

17.CO-ORDINATE GEOMETRY

Single Correct Answer Type

1.	$\ln \Delta ABC, a^2(\cos^2 B - \cos^2 B)$	$s^2 C) + b^2 (\cos^2 C - \cos^2 A)$	$(1) + c^2 (\cos^2 A - \cos^2 B)$ is	equal to
	a) 0	b) 1	c) $a^2 + b^2 + c^2$	d) $2(a^2 + b^2 + c^2)$
2.		4: 5, then cos A : cos B is eq		
	a) 4:3	b) 5: 3	c) 3:4	d) 3: 5
3.	If A, B, C are the angles of	f a triangle, then $\cot \frac{A}{2} + \cot \frac{A}{2}$	$t\frac{b}{2} + \cot\frac{c}{2}$ is equal to	
	a) $\frac{s}{R}$	b) $\frac{R}{c}$	c) $\frac{\Delta}{s^2}$	d) $\frac{s^2}{\Lambda}$
4.	Π	3	s^2 from (0, 0) to the line joining	Δ
4.	$(a \cos \beta, a \sin \beta)$ are	i tile per penulcular urawn	from (0, 0) to the fine joining	ilg (a cos a , a sili a) alla
	(a) $\left(\frac{a}{2}, \frac{b}{2}\right)$		b) $\left(\frac{a}{2}(\cos \alpha + \cos \beta), \frac{a}{2}(\sin \alpha + \cos \beta)\right)$	in a Lain ())
				$\ln \alpha + \sin \beta $
	c) $\left(\cos\frac{\alpha+\beta}{2},\sin\frac{\alpha+\beta}{2}\right)$		d) $\left(0,\frac{b}{2}\right)$	
5.	Three points are $A(6, 3)$,	B(-3,5), C(4,-2) and P(x)	x, y) is a point, then the ration	b of area of $\triangle PBC$ and $\triangle ABC$
	is $ x + y = 2$	1x - x + 2	1x - x - 21	
	a) $\left \frac{x + y - z}{7} \right $	b) $\left \frac{x - y + 2}{2} \right $	c) $\left \frac{x - y - z}{7} \right $	d) None of these
6.	Two vertical poles 20 m a	and 80 m stands apart on a	horizontal plane. The heig	ht of the point of
		oining the top of each pole		
_	a) 15 m	b) 16 m	c) 18 m	d) 50 m
7.			es which are 6 km apart, in a	
	rate of	i bears south west and the	other southern south west.	The ship is travening at a
	a) 12 km/hr	b) 6 km/hr	c) $3\sqrt{2}$ km/hr	d) $(6 + 3\sqrt{2})$ km/hr
8.	If α , β , γ are the real roots			
	$x^3 - 3px^2 + 3qx - 1 = 0$	-		
		triangle whose vertices are		
	$\left(\alpha,\frac{1}{\alpha}\right),\left(\beta,\frac{1}{\beta}\right)$ and $\left(\gamma,\frac{1}{\gamma}\right)$, i	S		
	a) (<i>p</i> , <i>q</i>)	b) (q, p)	c) (<i>-p</i> , <i>q</i>)	d) (<i>q</i> ,− <i>p</i>)
9.	If two vertices of a triang	le are $(-2, 3)$ and $(5, -1)$.	Orthocentre lies at the orig	in and centroid on the line
	x + y = 7, then the third			
10	a) $(7, 4)$ What is the equation of the	b) (8, 14)	c) $(12, 21)$	d) None of these
10.	the square of its distance		oves such that 4 times its d	
	-	0	c) $x^2 + y^2 - 4x = 0$	d) $x^2 + y^2 - 4 x = 0$
11.		(s-a)(s-b)(s-c) is equal		
	a) a^2b^2	b) $\frac{1}{4}a^{2}b^{2}$		d) $\frac{1}{2}ab$
12.	The harmonic conjugate	of $(4, -2)$ with respect to (2, -4) and (7,1) is	2
	a) (-8, -14)	b) (2,3)	c) (-2, -3)	d) (13, -5)
13.			ints, then $OP. OQ \sin \angle POQ$	
	a) $x_1 x_2 + y_1 y_2$			d) None of these
14.		c = 5, then the value of sin		d) 1 /E0
15	a) 4/5 From an aeroplane vertic	b) 3/20 cally over a straight horizou	c) 24/25 ntal road, the angles of depi	d) 1/50
10.			bserved to be α and β . The	
				ont of the del oplane

	above the road is			
		b) $\frac{\tan \alpha \tan \beta}{\tan \alpha + \tan \beta}$	$\cot \alpha \cot \beta$	d) None of these
		•	,	
16.		$= 75^{\circ}$, then $a + c\sqrt{2}$ is equ		
	a) 0	b) 1	c) <i>b</i>	d) 2 <i>b</i>
17.				C subtend angles α , β and γ
	a) AP	b) GP	ot α , cot β and cot γ are in A c) HP	d) None of these
18.	The area enclosed within	,	cj m	uj None or these
10.	a) 1 sq unit	b) $2\sqrt{2}$ sq units	c) $\sqrt{2}$ squarts	d) 2 sq units
19.		-	, , = = = 1	<i>b</i> .The angles of elevation of
			qure of the distance betwee	_
	a) $\frac{a^2 + b^2}{2}$	b) $a^2 + b^2$	c) $2(a^2 + b^2)$	d) $4(a^2 + b^2)$
20	L			
20.		es axes through 30° in anti	clockwise sense the equation	on $x^2 + 2\sqrt{3}xy - y^2 = 2a^2$
	changes to a) $Y^2 - Y^2 - 3a^2$	b) $Y^2 - V^2 - a^2$	c) $X^2 - Y^2 = 2a^2$	d) None of these
21.	-	-	re the mid points of the sid	
	0) is			(i) (i) (i) (i) i) (ii)
	a) $2 + \sqrt{2}$	b) $1 + \sqrt{2}$	c) $2 - \sqrt{2}$	d) $1 - \sqrt{2}$
22.	Let $A(2, -3)$ and $B(-2, 1)$) be vertices of a triangleA	BC. If the centroid of this tr	iangle moves on the line
	-	us of the vertex <i>C</i> is the line		
			c) $3x + 2y = 5$	
23.			t on the ground is 30°. If or	walking 20 m toward the
	a) 10 m	on becomes 60°, then the h 10	-	d) None of these
	a) 10 m	b) $\frac{10}{\sqrt{3}}$ m	c) 10√3 m	uj None or these
24.	In a $\triangle ABC$, if $2s = a + b$	(s - b)(s - c) = x	$\sin^2\frac{A}{2}$, then the value of x i	S
	a) <i>bc</i>	b) ca	c) ab	d) abc
25.	-		n the origin on the lines x s	-
		2α respectively, then $\left(\frac{P_1}{P_2}, \frac{P_1}{P_2}\right)$		
	a) $4 \sin^2 4\alpha$	b) $4\cos^2 4\alpha$	$(c) 4 \cos^2 4\alpha$	d) 4 sec ² 4 α
26.	The equation $\sqrt{(r-2)^2}$ -	b) $4\cos^2 4\alpha$ + $(y-1)^2 + \sqrt{(x+2)^2 + (x+2)^2}$	$\overline{(v-4)^2} = 5$ represents	uj i sec nu
	a) Circle	b) Ellipse	c) Line segment	d) None of these
27.	The value of $\frac{1}{r_1^2} + \frac{1}{r_2^2} + \frac{1}{r_2^2}$	y 1		
	$r_1^2 + r_2^2 + r_3^2$		٨2	$a^2 + b^2 + a^2$
	a) 0	b) $\frac{a^2 + b^2 + c^2}{\Lambda^2}$	c) $\frac{\Delta^2}{a^2 + b^2 + c^2}$	d) $\frac{a^2 + b^2 + c^2}{\Lambda}$
28.	The sides of a triangle are	e 4cm, 5cm and 6cm. the ar	ea of the triangle is equal to)
	a) $\frac{15}{4}$ cm ²		c) $\frac{4}{15}\sqrt{7}$ cm ²	d) None of these
20	4	4	15	
29.		-	of 2 m from a wall, 4 m high	
		remaining in the shadow is		t the maximum distance to
			c) 4 m	d) None of these
	a) $\frac{5}{2}$ m	b) $\frac{3}{2}$ m	,	,
30.	-		e of its base and the angle o	of depression of the foot of
	-	t just above A is β . Then, th	-	
01	a) $b \tan \alpha \cot \beta$	b) b cot α tan β	c) $b \cot \alpha \cot \beta$	d) b tan α tan β
31.	III a ABC, II $D = 2, \angle B = 3$	30°, then the area of the cir	cumcircle of $\triangle ABC$ in squa	ire unit is

	a) π	b) 2π	c) 4π	d) 6π
32.	The base of a cliff is circu	llar. From the extremities o	f a diameter of the base of a	angle of elevation of the top
	of the cliff are 30° and 60)°. If the height of the cliff b	e 500 m, then the diameter	of the base of the cliff is
	a) 1000 / 7	2000 m	ູ 1000 ຼ	2000
		b) $\frac{2000}{\sqrt{3}}$ m		d) $\frac{2000}{\sqrt{2}}$ m
33.	If R denotes circumradiu	s, then in $\triangle ABC$, $\frac{b^2 - c^2}{2aR}$ is equivalent to the second sec	jual to	
	a) $\cos(B - C)$	b) $\sin(B - C)$		d) None of these
34.	The area between the cu	rve $y = 1 - x $ and the x-a	xis is equal to	-
	a) 1 sq unit	b) $\frac{1}{2}$ sq unit		d) 2 sq units
35.	Angles A. B and C of a tri	2	on difference 15 degree, the	en angle A is equal to
	a) 45°	b) 60°	c) 75°	d) 30°
36.	,	$\left(-\frac{r_1}{r_2}\right) = 2$, then the triangle	,	
	Σ	J .		d) None of these
27	a) Right angled	b) Equilateral	-	d) None of these
37.		the sun, if the length of the	shadow of a tower is $\sqrt{3}$ ti	mes the height of the pole,
	is			
	a) 150°	b) 30°	c) 60°	d) 45°
38.			ned to the equation $2X^2 + Y$	
			coordinates axes, then the c	
	a) (1, 2)	b) (1, -2)	c) (-1,2)	d) (-1, -2)
39.			the portions PQ, PR and PS	
	point on the ground dista	ance <i>x</i> from the pole. If <i>PQ</i>	$= a, PR = b, PS = c \text{ and } \alpha$	+ β + γ = 180° then x^2 is
	equal to			
	a) $\frac{a}{a}$	b) $\frac{b}{a+b+c}$	c) $\frac{c}{c}$	d) $\frac{abc}{a+b+c}$
4.0			a + b + c	a + b + c
40.		b) = s(s - c), then angle		
	a) 90°	b) 45°	c) 30°	d) 75°
41.	At a point on the ground	the angle of elevation of a t	cower is such that its cotang	gent is $\frac{3}{5}$. On walking 32 m
	towards the tower the co	otangent of the angle of elev	vation is $\frac{2}{5}$. The height of the	tower is
	a) 160 m	b) 120 m	c) 64 m	d) None of these
42.	Area of quadrilateral whe	ose vertices are (2, 3), (3, 4	e), (4, 5) and (5, 6), is equal	to
	a) 0	b) 4	c) 6	d) None of these
43.				<i>,</i>
	If the area of a triangle A	<i>BC</i> is Δ , then $a^2 \sin 2B + b^2$	² sin 2 <i>A</i> is equal to	,
	If the area of a triangle <i>A</i> a) 3Δ	BC is Δ , then $a^2 \sin 2B + b^2$ b) 2Δ	2 sin 2 <i>A</i> is equal to c) 4 Δ	d) −4∆
44.	-	b) 2Δ	-	-
44.	a) 3∆ Consider the following st	b) 2∆ catements :	c) 4Δ	-
44.	a) 3Δ Consider the following st 1. If in a ΔABC , $\frac{\sin A}{\sin c} = \frac{\sin A}{\sin c}$	b) 2Δ catements : $\frac{h(A-B)}{h(B-C)}$, then a^2, b^2, c^2 are in	c) 4Δ ΑΡ	-
44.	a) 3Δ Consider the following st 1. If in a ΔABC , $\frac{\sin A}{\sin c} = \frac{\sin A}{\sin c}$ 2. If exradius r_1 , r_2 and r_3	b) 2Δ catements : $\frac{h(A-B)}{h(B-C)}$, then a^2 , b^2 , c^2 are in of a ΔABC are in HP, then	c) 4Δ ΑΡ	-
44.	a) 3Δ Consider the following st 1. If in a ΔABC , $\frac{\sin A}{\sin c} = \frac{\sin A}{\sin c}$ 2. If exradius r_1 , r_2 and r_3 Which of these is/are con	b) 2Δ catements : $\frac{h(A-B)}{h(B-C)}$, then a^2 , b^2 , c^2 are in of a ΔABC are in HP, then crect?	c) 4Δ AP the sides <i>a</i> , <i>b</i> , <i>c</i> are in AP	d) −4∆
	a) 3Δ Consider the following st 1. If in a ΔABC , $\frac{\sin A}{\sin c} = \frac{\sin A}{\sin c}$ 2. If exradius r_1 , r_2 and r_3 Which of these is/are con a) Only (1)	b) 2Δ catements : $\frac{h(A-B)}{h(B-C)}$, then a^2 , b^2 , c^2 are in of a ΔABC are in HP, then prect? b) Only (2)	c) 4Δ AP the sides <i>a</i> , <i>b</i> , <i>c</i> are in AP c) Both (1) and (2)	-
	a) 3Δ Consider the following st 1. If in a ΔABC , $\frac{\sin A}{\sin c} = \frac{\sin A}{\sin c}$ 2. If exradius r_1, r_2 and r_3 Which of these is/are con a) Only (1) If the sides of the triangle	b) 2Δ catements : $\frac{n(A-B)}{n(B-C)}$, then a^2 , b^2 , c^2 are in of a ΔABC are in HP, then crect? b) Only (2) e are $p, q, \sqrt{p^2 + q^2 + pq}$, then	c) 4Δ AP the sides <i>a</i> , <i>b</i> , <i>c</i> are in AP c) Both (1) and (2) then the greatest angle is	d) -4Δ d) None of these
45.	a) 3Δ Consider the following st 1. If in a ΔABC , $\frac{\sin A}{\sin c} = \frac{\sin r}{\sin c}$ 2. If exradius r_1, r_2 and r_3 Which of these is/are con a) Only (1) If the sides of the triangle a) $\frac{\pi}{2}$	b) 2Δ catements : $\frac{h(A-B)}{h(B-C)}$, then a^2 , b^2 , c^2 are in of a ΔABC are in HP, then crect? b) Only (2) e are $p, q, \sqrt{p^2 + q^2 + pq}$, th b) $\frac{5\pi}{4}$	c) 4Δ AP the sides <i>a</i> , <i>b</i> , <i>c</i> are in AP c) Both (1) and (2) then the greatest angle is c) $\frac{2\pi}{3}$	d) -4Δ d) None of these d) $\frac{7\pi}{4}$
45.	a) 3Δ Consider the following st 1. If in a ΔABC , $\frac{\sin A}{\sin c} = \frac{\sin r}{\sin c}$ 2. If exradius r_1, r_2 and r_3 Which of these is/are cor a) Only (1) If the sides of the triangle a) $\frac{\pi}{2}$ If x, y, z are perpendicula	b) 2Δ catements : $\frac{h(A-B)}{h(B-C)}$, then a^2 , b^2 , c^2 are in of a ΔABC are in HP, then crect? b) Only (2) e are $p, q, \sqrt{p^2 + q^2 + pq}$, th b) $\frac{5\pi}{4}$	c) 4Δ AP the sides <i>a</i> , <i>b</i> , <i>c</i> are in AP c) Both (1) and (2) then the greatest angle is	d) -4Δ d) None of these d) $\frac{7\pi}{4}$
45.	a) 3Δ Consider the following st 1. If in a ΔABC , $\frac{\sin A}{\sin c} = \frac{\sin r}{\sin c}$ 2. If exradius r_1, r_2 and r_3 Which of these is/are con a) Only (1) If the sides of the triangle a) $\frac{\pi}{2}$	b) 2Δ catements : $\frac{h(A-B)}{h(B-C)}$, then a^2 , b^2 , c^2 are in of a ΔABC are in HP, then crect? b) Only (2) e are $p, q, \sqrt{p^2 + q^2 + pq}$, th b) $\frac{5\pi}{4}$	c) 4Δ AP the sides <i>a</i> , <i>b</i> , <i>c</i> are in AP c) Both (1) and (2) then the greatest angle is c) $\frac{2\pi}{3}$	d) -4Δ d) None of these d) $\frac{7\pi}{4}$
45.	a) 3Δ Consider the following st 1. If in a ΔABC , $\frac{\sin A}{\sin c} = \frac{\sin x}{\sin c}$ 2. If exradius r_1, r_2 and r_3 Which of these is/are con a) Only (1) If the sides of the triangle a) $\frac{\pi}{2}$ If x, y, z are perpendicula $\frac{bx}{c} + \frac{cy}{a} + \frac{az}{b}$ will be	b) 2Δ catements : $\frac{n(A-B)}{n(B-C)}$, then a^2 , b^2 , c^2 are in of a ΔABC are in HP, then crect? b) Only (2) e are p , q , $\sqrt{p^2 + q^2 + pq}$, th b) $\frac{5\pi}{4}$ are drawn from the vertices	c) 4Δ AP the sides <i>a</i> , <i>b</i> , <i>c</i> are in AP c) Both (1) and (2) nen the greatest angle is c) $\frac{2\pi}{3}$ of triangle having sides <i>a</i> , <i>b</i>	d) -4Δ d) None of these d) $\frac{7\pi}{4}$ and <i>c</i> , then the value of
45.	a) 3Δ Consider the following st 1. If in a ΔABC , $\frac{\sin A}{\sin c} = \frac{\sin x}{\sin c}$ 2. If exradius r_1, r_2 and r_3 Which of these is/are con a) Only (1) If the sides of the triangle a) $\frac{\pi}{2}$ If x, y, z are perpendicula $\frac{bx}{c} + \frac{cy}{a} + \frac{az}{b}$ will be	b) 2Δ catements : $\frac{n(A-B)}{n(B-C)}$, then a^2 , b^2 , c^2 are in of a ΔABC are in HP, then crect? b) Only (2) e are p , q , $\sqrt{p^2 + q^2 + pq}$, th b) $\frac{5\pi}{4}$ are drawn from the vertices	c) 4Δ AP the sides <i>a</i> , <i>b</i> , <i>c</i> are in AP c) Both (1) and (2) then the greatest angle is c) $\frac{2\pi}{3}$	d) -4Δ d) None of these d) $\frac{7\pi}{4}$ and <i>c</i> , then the value of

47. A balloon is observed simultaneously from three points *A*, *B* and *C* on a straight road directly under it. The angular elevation at *B* is twice and at *C* is thrice that of *A*. If the distance between *A* and *B* is 200 m and the

distance between *B* and *C* is 100 m, then the height of balloon is given by

c) $50\sqrt{2}$ m d) None of these a) 50 m b) $50\sqrt{3}$ m 48. If the distance of any point *P* from the points A(a + b, a - b) and B(a - b, a + b) are equal, then the locus of P is

a)
$$x - y = 0$$
 b) $ax + by = 0$ c) $bx - ay = 0$ d) $x + y = 0$
49. The length of altitude through *A* of the \triangle *ABC*, where $A \equiv (-3, 0), B \equiv (4, -1), C \equiv (5, 2)$, is

a)
$$\frac{2}{\sqrt{10}}$$
 b) $\frac{4}{\sqrt{10}}$ c) $\frac{11}{\sqrt{10}}$ d) $\frac{22}{\sqrt{10}}$

50. Triangle *ABC* has vertices (0, 0), (11, 60) and (91, 0). If the line y = kx cuts the triangle into two triangles of equal area, then k is equal to a) $\frac{30}{51}$

b)
$$\frac{4}{7}$$
 c) $\frac{7}{4}$ d) $\frac{30}{91}$

51. A pole stands at the centre of a rectangular field and it subtends angles of 15° and 45° at the mid points of the side of the field. If the length of its diagonal is 1200 m, then the height of flag staff is a) 400 m b) 200 m c) $300\sqrt{2+\sqrt{3}}$ m d) $300\sqrt{2-\sqrt{3}}$ m

52. What is the equation of the locus a point which moves such that 4 times its distance from the *x*-axis is the square of its distance from the origin?

a) $x^2 - y^2 - 4y = 0$ b) $x^2 + y^2 - 4|y| = 0$ c) $x^2 + y^2 - 4x = 0$ d) $x^2 + y^2 - 4|x| = 0$ 53. A person standing on the bank of a river, observe that the angle of elevation of the top of a tree on the opposite bank of the river is 60° and when he retries 40m a way from the tree the angle of elevation become 30°. The breadth of the river is

c) 40 m

d) 60 m

54. There exist a $\triangle ABC$ satisfying

56.

a) 2

a)
$$\tan A + \tan B + \tan C = 0$$

$$\sin A + \sin B = -\left(\frac{\sqrt{3} + 1}{2\sqrt{2}}\right) \cos A \cos B$$
c)

$$= \frac{\sqrt{3}}{4} = \sin A \sin B$$
b) $\frac{\sin A}{2} = \frac{\sin B}{3} = \frac{\sin C}{1}$
d) $(a + b)^2 = c^2 + ab$ and $\sqrt{2} (\sin A + \cos A) = \sqrt{3}$

55. From a point a meters above a lake the angle of elevation of a cloud is α and the angle of depression of its reflection is β . The height of the cloud is

a)
$$\frac{a\sin(\alpha + \beta)}{\sin(\alpha + \beta)}$$
 m b) $\frac{a\sin(\alpha + \beta)}{\sin(\beta - \alpha)}$ m c) $\frac{a\sin(\beta - \alpha)}{\sin(\alpha + \beta)}$ d) None of these The orthocentre of the triangle formed by (0, 0), (8, 0), (4, 6) is

a)
$$\left(4,\frac{8}{3}\right)$$
 b) (3,4) c) (4,3) d) (-3,4)

57. The *x*-coordinate of the incentre of the triangle where the mid point of the sides are (0, 1), (1, 1) and (1, 0), is

+
$$\sqrt{2}$$
 b) 1 + $\sqrt{2}$ c) 2 - $\sqrt{2}$ d) 1 - $\sqrt{2}$

58. The locus of the point (x, y) which is equidistant from the points (a + b, b - a) and (a - b, a + b) is c) bx + ay = 0a) ax = byb) ax + by = 0d) bx - ay = 0

- 59. If the sum of the distances from two perpendicular lines in a plane is 1, then its locus is
 - a) A square b) A circle
 - c) A straight line d) Two intersecting lines

60. A tower of x metres high, has a flagstaff at its top. The tower and the flagstaff subtend equal angles at a point distant y metres from the foot of the tower. Then the length of the flagstaff (in meters), is

a)
$$\frac{y(x^2 - y^2)}{(x^2 + y^2)}$$
 b) $\frac{x(y^2 + x^2)}{(y^2 - x^2)}$ c) $\frac{x(x^2 + y^2)}{(x^2 - y^2)}$ d) $\frac{x(x^2 - y^2)}{(x^2 + y^2)}$

61. In a $\triangle ABC$, $2ac \sin \frac{A-B+C}{2}$ is equal to

	-	-	c) $b^2 - a^2 - c^2$	-
62.			ven points, then the locus o	of the point $S(x, y)$ satisfying
	the relation $SQ^2 + +SR^2$			
	a) A straight line parallel		b) A circle through the or	0
	c) A circle with centre at	-	d) A straight line parallel	•
63.		centre of a triangle are res	spectively (1, 1) and (3, 2),	then the coordinates of its
	centroid are			
	a) $\left(\frac{7}{2}, \frac{5}{2}\right)$	b) $\left(\frac{5}{3}, \frac{7}{3}\right)$	c) (7, 5)	d) None of these
()	(3 3/	(3.3)	a + 0 + a + a + a + 0 - 2 + a + d + a	$a_{a}a_{a}a_{b}a_{b}a_{a}a_{b}a_{b}a_{b}$
64.	a) A straight line	b) Circle	ot $\theta + y \operatorname{cosec} \theta = 2$ and $x \in \mathbb{R}^{2}$	•
65		ot C be in AP, then a^2 , b^2 , c	c) A hyperbola	d) An ellipse
05.	a) HP	b) GP	c) AP	d) None of these
66.	•	,	,	and the angle of depression
00.		=	cloud from the foot of lake	
	a) $2500\sqrt{3}$ m	b) 2500 m		d) None of these
67.		,	, ,	e mid point of <i>BC</i> . The angle
071			t^{-1} 3.2 and cosec ⁻¹ 2.6 resp	
	tower is			
	a) 16 m	b) 25 m	c) 50 m	d) None of these
68.	-	nd $\angle A = 30^\circ$, then the large	-	2
	a) 60°	b) 135°	c) 90°	d) 120°
69.	In an equilateral triangle,	$R: r: r_1$ is equal to	2	
	a) 1:1:1	b) 1:2:3	c) 2:1:3	d) 3:2:4
70.	In a triangle, if $r_1 = 2r_2 =$	$3r_3$, then $\frac{a}{b} + \frac{b}{c} + \frac{c}{a}$ is equal	ll to	
	75			191
	a) $\frac{75}{60}$	b) $\frac{155}{60}$	c) $\frac{1}{60}$	d) $\frac{191}{60}$
71.		4:5:6. The ratio of the rad	dius of the circumcircle to t	hat of the incircle is
	a) $\frac{15}{4}$	b) $\frac{11}{5}$	c) $\frac{16}{7}$	d) $\frac{16}{3}$
	4			5
72.			y one kilometer above the g	
		s, if the elevation is observ	red to be 30°, then the spee	ed of the plane (in km/h) is
	a) $\frac{240}{\sqrt{3}}$	b) 200√3	c) 240√3	d) $\frac{120}{\sqrt{3}}$
73.	10	the top of a tower standing	on a horizontal plane from	٧J
75.				nd to be β . The height of the
	tower is		le ungre of elevation is four	ia to be p. The height of the
		$a \sin \alpha \sin \beta$	$a\sin(\beta-\alpha)$	$a\sin(\alpha-\beta)$
	a) $\frac{1}{\sin(\beta - \alpha)}$	b) $\frac{1}{\sin(\alpha - \beta)}$	c) $\frac{a\sin(\beta-\alpha)}{\sin\alpha\sin\beta}$	d) $\frac{1}{\sin \alpha \sin \beta}$
74.	If the vertices of a triangle	e have integral coordinates	s, the triangle cannot be	,
	a) An equilateral triangle		b) A right angled triangle	1
	c) An isosceles triangle		d) None of the above	
75.	In a $\triangle ABC$, among the fol	lowing which one is true?		
	a) $(b + c) \cos \frac{A}{2} = a \sin (\frac{b}{2})^{2}$	B + C	b) $(b+c)\cos\left(\frac{B+C}{2}\right) =$	$a \sin \frac{A}{a}$
	Δ (<u> </u>		L
	c) $(b-c)\cos\left(\frac{B-C}{2}\right) = b$	$a\cos\left(\frac{A}{2}\right)$	d) $(b-c)\cos\frac{A}{2} = a\sin\left(\frac{1}{2}\right)$	$\left(\frac{B-C}{2}\right)$
76.			an angle $\tan^{-1}\left(\frac{3}{5}\right)$ at a point	
	-		t. A possible height of the ve	-
	a) 20 m	b) 40 m	c) 60 m	d) 80 m

Page | 5

- 77. If *C* and *D*are the points of internal and external division of line segment *AB* in the same ratio, then *AC*, *AB*, *AD* are in
- a) AP b) GP c) HP d) AGP 78. A ladder rests against a vertical wall at angle α to the horizontal. If its foot is pulled away from the wall through a distance 'a' so that it slides a distance 'b' down the wall making an angle β with the horizontal, then a =

		e line $y = 2$ and $y = 6$ is less t	
a) $\left] -\frac{4}{3}, \frac{4}{3} \right[$	b) $\frac{4}{3}, \frac{3}{8}$	c) $\left]-\infty, -\frac{4}{3}\left[\cup\right]\frac{4}{3}, \infty\right[$	d) $\left \frac{4}{3},\infty\right $
	$aA + (c-a)\sin B + (a-b)$		
	b) $a^2 + b^2 + c^2$	c) 0	d) None of these
—	riangle whose sides are 3, 5,	6 IS	–
a) $\sqrt{\frac{8}{7}}$	b) √8	c) √7	d) $\sqrt{\frac{7}{8}}$
96. In a $\triangle ABC$, if the sid		then $\sin \frac{B}{2} + \cos \frac{B}{2}$ is equal to	
a) √2	b) $\frac{\sqrt{3}+1}{2}$	c) $\frac{\sqrt{3}-1}{2}$	d) 1
	r walking 120 m towards it o	om a certain point in the hori n level ground the elevation i	
a) 120	b) 60√3	c) 120√3	d) 60
98. If the area of the tria	angle with vertices $(x, 0)$, $(1, $	1) and (0, 2) is 4 sq unit, then	the value of <i>x</i> is
a) -2	b) -4	c) -6	d) 8
		er <i>AB</i> of height 5 metres, a flag	gstaff BC on top of AB and
	he same angle. The, the heigh	_	d) News of these
a) $\frac{1440}{119}$ metres	b) $\frac{475}{119}$ metres	c) $\frac{645}{119}$ metres	d) None of these
11)	11)	m a point on the ground the a	ngles of elevation of the top
and bottom of the to	ower are found to be 75° and	60° respectively. the height o	f the mount is
a) 25 m	b) $25(\sqrt{3}-1)$ m	c) 25√3 m	d) $25(\sqrt{3}+1)$ m
101. Let <i>AB</i> is divided in		and Q in the same ratio. Then,	AP, AB, AQ are in
a) AP	b) GP	c) HP	d) None of these
		erpendicular lines in a plane	
a) Rhombus	b) Circle	c) Straight line	d) Pair of straight lines and is 300 ft from the base of
		n of the flagpole is 30° and the	
	evation of the top of the flag		0 01
a) $\frac{4}{3\sqrt{3}}$	b) $\frac{\sqrt{3}}{2}$	c) $\frac{9}{2}$	d) $\frac{\sqrt{3}}{5}$
515	L	$\frac{c}{2}$	u) <u> </u>
104. In $\triangle ABC$, 2 $\left(a \sin^2 \frac{C}{2}\right)$	$(+ c \sin^2 \frac{A}{2})$ is equal to		
,		c) $b + c - a$	d) <i>a</i> + <i>b</i> + <i>c</i>
_	gle with vertices (0, 0), (3, 4)	_	
a) $\left(3, \frac{5}{4}\right)$	b) (3, 12)	c) $\left(3, \frac{3}{4}\right)$	d) (3, 9)
(1/	arallelogram taken in order	are $(-1, -6)$, $(2, -5)$ and $(7, 2)$	2). The fourth vertex is
a) (1, 4)	b) (4, 1)	c) (1, 1)	d) (4, 4)
	$\cos B + \sin A \sin B \sin C = 1,$		
a) Isosceles	b) Right angled	c) Isosceles right angled	d) Equilateral
		ular, then the true equation is	
a) $\tan A + \tan B = 0$		c) $\tan A + 2 \tan C = 0$	d) $\tan B \tan C = 1$
a) 7	(13, λ) lie on the sa b) -7	me straight line, if λ is equal t c) ± 7	.o d) 0
			uju
	,		,
a) $(\frac{3}{2}, 2)$	ngle whose vertices are (0, 0 b) $\left(2, \frac{3}{2}\right)$		d) None of these

- 111. The vertices of a triangle are A(-1, -7), B(5, 1) and C(1, 4). The equation of the bisector of angle ABC, is a) x + 7y - 2 = 0b) x - 7y - 2 = 0c) x - 7y + 2 = 0d) None of these
- 112. A tower subtends angles α , 2α and 3α respectively at points *A*, *B* and *C*, all lying on a horizontal line through the foot of the tower, then $\frac{AB}{BC}$ is equal to
 - a) $\frac{\sin 3\alpha}{\sin 2\alpha}$ d) $\frac{\sin 2\alpha}{\sin \alpha}$ b) $1 + 2 \cos 2\alpha$ c) 2 cos 2α

113. A person standing on the bank of a river finds that the angle of elevation of the top of a tower on the opposite bank is 45°, then which of the following statements is correct?

- a) Breadth of the river is twice the height of the tower
- b) Breadth of the river and the height of the tower are the same
- c) Breadth of the river is half of the height of the tower
- d) None of these
- 114. The angular depression of the top and the foot of the chimney as seen from the top of a second chimney which is 150 m high and standing on the same level as the first are θ and ϕ respectively. The distance between their tops when $\tan \theta = \frac{4}{3}$ and $\tan \phi = \frac{5}{2}$ is equal to

b) 100 m d) None of these a) 50 m c) 15 m

115. A round balloon of radius r subtends an angle α at the eye of the observer, While the angle of elevation of its centre is β . The height of the center of balloon is

a)
$$r \csc \alpha \sin \frac{\beta}{2}$$
 b) $r \sin \alpha \csc \frac{\beta}{2}$ c) $r \sin \frac{\alpha}{2} \csc \beta$ d) $r \csc \frac{\alpha}{2} \sin \beta$

116. In a \triangle ABC, a, c, A are given and b_1 , b_2 are two values, if the third side b such that $b_2 = 2b_1$, then sin A is equal to

a)
$$\frac{\sqrt{9a^2 - c^2}}{8a^2}$$
 b) $\sqrt{\frac{9a^2 - c^2}{8c^2}}$ c) $\frac{\sqrt{9a^2 + c^2}}{8a^2}$

d) None of these

117. If *a*, *b*, *c* are sides of a triangle, then

a)
$$\sqrt{a} + \sqrt{b} > \sqrt{c}$$
b) $|\sqrt{a} - \sqrt{b}| > \sqrt{c}$ (if *c* is smallest)c) $\sqrt{a} + \sqrt{b} < \sqrt{c}$ d) None of the above

118. ABC Is a triangle with $\angle A = 30^\circ$, BC = 10 cm. The area of the circumcircle of the triangle is d) $\frac{100\pi}{3}$ sq cm b) 5 sq cm c) 25 sq cm a) 100π sq cm

119. In a \triangle *ABC*, *a*: *b*: *c* = 4: 5: 6. The ratio of the radius of the circumcircle to that of the incircle is c) $\frac{11}{7}$ d) $\frac{7}{16}$

a) $\frac{16}{9}$ b) $\frac{16}{7}$ c) $\frac{11}{7}$ 120. The incentre of the triangle formed by lines x = 0, y = 0 and 3x + 4y = 12, is at c) $(1, \frac{1}{2})$ d) $(\frac{1}{2}, 1)$ a) $\left(\frac{1}{2}, \frac{1}{2}\right)$ b) (1, 1)

121. Given points are A(0, 4) and B(0, -4), the locus of P(x, y) such that |AP - BP| = 6, is a) $9x^2 - 7y^2 + 63 = 0$ b) $9x^2 + 7y^2 - 63 = 0$ c) $9x^2 + 7y^2 + 63 = 0$ d) None of these

122. The angle of elevation of the top of a tower from a point A due South of the tower is α and from a point B due East of the tower is β . If AB = d, then the height of the tower is

a)
$$\frac{d}{\sqrt{\tan^2 \alpha - \tan^2 \beta}}$$
 b) $\frac{d}{\sqrt{\tan^2 \alpha + \tan^2 \beta}}$ c) $\frac{d}{\sqrt{\cot^2 \alpha + \cot^2 \beta}}$ d) $\frac{d}{\sqrt{\cot^2 \alpha - \cot^2 \beta}}$
Let *P* be the point (1, 0) and *Q* be the point on $y^2 = 8x$. The locus of mid point of *PQ* is

123. Let *P* be the point (1, 0) and *Q* be the point on $y^2 = 8x$. The locus of mid point of *PQ* is a) $x^2 - 4y + 2 = 0$ b) $x^2 + 4y + 2 = 0$ c) $y^2 + 4x + 2 = 0$ d) $y^2 - 4x + 2 = 0$

124. Let A(k, 2) and B(3, 5) are points. The point (t, t) divide \overline{AB} from A's side in the ratio of k, then $k = \cdots, k \in R - \{0, -1\}$

a)
$$-4$$
 b) -2 c) 4 d) 2
125. If a, b, c the sides of a $\triangle ABC$ are in AP and a is the smallest side, then $\cos A$ equals

a) $\frac{3c - 4b}{2c}$	b) $\frac{3c-4b}{2b}$	c) $\frac{4c - 3b}{2}$	d) None of these
20	$\frac{2b}{2}$ med by the lines $y = 2x, y = 2x$		(in square unit)
a) $\frac{25}{6}$		c) $\frac{5}{c}$	
6 127. The angles of depressi	12	0	12
	_	_	spectively, then the distance
between their tops wh	en tan $\theta = \frac{4}{3}$ and tan $\phi = \frac{5}{2}$,	is	
a) $\frac{150}{\sqrt{3}}$ m	b) 100√3 m	c) 150 m	d) 100 m
128. If one side of a triangle	is double the other and the	angles opposite to these si	des differ by 60°, then the
triangle is	b) Acute angled	c) Isosceles	d) Right angled
129. If the three points $(3q)$	0), (0, 3 <i>p</i>) and (1, 1) are col	llinear then which one is tru	ıe?
a) $\frac{1}{-} + \frac{1}{-} = 0$	b) $\frac{1}{p} + \frac{1}{q} = 1$	c) $\frac{1}{-} + \frac{1}{-} = 3$	d) $\frac{1}{-} + \frac{3}{-} = 1$
			p q
130. If in a $\triangle ABC$, $a = 15, b$			1
a) $\frac{\sqrt{3}}{2}$	b) $\frac{1}{2}$	c) $\frac{1}{\sqrt{2}}$	d) $-\frac{1}{\sqrt{2}}$
131. In a $\triangle ABC$, let $\angle C = \frac{\pi}{2}$,	if <i>r</i> is the inradius and <i>R</i> is t	the circumradius of the $\Delta A h$	BC, then $2(r + R)$ equals
a) <i>c</i> + <i>a</i>		c) <i>a</i> + <i>b</i>	d) <i>b</i> + <i>c</i>
132. From the top of a light	-		of depression of a boat is
	e boat from the foot of light $(\sqrt{2} + 1)$		d) None of these
	b) $\left(\frac{\sqrt{3}+1}{\sqrt{3}-1}\right)$ 60 m	c) $\frac{\sqrt{3+1}}{\sqrt{3}-1}$ m	aj None of these
133. If $\cos^2 A + \cos^2 C = \sin^2 A$ a) Equilateral	ABC is b) Right angled	c) Isosceles	d) None of these
134. The sides of triangle an	, , ,	,	
	b) 2: 3: 1		
135. A tower stands at the t		-	1
	n away on the horizontal th	rough the foot of the hill, an	angle θ , where $\tan \theta = \frac{1}{9}$.
The height of the towe a) 12	b) 3	$9 \pm \sqrt{33}$	d) None of these
-,	-)-	c) $\frac{9 \pm \sqrt{33}}{8}$	
136. Angles A, B and C of a A	ΔABC are in AP. If $\frac{b}{c} = \frac{\sqrt{3}}{\sqrt{2}}$, th	then angle A is equal to	
a) $\frac{\pi}{6}$	b) $\frac{\pi}{4}$	c) $\frac{5\pi}{12}$	d) $\frac{\pi}{2}$
137. The angle of depressio	1	rom the top of a tower, 87 i	n high and the speed of the
a) 9 min	b) $\frac{9\sqrt{3}}{10}$ min	c) 25 min	d) 15 min
138. If the centroid of the tr $c^3 =$	10	(<i>a</i> , <i>b</i>), (<i>b</i> , <i>c</i>) and (<i>c</i> , <i>a</i>) is at	the origin, then $a^3 + b^3 +$
a) 0	b) <i>abc</i>	c) 3 <i>abc</i>	d) –3 <i>abc</i>
139. The sides of a $\triangle ABC$ a angle A meets BC in D	re $BC = 5$, $CA = 4$ and $AB = (12/7, 12/7)$, then the coord		the bisector of the internal
a) (2, 2)	b) (2, 3)	c) (3, 2)	d) (1, 1)
140. If <i>a</i> , <i>b</i> and <i>c</i> are the sid the side <i>C</i> is	es of a triangle such that a^4	$+ b^4 + c^4 = 2c^2(a^2 + b^2),$	then the angles opposite to

a) 45° or 90°	,	c) 45° or 135°	,
141. In radius of a circle whi	ch is inscribed in a isosceles	s triangle one of whose ang	le is $2\pi/3$, is $\sqrt{3}$, then area of
triangle is			
a) $4\sqrt{3}$	b) 12 – 7√3	c) $12 + 7\sqrt{3}$	d) None of these
	,	,	a straight river bank. The two
	of same length x . The maxim	=	_
_	of same lengula. The maxim	uni al ea enclosed by the pa	1 K 15
x^3	b) $\frac{1}{2}x^{2}$	c) πx^2	d) $\frac{3}{2}x^2$
a) $\sqrt{\frac{x^3}{8}}$	$\frac{1}{2}x^{-1}$	c j h x	$d \int \frac{1}{2} x^{-1}$
•	C 2		
143. In a $\triangle ABC$, if $\tan \frac{A}{2} = \frac{5}{6}$,	$\tan\frac{1}{2} = \frac{1}{5}$, then		
a) <i>a, b, c</i> are in AP	b) <i>a, b, c</i> are in GP	c) <i>b.a.c</i> are in AP	d) <i>a, b, c</i> are in AP
144. The vertices P, Q, R of a	triangle are (2, 1), (5, 2) an	d (3, 4) respectively. Then,	the circumcentre is
a) $\left(\frac{13}{4}, -\frac{9}{4}\right)$	(13.9)	c) $\left(-\frac{13}{4},-\frac{9}{4}\right)$	(13 9)
$a_{j}\left(\frac{1}{4},-\frac{1}{4}\right)$	$DJ\left(-\frac{1}{4},\frac{1}{4}\right)$	$(-\frac{1}{4}, -\frac{1}{4})$	$\left(\frac{1}{4},\frac{1}{4}\right)$
145. In a $\triangle ABC$, $(a + b + c)$	(b+c-a) = kbc, if		
a) <i>k</i> < 0		c) 0 < <i>k</i> < 4	d) $k > 4$
146. If <i>A</i> (6, −3), <i>B</i> (−3, 5), <i>C</i>	-	-	les PBC , ABC is
		c) $ \alpha + \beta + 2 $	
147. ABC is a triangular par			
• ·			¹ 2.6 respectively. The height
of the tower is	te top of the tower at A and		2.0 respectively. The height
	b) 25	-) 40	d) Nama a 6 th and
a) 50 m	b) 25 m	c) 40 m	d) None of these
148. In a $\triangle ABC$, $a \cot A + b \cot A$			
a) $r + R$		c) $2(r+R)$	
149. If (1, <i>a</i>), (2, <i>b</i>), and (3, <i>c</i>			
-	b) Not be on <i>y</i> -axis		,
150. The pair of lines $\sqrt{3}x^2$ -	$-4xy + \sqrt{3}y^2 = 0$ are rotate	ed about the origin by $\pi/6$ i	in the anti-clockwise sense.
The equation of the pai	r in the new position is		
	b) $\sqrt{3}x^2 - xy = 0$	c) $x^2 - y^2 = 0$	d) $\sqrt{3}x^2 + xy = 0$
	-		
151. In triangle <i>ABC</i> , $a = 2$,	5		
a) 30°	b) 60°	c) 90°	d) 120°
152. If the sides of a right an	gle triangle form an AP, the	'sin' of the acute angles are	
2.4	4 1 N		
a) $\left(\frac{3}{5}, \frac{4}{5}\right)$	b) $\left(\sqrt{3}, \frac{1}{\sqrt{3}}\right)$	c) $\left(\frac{\sqrt{5-1}}{\sqrt{5-1}}, \frac{\sqrt{5-1}}{\sqrt{5-1}} \right)$	d) d) $\left(\sqrt{\frac{\sqrt{3}-1}{2}}, \sqrt{\frac{\sqrt{3}-1}{2}}\right)$
\$ (5,5)	$\sqrt{3}$	$\left(\sqrt{2},\sqrt{2}\right)$	$\left(\sqrt{2},\sqrt{2}\right)$
153. In a $\triangle ABC$, $2a^2 + 4b^2 + 4b^2$	$-c^2 - 4ab + 2ac$ then $\cos b$	is equal to	× /
			7
a) 0	b) $\frac{1}{8}$	c) $\frac{3}{8}$	d) $\frac{7}{8}$
154. The line joining $A(b \cos b)$	0	0	0
AM: MB = b : a, then	$(u, b) \sin u$ and $b (u \cos p, u)$	sin p) is produced to the po	m(x,y) so that
	\sim		
$x\cos\left(\frac{\alpha+\beta}{2}\right) + y\sin\left(\frac{\alpha+\beta}{2}\right)$) is		
a) —1	b) 0	c) 1	d) $a^2 + b^2$
155. A house of height 100 n	n subtends a right angle at t	he window of an opposite h	ouse. If the height of the
_	he distance between the two		
a) 48 m	b) 36 m	c) 54 m	d) 72 m
156. A vertical tower stands	,	,	,
	ity for 80 ft and them, finds	that the tower subtenus an	angle of 50. The height of
tower is			
a) $20(\sqrt{6} - \sqrt{2})$ ft	b) $40(\sqrt{6} - \sqrt{2})$ ft	c) $40(\sqrt{6} + \sqrt{2})$ ft	d) None of these

157. (0, -1) And (0, 3) are	two opposite vertices of a se	quare. The other two vertic	es are
a) (0, 1), (0, −3)	b) (3, -1), (0, 0)	c) (2, 1), (-2, 1)	d) (2, 2), (1, 1)
158. The points (1, 3) and $y = 2x + c$, are	(5, 1) are two opposite verti	ices of a rectangle. The othe	r two vertices lie on the line
•	b) (2, 0) and (-4, -4)	c) (2, 0) and (-4, 4)	d) (–2, 0) and (4, 4)
159. If in a $\triangle ABC$, $r_3 = r_1 + r_2$	$-r_2 + r$, then $\angle A + \angle B$ is equation	ual to	
a) 120°	b) 100°	c) 90°	d) 80°
160. In a triangle <i>ABC</i> , if a	= 3, b = 4, c = 5, then the d		_
a) $\frac{1}{2}$	b) $\frac{\sqrt{3}}{2}$	c) $\frac{3}{2}$	d) $\frac{\sqrt{5}}{2}$
161. One side of length 3 <i>a</i>	of triangle of area a^2 square	unit lies on the line $x = a$.	Then, one of the lines on
which the third vertex	t lies, is		a
a) $x = -a^2$	b) $x = a^2$	c) $x = -a$	d) $x = \frac{a}{3}$
162. In a $\triangle ABC$, if D is the	middle point <i>BC</i> and <i>AD</i> is p	perpendicular to AC, then co	5
a) $\frac{2b}{a}$	$b \int -\frac{1}{a}$	c) $\frac{b^2 + c^2}{ca}$	$\frac{d}{ca}$
163. The angle of depression height of the tower is	on of a point situated at a dis	stance of 70 metres from th	e base of a tower is 45°. The
a) 70 m	b) 70√2 m	70 m	d) 35 m
	DJ / 0VZ m	$c_{\rm J} \frac{1}{\sqrt{2}}$ m	
-	are three consecutive nature	ral numbers and its largest	angle is twice the smallest
one. Then, the sides of	-		
a) 1, 2, 3	b) 2, 3, 4	c) 3, 4, 5	d) 4, 5, 6
165. Consider the following $b^2 = c^2$	g statements :		
$1 p^{c^{-}}$ and			
$1.\frac{b^2 - c^2}{a\sin(B - C)} = 2R$			
	$n(C-A) + c\sin(A-B) = 0$	1	
	$n(C - A) + c \sin(A - B) = 0$ correct?		
$2. a \sin(B - C) + b \sin(B - C)$	correct?	c) Both (1) and (2)	d) None of these
2. $a \sin(B - C) + b \sin B$ Which of these is/are a) Only (1)	correct? b) Only (2)	c) Both (1) and (2)	
2. $a \sin(B - C) + b \sin B$ Which of these is/are a) Only (1) 166. The four distinct poin a) -2	correct? b) Only (2) t (0, 0), (2, 0), (0, –2) and (<i>k</i> b) 2	 c) Both (1) and (2) c, −2) are concyclic, if k is e c) 1 	
2. $a \sin(B - C) + b \sin B$ Which of these is/are a) Only (1) 166. The four distinct poin a) -2 167. If origin is shifted to (correct? b) Only (2) t (0, 0), (2, 0), (0, –2) and (<i>k</i> b) 2 7, –4), then point (4, 5) shif	 c) Both (1) and (2) z, −2) are concyclic, if k is e c) 1 ted to 	qual to d) 0
2. $a \sin(B - C) + b \sin B$ Which of these is/are a) Only (1) 166. The four distinct point a) -2 167. If origin is shifted to (a) (-3, 9)	correct? b) Only (2) t (0, 0), (2, 0), (0, –2) and (<i>k</i> b) 2 7, –4), then point (4, 5) shif b) (3, 9)	 c) Both (1) and (2) c, −2) are concyclic, if k is e c) 1 	qual to
2. $a \sin(B - C) + b \sin B$ Which of these is/are a) Only (1) 166. The four distinct point a) -2 167. If origin is shifted to (a) (-3, 9)	correct? b) Only (2) t (0, 0), (2, 0), (0, –2) and (<i>k</i> b) 2 7, –4), then point (4, 5) shif b) (3, 9)	 c) Both (1) and (2) z, −2) are concyclic, if k is e c) 1 ted to 	qual to d) 0
2. $a \sin(B - C) + b \sin C$ Which of these is/are a) Only (1) 166. The four distinct point a) -2 167. If origin is shifted to (a) (-3,9) 168. In $\triangle ABC$, $(a + b + c)$ (correct? b) Only (2) t (0, 0), (2, 0), (0, -2) and (k b) 2 7, -4), then point (4, 5) shif b) (3, 9) $\left(\tan \frac{A}{2} + \tan \frac{B}{2}\right)$ is equal to	 c) Both (1) and (2) c, −2) are concyclic, if k is e c) 1 ited to c) (11, 1) 	qual to d) 0 d) None of these
2. $a \sin(B - C) + b \sin C$ Which of these is/are a) Only (1) 166. The four distinct point a) -2 167. If origin is shifted to (a) (-3,9) 168. In $\triangle ABC$, $(a + b + c)$ (a) $2c \cot \frac{C}{2}$	correct? b) Only (2) t (0, 0), (2, 0), (0, -2) and (k b) 2 7, -4), then point (4, 5) shift b) (3, 9) $\left(\tan \frac{A}{2} + \tan \frac{B}{2}\right)$ is equal to b) $2a \cot \frac{A}{2}$	 c) Both (1) and (2) c, -2) are concyclic, if <i>k</i> is e c) 1 c) (11, 1) c) 2b cot ^B/₂ 	qual to d) 0 d) None of these d) $\tan \frac{C}{2}$
2. $a \sin(B - C) + b \sin C$ Which of these is/are a) Only (1) 166. The four distinct point a) -2 167. If origin is shifted to (a) (-3,9) 168. In $\triangle ABC$, ($a + b + c$) (a) $2c \cot \frac{C}{2}$ 169. In a $\triangle ABC$, sides a, b ,	correct? b) Only (2) t (0, 0), (2, 0), (0, -2) and (k b) 2 7, -4), then point (4, 5) shift b) (3, 9) $\left(\tan \frac{A}{2} + \tan \frac{B}{2}\right)$ is equal to b) $2a \cot \frac{A}{2}$	 c) Both (1) and (2) c, -2) are concyclic, if <i>k</i> is e c) 1 c) (11, 1) c) 2b cot ^B/₂ 	qual to d) 0 d) None of these
2. $a \sin(B - C) + b \sin C$ Which of these is/are a) Only (1) 166. The four distinct point a) -2 167. If origin is shifted to (a) (-3,9) 168. In $\triangle ABC$, ($a + b + c$) (a) $2c \cot \frac{C}{2}$ 169. In a $\triangle ABC$, sides a, b , to	correct? b) Only (2) t (0, 0), (2, 0), (0, -2) and (k b) 2 7, -4), then point (4, 5) shift b) (3, 9) $\left(\tan \frac{A}{2} + \tan \frac{B}{2}\right)$ is equal to b) $2a \cot \frac{A}{2}$ c are in AP and $\frac{2}{1!9!} + \frac{2}{3!7!} + \frac{2}{5}$	c) Both (1) and (2) c, -2) are concyclic, if <i>k</i> is e c) 1 ited to c) (11, 1) c) $2b \cot \frac{B}{2}$ $\frac{1}{(2b)!} = \frac{8^a}{(2b)!}$, then the maximum	qual to d) 0 d) None of these d) $\tan \frac{C}{2}$ and value of $\tan A \tan B$ is equal
2. $a \sin(B - C) + b \sin C$ Which of these is/are a) Only (1) 166. The four distinct point a) -2 167. If origin is shifted to (a) (-3,9) 168. In $\triangle ABC$, ($a + b + c$) (a) $2c \cot \frac{C}{2}$ 169. In a $\triangle ABC$, sides a, b ,	correct? b) Only (2) t (0, 0), (2, 0), (0, -2) and (k b) 2 7, -4), then point (4, 5) shift b) (3, 9) $\left(\tan \frac{A}{2} + \tan \frac{B}{2}\right)$ is equal to b) $2a \cot \frac{A}{2}$ c are in AP and $\frac{2}{1!9!} + \frac{2}{3!7!} + \frac{2}{5}$	 c) Both (1) and (2) c, -2) are concyclic, if <i>k</i> is e c) 1 c) (11, 1) c) 2b cot ^B/₂ 	qual to d) 0 d) None of these d) $\tan \frac{C}{2}$
2. $a \sin(B - C) + b \sin C$ Which of these is/are a) Only (1) 166. The four distinct point a) -2 167. If origin is shifted to (a) (-3,9) 168. In $\triangle ABC$, ($a + b + c$) (a) $2c \cot \frac{C}{2}$ 169. In a $\triangle ABC$, sides a, b , to a) $\frac{1}{2}$ 170. If the angle of elevation	correct? b) Only (2) t (0, 0), (2, 0), (0, -2) and (k b) 2 7, -4), then point (4, 5) shift b) (3, 9) $\left(\tan \frac{A}{2} + \tan \frac{B}{2}\right)$ is equal to b) $2a \cot \frac{A}{2}$ c are in AP and $\frac{2}{1!9!} + \frac{2}{3!7!} + \frac{2}{5}$ b) $\frac{1}{3}$ on of two towers from the matrix	c) Both (1) and (2) c, -2) are concyclic, if k is e c) 1 ted to c) (11, 1) c) $2b \cot \frac{B}{2}$ $\frac{1}{2^{15!}} = \frac{8^a}{(2b)!}$, then the maximum c) $\frac{1}{4}$	qual to d) 0 d) None of these d) $\tan \frac{C}{2}$ and value of $\tan A \tan B$ is equal d) $\frac{1}{4}$
2. $a \sin(B - C) + b \sin C$ Which of these is/are a) Only (1) 166. The four distinct point a) -2 167. If origin is shifted to (a) (-3,9) 168. In $\triangle ABC$, ($a + b + c$) (a) $2c \cot \frac{C}{2}$ 169. In a $\triangle ABC$, sides a, b , to a) $\frac{1}{2}$ 170. If the angle of elevation respectively, then the	correct? b) Only (2) t (0, 0), (2, 0), (0, -2) and (k b) 2 7, -4), then point (4, 5) shift b) (3, 9) $(\tan \frac{A}{2} + \tan \frac{B}{2})$ is equal to b) $2a \cot \frac{A}{2}$ c are in AP and $\frac{2}{1!9!} + \frac{2}{3!7!} + \frac{2}{5!}$ b) $\frac{1}{3}$ on of two towers from the minimum ratio of their heights is	c) Both (1) and (2) c, -2) are concyclic, if <i>k</i> is e c) 1 ted to c) (11, 1) c) $2b \cot \frac{B}{2}$ $\frac{1}{3!5!} = \frac{8^a}{(2b)!}$, then the maximum c) $\frac{1}{4}$ iddle point of the line joining	qual to d) 0 d) None of these d) $\tan \frac{C}{2}$ and value of $\tan A \tan B$ is equal d) $\frac{1}{4}$ and their feet be 60° and 30°
2. $a \sin(B - C) + b \sin C$ Which of these is/are a) Only (1) 166. The four distinct point a) -2 167. If origin is shifted to (a) (-3,9) 168. In $\triangle ABC$, $(a + b + c)$ (a) $2c \cot \frac{C}{2}$ 169. In a $\triangle ABC$, sides a, b , to a) $\frac{1}{2}$ 170. If the angle of elevation respectively, then the a) 2: 1	correct? b) Only (2) t (0, 0), (2, 0), (0, -2) and (k b) 2 7, -4), then point (4, 5) shift b) (3, 9) $tan \frac{A}{2} + tan \frac{B}{2}$) is equal to b) $2a \cot \frac{A}{2}$ c are in AP and $\frac{2}{1!9!} + \frac{2}{3!7!} + \frac{2}{5}$ b) $\frac{1}{3}$ on of two towers from the minimum ratio of their heights is b) $1:\sqrt{2}$	c) Both (1) and (2) c, -2) are concyclic, if k is e c) 1 ted to c) (11, 1) c) $2b \cot \frac{B}{2}$ $\frac{1}{2^{15!}} = \frac{8^a}{(2b)!}$, then the maximum c) $\frac{1}{4}$	qual to d) 0 d) None of these d) $\tan \frac{C}{2}$ and value of $\tan A \tan B$ is equal d) $\frac{1}{4}$
2. $a \sin(B - C) + b \sin C$ Which of these is/are a) Only (1) 166. The four distinct point a) -2 167. If origin is shifted to (a) (-3,9) 168. In $\triangle ABC$, ($a + b + c$) (a) $2c \cot \frac{C}{2}$ 169. In a $\triangle ABC$, sides a, b , to a) $\frac{1}{2}$ 170. If the angle of elevation respectively, then the	correct? b) Only (2) t (0, 0), (2, 0), (0, -2) and (k b) 2 7, -4), then point (4, 5) shift b) (3, 9) $tan \frac{A}{2} + tan \frac{B}{2}$) is equal to b) $2a \cot \frac{A}{2}$ c are in AP and $\frac{2}{1!9!} + \frac{2}{3!7!} + \frac{2}{5}$ b) $\frac{1}{3}$ on of two towers from the minimum ratio of their heights is b) $1:\sqrt{2}$	c) Both (1) and (2) c, -2) are concyclic, if <i>k</i> is e c) 1 ted to c) (11, 1) c) $2b \cot \frac{B}{2}$ $\frac{1}{3!5!} = \frac{8^a}{(2b)!}$, then the maximum c) $\frac{1}{4}$ iddle point of the line joining	qual to d) 0 d) None of these d) $\tan \frac{C}{2}$ and value of $\tan A \tan B$ is equal d) $\frac{1}{4}$ and their feet be 60° and 30°
2. $a \sin(B - C) + b \sin C$ Which of these is/are a) Only (1) 166. The four distinct point a) -2 167. If origin is shifted to (a) (-3,9) 168. In $\triangle ABC$, $(a + b + c)$ (a) $2c \cot \frac{C}{2}$ 169. In a $\triangle ABC$, sides a, b , to a) $\frac{1}{2}$ 170. If the angle of elevation respectively, then the a) 2: 1 171. In a $\triangle ABC$, $\angle C = 60^{\circ}$	correct? b) Only (2) t (0, 0), (2, 0), (0, -2) and (k b) 2 7, -4), then point (4, 5) shift b) (3, 9) ($\tan \frac{A}{2} + \tan \frac{B}{2}$) is equal to b) $2a \cot \frac{A}{2}$ c are in AP and $\frac{2}{1!9!} + \frac{2}{3!7!} + \frac{2}{5!}$ b) $\frac{1}{3}$ on of two towers from the minimum ratio of their heights is b) $1:\sqrt{2}$ then $\frac{1}{a+c} + \frac{1}{b+c}$ is equal to	c) Both (1) and (2) c, -2) are concyclic, if <i>k</i> is e c) 1 fted to c) (11, 1) c) $2b \cot \frac{B}{2}$ $\frac{1}{5!5!} = \frac{8^a}{(2b)!}$, then the maximumination of the line joining the line joining of the line	qual to d) 0 d) None of these d) $\tan \frac{C}{2}$ and value of $\tan A \tan B$ is equal d) $\frac{1}{4}$ and their feet be 60° and 30°
2. $a \sin(B - C) + b \sin C$ Which of these is/are a) Only (1) 166. The four distinct point a) -2 167. If origin is shifted to (a) (-3,9) 168. In $\triangle ABC$, $(a + b + c)$ (a) $2c \cot \frac{C}{2}$ 169. In a $\triangle ABC$, sides a, b , to a) $\frac{1}{2}$ 170. If the angle of elevations respectively, then the a) 2: 1 171. In a $\triangle ABC$, $\angle C = 60^{\circ}$ a) $\frac{1}{a + b + c}$	correct? b) Only (2) t (0, 0), (2, 0), (0, -2) and (k b) 2 7, -4), then point (4, 5) shift b) (3, 9) ($\tan \frac{A}{2} + \tan \frac{B}{2}$) is equal to b) $2a \cot \frac{A}{2}$ c are in AP and $\frac{2}{1!9!} + \frac{2}{3!7!} + \frac{2}{5!}$ b) $\frac{1}{3}$ on of two towers from the minimum ratio of their heights is b) $1:\sqrt{2}$ then $\frac{1}{a+c} + \frac{1}{b+c}$ is equal to b) $\frac{2}{a+b+c}$	c) Both (1) and (2) c, -2) are concyclic, if <i>k</i> is e c) 1 fted to c) (11, 1) c) $2b \cot \frac{B}{2}$ $\frac{1}{5!5!} = \frac{8^a}{(2b)!}$, then the maximumination of the line joining c) $\frac{1}{4}$ iddle point of the line joining c) 3: 1	qual to d) 0 d) None of these d) $\tan \frac{C}{2}$ and value of $\tan A \tan B$ is equal d) $\frac{1}{4}$ and their feet be 60° and 30° d) $1:\sqrt{3}$
2. $a \sin(B - C) + b \sin C$ Which of these is/are a) Only (1) 166. The four distinct point a) -2 167. If origin is shifted to (a) (-3,9) 168. In $\triangle ABC$, $(a + b + c)$ (a) $2c \cot \frac{C}{2}$ 169. In a $\triangle ABC$, sides a, b , to a) $\frac{1}{2}$ 170. If the angle of elevations respectively, then the a) 2: 1 171. In a $\triangle ABC$, $\angle C = 60^{\circ}$ a) $\frac{1}{a + b + c}$ 172. In $\triangle ABC$, if $(a + b + c)$	correct? b) Only (2) t (0, 0), (2, 0), (0, -2) and (k b) 2 7, -4), then point (4, 5) shift b) (3, 9) ($\tan \frac{A}{2} + \tan \frac{B}{2}$) is equal to b) $2a \cot \frac{A}{2}$ c are in AP and $\frac{2}{1!9!} + \frac{2}{3!7!} + \frac{2}{5!}$ b) $\frac{1}{3}$ on of two towers from the matrix of their heights is b) $1:\sqrt{2}$ then $\frac{1}{a+c} + \frac{1}{b+c}$ is equal to b) $\frac{2}{a+b+c}$)($a - b + c$) = $3ac$, then	c) Both (1) and (2) c, -2) are concyclic, if k is e c) 1 ted to c) (11, 1) c) $2b \cot \frac{B}{2}$ $\frac{1}{5!5!} = \frac{8^a}{(2b)!}$, then the maximum c) $\frac{1}{4}$ iddle point of the line joining c) $3:1$ c) $\frac{3}{a+b+c}$	qual to d) 0 d) None of these d) $\tan \frac{C}{2}$ and value of $\tan A \tan B$ is equal d) $\frac{1}{4}$ and their feet be 60° and 30° d) $1:\sqrt{3}$ d) None of these
2. $a \sin(B - C) + b \sin C$ Which of these is/are a) Only (1) 166. The four distinct point a) -2 167. If origin is shifted to (a) (-3,9) 168. In $\triangle ABC$, $(a + b + c)$ (a) $2c \cot \frac{C}{2}$ 169. In a $\triangle ABC$, sides a, b , to a) $\frac{1}{2}$ 170. If the angle of elevations respectively, then the a) 2: 1 171. In a $\triangle ABC$, $\angle C = 60^{\circ}$ a) $\frac{1}{a + b + c}$ 172. In $\triangle ABC$, if $(a + b + c)$ a) $\angle B = 60^{\circ}$	correct? b) Only (2) t (0, 0), (2, 0), (0, -2) and (k b) 2 7, -4), then point (4, 5) shift b) (3, 9) ($\tan \frac{A}{2} + \tan \frac{B}{2}$) is equal to b) $2a \cot \frac{A}{2}$ c are in AP and $\frac{2}{1!9!} + \frac{2}{3!7!} + \frac{2}{5!}$ b) $\frac{1}{3}$ on of two towers from the matrix of their heights is b) $1:\sqrt{2}$ then $\frac{1}{a+c} + \frac{1}{b+c}$ is equal to b) $\frac{2}{a+b+c}$)($a - b + c$) = $3ac$, then	c) Both (1) and (2) c, -2) are concyclic, if k is e c) 1 ted to c) (11, 1) c) $2b \cot \frac{B}{2}$ $\frac{1}{5!5!} = \frac{8^a}{(2b)!}$, then the maximum c) $\frac{1}{4}$ iddle point of the line joining c) $\frac{3}{a+b+c}$ c) $\angle C = 60^\circ$	qual to d) 0 d) None of these d) $\tan \frac{C}{2}$ and value of $\tan A \tan B$ is equal d) $\frac{1}{4}$ and their feet be 60° and 30° d) $1:\sqrt{3}$

-	b) $\tan A$, $\tan B$, $\tan C$		d) None of these
174. In a triangle <i>ABC</i> , if sin <i>A</i>	e		
a) Equilateral 175. The perimeter of a Δ <i>AB</i>	b) Isosceles	0 0 0	d) Obtuse angled $f = 1$ then A is
equal to			is alights. If $u = 1$, then A is
a) $\frac{\pi}{6}$	b) $\frac{\pi}{3}$	π	d) $\frac{2\pi}{3}$
0	5	2	5
176. The centriod of the trian $(5, 6)$			
a) (5, 6) 177. The angle of elevation of	b) (6, 5) Sthe top of the tower obser	c) $(6, 6)$	d) $(15, 18)$
-	-		<i>ABC</i> , then the height of the
tower is			
a) $R \sin \alpha$	b) $R \cos \alpha$	c) $R \cot \alpha$	d) $R \tan \alpha$
178. The angle of elevation of		-	
slope inclined at an angl the hill is	e $β$ to the horizon, the angle	e of elevation of the top bed	comes γ . Then, the height of
	$b \sin \alpha \sin(\gamma - \alpha)$	$b \sin (\gamma - \beta)$	$\sin(\gamma - \beta)$
a) $\frac{1}{\sin(\gamma - \alpha)}$	b) $\frac{b \sin \alpha \sin(\gamma - \alpha)}{\sin(\gamma - \beta)}$	c) $\frac{1}{\sin(\gamma - \alpha)}$	d) $\frac{\sin(\gamma - \beta)}{b \sin \alpha \sin(\gamma - \alpha)}$
179. The area of the \triangle <i>ABC</i> , in	which $a = 1, b = 2, \angle C =$	60°, is	
a) 4 sq unit	b) $\frac{1}{2}$ sq unit	c) $\frac{\sqrt{3}}{2}$ sq unit	d) $\sqrt{3}$ sq units
180. If t_1 , t_2 and t_3 are disting	t points $(t_1, 2at_1 + at_1^3)$, $(t_1, 2at_1 + at_1^3)$	$(t_2, 2at_2 + at_2^3)$ and $t_3, 2at_3$	$+ at_3^3$) are collinear, if
a) $t_1 t_2 t_3 = 1$		c) $t_1 + t_2 + t_3 = 0$	
181. If <i>A</i> and <i>B</i> are two points			nd <i>P</i> is a point such that
	angle $PAB = 10$ sq unit, the		d) None of these
	b) $(7, 2)$ and $(1, 0)$		d) None of these
182. In $\triangle ABC$, $\angle A = \frac{\pi}{2}$, $b = 4$	-		25
a) $\frac{5}{2}$	b) $\frac{7}{2}$	c) $\frac{9}{2}$	d) $\frac{35}{24}$
183. In the angles <i>A</i> , <i>B</i> and <i>C</i>	of a triangular are in the ar	ithmetic progression and if	
lengths of the sides oppo	osite to A, B and C respectiv	vely, then the value of the e	xpression $\frac{a}{c} \sin 2C + \frac{c}{a} \sin 2A$
is			c u
a) $\frac{1}{2}$	b) $\frac{\sqrt{3}}{2}$	c) 1	d) $\sqrt{3}$
Z	L	-	
184. Two sides of a triangle a sides is $\frac{\pi}{3}$. Then, the period		equation $x^2 - 5x + 6 = 0$	and the angle between the
a) 5 + $\sqrt{2}$	b) $5 + \sqrt{3}$	c) $5 + \sqrt{5}$	d) 5 + $\sqrt{7}$
185. In a triangle <i>ABC</i> , if $\angle A =$	$= 60^{\circ}, a = 5, b = 4$, then <i>c</i> i	s a root of the equation	
	b) $c^2 - 4c - 9 = 0$		_
186. The angle of elevation of	the top of vertical tower fr	rom a point A on the horizo	ontal ground is found to be $\frac{n}{4}$.
From <i>A</i> , a man walks 10	m up a path sloping at a an	gle $\frac{\pi}{6}$. After this the slope b	ecomes steeper and after
walking up another 10 n	-		from the foot of the tower is
a) $5(1 + \sqrt{3})m$	b) $\frac{5}{2}(1+\sqrt{3})$ m	c) $5(\sqrt{3}-1)m$	d) $\frac{5}{2}(\sqrt{3}-1)$ m
187. If the distance between	the points $(a \cos \theta, a \sin \theta)$	and $(a \cos \phi, a \sin \phi)$ is $2a$,	then θ is equal to
a) $2n\pi \pm \pi + \phi, n \in Z$		b) $n\pi + \frac{\pi}{2} + \phi, n \in \mathbb{Z}$	
c) $n\pi - \phi, n \in Z$		d) $2n\pi + \phi, n \in Z$	
188. If <i>A</i> (0, 0), <i>B</i> (12, 0), <i>C</i> (12)	2), <i>D</i> (6, 7) and <i>E</i> (0, 5) are		on ABCDE, then its area in
			Page 12

square units, is a) 58	b) 60	c) 61	d) 63
	,	,	<i>a</i> from the foot of the tower, the
flag and the tower sub	otend equal angles. The heig	ght of the flag is	
a) $b \cdot \frac{a^2 + b^2}{a^2 - b^2}$	b) $a \cdot \frac{a^2 - b^2}{a^2 + b^2}$	c) $h_1 \frac{a^2 - b^2}{a^2 - b^2}$	d) $a_1 \frac{a^2 + b^2}{a^2 + b^2}$
u D	u i b	u i b	u D
height of the kite is	iclination of 60° with the ho	orizontal. If the length of th	he thread is 120 m, then the
a) 60√3 m	b) 60 m	c) $\frac{60}{\sqrt{3}}$ m	d) 120 m
191. $\frac{a\cos A + b\cos B + c\cos C}{a + b + c}$ is e	equal to		
a) $1/r$	b) r/R	c) <i>R/r</i>	d) 1/ <i>R</i>
<i>y</i> 1	<i>,</i>	5 7	of <i>AB</i> . <i>P</i> is a point on the level
	$^{\circ}C$ subtends an angle β at P	_	-
a) $\frac{n}{2n^2+1}$	b) $\frac{n}{n^2 - 1}$	c) $\frac{n}{n^2 + 1}$	d) None of these
193. If <i>P</i> (3,7) is a point on	the line joining $A(1,1)$ and	B(6,16), then the harmoni	c conjugate Q of point P has the
coordinates			
a) (9,29)		c) (9, -29)	
			st side to the greatest side is
a) 1: sin 10°	b) 1: 2 sin 10°	c) 1: cos 10°	d) 1: 2 cos 10°
195. $\begin{bmatrix} 1 & a & b \\ & & In \Delta ABC, \text{ if } \end{bmatrix}$ 1 $\begin{bmatrix} a & b \\ 1 & c & a \\ & 1 & b & c \end{bmatrix}$	= 0, then		
$\sin^2 A + \sin^2 B + \sin^2$	<i>C</i> is equal to		
Λ	0		
a) $\frac{4}{9}$	b) $\frac{9}{4}$	c) 3√3	d) 1
196. From a station A due V	Ŧ	f elevation of the top of the	e tower is seen to be 45°. From a
196. From a station <i>A</i> due V station <i>B</i> , 10 m from <i>A</i> tower is	West of a tower the angle of A and in the direction 45° So	f elevation of the top of the outh of East of angle of ele	e tower is seen to be 45°. From a vation is 30°, the height of
196. From a station <i>A</i> due V station <i>B</i> , 10 m from <i>A</i> tower is a) $5\sqrt{2}(\sqrt{5} + 1)$ m 197. A straight line with ne	West of a tower the angle of A and in the direction 45° So b) $\frac{5(\sqrt{5}+1)}{2}$ m egative slope passing throug	f elevation of the top of the outh of East of angle of ele c) $\frac{5\sqrt{2}(\sqrt{5}+1)}{2}$ m	e tower is seen to be 45°. From a vation is 30°, the height of
196. From a station <i>A</i> due V station <i>B</i> , 10 m from <i>A</i> tower is a) $5\sqrt{2}(\sqrt{5} + 1)m$ 197. A straight line with ne The minimum value o	West of a tower the angle of A and in the direction 45° So b) $\frac{5(\sqrt{5}+1)}{2}$ m egative slope passing throug	f elevation of the top of the outh of East of angle of ele c) $\frac{5\sqrt{2}(\sqrt{5}+1)}{2}$ m	e tower is seen to be 45°. From a vation is 30°, the height of d) None of these
196. From a station <i>A</i> due V station <i>B</i> , 10 m from <i>A</i> tower is a) $5\sqrt{2}(\sqrt{5} + 1)m$ 197. A straight line with ne The minimum value o a) 5	West of a tower the angle of A and in the direction 45° So b) $\frac{5(\sqrt{5}+1)}{2}$ m egative slope passing throug f $OA + OB$ is equal to b) 6	f elevation of the top of the bouth of East of angle of ele c) $\frac{5\sqrt{2}(\sqrt{5}+1)}{2}$ m gh the point (1, 4) meets th c) 9	e tower is seen to be 45°. From a vation is 30°, the height of d) None of these ne coordinate axes at <i>A</i> and <i>B</i> . d) 8
196. From a station <i>A</i> due V station <i>B</i> , 10 m from <i>A</i> tower is a) $5\sqrt{2}(\sqrt{5} + 1)m$ 197. A straight line with ne The minimum value o a) 5 198. An observer finds that	West of a tower the angle of A and in the direction 45° So b) $\frac{5(\sqrt{5}+1)}{2}$ m egative slope passing throug f $OA + OB$ is equal to b) 6 t the elevation of the top of	f elevation of the top of the bouth of East of angle of ele c) $\frac{5\sqrt{2}(\sqrt{5}+1)}{2}$ m gh the point (1, 4) meets th c) 9 a tower is $22\frac{1^{\circ}}{2}$ and after v	e tower is seen to be 45°. From a vation is 30°, the height of d) None of these ne coordinate axes at <i>A</i> and <i>B</i> . d) 8 valking 150 metres towards the
 196. From a station <i>A</i> due V station <i>B</i>, 10 m from <i>A</i> tower is a) 5√2(√5 + 1)m 197. A straight line with ne The minimum value o a) 5 198. An observer finds that foot of the tower he finds 	West of a tower the angle of A and in the direction 45° So b) $\frac{5(\sqrt{5}+1)}{2}$ m egative slope passing throug f $OA + OB$ is equal to b) 6 t the elevation of the top of	f elevation of the top of the bouth of East of angle of ele c) $\frac{5\sqrt{2}(\sqrt{5}+1)}{2}$ m gh the point (1, 4) meets th c) 9 a tower is $22\frac{1^{\circ}}{2}$ and after v	e tower is seen to be 45°. From a vation is 30°, the height of d) None of these ne coordinate axes at <i>A</i> and <i>B</i> . d) 8
 196. From a station <i>A</i> due V station <i>B</i>, 10 m from <i>A</i> tower is a) 5√2(√5 + 1)m 197. A straight line with ne The minimum value o a) 5 198. An observer finds that foot of the tower he fin metres is 	West of a tower the angle of A and in the direction 45° So b) $\frac{5(\sqrt{5}+1)}{2}$ m egative slope passing throug f $OA + OB$ is equal to b) 6 t the elevation of the top of nds that the elevation of the	f elevation of the top of the bouth of East of angle of elevation c) $\frac{5\sqrt{2}(\sqrt{5}+1)}{2}$ m gh the point (1, 4) meets th c) 9 a tower is $22\frac{1^{\circ}}{2}$ and after we e top has increased to $67\frac{1^{\circ}}{2}$	e tower is seen to be 45°. From a vation is 30°, the height of d) None of these ne coordinate axes at <i>A</i> and <i>B</i> . d) 8 valking 150 metres towards the The height of the tower in
 196. From a station A due V station B, 10 m from A tower is a) 5√2(√5 + 1)m 197. A straight line with ne The minimum value o a) 5 198. An observer finds that foot of the tower he fin metres is a) 50 	West of a tower the angle of A and in the direction 45° So b) $\frac{5(\sqrt{5}+1)}{2}$ m egative slope passing throug f $OA + OB$ is equal to b) 6 t the elevation of the top of nds that the elevation of the b) 75	f elevation of the top of the puth of East of angle of elevation c) $\frac{5\sqrt{2}(\sqrt{5}+1)}{2}$ m gh the point (1, 4) meets th c) 9 a tower is $22\frac{1^{\circ}}{2}$ and after w e top has increased to $67\frac{1}{2}$ c) 125	e tower is seen to be 45°. From a vation is 30°, the height of d) None of these ne coordinate axes at <i>A</i> and <i>B</i> . d) 8 valking 150 metres towards the c. The height of the tower in d) 175
196. From a station <i>A</i> due V station <i>B</i> , 10 m from <i>A</i> tower is a) $5\sqrt{2}(\sqrt{5} + 1)m$ 197. A straight line with ne The minimum value o a) 5 198. An observer finds that foot of the tower he fin metres is a) 50 199. In an isosceles $\triangle ABC$,	West of a tower the angle of A and in the direction 45° So b) $\frac{5(\sqrt{5}+1)}{2}$ m egative slope passing throug f $OA + OB$ is equal to b) 6 t the elevation of the top of nds that the elevation of the b) 75 AB = AC. If vertical angle A	f elevation of the top of the c) $\frac{5\sqrt{2}(\sqrt{5}+1)}{2}$ m gh the point (1, 4) meets th c) 9 a tower is $22\frac{1^{\circ}}{2}$ and after w e top has increased to $67\frac{1^{\circ}}{2}$ c) 125 A is 20°, then $a^3 + b^3$ is equal	e tower is seen to be 45°. From a vation is 30°, the height of d) None of these ne coordinate axes at <i>A</i> and <i>B</i> . d) 8 valking 150 metres towards the c. The height of the tower in d) 175 yual to
196. From a station <i>A</i> due V station <i>B</i> , 10 m from <i>A</i> tower is a) $5\sqrt{2}(\sqrt{5} + 1)m$ 197. A straight line with ne The minimum value o a) 5 198. An observer finds that foot of the tower he fin metres is a) 50 199. In an isosceles $\triangle ABC$, a) $3a^2b$	West of a tower the angle of A and in the direction 45° So b) $\frac{5(\sqrt{5}+1)}{2}$ m egative slope passing throug f $OA + OB$ is equal to b) 6 t the elevation of the top of inds that the elevation of the b) 75 AB = AC. If vertical angle $Ab) 3b^2c$	f elevation of the top of the puth of East of angle of elevation c) $\frac{5\sqrt{2}(\sqrt{5}+1)}{2}$ m gh the point (1, 4) meets th c) 9 a tower is $22\frac{1^{\circ}}{2}$ and after w e top has increased to $67\frac{1}{2}$ c) 125 A is 20°, then $a^3 + b^3$ is eq c) $3c^2a$	e tower is seen to be 45°. From a vation is 30°, the height of d) None of these ne coordinate axes at <i>A</i> and <i>B</i> . d) 8 valking 150 metres towards the c. The height of the tower in d) 175
196. From a station <i>A</i> due V station <i>B</i> , 10 m from <i>A</i> tower is a) $5\sqrt{2}(\sqrt{5} + 1)m$ 197. A straight line with ne The minimum value o a) 5 198. An observer finds that foot of the tower he fin metres is a) 50 199. In an isosceles $\triangle ABC$, a) $3a^2b$ 200. In a $\triangle ABC$, $a(\cos^2 B + 4)$	West of a tower the angle of A and in the direction 45° So b) $\frac{5(\sqrt{5}+1)}{2}$ m egative slope passing throug f $OA + OB$ is equal to b) 6 t the elevation of the top of nds that the elevation of the b) 75 AB = AC. If vertical angle A b) $3b^2c$ $+ \cos^2 C$ $+ \cos A$ ($c \cos C$ $+$	f elevation of the top of the puth of East of angle of elevation of East of angle of elevation c) $\frac{5\sqrt{2}(\sqrt{5}+1)}{2}$ m gh the point (1, 4) meets the c) 9 a tower is $22\frac{1^{\circ}}{2}$ and after we e top has increased to $67\frac{1}{2}$ c) 125 A is 20°, then $a^3 + b^3$ is equal to c) $3c^2a$	e tower is seen to be 45°. From a vation is 30°, the height of d) None of these ne coordinate axes at <i>A</i> and <i>B</i> . d) 8 valking 150 metres towards the c. The height of the tower in d) 175 yual to d) <i>abc</i>
196. From a station <i>A</i> due V station <i>B</i> , 10 m from <i>A</i> tower is a) $5\sqrt{2}(\sqrt{5} + 1)m$ 197. A straight line with ne The minimum value o a) 5 198. An observer finds that foot of the tower he fin metres is a) 50 199. In an isosceles $\triangle ABC$, a) $3a^2b$ 200. In a $\triangle ABC$, $a(\cos^2 B + a)a$	West of a tower the angle of A and in the direction 45° So b) $\frac{5(\sqrt{5}+1)}{2}$ m egative slope passing throug f $OA + OB$ is equal to b) 6 t the elevation of the top of inds that the elevation of the b) 75 AB = AC. If vertical angle A b) $3b^2c$ $+ \cos^2 C$ $+ \cos A$ ($c \cos C$ + b) b	f elevation of the top of the puth of East of angle of elevation of East of angle of elevation c) $\frac{5\sqrt{2}(\sqrt{5}+1)}{2}$ m gh the point (1, 4) meets th c) 9 a tower is $22\frac{1^{\circ}}{2}$ and after w e top has increased to $67\frac{1^{\circ}}{2}$ c) 125 A is 20°, then $a^3 + b^3$ is equal to c) $3c^2a$ - $b \cos B$ is equal to c) c	e tower is seen to be 45°. From a vation is 30°, the height of d) None of these he coordinate axes at <i>A</i> and <i>B</i> . d) 8 valking 150 metres towards the c. The height of the tower in d) 175 yual to d) abc d) $a + b + c$
196. From a station <i>A</i> due <i>V</i> station <i>B</i> , 10 m from <i>A</i> tower is a) $5\sqrt{2}(\sqrt{5} + 1)m$ 197. A straight line with ne The minimum value o a) 5 198. An observer finds that foot of the tower he fin metres is a) 50 199. In an isosceles $\triangle ABC$, a) $3a^2b$ 200. In a $\triangle ABC$, $a(\cos^2 B + a)a$ 201. <i>ABC</i> Is a triangle with each <i>AB</i> , <i>BC</i> and <i>CA</i> re	West of a tower the angle of A and in the direction 45° So b) $\frac{5(\sqrt{5}+1)}{2}$ m egative slope passing throug f $OA + OB$ is equal to b) 6 t the elevation of the top of inds that the elevation of the b) 75 AB = AC. If vertical angle $Ab) 3b^2c+ \cos^2 C + \cos A (c \cos C +b) bvertices A(-1, 4), B(6, -2)espectively in the ratio 3:1 i$	f elevation of the top of the c) $\frac{5\sqrt{2}(\sqrt{5}+1)}{2}$ m gh the point (1, 4) meets th c) 9 a tower is $22\frac{1^{\circ}}{2}$ and after w e top has increased to $67\frac{1^{\circ}}{2}$ c) 125 A is 20°, then $a^3 + b^3$ is eq c) $3c^2a$ - $b \cos B$) is equal to c) c and $C(-2, 4)$. D, E And F and remains the centre	e tower is seen to be 45°. From a vation is 30°, the height of d) None of these he coordinate axes at <i>A</i> and <i>B</i> . d) 8 valking 150 metres towards the $\frac{1}{2}$. The height of the tower in d) 175 yual to d) abc d) $a + b + c$ are the points which divide bid of the triangle <i>DEF</i> is
196. From a station <i>A</i> due <i>V</i> station <i>B</i> , 10 m from <i>A</i> tower is a) $5\sqrt{2}(\sqrt{5} + 1)m$ 197. A straight line with ne The minimum value o a) 5 198. An observer finds that foot of the tower he fin metres is a) 50 199. In an isosceles $\triangle ABC$, a) $3a^2b$ 200. In a $\triangle ABC$, $a(\cos^2 B + a)a$ 201. <i>ABC</i> Is a triangle with each <i>AB</i> , <i>BC</i> and <i>CA</i> re a) (3, 6)	West of a tower the angle of A and in the direction 45° So b) $\frac{5(\sqrt{5}+1)}{2}$ m egative slope passing throug f $OA + OB$ is equal to b) 6 t the elevation of the top of inds that the elevation of the b) 75 AB = AC. If vertical angle A b) $3b^2c$ $+\cos^2 C$ + $\cos A$ ($c \cos C$ + b) b vertices $A(-1, 4), B(6, -2)$ espectively in the ratio 3:1 is b) (1, 2)	f elevation of the top of the puth of East of angle of elevation of East of angle of elevation c) $\frac{5\sqrt{2}(\sqrt{5}+1)}{2}$ m gh the point (1, 4) meets th c) 9 a tower is $22\frac{1^{\circ}}{2}$ and after w e top has increased to $67\frac{1^{\circ}}{2}$ c) 125 A is 20°, then $a^3 + b^3$ is eq c) $3c^2a$ - $b \cos B$) is equal to c) c and $C(-2, 4)$. D, E And F and nternally. Then, the centred c) (4, 8)	e tower is seen to be 45°. From a vation is 30°, the height of d) None of these ne coordinate axes at <i>A</i> and <i>B</i> . d) 8 valking 150 metres towards the c. The height of the tower in d) 175 yual to d) abc d) $a + b + c$ are the points which divide
196. From a station <i>A</i> due <i>V</i> station <i>B</i> , 10 m from <i>A</i> tower is a) $5\sqrt{2}(\sqrt{5} + 1)m$ 197. A straight line with ne The minimum value of a) 5 198. An observer finds that foot of the tower he fin metres is a) 50 199. In an isosceles $\triangle ABC$, a) $3a^2b$ 200. In a $\triangle ABC$, $a(\cos^2 B + a)$ a 201. <i>ABC</i> Is a triangle with each <i>AB</i> , <i>BC</i> and <i>CA</i> re a) (3, 6) 202. If in a $\triangle ABC$, $\frac{1}{a+c} + \frac{1}{b+c}$	West of a tower the angle of A and in the direction 45° So b) $\frac{5(\sqrt{5}+1)}{2}$ m egative slope passing throug f $OA + OB$ is equal to b) 6 t the elevation of the top of nds that the elevation of the top of nds that the elevation of the top of h and the elevation of the top of AB = AC. If vertical angle $Ab) 3b^2c+ \cos^2 C + \cos A (c \cos C + b) bvertices A(-1, 4), B(6, -2)espectively in the ratio 3:1 ib) (1, 2)\frac{3}{c} = \frac{3}{a+b+c}, then the value of$	f elevation of the top of the c) $\frac{5\sqrt{2}(\sqrt{5}+1)}{2}$ m gh the point (1, 4) meets th c) 9 a tower is $22\frac{1^{\circ}}{2}$ and after w e top has increased to $67\frac{1^{\circ}}{2}$ c) 125 A is 20°, then $a^3 + b^3$ is eq c) $3c^2a$ - $b \cos B$) is equal to c) c and $C(-2, 4)$. D, E And F and nternally. Then, the centrom c) (4, 8) F the angle C is	e tower is seen to be 45°. From a vation is 30°, the height of d) None of these ne coordinate axes at <i>A</i> and <i>B</i> . d) 8 valking 150 metres towards the c. The height of the tower in d) 175 yual to d) abc d) $a + b + c$ are the points which divide bid of the triangle <i>DEF</i> is d) (-3, 6)
196. From a station <i>A</i> due V station <i>B</i> , 10 m from <i>A</i> tower is a) $5\sqrt{2}(\sqrt{5} + 1)m$ 197. A straight line with ne The minimum value o a) 5 198. An observer finds that foot of the tower he fin metres is a) 50 199. In an isosceles $\triangle ABC$, a) $3a^2b$ 200. In a $\triangle ABC$, $a(\cos^2 B + a)a$ 201. <i>ABC</i> Is a triangle with each <i>AB</i> , <i>BC</i> and <i>CA</i> re a) (3, 6) 202. If in a $\triangle ABC$, $\frac{1}{a+c} + \frac{1}{b+a}$ a) 60°	West of a tower the angle of A and in the direction 45° So b) $\frac{5(\sqrt{5}+1)}{2}$ m egative slope passing throug f $OA + OB$ is equal to b) 6 t the elevation of the top of nds that the elevation of the top of nds that the elevation of the b) 75 AB = AC. If vertical angle $Ab) 3b^2c+ \cos^2 C + \cos A (c \cos C +b) bvertices A(-1, 4), B(6, -2)espectively in the ratio 3:1 ib) (1, 2)\frac{3}{c} = \frac{3}{a+b+c}, then the value ofb) 30°$	f elevation of the top of the c) $\frac{5\sqrt{2}(\sqrt{5}+1)}{2}$ m gh the point (1, 4) meets th c) 9 a tower is $22\frac{1^{\circ}}{2}$ and after w e top has increased to $67\frac{1}{2}$ c) 125 A is 20°, then $a^3 + b^3$ is eq c) $3c^2a$ - $b \cos B$) is equal to c) c and $C(-2, 4)$. D, E And F is nternally. Then, the centro c) (4, 8) F the angle C is c) 45°	e tower is seen to be 45°. From a vation is 30°, the height of d) None of these he coordinate axes at <i>A</i> and <i>B</i> . d) 8 valking 150 metres towards the c. The height of the tower in d) 175 yual to d) abc d) $a + b + c$ are the points which divide bid of the triangle <i>DEF</i> is d) (-3, 6) d) None of these
196. From a station <i>A</i> due <i>V</i> station <i>B</i> , 10 m from <i>A</i> tower is a) $5\sqrt{2}(\sqrt{5} + 1)m$ 197. A straight line with ne The minimum value o a) 5 198. An observer finds that foot of the tower he fin metres is a) 50 199. In an isosceles $\triangle ABC$, a) $3a^2b$ 200. In a $\triangle ABC$, $a(\cos^2 B + a) a$ 201. <i>ABC</i> Is a triangle with each <i>AB</i> , <i>BC</i> and <i>CA</i> re a) (3, 6) 202. If in a $\triangle ABC$, $\frac{1}{a+c} + \frac{1}{b+a}$ a) 60° 203. A tower subtends an a	West of a tower the angle of A and in the direction 45° So b) $\frac{5(\sqrt{5}+1)}{2}$ m egative slope passing throug f $OA + OB$ is equal to b) 6 t the elevation of the top of inds that the elevation of the top of mds that the elevation of the top of h and the elevation of the top of a b) 75 AB = AC. If vertical angle $Ab) 3b^2c+ \cos^2 C + \cos A (c \cos C +b) bvertices A(-1, 4), B(6, -2)espectively in the ratio 3:1 ib) (1, 2)\frac{1}{c} = \frac{3}{a+b+c}, then the value ofb) 30°angle of 30° at a point distant$	f elevation of the top of the puth of East of angle of elevation of East of angle of elevation c) $\frac{5\sqrt{2}(\sqrt{5}+1)}{2}$ m gh the point (1, 4) meets th c) 9 a tower is $22 \frac{1^{\circ}}{2}$ and after w e top has increased to $67 \frac{1^{\circ}}{2}$ c) 125 A is 20°, then $a^3 + b^3$ is eq c) $3c^2a$ - <i>b</i> cos <i>B</i>) is equal to c) <i>c</i> and <i>C</i> (-2, 4). <i>D</i> , <i>E</i> And <i>F</i> and nternally. Then, the centred c) (4, 8) F the angle <i>C</i> is c) 45° here <i>d</i> from the foot of the t	e tower is seen to be 45°. From a vation is 30°, the height of d) None of these ne coordinate axes at <i>A</i> and <i>B</i> . d) 8 valking 150 metres towards the c. The height of the tower in d) 175 yual to d) abc d) $a + b + c$ are the points which divide bid of the triangle <i>DEF</i> is d) (-3, 6)

_	height of the tower is		
a) $\frac{h}{3}$	b) $\frac{h}{3d}$	c) 3 <i>h</i>	d) $\frac{3h}{d}$
5	Ju	ΔABC , such that $BD = DE$	$C = EC. \text{ If } \angle BAD = x, \angle DAE =$
$y, \angle EAC = z$, then th	e value of $\frac{\sin(x+y)\sin(y+z)}{\sin x \sin z}$ is e	qual to	
a) 1	b) 2	c) 4	d) None of these
	$(B-B)$: sin $(B-C)$, then a^2 , b^2	c^2 are in	
a) AP	b) GP	c) HP	d) None of these
	3x + 4y = 5, which is equid		
a) (7, -4)	b) (15, -10)	c) $\left(\frac{1}{7}, \frac{8}{7}\right)$	d) $\left(0,\frac{5}{4}\right)$
	ed points, then the locus of a	point which moves in suc	h a way that the angle, <i>APB</i> is a
right angle is a) A circle	b) An ellipse	c) A parabola	d) None of these
,	$\left(\frac{c}{2}\right) + c\cos^2\left(\frac{A}{2}\right) = \frac{3b}{2}$, then the	-	uj None or these
a) Are in AP	($\frac{1}{2}$) + $c \cos \left(\frac{1}{2}\right) = \frac{1}{2}$, then the b) Are in GP	c) Are in HP	d) Satisfy $a + b = c$
,	n, let <i>r</i> and <i>r</i> be the radii of th	,	,
statement among the			
a) There is regular p	olygon with $\frac{r}{R} = \frac{1}{2}$	b) There is a regular p	polygon $\frac{r}{R} = \frac{1}{\sqrt{2}}$
c) There is a regular	polygon with $\frac{r}{R} = \frac{2}{3}$	d) There is a regular p	polygon with $\frac{r}{R} = \frac{\sqrt{3}}{2}$
	ngles are A, B, C and side BC		BC is
a) $\frac{s(s-a)(s-b)(s-b)(s-b)}{2}$	-c)	b) $\frac{b^2 \sin C \sin A}{\sin B}$	
Z		$\sin B$ $a^2 \sin B \sin C$	
c) <i>ab</i> sin <i>C</i>		d) $\frac{1}{2} \cdot \frac{a^2 \sin B \sin C}{\sin A}$	
-	tre of a rectangular field who sides of the field. The height o	-	l subtends angle 15° and 45° at
a) 200 m	b) $300\sqrt{2+\sqrt{3}}$ m	c) $300\sqrt{2-\sqrt{3}}$ m	d) 400 m
			oving 20 m nearer the tower,
	n is found to be 60°. The heig		
a) 10 m	b) 20 m	c) $10\sqrt{3}$ m	d) None of these
	n of the top of a tower at any becomes 60°. The height of t		and moving 20 metres
a) 10 m	_	c) $\frac{10}{\sqrt{2}}$ m	d) None of these
	b) $10\sqrt{3}$ m	V 3	
214. If angles <i>A</i> , <i>B</i> and <i>C</i> a	re in AP, then $\frac{a+b}{c}$ is equal to		
a) $2\sin\frac{A-C}{2}$	b) $2 \cos \frac{A - C}{2}$	c) $\cos \frac{A-C}{2}$	d) $\sin \frac{A-C}{2}$
-	=	=	2 IP, then sin A , sin B , sin C are
in			
a) GP		b) Arithmetic-Geomet	ric Progression
c) AP 216. The area of an equila	teral triangle that can be ins	d) HP cribed in the circle	
$x^2 + y^2 - 4x - 6y - 6$			
	b) $\frac{35\sqrt{3}}{4}$ sq units	c) $\frac{55\sqrt{3}}{3}$ squarts	d) $\frac{75\sqrt{3}}{3}$ squaits
т	Т	т	т
217. The area of a triangle Then, third vertex is	e is 5 and its two vertices are	A(2, 1) and $B(3, -2)$. The	third vertex lies on $y = x + 3$.
,			Dago I 14

a)
$$\left(\frac{7}{2}, \frac{13}{2}\right)$$
 b) $\left(\frac{5}{2}, \frac{5}{2}\right)$ c) $\left(-\frac{3}{2}, \frac{3}{2}\right)$ d) $(0, 0)$

218. The incentre of the triangle with vertices $(1, \sqrt{3})$, (0, 0) and (2, 0) is

 $(2^{2\pi})$:

a)
$$\left(1, \frac{\sqrt{3}}{2}\right)$$
 b) $\left(\frac{2}{3}, \frac{1}{\sqrt{3}}\right)$ c) $\left(\frac{2}{3}, \frac{\sqrt{3}}{2}\right)$ d) $\left(1, \frac{1}{\sqrt{3}}\right)$

^{219.} The area (in square unit) of the triangle formed by the points with polar coordinates (1, 0), $\left(2, \frac{\pi}{3}\right)$ and

$$(3, \frac{3}{3})^{15} a) \frac{11\sqrt{3}}{4} b) \frac{5\sqrt{3}}{4} c) \frac{5}{4} d) \frac{11}{4} 220. The points P is equidistant from A (1, 3), B (-3, 5) and C (5, -1), then PA is equal to a) 5 b) $5\sqrt{5}$ c) 25 d) $5\sqrt{10}$$$

221. A rod of length *l* slides with its ends on two perpendicular lines. The locus of a point which divides it in the ratio 1 : 2, is

a)
$$36x^2 + 9y^2 = 4l^2$$
 b) $36x^2 + 9y^2 = l^2$ c) $9x^2 + 36y^2 = 4l^2$ d) $9x^2 - 36y^2 = 4l^2$
222. The circumradius of the triangle whose sides are 13, 12 and 5, is
a) 15 b) 13 c) 15 d) 6

b)
$$\frac{13}{2}$$
 c) $\frac{15}{2}$ d) 6

223. Locus of centroid of the triangle whose vertices are $(a \cos t, a \sin t)$, $(b \sin t, -b \cos t)$ and (1, 0), where t is a parameter, is

a) $(3x - 1)^2 + (3y)^2 = a^2 - b^2$ b) $(3x - 1)^2 + (3y)^2 = a^2 + b^2$ c) $(3x + 1)^2 + (3y)^2 = a^2 + b^2$ d) $(3x + 1)^2 + (3y)^2 = a^2 - b^2$

224. *AB* is a vertical pole with *B* at the ground level and *A* at the top. *A* man finds that the angle of elevation of the point *A* from a certain point *C* on the ground is 60°. He moves away from the pole along the line *BC* to a point *D* such that *CD*=7m. From *D* the angle of elevation of the point *A* is 45°. Then the height of the pole is

a)
$$\frac{7\sqrt{3}}{2} \left(\frac{1}{\sqrt{3}+1}\right) m$$
 b) $\frac{7\sqrt{3}}{2} \left(\frac{1}{\sqrt{3}-1}\right) m$ c) $\frac{7\sqrt{3}}{2} (\sqrt{3}+1) m$ d) $\frac{7\sqrt{3}}{2} (\sqrt{3}-1) m$

225. If *C* is the reflection of *A*(2, 4) in *x*-aixs and *B* is the reflection of *C* in *y*-axis, then |AB| is a) 20 b) $2\sqrt{5}$ c) $4\sqrt{5}$ d) 4

- 226. *ABC* is an isosceles triangle if the coordinates of the base are B(1, 3) and C(-2, 7), the coordinates of vertex *A* can be
 - a) (1, 6) b) $\left(-\frac{1}{2}, 5\right)$ c) $\left(\frac{5}{6}, 6\right)$ d) $\left(-8, \frac{1}{8}\right)$

227. Point $\left(\frac{1}{2}, -\frac{13}{4}\right)$ divides the line joining the points (3, -5) and (-7, 2) in the ratio of

a) 1: 3 internally b) 3: 1 internally c) 1: 3 externally d) 3: 1 externally 228. The orthocenter of the triangle with vertices O(0,0), $A(0,\frac{3}{2})$, B(-5,0) is

a)
$$\left(\frac{5}{2}, \frac{3}{4}\right)$$
 b) $\left(\frac{-5}{2}, \frac{3}{4}\right)$ c) $\left(-5, \frac{3}{2}\right)$ d) $(0, 0)$

229. Area of triangle formed by the lines x + y = 3 and angle bisectors of the pair of straight lines $x^2 - y^2 + 2y = 1$ is

a) 2 sq units	b) 4 sq units	c) 6 sq units	d) 8 sq units			
230. <i>ABCD</i> is a rectangular field. A vertical lamp post of height12m stands at the corner <i>A</i> . If the angle of						
elevation of its top from B is 60° and from C is 45°, then the area of the field is						
a) 48√2 sq n	b) $48\sqrt{3}$ sq m	c) 48 sq m	d) 12√2 sq m			
231. If two adjacent sides of a cylinder quadrilateral are 2 and 5 and the angle between them is 60°. If the third						
side is 3, then the remaining fourth side is						
a) 2	b) 3	c) 4	d) 5			

232. In $\triangle ABC$, $2R^2 \sin A \sin B \sin C$ is equal to

a) <i>s</i> ²	b) <i>ab</i> + <i>bc</i> + <i>ca</i>	c) ∆	d) None of these
233. If in a $\triangle ABC$, the altitud	les from the vertices A, B, C	on opposite sides are in H	P, then $\sin A$, $\sin B$, $\sin C$ are
in			
a) HP		b) Arithmetico-Geometr	ric Progression
c) AP		d) GP	
234. The middle point of the	line segment joining $(3, -1)$) and (1, 1) is shifted by tw	vo units (in the sense of
			point in the new position are
	b) $(2, 2 - \sqrt{3})$		d) None of these
235. If area of triangle with	, ,	, , ,	
	/er tices (0, 0), (0, 0) and (u		
a) $\alpha = \pm 5$, $\beta = 5$ c) $\alpha = \pm 5$, $\beta = 2$		b) $\alpha = \pm 10, \beta = 5$	
· ·	haaa waxtigaa aya (2,2) (2	d) $\alpha = \pm 5$, β can take and β	
236. Area of quadrilateral w			
a) 0	b) 4	c) 6	d) None of the above
	(2, 3) and $(-5, 2)$ is equal t	to the distance between $(x,$	2) and (1, 3), then the values
of x are			
a) -6,8	b) 6, 8	c) -8,6	d) -7,7
238. A circle is inscribed in a			
a) $3\pi a^2$ sq units	b) $2a^2$ sq units	<i>, , ,</i>	d) None of these
239. The <i>x</i> -axis, <i>y</i> -axis and a		pint $A(6, 0)$ form a triangle	ABC. If $\angle A = 30^{\circ}$ then the
area of the triangle, in s	q units is		
a) 6√3	b) 12√3	c) $4\sqrt{3}$	d) 8√3
240. In a $\triangle ABC$, if $\frac{\cos A}{a} = \frac{\cos A}{b}$	$\frac{B}{d} = \frac{\cos c}{2}$ and the side $a = 2$, then area of the triangle i	S
a) 1 sq unit	b) 2 sq unit	_	
aj 154 ante	b) 2 59 anne	c) $\frac{\sqrt{3}}{2}$ sq unit	d) $\sqrt{3}$ sq unit
241. In an ambiguous case of solving a triangle when $a = \sqrt{5}$, $b = 2$, $\angle A = \frac{\pi}{6}$, the two possible values of third			
side are c_1 and c_2 , then		0	
	b) $ c_1 - c_2 = 4\sqrt{6}$	c) $ c_1 - c_2 = 4$	d) $ c_1 - c_2 = 6$
			$a_{1}^{2} = b_{1}^{2} = b_{1}^{2}$
242. In $\triangle ABC$, $(a-b)^2 \cos^2$	$\frac{1}{2} + (a + b)^2 \sin^2 \frac{1}{2}$ is equal	to	
a) a^2	b) <i>b</i> ²	c) <i>c</i> ²	d) None of these
243. In ΔABC , with usual no	tation, observe the two stat	ements given below	
I. $rr_1r_2r_3 = \Delta^2$			
II. $r_1r_2 + r_2r_3 + r_3r_1 =$	<i>s</i> ²		
Which of the following	is correct?		
a) Both I and III are tru	e b) I is true, II is false	c) I is false, II is true	d) Both I and II are false
244. If the angles of a triangl	e be in the ratio 1:2:7, then	the ratio of its greatest side	e to the least side is
a) 1:2	b) 2:1	c) $(\sqrt{5} + 1): (\sqrt{5} - 1)$	d) $(\sqrt{5} - 1): (\sqrt{5} + 1)$
245. From the top of a cliff 3	00 metres high, the top of a		
=	er the top of the cliff was o		
tower is			
	b) $200(3 - \sqrt{3})$ m	c) $100(3 - \sqrt{3})$ m	d) None of these
			-
246. If x_1 , x_2 , x_3 and y_1 , y_2		same common ratio, then	the points
$(x_1, y_1), (x_2, y_2), (x_3, y_3)$)	h) Lie en en ellinge	
a) Lie on a straight line	1.	b) Lie on an ellipse	
c) One vertices of a tria	0	d) Lie on a circle	
247. The coordinates axes an $(4 - 2)$			a point P in the new system
), then the coordinates of P		/ 1 7
a) $\left(\frac{1}{2}, \frac{7}{2}\right)$	b) $\left(\frac{1}{\sqrt{2}}, -\frac{7}{\sqrt{2}}\right)$	c) $\left(-\frac{1}{\sqrt{2}}, -\frac{7}{\sqrt{2}}\right)$	d) $\left(-\frac{1}{\sqrt{2}},\frac{7}{\sqrt{2}}\right)$
74X ING COORDINATE AVEC ROL	ared though an angle T35°	If the coordinates of a poin	T P IN THE NEW System are

248. The coordinate axes rotated though an angle 135° . If the coordinates of a point *P* in the new system are

	, then the coordinates of P in tl		
a) $\left(\frac{1}{\sqrt{2}}, \frac{7}{\sqrt{2}}\right)$	b) $\left(\frac{1}{\sqrt{2}}, -\frac{7}{\sqrt{2}}\right)$	c) $\left(-\frac{1}{\sqrt{2}},-\frac{7}{\sqrt{2}}\right)$	d) $\left(-\frac{1}{\sqrt{2}}, \frac{7}{\sqrt{2}}\right)$
249. When the elevation	of sun changes from 45° to 30°		
the tower is a) $30\sqrt{3}$ m	b) $20(\sqrt{2} + 1)m$	c) $30(\sqrt{3}-1)m$	d) $20(\sqrt{2} + 1)m$
	on of the top of a tower from a j	- ()	
\tan^{-1} 7.5. If <i>h</i> is the	height of the tower, then $AB =$	λh , where λ^2 is equal to	
a) $\frac{21}{700}$	b) $\frac{42}{1300}$	c) $\frac{41}{900}$	d) None of these
251. In a triangle, if $r_1 + r_2$	$r_3 = kcos^2 \frac{B}{2}$, then k is equal to		
a) <i>R</i>	b) 2 <i>R</i>	c) 3 <i>R</i>	d) 4 <i>R</i>
=	and <i>C</i> is its middle point. The e han <i>A</i> the portion <i>CB</i> subtends		
	b) $\tan^{-1}\frac{1}{9}$		d) $\tan^{-1}\frac{2}{9}$
253. If the points $(x + 1, $	2), $(1, x + 2)$, $\left(\frac{1}{x+1}, \frac{2}{x+1}\right)$ are col	llinear, then x is	
a) 4	b) 5	c) -4	d) None of these
	he angular bisector of the $\angle AC$	-	d) None of these
a) $\frac{a+b}{2ab}\cos\frac{b}{2}$	b) $\frac{a+b}{ab}\cos\frac{C}{2}$	c) $\frac{2ab}{a+b}\cos\frac{a}{2}$	u) None of these
AB(=a) subtends a tower from A or B is	e center of a circuit park. <i>A</i> and n angles of 60° at the foot of th s 30°. The height of the tower is	e tower and the angle of	boundry of the park such that elevation of the top of the
a) $\frac{2a}{\sqrt{3}}$	b) $2a\sqrt{3}$	c) $\frac{a}{\sqrt{3}}$	d) √3
256. Consider three poin			
$P = (-\sin(\beta - \alpha)),$ $Q = (\cos(\beta - \alpha)), \sin(\beta - \alpha)$	• •		
And $R = (\cos(\beta - \alpha))$			
Where $0 < \alpha, \beta, \theta < \beta$	$\frac{\pi}{4}$. Then,		
a) <i>P</i> lies on the line	_	b) Q lies on the line set	-
c) <i>R</i> lies on the line 257. In $\triangle ABC$, if $8R^2 = a$	segment <i>QP</i> $z^2 + b^2 + c^2$, then the triangle i	d) <i>P</i> , <i>Q</i> , <i>R</i> are non-coll s	inear
a) Right angled	b) Equilateral	c) Acute angled	d) Obtuse angled
	ces $(4, 0)$, $(-1, -1)$, $(3, 5)$ is		.1
a) Isosceles and rightc) Right angled but	•	b) Isosceles but not rid) Neither right angle	• •
	ect formulae among the following		
III. $r = 4R \sin \frac{A}{2} \sin \frac{A}{2}$	$\frac{B}{2}\sin\frac{C}{2}$		
IV. $r_1 = (s - a) \tan(s - b)$	<u>A</u> 2		
V. $r_3 = \frac{\Delta}{s-c}$			
a) Only I, II	b) Only II, III	c) Only I, III	d) I, II, III
a) 3	unit) of the triangle formed by b) 4	the lines $x = 0, y = 0$ an c) 6	$\begin{array}{c} \text{id } 3x + 4y = 12, \text{is} \\ \text{d} \end{array}$
-	s A, B and C given in the two di		,
distance of any one	of them from the point (1, 0) to	the distance from the po	bint $(-1, 0)$ is equal to $\frac{1}{3}$. Then,
the circumcentre of	the triangle <i>ABC</i> is at the point	t	

a) $\left(\frac{5}{4}, 0\right)$	b) $\left(\frac{5}{2}, 0\right)$	c) $\left(\frac{5}{3}, 0\right)$	d) (0, 0)
			llinoar is
a) $a - b = 2$	n for the three points (a, b) , (b) b) $a + b = 2$		d) $a = 1 - b$
,	standing at A, B, C subtends t	,	
	, tan θ_B and tan θ_C are in		
a) AP	b) GP	c) HP	d) None of these
	le whose sides are 6, 5, $\sqrt{13}$ (i		
a) 5√2	b) 9	c) $6\sqrt{2}$	d) 11
	(x_2, y_2) and $C(x_3, y_3)$ are such the subscript (x_3, y_3) are such the subscript (x_3, y_3) are such that (x_3, y_3)		
a) A, B and C are cond	ices of an equilateral triangle	b) <i>A</i> , <i>B</i> and <i>C</i> are collinear d) None of the above	ar points
-	and $Q(-a, 0)$ are given, R is a value	-	the line PQ such that
$\angle RPQ - \angle RQP$ is 2α ,		1	·
	$y^2 + 2xy \cot 2\alpha - a^2 = 0$	b) Locus of <i>R</i> is $x^2 + y^2$	$a^2 + 2xy \cot \alpha - a^2 = 0$
c) Locus of <i>R</i> is a hyp	perbola, if $\alpha = \frac{\pi}{4}$	d) Locus of <i>R</i> is a circle,	if $\alpha = \frac{\pi}{4}$
267. In a Δ <i>ABC</i> , medians, A	AD and BE are drawn. If $AD =$	4, $\angle DAB = \frac{\pi}{6}$ and $\angle ABE =$	$=\frac{\pi}{3}$, then the area of the
$\triangle ABC$ is		C C	
a) $\frac{8}{2}$ sq units	b) $\frac{16}{3}$ sq units	c) $\frac{32}{}$ sq units	d) $\frac{64}{-1}$ sq units
5	5	373	5
a) $3\sqrt{2}$	to $P(4, -1)$ with respect to the b) $5\sqrt{2}$	c) $7\sqrt{2}$	ant. The length of PQ is d) $9\sqrt{2}$
	b) $5\sqrt{2}$ ormed by the points $(a, b + c)$		
a) <i>abc</i>	b) $a^2 + b^2 + c^2$		d) 0
	$= X\cos\theta + Y\sin\theta, y = X\sin\theta$,
where <i>a</i> , <i>b</i> are consta			
a) $a = -1, b = 3, \theta =$	$\frac{\pi}{4}$ b) $a = 1, b = -3, 2 = \frac{\pi}{3}$	c) $a = 3, b = -1, \theta = \frac{\pi}{4}$	d) $a = 3, b = -1, \theta = \frac{\pi}{3}$
271. If a point <i>P</i> (4, 3) is sh	ifted by a distance $\sqrt{2}$ unit par	callel to the line $y = x$, then	coordinates of <i>p</i> in new
position are			
a) (5, 4)	b) $(5 + \sqrt{2}, 4 + \sqrt{2})$	c) $(5 - \sqrt{2}, 4 - \sqrt{2})$	d) None of these
=	50m high, the angles of depre	ession of the top and bottor	n of a tower are observed to
be 30° and 45°. The he	eight of tower is		
a) 50m	b) 50√3m	c) $50(\sqrt{3}-1)m$	d) $50\left(1-\frac{\sqrt{3}}{3}\right)m$
	ateral triangle is $(2, -1)$ and t	the equation of its base is <i>x</i>	+2y = 1, the length of its
sides is	А.	1	Л
a) $\frac{z}{\sqrt{15}}$	b) $\frac{4}{3\sqrt{3}}$	c) $\frac{1}{\sqrt{5}}$	d) $\frac{4}{\sqrt{15}}$
110	sun is 30°, then the length of t	٧J	V15
a) 75√3 ft.	b) $200\sqrt{3}$ ft.	c) 150√3 ft.	d) None of these
275. The area of the triang	le formed by the points (2, 2),	(5, 5), (6, 7) is equal to (in	square unit)
a) $\frac{9}{2}$	b) 5	c) 10	d) $\frac{3}{2}$
2	e ΔOAB , where <i>O</i> is the origin	$A(6, 0)$ and $B(3, 3\sqrt{3})$ is	Z
a) $(9/2, \sqrt{3}/2)$	b) $(3,\sqrt{3})$	c) $(\sqrt{3}, 3)$	d) $(3, -\sqrt{3})$
277. In a $\triangle ABC$, cos $A + co$) (, -, -)	
a) $1 + \frac{r}{R}$	b) $1 - \frac{r}{R}$	c) $1 - \frac{R}{r}$	d) $1 + \frac{R}{r}$

- a) The altitudes are in AP b) The altitudes are in HP c) The medians are in GP
 - d) The medians are in AP

279. The angle of elevation of an object on a hill from a point on the ground is 30°. After walking 120 metres the elevation of the object is 60°. The height of the hill is

d) 60 m a) 120 m b) $60\sqrt{3}$ m c) $120\sqrt{3}$ m 280. If the median *AD* of \triangle *ABC*, makes an angle θ with side *AB*, then sin($A - \theta$) is equal to b) $\left(\frac{b}{c}\right) \sin \theta$ c) $\left(\frac{c}{b}\right) \sin \theta$ d) $\left(\frac{c}{b}\right) \csc \theta$ a) $\left(\frac{b}{c}\right)$ cosec θ

281. The angle of elevation of a cliff at a point *A* on the ground and a point *B*, 100 m vertically at *A* are α and β respectively. The height of the cliff is

a)
$$\frac{100 \cot \alpha}{\cot \alpha - \cot \beta}$$
 b) $\frac{100 \cot \beta}{\cot \alpha - \cot \beta}$ c) $\frac{100 \cot \beta}{\cot \beta - \cot \alpha}$ d) $\frac{100 \cot \beta}{\cot \beta + \cot \alpha}$

282. A quadrilateral *ABCD* in which AB = a, BC = b, CD = c and DA = d is such that one circle can be inscribed in it and another circle can be circumscribed about it, then cos A is equal to . .

a)
$$\frac{ad + bc}{ad - dc}$$
 b) $\frac{ad - bc}{ad + bc}$ c) $\frac{ac + bd}{ac - bd}$ d) $\frac{ac - bd}{ac + bd}$

283. If λ be the perimeter of the ΔABC , then $b \cos^2\left(\frac{C}{2}\right) + c \cos^2\left(\frac{B}{2}\right)$ is equal to c) $\frac{\lambda}{2}$ b) 2λ

d) None of these

284. If in the $\triangle ABC$, $\angle B = 45^\circ$, then $a^4 + b^4 + c^4$ is equal to

a) $2a^2(b^2 + c^2)$ b) $2c^2(a^2 + b^2)$ d) $2(a^2b^2 + b^2c^2 + c^2a^2)$ c) $2b^2(a^2 + c^2)$

285. The ratio in which the line x + y = 4 divides the line joining the points (1, -1) and (5, 7) is a) 1:2 b) 2:1 c) 1:3 d) 3:1 286. The coordinates of the orthocenter of the triangle formed by (0, 0), (8, 0), (4, 6) is

b) (6, 3) a) (4, 0) c) (6,0) d) None of these 287. If $\Delta = a^2 - (b - c)^2$, where Δ is the area of ΔABC , then tan A is equal to

a)
$$\frac{15}{16}$$
 b) $\frac{8}{15}$ c) $\frac{8}{17}$ d) $\frac{1}{2}$

288. In $\triangle ABC$, $\frac{b+c}{a}$ is equal to

a) λ

a)
$$\frac{\cos\frac{1}{2}(B-C)}{\sin\frac{1}{2}A}$$
 b) $\frac{\sin\frac{1}{2}(B-C)}{\cos\frac{1}{2}A}$ c) $\frac{\cos\frac{1}{2}(B+C)}{\sin\frac{1}{2}A}$ d) $\frac{\cos\frac{1}{2}(B+C)}{\cos\frac{1}{2}A}$

289. In a cubical hall *ABCDPQRS* with each side 10 m, *G* is the centre of the wall *BCRQ* and *T* is the mid point of the side *AB*. The angle of elevation of *G* at the point *T* is

a)
$$\sin^{-1}(1/\sqrt{3})$$
 b) $\cos^{-1}(1/\sqrt{3})$ c) $\cot^{-1}(1/\sqrt{3})$ d) None of these

290. If p_1, p_2, p_3 are respectively the perpendicular from the vertices of a triangle to the opposite sides, then p_1, p_2, p_3 is equal to

a)
$$a^2b^2c^2$$
 b) $2a^2b^2c^2$ c) $\frac{4a^2b^2c^2}{R^2}$ d) $\frac{a^2b^2c^2}{8R^2}$

291. An observer standing on a 300 m high tower observes two boats in the same direction their angles of depression are 60° and 30° respectively. The distance between boats is a) 173.2 m h) 346.4 m a) 25 m d) 72 m

aj 175.2 m	DJ 540.4 III	CJ 25 III	u) / 2 III
292. If the length of the	sides of a triangle are 3, 4	and 5 unit, then <i>R</i> is	
a) 3.5	b) 3.0	c) 2.0	d) 2.5
293. In a triangle $\left(1 - \frac{r}{r}\right)$	$\left(\frac{1}{2}\right)\left(1-\frac{r_1}{r_3}\right) = 2$, then the tr	iangle is	

a) Right angled b) Isosceles c) Equilateral d) None of these 294. If in a
$$\triangle ABC$$
, $a \tan A + b \tan B = (a + b) \tan \frac{A+B}{2}$, then

a) $A = B$			
	b) $A = -B$	c) $A = 2B$	d) $B = 2A$
295. The coordinates of the	circumcentre of the triang	gle with vertices (8,6), (8, -	–2) and
(2, −2) are			
a) $(6, \frac{2}{3})$	b) (8, 2)	c) $(5 - 2)$	d) (5, 2)
$(0, \frac{1}{3})$	$0 \int (0, 2)$	(J(3, 2))	uj (3, 2)
296. Points <i>D</i> , <i>E</i> are taken o	n the side <i>BC</i> of a \triangle <i>ABC</i> s	such that $BD = DE = EC$. If	$f \angle BAD = x, \angle DAE =$
$v \not\subset EAC = z$, then the	value of $\frac{\sin(x+y)\sin(y+z)}{\sin x \sin z}$ is	equal to	
	$\sin x \sin z$ b) 2	c) 4	d) None of these
a) 1 207 An observed on the ten	,	,	d) None of these
-			g towards the tree to be 30°.
-		uch more time, the car will	
a) 4 min	b) 4.5 min	c) 1.5 min	d) 2 min
-			<i>C</i> respectively on the line in
the horizontal plane th	rough the foot <i>D</i> of tower	and on the same side of it,	then $BC \cot \alpha - CA \cot \alpha +$
AB cot γ is equal to			
a) 0	b) 1	c) 2	d) None of these
299. The equation of the thr	ee sides of a triangle are a	x = 2, y + 1 = 0 and $x + 2y$	y = 4. The coordinates of the
circumcentre of the tria	angles are		
a) (4, 0)	b) (2, -1)	c) (0, 4)	d) (-1, 2)
300. On one bank of river th	ere is a tree. On another b	oank, an observer makes ar	angle of elevation of 60°at the
top of the tree. The ang	le of elevation of the top of	of the tree at a distance 20	m away the bank is 30°. The
width of the river is	1		5
a) 20 m	b) 10 m	c) 5 m	d) 1 m
301. Consider the following	,		
_	1, $\angle B = 30^\circ$, $\angle C = 45^\circ$, the	on c is aqual to	
	$b^2 + c^2 = 8R^2$, then the tr		
3. In a \triangle <i>ABC</i> , $a = 2, b =$	$= 3, c = 4$, then $\cos A = \frac{7}{8}$		
Which of the statement			
which of the statemen	ts given above is/are corr		
a) Only (1)	ts given above is/are corr b) Only (2)		d) All of these
a) Only (1)	b) Only (2)	ect? c) Only (3)	d) All of these
a) Only (1) 302. If <i>A</i> is the area and 2 <i>s</i> t	b) Only (2) he sum of three sides of a	ect? c) Only (3) triangle, then	
a) Only (1)	b) Only (2)	ect? c) Only (3)	d) All of these d) None of these
a) Only (1) 302. If <i>A</i> is the area and 2 <i>s</i> t a) $A \le \frac{s^2}{3\sqrt{3}}$	b) Only (2) the sum of three sides of a b) $A \le \frac{s^2}{2}$	ect? c) Only (3) triangle, then c) $A > \frac{s^2}{\sqrt{3}}$	d) None of these
a) Only (1) 302. If <i>A</i> is the area and 2 <i>s</i> t a) $A \le \frac{s^2}{3\sqrt{3}}$ 303. A flag staff of 5 m high	b) Only (2) the sum of three sides of a b) $A \le \frac{s^2}{2}$ stands on a building of 25	ect? c) Only (3) triangle, then c) $A > \frac{s^2}{\sqrt{3}}$ 5 m high. At an observer at a	d) None of these a height of 30 m, the flag staff
a) Only (1) 302. If <i>A</i> is the area and 2 <i>s</i> t a) $A \le \frac{s^2}{3\sqrt{3}}$ 303. A flag staff of 5 m high	b) Only (2) the sum of three sides of a b) $A \le \frac{s^2}{2}$ stands on a building of 25 nd equal angles. the distant	ect? c) Only (3) triangle, then c) $A > \frac{s^2}{\sqrt{3}}$ o m high. At an observer at ance of the observer from the	d) None of these a height of 30 m, the flag staff e top of the flag staff is
a) Only (1) 302. If <i>A</i> is the area and 2 <i>s</i> t a) $A \le \frac{s^2}{3\sqrt{3}}$ 303. A flag staff of 5 m high and the building subter	b) Only (2) the sum of three sides of a b) $A \le \frac{s^2}{2}$ stands on a building of 25 nd equal angles. the distant	ect? c) Only (3) triangle, then c) $A > \frac{s^2}{\sqrt{3}}$ o m high. At an observer at ance of the observer from the	d) None of these a height of 30 m, the flag staff
a) Only (1) 302. If <i>A</i> is the area and 2 <i>s</i> t a) $A \le \frac{s^2}{3\sqrt{3}}$ 303. A flag staff of 5 m high	b) Only (2) the sum of three sides of a b) $A \le \frac{s^2}{2}$ stands on a building of 25	ect? c) Only (3) triangle, then c) $A > \frac{s^2}{\sqrt{3}}$ o m high. At an observer at ance of the observer from the	d) None of these a height of 30 m, the flag staff e top of the flag staff is
a) Only (1) 302. If <i>A</i> is the area and 2 <i>s</i> t a) $A \le \frac{s^2}{3\sqrt{3}}$ 303. A flag staff of 5 m high and the building subter a) $\frac{5\sqrt{3}}{2}$ m	b) Only (2) the sum of three sides of a b) $A \le \frac{s^2}{2}$ stands on a building of 25 and equal angles. the distant b) $5\sqrt{\frac{3}{2}}$ m	ect? c) Only (3) triangle, then c) $A > \frac{s^2}{\sqrt{3}}$ m high. At an observer at a nce of the observer from the c) $5\sqrt{\frac{2}{3}}m$	d) None of these a height of 30 m, the flag staff e top of the flag staff is d) None of these
a) Only (1) 302. If <i>A</i> is the area and 2 <i>s</i> that a) $A \le \frac{s^2}{3\sqrt{3}}$ 303. A flag staff of 5 m high and the building subter a) $\frac{5\sqrt{3}}{2}$ m 304. A tower of height <i>b</i> subt	b) Only (2) the sum of three sides of a b) $A \le \frac{s^2}{2}$ stands on a building of 25 nd equal angles. the distant b) $5\sqrt{\frac{3}{2}}$ m otends an angle at a point	ect? c) Only (3) triangle, then c) $A > \frac{s^2}{\sqrt{3}}$ m high. At an observer at a nce of the observer from the c) $5\sqrt{\frac{2}{3}}$ m <i>O</i> on the level of the foot of	d) None of these a height of 30 m, the flag staff e top of the flag staff is d) None of these f the tower and at a distance 'a'
a) Only (1) 302. If <i>A</i> is the area and 2 <i>s</i> that a) $A \le \frac{s^2}{3\sqrt{3}}$ 303. A flag staff of 5 m high and the building subter a) $\frac{5\sqrt{3}}{2}$ m 304. A tower of height <i>b</i> subt from the foot of the tow	b) Only (2) the sum of three sides of a b) $A \le \frac{s^2}{2}$ stands on a building of 25 nd equal angles. the distant b) $5\sqrt{\frac{3}{2}}$ m otends an angle at a point	ect? c) Only (3) triangle, then c) $A > \frac{s^2}{\sqrt{3}}$ m high. At an observer at a nce of the observer from the c) $5\sqrt{\frac{2}{3}}$ m <i>O</i> on the level of the foot of	d) None of these a height of 30 m, the flag staff e top of the flag staff is d) None of these
a) Only (1) 302. If <i>A</i> is the area and 2 <i>s</i> that a) $A \le \frac{s^2}{3\sqrt{3}}$ 303. A flag staff of 5 m high and the building subter a) $\frac{5\sqrt{3}}{2}$ m 304. A tower of height <i>b</i> such from the foot of the tow of the pole is	b) Only (2) the sum of three sides of a b) $A \le \frac{s^2}{2}$ stands on a building of 25 and equal angles. the distant b) $5\sqrt{\frac{3}{2}}$ m otends an angle at a point ver. If the pole mounted o	ect? c) Only (3) triangle, then c) $A > \frac{s^2}{\sqrt{3}}$ m high. At an observer at a nce of the observer from the c) $5\sqrt{\frac{2}{3}}$ m <i>O</i> on the level of the foot of n the tower also subtends a	 d) None of these a height of 30 m, the flag staff e top of the flag staff is d) None of these f the tower and at a distance 'a' an equal angle at <i>O</i>, the height
a) Only (1) 302. If <i>A</i> is the area and 2 <i>s</i> that a) $A \le \frac{s^2}{3\sqrt{3}}$ 303. A flag staff of 5 m high and the building subter a) $\frac{5\sqrt{3}}{2}$ m 304. A tower of height <i>b</i> such from the foot of the tow of the pole is	b) Only (2) the sum of three sides of a b) $A \le \frac{s^2}{2}$ stands on a building of 25 and equal angles. the distant b) $5\sqrt{\frac{3}{2}}$ m otends an angle at a point ver. If the pole mounted o	ect? c) Only (3) triangle, then c) $A > \frac{s^2}{\sqrt{3}}$ m high. At an observer at a nce of the observer from the c) $5\sqrt{\frac{2}{3}}$ m <i>O</i> on the level of the foot of n the tower also subtends a	 d) None of these a height of 30 m, the flag staff e top of the flag staff is d) None of these f the tower and at a distance 'a' an equal angle at <i>O</i>, the height
a) Only (1) 302. If <i>A</i> is the area and 2 <i>s</i> that a) $A \le \frac{s^2}{3\sqrt{3}}$ 303. A flag staff of 5 m high and the building subter a) $\frac{5\sqrt{3}}{2}$ m 304. A tower of height <i>b</i> such from the foot of the town of the pole is a) $b\left(\frac{a^2 - b^2}{a^2 + b^2}\right)$	b) Only (2) the sum of three sides of a b) $A \le \frac{s^2}{2}$ stands on a building of 25 and equal angles. the distant b) $5\sqrt{\frac{3}{2}}$ m otends an angle at a point ver. If the pole mounted o b) $b\left(\frac{a^2+b^2}{a^2-b^2}\right)$	ect? c) Only (3) triangle, then c) $A > \frac{s^2}{\sqrt{3}}$ m high. At an observer at a nce of the observer from the c) $5\sqrt{\frac{2}{3}}$ m <i>O</i> on the level of the foot of n the tower also subtends a c) $a\left(\frac{a^2 - b^2}{a^2 + b^2}\right)$	d) None of these a height of 30 m, the flag staff e top of the flag staff is d) None of these f the tower and at a distance 'a' an equal angle at 0, the height d) $a\left(\frac{a^2 + b^2}{a^2 - b^2}\right)$
a) Only (1) 302. If <i>A</i> is the area and 2 <i>s</i> that a) $A \le \frac{s^2}{3\sqrt{3}}$ 303. A flag staff of 5 m high and the building subter a) $\frac{5\sqrt{3}}{2}$ m 304. A tower of height <i>b</i> subtractions from the foot of the town of the pole is a) $b\left(\frac{a^2 - b^2}{a^2 + b^2}\right)$ 305. If the angles of a triangenergy of the subtraction of the town of a triangenergy of the subtraction of the town a) $b\left(\frac{a^2 - b^2}{a^2 + b^2}\right)$	b) Only (2) the sum of three sides of a b) $A \le \frac{s^2}{2}$ stands on a building of 25 and equal angles. the distant b) $5\sqrt{\frac{3}{2}}$ m otends an angle at a point ver. If the pole mounted o b) $b\left(\frac{a^2+b^2}{a^2-b^2}\right)$ the are in the ratio 4: 1: 1, t	ect? c) Only (3) triangle, then c) $A > \frac{s^2}{\sqrt{3}}$ in high. At an observer at a nee of the observer from the c) $5\sqrt{\frac{2}{3}}$ m <i>O</i> on the level of the foot of n the tower also subtends a c) $a\left(\frac{a^2 - b^2}{a^2 + b^2}\right)$ hen the ratio of the longest	d) None of these a height of 30 m, the flag staff e top of the flag staff is d) None of these f the tower and at a distance 'a' an equal angle at 0, the height d) $a\left(\frac{a^2 + b^2}{a^2 - b^2}\right)$
a) Only (1) 302. If <i>A</i> is the area and 2 <i>s</i> that a) $A \le \frac{s^2}{3\sqrt{3}}$ 303. A flag staff of 5 m high and the building subter a) $\frac{5\sqrt{3}}{2}$ m 304. A tower of height <i>b</i> such from the foot of the town of the pole is a) $b\left(\frac{a^2 - b^2}{a^2 + b^2}\right)$	b) Only (2) the sum of three sides of a b) $A \le \frac{s^2}{2}$ stands on a building of 25 and equal angles. the distant b) $5\sqrt{\frac{3}{2}}$ m otends an angle at a point ver. If the pole mounted o b) $b\left(\frac{a^2+b^2}{a^2-b^2}\right)$	ect? c) Only (3) triangle, then c) $A > \frac{s^2}{\sqrt{3}}$ m high. At an observer at a nce of the observer from the c) $5\sqrt{\frac{2}{3}}$ m <i>O</i> on the level of the foot of n the tower also subtends a c) $a\left(\frac{a^2 - b^2}{a^2 + b^2}\right)$	d) None of these a height of 30 m, the flag staff e top of the flag staff is d) None of these f the tower and at a distance 'a' an equal angle at 0, the height d) $a\left(\frac{a^2 + b^2}{a^2 - b^2}\right)$
a) Only (1) 302. If <i>A</i> is the area and 2 <i>s</i> that a) $A \le \frac{s^2}{3\sqrt{3}}$ 303. A flag staff of 5 m high and the building subter a) $\frac{5\sqrt{3}}{2}$ m 304. A tower of height <i>b</i> subtractions from the foot of the town of the pole is a) $b\left(\frac{a^2 - b^2}{a^2 + b^2}\right)$ 305. If the angles of a triangenergy of the subtraction of the town of a triangenergy of the subtraction of the town a) $b\left(\frac{a^2 - b^2}{a^2 + b^2}\right)$	b) Only (2) the sum of three sides of a b) $A \le \frac{s^2}{2}$ stands on a building of 25 and equal angles. the distant b) $5\sqrt{\frac{3}{2}}$ m otends an angle at a point ver. If the pole mounted o b) $b\left(\frac{a^2+b^2}{a^2-b^2}\right)$ the are in the ratio 4: 1: 1, the b) 1: 6	ect? c) Only (3) triangle, then c) $A > \frac{s^2}{\sqrt{3}}$ in high. At an observer at a nce of the observer from the c) $5\sqrt{\frac{2}{3}}$ m <i>O</i> on the level of the foot of n the tower also subtends a c) $a\left(\frac{a^2 - b^2}{a^2 + b^2}\right)$ hen the ratio of the longest c) $1: (2 + \sqrt{3})$	d) None of these a height of 30 m, the flag staff e top of the flag staff is d) None of these f the tower and at a distance 'a' an equal angle at 0, the height d) $a\left(\frac{a^2 + b^2}{a^2 - b^2}\right)$ c side to the perimeter is
a) Only (1) 302. If <i>A</i> is the area and 2 <i>s</i> that a) $A \le \frac{s^2}{3\sqrt{3}}$ 303. A flag staff of 5 m high and the building subter a) $\frac{5\sqrt{3}}{2}$ m 304. A tower of height <i>b</i> such from the foot of the town of the pole is a) $b\left(\frac{a^2 - b^2}{a^2 + b^2}\right)$ 305. If the angles of a triang a) $\sqrt{3}$: $(2 + \sqrt{3})$	b) Only (2) the sum of three sides of a b) $A \le \frac{s^2}{2}$ stands on a building of 25 and equal angles. the distant b) $5\sqrt{\frac{3}{2}}$ m otends an angle at a point ver. If the pole mounted o b) $b\left(\frac{a^2+b^2}{a^2-b^2}\right)$ the are in the ratio 4: 1: 1, the b) 1: 6	ect? c) Only (3) triangle, then c) $A > \frac{s^2}{\sqrt{3}}$ in high. At an observer at a nce of the observer from the c) $5\sqrt{\frac{2}{3}}$ m <i>O</i> on the level of the foot of n the tower also subtends a c) $a\left(\frac{a^2 - b^2}{a^2 + b^2}\right)$ hen the ratio of the longest c) $1: (2 + \sqrt{3})$	d) None of these a height of 30 m, the flag staff e top of the flag staff is d) None of these f the tower and at a distance 'a' an equal angle at 0, the height d) $a\left(\frac{a^2 + b^2}{a^2 - b^2}\right)$ c side to the perimeter is
a) Only (1) 302. If <i>A</i> is the area and 2 <i>s</i> that a) $A \le \frac{s^2}{3\sqrt{3}}$ 303. A flag staff of 5 m high and the building subter a) $\frac{5\sqrt{3}}{2}$ m 304. A tower of height <i>b</i> such from the foot of the town of the pole is a) $b\left(\frac{a^2 - b^2}{a^2 + b^2}\right)$ 305. If the angles of a triang a) $\sqrt{3}$: $(2 + \sqrt{3})$ 306. If two angles of a triang a) 60°	b) Only (2) the sum of three sides of a b) $A \le \frac{s^2}{2}$ stands on a building of 25 and equal angles. the distant b) $5\sqrt{\frac{3}{2}}$ m otends an angle at a point ver. If the pole mounted o b) $b\left(\frac{a^2+b^2}{a^2-b^2}\right)$ le are in the ratio 4: 1: 1, t b) 1: 6 gle are 45° and tan ⁻¹ (2), t b) 75°	ect? c) Only (3) triangle, then c) $A > \frac{s^2}{\sqrt{3}}$ in high. At an observer at a nce of the observer from the c) $5\sqrt{\frac{2}{3}}$ m <i>O</i> on the level of the foot of n the tower also subtends a c) $a\left(\frac{a^2 - b^2}{a^2 + b^2}\right)$ hen the ratio of the longest c) $1: (2 + \sqrt{3})$ then the third angle is c) $\tan^{-1} 3$	d) None of these a height of 30 m, the flag staff e top of the flag staff is d) None of these f the tower and at a distance 'a' an equal angle at 0, the height d) $a\left(\frac{a^2 + b^2}{a^2 - b^2}\right)$ t side to the perimeter is d) 2: 3
a) Only (1) 302. If <i>A</i> is the area and 2 <i>s</i> that a) $A \leq \frac{s^2}{3\sqrt{3}}$ 303. A flag staff of 5 m high and the building subter a) $\frac{5\sqrt{3}}{2}$ m 304. A tower of height <i>b</i> such from the foot of the town of the pole is a) $b\left(\frac{a^2 - b^2}{a^2 + b^2}\right)$ 305. If the angles of a triang a) $\sqrt{3}$: $(2 + \sqrt{3})$ 306. If two angles of a triang a) 60° 307. The angle of elevation of the set of the	b) Only (2) the sum of three sides of a b) $A \le \frac{s^2}{2}$ stands on a building of 25 and equal angles. the distant b) $5\sqrt{\frac{3}{2}}$ m otends an angle at a point ver. If the pole mounted o b) $b\left(\frac{a^2+b^2}{a^2-b^2}\right)$ the are in the ratio 4: 1: 1, th b) 1: 6 gle are 45° and tan ⁻¹ (2), th b) 75° of top of a tower form a point	ect? c) Only (3) triangle, then c) $A > \frac{s^2}{\sqrt{3}}$ in high. At an observer at a nce of the observer from the c) $5\sqrt{\frac{2}{3}}$ m <i>O</i> on the level of the foot of n the tower also subtends a c) $a\left(\frac{a^2 - b^2}{a^2 + b^2}\right)$ hen the ratio of the longest c) $1: (2 + \sqrt{3})$ then the third angle is c) $\tan^{-1} 3$	d) None of these a height of 30 m, the flag staff e top of the flag staff is d) None of these f the tower and at a distance 'a' an equal angle at 0, the height d) $a\left(\frac{a^2 + b^2}{a^2 - b^2}\right)$ t side to the perimeter is d) 2: 3 d) 90° and it is 60° when it is viewed
a) Only (1) 302. If <i>A</i> is the area and 2 <i>s</i> that a) $A \leq \frac{s^2}{3\sqrt{3}}$ 303. A flag staff of 5 m high and the building subter a) $\frac{5\sqrt{3}}{2}$ m 304. A tower of height <i>b</i> such from the foot of the town of the pole is a) $b\left(\frac{a^2 - b^2}{a^2 + b^2}\right)$ 305. If the angles of a triang a) $\sqrt{3}$: $(2 + \sqrt{3})$ 306. If two angles of a triang a) 60° 307. The angle of elevation of from a point located 40	b) Only (2) the sum of three sides of a b) $A \le \frac{s^2}{2}$ stands on a building of 25 and equal angles. the distant b) $5\sqrt{\frac{3}{2}}$ m otends an angle at a point ver. If the pole mounted o b) $b\left(\frac{a^2 + b^2}{a^2 - b^2}\right)$ de are in the ratio 4: 1: 1, t b) 1: 6 gle are 45° and tan ⁻¹ (2), t b) 75° of top of a tower form a point to a set of the point to a set of the point to a set of the point to b.	ect? c) Only (3) triangle, then c) $A > \frac{s^2}{\sqrt{3}}$ in high. At an observer at a nce of the observer from the c) $5\sqrt{\frac{2}{3}}$ m <i>O</i> on the level of the foot of n the tower also subtends a c) $a\left(\frac{a^2 - b^2}{a^2 + b^2}\right)$ hen the ratio of the longest c) $1: (2 + \sqrt{3})$ then the third angle is c) $\tan^{-1} 3$ oint on the ground is 30° and the longest cowards the tower. The height	d) None of these a height of 30 m, the flag staff e top of the flag staff is d) None of these f the tower and at a distance 'a' an equal angle at 0, the height d) $a\left(\frac{a^2 + b^2}{a^2 - b^2}\right)$ t side to the perimeter is d) 2: 3 d) 90° hd it is 60° when it is viewed ght of the tower is
a) Only (1) 302. If <i>A</i> is the area and 2 <i>s</i> that a) $A \leq \frac{s^2}{3\sqrt{3}}$ 303. A flag staff of 5 m high and the building subter a) $\frac{5\sqrt{3}}{2}$ m 304. A tower of height <i>b</i> such from the foot of the town of the pole is a) $b\left(\frac{a^2 - b^2}{a^2 + b^2}\right)$ 305. If the angles of a triang a) $\sqrt{3}$: $(2 + \sqrt{3})$ 306. If two angles of a triang a) 60° 307. The angle of elevation of the set of the	b) Only (2) the sum of three sides of a b) $A \le \frac{s^2}{2}$ stands on a building of 25 and equal angles. the distant b) $5\sqrt{\frac{3}{2}}$ m otends an angle at a point ver. If the pole mounted o b) $b\left(\frac{a^2+b^2}{a^2-b^2}\right)$ the are in the ratio 4: 1: 1, th b) 1: 6 gle are 45° and tan ⁻¹ (2), th b) 75° of top of a tower form a point	ect? c) Only (3) triangle, then c) $A > \frac{s^2}{\sqrt{3}}$ m high. At an observer at a nce of the observer from the c) $5\sqrt{\frac{2}{3}}$ m <i>O</i> on the level of the foot of n the tower also subtends a c) $a\left(\frac{a^2 - b^2}{a^2 + b^2}\right)$ hen the ratio of the longest c) 1: $(2 + \sqrt{3})$ then the third angle is c) $\tan^{-1} 3$ oint on the ground is 30° an	d) None of these a height of 30 m, the flag staff e top of the flag staff is d) None of these f the tower and at a distance 'a' an equal angle at 0, the height d) $a\left(\frac{a^2 + b^2}{a^2 - b^2}\right)$ t side to the perimeter is d) 2: 3 d) 90° and it is 60° when it is viewed
a) Only (1) 302. If <i>A</i> is the area and 2 <i>s</i> that a) $A \leq \frac{s^2}{3\sqrt{3}}$ 303. A flag staff of 5 m high and the building subter a) $\frac{5\sqrt{3}}{2}$ m 304. A tower of height <i>b</i> such from the foot of the town of the pole is a) $b\left(\frac{a^2 - b^2}{a^2 + b^2}\right)$ 305. If the angles of a triang a) $\sqrt{3}$: $(2 + \sqrt{3})$ 306. If two angles of a triang a) 60° 307. The angle of elevation of from a point located 40	b) Only (2) the sum of three sides of a b) $A \le \frac{s^2}{2}$ stands on a building of 25 and equal angles. the distant b) $5\sqrt{\frac{3}{2}}$ m otends an angle at a point ver. If the pole mounted o b) $b\left(\frac{a^2 + b^2}{a^2 - b^2}\right)$ le are in the ratio 4: 1: 1, th b) 1: 6 gle are 45° and tan ⁻¹ (2), th b) 75° of top of a tower form a point the b) $\frac{\sqrt{3}}{20}$ m	ect? c) Only (3) triangle, then c) $A > \frac{s^2}{\sqrt{3}}$ in high. At an observer at a nce of the observer from the c) $5\sqrt{\frac{2}{3}}$ m <i>O</i> on the level of the foot of n the tower also subtends a c) $a\left(\frac{a^2 - b^2}{a^2 + b^2}\right)$ hen the ratio of the longest c) $1: (2 + \sqrt{3})$ then the third angle is c) $\tan^{-1} 3$ oint on the ground is 30° ar towards the tower. The heig c) $-\frac{\sqrt{3}}{20}$ m	d) None of these a height of 30 m, the flag staff e top of the flag staff is d) None of these f the tower and at a distance 'a' an equal angle at 0, the height d) $a\left(\frac{a^2 + b^2}{a^2 - b^2}\right)$ c side to the perimeter is d) 2: 3 d) 90° hd it is 60° when it is viewed ght of the tower is d) $20\sqrt{3}$ m

a)
$$(2, 0)$$
 b) $\left(\frac{3}{2}, 2\right)$ c) $\left(\frac{3}{4}, 3\right)$ d) $\left(3, \frac{3}{4}\right)$
309. In order to remove xy -term from the equation $5x^2 + 4\sqrt{3} xy + 9y^2 - 8 = 0$ the coordinate axes must be rotated through an angle
a) $\pi/6$ b) $\pi/4$ c) $\pi/3$ d) $\pi/2$
310. If *C* is a point on the line segment joining $A(-3, 4)$ and $B(2, 1)$ such that $AC = 2BC$, then the coordinate of *C* is
a) $\left(\frac{1}{3}, 2\right)$ b) $\left(2, \frac{1}{3}\right)$ c) $\left(2, 7\right)$ d) $(7, 2)$
311. The image of the centre of the circle $x^2 + y^2 = a^2$ with respect to the mirror image $x + y = 1$, is
a) $\left(\frac{1}{\sqrt{2}}, \sqrt{2}\right)$ b) $\left(\sqrt{2}, \sqrt{2}\right)$ c) $\left(\sqrt{2}, 2\sqrt{2}\right)$ d) None of these
312. In a ABC , cosee $A(\sin B \cos C + \cos B \sin C)$ is equal to
a) $\frac{G}{a}$ b) $\frac{G}{a}$ c) 1 d) $\frac{G}{ab}$
313. If $A(3, 5), B(-5, -4), C(7, 10)$ are the vertices of a parallelogram, taken in the order, then the coordinates
of the fourth vertex are
a) $(10, 19)$ b) $(15, 19)$ c) $(19, 10)$ d) $(19, 15)$
314. Two pillars of equal height stand on either side of a road-way which is 60 m wide. At a point in the road-
way between the pillars, the elevation of the top of pillars are 60° and 30° . The height of the pillars is
a) $15\sqrt{3}$ m b) $\frac{15}{\sqrt{3}}$ m c) $15m$ d) $20m$
315. From the top of a cliff of height $a, the angle of depression of the foot of a certain tower is found to be
double the angle of elevation of the top of the tower of height h. If 0 be the angle of elevation, then its value
is
a) $\cos^{-1} \frac{2h}{a}$ b) $\sin^{-1} \sqrt{\frac{2h}{a}}$ c) $\sin^{-1} \sqrt{\frac{2}{2-h}}$ d) $\tan^{-1} \sqrt{3 - \frac{2h}{a}}$
316. The points $A(2a, 4a), B(2a, 6a)$ and $C(2a + \sqrt{3}a, 5a), a > 0$ are the vertices of
a) An isosceles triangle
c) An acute angled triangle
c) an acute angled triangle
c) $An acute angled triangle
c) $An acute angled triangle
c) $An acute angled triangle
c) $An (2a, 4a), B(2a, 6a)$ and $C(2a + \sqrt{3}a, 5a), a > 0$ are the vertices of
a) $An isosceles triangle
c) $An (2a, 4b), B(2a, 6a)$ and $C(2a + \sqrt{3}a, 5a), a > 0$ are the vertices of
a) An isosceles triangle
c)$$$$$

 $\sqrt{2}$ $\sqrt{2}$

tower as seen from the top of the second is 30° . If the height of the second tower be 150m, then the height of the first tower is

a) 90 m b) $(150 - 60\sqrt{3})$ m c) $(150 + 20\sqrt{3})$ m d) None of the above 324. In a $\triangle ABC$, if sin $A + \sin B + \sin C$) $(\sin A + \sin B - \sin C) = 3 \sin A \sin B$, then the angle C is equal to a) $\frac{\pi}{2}$ b) $\frac{\pi}{3}$ c) $\frac{\pi}{4}$ d) $\frac{\pi}{6}$

325. From the bottom of a pole of height h the angle of elevation of the top of a tower is α and the pole subtends an angle β at the top of the tower. The height of the tower is

a)
$$\frac{h \tan(\alpha - \beta)}{\tan(\alpha - \beta) - \tan \alpha}$$
 b) $\frac{h \cot(\alpha - \beta)}{\cot(\alpha - \beta) - \cot \alpha}$ c) $\frac{\cot(\alpha - \beta)}{\cot(\alpha - \beta) - \cot \alpha}$ d) None of these

326. A variable line through the point $\left(\frac{1}{5}, \frac{1}{5}\right)$ cuts the coordinate axes in the points

A and B. If the point P divides AB internally in the ratio 3:1, then the locus of P isa) 3y + x = 20xyb) y + 3x = 20xyc) x + y = 20xyd) 3x + 3y = 20xy327. If the points (1, 2) and (3, 4) were to be on the same side of the line 3x - 5y + a = 0, thena) 1 < a < 6b) 7 < a < 11c) a > 11d) a < 7 or a > 11328. The area of the region bounded by the lines y = |x - 2|, x = 1, x = 3 and the x-axis isa) 1b) 2c) 3d) 4

329. In triangle *ABC*, the value of $\frac{\cot\frac{A}{2}\cot\frac{B}{2}-1}{\cot\frac{A}{2}\cot\frac{B}{2}}$ is

a)
$$\frac{a}{a+b+c}$$
 b) $\frac{c}{a+b+c}$ c) $\frac{2a}{a+b+c}$ d) $\frac{2c}{a+b+c}$

330. If the coordinates of the centroid and a vertex of an equilateral triangle are (1, 1) and (1, 2) respectively, then the coordinates of another vertex, are

a)
$$\left(\frac{2-\sqrt{3}}{2}, -\frac{1}{2}\right)$$
 b) $\left(\frac{2+3\sqrt{3}}{2}, -\frac{1}{2}\right)$ c) $\left(\frac{2+\sqrt{3}}{2}, \frac{1}{2}\right)$

331. In any triangle *ABC*, $c^2 \sin 2B + b^2 \sin 2C$ is equal to

a) $\frac{\Delta}{2}$ b) Δ c) 2Δ

332. A house of height 100 m subtends a right angle at the window of an opposite house. If the height of the window be 64 m, then the distance between the two houses isa) 48 mb) 36 mc) 54 md) 72 m

333. The angle of elevation of the top of a vertical pole when observed from each vertex of a regular hexagon is $\frac{\pi}{2}$. If the area of the circle circumscribing the hexagon be A metre², then the area of the hexagon is

a)
$$\frac{3\sqrt{3}A}{8}$$
 m² b) $\frac{\sqrt{3}A}{\pi}$ m² c) $\frac{3\sqrt{3}A}{4\pi}$ m² d) $\frac{3\sqrt{3}A}{2\pi}$ m²

334. The area of the segment of a circle of radius a subtending an angle of 2a at the centre is

a)
$$a^2 \left(\alpha + \frac{1}{2} \sin 2\alpha \right)$$
 b) $\frac{1}{2} a^2 \sin 2\alpha$ c) $a^2 \left(\alpha + \frac{1}{2} \sin 2\alpha \right)$ d) $a^2 \alpha$

335. A man of height 6 ft. observes the top of a tower and the foot of the tower at angles of 45° and 30° of elevation and depression respectively. The height of the tower is

- a) 13.79 mb) 14.59 mc) 14.29 md) None of these336. If the sides of the triangles are 5k, 6k, 5k and radius of incircle is 6, the value of k is equal toa) 4b) 5c) 6d) 7
- 337. At the foot of the mountain the elevation of its summit is 45°, after ascending 100 m towards the mountain up a slope of 30° inclination, the elevation is found to be 60°. The height of the mountain is

a)
$$\frac{\sqrt{3} + 1}{2}$$
 m b) $\frac{\sqrt{3} - 1}{2}$ m c) $\frac{\sqrt{3} + 1}{2\sqrt{3}}$ m d) None of these

338. At each end of a horizontal line of length 2a, the angular elevation of the peak of a vertical tower is θ and that at its middle point it is ϕ . The height of the peak is

d) None of these

d) 4∆

		$a\sin\theta\sin\phi$	
a) $a \sin \theta \sin \phi$		b) $\frac{a\sin\theta\sin\phi}{\sqrt{\sin(\theta+\phi)\sin(\phi-\theta)}}$)
$a\cos\theta\cos\phi$		d) None of the above	
c) $\frac{a\cos\theta\cos\phi}{\sqrt{\cos(\phi+\theta)\cos(\phi-\theta)}}$))		
339. In a triangle <i>ABC</i> , $\frac{\cos A}{a} = \frac{1}{2}$	$\frac{\cos B}{b} = \frac{\cos C}{c}$. if $a = \frac{1}{\sqrt{6}}$, then $\frac{1}{\sqrt{6}}$	the area of the triangle (in a	square unit) is
a) 1/24	b) √3/24	c) $\frac{1}{8}$	d) $\frac{1}{\sqrt{3}}$
	down the wall and rests in so that it slides a further d	ontal. Its foot is pulled awa aclined at angle β with the histance b_2 down the wall an	norizontal. It foot is further
a) $\alpha + \beta + \gamma$ is greater that		b) $\alpha + \beta + \gamma$ is equal to π	
c) $\alpha + \beta + \gamma$ is less than π		d) Nothing can be said ab	pout $\alpha + \beta + \gamma$
341. In a $\triangle ABC$, $\frac{(a+b+c)(b+c-a)}{4b^2}$	$\frac{(c+a-b)(a+b-c)}{c^2}$ equals		
a) $\cos^2 A$	b) $\cos^2 B$	c) $\sin^2 A$	d) $\sin^2 B$
342. The locus of a point <i>P</i> wh			
a) $5x^2 - 5y^2 - 72x + 54$		b) $5x^2 + 5y^2 - 72x + 54$	
c) $5x^2 + 5y^2 + 72x - 54$		d) $5x^2 + 5y^2 - 72x - 54$	y - 225 = 0
343. The incentre of the triang			
a) (7, 9)	b) (9, 7)	c) (-9,7)	d) (-7,9)
344. In $\triangle ABC$, if $\tan \frac{A}{2} \tan \frac{C}{2} = \frac{1}{2}$, then <i>a</i> , <i>b</i> , <i>c</i> are in		
)	b) GP	c) HP	d) None of these
345. In $\triangle ABC$, if $\sin^2 \frac{A}{2}$, $\sin^2 \frac{B}{2}$,	$\sin^2 \frac{c}{2}$ be in HP, then a, b, c	will be in	
a) AP	b) GP	c) HP	d) None of these
346. If O is the origin and $P(2,$	3) and $Q(4,5)$ are two poin	its, then $OP.OQ \cos \angle POQ \approx$	=
a) 8	b) 15	c) 22	d) 23
347. If in a $\triangle ABC$, $2b^2 = a^2 + a^2$	c^2 , then $\frac{\sin 3B}{\sin B}$ is equal to		
a) $\frac{c^2 - a^2}{2ca}$	b) $\frac{c^2-a^2}{ca}$	c) $\left(\frac{c^2-a^2}{ca}\right)^2$	d) $\left(\frac{c^2-a^2}{2ca}\right)^2$
348. A spherical balloon of rad centre of the balloon be β	lius r subtends an angle $lpha$ a , then height of the centre	•	the angle of elevation of the
a) $r \operatorname{cosec} \left(\frac{\alpha}{2}\right) \sin \beta$	b) $r \operatorname{cosec} \alpha \sin\left(\frac{\beta}{2}\right)$	c) $r \sin\left(\frac{\alpha}{2}\right) \csc \beta$	d) $r \sin \alpha \operatorname{cosec} \left(\frac{\beta}{2}\right)$
349. A point $P(2, 4)$ transtates	to the point Q along the pa	arallel to the positive direct	tion of <i>x</i> -axis by 2 units. If <i>O</i>
be the origin, then $\angle OPQ$	is		
a) $\sin^{-1}\sqrt{\frac{399}{400}}$	b) $\cos^{-1}\left(\frac{1}{20}\right)$	c) $-\sin^{-1}\left(\sqrt{\frac{399}{400}}\right)$	d) None of these
350. From the top of a hill <i>h</i> m and β respectively. The he	eters high, the angles of de eight (in meters) of the pill		e bottom of a pillar are $\boldsymbol{\alpha}$
a) $\frac{h(\tan\beta - \tan\alpha)}{2}$	h) $\frac{h(\tan \alpha - \tan \beta)}{1}$	c) $\frac{h(\tan\beta + \tan\alpha)}{\tan\beta}$	d) $\frac{h(\tan\beta + \tan\alpha)}{2}$
351. If $G(1, 4)$ is the centroid of		wo vertices A and B at (4, –	-3) and $(-9, 7)$ respectively,
then area of the triangle A		100	201
a) $\frac{138}{2}$	b) $\frac{319}{2}$	c) $\frac{183}{2}$	d) $\frac{381}{2}$
352. If $a = 2\sqrt{2}, b = 6, A = 45^{\circ}$	Z	۷.	۷.
a) No triangle is possible	,	b) One triangle is possible	e

c) Two triangles are possible		d) Either no triangle or tw	0 1
353. Two poles of equal height stand		-	-
angles of elevation of the topes			
a) 25 m b) 25	5√3 m	c) $\frac{100}{\sqrt{3}}$ m	d) None of these
354. Area (in sq unit) enclosed by y		VO	
a) $\frac{1}{2}$ sq unit b) $\frac{1}{4}$ sq unit		c) 1 sq unit	d) 2 sq units
355. The feet of the perpendicular dr			then P is
a) Circumcentre of ΔABC	rawn nom r to the sie	b) Lies on the circumcircle	
c) Excentre of $\triangle ABC$		d) None of the above	
356. Let <i>O</i> (0, 0), <i>P</i> (3, 4), <i>Q</i> (6, 0) be the	he vertices of the trian	gleOPQ. The point R inside	e the triangle <i>OPQ</i> is such
that the triangles OPR, PQR, OQ	-	-	
a) $\left(\frac{4}{2}, 3\right)$ b) (3)	$(3, \frac{2}{3})$	c) $(3, \frac{4}{2})$	d) $\left(\frac{4}{3}, \frac{2}{3}\right)$
357. A tree is broken by wind, its up	3/		(3.3)
and makes an angle of 45° with			
a) 15 metres b) 20	0 metres	c) $10(1 + \sqrt{2})$ metres	d) $10\left(1+\frac{\sqrt{3}}{\sqrt{3}}\right)$ metres
			$\left(1 + \frac{1}{2}\right)$ metres
358. Without change of axes the orig		-	
$x^{2} + y^{2} - 4x + 6y - 7 = 0$ the			
a) (3, 2) b) (- 359. The horizontal distance betwee		c) $(2, -3)$	d) $(-2, -3)$
tower as seen from the top of th			=
of the first tower is		neight of the second tower	be 100 m, then the height
a) $(150 - 60\sqrt{3})$ m b) 90	0 m	c) $(150 - 20\sqrt{3})$ m	d) None of these
360. Let $a > 0, b > 0$. The sum of th		t (a, b) from the lines $\frac{x}{a} + \frac{y}{b}$	= 1 and $\frac{x}{b} + \frac{y}{a} = 1$ is
		Jah	d) $\sqrt{a^2 + b^2}$
L		$c) \frac{1}{a+b}$	$a_{J}\sqrt{a^{2}+b^{2}}$
361. In $\triangle ABC$, if $\frac{1}{b+c} + \frac{1}{c+a} = \frac{3}{a+b+c}$,	then C is equal to		
a) 90° b) 60		c) 45°	d) 30°
362. If in a $\triangle ABC$, $4 \sin A = 4 \sin B =$		-	
a) $1/3$ b) $1/3$		c) $1/27$	d) 1/18
363. In a $\triangle ABC$, $(b + c)(bc) \cos A + a) a^2 + b^2 + c^2$		$(a + b)(ab) \cos C$ is b) $a^3 + b^3 + c^3$	
a) $a^{2} + b^{2} + c^{2}$ c) $(a + b + c)(a^{2} + b^{2} + c^{2})$		d) $(a + b + c)(ab + bc + c)$	ra)
364. If a flag staff of 6 m high placed	on the top of a tower	, , , , , , , , , , , , , , , , , , , ,	,
angle (in degrees) that the sun	-		along the ground, then the
a) 60° b) 80	-	c) 75°	d) None of these
365. If the angles of a $\triangle ABC$ be in Al			-
a) $c^2 = a^2 + b^2 - ab$ b) b^2		,	,
366. The sides of a triangle are respe			
a) $\frac{\pi}{6}$ b) $\frac{\pi}{3}$		c) $\frac{n}{4}$	d) $\frac{\pi}{5}$
367. The straight lines $x + y = 0, 3x$		1	5
	quilateral	c) Isosceles	d) None of these
368. A tower of x metres height has	flag staff at its top. The	e tower and the flag staff su	ıbtend equal angles at a
point distant y metres from the			()
a) $y\left(\frac{x^2 - y^2}{x^2 + y^2}\right)$ b) x	$\left(\frac{x^2 + y^2}{y^2 - x^2}\right)$	c) $x\left(\frac{x^2 + y^2}{x^2 - y^2}\right)$	d) $x\left(\frac{x^2 - y^2}{x^2 + y^2}\right)$
$(x^2 + y^2)$	$\left(y^2 - x^2\right)$	$(x^2 - y^2)$	$(x^2 + y^2)$

369. If $\begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix} = 0$, then the points $(x_1, y_1), (x_2, y_2)$ and (x_3, y_3) are a) Vertices of an equilateral triangle b) Vertices of a right angled triangle c) Vertices of an isosceles triangle d) None of the above 370. If two angles of \triangle *ABC* are 45° and 60°, then the ratio of the smallest and the greatest sides are a) $(\sqrt{3} - 1): 1$ b) $\sqrt{3}$: $\sqrt{2}$ c) 1: $\sqrt{3}$ d) $\sqrt{3}$: 1 371. An aeroplane flying horizontally 1 km above the ground is observed at an elevation of 60° and after 10 s the elevation is observed to be 30° . The uniform speed of the aeroplane (in km/h) is a) 240 d) None of these b) $240\sqrt{3}$ c) $60\sqrt{3}$ 372. The angle of elevation of the top of a tower from the top and bottom of a building of height 'a' are 30° and 45° respectively. If the tower and the building stand at the same level, the height of the tower is a) $\frac{a(3+\sqrt{3})}{2}$ b) $a(\sqrt{3}+1)$ c) $a\sqrt{3}$ 373. If in a $\triangle ABC$, $2b^2 = a^2 + c^2$, then $\frac{\sin 3B}{\sin B}$ is equal to a) $\frac{a(3+\sqrt{3})}{2}$ d) $a(\sqrt{3} - 1)$ a) $\frac{c^2 - a^2}{2ca}$ b) $\frac{c^2 - a^2}{ca}$ c) $\left(\frac{c^2 - a^2}{ca}\right)^2$ d) $\left(\frac{c^2 - a^2}{2ca}\right)^2$ 374. The angle of elevation of a cloud from a point *h* mt. above is θ° and the angle of depression of its reflection in the lake is ϕ . Then, the height is a) $\frac{h\sin(\phi - \theta)}{\sin(\phi + \theta)}$ b) $\frac{h\sin(\phi + \theta)}{\sin(\phi - \theta)}$ c) $\frac{h\sin(\theta + \phi)}{\sin(\theta - \phi)}$ d) None of these 375. In $a\Delta ABC$, $\angle B = \frac{\pi}{3}$ and $\angle C = \frac{\pi}{4}$. If *D* divides *BC* internally in ratio 1:3, then the value of $\frac{\sin \angle BAD}{\sin \angle CAD}$ is d) None of these c) $\sqrt{\frac{2}{3}}$ b) $\frac{1}{\sqrt{6}}$ a) $\frac{1}{\sqrt{2}}$ d) $\frac{1}{3}$ 376. Let equation of the side *BC* of a \triangle *ABC* be x + y + 2 = 0. If coordinates of its orthocentre and circumcentre are (1, 1) and (2, 0) respectively, then radius of the circumcircle of $\triangle ABC$ is a) 3 d) None of these b) $\sqrt{10}$ c) $2\sqrt{2}$ 377. In a $\triangle ABC$, if b + c = 2a and $\angle A = 60^\circ$, then $\triangle ABC$ is a) Equilateral b) Right angled c) Isosceles d) Scalene 378. The orthocenter of the triangle with vertices (-2, -6), (-2, 4) and (1, 3) is a) (3, 1) b) (1, 1/3) c) (1.3) d) None of these 379. If a > 0, b > 0 the maximum area of the triangle formed by the points $O(0, 0), A(a \cos \theta, b \sin \theta)$ and $B(a\cos\theta, -b\sin\theta)$ is (in sq unit) a) $\frac{ab}{2}$ when $\theta = \frac{\pi}{4}$ b) $\frac{3ab}{2}$ when $\theta = \frac{\pi}{4}$ c) $\frac{ab}{2}$ when $\theta = -\frac{\pi}{4}$ d) $a^2 b^2$ 380. If the coordinates of orthocentre O' and centroid G of a \triangle ABC are (0,1) and (2,3) respectively, then the coordinates of the circumcentre are a) (3, 2) c) (4,3) b) (1, 0)d) (3, 4) 381. The point *P* is equidistant from A(1, 3), B(-3, 5) and C(5, -1), then *PA* is equal to a) 5 b) $5\sqrt{5}$ c) 25 d) $5\sqrt{10}$ 382. The coordinates of the incentre of the triangle having sides 3x - 4y = 0, 5x + 12y = 0and y - 15 = 0 are a) -1,8d) None of these b) 1, -8 c) 2, 6 383. The mid point of the line joining the points (-10, 8) and (-6, 12) divides the line joining the points (4, -2)and (-2, 4) in the ratio b) 1:2 externally a) 1:2 internally c) 2:1 internally d) 2: 1 externally 384. The centre of circle inscribed in square formed by the lines $x^2 - 8x + 12 = 0$ and $y^2 - 14y + 45 = 0$, is

a) (4, 7)	b) (7, 4)	c) (9, 4)	d) (4, 9)
a) (4, 7) 385. If A, A_1, A_2, A_3 be the are a) $\frac{1}{\sqrt{A}}$	eas of the incircle and excirc	les, then $\frac{1}{\sqrt{A_1}} + \frac{1}{\sqrt{A_2}} + \frac{1}{\sqrt{A_3}}$ is	equal to
a) $\frac{1}{$	$b) \frac{2}{}$	3	$d) - \frac{4}{4}$
\sqrt{A}	\sqrt{A}	\sqrt{A}	\sqrt{A}
386. If $x = X \cos \theta - Y \sin \theta$,			
a) $\theta = \frac{\pi}{6}$	т	c) $A = -6$	d) $B = 1$
387. If $P(1, 0), Q = (-1, 0)$ and relation $SQ^2 + SR^2 = 2S$		n points, then the locus of a	point S satisfying the
a) A straight line paralle		b) A circle through origin	n
c) A circle with centre a		d) A straight line paralle	
388. The triangle formed by 2			
a) Isosceles	b) Equilateral	c) Right angled	d) None of these
389. The angle of elevation o		-	e point is to be 60°, then the
	e pillar is to be increased by		e point is to be oo , then the
a) $50\sqrt{2}$ m	b) 100 m	c) $100(\sqrt{3}-1)$ m	d) $100(\sqrt{3}+1)$ m
390. If <i>O</i> (0,0), <i>A</i> (4,0) and <i>B</i> (0		angle OAB, then the coordi	nates of the excentre
opposite to the vertex <i>O</i>			
a) (12, 12) 391. A tower subtends an an	b) $(6, 6)$	c) (3,3)	d) None of these
	s just above A is β . The heig	-	
a) $l \tan \beta \cot \alpha$	b) <i>l</i> tan $\alpha \cot \beta$	c) $l \tan \alpha \tan \beta$	d) <i>l</i> cot α cot β
392. Observe the following st			
I. In $\triangle ABC \ b \cos^2 \frac{C}{2} + c$	$\cos^2\frac{B}{2} = s$		
II. $\triangle ABC$, $\cot \frac{A}{2} = \frac{b+c}{2}$	$\Rightarrow B = 90^{\circ}$		
Which of the following i			
a) Both I and II are true			
b) I is true, II is false			
c) I is false, II is false			
d) Both I and II are false 393. If <i>A</i> and <i>B</i> are two point		river and C. D are two othe	r points on the other bank of
_	to <i>B</i> is same as that from <i>C</i>		-
then CD is equal to			
a) $\frac{a \sin \beta \sin \gamma}{1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +$	b) $\frac{a \sin \alpha \sin \gamma}{\sin \beta \sin (\alpha + \beta + \gamma)}$	c) $\frac{a \sin \alpha \sin \beta}{1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +$	d) None of these
$\beta \sin \alpha \sin(\alpha + \beta + \gamma)$ 394. <i>ABCD</i> is a square plot. T			
from <i>B</i> is θ , then tan θ is		top of a pole standing at D	
		c) √3/2	d) $\sqrt{2/3}$
a) $\sqrt{6}$ 395. In a $\triangle ABC$, if $(\sqrt{3} - 1)a$ a) 60°	$= 2b, A = 3B$, then $\angle C$ is		·
a) 60°	b) 120°	c) 30°	d) 45°
396. The angle of elevation o towards the object, the a	f an object from a point on t angle of elevation is found to	-	
a) $d \tan \alpha$	b) <i>d</i> cot β	c) $\frac{d}{\cot \alpha + \cot \beta}$	
-			-
397. In a \triangle <i>PQR</i> as shown in figure given that $x: y: z = 2: 3: 6$, then the value of \angle <i>QPR</i> is			

π	π	π	d) None of these
a) 6	b) $\frac{\pi}{4}$	c) $\frac{\pi}{3}$	d) None of these
398. If by shifting the origin	at (1, 1) the coordinates of	a point <i>P</i> become $(\cos \theta, \cos \theta)$	s ϕ), then the original
coordinates of <i>P</i> were			
a) $(2\cos^2\theta/2, 2\cos^2\phi)$			
b) $(2\sin^2\theta/2, 2\sin^2\phi)$. ,		
c) $(2 \cos \theta/2, 2 \cos \phi/2)$	•		
d) $(2\sin\theta/2, 2\sin\phi/2)$	·		
399. In a \triangle ABC, if $r_1 = 2r_2 = a$			
a) $\frac{a}{b} = \frac{4}{5}$	b) $\frac{a}{b} = \frac{3}{4}$	c) $a + b - 2c = 0$	d) $2a = b + c$
400. A ADC 10 A	$\sin\frac{A}{2}$	$\sin\frac{C}{2}$	
In a $\triangle ABC$, if a, b, c are	e in AP, then the value of $\frac{\sin\frac{A}{2}}{\sin\frac{A}{2}}$	$\frac{1}{\frac{B}{2}}$ is	
a) 1	b) $\frac{1}{2}$	c) 2	d) –1
	Z		-
	red from the top and bottom	of a building <i>h</i> is at angles	of elevation <i>p</i> and <i>q</i>
respectively. The heigh		h ton n	
a) $\frac{n \cot q}{\cot q - \cot n}$	b) $\frac{h \cot p}{\cot p - \cot q}$	c) $\frac{n \tan p}{\tan n - \tan q}$	d) None of these
402. In a triangle, if $b = 20$,	$c = 21$ and $\sin A = \frac{3}{2}$ then c	an p = tan q	
			J) 1F
a) 12 402 In A ABC $a = 2 b = 4$	b) 13 and $\angle C = 60^\circ$, then $\angle A$ and	c) 14	d) 15
a) 90° , 30°	b) 60°, 60°	c) 30°, 90°	d) 60°, 45°
,	ngle $R = \sqrt{3}$ cm, then the ler	,	
a) 1 cm	b) 2 cm	c) 3 cm	d) None of these
405. In a $\triangle ABC$, $\frac{b-c\cos A}{c-b\cos A}$ is e	-	-)	.)
		cos B	d) None of these
a) $\frac{\sin B}{\sin C}$	b) $\frac{\cos \theta}{\cos B}$	c) $\frac{\cos B}{\cos C}$	u) None of these
406. In a $\triangle ABC$, if $2s = a + a$		$\frac{s(s-a)}{c} - \frac{(s-b)(s-c)}{c}$ is equal t	0
a) $\sin A$	b) cos A	bc bc bc bc bc bc bc	d) None of these
2	gle is (2, 7) and two of its ve	-	-
a) (0, 0)	b) (4, 7)	c) (7, 4)	d) (7, 7)
	ubtends an angle of 60° at th	he top of a tower h metres l	nigh standing in the centre of
the square. If <i>a</i> is the le	ength of each side of the squ	are, then	
	b) 2 $h^2 = a^2$,	d) 2 $h^2 = 3 a^2$
409. In $\triangle ABC$, $(a - b)^2 \cos^2 b$	$\frac{2}{2}\frac{c}{2} + (a+b)^2 \sin^2 \frac{c}{2}$ is equal	to	
a) <i>a</i> ²	b) <i>b</i> ²	c) <i>c</i> ²	d) None of these
410. If the area of a $\triangle ABC$ is	s given by $\Delta = a^2 - (b - c)^2$, then tan $\left(\frac{A}{A}\right)$ is equal to	
	b) 0		1
a) —1	6,0	c) $\frac{1}{4}$	d) $\frac{1}{2}$
411. If $O'(4, 8/3)$ is the orth	ocentre of the triangle ABC	the coordinates of whose v	vertices are $O(0,0), A(8,0)$
and $B(4,6)$, then the co	oordinates of the orthocentro	e of $\Delta O'AB$ are	
a) (0,0)	b) (8,0)	c) (4, 6)	d) None of these
412. In a $\triangle ABC$, if $b^2 + c^2 =$	$= 3a^2$, then $\cot B + \cot C - \cot C$	cot A is equal to	

a) 1 b)
$$\frac{ab}{4\Delta}$$
 c) 0 d) $\frac{ac}{4\Delta}$

413. From the top of a tower, the angle of depression of a point on the ground is 60°. If the distance of this point from the tower is $\frac{1}{\sqrt{3}+1}m$, then the height of the tower is

a)
$$\frac{4\sqrt{3}}{2}$$
 m b) $\frac{\sqrt{3} + 3}{2}$ m c) $\frac{3 - \sqrt{3}}{2}$ m d) $\frac{\sqrt{3}}{2}$ m
414. If in $\Delta ABC, a = 6$ cm, $b = 8$ cm, $c = 10$ cm, then the value of sin 2A is
a) $6/25$ b) $8/25$ c) $10/25$ d) $24/25$
415. In $\Delta ABC_{\frac{1+cos(A-F)\cos B}{1+cos(A-F)\cos B}}$ is equal to
a) $\frac{a - b}{a + b}$ b) $\frac{a + b}{a + c}$ c) $\frac{a^2 - b^2}{a^2 - c^2}$ d) $\frac{a^2 + b^2}{a^2 + c^2}$
416. The base of a cliff is circular. From the extremities of a diameter of the base angles of elevation of the top of
the cliff are 30°and 60°. If the height of the cliff be 500 m, then the diameter of the base of the cliff is
a) $\frac{2000}{\sqrt{3}}$ m b) $\frac{1000}{\sqrt{3}}$ m c) $\frac{2000}{\sqrt{2}}$ m d) $1000\sqrt{3}$ m
417. The sides *BC*, *CA* and *AB* of a triangle *ABC* are of lengths a, b and c respectively. If *D* is the mid point of *BC*
and *AD* is porpendicular to *A*, then the value of cos *A* cos *C* is
a) $\frac{3(a^2 - c^2)}{2ac}$ b) $\frac{2(a^2 - c^2)}{3bc}$ c) $\frac{(a^2 - c^2)}{3ac}$ d) $\frac{2(c^2 - a^2)}{3ac}$
418. The mid points of the sides of a triangle are *D*(6, 1), *E*(3, 5) and *F*(-1, -2), then the vertex opposite to *D* is
a) (-4, 2) b) (-4, 5) c) (2, 5) d) (10, 8)
419. The locus of a points which moves such that the sum of the squares of its distance from three vertices of
the triangle is constant is a/an
a) Circle b) Straight line c) Ellipse d) None of the above
420. The angles *A*, *B* and *C* of a *A ABC* are in *AP*. If $b: c = \sqrt{3}, \sqrt{3}$, then the angle *A* is
a) 30° b) 15° c) $(20^\circ - \sqrt{5}, \sqrt{3}$ d) $\sqrt{2}, -\sqrt{2}$
421. If the three points (0, 1), (0, -1) and (x, 0) are vertices of a requilateral triangle, then the values of x are
a) $\sqrt{3}, \sqrt{2}$ b) $\sqrt{3}, -\sqrt{3}$ c) $-\sqrt{5}, \sqrt{3}$ d) $\sqrt{2}, -\sqrt{2}$
423. From an aeroplane flying, vertically above a horizontal road, the angles of depression of two consecutive
stones on the same side of the aeroplane are observed to b 30° and 60° respectively. The height at which
the aeroplane is fighing in m, is
a) $\frac{4}{\sqrt{3}}$ b) $\frac{\sqrt{3}}{2}$ c) $\frac{2}{\sqrt{3}}$ d) $\frac{2}{\sqrt{3}}$ d) $\frac{2}{\sqrt{3}}$
424.

a)
$$\frac{3\sqrt{15}}{4}$$
 cm² b) $\frac{15\sqrt{3}}{4}$ cm² c) $\frac{15}{4}$ cm² d) $\frac{3\sqrt{3}}{4}$ cm²

427. If in a $\triangle ABC$, $\frac{b+c}{11} = \frac{c+a}{12} = \frac{a+b}{13}$, then $\cos A$ is equal to			
	b) $\frac{5}{7}$		d) None of these
428. If two vertices of an equi	ilateral triangle are (0, 0) a	nd $(3, 3\sqrt{3})$, then the third	vertex lies at
a) (3, -3)	b) (-3, 3)		d) None of these
429. In an isosceles right angl	ed $\triangle ABC, \angle B = 90^\circ, AD$ is	the median, then $\frac{\sin \angle BAD}{2}$ is	
1		c) 1	d) None of these
a) $\frac{1}{\sqrt{2}}$	b) $\sqrt{2}$	0) 1	
430. If $P(1, 2), Q(4, 6), R(5, 7)$	and <i>S</i> (<i>a</i> , <i>b</i>) are the vertice	s of a parallelogram PQRS,	then
	b) <i>a</i> = <i>b</i> , <i>b</i> = 4		d) <i>a</i> = 3, <i>b</i> = 5
431. Angles of a triangle are in	n the ratio4: 1: 1. The ratio	between its greatest side a	nd perimeter is
a) $\frac{3}{2+\sqrt{3}}$	b) $\frac{1}{2 + \sqrt{3}}$	$\sqrt{3}$	d) $\frac{2}{2+\sqrt{3}}$
			21,45
432. From the top of a cliff h is			
	plementary. If the angle of a	-	0
a) $h \sin \theta$ 433. The radius of the incircle	b) $h \cos \theta$	c) $h \sin 2\theta$ 18, 24 and 20 cm is	d) <i>h</i> cos 2θ
a) 2 cm	b) 4 cm	c) 6 cm	d) 9 cm
434. The points (1, 3) and (5,	-	-	,
y = 2x + c, then the value			
a) 4	b) -4	c) 2	d) –2
435. If the vertices of a triang	le at $O(0,0), A(a, 0)$ and $B($	0, <i>a</i>). Then, the distance be	tween its circumcentre and
orthocentre is			
a) $\frac{a}{2}$	b) $\frac{a}{\sqrt{2}}$	c) $\sqrt{2} a$	d) $\frac{a}{4}$
436. The straight lines $x = y$,	V Z		4
a) Isosceles $x = y$,	b) Equilateral	c) Right angled	d) None of these
437. The vertices of a triangle	· ·	, , ,	
a) 2	b) $\sqrt{2}$	c) 1	d) 2√2
438. In a $\triangle ABC$, $a = 5, b = 7$		ther of possible triangles a	
a) 1	b) 0	c) 2	d) Infinite
439. The points $(k, 2 - 2k)$, (-	-k + 1.2k). $(-4 - k.6 - 2)$	2	
	b) 1, 0	c) $\frac{1}{2}$, 1	d) 1, 2
a) 2, 3	-	Z	<i>, , , , , , , , , ,</i>
440. If the vertices P , Q , R of a	ΔPQR are rational points,	, which of the following poi	nts of the ΔPQR is (are)
always rational points?			
(A rational point is a poi a) Centroid	nt both of whose coordinat b) Incentre	c) Circumcentre	d) Orthocontro
441. Which of the following p	,		d) Orthocentre
(R = circumradius)?		acty actermine acute angle	
	b) <i>a, b, c</i>	c) a , sin B , R	d) <i>a</i> , sin <i>A</i> , <i>R</i>
442. If a $\triangle ABC$, $2ca \sin \frac{A-B+C}{2}$			
2	b) $c^2 + a^2 - b^2$	c) $h^2 - c^2 - a^2$	d) $c^2 - a^2 - b^2$
443. In any $\triangle ABC$ under usua	,		aje a b
			$c^{2}-b^{2}$
a) $b^2 - c^2$	b) $c^2 - b^2$	c) $\frac{b^2 - c^2}{2}$	d) $\frac{c^2 - b^2}{2}$
444. In $\triangle ABC$, G is he centroid			
a) $\left(\frac{9}{2}, 4\right)$	b) $\left(\frac{19}{2}, 6\right)$	c) $\left(\frac{11}{2}, \frac{11}{2}\right)$	d) $\left(8, \frac{13}{2}\right)$
	S (2 ')	$(2^2 2)$	

445. The transformed equat of 45°, is	tion of $3x^2 + 3y^2 + 2xy = 2$, when the coordinate axes	are rotated through an angle
	b) $2x^2 + y^2 = 1$	c) $x^2 \pm y^2 = 1$	d) $r^2 \pm 3v^2 = 1$
446. The equation of the loc	· ·	-	
$(b_1 - b_2)y + c = 0$, the			2, 22) 15 (u1 u2) 11 1
a) $\sqrt{(a_1^2 + b_1^2 + c_1^2)}$		b) $a_1^2 - b_1^2 - c_1^2$	
c) $\frac{1}{2}(a_2^2 + b_2^2 - a_1^2 - b_1^2)$	2)	d) None of the above	
447. ABC is a right angled tr area of $\triangle ABC$ is	iangle with $\angle B = 90^\circ$, $a = 6$	cm. If the radius of the circ	umcircle is 5 cm. Then the
a) 25 cm ²	b) 30 cm ²	c) 36 cm ²	d) 24 cm ²
448. The transformed equat	$x^{2} + 6xy + 8y^{2} = 10$	when the axes are rotated	through an angle $\frac{\pi}{2}$ is
a) $15x^2 - 14xy + 3y^2$		b) $15x^2 + 14xy - 3y^2 =$	т
c) $15x^2 + 14xy + 3y^2$		d) $15x^2 - 14xy - 3y^2 =$	
449. The angle of elevation		,	
_	2α and 3α respectively. If A	_	
a) α tan α	b) $a \sin \alpha$	c) a sin 2α	d) a sin 3α
450. The ratio in which the :		•	
a) 2 : 1	b) 1 : 2	c) 3 : 4	d) None of these
451. <i>AB</i> is vertical tower. The	,	,	
	the ground. If $AP = n AB$, th	=	1
	b) $n = (2n^2 - 1) \tan \alpha$		d) $n = (2n^2 + 1) \tan \alpha$
452. If the points $(-2, -5)$,			
a) $-\frac{5}{2}$	b) $\frac{5}{2}$	c) $\frac{3}{2}$, ¹
a) $-\frac{1}{2}$	$\frac{10}{2}$	$\frac{c}{2}$	d) $\frac{1}{2}$
453. If in a $\triangle ABC$, cos $A + 2$	$\cos B + \cos C = 2$, then a, b, c	<i>c</i> are in	
a) AP	b) GP	c) HP	d) None of these
454. In a \triangle <i>ABC</i> , $a = 5$, $a = -$	4 and $\cos(A + B) = \frac{31}{22}$. In this	is triangle, <i>c</i> is equal to	
a) √6	b) 36	c) 6	d) None of these
455. In a triangle $r_1 > r_2 > r_3$,	,	,
a) $a > b > c$		c) $a > b$ and $b < c$	d) $a < b$ and $b > c$
456. In a \triangle <i>ABC</i> , if $a = 2x$, <i>b</i>	,	,	
	b) $xy\sqrt{3}$ sq unit		d) 2 <i>xy</i> sq unit
457. If the points (a, b) , (a', b)			
	b) $ab = a'b'$		d) $a^2 + b^2 = 1$
,	,	,	h <i>AB</i> subtends a right angle,
is			
_	b) $x^2 - y^2 = a^2$	c) $x^2 + y^2 + a^2 = 0$	d) $x^2 + y^2 = a^2$
459. If the coordinates of tw	•	•	· ·
third vertex are			
a) (√3, 5)	b) (2√3,5)		d) (2, 5)
460. If point (x, y) is equidis			
	b) $ax - by = 0$		d) $bx - ay = 0$
461. If A, B, C, D are the ang			-
11	b) $\prod \cot A$		d) $\sum \cot^2 A$
462. If the angles of a triang			
a) 2: $\sqrt{6}$: $\sqrt{3} + 1$	b) $\sqrt{2}:\sqrt{6}:\sqrt{3}+1$	c) $2:\sqrt{3}:\sqrt{3}+1$	d) 3: 4: 5

	and $B(3, 1)$ is rotated about n the new position. If B goes		
a) $\left(2 + \frac{1}{\sqrt{2}}, \frac{\sqrt{3}}{\sqrt{2}}\right)$	b) $\left(2-\frac{1}{\sqrt{2}},\frac{\sqrt{3}}{\sqrt{2}}\right)$	c) $\left(2+\frac{1}{\sqrt{2}},\frac{\sqrt{3}}{2}\right)$	d) None of these
	th vertices $A(-1, 4)$, $B(6, -2)$ ectively in the ratio $3:1$ inte		are the points which divide each of ΔDEF is
a) (3, 6)	b) (1, 2)	c) (4, 8)	d) (-3, 6)
			e angle of elevation of the he two house be 6 m, then the
a) 8√ <u>3</u> m	b) 6√3 m	c) 4√3 m	d) None of these
466. The orthocentre of t	he triangle whose vertices ar	e	
$\{at_1 t_2, a(t_1 + t_2)\}, \{at_1 t_2, a(t_1 + t_2), a(t_1 + t_2)\}, \{at_1 t_2, a(t_1 + t_2), a(t_1 + t_2)\}, a(t_1 t_2, a(t_1 + t_2))\}, \{at_1 t_2, a(t_1 + t_2), a(t_1 + t_2)\}, a(t_1 t_2, a(t_1 + t_2))\}, a(t_1 t_2, a(t_1 + t_2))\}, a(t_1 t_2, a(t_1 + t_2))\}$	$at_2 t_3, a(t_2 + t_3)\}, \{at_3 t_1, a(t_2 + t_3)\}$	$t_3 + t_1$) is	
a) $\{-a, a(t_1 + t_2 + t_3)\}$	$_{3} + t_{1} + t_{2}t_{3})\}$	b) $\{-a, a(t_1 + t_2 + t_3)\}$	$_{3}+t_{1}t_{2}t_{3})\}$
c) $\{-a, a(t_1 - t_2 - t_3)\}$	$_{3}-t_{1}t_{2}t_{3})\}$	d) $\{-a, a(t_1 + t_2 - t_3)\}$	$_{3}-t_{1}t_{2}t_{3})\}$
467. A flag staff is upon th	ne top of a building. If at a dis	tance of 40 m from the ba	se of building the angles of
elevation of the tope	s of the flag staff and building	g are 60° and 30° respect	ively, then the height of the flag
staff is			
a) 46.19 m	b) 50 m	c) 25 m	d) None of these
468. A person observes t	ne angle of elevation of a buil	ding as 30°. The persons ا	proceeds towards the building
with a speed of $25(\sqrt{10})$	$\sqrt{3} - 1$) m/h. After two hours	, he observes the angle of	elevation as 45°.The height of
the building (in met			C C
	b) $50(\sqrt{3}+1)$	c) 50	d) 100
	$ \tan \frac{A}{2} \tan \left(\frac{B-C}{2} \right) $ is equal to		
a) <i>a</i>	b) <i>b</i>	c) <i>c</i>	d) 0
$3\sin x - 4\sin^3 x - k$	s greater than angle <i>B</i> . If the $k = 0$, $0 < k < 1$, then the matrix	easure of angle <i>C</i> is	
a) $\frac{\pi}{3}$	b) $\frac{\pi}{2}$	c) $\frac{2\pi}{3}$	d) $\frac{5\pi}{6}$
5	L	5	hat $b = 2b_1$. Then, sin A is equal
$471.111 a \Delta ABC, u, c, A and to$	e given and b_1, b_2 are two va	lues of third side <i>b</i> such th	$at b = 2b_1$. Then, sin A is equal
a) $\sqrt{\frac{9a^2-c^2}{8a^2}}$	b) $\sqrt{\frac{9a^2-c^2}{8c^2}}$	c) $\sqrt{\frac{9a^2+c^2}{8a^2}}$	d) None of these
472. The incentre of a tria	angle with vertices $(7, 1)$, (-1)	1, 5) and $(3 + 2\sqrt{3}, 3 + 4\sqrt{3})$	$\sqrt{3}$) is
a) $\left(3 + \frac{2}{\sqrt{3}}, 3 + \frac{4}{\sqrt{3}}\right)$	b) $\left(1 + \frac{2}{3\sqrt{3}}, 1 + \frac{4}{3\sqrt{3}}\right)$		d) None of the above
473. In any triangle <i>ABC</i> ,	$\frac{\tan\frac{A}{2} - \tan\frac{B}{2}}{\tan\frac{A}{2} + \tan\frac{B}{2}}$ is equal to		
a) $\frac{a-b}{a+b}$	a-b	c) $\frac{a-b}{a+b+c}$	d) $\frac{c}{a+b}$
u + b	-		a i b
474. If orthocentre and ci centroid are	rcumcentre of triangle are re	espectively (1, 1) and (3, 2	?), then the coordinates of its
a) $\left(\frac{7}{3}, \frac{5}{3}\right)$	b) $\left(\frac{5}{3}, \frac{7}{3}\right)$	c) (7, 5)	d) None of these
475. In \triangle <i>ABC</i> , <i>AD</i> is med	ian and $\angle A = 60^\circ$, then $4 AD$	2 is equal to	

B D C			
a) $b^2 + c^2 - bc$	b) $2b^2 + c^2 - 2bc$	c) $b^2 + c^2 + 2bc$	d) None of these
476. The circumcentre of the	e triangle formed by the line	tes $y = x$, $y = 2x$ and $y = 3x$	x + 4 is
a) (6, 8)	b) (6, -8)	c) (3, 4)	d) (-3, -4)
477. If in a $\triangle ABC$, $\cot \frac{A}{2} = \frac{b+a}{a}$			
a) Isosceles		c) Right angled	d) None of these
478. Area of the triangle form	ned by the lines $3x^2 - 4xy$	$+y^2 = 0, 2x - y = 6$ is	
a) 16 sq units	b) 25 sq units	-)	·) · · · · · ·
479. The shadow of a tower	is found to be 60 m shorter	when the sun's altitude cha	anges from 30° to 60°. The
height of the tower from	n the ground is approximate	ely equal to	
a) 62 m	b) 301 m	c) 101 m	d) 52 m
480. Let $0 < \alpha < \frac{\pi}{2}$ be a fixed	d angle. If $P = (\cos \theta, \sin \theta)$	and $Q = \{\cos(\alpha - \theta), \sin(\alpha - \theta)\}$	$(\alpha - \theta)$. Then <i>Q</i> is obtained
from P by			
•	round the origin through	b) $\frac{\text{Anti-clockwise rotation}}{\text{angle }\alpha}$	on around origin through
8	through the origin with slo		through the origin with slope
		2	
481. The equation of the bas triangle is	e of an equilateral triangle i	x + y = 2 and the vertex	Is $(2, -1)$. The area of
a) 2√3	b) $\frac{\sqrt{3}}{6}$	c) $\frac{1}{\sqrt{3}}$	d) $\frac{2}{\sqrt{3}}$
482. If (0, 1) is the orthocent	tre and (2, 3) is the centroid	l of a triangle. Then, its circ	cumcentre is
a) (3, 2)	b) (1, 0)	c) (4, 3)	d) (3, 4)
-	=		points <i>A</i> , <i>B</i> , <i>C</i> on the ground
	-		hen the height of the tower is
a) $R \sin \alpha$	b) $R \cos \alpha$	c) $R \cot \alpha$	d) $R \tan \alpha$
484. The circumcentre of a tr	b) $(0, -1)$		
a) $(-1, -1)$,, ,	, , ,	
485. If the distance of any po of <i>P</i> is			
a) $ax + by = 0$	b) $x - y = 0$	c) $x + y = 0$	d) $bx - ay = 0$
486. In an equilateral triangl		ncentre is	
a) 1 cm	b) √3 cm	c) 2 cm	d) 2√3 cm
487. Let <i>ABC</i> be a triangle, to third vertex is	wo of whose vertices are (1	5, 0) and (0, 10). If the orth	nocenter is (6, 9), then the
a) (15, 10)	b) (10, -15)	c) (0,0)	d) None of these
	height of 300 metres above	e the ground passes vertica	illy above another plane at an
	of elevation of the two plan t of the lower plane from the		the ground are 60° and 45°
a) $100\sqrt{3}$	b) $\frac{100}{\sqrt{3}}$	c) 50	d) $150(\sqrt{3}+1)$
489. If the sides of a triangle	15	is equal to	
a) 2:7	b) 7:2	c) 3:7	d) 7:3
490. In a \triangle ABC, $(b + c - a)$,	0, 017	aj 110
(v + c - a)			

a) $\frac{2\Delta}{c}$	b) $\frac{\Delta}{s}$	c) $\frac{\Delta s}{hc}$	d) $\frac{s}{a}R$
<i>s</i> 491. The sum of the radii of i	3		u
	b) $\frac{a}{2} \cot\left(\frac{\pi}{2n}\right)$		d) $\frac{a}{4} \cot\left(\frac{\pi}{2n}\right)$
492. If $\Delta = a^2 - (b - c)^2$, where $\Delta = a^2 - (b - c)^2$	here Δ is the area of ΔABC ,	then tan A is equal to	1 210
a) $\frac{15}{16}$	b) $\frac{8}{17}$	c) $\frac{8}{15}$	d) $\frac{1}{2}$
493. The median <i>BE</i> and <i>AD</i>	of a triangle with vertices A	I(0, b), B(0, 0), C(a, 0) are	perpendicular to each other,
if	~		
a) $a = \frac{b}{2}$	b) $b = \frac{a}{2}$	c) <i>ab</i> = 1	d) $a = \pm \sqrt{2}b$
494. If <i>a</i> , <i>b</i> , <i>c</i> be the sides of <i>a</i>		quation $a(b-c)x^2 + b(c-c)x^2 + b(c-c)x^$	(-a)x + c(a - b) = 0 are
equal, then $\sin^2\left(\frac{A}{2}\right)$, sin	$\frac{a^2}{2}\left(\frac{B}{2}\right)$, $\sin^2\left(\frac{C}{2}\right)$ are in		
a) AP	b) GP	c) HP	d) AGP
495. In $\triangle ABC$, $\frac{1+\cos(A-B)\cos(A-B)}{1+\cos(A-C)\cos(B-B)}$	$\frac{2}{3}$ is equal to		
a) $\frac{a-b}{a-c}$	b) $\frac{a+b}{a+b}$	c) $\frac{a^2 - b^2}{a^2 - c^2}$	d) $\frac{a^2 + b^2}{a^2 + c^2}$
u c	u i e	u l	$a^{2} + c^{2}$
496. In a \triangle <i>ABC</i> , <i>a</i> = 13 cm, <i>l</i> 144			25
a) $\frac{144}{13}$	b) $\frac{65}{12}$	c) $\frac{60}{13}$	d) $\frac{25}{13}$
497. If in a $\triangle ABC$, $r_1 < r_2 < r_1$;, then		
a) $a < b < c$	b) $a > b > c$	c) <i>b</i> < <i>a</i> < <i>c</i>	d) <i>a</i> < <i>c</i> < <i>b</i>
498. A ladder rests against a			
horizontal. The correct		a distance y down the wall	making an angle β with the
0	b) $y = x \tan\left(\frac{\alpha + \beta}{2}\right)$	c) $x = y \tan(\alpha + \beta)$	d) $y = r \tan(\alpha + \beta)$
499. Let $A(h, k)$, $B(1, 1)$ and area of the triangle is 1	then the set of values which		c as its hypotenuse. If the
	b) {0, 2}		d) $\{-3, -2\}$
500. A variable line $\frac{x}{a} + \frac{y}{b} = 2$			
<i>a b</i> intercepted between th			•
		c) $x + y = 1$	d) $x + y = 2$
501. If in a $\triangle ABC$, tan $\left(\frac{A}{2}\right)$, ta	$\ln\left(\frac{B}{2}\right)$, $\tan\left(\frac{C}{2}\right)$ are in HP, the	en the sides <i>a, b, c</i> are in	
a) AP	b) GP	c) HP	d) None of these
502. The shadow of tower st			
y metres long when the	altitude is 60°. If the height	t of the tower is $45.\frac{\sqrt{3}}{2}$ m, th	en $x - y$ is
a) 45 m	b) 45√ <u>3</u> m	c) $\frac{45}{\sqrt{3}}$ m	
503. All points lying inside th	ne triangle formed by the po	bints $(1, 3)$, $(5, 0)$ and $(-1, -1)$	2) satisfy
a) $3x + 2y \ge 0$	b) $2x + y - 13 < 0$	c) $2x - 3y - 12 \le 0$	d) All of these
504. If the area of the triangl			
a) -2	b) -4	c) -6	d) 8
505. If the centroid of the trian $y = 2x$, then θ is equal to		(U, U), (COS H, SIN H) and (SII	$(10, -\cos \theta)$ lies on the line
y = 2x, then 0 is equal (a) $\tan^{-1} 2$	b) $\tan^{-1} 3$	c) $\tan^{-1}(-3)$	d) $\tan^{-1}(-2)$
506. In order to remove first	,	, , ,	
shifted at the point			

a) (-2,1)	b) (1, 2)	c) (2, 1)	d) (1, −2)						
507. If $t_1 + t_2 + t_3 = -t_3$	$t_1 t_2 t_3$, then orthocentre of the	triangle formed by the points	5						
$[at_1t_2, a(t_1 + t_2)], [at_2t_3, a(t_2 + t_3)]$ and $[at_3t_1, a(t_3 + t_1)]$, lies on									
a) (<i>a</i> , 0)	b) (<i>-a</i> , 0)	c) (0, a)	d) (0, −a)						
508. If $A(-5, 0)$ and $B(3, 0)$ are two vertices of a triangle <i>ABC</i> . Its area is 20 sq cm. The vertex <i>C</i> lies on the									
line $x - y = 2$. The coordinates of <i>C</i> are a) $(-7, -5)$ or $(3, 5)$ b) $(-3, -5)$ or $(-5, 7)$ c) $(7, 5)$ or $(3, 5)$ d) $(-3, -5)$ or $(7, 5)$									
509. The locus of a point <i>P</i> which moves such that $2PA = 3PB$, where coordinates of points <i>A</i> and <i>B</i> are (0,0)									
and (4,-3), is									
a) $5x^2 - 5y^2 - 72x$		b) $5x^2 + 5y^2 - 72x + 54$	5						
c) $5x^2 + 5y^2 + 72x$	5	d) $5x^2 + 5y^2 - 72x - 54$							
	the centroid of a triangle havin	g its circumcentre and ortho	centre at $(7/2, 5/2)$ and						
(2,1) respectively, a									
a) (3, 2)		c) (5/2,3/2)	d) (3/2, 5/2)						
511. The base angle of tr	iangle are $22\frac{1}{2}^{\circ}$ and $112\frac{1}{2}^{\circ}$. If <i>l</i>								
a) $b = 2h$		c) $b = (1 + \sqrt{3})h$							
512. Let <i>ABC</i> be a triang	le such that $\angle ACB = \frac{\pi}{6}$ and let	a, b and c denote the lengths	s of the sides opposite to						
	vely. The value (s) of x for which								
a) $-(2+\sqrt{3})$	b) $1 + \sqrt{3}$	c) $2 + \sqrt{3}$	d) 4√3						
513. If the distance betw	the points $P(a \cos 48^\circ, 0)$	and $Q(0, a \cos 12^\circ)$ is d , then	$a d^2 - a^2 =$						
a) $\frac{a^2}{a}(\sqrt{5} - 1)$	b) $\frac{a^2}{4}(\sqrt{5}+1)$	c) $\frac{a}{2}(\sqrt{5}-1)$	d) $\frac{a^2}{2}(\sqrt{5}+1)$						
т	т	8(10 1)	$(\sqrt{3} + 1)$						
514. In a \triangle ABC, $a(b \cos a)$									
a) a^2	b) $b^2 - c^2$	c) 0	d) None of these						
), (a_2, b_2) and (a_3, b_3) are colling								
,	b) Identical	c) Parallel	d) None of these						
	$a = b = a + (c + a) \cos B + (a + b) \cos B$								
a) 0	b) 1	c) $a + b + c$	d) $2(a + b + c)$						
517. If in a $\triangle ABC a = 5$,	—								
a) is $\tan^{-1}\left(\frac{1}{9}\right)$	b) is $\tan^{-1}\left(\frac{9}{40}\right)$	c) Cannot be evaluated	d) is 2 tan ⁻¹ $\left(\frac{1}{9}\right)$						
518. If p_1, p_2, p_3 are altitudes of a $\triangle ABC$ drawn from the vertices A, B, C and \triangle the area of the triangle, then									
$p_1^{-2} + p_2^{-2} + p_3^{-2}$ is equal to									
a+b+c	$a^2 + b^2 + c^2$	$a^2 + b^2 + c^2$	d) None of these						

a)
$$\frac{a+b+c}{\Delta}$$
 b) $\frac{a^2+b^2+c^2}{4\Delta^2}$ c) $\frac{a^2+b^2+c^2}{\Delta^2}$ d) None of these

17.CO-ORDINATE GEOMETRY

: ANSWER KEY :															
1)	а	2)	а	3)	d	4)		189)	a	. 190)	а	191)	b	192)	а
-) 5)	a	-) 6)	b	7)	d	8)		193)	d	194)	d	195)	b	196)	d
9)	d	10)	b	11)	b	12)		197)	С	198)	b	199)	c	200)	a
13)	С	14)	С	15)	b	, 16)		201)	b	202)	a	203)	a	204)	C
17)	C) 18)	d	19)	С	20)		205)	а	206)	b	207)	a	208)	a
, 21)	C	22)	а	23)	С	24)		209)	С	210)	d	211)	С	212)	С
25)	С	26)	С	27)	b	28)		213)	b	214)	b	215)	С	216)	d
29)	а	30)	а	31)	с	32)		217)	а	218)	d	219)	b	220)	d
33)	b	34)	а	35)	b	36)		221)	а	222)	b	223)	b	224)	C
37)	b	38)	d	39)	d	40)	a	225)	С	226)	С	227)	а	228)	d
41)	а	42)	а	43)	С	44)		229)	а	230)	а	231)	а	232)	С
45)	С	46)	а	47)	d	48)		233)	С	234)	d	235)	d	236)	а
49)	d	50)	а	51)	d	52)		237)	а	238)	d	239)	а	240)	d
53)	а	54)	d	55)	b	56)		241)	С	242)	С	243)	а	244)	С
57)	С	58)	d	59)	а	60)	b	245)	а	246)	а	247)	d	248)	d
61)	b	62)	d	63)	а	64)		249)	d	250)	d	251)	d	252)	b
65)	С	66)	а	67)	b	68)		253)	С	254)	С	255)	с	256)	d
69)	С	70)	d	71)	С	72)		257)	а	258)	а	259)	с	260)	С
73)	а	74)	а	75)	d	76)	b	261)	а	262)	С	263)	d	264)	b
77)	С	78)	b	79)	d	80)		265)	b	266)	а	267)	с	268)	b
81)	b	82)	d	83)	а	84)	c Z	269)	d	270)	С	271)	а	272)	d
85)	а	86)	d	87)	С	88)	c Z	273)	а	274)	d	275)	d	276)	b
89)	С	90)	С	91)	а	92)	d 2	277)	а	278)	b	279)	b	280)	С
93)	С	94)	С	95)	а	96)	a Z	281)	С	282)	b	283)	С	284)	С
97)	b	98)	С	99)	С	100)	c Z	285)	а	286)	d	287)	b	288)	а
101)	а	102)	а	103)	а	104)	b	289)	а	290)	d	291)	b	292)	d
105)	С	106)	b	107)	С	108)	d Z	293)	а	294)	а	295)	d	296)	С
109)	b	110)	а	111)	С	112)	b	297)	С	298)	а	299)	а	300)	b
113)	а	114)	b	115)	d	116)	b 3	301)	d	302)	а	303)	b	304)	b
117)	а	118)	а	119)	b	120)	b 3	305)	а	306)	С	307)	d	308)	d
121)	а	122)	С	123)	d	124)	b 3	309)	С	310)	а	311)	d	312)	С
125)	С	126)	b	127)	d	128)	d 3	313)	b	314)	а	315)	d	316)	С
129)	С	130)	С	131)	С	132)	b 3	317)	а	318)	b	319)	a	320)	d
133)	b	134)	d	135)	С	136)	c 3	321)	b	322)	С	323)	С	324)	b
137)	b	138)	С	139)	d	140)	c 3	325)	b	326)	b	327)	d	328)	а
141)	С	142)	b	143)	d	144)	d 3	329)	d	330)	С	331)	d	332)	а
145)	С	146)	d	147)	b	148)	c 3	333)	d	334)	d	335)	а	336)	а
149)	b	150)	а	151)	С	152)	a 3	337)	а	338)	b	339)	b	340)	С
153)	d	154)	b	155)	а	156)	b 3	341)	С	342)	b	343)	a	344)	d
157)	С	158)	а	159)	С	160)	d 3	345)	С	346)	d	347)	d	348)	а
161)	d	162)	С	163)	d	164)	d 3	349)	d	350)	а	351)	С	352)	а
165)	С	166)	b	167)	а	168)	a 3	353)	b	354)	b	355)	b	356)	С
169)	b	170)	С	171)	С	172)	a 3	357)	С	358)	с	359)	d	360)	d
173)	С	174)	С	175)	а	176)	a 3	361)	b	362)	b	363)	b	364)	а
177)	d	178)	а	179)	С	180)	c 3	365)	b	366)	а	367)	С	368)	b
181)	b	182)	а	183)	d	184)	d 3	369)	d	370)	а	371)	b	372)	а
185)	b	186)	а	187)	а	188)	d 3	373)	d	374)	b	375)	b	376)	b

377)	а	378)	С	379)	а	380)	d
381)	d	382)	а	383)	d	384)	а
385)	а	386)	b	387)	d	388)	b
389)	С	390)	b	391)	b	392)	b
393)	b	394)	b	395)	b	396)	d
397)	b	398)	а	399)	b	400)	b
401)	b	402)	b	403)	С	404)	С
405)	b	406)	b	407)	b	408)	b
409)	С	410)	С	411)	а	412)	С
413)	С	414)	d	415)	d	416)	а
417)	d	418)	а	419)	а	420)	С
421)	b	422)	С	423)	b	424)	а
425)	С	426)	b	427)	а	428)	С
429)	b	430)	С	431)	С	432)	d
433)	С	434)	b	435)	b	436)	d
437)	b	438)	b	439)	С	440)	а
441)	d	442)	b	443)	а	444)	b
445)	b	446)	С	447)	d	448)	С
449)	С	450)	а	451)	d	452)	b
453)	а	454)	d	455)	а	456)	b
457)	а	458)	d	459)	С	460)	d
461)	а	462)	а	463)	а	464)	b
465)	а	466)	b	467)	а	468)	С
469)	d	470)	С	471)	b	472)	а
473)	b	474)	а	475)	d	476)	b
477)	С	478)	С	479)	d	480)	d
481)	b	482)	d	483)	d	484)	а
485)	b	486)	С	487)	С	488)	а
489)	b	490)	а	491)	b	492)	С
493)	d	494)	С	495)	d	496)	С
497)	а	498)	а	499)	С	500)	d
501)	а	502)	а	503)	d	504)	С
505)	С	506)	a	507)	b	508)	d
509)	b	510)	а	511)	а	512)	b
513)	d	514)	b	515)	а	516)	С
517)	b	518)	b				
							•

: HINTS AND SOLUTIONS :

6

 $a^{2}(\cos^{2} B - \cos^{2} C) + b^{2}(\cos^{2} C - \cos^{2} A)$ $+ c^{2} (\cos^{2} A - \cos^{2} B)$ $= a^2 (1 - \sin^2 B - 1 + \sin^2 C)$ $+b^{2}(1-\sin^{2}C-1+\sin^{2}A)$ $+c^{2}(1-\sin^{2}A-1+\sin^{2}B)$ $= a^{2}(\sin^{2} C - \sin^{2} B) + b^{2}(\sin^{2} A - \sin^{2} C)$ $+ c^{2} (\sin^{2} B - \sin^{2} A)$ $= k^{2}a^{2}(c^{2} - b^{2}) + k^{2}b^{2}(a^{2} - c^{2}) + k^{2}c^{2}(b^{2})$ $-c^{2}$ = 0

(a)
Let
$$\sin A = 3k$$
, $\sin B = 4k$, $\sin C = 5k$
 $\therefore \frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c} = p$ [say]
 $\Rightarrow \frac{3k}{a} = \frac{4k}{b} = \frac{5k}{c} = p$
 $\Rightarrow a = 3\left(\frac{k}{p}\right), b = 4\left(\frac{k}{p}\right), c = 5\left(\frac{k}{p}\right)$
 $\Rightarrow a = 3l, b = 4l, c = 5l$ [let $l = \frac{k}{p}$]
 $\therefore \cos A = \frac{b^2 + c^2 - a^2}{2bc}$
 $= \frac{16 + 25 - 9}{2 \times 4 \times 5} = \frac{32}{40} = \frac{4}{5}$
 $\therefore \cos B = \frac{c^2 + a^2 - b^2}{2ac}$
 $= \frac{25 + 9 - 16}{2 \times 3 \times 5} = \frac{18}{30} = \frac{3}{5}$
Now, $\cos A : \cos B = \frac{4}{5}: \frac{3}{5} = 4:3$

4 (b)

Slope of perpendicular to the line joining the points

 $(a \cos \alpha, a \sin \alpha)$ and $(a \cos \beta, a \sin \beta) =$ $\cos \alpha - \cos \beta$ $\sin \alpha - \sin \beta$ $= \tan \frac{\alpha + \beta}{2}$

Hence, equation of perpendicular is

$$y = \tan\left(\frac{\alpha+\beta}{2}\right)x$$
 ...(i)

Now, on solving the equation of line with Eq. (i), we get

$$\left[\frac{a}{2}(\cos\alpha + \cos\beta), \frac{a}{2}(\sin\alpha + \sin\beta)\right]$$

5 (a)

Area of
$$\frac{\Delta PBC}{\Delta ABC} = \left[\frac{\{-3(-2-y)+4(y-5)+x(5+2)\}\}}{\{6(5+2)-3(-2-3)+4(3-5)\}}\right]$$

= $\left|\frac{7x+7y-14}{49}\right| = \left|\frac{x+y-2}{7}\right|$

(b)

Let *PQ* and *RS* be the poles of height 20 m and 80 m subtending angles α and β at R and P respectively. Let *h* be the height of the point *T*, the intersection of QR and PS

$$\beta + \beta \gamma + \gamma \alpha = 3q$$

and $\alpha\beta\gamma = 1$

Let G(x, y) be the centroid of the given triangle

$$\therefore x = \frac{\alpha + \beta + \gamma}{3} = p$$

and $y = \frac{\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}}{3}$
 $= \frac{\beta\gamma + \gamma\alpha + \alpha\beta}{3\alpha\beta\gamma} = q$

Hence, coordinates of the centroid of triangle are (p,q)

9 (d)

8

Let O(0,0) be the orthocenter, A(h,k) be the third vertex and B(-2, 3) and C(5, -1) the other two vertices. Then, the slope of the line through A and O is $\frac{k}{b}$, while the line through B and C has the slope $\frac{(-1-3)}{(5+2)} = -\frac{4}{7}$. By the property of the orthocenter, these two lines must be perpendicular, so we have

$$\left(\frac{k}{h}\right)\left(-\frac{4}{7}\right) = -1 \Rightarrow \frac{k}{h} = \frac{7}{4} \quad \dots(i)$$

Also, $\frac{5-2+h}{3} + \frac{-1+3+k}{3} = 7$ \Rightarrow h + k = 16 ...(ii) Which is not satisfied by the points given in the options (a), (b) or (c) 10 **(b)** Let (h, k) be the point According to question, $4\sqrt{(h-h)^2+k} = h^2+k^2$ $\Rightarrow 4|k| = h^2 + k^2$ Locus of the point is $4|y| = x^2 + y^2 \Rightarrow x^2 + y^2 - 4|y| = 0$ 12 (a) Given points are *P*(4, −2), *A*(2, −4) and *B*(7,1) Suppose *P* divides *AB* in the ratio λ : 1. Then, $\frac{7\lambda+2}{\lambda+1} = 4 \Rightarrow \lambda = \frac{2}{3}$ Thus, *P* divides *AB* internally in the ratio 2 : 3 The coordinates of the point dividing AB externally in the ratio 2:3 are $\left(\frac{2 \times 7 - 3 \times 2}{2 - 3}, \frac{2 \times 1 - 3 \times -4}{2 - 3}\right) = (-8, -14)$ Hence, the harmonic conjugate of *R* with respect to A and B is (-8, -14)13 (c) If *O* is the origin and $P(x_1, y_1), Q(x_2, y_2)$ are two points, then $OP \times OQ \cos \angle POQ = x_1x_2 + y_1y_2$ $\therefore OP \times OQ \times \sin \angle POQ$ $= \sqrt{OP^2 \times OQ^2 - OP^2 \times OQ^2 \times \cos^2 \angle POQ}$ $= \sqrt{(x_1^2 + y_1^2)(x_2^2 + y_2^2) - (x_1x_2 + y_1y_2)^2}$ $=\sqrt{(x_1y_2-x_2y_1)^2}=|x_1y_2-x_2y_1|$ 14 (c) $\cos B = \frac{(3)^2 + (5)^2 - (4)^2}{2 \times 3 \times 5} = \frac{3}{5}$ $\Rightarrow \sin B = \sqrt{1 - \frac{9}{25}} = \frac{4}{5}$ $\therefore \sin 2B = 2 \sin B \cos B$ $= 2 \times \frac{4}{5} \times \frac{3}{5} = \frac{24}{25}$ 16 (d) Given that, $\angle A = 45^\circ, \angle B = 75^\circ$ $\angle c = 180^{\circ} - 45^{\circ} - 75^{\circ} = 60^{\circ}$ $\therefore \ a + c\sqrt{2} = k(\sin A + \sqrt{2}\sin C)$ $= k(\sin 45^{\circ} + \sqrt{2} \sin 60^{\circ})$ $=k\left(\frac{1}{\sqrt{2}}+\sqrt{2}\frac{\sqrt{3}}{2}\right)=k\left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)$...(i) And $k = \frac{b}{\sin B}$

 $=\frac{b}{\sin 75^\circ}=\frac{2\sqrt{2}b}{\sqrt{3}+1}$

On putting the value of *k* in Eq. (i), we get $a + c\sqrt{2} = 2b$

18 **(d)**

From figure ABCD is s square

Whose diagonals *AC* and *BD* are of length 2 unit Hence, required area= $\frac{1}{2}AC \times BD$

$$=\frac{1}{2} \times 2 \times 2 = 2$$
 sq units

19 **(c)**

In $\triangle APD$, $\tan 45^\circ = \frac{a}{AP} \Rightarrow AP = a$

$$C$$

 E
 b
 A
 A
 A
 A
 B
 B
 B

and in $\triangle BPC$,

$$\tan 45^\circ = \frac{1}{PB}$$

$$\Rightarrow PB = b$$

$$\therefore DE = a + b \text{ and } CE = b - a$$

$$\ln \Delta DEC,$$

$$DC^2 = DE^2 + EC^2$$

$$= (a + b^2) + (b - a^2)$$

$$= 2(a^2 + b^2)$$

20 **(b)**

If the axes are rotated through 30°, we have $x = X \cos 30^{\circ} - Y \sin 30^{\circ} = \frac{\sqrt{3}X - 4}{2}$ and, $y = X \sin 30^{\circ} + Y \cos 30^{\circ} = \frac{X + \sqrt{3}Y}{2}$ Substituting these values in $x^{2} + 2\sqrt{3}xy - y^{2} = 2a^{2}$, we get $(\sqrt{3}X - Y)^{2} + 2\sqrt{3}(\sqrt{3}X - Y)(X + \sqrt{3}Y)$ $- (X + \sqrt{3}Y)^{2} = 8a^{2}$ $\Rightarrow X^{2} - Y^{2} = a^{2}$ 21 (c)

Since, *F*, *E* and *D* are the mid points of the sides AB, AC and BC of triangle ABC respectively, then the vertices of triangle are A(0, 0), B(0, 2), C(2, 0)

$$F(0,1) = F(0,1)$$

$$F(0,1) = F(1,0)$$

$$B(0,2) = D(1,1)$$
Now, $AB = c = \sqrt{0^2 + 2^2} = 2$

$$BC = a = \sqrt{2^2 + 2^2} = 2\sqrt{2}$$
And $CA = b = \sqrt{2^2 + 0^2} = 2$

$$\therefore x \text{ coordinates of incentre}$$

$$= \frac{ax_1 + bx_2 + cx_3}{a + b + c}$$

$$= \frac{2\sqrt{2}(0) + 2(0) + 2(2)}{2\sqrt{2} + 2 + 2}$$

$$= \frac{2}{2 + \sqrt{2}} = 2 - \sqrt{2}$$
(a)

Let (x, y) be the coordinates of vertex *C* and (x_1, y_1) be the coordinates of centroid of the triangle.

$$\therefore \quad x_1 = \frac{x+2-2}{3} \text{ and } y_1 = \frac{y-3+1}{3}$$

$$\Rightarrow \quad x_1 = \frac{x}{3} \text{ and } y_1 = \frac{y-2}{3}$$
Since, the centroid lies on the line $2x + 3y = 1$

$$\therefore \quad 2x_1 + 3y_1 = 1$$

$$\Rightarrow \quad \frac{2x}{3} + \frac{3(y-2)}{3} = 1$$

$$\Rightarrow \quad 2x + 3y = 9$$

This equation represents the locus of the vertex *C* **(c)**

23 **(c)**

Let the height of the tower be h

$$\Rightarrow h = \frac{20\sqrt{3}}{2}$$

$$\Rightarrow h = 10\sqrt{3} m$$
24 (a)
We have, $\sin \frac{A}{2} = \sqrt{\frac{(s-b)(s-c)}{bc}}$

$$\Rightarrow bc \sin^2 \frac{A}{2} = (s-b)(s-c)$$
On comparing with $x \sin^2 \frac{A}{2} = (s-b)(s-c)$
We get, $x = bc$
25 (c)

$$\therefore p_1^2 + p_2^2 = \frac{4a^2}{\sec^2 \alpha + \csc^2 \alpha} + \frac{a^2 \cos^2 2\alpha}{\cos^2 \alpha + \sin^2 \alpha}$$

$$= a^2 \left(\frac{4 \cos^2 \alpha \sin^2 \alpha}{(\cos^2 \alpha + \sin^2 \alpha} + \frac{\cos^2 2\alpha}{1}\right)$$

$$= a^2(\sin^2 2\alpha + \cos^2 2\alpha) = a^2$$
and $p_1^2 p_2^2 = a^4 \sin^2 2\alpha \cos^2 2\alpha = \left(\frac{1}{4}\right)a^4 \sin^2 4\alpha$

$$\therefore \left(\frac{p_1}{p_2} + \frac{p_2}{p_1}\right)^2 = \frac{(p_1^2 + p_2^2)^2}{p_1^2 p_2^2}$$

$$= \frac{4}{\sin^2 4\alpha} = 4 \csc^2 4\alpha$$
26 (c)
Let $A(2, 1), B(-2, 4)$

$$\therefore AB = 5$$
Hence, the locus is the line segment AB
27 (b)

$$\frac{1}{r^2} + \frac{1}{r_1^2} + \frac{1}{r_2^2} + \frac{1}{r_3^2}$$

$$= \frac{s^2 + (s-a)^2 + (s-b)^2 + (s-c)^2}{\Delta^2}$$

$$= \frac{4s^2 + a^2 + b^2 + c^2 - 2s(a + b + c)}{\Delta^2}$$

$$= \frac{4s^2 + a^2 + b^2 + c^2}{\Delta^2}$$
28 (b)
Let $a = 4$ cm, $b = 5$ cm and $c = 6$ cm

$$\therefore s = \frac{4 + 5 + 6}{2} = \frac{15}{2}$$
Hence, area of triangle $= \sqrt{s(s-a)(s-b)(s-c)}$

$$= \sqrt{\left(\frac{15}{2}\right)\left(\frac{15}{2} - 4\right)\left(\frac{15}{2} - 5\right)\left(\frac{15}{2} - 6\right)}$$

$$= \sqrt{\frac{15}{2} \times \frac{7}{2} \times \frac{5}{2} \times \frac{3}{2}} = \frac{15}{4}\sqrt{7} \text{ cm}^2}$$
30 (a)
Let CD be the tower
In ΔADC , $\tan \alpha = \frac{CD}{AC}$

$$\Rightarrow CD = b \cot \beta \tan \alpha$$

$$A = \frac{1}{2 \sin \beta} = \frac{1}{2 \sin 30^{\circ}} = \frac{1}{1}$$
Area of circumcircle = πR^{2}

$$= \pi \times (2)^{2} = 4\pi \text{ sq unit}$$
33 (b)
$$\frac{b^{2} - c^{2}}{2aR} = \frac{4R^{2}(\sin^{2}B - \sin^{2}C)}{4R^{2}\sin A}$$

$$= \frac{\sin(B + C)\sin(B - C)}{\sin A}$$

$$= \sin(B - C)$$
34 (a)
Given curve is
 $y = 1 - |x|$

$$y = 1 - |x|$$

$$x' + \frac{1}{\sqrt{C(-1,0)}} = \frac{1}{\sqrt{(1,0)A} + x}$$

$$\therefore \text{ Area of } \Delta ABC = 2 \text{ area of } \Delta AOB$$

$$= 2 \times \frac{1}{2} \times 1 \times 1 = 1 \text{ sq unit}$$
35 (b)
Given, angles A, B, C of ΔABC are in AP with (common difference) = 15°

$$\therefore B = A + 15^{\circ} \text{ and } C = A + 30^{\circ}$$
Also, $A + B + C = 180^{\circ}$

$$\Rightarrow A + A + 15^{\circ} + A + 30^{\circ} = 180^{\circ}$$

$$\Rightarrow A + A + 15^{\circ} + 15^{\circ} = 60^{\circ}$$
36 (a)
Since, $(1 - \frac{r_{1}}{r_{2}})(1 - \frac{r_{1}}{r_{3}}) = 2$

$$\therefore (1 - \frac{s - b}{s - a})(1 - \frac{s - c}{s - a}) = 2$$

$$\Rightarrow 2bc - 2ab - 2ac + 2a^{2}$$

$$= b^{2} + c^{2} + a^{2} + 2bc - 2ab$$

$$\Rightarrow a^{2} = b^{2} + c^{2}$$

So, triangle is right angled

37 **(b)**

Let the height of the tower be BC = h, then length of shadow of tower $AB = \sqrt{3}h$.

In
$$\triangle ABC$$
, $\tan \alpha = \frac{BC}{AB}$
 $\Rightarrow \tan \alpha = \frac{h}{\sqrt{3h}}$
 $\Rightarrow \tan \alpha = \tan 30^{\circ}$
 $\Rightarrow \alpha = 30^{\circ}$

 $-\sqrt{3}h$

38 (d)

d

- 2*ac*

Let the coordinates of *P* be (h, k). Then, x = X + h, y = Y + kSubstituting these in $2x^2 + y^2 - 4x - 4y = 0$, we get $2X^{2} + Y^{2} + 4(h-1) \times +2(k-2)Y + 2h^{2} + k^{2}$ -4h - 4k = 0Comparing this equation with $2X^{2} + Y^{2} - 8X - 8Y + 18 = 0$, we get h - 1 = -2, (k - 2) = -4 and $2h^2 + k^2 - 4h - 4h$ 4k = 18 $\Rightarrow h = -1, k = -2$ 40 **(a)** We have, $\tan \frac{c}{2} = \sqrt{\frac{(s-a)(s-b)}{s(s-c)}}$ $\therefore (s-a)(s-b) = s(s-c) \text{ (given)}$ $\therefore \tan \frac{C}{2} = \sqrt{\frac{s(s-c)}{s(s-c)}}$ $\Rightarrow \tan \frac{C}{2} = \tan \frac{\pi}{4}$ $\Rightarrow \angle C = 90^{\circ}$ 41 **(a)** Given that, $\cot \alpha = \frac{3}{5}$ and $\cot \beta = \frac{2}{5}$ In $\triangle BCD$, $\tan \beta = \frac{h}{BC}$

D

 $\Rightarrow BC = h \cot \beta \Rightarrow BC = \frac{2h}{5} \dots (i)$

-32 m→B

and in $\triangle ACD$, $\tan \alpha = \frac{h}{32+P}$

$$\Rightarrow h = \left(32 + \frac{2h}{5}\right)\frac{5}{3} \text{ [using Eq.(i)]}$$

$$\Rightarrow 3h = 160 + 2h$$

$$\Rightarrow h = 160 \text{ m}$$
42 (a)
The vertices of quadrilateral *ABCD* is
 $A(2,3), B(3,4), C(4,5)$
and $D(5,6)$

$$\therefore AB = \sqrt{(3-2)^2 + (4-3)^2}$$

$$= \sqrt{(1)^2 + (1)^2} = \sqrt{2}$$
Similarly, $BC = \sqrt{2}$, $CD = \sqrt{2}$, and $DA = 3\sqrt{2}$
and $s = \frac{a+b+c+d}{2}$

$$= \frac{\sqrt{2} + \sqrt{2} + \sqrt{2} + 3\sqrt{2}}{2}$$

$$= \frac{6\sqrt{2}}{2} = 3\sqrt{2}$$

$$\therefore \text{ Area of quadrilateral}$$

$$= \sqrt{(s-a)(s-b)(s-c)(s-d)}$$

$$= \sqrt{(3\sqrt{2} - \sqrt{2})(3\sqrt{2} - \sqrt{2})}$$

$$(3\sqrt{2} - \sqrt{2})(3\sqrt{2} - \sqrt{2})$$

$$= 0$$
43 (c)
We have, $\Delta = \frac{1}{2}bc \sin A$

$$\Rightarrow \frac{1}{2}k^2 \sin B \sin C \sin A = \Delta ...(i)$$

$$\therefore a^2 \sin 2B + b^2 \sin 2A$$

$$= 2(a^{2} \sin B \cos B + b^{2} \sin A \cos A)$$

$$= 2k^{2}(\sin^{2} A \sin B \cos B + \sin^{2} B \sin A \cos A)$$

$$= 2k^{2}(\sin A \sin B \sin C) = 4\Delta \quad [\text{from Eq. (i)}]$$

44 (c)
1.
$$\frac{\sin A}{\sin c} = \frac{\sin(A-B)}{\sin(B-C)}$$

$$\Rightarrow \sin(B+C) \sin(B-C) = \sin(A+B) \sin(A-B)$$

$$\Rightarrow \sin^2 B - \sin^2 C = \sin^2 A - \sin^2 B$$

$$\Rightarrow b^2 - c^2 = a^2 - b^2$$

$$\Rightarrow 2b^2 = a^2 + c^2$$

$$\Rightarrow a^2, b^2, c^2 \text{ are in AP}$$
2.
$$r_1, r_2, r_3 \text{ are in HP}$$

$$\Rightarrow \frac{1}{r_1}, \frac{1}{r_2}, \frac{1}{r_3} \text{ are in AP}$$

$$\Rightarrow 2(s-b) = s - a + s - c$$

$$\Rightarrow 2b = (a+c)$$

$$\Rightarrow a, b, c \text{ are in AP}$$

Hence, both of these statements are correct

45 **(c)**

The largest side of triangle is $\sqrt{p^2 + q^2 + pq}$ Greatest angle will be opposite to largest side. Let θ be greatest angle, then

$$\cos \theta = \frac{p^2 + q^2 - p^2 - q^2 - pq}{2pq} = -\frac{1}{2}$$
$$\Rightarrow \theta = \frac{2\pi}{3}$$

46 **(a)**

Let area of triangle be $\Delta,$ then according to question

$$\Delta = \frac{1}{2}ax = \frac{1}{2}by = \frac{1}{2}cz$$

$$\therefore \frac{bx}{c} + \frac{cy}{a} + \frac{az}{b} = \frac{b}{c}\left(\frac{2\Delta}{a}\right) + \frac{c}{a}\left(\frac{2\Delta}{b}\right) + \frac{a}{b}\left(\frac{2\Delta}{c}\right)$$

$$= \frac{2\Delta(b^2 + c^2 + a^2)}{abc}$$

$$= \frac{2(a^2 + b^2 + c^2)}{abc} \cdot \frac{abc}{4R} \quad (\because \Delta = \frac{abc}{4R})$$

$$= \frac{a^2 + b^2 + c^2}{2R}$$

49 **(d)**

In \triangle *ABC* the vertices are A(-3, 0), B(4, -1) and C(5, 2)

$$A^{(-3, 0)}$$

$$(4, -1)B \qquad L \qquad C(5, 2)$$

$$\therefore BC = \sqrt{(5-4)^2 + (2+1)^2}$$

$$= \sqrt{1+9} = \sqrt{10}$$
Area of $\triangle ABC$

$$= \frac{1}{2} [x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)]$$

$$= \frac{1}{2} [-3(-1-2) + 4(2-0) + 5(0+1)]$$

$$= \frac{1}{2} [9+8+5] = 11$$
As we know that area of $\triangle = \frac{1}{2} \times BC \times AL$

As we know that, area of $\Delta = \frac{1}{2} \times BC \times AL$

$$\Rightarrow 11 = \frac{1}{2} \times \sqrt{10} \times AL$$
$$\Rightarrow AL = \frac{2 \times 11}{\sqrt{10}} = \frac{22}{\sqrt{10}}$$

50 (a)

As the line divides the $\triangle ABC$ in equal to area. Mid point of AB(51, 30) which lies on y = kx

$$\therefore 30 = 51k \implies k = \frac{30}{51}$$

52 **(b)**

Let (h, k) be the point According to question, $4\sqrt{(h-h)^2 + k^2} = h^2 + k^2$ $\Rightarrow 4|k| = h^2 + k^2$ Locus of the point is $4|y| = x^2 + y^2$ $\Rightarrow x^2 + y^2 - 4|y| = 0$ 53 (a) In $\triangle CBD$, $\tan 60^\circ = \frac{h}{x}$

$$A = x\sqrt{30^{\circ}} + \frac{60^{\circ}}{60^{\circ}} + \frac{h}{c}$$

$$\Rightarrow h = x\sqrt{3} \dots (i)$$

and in $\triangle CAD$, tan $30^{\circ} = \frac{h}{40+x}$

$$\Rightarrow h\sqrt{3} = 40 + x$$

 $\Rightarrow 3x = 40 + x \text{ [from Eq. (i)]}$ $\Rightarrow x = 20 \text{ m}$

54 **(d)**

(a) We know, $\tan A + \tan B + \tan C = \tan A \tan B \tan C$

Since, $\tan A + \tan B + \tan C = 0$

 \Rightarrow Let either of tan *A*, tan *B* or tan *C* is zero *ie*, one angle is 0

So, it cannot be a triangle

(b)
$$\frac{\sin A}{2} = \frac{\sin B}{3} = \frac{\sin C}{1}$$

 $\Rightarrow a: b: c = 2: 3: 1$

Let a = 2k, b = 3k, c = k, a + c = b (so triangle not possible)

$$(c) \sin A \sin B = \frac{\sqrt{3}}{4} = \cos A \cos B$$

Either sin *A*, sin *B* are both positive or both negative but, if both are positive sin $A + \sin B > 0$ but sin $A + \sin B$ is negative so both negative but, if both are negative, then $\angle A$ and $\angle B$ are more than 90°, so it cannot be a triangle

(d)
$$(a + b)^2 = c^2 + ab$$

$$\Rightarrow a^2 + b^2 + 2ab = c^2 + ab$$

$$\Rightarrow a^2 + b^2 - c^2 = -ab$$

$$\Rightarrow \frac{a^2 + b^2 - c^2}{2ab} = -\frac{1}{2} = \cos C$$

$$\Rightarrow \angle C = 120^{\circ}$$

$$\sin A + \cos A = \frac{\sqrt{3}}{\sqrt{2}}$$

$$\Rightarrow 1 + \sin 2A = \frac{3}{2} \Rightarrow \sin 2A = \frac{1}{2}$$

$$\Rightarrow 2A = 30^{\circ} \Rightarrow \angle A = 15^{\circ}$$
So, it can form a triangle
55 (b)
In $\triangle PMC$, $\tan \alpha = \frac{h-a}{PM}$

Let P(x, y) is equidistant from the mid points A(a + b, b - a) and (a - b, a + b) $PA^2 = PB^2$ $\Rightarrow (a+b-x)^2 + (b-a-y)^2$ $= (a - b - x)^{2} + (a + b - v)^{2}$ $\Rightarrow bx - ay = 0$ 59 (a) Let the locus of a point in a plane be P(h, k)P(h, k)According to the question, $|PA| + |PB| = 1 \Rightarrow |h| + |k| = 1$ Hence, locus of a point is |x| + |y| = 1Which represents the equation of square 60 (b) Let *BC* be the height of tower and *CD* be height of the flagstaff In $\triangle BAC$, $\tan \theta = \frac{x}{v}$...(i) In ΔDAB , $\tan 2\theta = \frac{x+h}{v}$ $\Rightarrow \frac{2 \tan \theta}{1 - \tan^2 \theta} = \frac{x + h}{y} \Rightarrow \frac{2\left(\frac{x}{y}\right)}{1 - \frac{x^2}{y^2}} = \frac{x + h}{y} \text{ [from Eq. (i)]}$ $\Rightarrow 2xy^2 - xy^2 + x^3 = (y^2 - x^2)h$ $\Rightarrow h = \frac{x(x^2 + y^2)}{(y^2 - x^2)}$ 61 **(b)** $2ac\sin\left(\frac{A-B+C}{2}\right)$ $=2ac\sin\left(\frac{180^\circ-2B}{2}\right)$ $= 2ac\sin(90^{\circ} - B) = 2ac\cos B = a^{2} + c^{2} - b^{2}$ 62 (d) $(x + 1)^{2} + y^{2} + (x - 2)^{2} + y^{2} = 2[(x - 1)^{2} + y^{2}]$ On simplification, we get 2x + 3 = 063 (a) We know that centroid divides the line segment

joining orthocenter and circumcentre in the ratio2: 1. Since, the coordinates of orthocenter and circumcentre are (1, 1) and (3, 2)respectively : The coordinates of centroid are $\left(\frac{2.3+1.1}{2+1}, \frac{2.2+1.1}{2+1}\right) = \left(\frac{7}{3}, \frac{5}{3}\right)$ 64 (c) Given equation are $x \cot \theta + y \csc \theta = 2$...(i) And $x \operatorname{cosec} \theta + y \cot \theta = 6$...(ii) On squaring and subtracting Eq. (i) from Eq. (ii), we get $x^{2}(\operatorname{cosec}^{2}\theta - \operatorname{cot}^{2}\theta) + y^{2}(\operatorname{cot}^{2}\theta - \operatorname{cosec}^{2}\theta) =$ $(6)^2 - (2)^2$ $\Rightarrow x^2 - y^2 = 32$ It represents an equation of hyperbola 65 (c) Since, $\cot A + \cot C = 2 \cot B$ $\Rightarrow \frac{\cos A}{\sin A} + \frac{\cos C}{\sin C} = \frac{2 \cos B}{\sin B}$ $\Rightarrow \frac{b^2 + c^2 - a^2}{2bc(ka)} + \frac{a^2 + b^2 - c^2}{2ab(kc)} = 2\frac{a^2 + c^2 - b^2}{2ac(kb)}$ $\Rightarrow a^2 + c^2 = 2b^2$ Hence, a^2 , b^2 , c^2 are in AP 66 (a) In $\triangle ABC$, $AC = (H - h) \cot 15^{\circ}$... (i) and in $\triangle ACD$, $AC = (H + h) \cot 45^{\circ}$...(ii) h=2500 m From Eqs. (i) and (ii). $(H - h) \cot 15^\circ = (H + h) \cot 45^\circ$ $\Rightarrow H = \frac{h(\cot 15^\circ + 1)}{\cot 15^\circ - 1}$ $\therefore H = \frac{2500(2+\sqrt{3}+1)}{(2+\sqrt{3}-1)}$ $=\frac{2500(3+\sqrt{3})}{(\sqrt{3}+1)}\times\frac{(\sqrt{3}-1)}{(\sqrt{3}-1)}$ $= 2500\sqrt{3} \text{ m}$ 67 **(b)** Let *OP* be the clock tower standing at the mid point *O* of side *BC* of $\triangle ABC$. Let $\alpha = \angle PAO =$ $\cot^{-1} 3.2$ and $\beta = \angle PBO = \csc^{-1} 2.6$ Then, $\cot \alpha = 3.2$ and $\operatorname{cosec} \beta = 2.6$

 $\therefore \cot \beta = \sqrt{\csc^2 \beta - 1} = \sqrt{(2.6)^2 - 1} = 2.4$

In ΔPAO and ΔPBO , we have $AO = h \cot \alpha = 3.2h$ and $BO = h \cot B = 2.4 h$ $\ln \Delta ABO, AB^2 = OA^2 + OB^2$ $\Rightarrow 100^2 = (3.2h)^2 + (2.4 h)^2$ $\Rightarrow 100^2 = 16h^2$ $\Rightarrow h^2 = 625 \Rightarrow h = 25 \text{ m}$ 68 (d) $\because \cos 30^{\circ} = \frac{3+1-a^2}{2\sqrt{2}} \left[\because \cos A = \frac{b^2+c^2-a^2}{2bc} \right]$ $\Rightarrow \frac{\sqrt{3}}{2} = \frac{4-a^2}{2\sqrt{3}} \Rightarrow a^2 = 1$ $\Rightarrow a = 1$ Here, we see side *b* is largest, so $\angle B$ must be greatest \therefore By sine rule, $\frac{b}{\sin B} = \frac{a}{\sin A}$ $\Rightarrow \frac{\sqrt{3}}{\sin B} = \frac{1}{\sin 30^{\circ}}$ $\Rightarrow \sin B = \frac{\sqrt{3}}{2}$ $\Rightarrow \angle B = 120^{\circ}$ 69 (c) Let each side of equilateral triangle = a $\therefore \Delta = \frac{\sqrt{3}}{4}a^2, \qquad S = \frac{3a}{2}$ Now, $r = \frac{\Delta}{5} = \frac{\sqrt{3}}{4}a^2 \cdot \frac{2}{3a} = \frac{a}{2\sqrt{3}}$ $R = \frac{abc}{4\Lambda} = \frac{a^3}{\sqrt{3}a^2} = \frac{a}{\sqrt{3}}$ $r_1 = \frac{\Delta}{s-a} = \frac{\sqrt{3}}{4}a^2 \cdot \frac{2}{a} = \frac{\sqrt{3}}{2}a$ $\therefore R: r_1: r_1 = \frac{a}{\sqrt{3}}: \frac{a}{2\sqrt{3}}: \frac{\sqrt{3}}{2}a$ = 2:1:370 (d) Given, $r_1 = 2r_2 = 3r_3$ $\therefore \frac{\Delta}{s-a} = \frac{2\Delta}{s-b} = \frac{3\Delta}{s-c} = \frac{\Delta}{k} \text{ [say]}$ Then, $s - a = k \cdot s - b = 2k \cdot s - c = 3k$ $\Rightarrow 3s - (a + b + c) = 6k \Rightarrow s = 6k$ $\therefore \frac{a}{r} = \frac{b}{4} = \frac{c}{2} = k$ $\therefore \frac{a}{b} + \frac{b}{c} + \frac{c}{a} = \frac{5}{4} + \frac{4}{2} + \frac{3}{5} = \frac{191}{60}$

(c)
Let sides of the triangle are
$$4x, 5x, 6x$$

 $s = \frac{4x + 5x + 6x}{2} = \frac{15}{2}x$
 $\Delta = \sqrt{\frac{15}{2} \times (\frac{15}{2}x - 4x)(\frac{15}{2}x - 5x)(\frac{15}{2}x - 6x)}$
 $= \sqrt{\frac{15}{2} \times \frac{7}{2}x \times \frac{5}{2}x \times \frac{3}{2}x}$
 $= \frac{15\sqrt{7}x^2}{4}$
Circumradius, $R = \frac{4x \times 5x \times 6x}{4 \times \frac{15\sqrt{7}x^2}{4}}$
 $= \frac{8}{\sqrt{7}}x$
Inradius, $r = \frac{\frac{15\sqrt{7}x^2}{4s}}{\frac{15}{2}x}$
 $= \frac{\sqrt{7}}{2}x$
 $\frac{R}{r} = \frac{\sqrt{7}}{\frac{\sqrt{7}x}{2}} = \frac{16}{7}$
(c)
In ΔDAP , $\tan 60^\circ = \frac{1}{AP}$ [$\because EQ = DP = 1$]
 $\swarrow AP = \frac{1}{\sqrt{3}}$
In ΔEAQ , $\tan 30^\circ = \frac{EQ}{AP + PQ}$
 $\Rightarrow \frac{1}{\sqrt{3}} + PQ = \sqrt{3}$
 $\Rightarrow PQ = \frac{2}{\sqrt{3}}$ km
 \therefore Speed of plane = $\frac{\text{Distance}}{\text{Time}}$
 $= \frac{\frac{2}{\sqrt{3}}}{\frac{10}{60\times60}} = 240\sqrt{3}$ km/h

74 (a)

72

Area of triangle = $\frac{1}{2} \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}$ = A rational number if vertices have integral coordinates only If triangle is equilateral, then area $=\frac{\sqrt{3}}{4}[(x_1-x_2)^2+(y_1-y_2)^2]$

=irrational quantity So, triangle cannot be equilateral 75 **(d)** $\frac{b-c}{a} = \frac{k(\sin B + \sin C)}{k \sin A}$ $= \frac{2 \sin \left(\frac{B+C}{2}\right) \cos \left(\frac{B-C}{2}\right)}{2 \sin \frac{A}{2} \cos \frac{A}{2}}$ $\Rightarrow \frac{b+c}{a} = \frac{\cos \left(\frac{B-C}{2}\right)}{\sin \frac{A}{2}}$ Similarly, $\frac{b-c}{a} = \frac{\sin\left(\frac{B-C}{2}\right)}{\cos\frac{A}{2}}$ 76 **(b)** Given, $\theta = \tan^{-1}\frac{3}{5} \Rightarrow \tan \theta_2 = \frac{3}{5} \dots (i)$ $\begin{array}{c}
 3 \\
 \overline{4} \\$ In $\triangle AOC$, $\tan \theta_1 = \frac{AC}{AO} = \frac{h}{160}$... (ii) and in $\triangle AOB$, $\tan(\theta_1 + \theta_2) = \frac{h}{40}$ $\Rightarrow \frac{\tan \theta_1 + \tan \theta_2}{1 - \tan \theta_1 \tan \theta_2} = \frac{h}{40}$ $\Rightarrow \frac{\frac{h}{160} + \frac{3}{5}}{1 - \frac{h}{160} \times \frac{3}{5}} = \frac{h}{40} \text{ [from Eqs. (i) and (ii)]}$ $\Rightarrow \frac{5[h+96]}{800-3h} = \frac{h}{40}$ $\Rightarrow h^2 - 200h + 6400 = 0$ $\Rightarrow (h - 160)(h - 40) = 0$ \Rightarrow *h* = 160 or *h* = 40 Hence, height of the vertical pole is 40 m

77 **(c)**

Let $A(x_1, y_1)$ and $B(x_2, y_2)$ be two points. Let *C* and *D* be the points of internal and external division of *AB* in the ratio $\lambda : 1$. Then, the coordinates of *C* and *D* are

$$\begin{pmatrix} \frac{\lambda x_2 + x_1}{\lambda + 1}, \frac{\lambda y_2 + y_1}{\lambda + 1} \end{pmatrix} \text{ and } \begin{pmatrix} \frac{\lambda x_2 - x_1}{\lambda - 1}, \frac{\lambda y_2 - y_1}{\lambda - 1} \end{pmatrix} \text{ respectively} \\ \therefore AC = \frac{\lambda}{\lambda + 1} AB \text{ and } AD = \frac{\lambda}{\lambda - 1} AB \\ \text{Clearly, } \frac{1}{AC} + \frac{1}{AD} = \frac{2}{AB} \Rightarrow AC, AB, AD \text{ are in H.P.} \\ \text{79 (d)} \\ \text{We have,} \\ A + B + C = 180^{\circ} \\ \Rightarrow 3B = 180 \qquad [\because A, B, C \text{ are in AP}] \\ \Rightarrow B = 60^{\circ} \\ \Rightarrow \cos B = \frac{1}{2} \\ \Rightarrow \frac{AB^2 + BC^2 - AC^2}{2AB \cdot BC} = \frac{1}{2} \\ \Rightarrow 36 + 49 - AC^2 = 6 \times 7 \Rightarrow AC^2 = 43 \Rightarrow AC \\ = \sqrt{43} \end{cases}$$

80 (a)

Let the point be P(h, k)It is given that difference of the distance from points A(3,0)and B(-3, 0) is 4 *ie*, PA - PB = 4 $\Rightarrow \sqrt{(h-3)^2 + k^2} - \sqrt{(h+3)^2 + k^2} = 4$ P(h, k)B'(-3,0) = A(3,0) $\Rightarrow \sqrt{(h-3)^2 + k^2} = 4 + \sqrt{(h+3)^2 + k^2}$ On squaring both sides, we get $(h-3)^2 + k^2 = 16 + (h+3)^2 + k^2 + 8\sqrt{(h+3)^2 + k^2}$ $\Rightarrow h^2 + 9 - 6h + k^2$ $= 16 + h^2 + 9 + 6h + k^2$ $+8\sqrt{(h+3)^2+k^2}$ $\Rightarrow -6h = 16 + 6h + 8\sqrt{(h+3)^2 + k^2}$ $\Rightarrow -8\sqrt{(h+3)^2 + k^2} = 12h + 16$ Again, squaring both sides, we get $64(h+3)^2 + k^2 = (12h+16)^2$ $\Rightarrow 64(h^2+9+6h+k^2)$ $= 144h^2 + 256 + 2.16.12h$ $\Rightarrow 64(h^2 + 9 + 6h + k^2) = 16(9h^2 + 16 + 24h)$ $\Rightarrow 4(h^2 + 9 + 6h + k^2) = 9h^2 + 16 + 24h$ $\Rightarrow 4h^2 + 36 + 24h + 4k^2 = 9h^2 + 16 + 24h$ $\Rightarrow 5h^2 - 4k^2 = 20$ $\Rightarrow \frac{h^2}{4} - \frac{k^2}{5} = 1$ Hence, the locus of points *P* is $\frac{x^2}{4} - \frac{y^2}{5} = 1$

81 **(b)**

$$: \cos C = \frac{a^{2} + b^{2} - c^{2}}{2ab}$$

$$\Rightarrow \cos^{2} C = \left(\frac{a^{2} + b^{2} - c^{2}}{2ab}\right)^{2}$$

$$\Rightarrow \cos^{2} C = \frac{\left[a^{4} + b^{4} + c^{4} + 2a^{2}b^{2} - 2c^{2}(a^{2} + b^{2})\right]}{4a^{2}b^{2}}$$

$$\Rightarrow \cos^{2} C = \frac{1}{2} [: a^{4} + b^{4} + c^{4} = 2c^{2}(a^{2} + b^{2}) \text{ given}]$$

$$\Rightarrow \cos C = \pm \frac{1}{\sqrt{2}}$$

$$\Rightarrow \angle C = 45^{\circ} \text{ or } 135^{\circ}$$
82 **(d)**
Locus, of *P* is $\left|\sqrt{x^{2} + y^{2} - 8y + 16} - x^{2} + y^{2} + 8y + 16 - x^{2} + y^{2} + 8y + 16 - x^{2} + y^{2} + 8y + 16 - x^{2} + y^{2} - 2 = \sqrt{x^{2} + y^{2} + 8y + 16} \sqrt{x^{2} + y^{2} - 8y + 16}$

$$\Rightarrow (x^{2} + y^{2} - 2)^{2} = (x^{2} + y^{2} - 8y + 16)^{2} - (8y)^{2}$$
On simplification, we get
$$\frac{y^{2}}{9} - \frac{x^{2}}{7} = 1$$
83 **(a)**
Given, $\sin \frac{A}{2} \sin \frac{C}{2} = \sin \frac{B}{2}$

$$\Rightarrow \sqrt{\frac{(s - b)(s - c)}{bc}} \sqrt{\frac{(s - a)(s - b)}{ab}}$$

$$= \sqrt{\frac{(s - a)(s - c)}{ac}}$$

$$\Rightarrow \frac{s - b}{b} = 1$$

$$\Rightarrow s = 2b$$
84 **(c)**
In ΔPRQ
 $\tan 60^{\circ} = \frac{30}{x}$

$$\Rightarrow x = 10\sqrt{3} \text{ m}$$

We know that, in triangle larger side has an larger angle opposite to it. Since, angles $\angle A$, $\angle B$ and $\angle C$

are in AP

$$\Rightarrow 2B = A + C$$

$$\therefore A + B + C = \pi$$

$$\Rightarrow B = 60^{\circ}$$

$$\therefore \cos B = \frac{a^{2} + c^{2} - b^{2}}{2ac}$$

$$\Rightarrow \cos 60^{\circ} = \frac{1}{2} = \frac{100 + a^{2} - 81}{20a}$$

$$\Rightarrow a^{2} + 19 = 10a$$

$$\Rightarrow a^{2} - 10a + 19 = 0$$

$$\therefore a = \frac{10 \pm \sqrt{100 - 76}}{2} = 5 \pm \sqrt{6}$$
88 (c)
Here, $\frac{1}{\sin^{2}\frac{c}{2}}, \frac{1}{\sin^{2}\frac{B}{2}} = \frac{1}{\sin^{2}\frac{B}{2}} - \frac{1}{\sin^{2}\frac{A}{2}},$

$$\Rightarrow \frac{ab}{(s-a)(s-b)} - \frac{ac}{(s-a)(s-c)}$$

$$= \frac{ac}{(s-a)(s-c)} - \frac{bc}{(s-b)(s-c)}$$

$$\Rightarrow (\frac{a}{s-a}) \left(\frac{b(s-c) - c(s-b)}{(s-a)(s-c)} \right)$$

$$= \left(\frac{c}{s-c} \right) \left(\frac{a(s-b) - b(s-a)}{(s-a)(s-b)} \right)$$

$$\Rightarrow ab + bc = 2ac \Rightarrow \frac{1}{c} + \frac{1}{a} = \frac{2}{b}$$
Hence, *a*, *b*, *c* are in HP
90 (c)
Let the vertices of triangle be P(1, 1), Q(-1, -1)
and $R(-\sqrt{3}, \sqrt{3})$

$$\therefore PQ = \sqrt{(1+1)^{2} + (1+1)^{2}} = 2\sqrt{2}$$

$$QR = \sqrt{(-\sqrt{3}+1)^{2} + (\sqrt{3}+1)^{2}}$$

$$= \sqrt{3 + 1 - 2\sqrt{3} + 3 + 1 + 2\sqrt{3}} = 2\sqrt{2}$$
and $RP = \sqrt{(-\sqrt{3}-1)^{2} + (\sqrt{3}-1)^{2}}$

$$= \sqrt{3 + 1 + 2\sqrt{3} + 3 + 1 - 2\sqrt{3}}$$

$$= 2\sqrt{2}$$

$$\Rightarrow PQ = QR = RP$$

$$\therefore Triangle is an equilateral triangle
91 (a)
Let the third vertex be (a, b)
$$\therefore Area of \Delta = \frac{1}{2} \begin{vmatrix} 0 & 0 & 1 \\ a & b & 1 \\ c & b & 1 \\ c & b & 1 \\ c & b & 1 \end{vmatrix} = \frac{1}{2} [[8a - 6b]]$$
As (*a*, *b*) are integers, so we take
(0, 0), (1, 1), (1, 2)$$

At (0, 0), $\Delta = 0$, it is not possible

At
$$(1, 1)\Delta = 1$$

At $(1, 2), \Delta = 2$
Here, we see that minimum area is 1
92 (d)
 $\left(\cot \frac{A}{2} + \cot \frac{B}{2}\right) \left(a \sin^2 \frac{B}{2} + b \sin^2 \frac{A}{2}\right)$
 $= \left(\frac{\cos \frac{A}{2} + \sin \frac{B}{2} + \cos \frac{B}{2} + \sin \frac{A}{2}}{\sin \frac{A}{2} \sin \frac{B}{2}}\right)$
 $= \frac{\sin \left(\frac{A+B}{2}\right) \left(a \sin^2 \frac{B}{2} + b \sin^2 \frac{A}{2}\right)}{\sin \frac{A}{2} \sin \frac{B}{2}}$
 $= \left(\cos \frac{C}{2}\right) \left(a \frac{\sin \frac{B}{2}}{\sin \frac{A}{2}} + b \frac{\sin^2 \frac{A}{2}}{\sin \frac{B}{2}}\right)$
 $= \sqrt{\frac{S(S-C)}{ab}} \left(a \frac{\sqrt{\frac{(S-a)(S-C)}{ac}}}{\sqrt{\frac{(S-b)(S-C)}{bc}}} + b \frac{\sqrt{\frac{(S-b)(S-C)}{bc}}}{\sqrt{\frac{(S-c)(S-C)}{ac}}}\right)$
 $= \sqrt{\frac{S(S-C)}{ab}} \left(\sqrt{\frac{(S-a)(S-C)}{\sqrt{(S-a)(S-c)}}} + b \frac{\sqrt{\frac{(S-b)(S-C)}{bc}}}{\sqrt{\frac{(S-a)(S-C)}{ac}}}\right)$
 $= \sqrt{S(S-C)} \left(\sqrt{\frac{(S-a)(S-b)}{\sqrt{(S-a)(S-b)}}}\right)$
 $= \sqrt{S(S-C)} \left(\frac{2S-a-b}{\sqrt{(S-a)(S-b)}}\right)$
 $= \sqrt{S(S-C)} \left(\frac{2S-a-b}{\sqrt{(S-a)(S-b)}}\right)$
 $= c \sqrt{\frac{(S(S-C))}{\sqrt{(S-a)(S-b)}}} = c \cot \frac{C}{2}$
93 (c)
Given lines $y = mx, y = 2, y = 6$
 $\frac{y}{\sqrt{\frac{y}{y} = mx}}}{\sqrt{\frac{y}{y} = 6}}$
 $\frac{y}{\sqrt{\frac{y}{y} = mx}}}{\sqrt{\frac{y}{y} = 6}}$
 $x' \sqrt{\frac{x}{\sqrt{\frac{y}{y} = mx}}}} = x$
Coordinates of points A and B are $\left(\frac{2}{m}, 2\right), \left(\frac{6}{m}, 6\right)$
respectively
 $\therefore AB = \sqrt{\left(\frac{2}{m} - \frac{6}{m}\right)^2 + (2-6)^2} < 5 \text{ [given]}$
 $\Rightarrow \left(\frac{2}{m} - \frac{6}{m}\right)^2 + (4)^2 < 25$

$$\Rightarrow \left(\frac{2}{m} - \frac{6}{m}\right)^2 < 9 \Rightarrow -3 < \frac{2}{m} - \frac{6}{m} < 3$$

$$\Rightarrow -\frac{4}{3} > m > \frac{4}{3}$$

$$\therefore m \in \left] -\infty, -\frac{4}{3} \left[\cup \right] \frac{4}{3}, \infty \right[$$

94 (c)
By sine rule

$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c} \quad (say)$$

$$\therefore (b - c) \sin A + (c - a) \sin B + (a - b) \sin C$$

$$= (b - c)ak + (c - a)bk + (a - b)kc$$

$$= k[ab - ac + bc - ab + ac - bc]$$

$$= 0$$

95 (a)
Given that, $a = 3, b = 5, c = 6$
Now, $s = \frac{a+b+c}{2} = 7$

$$\therefore \Delta = \sqrt{s(s-a)(s-b)(s-c)}$$

$$= \sqrt{7(7-3)(7-5)(7-6)}$$

$$= \sqrt{7(4 + 2 + 1)} = 2\sqrt{14}$$

$$\therefore r = \frac{\Delta}{s} = \frac{2\sqrt{14}}{7} = \sqrt{\frac{8}{7}}$$

96 (a)

$$\cos B = \frac{3^2 + 4^2 - 5^2}{2(3)(4)} = \frac{9 + 16 - 25}{2(3)(4)} = 0$$

$$\Rightarrow \angle B = 90^{\circ}$$

$$\therefore \sin \frac{B}{2} + \cos \frac{B}{2} = \sin 45^{\circ} + \cos 45^{\circ}$$

$$= \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} = \sqrt{2}$$

97 (b)

$$\ln \Delta CAD \ \tan 30^{\circ} = \frac{CD}{2}$$

In
$$\triangle CAD$$
, $\tan 30^\circ = \frac{CD}{AC}$

$$A \xrightarrow{130^{\circ}} 60^{\circ} C$$

$$\Rightarrow \frac{1}{\sqrt{3}} = \frac{h}{120 + x}$$

$$\Rightarrow \sqrt{3}h = 120 + x \quad \dots(i)$$

and in $\triangle CBD$, $\tan 60^\circ = \frac{CD}{BC}$

$$\Rightarrow \sqrt{3} = \frac{h}{x} \Rightarrow h = \sqrt{3}x \quad \dots(ii)$$

From Eqs. (i) and (ii), we get, $x = 60$ m
On putting $x = 60$ in Eq.(i), we get
 $h = 60\sqrt{3}$ m
98 (c)
Area of triangle = $\frac{1}{2}[x(1-2) + 1(2-0) + 0(0 - 1)]$

1)]
=
$$\frac{1}{2}[-x+2+0] = 4$$
 [given]
 $\Rightarrow 2-x=8 \Rightarrow x = -6$

102 (a)

The sum of the distance of a point *P* from two perpendicular lines in aplane is 1, then the locus of *P* is a rhombus

103 (a)

In $\triangle DCE$, tan $30^\circ = \frac{150}{CD}$ $\Rightarrow CD = \sqrt{3} \times 150$ F ≱ 50 ft E 150 ft 300 +300 ft+ DY 300 ft ł R Now, In $\triangle DCF$, $\tan \theta = \frac{DF}{CD} = \frac{200}{\sqrt{3}.150} = \frac{4}{3\sqrt{3}}$ 104 **(b)** $2\left(a\sin^2\frac{C}{2} + c\sin^2\frac{A}{2}\right)$ $= 2\left(a\frac{(s-a)(s-b)}{ab} + c\frac{(s-b)(s-c)}{bc}\right)$ $=2\left(\frac{(s-b)}{b}(s-a+s-c)\right)$ $=\frac{2}{b}(s-b)b$ = 2 (s-b) = a - b + c105 (c) Let *H* be the orthocenter of $\triangle OAB$

$$\therefore \text{ (slope of } OP\text{). (slope of } BA\text{)} = -1$$

$$\Rightarrow \quad \left(\frac{y-0}{3-0}\right) \cdot \left(\frac{4-0}{3-4}\right) = -1$$

$$\Rightarrow \quad -\frac{4}{3}y = -1$$

$$\Rightarrow \quad y = \frac{3}{4}$$

∴ Required orthocentre= $(3, y) = \left(3, \frac{3}{4}\right)$

106 (b)

Let the fourth vertex be D(x, y)

We know that two diagonals of a parallelogram are bisect each other

$$\therefore \frac{-1+7}{2} = \frac{2+x}{2} \Rightarrow x = 4$$

and $\frac{-6+2}{2} = \frac{-5+y}{2} \Rightarrow y = 1$
 \therefore Fourth vertex of *D* is (4, 1)
107 (c)
We have, $\cos A \cos B + \sin A \sin B \sin C = 1$
 $\Rightarrow 2 \cos A \cos B + 2 \sin A \sin B \sin C = 2$
 $\Rightarrow 2 \cos A \cos B + 2 \sin A \sin B \sin C$
 $= \cos^2 A + \sin^2 A + \cos^2 B + \sin^2 B$
 $\Rightarrow (\cos A - \cos B)^2 + (\sin A - \sin B)^2$
 $+ 2 \sin A \sin B (1 - \sin C) = 0$
 $\Rightarrow \cos A - \cos B = 0, \quad \sin A - \sin B = 0$
and $1 - \sin C = 0$
 $\Rightarrow A = B$ and $C = 90^{\circ}$
108 (d)
We have, $A + B + C = 180^{\circ}$
 $\Rightarrow a = b$ and $C = 90^{\circ}$
108 (d)
We have, $A + B + C = 180^{\circ}$
 $\Rightarrow tan 90^{\circ} = -tan(B + C)$
 $\Rightarrow tan B tan C = 1$
109 (b)
Since, the given points lies on a line, then
 $\begin{vmatrix} 1 & 1 & 1 \\ -5 & 5 & 1 \\ 13 & \lambda & 1 \end{vmatrix}$
 $\Rightarrow 1(5 - \lambda) - 1(-5 - 13) + 1(-5\lambda - 65) = 0$
 $\Rightarrow -6\lambda = 42 \Rightarrow \lambda = -7$
110 (a)
The vertices of triangle are (0, 0), (3, 0) and (0, 4).
It is a right angled triangle, therefore
circumcentre is $(\frac{3}{2}, 2)$
111 (c)
 $BC = 5, BA = 10$
 $(-1, -7)$
 $\frac{A}{10}$

(1, 4)Let *D* divides *AC* in the ratio 2:1

 $R \swarrow$ (5, 1)


```
\Rightarrow \frac{4}{3} = \frac{150 - h}{60} \quad [\because CD = EF]
                   \Rightarrow 80 = 150 - h
                   \Rightarrow h = 70 m
                   \therefore AC = 80 m and CD = 60 m
                   \Rightarrow AD = \sqrt{AC^2 + CD^2}
                   =\sqrt{6400+3600}
                   =\sqrt{10000} = 100 \text{ m}
115 (d)
                   In \triangle APC, \sin(\angle PAC) = \frac{CP}{AC}
                   \Rightarrow AC = \frac{r}{\sin\frac{\alpha}{2}} = r \operatorname{cosec} \frac{\alpha}{2} \dots (i)
                  Again, in \triangle ABC, sin \beta = \frac{BC}{AC}
                   \Rightarrow BC = AC \sin \beta
                   \Rightarrow H = r \operatorname{cosec}\left(\frac{\alpha}{2}\right) \sin\beta [from Eq.(i)]
116 (b)
                   Since, \cos A = \frac{b^2 + c^2 - a^2}{2bc}
                   \Rightarrow b^2 - 2bc\cos A + (c^2 - a^2) = 0
                   It is given that b_1 and b_2 are the roots of this
                   equation
                  Therefore, b_1 + b_2 = 2c \cos A and b_1 b_2 = c^2 - b_2 + b_2 = c^2 - b_2 + b_2 = c^2 - b_2 + b_2 + b_2 + b_2 + b_2 = c^2 - b_2 + 
                   a^2
                   \Rightarrow 3b_1 = 2c \cos A and 2b_1^2 = c^2 - a^2
                   [\because b_2 = 2b_1]
                 \Rightarrow 2\left(\frac{2c}{3}\cos A\right)^2 = c^2 - a^2
                  \Rightarrow 8c^2 (1 - \sin^2 A) = 9c^2 - 9a^2
                  \Rightarrow \sin A = \frac{9a^2 - c^2}{8c^2}
117 (a)
                   \because (\sqrt{a} + \sqrt{b} + \sqrt{c})(\sqrt{a} + \sqrt{b} - \sqrt{c})
                                                                               =\left(\sqrt{a}+\sqrt{b}\right)^2-c
                   = a + b - c + 2\sqrt{ab} > 0
                   \therefore \sqrt{a} + \sqrt{b} > \sqrt{c}
118 (a)
                   In \triangle ABC, \angle A = 30^{\circ}, BC = 10 cm
                   O is the centre of circle
                   \therefore \ \angle BOC = 60^{\circ}
                   and OB and OC are the radius
                   \therefore \ \angle OBC = \angle OCB = 60^{\circ}
```

 $\Rightarrow \Delta OBC$ is an equilateral triangle ∴ radius of circle is OB = OC = BC = 10 cm Now, area of the circumcircle is πr^2 $=\pi(10)^2 = 100\pi$ sq cm 300 0 60⁶ | = 10 cm = |119 (b) We have, $R = \frac{abc}{4\Delta}$ and $r = \frac{\Delta}{s}$ $\therefore \ \frac{R}{r} = \frac{abc}{4\Delta} \cdot \frac{s}{\Delta}$ $=\frac{abc}{4(s-a)(s-b)(s-c)}$ Since, a: b: c = 4: 5: 6 $\Rightarrow \frac{a}{4} = \frac{b}{5} = \frac{c}{6} = k \quad (\text{say})$ Thus, $\frac{R}{r} = \frac{(4k)(5k)(6k)}{4\left(\frac{15k}{2} - 4k\right)\left(\frac{15k}{2} - 5k\right)\left(\frac{15k}{2} - 6k\right)}$ $=\frac{120k^3\cdot 2}{k^3\cdot 7\cdot 5\cdot 3}=\frac{16}{7}$ 120 **(b)** Given equation of lines are x = 0, y = 0 and 3x + 4y = 12Incentre is on the line y = x (Angled bisector of OA and OB) (0, 3)*B* $3^{3} + \times$ $3^{3} + \times$ (4, 0)A X Angle bisector of y = 0 and 3x + 4y = 12 is $\pm 5y = 3x + 4y - 12$ $\Rightarrow 3x + 9y = 12$ and 3x - y = 12Here, 3x + 9y = 12 internal bisector So, intersection point of y = x and 3x + 9y = 12is (1, 1) : The required point of the incentre of triangle is (1, 1)121 (a) $BP - AP = \pm 6$ or $BP = AP \pm 6$ $\Rightarrow \sqrt{x^2 + (y+4)^2} = \sqrt{x^2 + (y-4)^2} \pm 6$ Squaring and simplification, we get $4y - 9 = \pm 3\sqrt{x^2 + (y - 4)^2}$

Again squaring, we get $9x^2 - 7y^2 + 63 = 0$ 122 (c) Let *OP* be the tower whose height is *h* metres In $\triangle OAP$, $\tan \alpha = \frac{OP}{OA}$ $\Rightarrow 0A = h \cot \alpha \dots (i)$ In $\triangle OBP$, tan $\beta = \frac{OP}{OB}$ $\Rightarrow OB = h \cot \beta$...(ii) Now, in $\triangle OAB$, $AB^2 = OA^2 + OB^2$ $\Rightarrow d^2 = h^2 (\cot^2 \alpha + \cot^2 \beta)$ [from Eq. (i) and (ii)] $\Rightarrow h = \frac{d}{\sqrt{\cot^2 \alpha + \cot^2 \beta}}$ 123 (d) Since, the coordinates of P are (1, 0)Let any point Q on $y^2 = 8x$ is $(2t^2, 4t)$ Again, let mid point of PQ is (h, k), so $h = \frac{2t^2 + 1}{2} \Rightarrow 2h = 2t^2 + 1$...(i) and $k = \frac{4t+0}{2} \Rightarrow t = \frac{k}{2}$...(ii) on putting the value of t from Eq. (ii) in Eq. (i), we get $2h = \frac{2k^2}{4} + 1 \quad \Rightarrow \quad 4h = k^2 + 2$ Hence, locus of (h, k) is $y^2 - 4x + 2 = 0$ 124 (b) Let P(t, t) divides AB in the ratio k: 1, then $\frac{3k+k}{k+1} = t$ and $\frac{5k+2}{k+1} = t$ $\Rightarrow \frac{3k+k}{k+1} = \frac{5k+2}{k+1}$ $\Rightarrow 4k - 5k = 2$ $\Rightarrow k = -2$ 125 (c) Since, a, b and c, the sides of a triangle are in AP $\therefore 2b = a + c$...(i) We know that, $\cos A = \frac{b^2 + c^2 - a^2}{2bc}$

$$\cos A = \frac{b^2 + c^2 - (2b - c)^2}{2bc}$$
 [from Eq. (i)]

⇒

$$\Rightarrow \cos A = \frac{b^2 + c^2 - 4b^2 - c^2 + 4bc}{2bc}$$
$$\Rightarrow \cos A = \frac{4c - 3b}{2c}$$

126 **(b)**

The intersection points of given lines are

$$(0,0), \left(\frac{5}{2}, 5\right), \left(\frac{5}{3}, 5\right)$$

$$\therefore \text{ Area of } \Delta = \frac{1}{2} \begin{vmatrix} 0 & 0 & 1 \\ \frac{5}{2} & 5 & 1 \\ \frac{5}{3} & 5 & 1 \end{vmatrix}$$

$$= \frac{1}{2} \left[1 \left(\frac{25}{2} - \frac{25}{3} \right) \right]$$

$$= \frac{1}{2} \times \frac{25}{6} = \frac{25}{12} \text{ sq units}$$

7 (d)

127 **(d)**

Given that,

$$\tan \theta = \frac{4}{3}$$
 and $\tan \phi = \frac{5}{2}$...(i)
 $angle = \frac{4}{3}$ and $\tan \phi = \frac{5}{2}$...(i)
 $angle = \frac{4}{3}$ and $\tan \phi = \frac{5}{2}$...(i)
 $angle = \frac{150}{d}$
 $angle$

$$\Rightarrow \frac{\sqrt{3}}{2} \cos B + \frac{1}{2} \sin B - 2\sin B = 0$$

$$\Rightarrow \frac{\sqrt{3}}{2} \cos B - \frac{3}{2} \sin B = 0$$

$$\Rightarrow \sqrt{3} \left(\frac{1}{2} \cos B - \frac{\sqrt{3}}{2} \sin B\right) = 0$$

$$\Rightarrow \sqrt{3} [\cos(60^{\circ} + B)] = 0$$

$$\Rightarrow 60^{\circ} + B = 90^{\circ}$$

$$\Rightarrow B = 30^{\circ}$$

$$\Rightarrow A = 90^{\circ}$$

Hence, it is right angled triangle
129 (c)

$$\begin{vmatrix} 3q & 0 & 1 \\ 0 & 3p & 1 \\ 1 & 1 & 1 \end{vmatrix} = 0$$

$$\Rightarrow 9pq = 3p + 3q$$

$$\Rightarrow \frac{1}{p} + \frac{1}{q} = 3$$

130 (c)
Here, $s = \frac{15 + 36 + 39}{2} = 45$

$$\therefore \sin \frac{C}{2} = \sqrt{\frac{(s - a)(s - b)}{ab}}$$

$$\Rightarrow \sin \frac{C}{2} = \sqrt{\frac{(45 - 15)(45 - 36)}{15 \times 36}}$$

$$= \sqrt{\frac{30 \times 9}{15 \times 36}} = \frac{1}{\sqrt{2}}$$

131 (c)
Since, $\frac{c}{\sin c} = 2R \Rightarrow c = 2R \quad [\because C = 90^{\circ}] \dots(i)$
And $\tan \frac{C}{2} = \frac{r}{s - c}$

$$\Rightarrow \tan \frac{\pi}{4} = \frac{r}{s - c}$$

$$\therefore r = s - c$$

$$\Rightarrow a + b - c = 2r \dots(ii)$$

From Eqs. (i) and (ii), we get
 $2(r + R) = a + b$
132 (b)
Let *BC* be the light house

$$\sum_{\substack{15^{\circ} \\ 0 \\ 15^{\circ} \\ 15^$$

$$\Rightarrow \frac{\sin 60^{\circ}}{\sin(60^{\circ} + d)} = \sqrt{\frac{3}{2}}$$

$$\Rightarrow \frac{\sqrt{3}}{2\sin(60^{\circ} + d)} = \sqrt{\frac{3}{2}}$$

$$\Rightarrow \sin(60^{\circ} + d) = \frac{1}{\sqrt{2}}$$

$$\Rightarrow 60^{\circ} + d = 45^{\circ} \Rightarrow d = -15^{\circ}$$
So, $\angle A = 75^{\circ}$
137 (b)
In $\triangle ABC$, $\tan 30^{\circ} = \frac{87}{x}$

$$\Rightarrow x = 87 \times \sqrt{3}$$

$$aggregation = \frac{1}{30^{\circ}} + \sqrt{3} \times \frac{1}{58} \times 1000} = \frac{9\sqrt{3}}{10} \text{ min}$$
138 (c)
It is given that the centroid of the triangle formed by the points $(a, b), (b, c)$ and (c, a) is at the origin
$$\therefore \left(\frac{a + b + c}{3}, \frac{a + b + c}{3}\right) = (0,0)$$

$$\Rightarrow a + b + c = 0 \Rightarrow a^{3} + b^{3} + c^{3} = 3 abc$$
139 (d)
We have,
$$\Delta = \text{Area of } \Delta BC$$

$$\Rightarrow \Delta = \frac{1}{2} \times AB \times = \frac{1}{2} \times 3 \times 4 = 6 \text{ sq. units}$$

$$s = \text{Semi - perimeter} = \frac{1}{2}(3 + 4 + 5) = 6 \text{ units}$$

$$\therefore r = \text{ In - radius } = \frac{A}{s} = 1$$
Hence, the coordinates of the incentre are (1, 1)
$$aggregation = \frac{1}{2} \times AB \times \frac{1}{2} \times 2 = 2^{2}$$

 $\Rightarrow \cos^2 C$ $= \left[\frac{a^4 + b^4 + c^4 + 2a^2b^2 - 2c^2(a^2 + b^2)}{4a^2b^2}\right]$ $= \left[\frac{2c^2(a^2+b^2)+2a^2b^2-2c^2(a^2+b^2)}{4a^2b^2}\right]$ [from Eq. (i)] $\Rightarrow \cos^2 C = \frac{1}{2}$ $\Rightarrow \cos C = \pm \frac{1}{\sqrt{2}}$ $\Rightarrow \angle C = 45^{\circ} \text{ or } 135^{\circ}$ 141 (c) Let AB = AC and $\angle A = 120^{\circ}$ \therefore Area of triangle = $\frac{1}{2}a^2 \sin 120^\circ$ Where, a = AD + BD $=\sqrt{3}$ tan 30° + $\sqrt{3}$ cot 15° $= 1 + \sqrt{3} \left(\frac{1 + \tan 45^{\circ} \tan 30^{\circ}}{\tan 45^{\circ} - \tan 30^{\circ}} \right)$ $= 1 + \sqrt{3} \left(\frac{\sqrt{3} + 1}{\sqrt{3} - 1} \right)$ $\therefore a = 4 + 2\sqrt{3}$ \Rightarrow Area of triangle = $\frac{1}{2} \left(4 + 2\sqrt{3}\right)^2 \left(\frac{\sqrt{3}}{2}\right) = 12 + 12$ $7\sqrt{3l}$ 142 (b) Area = $\frac{1}{2}$ × base × altitude $=\frac{1}{2} \times (2x \cos \theta) \times (x \sin \theta)$ $=\frac{1}{2}x^2\sin 2\theta$ (Since, maximum value of sin 2θ is 1) \therefore Maximum area $=\frac{1}{2}x^2$ 143 (d) Here, $\tan \frac{A}{2} \tan \frac{C}{2} = \frac{1}{3}$ $\Rightarrow \sqrt{\frac{(s-b)(s-c)}{s(s-a)}} \cdot \frac{(s-b)(s-a)}{s(s-c)} = \frac{1}{3}$

 $\Rightarrow \frac{s-b}{s} = \frac{1}{3} \Rightarrow 2s = 3b$ $\Rightarrow 2b = a + c$ \Rightarrow a, b, c are in AP 144 (d) Let the vertices of a triangle are P(2, 1), Q(5, 2)and R(3, 4) and A(x, y) be the circumcentre of ΔPQR $\therefore AP^2 = AQ^2$ $\Rightarrow (2-x)^2 + (1-y)^2 = (5-x)^2 + (2-y)^2$ $\Rightarrow \quad 4 + x^2 - 4x + 1 + y^2 - 2y$ $= 25 + x^2 - 10x + 4 + v^2 - 4v$ $\Rightarrow 6x + 2y = 24$ $\Rightarrow 3x + y = 12$...(i) and $AP^2 = AR^2$ $\Rightarrow (2-x)^2 + (1-y)^2 = (3-x)^2 + (4-y)^2$ $\Rightarrow 4 + x^2 - 4x + 1 + y^2 - 2y$ $= 9 + x^{2} - 6x + 16 + y^{2} - 8y$ $\Rightarrow 2x + 6y = 20$ \Rightarrow x + 3y = 10 ...(ii) On solving Eqs. (i) and (ii), we get $x = \frac{13}{4}$ and $y = \frac{9}{4}$ \therefore Circumcentre is $\left(\frac{13}{4}, \frac{9}{4}\right)$ 145 (c) (a+b+c)(b+c-a) = kbc $\Rightarrow 2s(2s-2a) = kbc$ $\Rightarrow \frac{s(s-a)}{hc} = \frac{k}{4}$ $\Rightarrow \cos^2\left(\frac{A}{2}\right) = \frac{k}{4}$ $\therefore 0 < \cos^2\left(\frac{A}{2}\right) < 1$ $\therefore 0 < \frac{k}{4} < 1$ $\Rightarrow 0 < k < 4$ 146 (d) $\therefore \text{ Area of } \Delta PBC = \frac{1}{2} \begin{vmatrix} \alpha & \beta & 1 \\ -3 & 5 & 1 \\ 4 & -2 & 1 \end{vmatrix}$ $=\frac{1}{2}|7\alpha + 7\beta - 14|$ Also, Area of $\triangle ABC = \frac{1}{2} \begin{vmatrix} 6 & -3 & 1 \\ -3 & 5 & 1 \\ 4 & 2 & 1 \end{vmatrix}$ $=\frac{1}{2}|42-21-14|=\frac{7}{2}$ $\therefore \frac{\text{Area of } \Delta PBC}{\text{Area of } \Delta ABC} = \frac{\frac{1}{2} |\alpha + \beta - 2|}{\frac{7}{2}}$ $= |\alpha + \beta - 2|$ 147 **(b)** Let DP is clock tower standing at the middle point

D of BC
Let
$$\angle PAD = \alpha = \cot^{-1} 3.2 \Rightarrow \cot \alpha = 3.2$$

 $A = -100 \text{ m} = B$
and $\angle PBD = \beta = \csc^{-1}2.6$
 $\Rightarrow \csc \beta = 2.6$
 $\therefore \cot \beta = \sqrt{(\csc^2\beta - 1)}$
 $= \sqrt{5.76} = 2.4$
In $\triangle PAD$ and PBD ,
 $AD = h \cot \alpha = 3.2 h$
and $BD = h \cot \beta = 2.4 h$
In $\triangle ABD$, $AB^2 = AD^2 + BD^2$
 $\Rightarrow 100^2 = [(3.2)^2 + (2.4)^2]h^2 = 16h^2$
 $\Rightarrow h = \frac{100}{4} \Rightarrow h = 25 \text{ m}$
(c)

$$a \cot A + b \cot B + c \cot C$$

= $\frac{a}{\sin A} \cos A + \frac{b}{\sin B} \cos B + \frac{c}{\sin C} \cos C$
= $2R (\cos A + \cos B + \cos C)$
= $2R \left(1 + \frac{r}{R}\right) = 2(r + R)$

150 (a)

Given pair of lines are rotated about the origin by $\pi/6$ in the anti-clockwise sense.

$$\therefore \quad x = x' \cos \frac{\pi}{6} - y' \sin \frac{\pi}{6} = \frac{\sqrt{3}x' - y'}{2}$$

and $y = x' \sin \frac{\pi}{6} + y' \cos \frac{\pi}{6} = \frac{x' + \sqrt{3}y'}{2}$

on putting the values of *x* and *y* in given pair of lines, we get

$$\sqrt{3} \left(\frac{\sqrt{3}x' - y'}{2}\right)^2 - 4 \left(\frac{\sqrt{3}x' - y'}{2}\right) \left(\frac{x' + \sqrt{3}y'}{2}\right) + \sqrt{3} \left(\frac{x' + \sqrt{3}y'}{2}\right)^2 = 0$$

$$\Rightarrow \sqrt{3} \left(3x'^2 + y'^2 - 2\sqrt{3}x'y'\right) - 4 \left(\sqrt{3}x'^2 3x'y' - x'y' - \sqrt{3}y'^2\right) + \sqrt{3} \left(x'^2 + 3y'^2 + 2\sqrt{3}x'y'\right) = 0$$

$$\Rightarrow 3\sqrt{3}x'^2 + \sqrt{3}y'^2 - 6x'y' - 4\sqrt{3}x'^2 - 8x'y' + 4\sqrt{3}y'^2 + \sqrt{3}x'^2 + 3\sqrt{3}y'^2 + 6x'y' = 0$$

$$\Rightarrow 8\sqrt{3}y'^2 - 8x'y' = 0$$

$$\Rightarrow \sqrt{3}y'^2 - x'y' = 0$$

$$\therefore \text{ Required equation is } \sqrt{3}y^2 - xy = 0$$

151 **(c)** Using sine rule, $\frac{\sin A}{a} = \frac{\sin B}{b}$ $\Rightarrow \frac{\frac{2}{3}}{\frac{2}{3}} = \frac{\sin B}{3}$ $\Rightarrow \sin B = 1$ $\Rightarrow B = 90^{\circ}$ 152 (a) since, b, c and a are in AP By sine rule, $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ $\Rightarrow a = \frac{b}{\sin B} = \frac{c}{\sin C} \quad [\because \angle A = 90^{\circ}]$ $\Rightarrow \sin B = \frac{b}{a}, \sin C = \frac{c}{a}$ 153 (d) $2a^2 + 4b^2 + c^2 = 4ab + 2ac$ $\Rightarrow a^{2} + (2b)^{2} - 4ab + a^{2} + c^{2} - 2ac = 0$ $\Rightarrow (a-2b)^2 + (a-c)^2 = 0$ $\Rightarrow a = 2c = c$ $\cos B = \frac{a^2 + c^2 - b^2}{2ac}$ $= \frac{c^{2} + c^{2} - \left(\frac{c}{2}\right)^{2}}{2 \times c \times c} = \frac{2c^{2} - \frac{c^{2}}{4}}{2c^{2}}$ $\Rightarrow \cos B = \frac{7}{8}$

Given, *M* divides *AB* in the ratio
$$b : a$$
 (externally)

$$\therefore x = \frac{ba \cos \beta - ba \cos \alpha}{b - a}$$
and $y = \frac{ab \sin \beta - ab \sin \alpha}{b - a}$

$$\Rightarrow \frac{x}{y} = \frac{\cos \beta - \cos \alpha}{\sin \beta - \sin \alpha}$$

$$\Rightarrow \frac{x}{y} = \frac{2 \sin \left(\frac{\alpha + \beta}{2}\right) \sin \left(\frac{\alpha - \beta}{2}\right)}{2 \cos \left(\frac{\alpha + \beta}{2}\right) \sin \left(\frac{\beta - \alpha}{2}\right)}$$

$$\Rightarrow x \cos \left(\frac{\alpha + \beta}{2}\right) + y \sin \left(\frac{\alpha + \beta}{2}\right) = 0$$
155 (a)
In $\Delta D AB \tan \theta = \frac{64}{2}$

In
$$\Delta DAB$$
, tan θ =

90°-θ

64

d

EE 00

⇒ $d = 36 \tan \theta$...(ii) On multiplying Eqs. (i) and (ii), we get $d^2 = 36 \times 64 \Rightarrow d = 48$

156 **(b)**

Let *BC* be the declivity and *BA* be the tower \therefore In \triangle *ABC*, on applying sine rule

$$\frac{BC}{\sin 75^{\circ}} = \frac{AB}{\sin 30^{\circ}}$$

$$\Rightarrow AB = \frac{80 \sin 30^{\circ}}{\sin 75^{\circ}}$$

$$= \frac{40 \times 2\sqrt{2}}{\sqrt{3} + 1} = 40(\sqrt{6} - \sqrt{2}) \text{ft}$$

$$A = \frac{75^{\circ}}{30^{\circ}} C$$

$$B = \frac{100}{30^{\circ}} C$$

157 (c)

Let the points be $B(x_1, y_1)$ and $D(x_2, y_2)$ and coordinates of mid point of *BD* are $\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$

And coordinates of mid point of AC are (0, 1) We know that mid point of both the diagonals lie on the same point *E*.

 $\begin{array}{l} \therefore \quad \frac{x_1 + x_2}{2} = 0 \text{ and } \frac{y_1 + y_2}{2} = 1 \\ \Rightarrow \quad x_1 + x_2 = 0 \quad \dots(i) \\ \text{and } y_1 + y_2 = 2 \quad (ii) \\ \text{also, slope of } BD \times \text{slope of } AC = -1 \\ \frac{(y_1 - y_2)}{(x_1 - x_2)} \times \frac{(3 + 1)}{(0 - 0)} = -1 \\ \Rightarrow \quad y_1 - y_2 = 0 \quad \dots(iii) \\ \text{On solving Eqs. (ii) and (iii), we get} \\ y_1 = 1, y_2 = 1 \\ \text{Now, slope of } AB \times \text{slope of } BC = -1 \\ \Rightarrow \quad \frac{(y_1 + 1)}{(x_1 - 0)} \times \frac{(y_1 - 3)}{(x_1 - 0)} = -1 \\ \Rightarrow \quad (y_1 + 1)(y_1 - 3) = -x_1^2 \\ \Rightarrow \quad 2(-2) = -x_1^2 \quad [\because y_1 = 1] \\ \Rightarrow \quad x_1 = \pm 2 \\ \therefore \text{ The required points are (2, 1) and (-2, 1)} \end{array}$

The diagonals meet at the mid point of *AC*, *ie* at (3, 2) which lies on y = 2x + c

C(5, 1) \vec{L} В (1, 3) $\therefore c = -4$ Let $B = (\alpha, 2\alpha - 4)$ $\therefore AB \perp BC$ $\Rightarrow \left(\frac{2\alpha-7}{\alpha-1}\right)\left(\frac{2\alpha-5}{\alpha-5}\right) = -1$ $\therefore \ \alpha^2 - 6\alpha + 8 = 0$ $\Rightarrow \alpha = 2.4$ The other two vertices are (2, 0) and (4, 4)159 (c) Given, $r_3 - r = r_1 + r_2$ $\Rightarrow 4R \sin \frac{C}{2} \left(\cos \frac{A}{2} \cos \frac{B}{2} - \sin \frac{B}{2} \sin \frac{A}{2} \right)$ $=4R\cos{\frac{C}{2}}\left[\sin{\frac{A}{2}}\cos{\frac{B}{2}}+\cos{\frac{A}{2}}\sin{\frac{B}{2}}\right]$ $\Rightarrow \sin\frac{C}{2} \left[\cos\left(\frac{A+B}{2}\right) \right] = \cos\frac{C}{2} \left[\sin\left(\frac{A+B}{2}\right) \right]$ $\Rightarrow \sin \frac{C}{2} \left[\cos \left(\frac{\pi}{2} - \frac{C}{2} \right) \right] = \cos \frac{C}{2} \left[\sin \left(\frac{\pi}{2} - \frac{C}{2} \right) \right]$ $\left[\because A + B + C = \pi \Rightarrow \frac{A}{2} + \frac{B}{2} = \frac{\pi}{2} - \frac{C}{2} \right]$ $\Rightarrow \sin^2 \frac{C}{2} = \cos^2 \frac{C}{2} \Rightarrow \tan \frac{C}{2} = 1$ $\Rightarrow \angle C = \frac{\pi}{2}$ We know, $A + B + C = \pi \Rightarrow A + B = \frac{\pi}{2}$ 160 (d) Given a = 3, b = 4, c = 5 $\Rightarrow c^2 = a^2 + b^2$ 3 Therefore, it is a right angled triangle at C $\therefore R = \frac{1}{2}c = \frac{5}{2}$ and $r = \frac{\Delta}{s} = \frac{\frac{1}{2} \times 3 \times 4}{\frac{12}{2}} = 1$: Distance between incentre and circumcentre $=\sqrt{R^2-2Rr}$ $= \left| \left(\frac{5}{2}\right)^2 - 2 \cdot \frac{5}{2} \cdot 1 \right|$ $= \sqrt{\frac{5}{2}}\sqrt{\frac{5}{2}} - 2 = \frac{\sqrt{5}}{2}$

161 (d)

Hence, one of the line on which third vertex lies is $x = \frac{a}{2}$

162 (c)

Draw *BE* perpendicular to *CA* produced, then $BD = DC = \frac{a}{2}$ and EA = AC = bIn $\triangle AEB$, $\cos(\pi - A) = \frac{b}{c}$ $\Rightarrow \cos A = -\frac{b}{c}$ $\Rightarrow \frac{b^2 + c^2 - a^2}{2bc} = -\frac{b}{c}$ $\Rightarrow a^2 = 3b^2 + c^2$ $\therefore \cos B = \frac{c^2 + a^2 - b^2}{2ac}$ $= \frac{c^2 + 3b^2 + c^2 - b^2}{2ca} = \frac{b^2 + c^2}{ca}$

164 (d)

Let the sides of $\triangle ABC$ be a = n, b = n + 1, c = n + 2, where *n* is a natural number. Then, *C* is the greatest and *A* is the least angle As given C = 2A \therefore sin $C = \sin 2A = 2 \sin A \cos A$ \therefore $kc = 2ka \frac{b^2 + c^2 - a^2}{2bc}$ $\Rightarrow bc^2 = a(b^2 + c^2 - a^2)$ On substituting the values of *a*, *b*, *c*, we get $(n + 1)(n + 2)^2 = n[(n + 1)^2 + (n + 2)^2 - n^2]$ $= n(n^2 + 6n + 5)$ = n(n + 1)(n + 5) $\Rightarrow (n + 1)[(n + 2)^2 - n(n + 5)] = 0$

Since, $n \neq 1$ Thus, $(n+2)^2 = n(n+5)$ \Rightarrow $n^2 + 4n + 4 = n^2 + 5n$ \Rightarrow n = 4Hence, the sides of the triangle are 4, 5 and 6 165 (c) $\frac{b^2 - c^2}{a \sin(B - C)} = \frac{2R^2(\sin^2 B - \sin^2 C)}{2R \sin A \sin(B - C)}$ 3. $=\frac{2R\sin(B+C)\sin(B-C)}{\sin(B+C)\sin(B-C)}=2R$ $a\sin(B-C) + b\sin(C-A) + b\sin(C$ 4. $c\sin(A-B)=0$ $= 2R[\sin A \sin(B - C) + \sin B \sin(C - A)]$ $+\sin C\sin(A-B)$] $= 2R[\sin(B+C)\sin(B-C)]$ $+\sin(C+A)\sin(C-A)$ $+\sin(A+B)\sin(A-B)$] $= 2R[\sin^2 B - \sin^2 C + \sin^2 C - \sin^2 A + \sin^2 A]$ $-\sin^2 B$] = 2R(0) = 0Hence, both of statements are correct 166 **(b)** Let the general equation of the circle be $x^2 + y^2 + 2gx + 2fy + c = 0$ The equation of circle passing through (0, 0), (2,0) and (0, -2)c = 0 ...(i) 4 + 4g + c = 0 ...(ii) and 4 - 4f + c = 0 ...(iii) On solving Eqs. (i), (ii) and (iii), we get c = 0, g = -1, f = 1: The equation of circle becomes $x^2 + y^2 - 2x + y^2$ 2y = 0Since, it is passes through (k, -2), we get $k^{2} + 4 - 2k - 4 = 0 \implies k = 0, 2$ We have already take a point (0, -2), so we take only k = 2167 (a) Let X = x - h, Y = y - k $\Rightarrow \quad 0 = 7 - h, \qquad 0 = -4 - k$ \Rightarrow h = 7, k = -4Hence, X = x - 7 and Y = y + 4, then the point (4, 5) shifted to (-3, 9)168 (a)

$$(a + b + c) \left(\tan \frac{A}{2} + \tan \frac{B}{2} \right)$$

= 2 $\left(s \tan \frac{A}{2} + s \tan \frac{B}{2} \right)$
= 2 $\left(\frac{A}{s-a} + \frac{A}{s-b} \right)$
= 2 $A \left(\frac{2s - (a + b)}{(s-a)(s-b)} \right)$
= 2 $C \left(\frac{C}{(s-a)(s-b)} \right)$
= 2 $C \left(\frac{C}{2} \right)$
169 (b)
 $\because \frac{2}{1!9!} + \frac{2}{3!7!} + \frac{1}{5!5!} + \frac{1}{3!7!} + \frac{1}{9!1!} = \frac{8^a}{(2b)!}$
 $\Rightarrow \frac{1}{1!9!} + \frac{1}{3!7!} + \frac{1}{5!5!} + \frac{10!}{5!5!} + \frac{10!}{7!3!} + \frac{10!}{9!1!} \right)$
 $\Rightarrow \frac{1}{10!} \left(\frac{10!}{1!9!} + \frac{10!}{3!7!} + \frac{10!}{5!5!} + \frac{10!}{7!3!} + \frac{10!}{9!1!} \right)$
 $= \frac{8^a}{(2b)!}$
 $\Rightarrow \frac{1}{10!} \left({}^{10}C_1 + {}^{10}C_3 + {}^{10}C_5 + {}^{10}C_7 + {}^{10}C_9 \right)$
 $= \frac{8^a}{(2b)!}$
 $\Rightarrow a = 3, b = 5$
Also, $2b = a + c \Rightarrow 10 = 3 + c \Rightarrow c = 7$
 $\therefore a = 3, b = 5, c = 7$
 $\because \frac{\tan A + \tan B}{2} \ge \sqrt{\tan A \tan B} \dots (i)$
Also, $\cos C = \frac{a^2 + b^2 - c^2}{2ab}$
 $= \frac{9 + 25 - 49}{30} = -\frac{1}{2}$
 $\Rightarrow \angle C = 120^\circ \text{ and } A, B < 60^\circ$
 $\tan A + \tan B + \tan C = \tan A \tan B \tan C$
 $\Rightarrow \tan A + \tan B = \sqrt{3}(1 - \tan A \tan B) \dots (ii)$
Also, $\tan A + \tan B = \sqrt{3}(1 - \tan A \tan B)$
 $\therefore \tan A + \tan B = \sqrt{3}(1 - \tan A \tan B)$
 $\therefore \tan A \tan B = \sqrt{3}(1 - \tan A \tan B) = 0$
 $\Rightarrow \sqrt{3}(1 - \tan A \tan B) > 0$
 $\Rightarrow \tan A \tan B = \lambda$
 $\therefore \sqrt{3}(1 - 10) \ge 2\sqrt{\lambda}$
 $\Rightarrow 3\lambda^2 - 10\lambda + 3 \ge 0$
 $\Rightarrow (3\lambda - 1)(\lambda - 3) \ge 0$
 $\therefore \lambda - 3 < 0$ [from Eq. (iii)]
 $\therefore 3\lambda - 1 < 0$

 $\Rightarrow \lambda \le \frac{1}{3}$ $\Rightarrow \tan A \tan B \le \frac{1}{3}$ 170 (c) In $\triangle BCD$, $\tan 60^\circ = \frac{H_1}{d}$ E $\sim R \sim$ \Rightarrow $H_1 = d \tan 60^\circ$ and in $\triangle ABE$, $\tan 30^\circ = \frac{H_2}{d}$ \Rightarrow $H_2 = d \tan 30^\circ$ $\therefore \frac{H_1}{H_2} = \frac{\tan 60^\circ}{\tan 30^\circ} = \frac{\sqrt{3}}{1/\sqrt{3}} = \frac{3}{1}$ 171 (c) We have, $\cos C = \frac{a^2 + b^2 - c^2}{2ab}$ $\Rightarrow \cos 60^\circ = \frac{a^2 + b^2 - c^2}{2ab}$ $\Rightarrow a^2 + b^2 - c^2 = ab$ \Rightarrow $b^2 + bc + a^2 + ac = ab + ac + bc + c^2$ On dividing by (a + c)(b + c) and add 2 on both sides, we get $1 + \frac{b}{a+c} + 1 + \frac{a}{b+c} = 3$ $\Rightarrow \frac{1}{a+c} + \frac{1}{b+c} = \frac{3}{a+b+c}$ 172 (a) $(a+c)^2 - b^2 = 3ac \implies a^2 + c^2 - b^2 = ac$ But $\cos B = \frac{a^2 + c^2 - b^2}{2ac} = \frac{1}{2} \Rightarrow \ \angle B = \frac{\pi}{3} = 60^{\circ}$ 173 (c) Given, a^2, b^2, c^2 are in AP $\Rightarrow \sin^2 B - \sin^2 A = \sin^2 C - \sin^2 B$ $\Rightarrow \sin(B+A)\sin(B-A) = \sin(C+B)\sin(C-B)$ $\Rightarrow \sin C (\sin B \cos A - \cos B \sin A)$ $= \sin A (\sin C \cos B - \cos C \sin B)$ On dividing by sin A sin B sin C, we get $2 \cot B = \cot A + \cot C$ $\Rightarrow \cot A, \cot B, \cot C$ are in AP 174 (c) Given, $\sin A \sin B = \frac{ab}{c^2}$ $\Rightarrow c^{2} = \frac{ab}{\sin A \sin B} = \left(\frac{a}{\sin A}\right) \left(\frac{b}{\sin B}\right)$ $\Rightarrow c^2 = \left(\frac{c}{\sin c}\right)^2$

$$\therefore \left(\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}\right)$$

$$\Rightarrow \sin^{2} C = 1$$

$$\Rightarrow c = 90^{\circ}$$

Hence, $\triangle ABC$ is a right angled triangle
175 (a)
Let a, b, c be the sides of triangle, then
 $a + b + c = \frac{6}{3}(\sin A + \sin B + \sin C)$
 $\Rightarrow a + b + c = 2(\sin A + \sin B + \sin C)$
 $\Rightarrow \frac{a}{2} = \sin A$
But $a = 1$
 $\therefore \sin A = \frac{1}{2} \Rightarrow \angle A = \frac{\pi}{6}$
176 (a)
The centroid of $\triangle ABC = \left(\frac{2+8+5}{3}, \frac{3+10+5}{3}\right) = (5)$
177 (d)
Since, the tower *OP* makes equal angle at the vertices of the triangle, therefore foot of the t is the circumcentre

=(5,6)

the tower

In
$$\triangle OAP$$
, $\tan \alpha = \frac{OP}{OA}$
 $\Rightarrow OP = OA \tan \alpha$
 $\Rightarrow OP = R \tan \alpha$
178 (a)
In $\triangle ABE$,
 $\sin \beta = \frac{BE}{b}$
 $\Rightarrow BE = h_1 = b \sin \beta$
Using sine rule in $\triangle AED$,
 $\frac{\sin(\alpha - \beta)}{ED} = \frac{\sin(\gamma - \alpha)}{b}$
 $\Rightarrow ED = \frac{b \sin(\alpha - \beta)}{\sin(\gamma - \alpha)}$
 D
 A
Now, in $\triangle FED$,
 $\sin \gamma = \frac{h_2}{ED}$

 $\Rightarrow h_2 = \frac{b\sin(\alpha - \beta)\sin\gamma}{\sin(\gamma - \alpha)}$ ∴Total height, *CD* $= h_1 + h_2 = b \sin \beta + \frac{b \sin(\alpha - \beta) \sin \gamma}{\sin(\gamma - \alpha)}$ $=\frac{b[\sin\beta\sin(\gamma-\alpha)+\sin(\alpha-\beta)\sin\gamma]}{\sin(\gamma-\alpha)}$ $b[\sin\beta \{\sin\gamma \cos\alpha - \cos\gamma \sin\alpha \} + \sin\gamma$ $\{\sin \alpha \cos \beta \cos \alpha\}$ $sin(\gamma - \alpha)$ $b[\sin\beta\sin\gamma\cos\alpha - \sin\beta\cos\gamma\sin\alpha +$ $=\frac{\{\sin\gamma\sin\alpha\cos\beta-\sin\gamma\sin\beta\cos\alpha\}]}{\sin(\gamma-\alpha)}$ $=\frac{b\sin\alpha\sin(\gamma-\beta)}{\sin(\gamma-\alpha)}$ 179 (c) Given, $a = 1, b = 2, \angle C = 60^{\circ}$ $\therefore \text{ Area of triangle} = \frac{1}{2}ab\sin C$ $=\frac{1}{2} \times 1 \times 2 \times \sin 60^{\circ}$ $=\frac{\sqrt{3}}{2}$ sq unit 180 (c) The given points are collinear If $\begin{vmatrix} t_1 & 2at_1 + at_1^3 & 1 \\ t_2 & 2at_2 + at_2^3 & 1 \\ t_3 & 2at_3 + at_3^3 & 1 \end{vmatrix} = 0$ $\Rightarrow \ a \begin{vmatrix} t_1 & 2t_1 + t_1^3 & 1 \\ t_2 & 2t_2 + t_2^3 & 1 \\ t_3 & 2t_3 + t_3^3 & 1 \end{vmatrix} = 0$ Applying $R_2 \rightarrow R_2 - R_1, R_3 \rightarrow R_3 - R_1$, we get $\begin{vmatrix} t_1 & 2t_1 + t_1^3 & 1 \\ t_2 - t_1 & 2(t_2 - t_1) + (t_2^3 - t_1^3) & 0 \\ t_3 - t_1 & 2(t_3 - t_1) + (t_3^3 - t_1^3) & 0 \end{vmatrix} = 0$ $\Rightarrow (t_2 - t_1)(t_3 - t_1) \begin{vmatrix} t_1 & 2t_1 + t_1^3 & 1 \\ 1 & 2 + t_2^2 + t_1^2 + t_1 t_2 & 0 \\ 1 & 2 + t_3^2 + t_1^2 + t_3 t_1 & 0 \end{vmatrix}$ $\Rightarrow (t_2 - t_1)(t_3 - t_1)(t_3 - t_2)(t_3 + t_2 + t_1) = 0$ $\Rightarrow t_1 + t_2 + t_3 = 0$ $[\because t_1 \neq t_2 \neq t_3]$ 181 (b) Let *P* is a point on the perpendicular bisector of *AB*, its equation is $(y-1) = \frac{1}{2}(x-4) \Rightarrow x - 3y - 1 = 0$ So, general point is P(3h + 1, h)Area = $\frac{1}{2} \begin{bmatrix} 3h+1 & h & 1 \\ 3 & 4 & 1 \\ 5 & -2 & 1 \end{bmatrix} = \pm 10$

 \Rightarrow h = 2,0

Or position of points is (7, 2) and (1, 0)
182 (a)
Given,
$$\angle A = \frac{\pi}{2}$$
, then $a^2 = b^2 + c^2 = 4^2 + 3^2 = 25$
and $\frac{a}{\sin A} = 2R \Rightarrow a = 2R$ and $a = 5$
also, $r = \frac{A}{s} = \frac{bc}{a+b+c}$ ($\because \Delta = \frac{bc}{2}$)
 $\therefore \frac{R}{r} = \frac{a(a+b+c)}{2bc} = \frac{5 \times 12}{2 \times 4 \times 3} = \frac{5}{2}$
183 (d)
Since A, B, C are in AP
 $\Rightarrow 2B = A + C \Rightarrow \angle B = 60^{\circ}$
 $\therefore \frac{a}{2}(2 \sin C \cos C) + \frac{c}{a}(2 \sin A \cos A)$
 $= 2k (a \cos C + c \cos A)$
 $= 2k(b)$
 $= 2 \sin B$ [using, $b = a \cos C + c \cos A$]
 $= \sqrt{3}$
184 (d)
Given equation is
 $x^2 - 5x + 6 = 0$
 $\Rightarrow (x - 3)(x - 2) = 0$
 $\Rightarrow x = 3, 2$
These are the sides of a triangle
Let $a = 3, b = 2, \angle C = \frac{\pi}{3}$
 $\Rightarrow \cos(\frac{\pi}{2}) = \frac{3^2 + 2^2 - c^2}{222}$ [$\because \cos C$

$$= \frac{a^2 + b^2 - c^2}{2ab}$$

$$= \frac{13 - c^2}{12} \Rightarrow c^2 = 7$$

$$\Rightarrow c = \sqrt{7} \text{ [sides cannot be negative]}$$

$$\therefore \text{ Perimeter of a triangle} = a + b + c$$

185 **(b)**

Given,
$$\angle A = 60^\circ$$
, $a = 5, b = 4$
 $\therefore \cos A = \frac{b^2 + c^2 - a^2}{2bc}$
 $\Rightarrow \cos 60^\circ = \frac{1}{2} = \frac{16 + c^2 - 25}{8c}$
 $\Rightarrow 4c = c^2 - 9$
 $\Rightarrow c^2 - 4c - 9 = 0$

 $= 3 + 2 + \sqrt{7} = 5 + \sqrt{7}$

186 **(a)**

Let *PQ* be the height *h* of the tower and *A*, *B* are the points of observations

Q We have, $\angle QAP = \frac{\pi}{4}$, $\angle BAP = \frac{\pi}{6}$, AB = 10 m, BQ = 10 m $\therefore \ \angle QAB = \frac{\pi}{12} = \angle AQB$ $\Rightarrow \angle ABQ = \pi - \frac{\pi}{6} = \frac{5\pi}{6}$ On applying cosine rule in $\triangle ABQ$, we get $AQ^2 = AB^2 + BQ^2 - 2AB \cdot BQ \cos \frac{5\pi}{6}$ $= 100 + 100 + 200 \cdot \frac{\sqrt{3}}{2}$ $= 100(2 + \sqrt{2})$ $\Rightarrow AQ = 10\sqrt{2 + \sqrt{3}}$ In $\triangle APQ$, $AP = AQ \cos \frac{\pi}{4} = \frac{10\sqrt{2+\sqrt{3}}}{\sqrt{2}}$ = $5\sqrt{4+2\sqrt{3}} = 5\sqrt{(\sqrt{3}+1)^2}$ $\Rightarrow AP = 5(1 + \sqrt{3})m$ 187 (a) Let the points be $A = (a \cos \theta, a \sin \theta)$ and $B = (a \cos \phi, a \sin \phi)$ $\therefore AB$ $= \sqrt{(a\cos\theta - a\cos\varphi)^2 + (a\sin\theta - a\sin\varphi)^2}$ $= \sqrt{a^2 \cos^2 \theta + a^2 \cos^2 \phi - 2a^2 \cos \theta \cos \phi + a^2 \sin^2 \theta}$ $+a^2 \sin^2 \phi - 2a^2 \sin \theta \sin \phi$ $=\sqrt{2a^2-2a^2(\cos\theta\cos\phi+\sin\theta\sin\phi)}$ $=\sqrt{2}a(\sqrt{1-\cos(\theta-\varphi)})$ $\Rightarrow 2a = \sqrt{2}a \sqrt{2}\sin\left(\frac{\theta - \phi}{2}\right)$ $\Rightarrow \sin\left(\frac{\theta-\phi}{2}\right) = 1$ $\Rightarrow \frac{\theta - \phi}{2} = n\pi \pm \frac{\pi}{2}$ $\Rightarrow \theta - \phi = 2n\pi \pm \pi$ $\Rightarrow \theta = 2n\pi \pm \pi - \phi$ Where $n \in Z$ 188 (d) Area of pentagon $=\frac{1}{2}\begin{bmatrix} x_1y_2 + x_2y_3 + x_3y_4 + x_4y_5 \\ +x_5y_1 - (y_1x_2 + y_2x_3 + y_3x_4 \\ +y_4x_5 + y_5x_1) \end{bmatrix}$

$$= \frac{1}{2} [0(0) + 12(2) + 12(7) + 6(5) + 0(0) - \{0 + 0 + 2(6) + 7(0) + 5(0)\}]$$

$$= \frac{1}{2} [(24 + 84 + 30 - 12)]$$

$$= 63 \text{ sq unit}$$
189 (a)
Let the height of the flag be h

$$\int_{R_{1}}^{P_{1}} \int_{R_{1}}^{P_{1}} \int_{R_{1}}^{P_{1$$

192 **(a)**

Let $\angle APC = \alpha$. Then,

$$D_{A} = \frac{1}{120} D_{B} = \frac{h}{120}$$

$$D_{A} = \frac{h}{120}$$

$$D_{A}$$

 $\tan \alpha = \frac{AC}{AP} = \frac{AC}{nAB} = \frac{AB}{2nAB} = \frac{1}{2n}$

$$\tan (\alpha + \beta) = \frac{AB}{AP} = \frac{AB}{nAB} = \frac{1}{n}$$

Now, $\beta = \alpha + \beta - \alpha$
 $\Rightarrow \tan \beta = \frac{\tan(\alpha + \beta) - \tan \alpha}{1 + \tan(\alpha + \beta) \tan \alpha}$
 $\Rightarrow \tan \beta = \frac{1/n - 1/2n}{1 + 1/n \cdot 1/2n} = \frac{n}{2n^2 + 1}$

193 (d)

Suppose *P*(3,7) divides the segment joining *A*(1, 1) and *B*(6, 16) in the ratio λ : 1. Then, $\frac{6\lambda + 1}{\lambda + 1} = 3$ and $\frac{16\lambda + 1}{\lambda + 1} = 7$ $\Rightarrow \lambda = \frac{2}{3}$

⇒ *P* divides *AB* internally in the ratio 2 : 3 Thus, *Q* divides *AB* externally in the ratio 2 : 3 and hence its coordinates are $\left(\frac{2 \times 6 - 3 \times 1}{2 - 3}, \frac{2 \times 16 - 3 \times 1}{2 - 3}\right) \equiv (-9, -29)$ 194 (d)

Let the angles of a triangle are 3x, 5x and 10x $\therefore 3x + 5x + 10x = 180^{\circ} \Rightarrow x = 10^{\circ}$ \therefore Smallest angle of a triangle = 30° And the greatest angle= 100° Required ratio= $\sin 30^{\circ} : \sin 100^{\circ}$

$$=\frac{1}{2}:\cos 10^\circ = 1:2\cos 10^\circ$$

195 **(b)**

Given,
$$\begin{vmatrix} 1 & a & b \\ 1 & c & a \\ 1 & b & c \end{vmatrix} = 0$$

 $\Rightarrow c^2 - ab - a(c - a) + b(b - c) = 0$
 $\Rightarrow a^2 + b^2 + c^2 - ab - bc - ca = 0$
 $\Rightarrow \frac{1}{2}[2a^2 + 2b^2 + 2c^2 - 2ab - 2bc - 2ca] = 0$
 $\Rightarrow \frac{1}{2}[(a - b)^2 + (b - c)^2 + (c - a)^2 = 0$
 $\Rightarrow a = b = c$
 $\Rightarrow \angle A = 60^\circ, \angle B = 60^\circ, \angle C = 60^\circ$
 $\therefore \sin^2 A + \sin^2 B + \sin^2 C$
 $= \sin^2 60^\circ + \sin^2 60^\circ + \sin^2 60^\circ$
 $= \left(\frac{\sqrt{3}}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2 = \frac{9}{4}$

197 (c) Let $\angle OAB = \theta$ B (1, 4)Then, $OA + AB = 1 + 4 \cot \theta + 4 + \tan \theta$ $= 5 + 4 \cot \theta + \tan \theta \ge 5 + 4 = 9$ (using $AM \ge GM$) 199 (c) Given $\angle A = 20^{\circ}$ $\therefore \ \angle B = \angle C = 80^{\circ}$ Then, b = c $\therefore \ \frac{a}{\sin 20^\circ} = \frac{b}{\sin 80^\circ} = \frac{c}{\sin 80^\circ}$ $\Rightarrow \frac{a}{\sin 20^\circ} = \frac{b}{\cos 10^\circ}$ $\Rightarrow a = 2b \sin 10^{\circ}$...(i) $\therefore a^3 + b^3 = 8b^3 \sin^3 10^\circ + b^3$ $= b^{3} \{2(4 \sin^{3} 10^{\circ}) + 1\}$ $= b^{3} \{2(3 \sin 10^{\circ} - \sin 30^{\circ}) + 1\}$ $= b^{3} \{ 6 \sin 10^{\circ} \}$ $= 3b^2 \{2b \sin 10^\circ\}$ $= 3b^2a$ [from Eq. (i)] $= 3ac^2$ (:: b = c) 200 (a) $a(\cos^2 B + \cos^2 C) + \cos A(c \cos C + b \cos B)$ $= \cos B (a \cos B + b \cos A)$ $+\cos C (a \cos C + c \cos A)$ $= (\cos B)c + (\cos C)b$ = a201 (b) Let $(x_1, y_1), (x_2, y_2)$ and (x_3, y_3) are the coordinates of the points D, E and F A(-1,4) $(x_1, y_1) D$ $E(x_2, y_2)$ 1 $\therefore \quad x_1 = \frac{3 \times 6 - 1 \times 1}{4} = \frac{17}{4}$ and $y_1 = \frac{-2 \times 3 + 4}{4} = -\frac{2}{4} = -\frac{1}{2}$ similarly, $x_2 = 0$, $y_2 = \frac{5}{2}$ and $x_3 = -\frac{5}{4}$, $y_3 = 4$ let (x, y) be the coordinates of centroid of ΔDEF $\therefore x = \frac{1}{3} \left(\frac{17}{4} + 0 - \frac{5}{4} \right) = 1$

and
$$y = \left(-\frac{1}{2} + \frac{5}{2} + 4\right)\frac{1}{3} = 2$$

 \therefore Coordinates of centroid are (1, 2)
202 (a)
We have, $\frac{1}{a+c} = \frac{1}{b+c} = \frac{3}{a+b+c}$
 $\Rightarrow \frac{a+b+2c}{(a+c)(b+c)} = \frac{3}{a+b+c}$
 $\Rightarrow a^2 + ab + ac + ab + b^2 + bc + 2ca + 2bc + 2c^2$
 $= 3(ab + ac + bc + c^2)$
 $\Rightarrow a^2 + b^2 - c^2 = ab$
 $\Rightarrow \frac{a^2 + b^2 - c^2}{2ab} = \frac{1}{2} = \cos C$
 $\Rightarrow \angle C = 60^{\circ}$
203 (a)
Let *CD* be the tower of height *H* metre
 $\int_{B}^{A} \int_{0}^{\sqrt{60^{\circ}}} \int_{D}^{C} \int_{H}^{H}$
From $\triangle BCD, \frac{H}{a} = \tan 30^{\circ}$
and from $\triangle ABD$,
 $\frac{h}{d} = \tan 60^{\circ}$
 $\therefore \frac{H/d}{h/d} = \frac{\tan 30^{\circ}}{\tan 60^{\circ}} \Rightarrow H = \frac{h}{3}$
204 (c)
Using sine rule in $\triangle ADC$,
 $\frac{\sin(y + z)}{BD} = \frac{\sin C}{AD}$
In $\triangle ABC, \frac{\sin x}{BC} = \frac{\sin C}{AE}$
In $\triangle ABC, \frac{\sin x}{BC} = \frac{\sin C}{AE}$
In $\triangle ABC, \frac{\sin x}{BC} = \frac{\sin R}{AE}$
 $ABC, \frac{\sin x}{BC} = \frac{\sin R}{AE}$
 $ABC, \frac{\sin x}{BC} = \frac{\sin R}{AE}$
 $ABC, \frac{\sin x}{BD} = \frac{\sin R}{AE}$
 $ABC, \frac{\sin A}{BD} = \frac{\sin (A - B)}{AE}$
 $ABC, \frac{\sin A}{BD} = \frac{\sin (A - B)}{BD} \times \frac{\sin R}{BD}$
 $ABC, \frac{\sin R}{BD} = \frac{\sin R}{ABD}$
 $ABC, \frac{\cos R}{AD} = \frac{\cos R}{AD}$
 $ABC, \frac{\cos R}{AD} = \frac{\cos R}{AD}$
 $ABC, \frac{\cos R} = \frac{\cos R}{AD}$

 $\Rightarrow \frac{a}{c} = \frac{a\cos B - b\cos A}{b\cos C - c\cos B}$ $\Rightarrow ab \cos C + bc \cos A = 2ac \cos B$ $\Rightarrow \frac{a^2 2 + b^2 - c^2}{2} + \frac{b^2 + c^2 - a^2}{2} = 2\frac{c^2 + a^2 - b^2}{2}$ $\Rightarrow a^2 + c^2 = 2b^2$ $\Rightarrow a^2, b^2, c^2$ are in AP 206 (b) Let point (x_1, y_1) be on the line 3x + 4y = 5 $\therefore 3x_1 + 4y_1 = 5 \dots (I)$ Also, $(x_1 - 1)^2 + (y_1 - 2)^2 = (x_1 - 3)^2 +$ $(y_1 - 4)^2$ $\Rightarrow x_1^2 + y_1^2 - 2x_1 - 4y_1 + 5$ $= x_1^2 + y_1^2 - 6x_1 - 8y_1 + 25$ $\Rightarrow 4x_1 + 4y_1 = 20$...(ii) On solving Eqs. (i) and (ii), we get $x_1 = 15, y_1 = -10$ 207 (a) Let $A(x_1, y_1), B(x_2, y_2)$ be two fixed points and let P(h, k) be a variable point such that $\angle APB = \frac{\pi}{2}$ Then, slope of $AP \times \text{slope of } BP = -1$ $\Rightarrow \quad \frac{k-y_1}{h-x_1} \cdot \frac{k-y_1}{h-x_2} = -1$ $\Rightarrow (h - x_1)(h - x_2) + (k - y_1)(k - y_2) = 0$ Hence, locus of (h, k) is $(x - x_1)(x - x_2) + (y - y_1)(y - y_2) = 0$ Which is a circle having AB as diameter 208 (a) Given, $a\cos^2\frac{c}{2} + c\cos^2\frac{A}{2} = \frac{3b}{c}$ $\Rightarrow a\left[\frac{s(s-c)}{ab}\right] + c\left[\frac{s(s-a)}{bc}\right] = \frac{3b}{2}$ $\Rightarrow \frac{s(s-c+s-a)}{b} = \frac{3b}{2}$ $\Rightarrow 2s(2s-c-a) = 3b^2$ $\Rightarrow (a+b+c)b = 3b^2$ $\Rightarrow 2b = a + c$ 209 (c) $=\sin\frac{\pi}{n}$ and $\frac{a}{2r} = \tan \frac{\pi}{n} \quad \therefore \quad \frac{r}{R} = \cos \frac{\pi}{n}$ For n = 3 gives $\frac{r}{R} = \frac{1}{2}$ For n = 4 gives $\frac{r}{R} = \frac{1}{\sqrt{2}}$

For n = 6 gives $\frac{r}{R} = \frac{\sqrt{3}}{2}$

210 (d)

Given, the vertex angles are A, B, C are side BC

$$\therefore Area = \frac{1}{2}a(k\sin C)\sin B$$
$$= \frac{1}{2} \cdot \frac{a^2k\sin C\sin B}{a}$$
$$= \frac{1}{2} \cdot \frac{a^2k\sin C\sin B}{k\sin A}$$
$$= \frac{1}{2} \cdot \frac{a^2k\sin C\sin B}{k\sin A}$$

211 (c)

Let *OP* be the flag staff of height *h* standing at the centre *O* of the field

In $\triangle OEP$, $OE = h \cot 15^\circ = h(2 + \sqrt{3})$ and in \triangle *OFP*, *OF* = $h \cot 45^\circ = h$ $\therefore EF = h \sqrt{1 + \left(2 + \sqrt{3}\right)^2}$ $=2h\sqrt{2+\sqrt{3}}$ Since, AC = 1200 $\Rightarrow 2EF = 4h\sqrt{(2+\sqrt{3})}$ $\Rightarrow h = \frac{300}{\sqrt{2 + \sqrt{3}}}$ $= 300 \sqrt{2 - \sqrt{3}} \text{ m}$ 214 (b) $A + B + C = \pi$ 2B = A + C $\Rightarrow 3B = \pi$ $\Rightarrow B = \frac{\pi}{2}$ $\therefore \frac{a+c}{b} = \frac{\sin A + \sin C}{\sin B}$ $= \frac{2\sin\frac{A+C}{2}\cos\frac{A-C}{2}}{\sin\frac{\pi}{3}}$ $=\frac{2\sin\frac{\pi}{3}\cos\frac{A-C}{2}}{\sin\frac{\pi}{3}}$ $= 2\cos\frac{A-C}{2}$ 215 (c)

The altitudes from the vertices *A*, *B* and *C* are $\frac{2\Delta}{a}, \frac{2\Delta}{b}$ and $\frac{2\Delta}{c}$ respectively

Also, these are in HP $\Rightarrow \frac{1}{a}, \frac{1}{b}, \frac{1}{c}$ are in HP \Rightarrow a, b, c are in AP \Rightarrow sin A, sin B, sin C are in AP 216 (d) Given, the equation of circle is $x^2 + y^2 - 4x - 6y - 12 = 0$ Radius of this circle = $\sqrt{4+9+12}$ =5 unit In $\triangle BOD$, $\cos 30^\circ = \frac{BD}{OB}$ $\Rightarrow BD = \frac{\sqrt{3}}{2} \times 5 = \frac{5\sqrt{3}}{2}$ unit $\therefore BC = 2BD = 5\sqrt{3}$ Hence, area of $\triangle ABC = \frac{\sqrt{3}}{4} (5\sqrt{3})^2 = \frac{75}{4} \sqrt{3}$ sq units 218 (d) Let $A(1,\sqrt{3})$, B(0,0), C(2,0) be the given points $\therefore BC = \sqrt{(2-0)^2 + (0-0)^2} = 2$ $CA = \sqrt{(2-1)^2 + (0-\sqrt{3})^2} = 2$ and $AB = \sqrt{1+3} = 2$ ∴ Triangle is equilateral We know that in equilateral triangle incentre is the same as Centroid of the triangle : Incentre is $\left(\frac{1+0+2}{2}, \frac{\sqrt{3}+0+0}{2}\right) = \left(1, \frac{1}{\sqrt{2}}\right)$ 219 (b) We know that area of the triangle with polar coordinates $=\frac{1}{2}\left|\sum_{r_1}r_2\sin(\theta_1-\theta_2)\right|$ $=\frac{1}{2}|2.1\sin\left(0-\frac{\pi}{3}\right)+2.3\sin\left(\frac{\pi}{3}-\frac{2\pi}{3}\right)$ $+3.1\sin\left(\frac{2\pi}{3}-0\right)$ $=\frac{1}{2}\left|-2.\frac{\sqrt{3}}{2}-\frac{6\sqrt{3}}{2}+\frac{3\sqrt{3}}{2}\right|=\frac{5\sqrt{3}}{4}$ sq units 220 (d) For finding the distance AP, first we find out the perpendicular bisector of AB and AC

Which could be graphically as shown in figure Which gives angle bisector as y = 1 and x = 0 \therefore Required area= $\frac{1}{2} \times 2 \times 2 = 2$ sq units 230 (a) In $\triangle ABE$, $\tan 60^\circ = \frac{12}{AB} \Rightarrow AB = 4\sqrt{3}$ m D and in $\triangle ACE$ $\tan 45^\circ = \frac{12}{4C} \Rightarrow AC = 12 \text{ m}$ In $\triangle ABC, BC = \sqrt{AC^2 - AB^2} = \sqrt{144 - 48} =$ $4\sqrt{6}$ m : Area of rectangular field = $AB \times BC$ $=4\sqrt{3} \times 4\sqrt{6} = 48\sqrt{2}$ sqm 231 (a) In $\triangle ABD$, $\cos 60^\circ = \frac{2^2 + 5^2 - BD^2}{2(2)(5)}$ $\Rightarrow BD^2 = 19$ Now, in $\triangle BCD$ 2 $\cos 120^\circ = \frac{CD^2 + 9 - 19}{(2)(3)(CD)}$ $\Rightarrow CD^2 + 3CD - 10 = 0$ $\Rightarrow CD = -5.2$ $\Rightarrow CD = 2 (: CD \neq -5)$ 232 (c) We have, $\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c} = \frac{1}{2R}$ $\Rightarrow \sin A = \frac{a}{2R}$ $\therefore 2R^2 \sin A \sin B \sin C = 2R^2 \frac{a}{2R} \cdot \frac{b}{2R} \cdot \frac{c}{2R}$ $=\frac{abc}{4R}=\Delta$ 233 (c)

In ΔBAD ,

 $\cos(90^\circ - B) = \frac{AD}{C}$ $\Rightarrow AD = c \sin B$ Similarly, $BE = a \sin C$ and $CF = b \sin A$ Since, AD, BE, CF are in HP $\therefore c \sin B$, $a \sin C$, $b \sin A$ are in HP $\Rightarrow \frac{1}{\sin C \sin B}, \frac{1}{\sin A \sin C}, \frac{1}{\sin B \sin A} \text{ are in AP}$ \Rightarrow sin A, sin B, sin C are in AP 234 (d) Let *P* be the middle point of the line segment joining A(3, -1) and B(1, 1) is (2, 0) (3, -1) P (1, 1)Let *P* be shifted to *Q* by 2 unit and *y*-coordinate of Q is greater than that of P Now, slope of $AB = \frac{1 - (-1)}{1 - 3} = 1$ then slope of PQ = -1The coordinate of Q becomes $(2 \pm 2\cos\theta, 0 \pm$ $2\sin\theta$, where $\tan\theta = 1$ ie, $(2 \pm \sqrt{2}, \pm \sqrt{2})$ As, *y*-coordinates of *Q* is greater than that of *P* \therefore We take $Q = (2 + \sqrt{2}, \sqrt{2})$ 235 (d) Area of triangle = $\frac{1}{2} \times 6 \times |\alpha| = 15$ \Rightarrow $|\alpha| = 5 \Rightarrow \alpha = \pm 5$ and β can take any real value 236 (a) Let points are A(2, 3), B(3, 4), C(4, 5), D(5, 6) $\therefore AB = a = \sqrt{(3-2)^2 + (4-3)^2} = \sqrt{2}$ Similarly, $BC = b = \sqrt{2}$, $CD = c = \sqrt{2}$ And $DA = d = 3\sqrt{2}$ Now, $s = \frac{a+b+c+d}{2}$ $=\frac{\sqrt{2}+\sqrt{2}+\sqrt{2}+3\sqrt{2}}{2}=3\sqrt{2}$ $\therefore \text{ Area} = \sqrt{(s-a)(s-b)(s-c)(s-d)}$ $= \sqrt{(3\sqrt{2} - \sqrt{2})(3\sqrt{2} - \sqrt{2})(3\sqrt{2} - \sqrt{2})(3\sqrt{2} - 3\sqrt{2})(3\sqrt{2} - \sqrt{2})(3\sqrt{2} -$ = 0237 (a) $\sqrt{(2+5)^2 + (3-2)^2} = \sqrt{(x-1)^2 + (2-3)^2}$ $\Rightarrow 49 + 1 = (x - 1)^2 + 1$ $\Rightarrow x - 1 = \pm 7 \Rightarrow x = -6,8$ 238 (d) In an equilateral triangle length of median

Also, centroid of triangle lies on the centre of circle

$$\therefore OC = \frac{2}{3} \times \frac{\sqrt{3}}{2}a = \frac{a}{\sqrt{3}}$$

$$\therefore \text{ Area of circle} = \pi (OC)^2 = \frac{\pi a^2}{3} \text{ sq units}$$

$$\therefore \text{ Area of } \Delta ACB = \frac{1}{2} \times CA \times CB$$

$$= \frac{1}{2} \times 6 \times 2\sqrt{3} = 6\sqrt{3} \text{ sq units}$$
240 (d)
We have, $\frac{\cos A}{a} = \frac{\cos B}{b} = \frac{\cos C}{c}$

$$\Rightarrow \frac{\cos A}{k \sin A} = \frac{\cos B}{k \sin B} = \frac{\cos C}{k \sin C}$$

$$\Rightarrow \cot A = \cot B = \cot C$$

$$\Rightarrow A = B = C = 60^{\circ}$$

$$\Delta ABC \text{ is an equilateral triangle}$$

$$\therefore \Delta = \frac{\sqrt{3}}{4}a^2 = \frac{\sqrt{3}}{4}(2)^2 \quad [\because a = 2 \text{ (given)}]$$

$$= \sqrt{3}$$
241 (c)

We have,
$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$

or $c^2 - 2bc \cos A + b^2 - a^2 = 0$
 $\therefore c_1 + c_2 = 2b \cos A = 2 \times 2 \times \frac{\sqrt{3}}{2} = 2\sqrt{3}$
and $c_1 c_2 = b^2 - a^2 = 4 - 5 = -1$
 $\therefore |c_1 - c_2| = \sqrt{(c_1 + c_2)^2 - 4c_1c_2}$

$$= \sqrt{12 + 4} = \sqrt{16} = 4$$
242 (c)

$$(a - b)^{2} \cos^{2} \frac{C}{2} + (a + b)^{2} \sin^{2} \frac{C}{2}$$

$$= (a^{2} + b^{2} - 2ab) \cos^{2} \frac{C}{2}$$

$$+ (a^{2} + b^{2} + 2ab) \sin^{2} \frac{C}{2}$$

$$= a^{2} + b^{2} - 2ab \cos C$$

$$= a^{2} + b^{2} - 2ab \cos C$$

$$= a^{2} + b^{2} - (a^{2} + b^{2} - c^{2}) = c^{2}$$
243 (a)
1. $rr_{1}r_{2}r_{3} = \frac{A}{s} \cdot \frac{A}{(s-a)} \cdot \frac{A}{(s-c)} \cdot \frac{A}{a^{2}} = \Delta^{2}$
2. Now, $r_{1}r_{2} + r_{2}r_{3} + r_{3}r_{1}$

$$= \frac{\Delta \Delta}{(s-a)(s-b)} + \frac{\Delta \Delta}{(s-b)(s-c)}$$

$$+ \frac{\Delta \Delta}{(s-a)(s-b)(s-c)}$$

$$= \Delta^{2} [\frac{(s-c) + (s-a) + (s-b)}{(s-a)(s-b)(s-c)}]$$

$$= \frac{\Delta^{2}[3s - (a + b + c)]}{\Delta^{2}/s} = s^{2}$$
244 (c)
Let angles of a triangle are $x, 2x$ abd $7x$
respectively
 $\therefore x + 2x + 7x = 180^{\circ} \Rightarrow x = 18^{\circ}$
Hence, the angles are $18^{\circ}, 36^{\circ}, 126^{\circ}$
Greatest side $\propto \sin 18^{\circ}$
 \therefore Required ratio $= \frac{\sin 126^{\circ}}{\sin 18^{\circ}}$
 $= \frac{\sin(90^{\circ} + 36^{\circ})}{\sin 18^{\circ}} = \frac{\sqrt{5} + 1}{\sqrt{5} - 1}$
246 (a)
Area of triangle $= \frac{1}{2} \begin{vmatrix} x_{1} & y_{1} & 1 \\ r^{2}x_{1} & r^{2}y_{1} & 1 \end{vmatrix} = 0$
 \therefore Points are collinear
247 (d)
Given, new coordinates = $(4, -3)$ and $\theta = 135^{\circ}$
 $\therefore 4 = x \cos 135^{\circ} + y \sin 135^{\circ}$
 $\Rightarrow -3 = -\frac{x}{\sqrt{2}} - \frac{y}{\sqrt{2}} ...(i)$
and $-3 = -x \sin 135^{\circ} + y \cos 135^{\circ}$
 $\Rightarrow -3 = -\frac{x}{\sqrt{2}} - \frac{y}{\sqrt{2}} ...(i)$
On adding Eqs. (i) and (ii), we get
 $1 = -\frac{2x}{\sqrt{2}} \Rightarrow x = -\frac{1}{\sqrt{2}}$

On subtracting Eqs. (i) and (ii), we get

$$7 = \frac{2y}{\sqrt{2}} \implies y = \frac{7}{\sqrt{2}}$$

Thus $(x, y) = \left(-\frac{1}{\sqrt{2}}, \frac{7}{\sqrt{2}}\right)$

248 **(d)**

We know, if coordinate axes are rotated, then $p = (x \cos \theta - y \sin \theta, x \sin \theta + y \cos \theta)$ It is rotated at an angle 135° *ie*, $\theta = 135°$ and the new point be $p = [4 \cos(90° + 45°)]$ $+ 3 \sin(90° + 45°), 4 \sin(90°$ $+ 45°) - 3 \cos(90° + 45°)]$ $= [-4 \sin 45° + 3 \cos 45°, 4 \cos 45° + 3 \sin 45°]$ $= [4.(\frac{-1}{\sqrt{2}}) + 3.\frac{1}{\sqrt{2}}, 4.\frac{1}{\sqrt{2}} + 3.\frac{1}{\sqrt{2}}] = (-\frac{1}{\sqrt{2}}, \frac{7}{\sqrt{2}})$

Let the height of the tower be h meters

$$ie, \quad s \tan \frac{A}{2} + s \tan \frac{C}{2} = k \cos^2 \frac{B}{2}$$

$$\Rightarrow \quad s \left[\sqrt{\frac{(s-b)(s-c)}{s(s-a)}} + \sqrt{\frac{(s-a)(s-b)}{s(s-c)}} \right]$$

$$= k \frac{s(s-b)}{ac}$$

So, in isosceles triangle side AB = CAAlso, $(\sqrt{26})^2 + (\sqrt{26})^2 = 52$ So, triangle is right angled and also is isosceles triangle

259 **(c)**

By Standard results,

3.
$$r = 4R \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}$$

4.
$$r_1 = s \tan \frac{A}{2}$$

5. $r_3 = \frac{\Delta}{s-c}$

260 **(c)**

On solving given equation of lines, we get the points A(4, 0), (0, 3)B(0, 3) and O(0, 0)

 \therefore Area of $\triangle OAB$

$$= \frac{1}{2} \times 0A \times 0B$$
$$= \frac{1}{2} \times 4 \times 3$$
$$= 6 \text{ so units}$$

261 (a)

Let (*x*, *y*) denotes the coordinates in *A*, *B* and *C* plane

Then,
$$\frac{(x-1)^2 + y^2}{(x+1)^2 + y^2} = \frac{1}{9}$$

 $\Rightarrow 9x^2 + 9y^2 - 18x + 9 = x^2 + y^2 + 2x + 1$
 $\Rightarrow 8x^2 + 8y^2 - 20x + 8 = 0$
 $\Rightarrow x^2 + y^2 - \frac{5}{2}x + 1 = 0$
 $\therefore A, B, C$ lie on a circle with $C\left(\frac{5}{4}, 0\right)$

262 **(c)**

Since, points (a, b), (b, a) and $(a^2, -b^2)$ are collinear

 $\begin{vmatrix} a & b & 1 \\ b & a & 1 \\ a^2 & -b^2 & 1 \end{vmatrix} = 0$ Applying, $R_2 \to R_2 - R_1$ and $R_3 \to R_3 - R_1$, we get $\begin{vmatrix} a & b & 1 \\ b - a & a - b & 0 \\ a^2 - a & -b^2 - b & 0 \end{vmatrix} = 0$ $\Rightarrow (a - b)(b^2 + b - a^2 + a) = 0$ $\Rightarrow (a - b)(a + b)(b + 1 - a) = 0$ $\Rightarrow \text{ Either } a - b = 0 \text{ or } (a + b) = 0 \text{ or } (b + 1 - a)$ = 0 $\Rightarrow a = b + 1$

$$\Rightarrow a = b + 263 (d)$$

Let AA_1 , BB_1 and CC_1 be the towers and O be the circumcentre of $\triangle ABC$ $\angle A_1OA = \theta_A, \angle B_1OB = \theta_B, \angle C_1OC = \theta_C$ Now, $OA = AA_1 \cot \theta_A$ $OB = BB_1 \cot \theta_B$ and $OC = CC_1 \cot \theta_C$

Since, *O* is the circumcentre of a triangle $\therefore OA = OB = OC$ $\Rightarrow AA_1 \cot \theta_A = BB_1 \cot \theta_B = CC_1 \cot \theta_c$ $\Rightarrow \frac{\tan \theta_A}{AA_1} = \frac{\tan \theta_B}{BB_1} = \frac{\tan \theta_C}{CC_1}$

Any other relationship between $\tan \theta_A$, $\tan \theta_B$ and $\tan \theta_C$ cannot be establish

264 **(b)**

Let
$$a = 6, b = 5, c = \sqrt{13}$$

 $\therefore \cos C = \frac{6^2 + 5^2 - 13}{2 \times 6 \times 5} = \frac{4}{5}$
Now, $\sin C = \sqrt{1 - \frac{16}{25}} = \frac{3}{5}$
 \therefore Area of $\triangle ABC = \frac{1}{2}ab \sin C$
 $= \frac{1}{2} \times 6 \times 5 \times \frac{3}{5} = 9$ sq unit

265 **(b)**

Since,
$$y_1, y_2, y_3$$
 and x_1, x_2, x_3 are in AP
 $\therefore y_2 - y_1 = y_3 - y_2$ and $x_2 - x_1 = x_3 - x_2$
So, $\frac{y_3 - y_2}{x_3 - x_2} = \frac{y_2 - y_1}{x_2 - x_1}$
So, points are collinear
266 **(a)**

Let $\angle RPQ = \theta$ and $\angle RQP = \phi$

$$\mathbf{x} \xrightarrow{\mathbf{Q}} \mathbf{0} \xrightarrow{\mathbf{Q}} \mathbf{0} \xrightarrow{\mathbf{M}} \mathbf{P} \xrightarrow{\mathbf{Q}} \mathbf{x}'$$

 $\therefore \ \theta - \phi = 2\alpha$ Let $RM \perp PQ$, so that RM = k, MP = a - h and MQ = a + hThen, $\tan \theta = \frac{RM}{MP} = \frac{k}{a - h}$

and
$$\tan \phi = \frac{RM}{MQ} = \frac{k}{a+h}$$

Again now, $2\alpha = \theta - \phi$
 $\therefore \tan 2\alpha = \tan(\theta - \phi)$
 $= \frac{\tan \theta - \tan \phi}{1 + \tan \theta \tan \phi}$
 $= \frac{k(a+h) - k(a-h)}{a^2 - h^2 + k^2}$
 $\Rightarrow a^2 - h^2 + k^2 = 2hk \cot 2\alpha$
Hence, the locus is $x^2 - y^2 + 2xy \cot 2\alpha - a^2 = 0$

1.

267 (c)

Since, the centroid *G* divide the line *AD* in the ratio 2:1

$$A = \frac{\pi}{6} \frac{\pi}{8/3} = \frac{\pi}{6}$$

$$A = \frac{8}{3} and D = \frac{4}{3}$$

$$A = \frac{8}{3} and D = \frac{4}{3}$$

$$A = \frac{8}{3} and D = \frac{4}{3}$$

$$A = \frac{4}{3} = \frac{4}{3}$$

$$A = \frac{1}{2} \times 4 = \frac{1}{3}$$

$$A = \frac{1}{3}$$

$$A = \frac{1}{3} = \frac{1}{3}$$

Since, median divides a triangle into two triangle of equal area. Therefore,

Area of $\triangle ABC = 2 \times \text{area of } \triangle ADB$ $= 2 \times \frac{16}{3\sqrt{3}} = \frac{32}{3\sqrt{3}}$ sq units

268 (b)

Since, Q is the image of P

 $=\frac{(a+b+c)}{2}\begin{vmatrix} a & 1 & 1 \\ b & 1 & 1 \\ c & 1 & 1 \end{vmatrix} = 0$ 270 (c) We have. $x^2 + 4xy + y^2 = aX^2 + bY^2$ $\Rightarrow (X\cos\theta + Y\sin\theta)^2$ $+ 14(X\cos\theta + Y\sin\theta)(X\sin\theta)$ $-Y\cos\theta$ + $(X\sin\theta - Y\cos\theta)^2$ $= aX^{2} + bY^{2}$ $\Rightarrow a = 1 + 4 \sin \theta \cos \theta, b = 1 - 4 \sin \theta \cos \theta$ and $\sin^2\theta - \cos^2\theta = 0$ $\Rightarrow a = 1 + 4 \sin \theta \cos \theta, b = 1 - 4 \sin \theta \cos \theta$ and $\theta = \frac{\pi}{4}$ $\Rightarrow a = 3, b = -1$ 271 (a) Given, distance $r = \sqrt{2}$ and $\theta = 45^{\circ}$ $\therefore \quad x = 4 + \sqrt{2}\cos 45^\circ = 4 + \sqrt{2} \cdot \frac{1}{\sqrt{2}} = 5$ and $y = 3 + \sqrt{2} \sin 45^\circ = 3 + \sqrt{2} \cdot \frac{1}{\sqrt{2}} = 4$ 272 (d) Let the height of the cliff be BD = 50 m and height of the tower be AE = h metre. In $\triangle DEC$. $\tan 30^\circ = \frac{50 - h}{r}$ $\Rightarrow x = \frac{50-h}{\frac{1}{\sqrt{5}}} = \sqrt{3}(50-h)$...(i) 50 - h 50 m and in $\triangle BAD$ $\tan 45^\circ = \frac{50}{x} \Rightarrow x = 50 \text{ m}$ From Eq. (i), $50 = \sqrt{3}(50 - h)$ $\Rightarrow h = \frac{50(\sqrt{3}-1)}{\sqrt{3}}$ m $\Rightarrow h = 50\left(1 - \frac{\sqrt{3}}{3}\right) \mathrm{m}$ 273 (a) Let the vertex of triangle be A(2, -1) and equation of BC is x + 2y = 1

Since, the triangle is equilateral triangle $\therefore \ \angle ABC = 60^{\circ}$ and $AD = \left| \frac{2(1)+2(-1)-1}{\sqrt{1+2^2}} \right| = \frac{1}{\sqrt{5}}$ In $\triangle ABD$, $\frac{AD}{AB} = \sin 60^{\circ}$ $\Rightarrow AB = \frac{\frac{1}{\sqrt{5}}}{\frac{\sqrt{3}}{\sqrt{3}}} = \frac{2}{\sqrt{15}}$ $\Rightarrow AB = BC = AC = \frac{2}{\sqrt{15}}$ Area of $\Delta = \frac{1}{2} \begin{vmatrix} 2 & 2 & 1 \\ 5 & 5 & 1 \\ 6 & 7 & 1 \end{vmatrix}$ $=\frac{1}{2}[2(5-7)-2(5-6)+1(35-30)]$ $=\frac{1}{2}(-4+2+5)=\frac{3}{2}$ sq units Line perpendicular to OA passing through B is

275 (d)

276 (b)

x = 3¥.

Slope of $AB + \frac{3\sqrt{3}-0}{3-6} = -\sqrt{3}$ Line perpendicular to AB through origin is $y = \frac{1}{\sqrt{2}}x$ \therefore The point of intersection of a line x = 3 and $y = \frac{1}{\sqrt{3}}x$ is $(3,\sqrt{3})$, which is the required orthocenter

277 (a)

We know that, in any $\triangle ABC$ $\cos A + \cos B + \cos C = 1 + 4\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}$ and $r = 4R \sin{\frac{A}{2}} \sin{\frac{B}{2}} \sin{\frac{C}{2}}$ $\therefore \cos A + \cos B + \cos C = 1 + \frac{r}{R}$ 278 (b)

Given, $\sin P$, $\sin Q$, $\sin R$ are in AP \Rightarrow a, b, c are in AP $: \frac{\sin P}{a} = \frac{\sin Q}{b} = \frac{\sin R}{c} = \lambda \quad (\text{say})$

Let p_1, p_2, p_3 be altitudes from P, Q, R $\therefore p_1 = c \sin Q = \lambda b c,$ $p_2 = a \sin R = \lambda a c$, $p_3 = b \sin P = \lambda a b$ Since, *a*, *b*, *c* are in AP, $\therefore \frac{1}{a}, \frac{1}{b}, \frac{1}{c}$ are in HP $\Rightarrow \frac{abc}{a}, \frac{abc}{b}, \frac{abc}{c} \text{ are in HP}$ \Rightarrow bc, ac, ab are in HP $\Rightarrow \lambda bc, \lambda ac, \lambda ab$ are in HP $\Rightarrow p_1, p_2, p_3$ are in HP 280 (c) $\ln \Delta ABD, \ \frac{BD}{\sin \theta} = \frac{AD}{\sin B}$ $\Rightarrow BD = AD = \frac{\sin \theta}{\sin B} \dots (i)$ In $\triangle ACD$, $\frac{CD}{\sin(A-\theta)} = \frac{AD}{\sin C}$ $\Rightarrow CD = AD \frac{\sin(A-\theta)}{\sin C}$ $\therefore BD = CD$ $\Rightarrow AD \frac{\sin \theta}{\sin B} = AD \frac{\sin(A - \theta)}{\sin C}$ $\Rightarrow \sin(A - \theta) = \frac{\sin C}{\sin B} \sin \theta = \frac{c}{h} \sin \theta$ 282 (b) Since, circle is inscribed in the quadrilateral ABCD, then a + c = b + d ...(i) And quadrilateral is cyclic, then $A + C = \pi$ or $C = \pi - A$...(ii) now, in $\triangle ABD$ $\cos A = \frac{a^2 + d^2 - (BD)^2}{2ad}$ $\Rightarrow BD^2 = a^2 + d^2 - 2ad \cos A$...(iii) And in $\triangle BCD$, $\cos C = \frac{b^2 + c^2 - (BD)^2}{2bc}$ $\Rightarrow (BD)^2 = b^2 + c^2 - 2bc \cos C$ $= b^{2} + c^{2} - 2bc \cos(\pi - A)$ [from Eq.(ii)] $\Rightarrow (BD)^2 = b^2 + c^2 + 2bc \cos A \quad \dots \text{(iv)}$ From Eqs. (iii) and (iv), we get

$$\cos A = \frac{a^2 + a^2 - b^2 - c^2}{2(bc + ad)} \quad ...(v)$$
Now, from Eq. (i),
 $(a - d)^2 = (b - c)^2$
 $\Rightarrow a^2 + d^2 - b^2 - c^2 = 2(ad - bc) ...(vi)$
 \therefore From Eqs. (v) and (vi),
 $\cos A = \left(\frac{ad - bc}{ad + bc}\right)$
283 (c)
We have, $a + b + c = \lambda = 2s$
 $\therefore s = \frac{\lambda}{2}$
 $b \cos^2 \frac{C}{2} + c \cos^2 \frac{B}{2} = b \frac{s(s - c)}{ab} + c \frac{s(s - b)}{ac}$
 $= \frac{s}{a} (s - c + s - b)$
 $= \frac{s}{a} \cdot a = s = \frac{\lambda}{2}$
284 (c)
 $\cos B = \frac{1}{\sqrt{2}} = \frac{c^2 + a^2 - b^2}{2ac}$
 $\Rightarrow \sqrt{2}ac = c^2 + a^2 - b^2$
 $\Rightarrow 2a^2c^2 = c^4 + a^4 + b^4 + 2c^2a^2$
 $-2(c^2 + a^2)b^2$
 $\Rightarrow c^4 + a^4 + b^4 = 2(c^2 + a^2)b^2$
285 (a)
Let the point of the line divides the line in the ratio $m: 1$
 \therefore Coordinates of point are $(\frac{5m+1}{m+1}, \frac{7m-1}{m+1})$
Which lies on $y + x = 4$
 $\Rightarrow \frac{7m - 1 + 5m + 1}{m + 1} = 4$
 $\Rightarrow \frac{12m}{m + 1} = 4 \Rightarrow 12m = 4m + 4$
 $\Rightarrow 8m = 4 \Rightarrow m = \frac{1}{2}$
 \therefore Required ratio is 1: 2
286 (d)
Since, line perpendicular to *OA* passing through *B* is $x = 4$
Slope of $AB = -\frac{3}{2}$
Line perpendicular to *AB* through origin is,
 $y = \frac{2}{3}x$
 $y = \frac{2}{3}x$
 $x = \frac{B(4,6)}{x^4 + (6)}$

And $y = \frac{2}{3}x \operatorname{is}\left(4, \frac{8}{3}\right)$. Which is the required orthocenter 288 (a) We have, $\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$ $\therefore \frac{b+c}{a} = \frac{\sin B + \sin C}{\sin A}$ $= \frac{\sin \left(\frac{B+C}{2}\right) \cos \left(\frac{B-C}{2}\right)}{\sin \frac{A}{2} \cos \frac{A}{2}} = \frac{\cos \left(\frac{B-C}{2}\right)}{\sin \frac{A}{2}}$ $[A + B + C = \pi \Rightarrow A = \pi - (B + C)]$ 289 (a) Let *h* be the mid point of *BC*. Since, $\angle TBH = 90^{\circ}$, then $TH^2 = BT^2 + BH^2 = 5^2 + 5^2 = 50$ Also since, $\angle THG = 90^{\circ}, TG^2 = TH^2 + GH^2 = 50 + 25 = 75$ Let θ be the required angle of elevation of *G* at *T* Then, $\sin \theta = \frac{GH}{TG}$ $=\frac{5}{5\sqrt{3}}=\frac{1}{\sqrt{3}}$ $\Rightarrow \theta = \sin^{-1}(1/\sqrt{3})$ 290 (d) Given, $\Delta = \frac{1}{2}ap_1 = \frac{1}{2}bp_2 = \frac{1}{2}cp_3$ $\therefore p_1 = \frac{2\Delta}{a}, p_2 = \frac{2\Delta}{b}, p_3 = \frac{2\Delta}{c}$ $\therefore \quad p_1 p_2 p_3 = \frac{8\Delta^3}{abc} = \frac{8}{abc} \left(\frac{abc}{4R}\right)^3 = \frac{a^2 b^2 c^2}{8R^2}$ 291 (b) In $\triangle BCD$, $\cot 60^\circ = \frac{BC}{300}$ 30° 300 m 60° 30° $\Rightarrow BC = 300 \times \frac{1}{\sqrt{3}}$...(i) In $\triangle ACD$, cot 30 ° = $\frac{AC}{300}$ $\Rightarrow AC = 300\sqrt{3}$...(ii) \therefore Distance between two boats = *AB* $= AC - BC = 300\sqrt{3} - \frac{300}{\sqrt{3}}$ [using Eqs.(i)and (ii)]

$$= 300 \frac{(3-1)}{\sqrt{3}} = \frac{600 \times \sqrt{3}}{3} = 346.4 \text{ m}$$

292 **(d)**

 $: 3^2 + 4^2 = 5^2$

⇒ Given triangle is a right angled triangle whose length of hypotenuse is 5 unit

$$\therefore R = \frac{5}{2} = 2.5$$

293 **(a)**

Given,
$$\left(1 - \frac{r_1}{r_2}\right) \left(1 - \frac{r_1}{r_3}\right) = 2$$

$$\therefore \left(1 - \frac{s-b}{s-a}\right) \left(1 - \frac{s-c}{s-a}\right) = 2$$

$$\Rightarrow \frac{(b-a)(c-a)}{(s-a)^2} = 2$$

$$\Rightarrow a^2 = b^2 + c^2$$

Hence, triangle is a right angled triangle

294 **(a)**

From given, we get

$$a\left(\tan A - \tan\frac{A+B}{2}\right) = b\left(\tan\frac{A+B}{2} - \tan B\right)$$

$$\Rightarrow a \cdot \frac{\sin\left(A - \frac{A+B}{2}\right)}{\cos A \cdot \cos\frac{A+B}{2}} = b \cdot \frac{\sin\left(\frac{A+B}{2} - B\right)}{\cos\frac{A+B}{2}\cos B}$$

$$\Rightarrow \frac{a\sin\left(\frac{A-B}{2}\right)}{\cos A} = \frac{b\sin\left(\frac{A-B}{2}\right)}{\cos B}$$

$$\Rightarrow \sin\left(\frac{A-B}{2}\right) \{a\cos B - b\cos A\} = 0$$

$$\Rightarrow \text{ Either } \sin\frac{A-B}{2} = 0 \text{ or } a\cos B = b\cos A$$

When, $\sin\frac{A-B}{2} = 0 \Rightarrow A = B$
or when $a\cos B = b\cos A$

$$\Rightarrow \sin A\cos B - \cos A\sin B = 0$$

$$\Rightarrow \sin(A-B) = 0$$

$$\Rightarrow A = B$$

295 (d)

Triangle is right angled triangle. In right angled triangle mid point of hypotenuse is circumcentre So, coordinates of the circumcentre are (5, 2)

296 (c)

 $\therefore \frac{\sin(x+y)\sin(y+z)}{\sin x \sin z} = \frac{\frac{BE \sin B}{AE} \times \frac{DC \sin C}{AD}}{\frac{BD \sin B}{AD} \times \frac{EC \sin C}{AE}}$ $= \frac{BE}{AE} \times \frac{DC}{AD} \times \frac{AD}{BD} \times \frac{AE}{EC}$ $=\frac{2BD \times 2EC}{BD \times EC} = 4$ 297 (c) In $\triangle ABC$, $\tan 60^\circ = \frac{h}{BC}$ $\Rightarrow BC = h \cot 60^{\circ}$ In $\triangle ABD$, tan 30° = $\frac{h}{BD}$ 60% 60° $\Rightarrow BD = h \cot 30^{\circ}$ $\Rightarrow BC + CD = h \cot 30^{\circ}$ $\Rightarrow CD = h \cot 30^{\circ} - BC$ $\Rightarrow d = h \cot 30^{\circ} - h \cot 60^{\circ} \quad \text{[from Eq. (i)]}$ $\therefore \text{ Speed of car} = \frac{\text{distance from D to C}}{\text{time taken}}$ $= \frac{d}{3} = \frac{h \cot 30^\circ - h \cot 60^\circ}{3}$ $\therefore \text{ Time taken from } C \text{ to } B = \frac{\text{distance}}{\text{speed}}$ $=\frac{h\cot 60^{\circ}}{h(\cot 30^{\circ}-\cot 60^{\circ})}$ $=\frac{\frac{1}{\sqrt{3}}\times3}{\left(\sqrt{3}-\frac{1}{\sqrt{3}}\right)}$ $=\frac{3}{2}=1.5$ min 298 (a) Let *h* be the height of the tower, then $h = AQ \tan \alpha = BQ \tan \beta = CQ \tan \gamma$ $\Rightarrow BC = BQ - CQ = h(\cot\beta - \cot\gamma),$ $CA = h(\cot \alpha - \cot \gamma)$

and
$$AB = h(\cot \alpha - \cot \beta)$$

Now, $BC \cot \alpha - CA \cot \beta + AB \cot \gamma$
 $= h[\cot \alpha (\cot \beta - \cot \gamma) - \cot \beta (\cot \alpha - \cot \gamma)$
 $+ \cot \gamma (\cot \alpha - \cot \beta)]$

= 0299 (a)

On solving the given equations of sides, we get the coordinates of the vertices of the triangle,

A(2,-1), B(6,-1) and C(2,1)

The circumcentre of $\triangle ABC$ is the mid point of *BC*

ie, $M \equiv \left(\frac{8}{2}, \frac{0}{2}\right) = (4, 0)$

300 **(b)**

Let *h* metres be the height of tree *CD* and *x* meters be the width of river

$$D$$

$$A = \frac{30^{\circ}}{20 \text{ m} \rightarrow B} = \frac{h}{x} \Rightarrow h = \sqrt{3x} \dots (i)$$

$$A = \frac{1}{\sqrt{3}} = \frac{h}{x + 20}$$

$$A = \frac{1}{\sqrt{3}} = \frac{h}{\sqrt{3}}$$

$$A = \frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}}$$

$$A = \frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}}$$

$$A = \frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}}$$

$$A = \frac{1}{\sqrt{3}} = \frac{1}{$$

 $2s = a + b + c, A^{2} = s(s - a)(s - b)(s - c)$ $:: AM \ge GM$ $\Rightarrow \frac{s-a+s-b+s-c}{3}$ $\geq \sqrt[3]{(s-a)(s-b)(s-c)}$ $\Rightarrow \frac{3s-2s}{3} \ge \frac{(A^2)^{1/3}}{s^{1/3}}$ $\Rightarrow \frac{s^3}{27} \ge \frac{A^2}{s} \Rightarrow A \le \frac{s^2}{3\sqrt{3}}$ 303 (b) In \triangle *DBC*, tan $\alpha = \frac{5}{x}$...(i)

and in $\triangle DAC$, tan $2\alpha = \frac{30}{x}$

$$\Rightarrow \tan \theta = -\frac{1+2}{1-2} = 3$$

$$\Rightarrow \theta = \tan^{-1} 3$$
307 (d)
In ΔBCD , $\tan 60^{\circ} = \frac{CD}{BC} = \frac{h}{x} \Rightarrow h = \sqrt{3x} ...(i)$

$$\int_{AC}^{D} \frac{h}{h} = \frac{h}{x+40} \Rightarrow \frac{1}{\sqrt{3}} = \frac{h}{40+x}$$
and in ΔACD ,
 $\tan 30^{\circ} = \frac{CD}{AC} = \frac{h}{x+40} \Rightarrow \frac{1}{\sqrt{3}} = \frac{h}{40+x}$
 $40 + x = h\sqrt{3}$
 $\Rightarrow 40 + x = 3x$ [using Eq.(i)]
 $\Rightarrow x = 20$
On putting this value is Eq.(i), we get $h = 20\sqrt{3}$ m
308 (d)
Let $H(3, \alpha)$ is the orthocenter

$$\int_{(0,0)}^{V} \frac{C(3,4)}{A} = \frac{h}{(4,0)}$$
 \therefore Slope of $BH \times$ Slope of $AC = -1$
 $\Rightarrow -\alpha.\frac{4}{3} = -1$
 $\Rightarrow \alpha = \frac{3}{4}$
Hence, orthocenter of a triangle is $(3,\frac{3}{4})$
309 (c)
Let the axes be rotated through an angle θ . Then,
 $\tan 2\theta = \frac{2h}{a-b} = \frac{4\sqrt{3}}{5-9} = -\sqrt{3} \Rightarrow 2\theta = \frac{2\pi}{3} \Rightarrow \theta$
 $= \frac{\pi}{3}$
310 (a)
Since, $AC = 2BC$
 \therefore Coordinates of C are
 $A \underbrace{C(x, y)}{(-3, 4)^2} \underbrace{C(3, 2)}{(2, 1)}$
 $(\frac{4-3}{2+1}, \frac{2+4}{2+1}) ie, (\frac{1}{3}, 2)$
311 (d)
Let P be the image of the origin about the line
 $x + y = 1$. Since, $OA = OB$, therfore Q is mid point of AB

B(0, 1)x + y = 1: Coordinates of Q are $\left(\frac{1}{2}, \frac{1}{2}\right)$ Let the coordinates of *P* are (x_1, y_1) Also, *Q* is the mid point of *OP* :. $\frac{0+x_1}{2} = \frac{1}{2}$ and $\frac{0+y_1}{2} = \frac{1}{2}$ $\Rightarrow x_1 = 1, \quad y_1 = 1$ \therefore The cordiantes of *P* are (1, 1) 312 (c) We have, $\operatorname{cosec} A(\sin B \cos C + \cos B \sin C)$ $= \left(\frac{\sin B}{\sin A}\cos C + \frac{\sin C}{\sin A}\cos B\right)$ $=\left(\frac{b}{a}\cos C + \frac{c}{a}\cos B\right) = 1$ $(\because a = b \cos C + c \cos B)$ 313 (b) Let coordinates of fourth vertex are (x, y) $\therefore \quad \frac{x-5}{2} = \frac{7+3}{2}$ $\Rightarrow x = 15$ and $\frac{y-4}{2} = \frac{10+5}{2}$ $\Rightarrow y = 19$ ∴ Coordinates of fourth vertex are (15, 19) 314 (a) Let AB and DE be two towers of equal height 'h' 60 m _____ __ x __ \therefore In $\triangle ABC$, $\tan 60^\circ = \frac{h}{x} \Rightarrow x = \frac{h}{\sqrt{3}} \dots (i)$ Again, in $\triangle CDE$, $\tan 30^\circ = \frac{h}{60-x}$ $\Rightarrow 60 - x = h\sqrt{3}$ $\Rightarrow 60 = h\sqrt{3} + \frac{h}{\sqrt{3}}$ [from Eq. (i)] $\Rightarrow h = 15\sqrt{3} \text{ m}$ 315 (d) In ΔDEC , $\tan \theta = \frac{DE}{CE}$ pint $\Rightarrow \tan \theta = \frac{h-a}{CE}$ $\Rightarrow CE = \frac{h-a}{\tan \theta}$

Given vertices are A(2a, 4a), B(2a, 6a) and $C(2a + \sqrt{3}a, 5a), a > 0$ Now, $AB = \sqrt{(2a + 2a)^2 + (4a - 6a)^2} = 2a$ $BC = \sqrt{(\sqrt{3}a)^2 + a^2} = 2a$ and $CA = \sqrt{(\sqrt{3}a)^2 + (-a)^2} = 2a$ $\therefore AB = BC = CA$

Hence, triangle is an equilateral triangle, therefore it is an acute angled triangle

317 (a)

Let *D* and *E* are the mid points of *AB* and *AC*. So, coordinates of *B* and *C* are (-3, 3) and (5, 3) respectively

A (1,1)
(-1,2) D = E (3,2)
B (-3,3) C (5,3)
Centroid of triangle =
$$\left(\frac{1-3+5}{3}, \frac{1+3+3}{3}\right)$$

= $\left(1, \frac{7}{3}\right)$
318 **(b)**

On solving the given equations of lines, we get the coordinates of the vertices of a $\triangle OPQ$ which are O(0,0), P(1,0) and Q(0,1). Since, the triangle is right angled at O(0,0), therefore O(0,0) is its orthocenter

320 **(d)**

Let the circumcentre of triangle be P(x, y) and let the vertices of a $\triangle ABC$ be A(0, 30), B(4, 0) and C(30, 0)

$$PA^{2} = PB^{2} = PC^{2}$$

$$\Rightarrow (x - 0)^{2} + (y - 30)^{2} = (x - 4)^{2} + (y - 0)^{2}$$

$$= (x - 30)^{2} + (y - 0)^{2}$$
From Ist and IInd terms,

$$x^{2} + y^{2} - 60y + 900 = x^{2} + y^{2} - 8x + 16$$

$$\Rightarrow 8x - 60y + 884 = 0 \quad ...(i)$$
From IInd and IIIrd terms,

$$x^{2} - 8x + 16 + y^{2} = x^{2} - 60x + 900 + y^{2}$$

$$\Rightarrow 52x = 884 \Rightarrow x = 17$$
On putting $x = 17$ in Eq. (i), we get
 $y = 17$
Hence, required point is (17, 17)

Since, $\tan \theta = \frac{1}{2}$ In $\triangle ABC$, $\tan \alpha = \frac{\frac{h}{3}}{AB} = \frac{h}{120}$...(i)

$$A = 40 \text{ ft} B$$

In $\triangle ADB$, $\tan \beta = \frac{3h}{120}$...(ii) $\therefore \tan \theta = \tan(\beta - \alpha)$ $\Rightarrow \tan \theta = \frac{\tan \beta - \tan \alpha}{1 - \tan \beta \tan \alpha}$

$$\Rightarrow \frac{1}{2} = \frac{\frac{3h}{120} - \frac{h}{140}}{1 + \frac{3h^2}{14400}} \quad \left(\because \tan \theta = \frac{1}{2}, \operatorname{given}\right)$$

$$\Rightarrow \frac{1}{2} = \frac{\frac{2h}{120}}{\frac{14400+3h^2}{14400}}$$

$$\Rightarrow \frac{1}{2} = \frac{240h}{14400+3h^2}$$

$$\Rightarrow 14400 + 3h^2 = 480 h$$

$$\Rightarrow 4800 + h^2 - 160h = 0$$

$$\Rightarrow (h - 40)(h - 120) = 0$$
Since, the height of the pole is more than 100 m

$$\therefore h = 120 \text{ ft}$$
322 (c)
Slope of line $OP = \frac{3}{4}$ let new position is $Q(x, y)$
slope of $OQ = \frac{y}{a}$ also $x^2 + y^2 = OQ^2 = 25 = (OP^2)$

$$\tan 45^\circ = \left|\frac{\frac{y}{2} - \frac{3}{4}}{1 + \frac{3y}{4x}}\right| \Rightarrow \pm 1 = \frac{4y - 3x}{4x + 3y}$$
Straight lines and pair of straight lines
 $4x + 3y = 4y - 3x$
or $-4x - 3y = 4y - 3x$
or $-4x - 3y = 4y - 3x$
 $x = \frac{1}{7}y ...(i)$
Correct relation is $x = \frac{1}{7}y$ as new point must lies
in 1st quadrant
 $x^2 + 49x^2 = 25$
 $\Rightarrow x = -\frac{1}{\sqrt{2}}, y = \frac{7}{\sqrt{2}}$
323 (c)
In ΔABC , $\tan 30^\circ = \frac{BC}{AC}$
 $4ABC$, $\tan 30^\circ = \frac{BC}{AC}$
 $4ABC$, $\tan 30^\circ = \frac{BC}{AC}$
 324 (b)
Since, $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = k$ (say)
 $\therefore (a + b + c)(a + b - c) = 3ab$
 $\Rightarrow a^2 + b^2 + 2ab - c^2 = 3ab$
 $\Rightarrow \frac{a^2 + b^2 - c^2}{2ab} = \frac{1}{2} \Rightarrow \cos C = \cos \frac{\pi}{3}$

 $\Rightarrow \angle C = \frac{\pi}{3}$ 325 (b) In $\triangle ABD$, $\tan \alpha = \frac{H}{d}$ α-β $C\dot{H}$ h $\Rightarrow d = H \cot \alpha \dots (i)$ In ΔECD , $\tan(\alpha - \beta) = \frac{H-h}{d}$ $\Rightarrow \tan(\alpha - \beta) = \frac{H - h}{H \cot \alpha} \quad \text{[from Eq.(i)]}$ $\Rightarrow H[1 - \cot \alpha \tan(\alpha - \beta)] = h$ $\Rightarrow H = \frac{h \cot(\alpha - \beta)}{\cot(\alpha - \beta) - \cot \alpha}$ 326 **(b)** Let the equation of line be $\frac{x}{a} + \frac{y}{b} = 1$ Since, it passes through $\left(\frac{1}{5}, \frac{1}{5}\right)$ $\therefore \quad \frac{1}{5a} + \frac{1}{5b} = 1$ $\Rightarrow a + b = 5ab$...(i) Since, the point P(x, y) divides *AB* joining A(a, 0)and B(0, b) internally in ratio 3:1 $\therefore x = \frac{a}{4}, y = \frac{3b}{4} \Rightarrow a = 4x \text{ and } b = \frac{4y}{3}$ On putting the value of *a* and *b* in Eq. (i), we get $4x + \frac{4y}{3} = 5(4x)\left(\frac{4y}{3}\right)$ $\Rightarrow 3x + y = 20 xy$ 327 (d) (3 - 10 + a)(9 - 20 + a) > 0or (a-7)(a-11) > 0 $\therefore a \in (-\infty, 7) \cup (11, \infty)$ 328 (a) $y = |x - 2| \Rightarrow y = x - 2$ and y = 2 - xy = 2 - x0 1A Area of shaded region = $2 ABC = 2 \cdot \frac{1}{2} \cdot 1 \cdot 1 = 1$ 329 (d)

$$\frac{\cot\frac{A}{2}\cot\frac{B}{2}-1}{\cot\frac{a}{2}\cot\frac{B}{2}} = 1 - \tan\frac{A}{2}\tan\frac{B}{2}$$
$$= 1 - \sqrt{\frac{(s-b)(s-c)}{s(s-a)}}\sqrt{\frac{(s-a)(s-c)}{s(s-b)}}$$
$$= 1 - \frac{s-c}{s} = \frac{c}{s}$$
$$= \frac{2c}{a+b+c}$$
330 (c)
We have, $AG = 1$
$$\therefore GD = \frac{1}{2}AG = \frac{1}{2}$$

Hence, the coordinates of *D* are (1,1/2)Clearly, *AG* is parallel to *y*-axis and the triangle *ABC* is equilateral. Therefore, *BC* is parallel to *x*-axis at a distance of $\frac{1}{2}$ unit from it

Let a be the length of each side of $\triangle ABC$. Then, $AD = \frac{\sqrt{3}}{2}a \Rightarrow \frac{\sqrt{3}}{2}a = \frac{3}{2} \Rightarrow a = \sqrt{3}$ Since *D* is the mid-point of *BC* and *BC* = $\sqrt{3}$

$$\therefore BD = CD = \frac{\sqrt{3}}{2}$$

Hence, the coordinates of *B* and *C* are $\left(1 - \frac{\sqrt{3}}{2}, \frac{1}{2}\right)$ and $\left(1 + \frac{\sqrt{3}}{2}, \frac{1}{2}\right)$ respectively

331 **(d)**

$$c^{2} \sin 2B + b^{2} \sin 2C$$

$$= c^{2}(2 \sin B \cos B) + b^{2}(2 \sin C \cos C)$$

$$= 2c^{2}\left(\frac{2\Delta}{ac} \cos B\right) + 2b^{2}\left(\frac{2\Delta}{ab} \cos C\right)$$

$$= 4\Delta \left(\frac{c \cos B + b \cos C}{a}\right)$$

$$= 4\Delta \left(\frac{a}{a}\right) = 4\Delta$$
332 (a)
In ΔDAB , $\tan \theta = \frac{64}{a}$

9́0° - ө E 8 $\Rightarrow d = 64 \cot \theta$...(i) In $\triangle CDE$, $\tan(90^\circ - \theta) = \frac{(100-64)}{d}$ $\Rightarrow d = 36 \tan \theta$...(ii) From Eqs. (i) and (ii), we get $d^2 = 36 \times 64 \implies d = 48 \text{ m}$ 334 (d) We know that area of circle is πr^2 If radius, r = a, then $A = \pi a^2$ And the area of the segment of angle $2\pi = \pi a^2$ \therefore Area of 1 angle = $\frac{\pi a^2}{2\pi}$: Area of 2α angle $=\frac{2\alpha\pi a^2}{2\pi}=\alpha a^2$ 336 (a) Let a = 5k, b = 6k and c = 5k $s = \frac{5k + 6k + 5k}{2} = 8k$ $\therefore r = \frac{\Delta}{s}$ $=\sqrt{\frac{8k(8k-5k)(8k-6k)(8k-5k)}{8k}}$ $= \frac{8k.3k.2k.3k}{8k} = \frac{3k}{2}$ $\Rightarrow k = \frac{2r}{3} = \frac{2 \times 6}{3} = 4$ 338 (b)

Let the height of the vertical tower PQ = h, C is the middle point of line segment *AB*. Since, *PQ* is perpendicular to the plane *QAB*,

 $\therefore \ \angle PQA = \angle PQC = \angle PQB = 90^{\circ}, \text{ we get}$

$$\frac{PQ}{QA} = \tan \theta \Rightarrow QA = h \cot \theta$$

Similarly $QB = h \cot \theta$ and $QA = h \cot \theta$

Similarly, $QB = h \cot \theta$ and $QC = h \cot \phi$ Since, QA = QB, the ΔQAB is an isosceles triangle

We know that, 2s = a + b + c $\frac{(a+b+c)(b+c-a)(c+a-b)(a+b-c)}{4b^2c^2}$ $=\frac{2s(2s-2a)(2s-2b)(2s-2c)}{4b^2c^2}$ $=4\frac{s(s-a)}{hc}\times\frac{(s-b)(s-c)}{hc}$ $= 4\cos^2\frac{A}{2} \times \sin^2\frac{A}{2} = \sin^2 A$ 342 (b) Let P(h, k) be the required point, then 2PA = 3PB $\Rightarrow 4PA^2 = 9PB^2$ $\Rightarrow 4[(h-0)^2 + (k-0)^2]$ $=9[(h-4)^4 + (k+3)^2]$ $\Rightarrow 4(h^2 + k^2) = 9[h^2 + 16 - 8h + k^2 + 9 + 6k]$ $\Rightarrow 5h^2 + 5k^2 - 72h + 54k + 225 = 0$ \therefore Required locus of P(h, k) is $5x^2 + 5y^2 - 72x + 54y + 225 = 0$ 343 (a) Here, $a = \sqrt{(16-5)^2 + (12-12)^2} = 11$ $b = \sqrt{(16-0)^2 + (12-0)^2} = 20$ And $c = \sqrt{(5-0)^2 + (12-0)^2} = 13$:. Incentre= $\left(\frac{11\times0+20\times5+13\times16}{11+20+13}, \frac{11\times0+20\times12+13\times12}{11+20+13}\right) =$ (7, 9)344 (d) We have, $\tan \frac{A}{2} \tan \frac{c}{2} = \frac{1}{2}$ $\Rightarrow \sqrt{\frac{(s-b)(s-c)}{s(s-a)}} \sqrt{\frac{(s-a)(s-b)}{s(s-c)}} = \frac{1}{2}$ $\Rightarrow \frac{s-b}{s} = \frac{1}{2} \Rightarrow 2s - 2b - s = 0$ $\Rightarrow a + c - 3b = 0$ 345 (c) Since, $\sin^2 \frac{A}{2}$, $\sin^2 \frac{B}{2}$, $\sin^2 \frac{C}{2}$ be in HP $\Rightarrow \frac{1}{\sin^2 \frac{A}{2}}, \frac{1}{\sin^2 \frac{B}{2}}, \frac{1}{\sin^2 \frac{C}{2}} \text{ are in AP}$ $\Rightarrow \frac{1}{\sin^2 \frac{c}{2}} - \frac{1}{\sin^2 \frac{B}{2}} = \frac{1}{\sin^2 \frac{B}{2}} - \frac{1}{\sin^2 \frac{A}{2}}$ $\Rightarrow \frac{ab}{(s-a)(s-b)} - \frac{ac}{(s-a)(s-c)}$ $= \frac{ac}{(s-a)(s-c)} - \frac{bc}{(s-b)(s-c)}$ $\Rightarrow \left(\frac{a}{s-a}\right) \left(\frac{b(s-c)-c(s-b)}{(s-b)(s-c)}\right)$ $= \left(\frac{c}{s-c}\right) \left(\frac{a(s-b) - b(s-a)}{(s-a)(s-b)}\right)$ $\Rightarrow abs - abc - acs + abc$ = acs - abc - bcs + abc

⇒
$$ab - ac = ac - bc$$
 ⇒ $ab + bc = 2ac$
⇒ $\frac{1}{c} + \frac{1}{a} = \frac{2}{b}$
⇒ a, b, c are in HP
346 (d)
It is given that *O* is the origin and *P*(2,3) and
 $Q(4,5)$ are two points
 $\therefore \cos \angle POQ = \frac{OP^2 + OQ^2 - PQ^2}{2(OP)(OQ)}$
⇒ $OP \times OQ \cos \angle POQ = \frac{1}{2}\{OP^2 + OQ^2 - PQ^2\}$
⇒ $OP \times OQ \cos \angle POQ = \frac{1}{2}\{13 + 41 - 8\} = 23$
ALITER If *O* is the origin and *P*(x_1, y_1), $Q(x_2, y_2)$
are two points, then
 $OP \times OQ \times \cos \angle POQ = x_1 x_2 + y_1 y_2$
Here, $x_1 = 2, y_1 = 3, x_2 = 4$ and $y_2 = 5$
 $\therefore OP \times OQ \times \cos \angle POQ = 8 + 15 = 23$
347 (d)
 $\frac{\sin 3B}{\sin B} = \frac{3 \sin B - 4 \sin^3 B}{\sin B} = 3 - 4 \sin^2 B$
 $= 3 - 4(1 - \cos^2 B)$
 $= -1 + \frac{4(a^2 + c^2 - b^2)^2}{4(ac)^2}$ [$\because 2b^2 = a^2 + c^2$ (given)]
 $= \frac{(a^2 + c^2)^2 - 4a^2c^2}{4(ac)^2} = \left(\frac{c^2 - a^2}{2ac}\right)^2$
348 (a)
Since, $\angle QPC = \alpha$
 $\therefore \angle QPB = \angle BPC = \frac{\alpha}{2}$
In $\triangle PQB$, $\sin \frac{\alpha}{2} = \frac{r}{l}$
⇒ $l = r \sec \frac{\alpha}{2}$...(i)
and in $\triangle POB$, $\sin \beta = \frac{h}{l}$
⇒ $h = l \sin \beta$
⇒ $h = r \csc \frac{\alpha}{2} \sin \beta$ [from Eq.(i)]

349 (d)

$$\cos OPQ = \frac{OP^2 + PQ^2 - OQ^2}{2OP \cdot PQ}$$

$$= \frac{(4^2 + 2^2) + 2^2 - (4^2 + 4^2)}{2\sqrt{4^2 + 2^2} \cdot \sqrt{2^2}}$$

$$= \frac{24 - 32}{42\sqrt{5}}$$

$$\int_{y'}^{y'} P^{(2,4)} Q^{(4,4)}$$

$$x' = \int_{y'}^{y'} Q^{(4,4)}$$

$$\Rightarrow \angle OPQ = \cos^{-1}\left(-\frac{1}{\sqrt{5}}\right)$$
350 (a)
Let AB be a hill whose height is h r
be a pillar of height h' meters.
In $\triangle EDB$, $\tan \alpha = \frac{h - h'}{ED} \dots$ (i)
and in $\triangle ACB$, $\tan \beta = \frac{h}{AC} = \frac{h}{ED} \dots$ (ii)

metres and CD i) ∴ From Eqs. (i)and (ii), $\frac{\tan\alpha}{\tan\beta} = \frac{h-h'}{h}$ $\Rightarrow h.\frac{\tan\alpha}{\tan\beta} = h - h' \Rightarrow h' = \frac{h(\tan\beta - \tan\alpha)}{\tan\beta}$ 351 (c) We have, Area of $\triangle ABC = 3$ Area of $\triangle GAB$ Now, Area of $\triangle GAB = \frac{1}{2}$ × Absolute value of $\begin{vmatrix} 1 & 4 & 1 \\ 4 & -3 & 1 \\ -9 & 7 & 1 \end{vmatrix}$ ⇒ Area of $\triangle GAB = \frac{1}{2} |-10 - 52 + 1| = \frac{61}{2}$ sq. units Hence, Area of $\triangle ABC = \frac{183}{2}$ sq. units 352 **(a)** Using sine rule, $\frac{a}{\sin A} = \frac{b}{\sin B}$ $\Rightarrow \frac{2\sqrt{2}}{\sin 45^{\circ}} = \frac{6}{\sin B}$

 \therefore Coordinates of $R\left(3,\frac{4}{3}\right)$

357 (c)

Let AQ (= PQ) be the broken part of the tree OP.

Q (6,0)

the

It is given that OA = 10 m and $\angle OAQ = 45^{\circ}$ In $\triangle OAQ$, we have $\tan 45^\circ = \frac{OQ}{OA} \Rightarrow OQ = 10^\circ$ Q 45° 10m A 0 Also, $AO^2 = OA^2 + OO^2$ $\Rightarrow AQ = \sqrt{100 + 100} = 10\sqrt{2}$ $\therefore OP = OQ + PQ = OQ + AQ = 10 + 10\sqrt{2}$ $= 10(\sqrt{2} + 1)$ mts 358 (c) Let the new coordinates be P(x', y') after shifting origin to P(x', y')ie, x = x' + h and y = y' + k: $(x'+h)^2 + (y'+k)^2 - 4(x'+h) + 6(y'+k)$ -7 = 0 $\Rightarrow (x')^{2} + (y')^{2} + 2(h-2)x' + 2(k+3)y'$ $+(h^2 + k^2 - 4h + 6k - 7) = 0$ According to the question, h - 2 = 0 and k + 3 = 0 \Rightarrow (h,k) = (2,-3)359 (d) In $\triangle ABC$, tan $30^\circ = \frac{BC}{AC}$ $\Rightarrow \frac{1}{\sqrt{3}} = \frac{h - 150}{60}$ $\Rightarrow h-150 = \frac{60}{\sqrt{3}}$ 3005 30° Ch 150 m 60 D $h = (150 + 20\sqrt{3})m$ ⇒ 360 (d) The sum of the distance $\frac{\frac{a}{a} + \frac{b}{a} - 1}{\sqrt{\left(\frac{1}{a}\right)^2 + \left(\frac{1}{b}\right)^2}} + \frac{\frac{a}{b} + \frac{b}{a} - 1}{\sqrt{\left(\frac{1}{b}\right)^2 + \left(\frac{1}{a}\right)^2}}$ $= \left(\frac{a}{b} + \frac{b}{a}\right) \frac{1}{\sqrt{\frac{1}{a^2} + \frac{1}{b^2}}}$

$$= \sqrt{a^{2} + b^{2}}$$
361 (b)
Given, $\frac{1}{b+c} + \frac{1}{c+a} = \frac{3}{a+b+c}$
 $\Rightarrow 1 + \frac{b}{a+c} + 1 + \frac{a}{b+c} = 3$
 $\Rightarrow b(b+c) + a(a+c) = (a+c)(b+c)$
 $\Rightarrow a^{2} + b^{2} - c^{2} = ab$
 $\therefore \cos C = \frac{a^{2} + b^{2} - c^{2}}{2ab} = \frac{ab}{2ab} \Rightarrow \angle C = 60^{\circ}$
362 (b)
Given, $\frac{\sin A}{1/4} = \frac{\sin B}{1/4} = \frac{\sin C}{1/3}$
 $\therefore \frac{\sin A}{3} = \frac{\sin B}{3} = \frac{\sin C}{4}$
Here, $a = 3k, b = 3k$ and $c = 4k$, where k is a proportionality constant
 $\therefore \cos C = \frac{9k^{2} + 9k^{2} - 16k^{2}}{2 \times 3k \times 3k} = \frac{1}{9}$
363 (b)
 $(b+c)(bc)\cos A + (a+c)(ac)\cos B + (a+b)(ab)\cos C$
 $= (b+c)(bc)\left(\frac{b^{2} + c^{2} - a^{2}}{2bc}\right) + (a+c)(ac) \times \left(\frac{a^{2} + c^{2} - b^{2}}{2ca}\right)$
 $+ (a+b)(ab)\left(\frac{a^{2} + b^{2} - c^{2}}{2ab}\right)$
 $= \frac{1}{2}\{(b+c)(b^{2} + c^{2} - a^{2}) + (a+c)(a^{2} + b^{2} - c^{2})\}$
 $= \frac{1}{2}\{(b+c)(b^{2} + c^{2} - a^{2}) + (a+b)(a^{2} + b^{2} - c^{2})\}$
 $= \frac{1}{2}\{2a^{3} + 2b^{3} + 2c^{3}\} = a^{3} + b^{3} + c^{3}$
364 (a)
In ΔDCB , $\tan \theta = \frac{h}{x}$...(i)
 $\int \frac{A}{b} = \frac{h}{b} = \frac{h+6}{2\sqrt{3}+x}$ [from Eq.(i)]
 $\Rightarrow 2\sqrt{3}h + hx = hx + 6x$
 $\Rightarrow 2\sqrt{3}h = 6x$
 $\Rightarrow h = \frac{6x}{2\sqrt{3}}$

From Eq. (i), we get $\tan \theta = \frac{6x}{2\sqrt{3}x} = \sqrt{3}$ $\Rightarrow \theta = 60^{\circ}$ 365 (b) Since, angles A, B, C are in AP $\therefore 2B = A + C$ $\therefore A + B + C = 180^{\circ}$ $\Rightarrow B = 60^{\circ}$ Now, $\cos B = \frac{a^2 + c^2 - b^2}{2ac}$ $\Rightarrow \frac{1}{2} = \frac{a^2 + c^2 - b^2}{2ac}$ $\Rightarrow a^2 + c^2 - b^2 = ac$ $\Rightarrow b^2 = a^2 + c^2 - ac$ 366 (a) Let a = 7 cm, $b = 4\sqrt{3}$ cm and $c = \sqrt{13}$ cm Here, we see that the smallest side is *c* Therefore, the smallest angle will be *C* $\therefore \cos C = \frac{(7)^2 + (4\sqrt{3})^2 - (\sqrt{13})^2}{2 \times 7 \times 4\sqrt{3}} = \frac{\sqrt{3}}{2}$ $\Rightarrow \angle C = \frac{\pi}{6}$ 367 (c) On solving the given straight lines, we get vertices of $\triangle ABC$ Which are A(2, -2), B(1, 1), C(-2, 2) $\therefore AB = \sqrt{(1-2)^2 + (1+2)^2} = \sqrt{10}$ $BC = \sqrt{(-2-1)^2 + (2-1)^2} = \sqrt{10}$ And $CA = \sqrt{(2+2)^2 + (-2-2)^2} = \sqrt{32}$ Here, AB = Bc \Rightarrow Triangle is isosceles triangle 369 (d) If $\begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix} = 0$, then the points are collinear 370 (a) Let $\angle A = 45^{\circ}$ and $\angle B = 60^{\circ}$ $\therefore \angle C = 75^{\circ}$ Let smallest and greatest sides are *a* and *c* \therefore a: c = sin 45°: sin 75° $=\frac{1}{\sqrt{2}}:\frac{\sqrt{3}+1}{2\sqrt{2}}=2:\sqrt{3}+1$ $= 2(\sqrt{3}-1):(\sqrt{3}+1)(\sqrt{3}-1)$ $=(\sqrt{3}-1):1$ 371 (b) In $\triangle ADF$, $\tan 60^\circ = \frac{1}{AF}$

372 (a)

Let *CD* is a tower of height *h*. *AB* is building of height *a*

376

377

378

$$\int_{h}^{D} \int_{L}^{30^{\circ}} \int_{A}^{B} \int_{A}^{a} \int_{A}^{A}$$

37

$$\frac{\sin 3B}{\sin B} = \frac{3\sin B - 4\sin^3 B}{\sin B}$$

= 3 - 4(1 - cos² B)
= -1 + 4 $\left(\frac{a^2 + c^2 - b^2}{2ac}\right)^2$ = -1 + $\frac{\left(\frac{a^2 + c^2}{2}\right)^2}{(ac)^2}$
= $\frac{(a^2 + c^2)^2 - 4a^2c^2}{4(ac)^2} = \left(\frac{c^2 - a^2}{2ac}\right)^2$
375 **(b)**

Since, $\frac{BD}{DC} = \frac{1}{3}$

A

$$\int_{B} \int_{-\infty}^{\infty} \frac{\sin \frac{\pi}{3}}{2} \int_{-\infty}^{\infty} \frac{\pi}{4} \int_{-\infty}^{\infty} \frac{$$

So, orthocenter is (1, 3)

37

379 (a)
Area of
$$\Delta = \frac{1}{2} \begin{vmatrix} 0 & 0 & 1 \\ a \cos \theta & b \sin \theta & 1 \\ a \cos \theta & -b \sin \theta & 1 \end{vmatrix}$$

 $\Rightarrow \Delta = \frac{1}{2} |[1(-ab \sin \theta \cos \theta - ab \sin \theta \cos \theta)]|$
 $= \frac{ab \sin 2\theta}{2}$
Since, maximum value of $\sin 2\theta$ is 1, when $\theta = \frac{\pi}{4}$
 $\therefore \Delta_{max} = \frac{ab}{2}$
380 (d)
Let $O(x, y)$ be the circumcentre. Then, *G* divides
O' 0 in the ratio 2 : 1
 $\therefore \frac{2x + 0}{2 + 1} = 2$ and $\frac{2y + 1}{2 + 1} = 3 \Rightarrow x = 3$ and $y = 4$
Hence, the coordinates of *O* are (3, 4)
381 (d)
Perpendicular bisector of $A(1, 3)$ and $B(-3, 5)$ is
 $2x - y + 6 = 0$...(i)
And perpendicular bisector of $A(1, 3)$ and $C(5, -1)$ is
 $x - y - 2 = 0$...(ii)
On solving Eqs. (i) and (ii), we get
 $x = -8, y = -10$
 \therefore Coordinates of *P* are $(-8, -10)$
Thus, $PA = \sqrt{(1 + 8)^2 + (3 + 10)^2}$
 $= \sqrt{81 + 169} = 5\sqrt{10}$
382 (a)
Given sides are $3x - 4y = 0, 5x + 12y = 0$
and $y - 15 = 0$. The vertices of a triangle are
 $A(0, 0), B(20, 15), C(-36, 15)$
Now, $AB = c = \sqrt{(20 - 0)^2 + (15 - 0)^2}$
 $= \sqrt{400 + 225}$
 $= 25$
 $BC = a = \sqrt{(20 + 36)^2 + (15 - 15)^2}$
 $= 56$
 $CA = b = \sqrt{(-36 - 0)^2 + (15 - 0)^2}$
 $= \sqrt{1296 + 225} = 39$
 \therefore Incentre
 $= \left(\frac{ax_1 + bx_2 + cx_3}{a + b + c}, \frac{ay_1 + by_2 + cy_2}{a + b + c}, \frac{ay_1 + by_2 + cy_2}{a + b + c}, \frac{56 + 39 + 25}{56 + 39 + 25}, \frac{56 + 39 + 25}{56 + 39 + 25}, \frac{56 + 39 + 25}{56 + 39 + 25}, \frac{56 + 39 + 25}{56 + 39 + 25}, \frac{56 + 39 + 25}{56 + 39 + 25}, \frac{56 + 39 + 25}{120}$
 $= \left(\frac{-120}{120}, \frac{960}{120}\right)$

383 (d)

The mid point of the line joining the points

(-10, 8) and (-6, -12) $is\left(\frac{-10-6}{2},\frac{8+12}{2}\right)$ *ie*, (-8, 10). Let (-8, 10) divides the line joining the points (4, -2) and (-2, 4) in the ratio *m*: *n* Then, $\frac{m(-2)+n(4)}{m+n} = -8$ $\Rightarrow -2m + 4n = -8m - 8n$ $\Rightarrow 6m = -12n \Rightarrow \frac{m}{n} = \frac{-2}{1}$ ∴ Required ratio 2:1 externally. 384 (a) Given the circle is inscribed in square formed by the lines $x^2 - 8x + 12 = 0$ and $y^2 - 14y + 45 = 0$ \Rightarrow x = 6 and x = 2, y = 5 and y = 9 D(2,9) C(6,9) y = 9A(2, 5) B(6, 5) Ο ABCD clearly forms a square \therefore Centre of inscribed circle =point of intersection of diagonals =mid point of AC or BD $=\left(\frac{2+6}{2},\frac{5+9}{2}\right)$ \Rightarrow Centre of inscribed circle = (4,7) 385 (a) Area of a circle = $\pi \times (radius)^2$: $A = \pi r^3, A_1 = \pi r_1^2, A_2 = \pi r_2^2, A_3 = \pi r_3^2$ $\therefore \frac{1}{\sqrt{A_1}} + \frac{1}{\sqrt{A_2}} + \frac{1}{\sqrt{A_3}}$ $=\frac{1}{r_1\sqrt{\pi}}+\frac{1}{r_2\sqrt{\pi}}+\frac{1}{r_3\sqrt{\pi}}$ $=\frac{1}{\sqrt{\pi}}\left(\frac{1}{r_{1}}+\frac{1}{r_{2}}+\frac{1}{r_{3}}\right)$ $=\frac{1}{\sqrt{\pi}}\left(\frac{s-a}{\Delta}+\frac{s-b}{\Delta}+\frac{s-c}{\Delta}\right)$ $=\frac{1}{\sqrt{\pi}}\left(\frac{3s-(a+b+c)}{\Delta}\right)$ $=\frac{1}{\sqrt{\pi}}\cdot\frac{3s-2s}{\Delta}=\frac{1}{\sqrt{\pi}}\cdot\frac{s}{\Delta}$ $=\frac{1}{r\sqrt{\pi}}=\frac{1}{\sqrt{A}}$ 386 **(b)** We have, $x^2 + 4xy + y^2 = aX^2 + bY^2$

$$\Rightarrow (X \cos \theta + Y \sin \theta)^{2}$$

$$+ 14(X \cos \theta + Y \sin \theta)(X \sin \theta)^{2}$$

$$- Y \cos \theta + (X \sin \theta - Y \cos \theta)^{2}$$

$$= aX^{2} + bY^{2}$$

$$\Rightarrow a = 1 + 4 \sin \theta \cos \theta, b = 1 - 4 \sin \theta \cos \theta \text{ and}$$

$$\sin^{2} \theta - \cos^{2} \theta = 0$$

$$\Rightarrow a = 1 + 4 \sin \theta \cos \theta, b = 1 - 4 \sin \theta \cos \theta \text{ and}$$

$$\theta = \frac{\pi}{4}$$

$$\Rightarrow a = 3, b = -1$$
387 (d)
Let $S(x, y)$, then
$$(x + 1)^{2} + y^{2} + (x - 2)^{2} + y^{2} = 2[(x - 1)^{2} + y^{2}]$$

$$\Rightarrow 2x + 1 + 4 - 4x = -4x + 2$$

$$\Rightarrow x = \frac{-3}{2}$$

Hence, it is a straight line parallel to *y*-axis 388 **(b)**

Given lines are

389 **(c)**

392 (b)
6.
$$b \cos^2 \frac{C}{2} + c \cos^2 \frac{B}{2} = b \cdot \frac{s(s-c)}{ab} + c \cdot \frac{s(s-b)}{ac}$$

 $= \frac{s}{a} [2s - (b + c)] = s$
Hence, statement I is true
7. Let $\cot \frac{A}{2} = \frac{b+c}{2}$
 $\Rightarrow \frac{\cos \frac{A}{2}}{\sin \frac{A}{2}} = \frac{\sin B + \sin C}{\sin A}$
 $\Rightarrow \frac{\cos \frac{A}{2}}{\sin \frac{A}{2}} = \frac{2 \sin \left(\frac{B+c}{2}\right) \cos \left(\frac{B-c}{2}\right)}{2 \sin \frac{A}{2} \cos \frac{A}{2}}$
 $\Rightarrow \cos \frac{A}{2} = \cos \left(\frac{B-C}{2}\right)$
 $\Rightarrow \frac{A}{2} = \frac{B-C}{2} \Rightarrow A + C = B$
But $A + B + C = \pi$, therefore $B = \frac{\pi}{2}$
But given statement is
 $\cot \frac{A}{2} = \frac{b+c}{2} \Rightarrow \angle B = 90^{\circ}$
Hence, statement II is not true
393 (b)
 $\therefore \angle CDA = \beta, \angle DCB = \gamma,$
and $\angle ACB = \pi - (\alpha + \beta + \gamma)$
 C
 C
 D
 $(a + \beta + \gamma) = \frac{CA}{\sin \gamma}$
 $\Rightarrow CA = \frac{a \sin \gamma}{\sin(\alpha + \beta + \gamma)} = \frac{CA}{\sin \gamma}$
 $\Rightarrow CA = \frac{a \sin \gamma}{\sin(\alpha + \beta + \gamma)}$
Now, in $\triangle CAD$, on applying sine rule, we get
 $\frac{CA}{\sin \beta} = \frac{CB}{\sin \alpha}$
 $\Rightarrow CD = \frac{CA \cdot \sin \alpha}{\sin \beta}$
 $= \frac{a \sin \gamma \sin \alpha}{\sin \beta \sin(\alpha + \beta + \gamma)}$
394 (b)
Let PD be a pole
In $\triangle DAP$, tan $30^{\circ} = \frac{Dp}{AD}$

$$\Rightarrow DP = \frac{a}{\sqrt{3}}$$

In $\triangle PDB$, $\tan \theta = \frac{DP}{BD}$

$$\Rightarrow \tan \theta = \frac{a/\sqrt{3}}{\sqrt{2a}} = \frac{1}{\sqrt{6}}$$

$$P$$

$$\int DP = \frac{a}{\sqrt{3}}$$

$$\Rightarrow \tan \theta = \frac{a/\sqrt{3}}{\sqrt{2a}} = \frac{1}{\sqrt{6}}$$

P

$$\int DP = \frac{a}{\sqrt{3}}$$

$$\Rightarrow \tan \theta = \frac{a/\sqrt{3}}{\sqrt{2a}} = \frac{1}{\sqrt{6}}$$

$$\int DP = \frac{a}{\sqrt{6}}$$

$$P$$

$$\int DP = \frac{a}{\sqrt{3}}$$

$$= \frac{1}{\sqrt{6}}$$

$$\int DP = \frac{a}{\sqrt{3}}$$

$$= \frac{1}{\sqrt{6}}$$

$$\int DP = \frac{a}{\sqrt{3}}$$

$$= \frac{1}{\sqrt{6}}$$

$$P$$

$$\int DP = \frac{a}{\sqrt{6}}$$

$$P$$

$$= \frac{a}{\sqrt{6}}$$

$$P$$

$$= \frac{a}{\sqrt{6}}$$

$$P$$

$$= \frac{a}{\sqrt{3}}$$

$$= \frac{a}{\sqrt{3}}$$

$$= \frac{2}{\sqrt{3}-1}$$

$$\Rightarrow 2B = \frac{15^{\circ}}{\sqrt{2}}$$

$$\Rightarrow C = \frac{120^{\circ}}{\sqrt{3}}$$

398 (a)

Let (x, y) be the original coordinates of *P*. Then, $x = 1 + \cos \theta$ and $y = 1 + \cos \phi$ $\Rightarrow x = 2\cos^2 \frac{\theta}{2}, y = 2\cos^2 \frac{\phi}{2}$

399 **(b)**

Given,
$$r_1 = 2r_2 = 3r_3$$

$$\Rightarrow \frac{\Delta}{(s-a)} = \frac{2\Delta}{(s-b)} = \frac{3\Delta}{(s-c)}$$

$$\Rightarrow (s-b) = 2(s-a) \text{ and } (s-c) = 3(s-a)$$

$$\Rightarrow \frac{a+b+c}{2} - b = 2\left(\frac{a+b+c}{2} - a\right)$$
and $\frac{a+b+c}{2} - c = 3\left(\frac{a+b+c}{2} - a\right)$

$$\Rightarrow a+c-b = 2(-a+b+c)$$
and $a+b-c = 3(-a+b+c)$

$$\Rightarrow 3a = 3b+c \text{ and } 2a = b+2c$$

$$\Rightarrow 4a = 5b \Rightarrow \frac{a}{b} = \frac{5}{4}$$

400 **(b)**

Since a, b and x are in AP $\Rightarrow 2b = a + c$ $\Rightarrow 3b = 2s \Rightarrow s = \frac{3b}{2}$ Now, $\frac{\sin\frac{A}{2}\sin\frac{C}{2}}{\sin\frac{B}{2}} = \sqrt{\frac{ac(s-b)(s-c)(s-b)(s-a)}{(s-a)(s-c) \times bc \times ab}}$ $= \frac{s-b}{b} = \frac{\frac{3b}{2} - b}{b} = \frac{1}{2}$

401 **(b)**

Let *AD* be the building of height *h* and *BP* be the hill. Then,

 $\tan q = \frac{h+x}{y} \dots (i)$ and $\tan p = \frac{x}{y}$ $\Rightarrow y = x \cot p \dots (ii)$

$$D = \frac{p}{h} + \frac{q}{\sqrt{x + ct}} + \frac{p}{\sqrt{x + ct}$$

$$= \cos^2 \frac{A}{2} - \sin^2 \frac{A}{2}$$
$$= \cos \frac{2A}{2} = \cos A$$

407 **(b)**

Let the third vertex of the triangle be (x, y), then x + 4 + (-2)

$$\frac{x + 1 + (-2)}{3} = 2 \implies x = 4$$

and
$$\frac{y + 8 + 6}{3} = 7 \implies y = 7$$

 \therefore The coordinates of the third vertex are (4, 7)

408 **(b)**

Let *ABCD* be a square of each side of length *a*. It is given that $\angle BPC = 60^\circ$. Let *M* be the midpoint of *BC*. Then $\angle BPM = \angle CPM = 30^\circ$ In $\triangle BPM$.we have

$$\tan \angle BPM = \frac{BM}{BM}$$

$$\Rightarrow PM = \sqrt{3} BM = \frac{\sqrt{3}}{2} a$$

In ΔOPM , we have

409 (c)

$$(a-b)^{2} \cos^{2} \frac{C}{2} + (a+b)^{2} \sin^{2} \frac{C}{2}$$

= $(a^{2}+b^{2}-2ab) \cos^{2} \frac{C}{2}$
+ $(a^{2}+b^{2}+2ab) \sin^{2} \frac{C}{2}$
= $a^{2}+b^{2}+2ab \left(\sin^{2} \frac{C}{2}-\cos^{2} \frac{C}{2}\right)$
= $a^{2}+b^{2}-2ab \cos C$
= $a^{2}+b^{2}-(a^{2}+b^{2}-c^{2})$
= $c^{2} \left(\because \cos C = \frac{a^{2}+b^{2}-c^{2}}{2ab}\right)$
410 (c)
Given, $\Delta = a^{2}-(b-c)^{2}$

 $= 2 h^2$

$$= (a + b - c)(a - b + c)$$

$$= 2(s - c) \cdot 2(s - b)$$

$$\sqrt{s(s - a)(s - b)(s - c)} = 4(s - b)(s - c)$$

$$\Rightarrow \frac{1}{4} = \sqrt{\frac{(s - b)(s - c)}{s(s - a)}} = \tan \frac{A}{2}$$

$$\therefore \tan \frac{A}{2} = \frac{1}{4}$$

411 **(a)**

If O' is the orthocentre of a $\triangle ABC$, then the points O', A, B, C are such that each point is the orthocentre of the triangle formed by the remaining three points. So, the coordinates of the orthocentre of $\triangle O'AB$ are (0, 0)

412 **(c)**

$$\cot B + \cot C - \cot A$$

$$= \frac{\cos B}{\sin B} + \frac{\cos C}{\sin C} - \cot A$$

$$= \frac{\sin C \cos B + \cos C \sin B}{\sin B \sin C} - \cot A$$

$$= \frac{\sin(B+C)}{\sin B \sin C} - \frac{\cos A}{\sin A}$$

$$= \frac{\sin^2 A - \sin B \sin C \cos A}{\sin A \sin B \sin C} \quad (\because A + B + C = \pi)$$

$$= \frac{a^2 - bc \cos A}{k(abc)}$$

$$= \frac{a^2 - bc \frac{(b^2 + c^2 - a^2)}{2bc}}{(abc)k}$$

$$= \frac{2a^2 - (3a^2 - a^2)}{2(abc)k} \quad (\because b^2 + c^2 + = 3a^2 \text{ given})$$

$$= \frac{(a^2 - a^2)}{abck} = 0$$
413 (c)

Let *h* be the height of the tower.

$$A = \frac{h}{\sqrt{3}(\sqrt{3} - 1)}$$

$$= \frac{h}{1}$$

$$\Rightarrow h = \frac{\sqrt{3}(\sqrt{3} - 1)}{3 - 1}$$

$$= \frac{3 - \sqrt{3}}{2} m$$
414 (d)
$$\because \cos A = \frac{b^2 + c^2 - a^2}{2bc}$$

$$= \frac{(8)^{2} + (10)^{2} - (6)^{2}}{2 \times 8 \times 10} = \frac{4}{5}$$

$$\Rightarrow \sin A = \frac{3}{5}$$

$$\therefore \sin 2A = 2 \sin A \cos A$$

$$= 2 \times \frac{3}{5} \times \frac{4}{5} = \frac{24}{25}$$

415 (d)

$$\frac{1 + \cos(A + B) \cos C}{1 + \cos(A - C) \cos B}$$

$$= \frac{1 + \cos[\pi - (A + B)] \cos(A - B)}{1 + \cos[\pi - (A + C)] \cos(A - C)}$$

$$= \frac{1 - \cos(A + B) \cos(A - B)}{1 - \cos(A - C) \cos(A + C)}$$

$$= \frac{1 - \cos^{2} A + \sin^{2} B}{1 - \cos^{2} A + \sin^{2} C} = \frac{\sin^{2} A + \sin^{2} B}{\sin^{2} A + \sin^{2} C}$$

$$\therefore \frac{1 + \cos(A - B) \cos C}{1 + \cos(A - C) \cos B} = \frac{a^{2} + b^{2}}{a^{2} + c^{2}} [by sine rule]$$

416 (a)

$$\ln \Delta AEC, \tan 60^{\circ} = \frac{500}{d_{1}} \Rightarrow d_{1} = \frac{500}{\sqrt{3}} m ...(i)$$

and in
$$\triangle BEC$$
, $\tan 30^\circ = \frac{500}{d_2}$
 $\Rightarrow d_2 = 500\sqrt{3} \text{ m} \dots \text{(ii)}$
 $\therefore \text{ Required diameter,}$
 $AB = d_1 + d_2 = \frac{500}{\sqrt{3}} + 500\sqrt{3} = \frac{2000}{\sqrt{3}} \text{ m}$

417 (d)

Using sine rule in \triangle *ACD*,

$$\Rightarrow \frac{b^2 + c^2 - a^2}{2bc} = -\frac{b}{c} \Rightarrow c^2 - a^2 = 3b^2$$
$$\therefore \cos A \cos C = -\frac{2b^2}{ac} = \frac{2}{3ac}(c^2 - a^2)$$

418 (a)

Let the vertices of triangle of *A*, *B*, *C* are $(x_1, y_1), (x_2, y_2), (x_3, y_3)$ respectively Given mid points of the sides *AB*, *BC* and *CA* of $\triangle ABC$ are D(6, 1), E(3, 5) and F(-1, -2)respectively

$$A^{(x_1,y_1)}$$

$$F^{(-1,-2)}$$

$$B^{(x_2,y_2)} = 6, \frac{y_1 + y_2}{2} = 1$$

$$x_1 + x_2 = 12, y_1 + y_2 = 2$$

$$x_1 + x_2 = 12, y_1 + y_2 = 2$$

$$y_1 + y_2 = 2$$

$$(i)$$
Similarly, $x_2 + x_3 = 6, y_2 + y_3 = 10$

$$(ii)$$
And $x_1 + x_3 = -2, y_1 + y_3 = -4$

$$(iii)$$

On solving Eqs. (i), (ii) and (iii), we get $x_1 = 2$, $x_2 = 10$, $x_3 = -4$ And $y_1 = -6$, $y_2 = 8$, $y_3 = 2$ Now, the vertex opposite to *D* is *C* ie, (-4, 2)

419 (a)

Let $A(x_1, y_1), B(x_2, y_2)$ and $C(x_3, y_3)$ be the vertices of the triangle *ABC* and let P(h, k) be any point on the locus,

Then,
$$PA^2 + PB^2 + PC^2 = c$$
 (constant)

$$\Rightarrow \sum_{i=1}^{3} [(h - x_i)^2 + (k - y_i)^2] = c$$

$$\Rightarrow h^2 + k^2 - \frac{2h}{3}(x_1 + x_2 + x_3) - \frac{2k}{3}(y_1 + y_2 + y_3) + \sum_{i=1}^{3} (x_i^2 + y_i^2) - c = 0$$

So, locus of (h, k) is

$$x^{2} + y^{2} - \frac{2x}{3}(x_{1} + x_{2} + x_{3}) - \frac{2y}{3}(y_{1} + y_{2} + y_{3}) + \lambda = 0$$

Where $\lambda = \sum_{i=1}^{3} (x_i^2 + y_i^2) - c = 0$ (constant) Clearly, the locus of a point is a circle with, centre at

$$\left(\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3}\right)$$

420 (c)

Since,
$$B = \frac{A+C}{2}$$

$$\Rightarrow B = 90^{\circ} - \frac{B}{2} \Rightarrow B = 60^{\circ} [::A + B + C$$

$$= 180^{\circ}]$$

$$: \frac{\sin 60^{\circ}}{\sqrt{3}} = \frac{\sin C}{\sqrt{2}} \text{ [by sine rule]}$$

$$\Rightarrow \sin C = \frac{1}{\sqrt{2}} \Rightarrow C = 45^{\circ}$$

$$: \angle A = 180^{\circ} - (60^{\circ} + 45^{\circ}) = 75^{\circ}$$
421 (b)
Since, $A(0, 1)$, $B(0, -1)$ and $C(x, 0)$ are the vertices of an equilateral ΔABC .

$$: AB = BC$$

$$\Rightarrow \sqrt{0 + 4} = \sqrt{x^{2} + 1}$$

$$\Rightarrow x^{2} = 3$$

$$\Rightarrow x = \pm\sqrt{3}$$
422 (c)
Let $a = \sin \alpha$, $b = \cos \alpha$, $c = \sqrt{1 + \sin \alpha \cos \alpha}$
Here, we see that the greatest side is c

$$: \cos C = \frac{a^{2} + b^{2} - c^{2}}{2ab}$$

$$\Rightarrow \cos C = \frac{\sin^{2} \alpha \cos^{2} \alpha - 1 - \sin \alpha \cos \alpha}{2 \sin \alpha \cos \alpha}$$

$$\Rightarrow \cos C = -\frac{\sin \alpha \cos \alpha}{2 \sin \alpha \cos \alpha}$$

$$\Rightarrow \cos C = -\frac{1}{2} \Rightarrow \angle C = 120^{\circ}$$

423 (b)

Let the distance of two consecutive stones are x, x + 1

Given, $\tan \varphi = 0.5 = \frac{1}{2}$ In $\triangle ABC$, $\tan \theta = \frac{10}{AB}$ $\Rightarrow AB = \frac{10}{\tan \theta}$

$$\int_{0}^{20 \text{ m}} \int_{0}^{20 \text{ m}} \int_{0$$

$$= \frac{36 + 25 - 49}{2 \times 6 \times 5} = \frac{1}{5}$$
428 (c)
$$\xrightarrow{y}{B} = \frac{M}{A^{(3, 3\sqrt{3})}}$$

Angle *AOM* is 30°. Hence, required point of *B* is $(-3, 3\sqrt{3})$

429 **(b)**

Let
$$AB = BC = 2x$$
,
Then $BD = DC = x$ and $AD = (\sqrt{5})x$

Applying sine rule,
$$\frac{x}{\sin\beta} = \frac{AD}{\sin 45^\circ}$$

$$\Rightarrow \sin \beta = \frac{\frac{x}{\sqrt{2}}}{(\sqrt{5})x} = \frac{1}{\sqrt{10}}$$

and $\sin \alpha = \frac{x}{\sqrt{5}x} = \frac{1}{\sqrt{5}} \Rightarrow \frac{\sin \alpha}{\sin \beta} = \frac{\sqrt{2}}{1}$

430 (c)

We know that, in a parallelogram diagonals cut each other at middle point

431 **(c)**

Assume that angles are 4x, x and xAs $4x + x + x = 180^{\circ} [\because \angle A + \angle B + \angle C = 180^{\circ}]$ $\Rightarrow x = 30^{\circ}$ \therefore Angles are 120°, 30° and 30° Ratio of sides = $\sin A : \sin B : \sin C$ $= \sin 120^{\circ} : \sin 30^{\circ} : \sin 30^{\circ}$ $= \sqrt{3} : 1:1$ \therefore Required ratio $= \frac{\sqrt{3}}{1+1+\sqrt{3}} = \frac{\sqrt{3}}{2+\sqrt{3}}$ 433 (c) Here, $s = \frac{18+24+30}{2} = 36$ Now, $\Delta = \sqrt{36(36-18)(36-24)(36-30)}$ $\Delta = \sqrt{36 \times 18 \times 12 \times 6} = 216$ So, radius of the incircle $r = \frac{\Delta}{s} = \frac{216}{36} = 6 \text{ cm}$

s 434 **(b)**

We know that the mid point of diagonals lies on line y = 2x + c, here mid point is (3, 2), hence c = -4

435 **(b)**

Clearly, $\triangle OAB$ is an isosceles right angled triangle. So, its orthocentre is at O(0,0) and the circumcentre is the mid-point of *AB* having coordinates (a/2, a/2)

Hence, required distance = $\sqrt{\frac{a^2}{4} + \frac{a^2}{4}} = \frac{a}{\sqrt{2}}$

436 **(d)**

The lines of a triangle are x = y, x - 2y = 3 and x + 2y = -3. Intersection points at sides are

$$A(-3, -3), B(-1, -1) \text{ and } C\left(0, -\frac{3}{2}\right)$$

 $\therefore AB = \sqrt{4+4} = 2\sqrt{2}$
 $AC = \sqrt{9+\frac{9}{4}} = \frac{3\sqrt{5}}{2}$
and $BC = \sqrt{1+\frac{1}{4}} = \frac{\sqrt{5}}{2}$

437 **(b)**

Let the vertices of a triangle be A(6, 0), B(0, 6)and C(6, 6)Now, $AB = \sqrt{6^2 + 6^2} = 6\sqrt{2}$ $BC + \sqrt{6^2 + 0} = 6$ And $CA = \sqrt{0+6^2} = 6$ Also, $AB^2 = BC^2 + CA^2$ Therefore, $\triangle ABC$ is right angled at*C*. So, mid point of *AB* is the circumcentre of $\triangle ABC$ \therefore Coordinate of circumcentre are (3, 3) Coordinates of centroid are, $G\left(\frac{6+0+6}{3}, \frac{0+6+6}{3}\right)$, ie, (4, 4) : Required distance = $\sqrt{(4-3)^2 + (4-3)^2}$ = $\sqrt{2}$ 438 (b) Given that, a = 5, b = 7 and $\sin A = \frac{3}{4}$ As we know, $\frac{\sin A}{a} = \frac{\sin B}{a}$

$$\Rightarrow \frac{3}{4 \times 5} = \frac{\sin B}{7} \Rightarrow \sin B = \frac{21}{20}$$

Which is not possible because its value is greater than one

440 **(a)**

Since, coordinates of the centroid are $\left(\frac{x_1+x_2+x_3}{3}, \frac{y_1+y_2+y_3}{3}\right)$, the centroid is always a

rational point

441 **(d)**

$$\therefore \text{ In a } \Delta ABC,$$

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin\{\pi - (A+B)\}} = 2R$$

$$\Rightarrow \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin(A+B)} = 2R$$

- 8. If we know *a*, sin *A*, sin *B*, then we can find *b*, *c*, *A*, *B* and *C*
- 9. We can find *A*, *B*, *C* by using cosine rule
- 10. \therefore *a*, sin *B*, *R* are given, then we can find sin *A*, *b*
- 11. *a*, sin *A*, *R* are given, then we know only the ratio $\frac{b}{\sin B}$

or $\frac{c}{\sin(A+B)}$; we cannot determine the values of *b*, *c*, sin *B*, sin *C* separately

 $\therefore \Delta ABC$ cannot be determined in this case

442 **(b)**

Since,
$$A + C = \pi - B \Rightarrow \frac{A - B + C}{2} = \frac{\pi}{2} - B$$

$$\therefore 2ac \sin\left(\frac{A - B + C}{2}\right) = 2ac \cos B$$

$$= 2ca. \frac{c^2 + a^2 - b^2}{2ca}$$

$$= a^2 + c^2 - b^2$$

443 (a)

$$a(b \cos C - c \cos B)$$

= $ab\left(\frac{a^2 + b^2 - c^2}{2ab}\right) - ac\left(\frac{a^2 + c^2 - b^2}{2ac}\right)$
= $\frac{a^2 + b^2 - c^2}{2} - \frac{a^2 + c^2 - b^2}{2}$
= $b^2 - c^2$

444 **(b)**

Since, *D* is the midpoint of *BC*. So, coordinate of *D* are $\left(\frac{x_2+x_3}{2}, \frac{y_2+y_3}{2}\right)$ Given, *G*(7,5) is the centroid of $\triangle ABC$ \therefore 7 = $\frac{2+x_2+x_3}{3}$ and 5 = $\frac{3+y_2+y_3}{3}$ $A^{(2,3)}$ $A^{($

$$\therefore \text{ Coordinates of } D\left(\frac{19}{2}, 6\right)$$

445 **(b)**

Since, the axes are rotated through an angle 45°, then we replace (x, y) by $(x \cos 45^\circ - y \sin 45^\circ, x \sin 45^\circ + y \cos 45^\circ ie, x2 - y2, x2 + y2)$ in the given equation

$$3x^{2} + 3y^{2} + 2xy = 2$$

$$\therefore 3\left(\frac{x}{\sqrt{2}} - \frac{y}{\sqrt{2}}\right)^{2} + 3\left(\frac{x+y}{\sqrt{2}}\right)^{2} + 2\left(\frac{x-y}{\sqrt{2}}\right)\left(\frac{x+y}{\sqrt{2}}\right) = 2$$

$$\Rightarrow \frac{3}{2}(x^{2} - y^{2} - 2xy) + \frac{3}{2}(x^{2} + y^{2} + 2xy) + \frac{2}{2}(x^{2} - y^{2}) = 2$$

$$\Rightarrow 4x^{2} + 2y^{2} = 2$$

$$\Rightarrow 2x^{2} + y^{2} = 1$$

446 (c)

Let
$$P(x, y)$$
 be any point on the line
Also, $(a_1 - a_2)x + (b_1 - b_2)y + c = 0$...(i)
Since, $(x - a_1)^2 + (y - b_1)^2 = (x - a_2)^2 + (y - b_2)^2$
 $\Rightarrow x^2 + a_1^2 - 2a_1x + y^2 + b_1^2 - 2b_1y$
 $= x^2 + a_2^2 - 2a_2x + y^2 + b_2^2$
 $- 2b_2y$
 $\Rightarrow 2(a_2 - a_1)x + 2(b_2 - b_1)y$
 $= a_2^2 + b_2^2 + b_2^2 - a_1^2 - b_1^2$
 $\Rightarrow (a_1 - a_2)x + (b_1 - b_2)y + \frac{(a_2^2 + b_2^2 - a_1^2 - b_1^2)}{2} = 0$
...(ii)

Since, Eqs. (i) and (ii) represents the same equation of line

$$\therefore \quad c = \frac{a_2^2 + b_2^2 - a_1^2 - b_1^2}{2}$$

447 (d)

Let *D* be the centre of circumcircle $\therefore BD = 5 \text{ cm}$ In $\triangle ABC$, $AC^2 + AB^2 + BC^2$ $\Rightarrow 100 = AB^2 + 36$ $\Rightarrow AB^2 = 64 \Rightarrow AB = 8$ $\therefore \text{ Area of } \triangle ABC = \frac{1}{2} \times AB \times BC$ $= \frac{1}{2} \times 8 \times 6 = 24 \text{ cm}^2$ $A = \frac{5}{2} + \frac{5}$

448 (c) The given equation is $x^2 + 6xy + 8y^2 = 10$...(i) Since, axes are rotated through an angle $\frac{\pi}{4}$ $\therefore x = x_1 \cos \frac{\pi}{4} - y_1 \sin \frac{\pi}{4} = \frac{x_1 - y_1}{\sqrt{2}}$ and $y = x_1 \sin \frac{\pi}{4} + y_1 \cos \frac{\pi}{4} = \frac{x_1 + y_1}{\sqrt{2}}$ on putting the value of *x* and *y* in Eq. (i) $\left(\frac{x_1 - y_1}{\sqrt{2}}\right)^2 + 6\left(\frac{x_1 + y_1}{\sqrt{2}}\right)\left(\frac{x_1 + y_1}{\sqrt{2}}\right) + 8\left(\frac{x_1 + y_1}{\sqrt{2}}\right)$ $\Rightarrow \quad x_1^2 + y_1^2 - 2x_1y_1 + 6x_1^2 - 6y_1^2 + 8x_1^2 + 8y_1^2$ $+ 16x_1y_1 = 20$ $\Rightarrow 15x_1^2 + 3y_1^2 + 14x_1y_1 = 20$ ∴ Required equation is $15x^2 + 14xy + 3y^2 = 20$ 449 (c) In $\triangle ABE$, $\angle BAE = \angle AEB$ $\therefore AB = BE$ In $\triangle BCE$, using sine rule, $\frac{BE}{\sin(180^\circ - 3\alpha)} = \frac{CE}{\sin 2\alpha}$ BE $\Rightarrow CE = \frac{a \sin 2\alpha}{\sin 3\alpha} \dots (i)$ Now, In $\triangle DCE$, sin $3\alpha = \frac{h}{CE}$ $\Rightarrow \sin 3\alpha = \frac{h}{a \sin 2\alpha / \sin 3\alpha}$ [from Eq. (i)] $\Rightarrow h = a \sin 2\alpha$ 450 (a) We know that the *x*-axis divides the segment joining $P(x_1, y_1)$ and (x_2, y_2) in the ratio $-y_1$: y_2 . So, the required ratio is -6:-3 i.e. 2:1451 (d) In ΔPAB , tan $\beta = \frac{AB}{AP}$ в CIn ΔPAC , tan $\theta = \frac{AC}{AB}$ $\therefore \tan \alpha = \tan(\beta - \theta)$

 $\frac{\tan\beta - \tan\theta}{1 + \tan\beta\tan\theta}$ $= \frac{\frac{AB}{AP} + \frac{AC}{AP}}{1 + \frac{AB}{AP} + \frac{AC}{AP}} \dots (i)$ \therefore AP = n (AB) = n(2AC) (\therefore C is the mid point of BA) From Eq. (i), we get $\tan \alpha = \frac{\frac{1}{n} - \frac{1}{2n}}{1 + \frac{1}{2n}} = \frac{n}{2n^2 + 1}$ \Rightarrow $n = (2n^2 + 1) \tan \alpha$ 452 (b) Let the three points be A(-2, -5), B(2, -2) and C(8,a)If three points are collinear, then sope of AB = slope of BC $\Rightarrow \frac{-2+5}{2+2} = \frac{a+2}{8-2}$ $\Rightarrow \frac{3}{4} = \frac{a+2}{6} \Rightarrow 9 = 2a+4 \Rightarrow a = \frac{5}{2}$ 453 (a) From given relation, we can write $\cos A + \cos C = 2(1 - \cos B)$ $\Rightarrow 2\cos\frac{A+C}{2}\cos\frac{A-C}{2} = 2 \cdot 2\sin^2\frac{B}{2}$ $\Rightarrow \cos \frac{A-C}{2} = 2 \sin \frac{B}{2}$ $\Rightarrow 2\sin\frac{A+c}{2} \cdot \cos\frac{A-c}{2} = 4\sin\frac{B}{2}\cos\frac{B}{2}$ $\Rightarrow \sin A + \sin C = 2 \sin B$ \Rightarrow a, b, c are in AP 454 (d) Given, $\cos(A+B) = \frac{31}{32} \Rightarrow \cos(\pi-C) = \frac{31}{32}$ $\Rightarrow -\cos C = -\frac{a^2 + b^2 - c^2}{2ab} = \frac{31}{32}$ $\Rightarrow \frac{(5)^2 + (4)^2 - c^2}{2 \times 5 \times 4} = -\frac{31}{32}$ $\Rightarrow 41 - c^2 = -\frac{155}{4}$ $\Rightarrow c^2 = \frac{319}{4}$ $\Rightarrow c = \frac{\sqrt{319}}{2}$ 455 (a) We know, $r_1 = \frac{\Delta}{s-a}$, $r_2 = \frac{\Delta}{s-b}$, $r_3 = \frac{\Delta}{s-c}$ Given that, $r_1 > r_2 > r_3$ $\Rightarrow \frac{\Delta}{s-a} > \frac{\Delta}{s-b} > \frac{\Delta}{s-c}$ $\Rightarrow \frac{1}{s-a} > \frac{1}{s-b} > \frac{1}{s-c}$ $\Rightarrow s-a < s-b < s-a$ (s - a, s - b, s - c are positive)

$$\Rightarrow -a < -b < -c$$

$$\Rightarrow a > b > c$$
456 (b)
We have, $a = 2x$, $b = 2y$ and $\angle C = 120^{\circ}$
Area of triangle, $\Delta = \frac{1}{2}ab \sin C$

$$= \frac{1}{2} \times 2x \times 2y \sin 120^{\circ}$$

$$= xy\sqrt{3} \text{ sq unit}$$
457 (a)

$$\frac{a - a' - a'}{a' - a} = \frac{b - b' - b'}{b' - b} \quad \left(\because \frac{x_3 - x_2}{x_2 - x_1} - \frac{y_3 - y_2}{y_2 - y_1}\right)$$

$$\Rightarrow \frac{a - 2a'}{a' - a} = \frac{b - 2b'}{b' - b}$$

$$\Rightarrow \frac{a}{a'} = \frac{b}{b'}$$

$$\Rightarrow ab' = a'b$$

459 (c)

If two vertices of an equilateral triangle have the coordinates (x_1, y_1) and (x_2, y_2) , then the coordinates of its third vertex are

$$\left(\frac{x_1 + x_2 \pm \sqrt{3}(y_1 - y_2)}{2}, \frac{y_1 + y_2 \pm \sqrt{3}(x_1 - x_2)}{2}\right)$$

Here, we have

 $x_1 = 2, y_1 = 4, x_2 = 2$ and $y_2 = 6$ Hence, the coordinates of the third vertex are

$$\left(\frac{4\pm\sqrt{3}(-2)}{2},\frac{10\pm\sqrt{3}\times0}{2}\right) = \left(2\mp\sqrt{3},5\right)$$

461 (a)

$$\therefore A + B + C + D = 2\pi$$

$$\Rightarrow \tan(A + B + C + D) = 0$$

$$\Rightarrow \frac{\sum \tan A - \sum \tan A \tan B \tan C}{1 - \sum \tan A \tan B + \tan A \tan B \tan C \tan D} = 0$$

$$\Rightarrow \sum \tan A - \sum \tan A \tan B \tan C = 0$$

$$\Rightarrow \sum \tan A = \tan A \tan B \tan C \tan D \sum \cot A$$

$$\Rightarrow \frac{\sum \tan A}{\sum \cot A} = \prod \tan A$$
462 (a)

Let the angles of a triangle are 3θ , 4θ , 5θ $\therefore 3\theta + 4\theta + 5\theta = 180^{\circ} \Rightarrow \theta = 15^{\circ}$ \therefore Angles of a triangle are 45° , 60° , 75° Now, $\sin A = \sin 45^{\circ} = \frac{1}{\sqrt{2}}$ $\sin B = \sin 60^{\circ} = \frac{\sqrt{3}}{2}$ and $\sin C = \sin 75^{\circ} = \frac{\sqrt{3}+1}{2\sqrt{2}}$ $\therefore a: b: c = \sin A : \sin B : \sin C$

$$= \frac{1}{\sqrt{2}} : \frac{\sqrt{3}}{2} : \frac{\sqrt{3} + 1}{2\sqrt{2}}$$

= 2: $\sqrt{6}$: $\sqrt{3} + 1$
463 (a)
Since, $AB = AC = \sqrt{2}$

(2, 0)

The slope AB is 1. Hence, AB is inclined at 45° with the *x*-axis and AC is inclined at 60° with the *x*-axis. Equation of AC is

$$y = \sqrt{3}(x - 2)$$

The coordinates of *C* is $(2 + \sqrt{2}\cos 60^\circ, 0 + \sqrt{2}\sin 60^\circ)$

or
$$\left(2 + \frac{1}{\sqrt{2}}, \sqrt{\frac{3}{2}}\right)$$

464 **(b)**

Let (x_1, y_1) , (x_2, y_2) and (x_3, y_3) are coordinates of the points *D*, *E* and *F*, which divide each *AB*, *BC* and *CA* respectively in the ratio 3:1 (internally)

$$\therefore x_{1} = \frac{3 \times 6 - 1 \times 1}{4} = \frac{17}{4}$$

$$y_{1} = \frac{-2 \times 3 + 4 \times 1}{4} = -\frac{2}{4} = -\frac{1}{2}$$

$$\xrightarrow{A(-1, 4)} F(x_{3}, y_{3})$$

$$(6, -2)^{B} \xrightarrow{E(x_{2}, y_{2})} C(-2, 4)$$
Similarly, $x_{2} = 0, y_{2} = \frac{5}{2}$
and $x_{3} = -\frac{5}{4}, y_{3} = 4$
Let (x, y) be the coordinates of centroid of ΔDEF

$$\therefore x_{3} = \frac{1}{4} (\frac{17}{4} + 0, -\frac{5}{4}) = 1$$

$$\therefore x = \frac{1}{3}\left(\frac{1}{4} + 0 - \frac{1}{4}\right) = 1$$

and $y = \frac{1}{3}\left(-\frac{1}{2} + \frac{5}{2} + 4\right) = 2$

 \therefore Coordinates of Centroid are (1, 2)

465 **(a)**

Let *D* be the position of window of second house and *BC* be the position of the first house.

In
$$\triangle ADB$$
, $\tan 60^\circ = \frac{AD}{AB}$
 $\Rightarrow AD = 6\sqrt{3}$
and $DB^2 = (6\sqrt{3})^2 + (6)^2$
 $\Rightarrow DB = 12m$
In $\triangle DCB$, $\sin 60^\circ = \frac{12}{h}$

466 **(b)**

Let the vertices be *C*, *A*, *B* respectively. The altitude from *A* is $\frac{y - a(t_2 + t_3)}{x - at_2t_3} = -t_1$ $\Rightarrow xt_1 + y = at_1t_2t_3 + a(t_2 + t_3) \dots (i)$ The altitude from *B* is $xt_2 + y = at_1t_2t_3 + a(t_3 + t_1) \dots (ii)$ Subtracting Eq. (ii) from Eq. (i), x = -aHence, $y = a(t_1 + t_2 + t_3 + t_1t_2t_3)$ \therefore The orthocenter is $\{-a, a(t_1 + t_2 + t_3 + t_1t_2t_3)\}$

467 (a)

 $\Rightarrow DC = 46.19 \text{ m}$

468 **(c)**

Let *DC* be the height of building

 $\therefore AB = \text{Speed} \times \text{Time}$ $= 25(\sqrt{3} - 1).2$ $= 50(\sqrt{3} - 1)$

$$: \ln \Delta DBC, \tan 45^{\circ} = \frac{DC}{BC} \Rightarrow BC = h$$

$$: \ln \Delta DAC, \tan 30^{\circ} = \frac{h}{50(\sqrt{3}-1)+h}$$

$$\Rightarrow 50(\sqrt{3}-1)+h = \sqrt{3}h$$

$$\Rightarrow h = 50 \text{ m}$$

$$469 \text{ (d) }$$

$$(b+c) \tan \frac{A}{2} \tan \left(\frac{B-C}{2}\right)$$

$$= (b+c) \tan \frac{A}{2} \cdot \frac{(b-c)}{(b+c)} \cot \frac{A}{2}$$

$$= b-c$$

$$: \sum (b+c) \tan \left(\frac{B-C}{2}\right) \tan \frac{A}{2}$$

$$= b-c + c - a + a - b = 0$$

$$470 \text{ (c) }$$

$$As, A > B \text{ and } 3 \sin x - 4 \sin^3 x - k = 0, 0 < k < 1$$

$$\Rightarrow \sin 3x = k$$

$$As A \text{ and } B \text{ satisfy given equation }$$

$$: \sin 3A = k, \quad \sin 3B = k$$

$$\Rightarrow 2 \cos \left(\frac{3A+3B}{2}\right) \sin \left(\frac{3A-3B}{2}\right) = 0$$

$$\Rightarrow \cos \left(\frac{3A+3B}{2}\right) = 0 \text{ or } \sin \left(\frac{3A-3B}{2}\right) = 0$$

$$\Rightarrow \frac{3A+3B}{2} = 90^{\circ} \text{ or } \frac{3A-3B}{2} = 0$$

$$\Rightarrow A+B = 60^{\circ} \text{ or } A = B$$

$$But given, A > B (: \text{ neglectring } A = B)$$

$$Thus, A + B = 60^{\circ}$$

$$and A + B + C = 180^{\circ} \Rightarrow \angle C = 120^{\circ}$$

$$471 \text{ (b) }$$

$$We have, \cos A = \frac{b^{2}+c^{2}-a^{2}}{2bc}$$

$$\Rightarrow b^{2} - 2bc \cos A + (c^{2} - a^{2}) = 0$$

$$: b_{1} + b_{2} = 2 \cos A \text{ and } b_{1}b_{2} = c^{2} - a^{2}$$

$$: b_{1} + b_{2} = 2 \cos A \text{ and } b_{1}b_{2} = c^{2} - a^{2}$$

$$\Rightarrow 3b_{1} = 2c \cos A \text{ and } b_{1}b_{2} = c^{2} - a^{2}$$

$$: b_{2} = 2b_{1} (given)$$

$$\Rightarrow 2a(\frac{2c}{3}\cos A)^{2} = c^{2} - a^{2}$$

$$\Rightarrow \sin^{2} A = \left(1 - \frac{9c^{2} - 9a^{2}}{8c^{2}}\right)$$

$$\Rightarrow \sin A = \sqrt{\frac{9a^{2} - c^{2}}{8c^{2}}}$$

Now, $AB = \sqrt{(7+1)^2 + (1-5)^2}$

חר

Page | 95

$$= \sqrt{64 + 16} = \sqrt{80}$$

$$BC = \sqrt{(-1 - 3 - 2\sqrt{3})^{2} + (5 - 3 - 4\sqrt{3})^{2}}$$

$$= \sqrt{16 + 12 + 16\sqrt{3} + 4 + 48 - 16\sqrt{3}}$$

$$= \sqrt{80}$$

and $CA = \sqrt{(3 + 2\sqrt{3} - 7)^{2} + (3 + 4\sqrt{3} - 1)^{2}}$

$$= \sqrt{16 + 12 - 16\sqrt{3} + 4 + 48 + 16\sqrt{3}}$$

$$= \sqrt{80}$$

Here, $AB = BC = CA = \sqrt{80}$
 \therefore Hence, it is an equilateral triangle, so incentre

 \div Hence, it is an equilateral triangle, so incentre and centriod coincides

So, incentre =
$$\left(\frac{7-1+3+2\sqrt{3}}{3}, \frac{1+5+3+4\sqrt{3}}{3}\right)$$

= $\left(\frac{9+2\sqrt{3}}{3}, \frac{9+4\sqrt{3}}{3}\right)$
= $\left(3+\frac{2}{\sqrt{3}}, 3+\frac{4}{\sqrt{3}}\right)$

473 **(b)**

$$\frac{\tan\frac{A}{2} - \tan\frac{B}{2}}{\tan\frac{A}{2} + \tan\frac{B}{2}} = \frac{\sqrt{\frac{(s-b)(s-c)}{s(s-a)}} - \sqrt{\frac{(s-a)(s-c)}{s(s-b)}}}{\sqrt{\frac{(s-b)(s-c)}{s(s-a)}} + \sqrt{\frac{(s-a)(s-c)}{s(s-b)}}}$$
$$= \frac{(s-b)\sqrt{s(s-c)} - (s-a)\sqrt{s(s-c)}}{(s-b)\sqrt{s(s-c)} + (s-a)\sqrt{s(s-c)}}$$
$$= \frac{\sqrt{s(s-c)}(s-b-s+a)}{\sqrt{s(s-c)}(s-b-s+a)} = \frac{a-b}{c}$$

474 (a)

As we know that orthocenter, centroid and circumcentre are collinear and the centroid divides the line segment joining orthocenter and circumcentre in the ratio 2:1. If the coordinates of orthocentre and circumcentre are (1, 1) and (3, 2) respectively, the coordinate of centroid is

$$\left(\frac{2.3+1.1}{2+1}, \frac{2.2+1.1}{2+1}\right) = \left(\frac{7}{3}, \frac{5}{3}\right)$$
475 **(d)**

$$:: ∠ A = 60^{\circ}, \cos 60^{\circ} = \frac{b^{2} + c^{2} - a^{2}}{2bc}$$

⇒ $b^{2} + c^{2} - a^{2} = bc$
Now, $AB^{2} + AC^{2} = 2(AD^{2} + BD^{2})$
⇒ $c^{2} + b^{2} = 2AD^{2} + 2\left(\frac{a}{2}\right)^{2}$
⇒ $2b^{2} + 2c^{2} - a^{2} = 4AD^{2}$
⇒ $b^{2} + c^{2} + bc = 4AD^{2}$ (:: $b^{2} + c^{2} - a^{2} = bc$)
476 **(b)**
The intersection of lines are (0, 0), (-4, -8) and (-2, -2)

Let circumcentre is
$$(x_1, y_1)$$

 $\therefore x_1^2 + y_1^2 = (x_1 + 4)^2 + (y_1 + 8)^2$
 $\Rightarrow 8x_1 + 16y_1 + 80 = 0 ...(i)$
And $x_1^2 + y_1^2 = (x_1 + 2)^2 + (y_1 + 2)^2$
 $\Rightarrow 4x_1 + 4y_1 + 8 = 0 ...(ii)$
On solving Eqs. (i) and (ii), we get
 $x_1 = 6$ and $y_1 = -8$
477 (c)
Given, $\cot \frac{A}{2} = \frac{b+c}{a}$
 $\Rightarrow \frac{\cos \frac{A}{2}}{\sin \frac{A}{2}} = \frac{\sin B + \sin C}{\sin A}$
 $= \frac{2 \sin \frac{B+c}{2} \cos \frac{B-c}{2}}{2 \sin \frac{A}{2} \cos \frac{A}{2}}$
 $\Rightarrow \cos \frac{A}{2} = \cos \frac{B-C}{2}$
 $\Rightarrow \cos \frac{A}{2} = \cos \frac{B-C}{2}$
 $\Rightarrow A + C = B \Rightarrow \angle B = \frac{\pi}{2} \quad (\because A + B + C = \pi)$
478 (c)
Given lines are
 $3x^2 - 4xy + y^2 = 0$
 $\Rightarrow (3x - y)(x - y) = 0$
 $\Rightarrow 3x - y = 0, x - y = 0$ and $2x - y = 6$
The points of intersection of these lines are
(0, 0), (-6, -18) and (6, 6)
 \therefore Area of triangle $= \frac{1}{2} \begin{vmatrix} 0 & 0 & 1 \\ -6 & -18 & 1 \\ 6 & 6 & 1 \end{vmatrix}$
 $= \frac{1}{2}(-36 + 108) = \frac{1}{2}(72)$
 $= 36$ sq units
479 (d)
In $\triangle ABC$, tan $60^\circ = \frac{h}{x} \Rightarrow h\sqrt{3}x ...(i)$
 $in (ii)$
From Eqs. (i) and (ii),
 $h = \sqrt{3} \times 30 = 51.96$ m
 $=52m$ (approx)
480 (d)
OP is inclined at angle θ with x-axis and *OQ* is inclined at angle $\alpha - \theta$ with x-axis

The bisector of angle *POQ* is inclined at angle $\frac{\theta + \alpha - \theta}{2} = \frac{\alpha}{2}$ with *x*-axis

481 **(b)**

The altitude h is
$$\frac{|2-1-2|}{\sqrt{2}} = \frac{1}{\sqrt{2}}$$

A (2, -1)
A (

483 **(d)**

Let *OP* be the tower. Since, the tower make equal angles at the vertices of the triangle, therefore foot of tower is at the circumcentre

 \therefore vertices of triangle are (-2, 0), (0, 0), (0, -2)Since, this triangle is right angled triangle and in a right angled triangle circumcentre is mid point of hypotenuse.

 \therefore (-1, -1) is the circumcentre

485 **(b)**

Let P be
$$(x, y)$$
 and we have

$$A = (a + b, a - b), \quad B = (a - b, a + b)$$
Here, $PA = PB \Rightarrow PA^2 = PB^2$

$$\Rightarrow [x - (a + b)^2] + [y - (a - b)]^2$$

$$= [x - (a - b)]^2 + [y - (a - b)]^2$$

$$\Rightarrow [x - (a + b)]^2 - [x - (a - b)]^2$$

$$\Rightarrow [x - (a + b) + x - (a - b)][x - (a + b) - x + a - b]$$

$$= [y - (a + b) + y - (a - b)][y - (a + b) - y + a - b]$$

$$\Rightarrow (2x - 2a)(-2b) = (2y - 2a)(-2b)$$

$$\Rightarrow x - y = 0$$
486 (c)
Since, $R = \frac{a}{2 \sin A}$

$$\Rightarrow R = \frac{2\sqrt{3}}{2 \sin 60^\circ} = 2 \text{ cm}$$

Let two of vertices of a triangle are A(15, 0) and B(0, 10) and third vertex is C(h, k)We know that line passing through A and B should be perpendicular to line through C and orthocenter O

$$\therefore \left(\frac{-2}{3}\right) \left(\frac{9-k}{6-h}\right) = -1$$
$$\Rightarrow 2k = 3h$$

Which is satisfied by (0, 0). Hence, coordinates of third vertex are (0, 0)

488 (a)

Let *P* and *Q* be the positions of two planes. It is given that OP = 300 m. From triangle OAQ, we have OA = OQ.

From \triangle *OAP*, we have

$$\tan 60^\circ = \frac{OP}{OA} \Rightarrow \sqrt{3} = \frac{300}{OQ} \Rightarrow OQ = \frac{300}{\sqrt{3}}$$
$$= 100\sqrt{3} \text{ mts}$$

489 (b)

Let the sides be a = 3x, b = 7x, c = -8x. Then, $2s = a + b + c \Rightarrow s = 9x$ $\therefore \Delta = \sqrt{s(s-a)(s-b)(s-c)}$ $= \sqrt{9x \times 6x \times 2x \times x} = 6\sqrt{3}x^2$ Now, $R = \frac{abc}{4\Delta}$ and $r = \frac{\Delta}{s}$ $\therefore \frac{R}{r} = \frac{sabc}{4\Delta^2} = \frac{9x \times 3x \times 7x \times 8x}{4 \times 108 \times x^2} = \frac{7}{2}$ 490 (a)

$$(b + c - a) \tan \frac{A}{2} = (2s - 2a) \tan \frac{A}{2}$$
$$= 2(s - a) \sqrt{\frac{(s - b)(s - c)}{s(s - a)}}$$
$$= 2 \frac{\sqrt{s(s - a)(s - b)(s - c)}}{s} = \frac{2\Delta}{s}$$

491 **(b)**

Let AB = a $ON \perp AB$ and AN = BN \overrightarrow{n} \overrightarrow{n} \overrightarrow{n}

492 (c)

$$\Delta = 2bc - (b^{2} + c^{2} - a^{2}) = 2bc(1 - \cos A)$$

$$= 2bc. 2 \sin^{2} \frac{A}{2} ...(i)$$
But $\Delta = \frac{1}{2}bc \sin A = \frac{1}{2}bc. 2 \sin \frac{A}{2} \cos \frac{A}{2}$

$$\Rightarrow \Delta = bc \sin \frac{A}{2} \cos \frac{A}{2} ...(ii)$$
On dividing Eq. (ii) by Eq. (i), we get
 $\tan \frac{A}{2} = \frac{1}{4}$

$$\therefore \tan A = \frac{2 \tan \frac{A}{2}}{1 - \tan^{2} \frac{A}{2}} = \frac{\frac{1}{2}}{1 - \frac{1}{16}} = \frac{8}{15}$$
493 (d)
The vertices of a ΔABC are $A(0, b), B(0, 0)$ and $C(a, 0)$
 $A(0, b)$
 $A(0, c)$
 $A(0, c)$

$$\Rightarrow \sin^{2}\left(\frac{A}{2}\right), \sin^{2}\left(\frac{B}{2}\right), \sin^{2}\left(\frac{C}{2}\right) \text{ are in HP}$$
495 (d)
$$\frac{1 + \cos C \cos(A - B)}{1 + \cos(A - C) \cos B}$$

$$= \frac{1 - \cos(A - C) \cos(A - B)}{1 - \cos(A - C) \cos(A + C)} ($$

$$\therefore A + B + C = \pi)$$

$$\Rightarrow \frac{1 - \cos^{2}A + \sin^{2}B}{1 - \cos^{2}A + \sin^{2}C} = \frac{\sin^{2}A + \sin^{2}B}{\sin^{2}A + \sin^{2}C}$$

$$= \frac{a^{2} + b^{2}}{a^{2} + c^{2}}$$
496 (c)
$$\therefore b^{2} + c^{2} = a^{2}$$

$$\int_{12}^{0} \frac{b^{2}}{b^{2}} \frac{1}{3} \frac{b^{2}}{b^{2}} \frac{b^{2}}{c}$$

$$\Rightarrow ABC \text{ is right angled triangle and right angled at A Clearly, from figure,
$$\frac{1}{2}(AB)(AC) = \frac{1}{2}(AD)(BC)$$

$$\Rightarrow AD = \frac{(AB)(AC)}{BC} \frac{b^{2}}{c} \frac{5 \cdot 12}{13} = \frac{60}{13}$$
497 (a)
Since, $r_{1} < r_{2} < r_{3}$

$$\Rightarrow \frac{s - a}{A} > \frac{s - b}{A} > \frac{s - c}{A}$$

$$\Rightarrow (s - a) > (s - b) > (s - c)$$

$$\Rightarrow -a > -b > -c$$

$$\Rightarrow a < b < c$$
498 (a)
Let *l* be the length of the ladder
ie, $BP = CQ = 1$
In ΔPAB , $\cos \alpha = \frac{PA}{PB}$ and $\sin \alpha = \frac{AB}{PB}$

$$\Rightarrow PA = l \cos \alpha \text{ and } AB = l \sin \alpha \dots(1)$$
In ΔQAC , $\cos \beta = \frac{AQ}{QC}$

$$\Rightarrow AQ = l \cos \beta \text{ and } AC = l \sin \beta \dots(1)$$$$

Now,
$$CB = AB - CA$$

= $l \sin \alpha - l \sin \beta$ [from Eqs. (i) and (ii)]
= $l (\sin \alpha - \sin \beta)$
and $QP = AQ - PA$
= $l \cos \beta - l \cos \alpha$
= $l (\cos \beta - \cos \alpha)$
 $\therefore \frac{CB}{QP} = \frac{l(\sin \alpha - \sin \beta)}{l(\cos \beta - \cos \alpha)}$
 $\Rightarrow \frac{y}{x} = \frac{2 \sin \left(\frac{\alpha - \beta}{2}\right) \cos \left(\frac{\alpha + \beta}{2}\right)}{2 \sin \left(\frac{\alpha + \beta}{2}\right) \cos \left(\frac{\alpha - \beta}{2}\right)}$
 $\Rightarrow \frac{y}{x} = \cot \left(\frac{\alpha + \beta}{2}\right)$
 $\Rightarrow x = y \tan \left(\frac{\alpha + \beta}{2}\right)$

499 **(c)**

 \therefore A(h.k), B(1, 1) and C(2, 1) are the vertices of a right angled triangle *ABC*

$$A = \frac{B(0,b)}{y}$$

$$A = \frac{a+0}{2}, y_1 = \frac{0+b}{2}$$

$$\Rightarrow a = 2x_1, b = 2y_1$$
Given, $a + b = 4 \Rightarrow x_1 + y_1 = 2$
Hence, the locus of the mid point is $x + y = 2$
501 (a)

$$\therefore \tan \frac{A}{2}, \tan \frac{B}{2}, \tan \frac{C}{2} \text{ are in HP}$$

$$\therefore \cot \frac{A}{2}, \cot \frac{B}{2}, \cot \frac{C}{2} \text{ are in HP}$$

$$\Rightarrow \cot \frac{B}{2} - \cot \frac{A}{2} = \cot \frac{C}{2} - \cot \frac{B}{2}$$

$$\Rightarrow \frac{s(s-b)}{A} - \frac{s(s-a)}{A} = \frac{s(s-c)}{A} - \frac{s(s-b)}{A}$$

$$\Rightarrow s - b - s + a = s - c - s + b$$

$$\Rightarrow 2b = a + c$$

$$\Rightarrow a, b, c \text{ are in AP}$$
502 (a)
In ΔACD , $\tan 30^\circ = \frac{45\sqrt{3}/2}{x}$

$$A = \frac{45\sqrt{3}}{2} = \frac{135}{2} \text{ m}$$
and in ΔABD ,

$$\tan 60^\circ = \frac{45\sqrt{3}/2}{y} \Rightarrow y = \frac{45}{2}$$

$$\therefore x - y = \frac{135}{2} - \frac{45}{2} 45 \text{ m}$$
503 (d)
For point (1, 3), $3x + 2y = 3 + 6 > 0$
For point (5, 0), $3 \times 5 + 0 > 0$
and for point (-1, 2), $-3 + 4 > 0$
Similarly, other inequalities also hold
Hence, option (d) is correct
504 (c)
Given that, $x_1 = x, x_2 = 1, x_3 = 0$
and $y_1 = 0, y_2 = 1, y_3 = 2$

$$\therefore Area of triangle$$

$$= \frac{1}{2} [x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)]$$

 $=\frac{1}{2}[x(1-2) + 1(2-0) + 0(0-1)]$ $=\frac{1}{2}[-x+2+0]=\frac{1}{2}(2-x)$ But area of triangle is 4 sq unit $\therefore \ \frac{1}{2}(2-x) = 4$ \Rightarrow 2 - x = 8 \Rightarrow x = -6 505 (c) Given vertices of triangle are $O(0,0), A(\cos\theta, \sin\theta)$ and $B(\sin\theta, -\cos\theta)$, then coordinates of Centroid are $\left(\frac{\cos\theta + \sin\theta}{3}, \frac{\sin\theta - \cos\theta}{3}\right)$ Since, Centroid lies on the line y = 2x $\frac{\sin\theta - \cos\theta}{3} = \frac{2\cos\theta + 2\sin\theta}{3}$ $\Rightarrow \sin \theta = -3 \cos \theta$ $\Rightarrow \theta = \tan^{-1}(-3)$ 506 (a) In order to remove first degree terms from the equation $ax^{2} + 2hxy + by^{2} + 2gx + 2fy + c = 0$ the origin is shifted at (-g/a, -f/a)In the equation $2x^2 + 7y^2 + 8x - 14y + 4 = 0$, we have a = 2, b = 7, g = 4 and f = -7Hence, the coordinates of the required point are (-4/2, -7/7) = (-2, 1)507 (b) Let $A[at_1t_2, a(t_1 + t_2)], B[at_2t_3, a(t_2 + t_3)],$ $C[at_3t_1, a(t_3 + t_1)]$ Slope of $AB(m_{AB}) = \frac{a(t_3 - t_1)}{at_2(t_3 - t_1)} = \frac{1}{t_2}$ Equation of line through *C* perpendicular to *AB* is $y - a(t_3 + t_1) = -t_2(x - at_3t_1)$ \Rightarrow y - a(t₃ + t₁) = -t₂x + at₁t₂t₃ ...(i) Similarly, equation of line through *B* perpendicular to CA is $y - a(t_2 + t_3) = -t_1(x - at_2t_3)$ $\Rightarrow y - a(t_2 + t_3) = -t_1 x + a t_1 t_2 t_3$...(ii) Using $t_1 t_2 t_3 = -(t_1 + t_2 + t_3)$ in Eqs. (i) and (ii), we get $y = -t_2 x - a t_2$ and $y = -t_1 x - a t_1$ $\Rightarrow t_2(x+a) = t_1(x+a)$ $\Rightarrow x = -a, y = 0$ 508 (d) Let the coordinates of the third vertex C be(h, k). Then, $\begin{vmatrix} h & k & 1 \\ -5 & 0 & 1 \\ 2 & 0 & 1 \end{vmatrix} = \pm 20 \implies k = \pm 5$

Since, (h, k) lies on x - y = 2. Therefore, h - k = 2For k = 5, h = 7. For k = -5, h = -3Hence, the coordinates of the third vertex C are (-3, -5) or (7, 5)509 **(b)** Let P(h, k) be the required point, then $4PA^{2} = 9PB^{2}$ $\Rightarrow 4(h^2 + k^2) = 9(h - 4)^2 + 9(k + 3)^2$ $\Rightarrow 4h^2 + 4k^2 = 9(h^2 + 16 - 8h)$ $+9(k^{2}+9+6k)$ $\Rightarrow 5h^2 + 5k^2 - 72h + 54k + 225 = 0$ \therefore Required locus of P(h, k) is $5x^2 + 5y^2 - 72x + 54y + 225 = 0$ 510 (a) The coordinates of the orthocentre O' and circumcentre *O* are (2, 1) and $\left(\frac{7}{2}, \frac{5}{2}\right)$ respectively We know that the centroid G divides OO' in the ratio 1:2 So, the coordinates of *G* are $\left(\frac{1 \times 2 + 2 \times \frac{7}{2}}{1 + 2}, \frac{1 \times 1 + 2 \times \frac{5}{2}}{1 + 2}\right) \equiv (3, 2)$ 511 (a) In ΔPOR , $\frac{PR}{\sin 90^\circ} = \frac{h}{\sin 67^{\frac{1}{2}\circ}}$...(i) And in $\triangle POR$ PR $\frac{1}{\sin 22\frac{1}{2}^{\circ}} = \frac{1}{\sin 45^{\circ}} \quad \dots \text{(ii)}$ From Eqs. (i) and (ii) $\frac{\sin 45^{\circ} h}{\sin 67\frac{1}{2}^{\circ} b} = \frac{\sin 22\frac{1}{2}^{\circ}}{\sin 90^{\circ}} \implies \frac{h}{b} = \frac{\frac{1}{2}\sin 45^{\circ}}{\sin 45^{\circ}}$ $\Rightarrow 2h = b$ 512 **(b)** Using, $\cos C = \frac{a^2 + b^2 - c^2}{2ab}$

 $\Rightarrow \frac{\sqrt{3}}{2} = \frac{(x^2 + x + 1)^2 + (x^2 - 1)^2 - (2x + 1)^2}{2(x^2 + x + 1)(x^2 - 1)}$ $\Rightarrow (x+2)(x+1)(x-1)x + (x^2-1)^2$ $=\sqrt{3}(x^{2} + x + 1)(x^{2} - 1)$ $\Rightarrow x^2 + 2x + (x^2 - 1) = \sqrt{3}(x^2 + x + 1)$ $\Rightarrow 2(2-\sqrt{3})x^{2} + (2-\sqrt{3})x - (\sqrt{3}+1) = 0$ $\Rightarrow x = -(2 + \sqrt{3})$ and $x = 1 + \sqrt{3}$ But, $x = -(2 + \sqrt{3}) \Rightarrow c$ is negative $\therefore x = 1 + \sqrt{3}$ is the only solution 513 (d) It is given that the distance between the points $P(a \cos 48^\circ, 0)$ and $Q(0, a \cos 12^\circ)$ is d i.e., PQ = d $\Rightarrow PO^2 = d^2$ $\Rightarrow a^2 \cos^2 48^\circ + a^2 \cos^2 12^\circ = d^2$ $\Rightarrow a^2(1 + \cos 96^\circ) + a^2(1 + \cos 24^\circ) = 2d^2$ $\Rightarrow 2a^2 + a^2(\cos 96^\circ + \cos 24^\circ) = 2d^2$ $\Rightarrow 2a^2 + 2a^2 \cos 60^\circ \cos 36^\circ = 2d^2$ $\Rightarrow 2a^2 + a^2 \left(\frac{\sqrt{5}+1}{4}\right) = 2d^2 \Rightarrow d^2 - a^2$ $=\frac{a^2}{2}(\sqrt{5}+1)$ 514 (b) $ab\cos C - ac\cos B$ $=\frac{a^2+b^2-c^2}{2}-\frac{c^2+a^2-b^2}{2}$ $=\frac{a^2+b^2-c^2-c^2-a^2+b^2}{2}$ $= b^2 - c^2$ 515 (a) For collinearity, $\begin{vmatrix} a_1 & b_1 & 1 \\ a_2 & b_2 & 1 \\ a_3 & b_3 & 1 \end{vmatrix} = 0$ For concurrency to lines $a_i x + b_i y + 1 = 0, i =$ 1, 2, 3 we have $\begin{vmatrix} a_2 & b_2 & 1 \\ a_3 & b_3 & 1 \end{vmatrix} = 0$, so lines are concurrent 516 (c) $(b+c)\cos A + (c+a)\cos B + (a+b)\cos C$ $= b \cos A + c \cos A + c \cos B + a \cos B + a \cos C$ $+ b \cos C$ $= (b \cos A + a \cos B) + (c \cos A + a \cos C)$ $+ (c \cos B + b \cos C)$ = c + b + a517 (b) By sine rule, $\frac{\sin A}{a} = \frac{\sin B}{b}$ Here, $\frac{\sin(\frac{\pi}{2}+B)}{5} = \frac{\sin B}{4}$ [by sine rule]

$$\Rightarrow \tan B = \frac{4}{5}$$
Also, $\angle A + \angle B + \angle C = \pi$

$$\Rightarrow \frac{\pi}{2} + 2\angle B + \angle C = \pi$$

$$\Rightarrow 2 \tan^{-1}\left(\frac{4}{5}\right) + \angle C = \frac{\pi}{2}$$

$$\Rightarrow \angle C = \frac{\pi}{2} - 2 \tan^{-1}\left(\frac{4}{5}\right)$$

$$\Rightarrow \angle C = \frac{\pi}{2} - \tan^{-1}\left(\frac{\frac{8}{5}}{1 - \frac{16}{25}}\right)$$

$$\Rightarrow = \frac{\pi}{2} - \tan^{-1}\left(\frac{40}{9}\right) = \cot^{-1}\left(\frac{40}{9}\right)$$

$$\Rightarrow \angle C = \tan^{-1}\left(\frac{9}{40}\right)$$

$$\Rightarrow p_{1} = \frac{2\Delta}{a}, \qquad p_{2} = \frac{2\Delta}{b}, \qquad p_{3} = \frac{2\Delta}{c}$$
$$\therefore \frac{1}{p_{1}^{2}} + \frac{1}{p_{2}^{2}} + \frac{1}{p_{3}^{2}}$$
$$= \frac{a^{2}}{4\Lambda^{2}} + \frac{b^{2}}{4\Lambda^{2}} + \frac{c^{2}}{4\Lambda^{2}} + \frac{a^{2} + b^{2} + c^{2}}{4\Lambda^{2}}$$

518 **(b)**

We have, $\frac{1}{2}ap_1 = \Delta$, $\frac{1}{2}bp_2 = \Delta$, $\frac{1}{2}cp_3 = \Delta$ Where *a*, *b*, *c* are the sides of a triangle

> DCAM classes Dynamic Classes for Academic Mastery