
Let $P(x, y)$ be any point on the line
Also, $\left(a_{1}-a_{2}\right) x+\left(b_{1}-b_{2}\right) y+c=0$
Since, $\left(x-a_{1}\right)^{2}+\left(y-b_{1}\right)^{2}=\left(x-a_{2}\right)^{2}+$
$\left(y-b_{2}\right)^{2}$
$\Rightarrow \quad x^{2}+a_{1}^{2}-2 a_{1} x+y^{2}+b_{1}^{2}-2 b_{1} y$
$=x^{2}+a_{2}^{2}-2 a_{2} x+y^{2}+b_{2}^{2}$
$-2 b_{2} y$
$\Rightarrow \quad 2\left(a_{2}-a_{1}\right) x+2\left(b_{2}-b_{1}\right) y$
$=a_{2}^{2}+b_{2}^{2}+b_{2}^{2}-a_{1}^{2}-b_{1}^{2}$
$\Rightarrow \quad\left(a_{1}-a_{2}\right) x+\left(b_{1}-b_{2}\right) y+\frac{\left(a_{2}^{2}+b_{2}^{2}-a_{1}^{2}-b_{1}^{2}\right)}{2}=0$
...(ii)
Since, Eqs. (i) and (ii) represents the same equation of line
$\therefore \quad c=\frac{a_{2}^{2}+b_{2}^{2}-a_{1}^{2}-b_{1}^{2}}{2}$
447 (d)
Let D be the centre of circumcircle
$\therefore B D=5 \mathrm{~cm}$
In $\triangle A B C$,
$A C^{2}+A B^{2}+B C^{2}$
$\Rightarrow \quad 100=A B^{2}+36$
$\Rightarrow A B^{2}=64 \Rightarrow A B=8$
\therefore Area of $\triangle A B C=\frac{1}{2} \times A B \times B C$
$=\frac{1}{2} \times 8 \times 6=24 \mathrm{~cm}^{2}$

448 (c)
The given equation is
$x^{2}+6 x y+8 y^{2}=10$
Since, axes are rotated through an angle $\frac{\pi}{4}$
$\therefore \quad x=x_{1} \cos \frac{\pi}{4}-y_{1} \sin \frac{\pi}{4}=\frac{x_{1}-y_{1}}{\sqrt{2}}$
and $y=x_{1} \sin \frac{\pi}{4}+y_{1} \cos \frac{\pi}{4}=\frac{x_{1}+y_{1}}{\sqrt{2}}$
on putting the value of x and y in Eq. (i)
$\left(\frac{x_{1}-y_{1}}{\sqrt{2}}\right)^{2}+6\left(\frac{x_{1}+y_{1}}{\sqrt{2}}\right)\left(\frac{x_{1}+y_{1}}{\sqrt{2}}\right)+8\left(\frac{x_{1}+y_{1}}{\sqrt{2}}\right)$

$$
=10
$$

$\Rightarrow \quad x_{1}^{2}+y_{1}^{2}-2 x_{1} y_{1}+6 x_{1}^{2}-6 y_{1}^{2}+8 x_{1}^{2}+8 y_{1}^{2}$

$$
+16 x_{1} y_{1}=20
$$

$\Rightarrow 15 x_{1}^{2}+3 y_{1}^{2}+14 x_{1} y_{1}=20$
\therefore Required equation is
$15 x^{2}+14 x y+3 y^{2}=20$
449 (c)
In $\triangle A B E, \angle B A E=\angle A E B$
$\therefore A B=B E$

In $\triangle B C E$, using sine rule,
$\frac{B E}{\sin \left(180^{\circ}-3 \alpha\right)}=\frac{C E}{\sin 2 \alpha}$
$\Rightarrow C E=\frac{a \sin 2 \alpha}{\sin 3 \alpha} \ldots$ (i)
Now, In $\triangle D C E, \sin 3 \alpha=\frac{h}{C E}$
$\Rightarrow \sin 3 \alpha=\frac{h}{a \sin 2 \alpha / \sin 3 \alpha}$ [from Eq. (i)]
$\Rightarrow h=a \sin 2 \alpha$
450 (a)
We know that the x-axis divides the segment joining $P\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ in the ratio $-y_{1}: y_{2}$. So, the required ratio is $-6:-3$ i.e. $2: 1$
451 (d)
In $\triangle P A B, \tan \beta=\frac{A B}{A P}$

In $\triangle P A C, \tan \theta=\frac{A C}{A P}$
$\therefore \tan \alpha=\tan (\beta-\theta)$
$=\frac{\tan \beta-\tan \theta}{1+\tan \beta \tan \theta}$
$=\frac{\frac{A B}{A-}-\frac{A C}{A P}}{1+\frac{A P}{A P} \cdot \frac{A C}{A P}}$
$\because A P=n(A B)=n(2 A C) \quad(\because C$ is the mid point of $B A$)
From Eq. (i), we get
$\tan \alpha=\frac{\frac{1}{n}-\frac{1}{2 n}}{1+\frac{1}{2 n^{2}}}=\frac{n}{2 n^{2}+1}$
$\Rightarrow n=\left(2 n^{2}+1\right) \tan \alpha$
452 (b)
Let the three points be $A(-2,-5), B(2,-2)$ and $C(8, a)$
If three points are collinear, then
sope of $A B=$ slope of $B C$
$\Rightarrow \frac{-2+5}{2+2}=\frac{a+2}{8-2}$
$\Rightarrow \frac{3}{4}=\frac{a+2}{6} \Rightarrow 9=2 a+4 \Rightarrow a=\frac{5}{2}$
453 (a)
From given relation, we can write
$\cos A+\cos C=2(1-\cos B)$
$\Rightarrow 2 \cos \frac{A+C}{2} \cos \frac{A-C}{2}=2 \cdot 2 \sin ^{2} \frac{B}{2}$
$\Rightarrow \cos \frac{A-C}{2}=2 \sin \frac{B}{2}$
$\Rightarrow 2 \sin \frac{A+c}{2} \cdot \cos \frac{A-C}{2}=4 \sin \frac{B}{2} \cos \frac{B}{2}$
$\Rightarrow \sin A+\sin C=2 \sin B$
$\Rightarrow a, b, c$ are in AP
Given, $\cos (A+B)=\frac{31}{32} \Rightarrow \cos (\pi-C)=\frac{31}{32}$
$\Rightarrow-\cos C=-\frac{a^{2}+b^{2}-c^{2}}{2 a b}=\frac{31}{32}$
$\Rightarrow \frac{(5)^{2}+(4)^{2}-c^{2}}{2 \times 5 \times 4}=-\frac{31}{32}$
$\Rightarrow 41-c^{2}=-\frac{155}{4}$
$\Rightarrow c^{2}=\frac{319}{4}$
$\Rightarrow c=\frac{\sqrt{319}}{2}$
455 (a)
We know, $r_{1}=\frac{\Delta}{s-a}, r_{2}=\frac{\Delta}{s-b}, r_{3}=\frac{\Delta}{s-c}$
Given that, $r_{1}>r_{2}>r_{3}$
$\Rightarrow \frac{\Delta}{s-a}>\frac{\Delta}{s-b}>\frac{\Delta}{s-c}$
$\Rightarrow \frac{1}{s-a}>\frac{1}{s-b}>\frac{1}{s-c}$
$\Rightarrow s-a<s-b<s-c$
($s-a, s-b, s-c$ are positive)
$\Rightarrow-a<-b<-c$
$\Rightarrow a>b>c$
456 (b)
We have, $a=2 x, \quad b=2 y$ and $\angle C=120^{\circ}$
Area of triangle, $\Delta=\frac{1}{2} a b \sin C$
$=\frac{1}{2} \times 2 x \times 2 y \sin 120^{\circ}$
$=x y \sqrt{3}$ sq unit
457 (a)
$\frac{a-a^{\prime}-a^{\prime}}{a^{\prime}-a}=\frac{b-b^{\prime}-b^{\prime}}{b^{\prime}-b} \quad\left(\because \frac{x_{3}-x_{2}}{x_{2}-x_{1}}\right.$ $\left.=\frac{y_{3}-y_{2}}{y_{2}-y_{1}}\right)$
$\Rightarrow \frac{a-2 a^{\prime}}{a^{\prime}-a}=\frac{b-2 b^{\prime}}{b^{\prime}-b}$
$\Rightarrow \frac{a}{a^{\prime}}=\frac{b}{b^{\prime}}$
$\Rightarrow a b^{\prime}=a^{\prime} b$
459 (c)
If two vertices of an equilateral triangle have the coordinates $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$, then the
coordinates of its third vertex are
$\left(\frac{x_{1}+x_{2} \pm \sqrt{3}\left(y_{1}-y_{2}\right)}{2}, \frac{y_{1}+y_{2} \pm \sqrt{3}\left(x_{1}-x_{2}\right)}{2}\right)$
Here, we have
$x_{1}=2, y_{1}=4, x_{2}=2$ and $y_{2}=6$
Hence, the coordinates of the third vertex are
$\left(\frac{4 \pm \sqrt{3}(-2)}{2}, \frac{10 \pm \sqrt{3} \times 0}{2}\right)=(2 \mp \sqrt{3}, 5)$
461 (a)
$\because A+B+C+D=2 \pi$
$\Rightarrow \tan (A+B+C+D)=0$
$\Rightarrow \frac{\sum \tan A-\sum \tan A \tan B \tan C}{1-\sum \tan A \tan B+\tan A \tan B \tan C \tan D}=0$
$\Rightarrow \quad \sum \tan A-\sum \tan A \tan B \tan C=0$
$\Rightarrow \sum \tan A=\tan A \tan B \tan C \tan D \sum \cot A$
$\Rightarrow \frac{\sum \tan A}{\sum \cot A}=\prod \tan A$
462 (a)
Let the angles of a triangle are $3 \theta, 4 \theta, 5 \theta$
$\therefore 3 \theta+4 \theta+5 \theta=180^{\circ} \Rightarrow \theta=15^{\circ}$
\therefore Angles of a triangle are $45^{\circ}, 60^{\circ}, 75^{\circ}$
Now, $\sin A=\sin 45^{\circ}=\frac{1}{\sqrt{2}}$
$\sin B=\sin 60^{\circ}=\frac{\sqrt{3}}{2}$
and $\sin C=\sin 75^{\circ}=\frac{\sqrt{3}+1}{2 \sqrt{2}}$
$\therefore a: b: c=\sin A: \sin B: \sin C$
$=\frac{1}{\sqrt{2}}: \frac{\sqrt{3}}{2}: \frac{\sqrt{3}+1}{2 \sqrt{2}}$
$=2: \sqrt{6}: \sqrt{3}+1$
463 (a)
Since, $A B=A C=\sqrt{2}$

The slope $A B$ is 1 . Hence, $A B$ is inclined at 45° with the x-axis and $A C$ is inclined at 60° with the x-axis. Equation of $A C$ is
$y=\sqrt{3}(x-2)$
The coordinates of C is $\left(2+\sqrt{2} \cos 60^{\circ}, 0+\right.$ $\left.\sqrt{2} \sin 60^{\circ}\right)$
or $\left(2+\frac{1}{\sqrt{2}}, \sqrt{\frac{3}{2}}\right)$
464 (b)
Let $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ and $\left(x_{3}, y_{3}\right)$ are coordinates of the points D, E and F, which divide each $A B, B C$ and $C A$ respectively in the ratio $3: 1$ (internally)
$\therefore \quad x_{1}=\frac{3 \times 6-1 \times 1}{4}=\frac{17}{4}$
$y_{1}=\frac{-2 \times 3+4 \times 1}{4}=-\frac{2}{4}=-\frac{1}{2}$

Similarly, $x_{2}=0, y_{2}=\frac{5}{2}$
and $x_{3}=-\frac{5}{4}, y_{3}=4$
Let (x, y) be the coordinates of centroid of $\triangle D E F$
$\therefore \quad x=\frac{1}{3}\left(\frac{17}{4}+0-\frac{5}{4}\right)=1$
and $y=\frac{1}{3}\left(-\frac{1}{2}+\frac{5}{2}+4\right)=2$
\therefore Coordinates of Centroid are $(1,2)$

465 (a)

Let D be the position of window of second house and $B C$ be the position of the first house.
In $\triangle A D B, \tan 60^{\circ}=\frac{A D}{A B}$
$\Rightarrow A D=6 \sqrt{3}$
and $D B^{2}=(6 \sqrt{3})^{2}+(6)^{2}$
$\Rightarrow D B=12 \mathrm{~m}$
In $\triangle D C B, \sin 60^{\circ}=\frac{12}{h}$

$h=\frac{12}{\sqrt{3} / 2}=8 \sqrt{3} \mathrm{~m}$
466 (b)
Let the vertices be C, A, B respectively. The altitude from A is
$\frac{y-a\left(t_{2}+t_{3}\right)}{x-a t_{2} t_{3}}=-t_{1}$
$\Rightarrow x t_{1}+y=a t_{1} t_{2} t_{3}+a\left(t_{2}+t_{3}\right)$
The altitude from B is
$x t_{2}+y=a t_{1} t_{2} t_{3}+a\left(t_{3}+t_{1}\right) \quad \ldots$ (ii)
Subtracting Eq. (ii) from Eq. (i), $x=-a$
Hence, $y=a\left(t_{1}+t_{2}+t_{3}+t_{1} t_{2} t_{3}\right)$
\therefore The orthocenter is $\left\{-a, a\left(t_{1}+t_{2}+t_{3}+t_{1} t_{2} t_{3}\right)\right\}$
467 (a)
In $\triangle A B C, \tan 30^{\circ}=\frac{B C}{40}$
$\Rightarrow B C=\frac{40}{\sqrt{3}}$

In $\triangle D A B, \tan 60^{\circ}=\frac{B D}{40}$
$\Rightarrow B D=40 \sqrt{3}$
$\Rightarrow D C+B C=40 \sqrt{3}$
$\Rightarrow D C+\frac{40}{\sqrt{3}}=40 \sqrt{3} \quad$ [from Eq.(i)]
$\Rightarrow D C=40\left(\sqrt{3}-\frac{1}{\sqrt{3}}\right)=\frac{80}{\sqrt{3}}$
$\Rightarrow D C=46.19 \mathrm{~m}$
468 (c)
Let $D C$ be the height of building

$\therefore A B=$ Speed \times Time
$=25(\sqrt{3}-1) .2$
$=50(\sqrt{3}-1)$
\therefore In $\triangle D B C, \tan 45^{\circ}=\frac{D C}{B C} \Rightarrow B C=h$
In $\triangle D A C, \tan 30^{\circ}=\frac{h}{50(\sqrt{3}-1)+h}$
$\Rightarrow 50(\sqrt{3}-1)+h=\sqrt{3} h$
$\Rightarrow h=50 \mathrm{~m}$
469 (d)
$(b+c) \tan \frac{A}{2} \tan \left(\frac{B-C}{2}\right)$
$=(b+c) \tan \frac{A}{2} \cdot \frac{(b-c)}{(b+c)} \cot \frac{A}{2}$
$=b-c$
$\therefore \quad \sum(b+c) \tan \left(\frac{B-C}{2}\right) \tan \frac{A}{2}$
$=b-c+c-a+a-b=0$
470 (c)
As, $A>B$ and $3 \sin x-4 \sin ^{3} x-k=0,0<k<$ 1
$\Rightarrow \sin 3 x=k$
As A and B satisfy given equation
$\therefore \sin 3 A=k, \quad \sin 3 B=k$
$\Rightarrow \sin 3 A-\sin 3 B=k$
$\Rightarrow 2 \cos \left(\frac{3 A+3 B}{2}\right) \sin \left(\frac{3 A-3 B}{2}\right)=0$
$\Rightarrow \cos \left(\frac{3 A+3 B}{2}\right)=0$ or $\sin \left(\frac{3 A-3 B}{2}\right)=0$
$\Rightarrow \frac{3 A+3 B}{2}=90^{\circ}$ or $\frac{3 A-3 B}{2}=0$
$\Rightarrow A+B=60^{\circ}$ or $A=B$
But given, $A>B \quad(\therefore$ neglectring $A=B)$
Thus, $A+B=60^{\circ}$
and $A+B+C=180^{\circ} \Rightarrow \angle C=120^{\circ}$
471 (b)
We have, $\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$
$\Rightarrow b^{2}-2 b c \cos A+\left(c^{2}-a^{2}\right)=0$
It is given that b_{1} and b_{2} are roots of this equation
$\therefore b_{1}+b_{2}=2 c \cos A$ and $b_{1} b_{2}=c^{2}-a^{2}$
$\Rightarrow 3 b_{1}=2 c \cos A$ and $2 b_{1}^{2}=c^{2}-a^{2} \quad\left[\because b_{2}=\right.$ $2 b_{1}$ (given)]
$\Rightarrow 2\left(\frac{2 c}{3} \cos A\right)^{2}=c^{2}-a^{2}$
$\Rightarrow 8 c^{2}\left(1-\sin ^{2} A\right)=9 c^{2}-9 a^{2}$
$\Rightarrow \sin ^{2} A=\left(1-\frac{9 c^{2}-9 a^{2}}{8 c^{2}}\right)$
$\Rightarrow \sin A=\sqrt{\frac{9 a^{2}-c^{2}}{8 c^{2}}}$
472 (a)
Let the vertices of the $\triangle A B C$ are $A(7,1), B(-1,5)$
and $C(3+2 \sqrt{3}, 3+4 \sqrt{3})$
Now, $A B=\sqrt{(7+1)^{2}+(1-5)^{2}}$
$=\sqrt{64+16}=\sqrt{80}$
$B C=\sqrt{(-1-3-2 \sqrt{3})^{2}+(5-3-4 \sqrt{3})^{2}}$
$=\sqrt{16+12+16 \sqrt{3}+4+48-16 \sqrt{3}}$
$=\sqrt{80}$
and $C A=\sqrt{(3+2 \sqrt{3}-7)^{2}+(3+4 \sqrt{3}-1)^{2}}$
$=\sqrt{16+12-16 \sqrt{3}+4+48+16 \sqrt{3}}$
$=\sqrt{80}$
Here, $A B=B C=C A=\sqrt{80}$
\therefore Hence, it is an equilateral triangle, so incentre and centriod coincides
So, incentre $=\left(\frac{7-1+3+2 \sqrt{3}}{3}, \frac{1+5+3+4 \sqrt{3}}{3}\right)$
$=\left(\frac{9+2 \sqrt{3}}{3}, \frac{9+4 \sqrt{3}}{3}\right)$
$=\left(3+\frac{2}{\sqrt{3}}, 3+\frac{4}{\sqrt{3}}\right)$
473 (b)

$$
\begin{aligned}
& \frac{\tan \frac{A}{2}-\tan \frac{B}{2}}{\tan \frac{A}{2}+\tan \frac{B}{2}}=\frac{\sqrt{\frac{(s-b)(s-c)}{s(s-a)}}-\sqrt{\frac{(s-a)(s-c)}{s(s-b)}}}{\sqrt{\frac{(s-b)(s-c)}{s(s-a)}}+\sqrt{\frac{(s-a)(s-c)}{s(s-b)}}} \\
& =\frac{(s-b) \sqrt{s(s-c)}-(s-a) \sqrt{s(s-c)}}{(s-b) \sqrt{s(s-c)}+(s-a) \sqrt{s(s-c)}} \\
& =\frac{\sqrt{s(s-c)}(s-b-s+a)}{\sqrt{s(s-c)}(s-b-s+a)}=\frac{a-b}{c}
\end{aligned}
$$

474 (a)
As we know that orthocenter, centroid and circumcentre are collinear and the centroid divides the line segment joining orthocenter and circumcentre in the ratio $2: 1$. If the coordinates of orthocentre and circumcentre are $(1,1)$ and $(3,2)$ respectively, the coordinate of centroid is $\left(\frac{2.3+1.1}{2+1}, \frac{2.2+1.1}{2+1}\right)=\left(\frac{7}{3}, \frac{5}{3}\right)$
475 (d)
$\because \angle A=60^{\circ}, \cos 60^{\circ}=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$
$\Rightarrow b^{2}+c^{2}-a^{2}=b c$
Now, $A B^{2}+A C^{2}=2\left(A D^{2}+B D^{2}\right)$
$\Rightarrow \quad c^{2}+b^{2}=2 A D^{2}+2\left(\frac{a}{2}\right)^{2}$
$\Rightarrow 2 b^{2}+2 c^{2}-a^{2}=4 A D^{2}$
$\Rightarrow b^{2}+c^{2}+b c=4 A D^{2} \quad\left(\because b^{2}+c^{2}-a^{2}=b c\right)$
476

(b)

The intersection of lines are $(0,0),(-4,-8)$ and $(-2,-2)$

Let circumcentre is $\left(x_{1}, y_{1}\right)$
$\therefore \quad x_{1}^{2}+y_{1}^{2}=\left(x_{1}+4\right)^{2}+\left(y_{1}+8\right)^{2}$
$\Rightarrow \quad 8 x_{1}+16 y_{1}+80=0$
And $x_{1}^{2}+y_{1}^{2}=\left(x_{1}+2\right)^{2}+\left(y_{1}+2\right)^{2}$
$\Rightarrow \quad 4 x_{1}+4 y_{1}+8=0$
On solving Eqs. (i) and (ii), we get
$x_{1}=6$ and $y_{1}=-8$
(c)

Given, $\cot \frac{A}{2}=\frac{b+c}{a}$
$\Rightarrow \frac{\cos \frac{A}{2}}{\sin \frac{A}{2}}=\frac{\sin B+\sin C}{\sin A}$
$=\frac{2 \sin \frac{B+C}{2} \cos \frac{B-C}{2}}{2 \sin \frac{A}{2} \cos \frac{A}{2}}$
$\Rightarrow \cos \frac{A}{2}=\cos \frac{B-C}{2}$
$\therefore \frac{A}{2}=\frac{B-C}{2}$
$\Rightarrow A+C=B \quad \Rightarrow \angle B=\frac{\pi}{2} \quad(\because A+B+C=\pi)$

Given lines are
$3 x^{2}-4 x y+y^{2}=0$
$\Rightarrow \quad(3 x-y)(x-y)=0$
$\Rightarrow \quad 3 x-y=0, x-y=0$ and $2 x-y=6$
The points of intersection of these lines are $(0,0),(-6,-18)$ and $(6,6)$
\therefore Area of triangle $=\frac{1}{2}\left|\begin{array}{ccc}0 & 0 & 1 \\ -6 & -18 & 1 \\ 6 & 6 & 1\end{array}\right|$
$=\frac{1}{2}(-36+108)=\frac{1}{2}(72)$
$=36$ sq units
(d)

In $\triangle A B C, \tan 60^{\circ}=\frac{h}{x} \Rightarrow h \sqrt{3} x$

and in $\triangle A B D$,
$\tan 30^{\circ}=\frac{h}{x+60} \Rightarrow x+60=\sqrt{3} h \ldots$ (ii)
From Eqs. (i) and (ii),
$h=\sqrt{3} \times 30=51.96 \mathrm{~m}$
$=52 \mathrm{~m}$ (approx)
480
(d)
$O P$ is inclined at angle θ with x-axis and $O Q$ is inclined at angle $\alpha-\theta$ with x-axis

The bisector of angle $P O Q$ is inclined at angle $\frac{\theta+\alpha-\theta}{2}=\frac{\alpha}{2}$ with x-axis
481
(b)

The altitude h is $\frac{|2-1-2|}{\sqrt{2}}=\frac{1}{\sqrt{2}}$

In $\triangle A B C, B C=2 h \cot 60^{\circ}=\sqrt{\frac{2}{3}}$
\therefore Area of $\Delta=\frac{h}{2} B C$
$=\frac{1}{2 \sqrt{2}} \sqrt{\frac{2}{3}}=\frac{\sqrt{3}}{6}$
483 (d)
Let $O P$ be the tower. Since, the tower make equal angles at the vertices of the triangle, therefore foot of tower is at the circumcentre

In $\triangle O A P, \tan \alpha=\frac{O P}{O A}$
$\Rightarrow O P=O A \tan \alpha$
$\Rightarrow O P=\mathrm{R} \tan \alpha \quad(\because O A=R$, given $)$
484 (a)
Given, $x y+2 x+2 y+4=0$
and $x+y+2=0$
From Eqs. (i) and (ii),
$x y=0$
$\Rightarrow x=y=0$

\therefore vertices of triangle are $(-2,0),(0,0),(0,-2)$
Since, this triangle is right angled triangle and in a right angled triangle circumcentre is mid point of hypotenuse.
$\therefore(-1,-1)$ is the circumcentre
485 (b)
Let P be (x, y) and we have
$A=(a+b, a-b), \quad B=(a-b, a+b)$
Here, $P A=P B \quad \Rightarrow \quad P A^{2}=P B^{2}$
$\Rightarrow \quad\left[x-(a+b)^{2}\right]+[y-(a-b)]^{2}$
$=[x-(a-b)]^{2}+[y-(a-b)]^{2}$
$\Rightarrow[x-(a+b)]^{2}-[x-(a-b)]^{2}$
$=[y-(a+b)]^{2}-[y-(a-b)]^{2}$
$\Rightarrow[x-(a+b)+x-(a-b)][x-(a+b)-x$
$+a-b]$
$=[y-(a+b)+y-(a-b)][y-(a+b)-y$ $+a-b]$
$\Rightarrow(2 x-2 a)(-2 b)=(2 y-2 a)(-2 b)$
$\Rightarrow x-y=0$
486 (c)
Since, $R=\frac{a}{2 \sin A}$
$\Rightarrow R=\frac{2 \sqrt{3}}{2 \sin 60^{\circ}}=2 \mathrm{~cm}$
487 (c)
Let two of vertices of a triangle are $A(15,0)$ and $B(0,10)$ and third vertex is $C(h, k)$
We know that line passing through A and B should be perpendicular to line through C and orthocenter O
$\therefore\left(\frac{-2}{3}\right)\left(\frac{9-k}{6-h}\right)=-1$
$\Rightarrow \quad 2 k=3 h$
Which is satisfied by $(0,0)$. Hence, coordinates of third vertex are $(0,0)$
488 (a)
Let P and Q be the positions of two planes. It is given that $O P=300 \mathrm{~m}$. From triangle $O A Q$, we have $O A=O Q$.
From $\triangle O A P$, we have
$\tan 60^{\circ}=\frac{O P}{O A} \Rightarrow \sqrt{3}=\frac{300}{O Q} \Rightarrow O Q=\frac{300}{\sqrt{3}}$
$=100 \sqrt{3} \mathrm{mts}$

489 (b)
Let the sides be $a=3 x, b=7 x, c=-8 x$. Then,
$2 s=a+b+c \Rightarrow s=9 x$
$\therefore \Delta=\sqrt{s(s-a)(s-b)(s-c)}$
$=\sqrt{9 x \times 6 x \times 2 x \times x}=6 \sqrt{3} x^{2}$
Now, $R=\frac{a b c}{4 \Delta}$ and $r=\frac{\Delta}{s}$
$\therefore \frac{R}{r}=\frac{s a b c}{4 \Delta^{2}}=\frac{9 x \times 3 x \times 7 x \times 8 x}{4 \times 108 \times x^{2}}=\frac{7}{2}$
490 (a)
$(b+c-a) \tan \frac{A}{2}=(2 s-2 a) \tan \frac{A}{2}$
$=2(s-a) \sqrt{\frac{(s-b)(s-c)}{s(s-a)}}$
$=2 \frac{\sqrt{s(s-a)(s-b)(s-c)}}{s}=\frac{2 \Delta}{s}$
491 (b)
Let $A B=a$
$O N \perp A B$
and $A N=B N$

In $\triangle A O N, \tan \frac{\pi}{n}=\frac{A N}{O N}$
$\Rightarrow O N=A N \cot \frac{\pi}{n}=\frac{a}{2} \cot \frac{\pi}{n}$
and $\sin \frac{\pi}{n}=\frac{A N}{O A}$
$\Rightarrow O A=\frac{a}{2} \operatorname{cosec} \frac{\pi}{n}$
Now, sum of the radii $=O N+O A$
$=\frac{a}{2} \cot \frac{\pi}{n}+\frac{a}{2} \operatorname{cosec} \frac{\pi}{n}$
[from Eqs. (i) and (ii)]
$=\frac{a}{2}\left[\frac{1+\cos \frac{\pi}{n}}{\sin \frac{\pi}{n}}\right]$
$=\frac{a}{n}\left[\frac{2 \cos ^{2} \frac{\pi}{2 n}}{2 \sin \frac{\pi}{2 n} \cos \frac{\pi}{2 n}}\right]$
$=\frac{a}{2} \cot \frac{\pi}{2 n}$
$\Delta=2 b c-\left(b^{2}+c^{2}-a^{2}\right)=2 b c(1-\cos A)$
$=2 b c .2 \sin ^{2} \frac{A}{2}$
But $\Delta=\frac{1}{2} b c \sin A=\frac{1}{2} b c .2 \sin \frac{A}{2} \cos \frac{A}{2}$
$\Rightarrow \Delta=b c \sin \frac{A}{2} \cos \frac{A}{2}$
On dividing Eq. (ii) by Eq. (i), we get
$\tan \frac{A}{2}=\frac{1}{4}$
$\therefore \tan A=\frac{2 \tan \frac{A}{2}}{1-\tan ^{2} \frac{A}{2}}=\frac{\frac{1}{2}}{1-\frac{1}{16}}=\frac{8}{15}$
493 (d)
The vertices of a $\triangle A B C$ are $A(0, b), B(0,0)$ and $C(a, 0)$

Mid point of E and D are $\left(\frac{a}{2}, \frac{b}{2}\right)$ and $\left(\frac{a}{2}, 0\right)$
The slope of median $B E, m_{1}=\frac{b}{a}$
and slope of $A D, m_{2}=-\frac{2 b}{a}$
Since, the medians are perpendicular to each other
$\therefore m_{1} m_{2}=-1$
$\Rightarrow \frac{b}{a} \times\left(\frac{-2 b}{a}\right)=-1$
$\Rightarrow-2 b^{2}=-a^{2} \Rightarrow a= \pm \sqrt{2} b$
494 (c)
$\because a(b-c)+b(c-a)+c(a-b)=0$
$\therefore x=1$ is a root of the equation
$a(b-c) x^{2}+b(c-a) x+c(a-b)=0$
Then, other root $=1 \quad(\because$ roots are equal $)$
\therefore Product of roots $=1=\frac{c(a-b)}{a(b-c)}$
$\Rightarrow a b-a c=c a-b c$
$\Rightarrow \quad b=\frac{2 a c}{a+c}$
$\therefore a, b, c$ are in HP
Then, $\frac{1}{a}, \frac{1}{b}, \frac{1}{c}$ are in AP
$\Rightarrow \frac{s}{a}, \frac{s}{b}, \frac{s}{c}$ are in AP
$\Rightarrow \frac{s}{a}-1, \frac{s}{b}-1, \frac{s}{c}-1$ are in AP
$\Rightarrow \frac{(s-a)}{a}, \frac{(s-b)}{b}, \frac{(s-c)}{c}$ are in AP
Multiplying each by $\frac{a b c}{(s-a)(s-b)(s-c)}$
Then $\frac{b c}{(s-b)(s-c)}, \frac{c a}{(s-c)(s-a)}, \frac{a b}{(s-a)(s-b)}$ are in AP
$\Rightarrow \frac{(s-b)(s-c)}{b c}, \frac{(s-c)(s-a)}{c a}, \frac{(s-a)(s-b)}{a b}$ are in HP
$\Rightarrow \sin ^{2}\left(\frac{A}{2}\right), \sin ^{2}\left(\frac{B}{2}\right), \sin ^{2}\left(\frac{C}{2}\right)$ are in HP
495 (d)
$\frac{1+\cos C \cos (A-B)}{1+\cos (A-C) \cos B}$

$$
=\frac{1-\cos (A+B) \cos (A-B)}{1-\cos (A-C) \cos (A+C)}
$$

$$
\because A+B+C=\pi)
$$

$\Rightarrow \frac{1-\cos ^{2} A+\sin ^{2} B}{1-\cos ^{2} A+\sin ^{2} C}=\frac{\sin ^{2} A+\sin ^{2} B}{\sin ^{2} A+\sin ^{2} C}$
$=\frac{a^{2}+b^{2}}{a^{2}+c^{2}}$
496 (c)
$\because b^{2}+c^{2}=a^{2}$

$\therefore \triangle A B C$ is right angled triangle and right angled at A
Clearly, from figure,
$\frac{1}{2}(A B)(A C)=\frac{1}{2}(A D)(B C)$
$\Rightarrow A D=\frac{(A B)(A C)}{B C}$
$=\frac{5 \cdot 12}{13}=\frac{60}{13}$
497 (a)
Since, $r_{1}<r_{2}<r_{3}$
$\Rightarrow \frac{1}{r_{1}}>\frac{1}{r_{2}}>\frac{1}{r_{3}}$
$\Rightarrow \frac{s-a}{\Delta}>\frac{s-b}{\Delta}>\frac{s-c}{\Delta}$
$\Rightarrow(s-a)>(s-b)>(s-c)$
$\Rightarrow-a>-b>-c$
$\Rightarrow a<b<c$
498 (a)
Let l be the length of the ladder
$i e, B P=C Q=1$
In $\triangle P A B, \cos \alpha=\frac{P A}{P B}$ and $\sin \alpha=\frac{A B}{P B}$
$\Rightarrow P A=l \cos \alpha$ and $A B=l \sin \alpha$
In $\triangle Q A C, \cos \beta=\frac{A Q}{Q C}$
$\Rightarrow A Q=l \cos \beta$ and $A C=l \sin \beta$

Now, $C B=A B-C A$
$=l \sin \alpha-l \sin \beta \quad$ [from Eqs. (i) and (ii)]
$=l(\sin \alpha-\sin \beta)$
and $Q P=A Q-P A$
$=l \cos \beta-l \cos \alpha$
$=l(\cos \beta-\cos \alpha)$
$\therefore \frac{C B}{Q P}=\frac{l(\sin \alpha-\sin \beta)}{l(\cos \beta-\cos \alpha)}$
$\Rightarrow \frac{y}{x}=\frac{2 \sin \left(\frac{\alpha-\beta}{2}\right) \cos \left(\frac{\alpha+\beta}{2}\right)}{2 \sin \left(\frac{\alpha+\beta}{2}\right) \cos \left(\frac{\alpha-\beta}{2}\right)}$
$\Rightarrow \frac{y}{x}=\cot \left(\frac{\alpha+\beta}{2}\right)$
$\Rightarrow x=y \tan \left(\frac{\alpha+\beta}{2}\right)$
499 (c)
$\because A(h . k), B(1,1)$ and $C(2,1)$ are the vertices of a right angled triangle $A B C$

Now, $A B=\sqrt{(1-h)^{2}+(1-k)^{2}}$
Or $B C=\sqrt{(2-1)^{2}+(1-1)^{2}}=1$
Or $C A=\sqrt{(h-2)^{2}+(k-1)^{2}}$
Now, Pythagorus theorem

$$
\begin{align*}
& A C^{2}=A B^{2}+B C^{2} \\
& \Rightarrow \quad 4+h^{2}-4 h+k^{2}+1-2 k \\
& \quad=h^{2}+1-2 h+k^{2}+1-2 k+1 \\
& \Rightarrow \quad 5-4 h=3-2 h \\
& \Rightarrow \quad h=1 \quad \ldots \text { (i) } \tag{i}
\end{align*}
$$

Now, given that area of the triangle is 1
Then, area $(\triangle A B C)=\frac{1}{2} \times A B \times B C$
$\Rightarrow \quad 1=\frac{1}{2} \times \sqrt{(1-h)^{2}+(1-k)^{2}} \times 1$
$\Rightarrow \quad 2=\sqrt{(1-h)^{2}+(1-k)^{2}}$
On putting $h=1$ from Eq. (i), we get
$2=\sqrt{(k-1)^{2}}$
On squaring both the sides, we get
$4=k^{2}+1-2 k$
$\Rightarrow k^{2}-2 k-3=0 \Rightarrow k=-1,3$
Thus, the set of values of k is $\{-1,3\}$
500 (d)
Let the coordinate of mid point of $A B$ is $\left(x_{1}, y_{1}\right)$

$\therefore \quad x_{1}=\frac{a+0}{2}, y_{1}=\frac{0+b}{2}$
$\Rightarrow \quad a=2 x_{1}, b=2 y_{1}$
Given, $a+b=4 \Rightarrow x_{1}+y_{1}=2$
Hence, the locus of the mid point is $x+y=2$
501 (a)
$\because \tan \frac{A}{2}, \tan \frac{B}{2}, \tan \frac{C}{2}$ are in HP
$\therefore \cot \frac{A}{2}, \cot \frac{B}{2}, \cot \frac{C}{2}$ are in AP
$\Rightarrow \cot \frac{B}{2}-\cot \frac{A}{2}=\cot \frac{C}{2}-\cot \frac{B}{2}$
$\Rightarrow \frac{s(s-b)}{\Delta}-\frac{s(s-a)}{\Delta}=\frac{s(s-c)}{\Delta}-\frac{s(s-b)}{\Delta}$
$\Rightarrow s-b-s+a=s-c-s+b$
$\Rightarrow \quad 2 b=a+c$
$\Rightarrow a, b, c$ are in AP
502 (a)
In $\triangle A C D, \tan 30^{\circ}=\frac{45 \sqrt{3} / 2}{x}$

$\Rightarrow x=\frac{45 \sqrt{3}}{2 \times \frac{1}{\sqrt{3}}}=\frac{135}{2} \mathrm{~m}$
and in $\triangle A B D$,
$\tan 60^{\circ}=\frac{45 \sqrt{3 / 2}}{y} \Rightarrow y=\frac{45}{2}$
$\therefore x-y=\frac{135}{2}-\frac{45}{2} 45 \mathrm{~m}$
503 (d)
For point $(1,3), 3 x+2 y=3+6>0$
For point $(5,0), 3 \times 5+0>0$
and for point $(-1,2),-3+4>0$
Similarly, other inequalities also hold
Hence, option (d) is correct
504 (c)
Given that, $x_{1}=x, x_{2}=1, x_{3}=0$
and $y_{1}=0, y_{2}=1, y_{3}=2$
\therefore Area of triangle
$=\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]$
$=\frac{1}{2}[x(1-2)+1(2-0)+0(0-1)]$
$=\frac{1}{2}[-x+2+0]=\frac{1}{2}(2-x)$
But area of triangle is 4 sq unit
$\therefore \frac{1}{2}(2-x)=4$
$\Rightarrow 2-x=8 \Rightarrow x=-6$
505 (c)
Given vertices of triangle are
$O(0,0), A(\cos \theta, \sin \theta)$ and $B(\sin \theta,-\cos \theta)$, then coordinates of Centroid are
$\left(\frac{\cos \theta+\sin \theta}{3}, \frac{\sin \theta-\cos \theta}{3}\right)$
Since, Centroid lies on the line $y=2 x$

$$
\begin{aligned}
& \therefore \quad \frac{\sin \theta-\cos \theta}{3}=\frac{2 \cos \theta+2 \sin \theta}{3} \\
& \Rightarrow \sin \theta=-3 \cos \theta \\
& \Rightarrow \theta=\tan ^{-1}(-3)
\end{aligned}
$$

506 (a)
In order to remove first degree terms from the equation $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$ the origin is shifted at $(-g / a,-f / a)$
In the equation $2 x^{2}+7 y^{2}+8 x-14 y+4=0$, we have
$a=2, b=7, g=4$ and $f=-7$
Hence, the coordinates of the required point are $(-4 / 2,-7 / 7)=(-2,1)$
507 (b)
Let $A\left[a t_{1} t_{2}, a\left(t_{1}+t_{2}\right)\right], B\left[a t_{2} t_{3}, a\left(t_{2}+t_{3}\right)\right]$,
$C\left[a t_{3} t_{1}, a\left(t_{3}+t_{1}\right)\right]$
Slope of $A B\left(m_{A B}\right)=\frac{a\left(t_{3}-t_{1}\right)}{a t_{2}\left(t_{3}-t_{1}\right)}=\frac{1}{t_{2}}$
Equation of line through C perpendicular to $A B$ is
$y-a\left(t_{3}+t_{1}\right)=-t_{2}\left(x-a t_{3} t_{1}\right)$
$\Rightarrow y-a\left(t_{3}+t_{1}\right)=-t_{2} x+a t_{1} t_{2} t_{3}$
Similarly, equation of line through B
perpendicular to $C A$ is
$y-a\left(t_{2}+t_{3}\right)=-t_{1}\left(x-a t_{2} t_{3}\right)$
$\Rightarrow y-a\left(t_{2}+t_{3}\right)=-t_{1} x+a t_{1} t_{2} t_{3}$
Using $t_{1} t_{2} t_{3}=-\left(t_{1}+t_{2}+t_{3}\right)$ in Eqs. (i) and (ii), we get
$y=-t_{2} x-a t_{2}$
and $y=-t_{1} x-a t_{1}$
$\Rightarrow t_{2}(x+a)=t_{1}(x+a)$
$\Rightarrow x=-a, y=0$
508 (d)
Let the coordinates of the third vertex C be (h, k).
Then,
$\frac{1}{2}\left|\begin{array}{ccc}h & k & 1 \\ -5 & 0 & 1 \\ 3 & 0 & 1\end{array}\right|= \pm 20 \Rightarrow k= \pm 5$

Since, (h, k) lies on $x-y=2$. Therefore,
$h-k=2$
Fork $=5, h=7$. For $k=-5, h=-3$
Hence, the coordinates of the third vertex C are $(-3,-5)$ or $(7,5)$
509 (b)
Let $P(h, k)$ be the required point, then
$4 P A^{2}=9 P B^{2}$
$\Rightarrow 4\left(h^{2}+k^{2}\right)=9(h-4)^{2}+9(k+3)^{2}$
$\Rightarrow 4 h^{2}+4 k^{2}=9\left(h^{2}+16-8 h\right)$

$$
+9\left(k^{2}+9+6 k\right)
$$

$\Rightarrow 5 h^{2}+5 k^{2}-72 h+54 k+225=0$
\therefore Required locus of $P(h, k)$ is
$5 x^{2}+5 y^{2}-72 x+54 y+225=0$
510 (a)
The coordinates of the orthocentre O^{\prime} and circumcentre O are $(2,1)$ and $\left(\frac{7}{2}, \frac{5}{2}\right)$ respectively We know that the centroid G divides $O O^{\prime}$ in the ratio 1:2
So, the coordinates of G are
$\left(\frac{1 \times 2+2 \times \frac{7}{2}}{1+2}, \frac{1 \times 1+2 \times \frac{5}{2}}{1+2}\right) \equiv(3,2)$
511 (a)
In $\triangle P O R, \frac{P R}{\sin 90^{\circ}}=\frac{h}{\sin 67 \frac{1}{2}^{\circ}} \ldots$ (i)

And in $\triangle P Q R$
$\frac{P R}{\sin 22 \frac{1}{2}^{\circ}}=\frac{b}{\sin 45^{\circ}}$
From Eqs. (i) and (ii)
$\frac{\sin 45^{\circ} h}{\sin 67 \frac{1}{2}^{\circ} b}=\frac{\sin 22 \frac{1}{2}{ }^{\circ}}{\sin 90^{\circ}} \Rightarrow \frac{h}{b}=\frac{\frac{1}{2} \sin 45^{\circ}}{\sin 45^{\circ}}$
$\Rightarrow 2 h=b$
512 (b)
Using, $\cos C=\frac{a^{2}+b^{2}-c^{2}}{2 a b}$

$\Rightarrow \frac{\sqrt{3}}{2}=\frac{\left(x^{2}+x+1\right)^{2}+\left(x^{2}-1\right)^{2}-(2 x+1)^{2}}{2\left(x^{2}+x+1\right)\left(x^{2}-1\right)}$
$\Rightarrow(x+2)(x+1)(x-1) x+\left(x^{2}-1\right)^{2}$
$=\sqrt{3}\left(x^{2}+x+1\right)\left(x^{2}-1\right)$
$\Rightarrow x^{2}+2 x+\left(x^{2}-1\right)=\sqrt{3}\left(x^{2}+x+1\right)$
$\Rightarrow 2(2-\sqrt{3}) x^{2}+(2-\sqrt{3}) x-(\sqrt{3}+1)=0$
$\Rightarrow \quad x=-(2+\sqrt{3})$ and $x=1+\sqrt{3}$
But, $x=-(2+\sqrt{3}) \Rightarrow c$ is negative
$\therefore x=1+\sqrt{3}$ is the only solution

513 (d)

It is given that the distance between the points
$P\left(a \cos 48^{\circ}, 0\right)$ and $Q\left(0, a \cos 12^{\circ}\right)$ is d
i.e., $P Q=d$
$\Rightarrow P Q^{2}=d^{2}$
$\Rightarrow a^{2} \cos ^{2} 48^{\circ}+a^{2} \cos ^{2} 12^{\circ}=d^{2}$
$\Rightarrow a^{2}\left(1+\cos 96^{\circ}\right)+a^{2}\left(1+\cos 24^{\circ}\right)=2 d^{2}$
$\Rightarrow 2 a^{2}+a^{2}\left(\cos 96^{\circ}+\cos 24^{\circ}\right)=2 d^{2}$
$\Rightarrow 2 a^{2}+2 a^{2} \cos 60^{\circ} \cos 36^{\circ}=2 d^{2}$
$\Rightarrow 2 a^{2}+a^{2}\left(\frac{\sqrt{5}+1}{4}\right)=2 d^{2} \Rightarrow d^{2}-a^{2}$

$$
=\frac{a^{2}}{8}(\sqrt{5}+1)
$$

514 (b)
$a b \cos C-a c \cos B$
$=\frac{a^{2}+b^{2}-c^{2}}{2}-\frac{c^{2}+a^{2}-b^{2}}{2}$
$=\frac{a^{2}+b^{2}-c^{2}-c^{2}-a^{2}+b^{2}}{2}$
$=b^{2}-c^{2}$
515 (a)
For collinearity, $\left|\begin{array}{lll}a_{1} & b_{1} & 1 \\ a_{2} & b_{2} & 1 \\ a_{3} & b_{3} & 1\end{array}\right|=0$
For concurrency to lines $a_{i} x+b_{i} y+1=0, i=$
$1,2,3$ we have
$\left|\begin{array}{lll}a_{1} & b_{1} & 1 \\ a_{2} & b_{2} & 1 \\ a_{3} & b_{3} & 1\end{array}\right|=0$, so lines are concurrent
516 (c)
$(b+c) \cos A+(c+a) \cos B+(a+b) \cos C$
$=b \cos A+c \cos A+c \cos B+a \cos B+a \cos C$ $+b \cos C$
$=(b \cos A+a \cos B)+(c \cos A+\operatorname{acos} C)$
$+(c \cos B+b \cos C)$
$=c+b+a$
517 (b)
By sine rule, $\frac{\sin A}{a}=\frac{\sin B}{b}$
Here, $\frac{\sin \left(\frac{\pi}{2}+B\right)}{5}=\frac{\sin B}{4}$ [by sine rule]
$\Rightarrow \tan B=\frac{4}{5}$
Also, $\angle A+\angle B+\angle C=\pi$
$\Rightarrow \frac{\pi}{2}+2 \angle B+\angle C=\pi$
$\Rightarrow 2 \tan ^{-1}\left(\frac{4}{5}\right)+\angle C=\frac{\pi}{2}$
$\Rightarrow \angle C=\frac{\pi}{2}-2 \tan ^{-1}\left(\frac{4}{5}\right)$
$\Rightarrow \angle C=\frac{\pi}{2}-\tan ^{-1}\left(\frac{\frac{8}{5}}{1-\frac{16}{25}}\right)$
$\Rightarrow=\frac{\pi}{2}-\tan ^{-1}\left(\frac{40}{9}\right)=\cot ^{-1}\left(\frac{40}{9}\right)$
$\Rightarrow \angle C=\tan ^{-1}\left(\frac{9}{40}\right)$
518 (b)
We have, $\frac{1}{2} a p_{1}=\Delta, \frac{1}{2} b p_{2}=\Delta, \frac{1}{2} c p_{3}=\Delta$
Where a, b, c are the sides of a triangle
$\Rightarrow p_{1}=\frac{2 \Delta}{a}, \quad p_{2}=\frac{2 \Delta}{b}, \quad p_{3}=\frac{2 \Delta}{c}$
$\therefore \frac{1}{p_{1}^{2}}+\frac{1}{p_{2}^{2}}+\frac{1}{p_{3}^{2}}$
$=\frac{a^{2}}{4 \Delta^{2}}+\frac{b^{2}}{4 \Delta^{2}}+\frac{c^{2}}{4 \Delta^{2}}+\frac{a^{2}+b^{2}+c^{2}}{4 \Delta^{2}}$

