

3.CLASSIFICATION OF ELEMENTS AND PERIODICITY IN PROPERTIES

Single Correct Answer Type

1.	Born Haber cycle is used	to determine:		
	a) Lattice energy	b) Electron affinity	c) Ionization energy	d) Either of them
2.	The electronic configurat	tions of four elements L. P. (<i>O</i> and <i>R</i> are given below.	,
	$L = 1s^2 \cdot 2s^2 2n^4$ $0 = 1s^4$	$^{2}.2s^{2}2n^{6}.3s^{2}3n^{5}$,	
	$P = 1s^2 \cdot 2s^2 \cdot 2n^6 \cdot 3s^1 \cdot R$	$= 1s^2 \cdot 2s^2 2n^6 \cdot 3s^2$		
	The formula of the ionic of	compounds that can be form	ned hetween these elemen	ts are:
	a) $L_P R I_P O_R O$	h) IP RI PO RO	c) P. I. RI. PO. RO.	d) IP R I P O RO
3	The element with strong	electronositive nature is:	$c_{j_{1}2}^{r_{2}}, n_{2}^{r_{1}}, n_{2}^{r_{1}}, n_{2}^{r_{2}}$	
5.		b) Co	c) (r	d) Ba
1	a) cu Octet rule is not valid for	the molecule:		u) ba
т.		b) H O	c) ()	d) CO
5	a) U_2 The correct order of read	U_{112}	$c_{j} c_{2}$	u) co
5.	a) $E > Pr > C > I$	$b \in C \setminus C \setminus C \setminus C$	c) I > $Pr > C > F$	d C $>$ I $>$ Pr $>$ E
6	d) $\Gamma > DI > CI > I$	$D \Gamma > C I > D I > I$		U J C I > I > D I > F
0.	$N\Pi_3$ has higher boining period	u ou		
	a) with water it forms in	Π ₄ 0Π		
	b) It has strong intermole	ecular nyarogen bonas		
	c) It has strong intermole	ecular covalent bonds		
7	a) its density decreases i	n freezing		
7.	The screening effect of a	-electrons is:		
	a) Equal to the <i>p</i> -electron	15		
	b) Much more than <i>p</i> -ele	crons		
	c) Same as <i>f</i> -electrons			
0	d) Less than <i>p</i> -electrons			
8.	Which has the largest firs	st ionisation energy?		
0	a) Li	b) Na	C) K	d) Rb
9.	In which of the following	molecules are all the bond	s not equal?	
10	a) AlF ₃	DJNF ₃	c) CIF ₃	d) BF ₃
10.	The bond between two ic	ientical non-metal atoms h	as a pair of electrons:	
	a) Unequally shared between the twob) Equally shared between the two			
	c) Transferred fully from	one atom to another		
11	d) None of the above	1		1
11.	The number of unpaired	electrons in a paramagneti	c diatomic molecule of an e	element with atomic number
	16 IS:	1.).4) 2	
4.0	a) 4	b) 1	c) 2	d) 3
12.	In NO ₃ 10n, number of bo	ond pair and lone pair elect	rons are respectively:	
4.0	a) 2, 2	b) 3, 1	c) 1,3	d) 4, 8
13.	Which element of second	period forms most acidic o	oxide?	
	a) Carbon	b) Nitrogen	c) Boron	d) Fluorine
14.	The electronic configurat	tion of four elements are give	ven below. Which element	does not belong to the same
	family?			
	a) [Xe] $4f^{14}5d^{10}6s^2$	b) [Kr] 4 <i>d</i> ¹⁰ 5 <i>s</i> ²	c) [Ne] $3s^2 3p^5$	d) [Ar] $3d^{10}4s^2$
15.	For the four successive t	ransition elements (Cr, Mn	n, Fe and Co), the stability o	of +2 oxidation state will be
	there in which of the follo	owing order?		
	(At. no. Cr = 24, Mn = 25)	5, Fe = 26, Co = 27)		
	a) $Cr > Mn > Co > Fe$	b) $Mn > Fe > Cr > Co$	c) Fe > $Mn > Co > Cr$	d) Co > Mn > Fe > Cr

16.	Which is correct in the following?					
	a) Radius of Cl atom is 0.99 Å, while that of Cl ⁺ ion	is 1.54 Å				
	b) Radius of Cl atom is 0.99 Å, while that of Na atom is 1.54 Å					
	c) The radius of Cl atom is 0.95 Å, while that of Cl ^{$-$} ion is 0.81 Å					
	d) Padius of Na atom is 0.05 Å while that of Na ⁺ ion is 1.54 Å					
17	The linear structure is necessed by:					
17.	a) $SnCl$ b) NCO^-	$\sim N0^+$	ብ) ርያ			
18	Which of the following has largest ionic radius?	c_{j} NO_{2}	u) 03 ₂			
10.	which of the following has largest following radius: a) Na^+ b) K^+	a) Li ⁺	$d) Cc^+$			
10	a) Na U) K In the granida ion the formal negative charge is on	су ш	ujus			
19.	a) C	•				
	U) N a) Bath C and N					
	C) Both C and N					
20	d) Resonate between C and N	J				
20.	The size of ionic species is correctly given in the or $\mathcal{O}(2^{7+1})$,	aer:				
	a) $C_1^{\prime\prime} > S_1^{\prime\prime} > Mg^{2+} > Na^{\prime}$					
	b) Na' > $Mg^{2'}$ > Si ⁺ ' > Cl''					
	c) $Na^+ > Mg^{2+} > Cl^{7+} > Sl^{4+}$					
	d) $Cl^{+} > Na^{+} > Mg^{2+} > Si^{4+}$					
21.	Which statement is wrong?					
	a) 2nd ionisation energy shows jump in alkali meta	lls				
	b) 2nd electron affinity for halogens is zero					
	c) Maximum electron affinity exists for F					
	d) Maximum ionization energy exists for He					
22.	Which of the following atoms has minimum covale	nt radius?				
	a) Si b) N	c) C	d) B			
23.	The second electron affinity is zero for					
	a) Alkali metals b) Halogens	c) Noble gases	d) Transition metal			
24.	For alkali metals, which one of the following trends	s is incorrect?				
	a) Hydration energy : $Li > Na > K > Rb$	b) Ionisation energy : L	i > Na > K > Rb			
	c) Density : Li < Na < K < Rb	d) Atomic size : Li < Na	< K < Rb			
25.	Na_2O , MgO, Al_2O_3 and SiO_2 have heat of formation	equal to –416, –602, –16	76 and			
	–911 kJ mol ⁻¹ respectively. The most stable oxide	is				
	a) Na ₂ 0 b) MgO	c) Al_2O_3	d) SiO ₂			
26.	If Aufbau rule is not followed, K-19 will be placed i	n				
	a) <i>s</i> -block b) <i>p</i> -block	c) <i>d</i> -block	d) <i>f</i> -block			
27.	The electronegativity order of O, F, Cl and Br is:					
	a) $F > 0 > Cl > Br$ b) $F > Cl < Br > 0$	c) Br > $Cl > F > 0$	d) F < <i>Cl</i> < <i>Br</i> < <i>O</i>			
28.	Which has the minimum bond energy?					
	a) H – Br b) H – I	c) I – I	d) H — H			
29.	The bond angle in H_2S (for $H - S - H$) is:					
	a) Same as that of $Cl - Be - Cl$ in $BeCl_2$					
	b) Greater than H – N – H bond angle in NH_3					
	c) Greater than $H - Se - H$ and less than $H - O - H$	ł				
	d) Same as $Cl - Sn - Cl$ in $SnCl_2$					
30.	In which of the following arrangements, the sequer	ice is not strictly according	g to the property written			
	against it?					
	a) $CO_2 < SiO_2 < SnO_2 < PbO_2$: increasing oxidisit	ng power				
	b) HF < HCl < HBr < HI : increasing acid strength	1				

c) $NH_3 > PH_3 < AsH_3 < SbH_3$: increasing basic strength

	d) $B < C < O < N$: increases	asing first ionisation entha	lpy	
31.	The tenth elements in the	Periodic Table resembles	with the	
	a) First period	b) Second period	c) Fourth period	d) Ninth period
32.	Which is not the correct of	order for the stated proper	ty?	
	a) Ba > $Sr > Mg$; atomic	c radius	b) $F > 0 > N$; first ionis	ation enthalpy
	c) $Cl > F > I$; electron af	finity	d) $0 > Se > Te$; electron	egativity
33.	The unequal sharing of be	onded pair of electrons bet	ween two atoms in a moleo	cule gives rise to:
	a) Ionic bond			
	b) Polar covalent bond			
	c) Non-polar covalent bo	nd		
	d) None of the above			
34.	Which of the following ox	ides is most acidic in natur	re?	
	a) BeO	b) MgO	c) CaO	d) BaO
35.	In the formation of NaCl b	by combination of Na and (<u>]:</u>	
	a) Sodium and chlorine b	oth lose electrons		
	b) Sodium and chlorine b	oth gain electrons		
	c) Sodium loses but chlor	ine gains electrons		
	d) Sodium gains but chlor	rine loses electrons		
36.	The molecule having thre	e folds of axis of symmetry	v is:	
	a) NH ₃	b) PCl ₅	c) SO ₂	d) CO ₂
37.	The covalent compound I	HCl has the polar character	· because:	
	a) The electronegativity of	of hydrogen is greater than	that of chlorine	
	b) The electronegativity of	of hydrogen is equal to than	n that of chlorine	
	c) The electronegativity of	of chlorine is greater than t	hat of hydrogen	
	d) Hydrogen and chlorine	e are gases		
38.	If the bond has zero perce	ent ionic character, the bor	nd is:	
	a) Pure covalent	b) Partial covalent	c) Partial ionic	d) Coordinate covalent
39.	In piperidine	as hybridization:		
		as hybridization.		
	a) <i>sp</i>	b) <i>sp</i> ²	c) <i>sp</i> ³	d) dsp^2
40.	Mendeleef's Periodic Tab	le is upset by the fact that		
	a) Many elements has sev	veral isotopes	b) Noble gases do not for	m compounds
	Some groups stand div	ided into two sub groups A	4 d) Atomic weights of eler	nents are not always whole
	and B		numbers	
41.	The incorrect statement a	among the following is:		
	a) The first ionization pot	tential of Al is less than the	first ionization potential o	f Mg
	b) The second ionization	potential of Mg is greater t	han the second ionization p	potential of Na
	c) The first ionization pot	tential of Na is less than the	e first ionization potential o	of Mg
	d) The third ionization po	otential of Mg is greater tha	an the third ionization pote	ntial of Al
42.	Which one of the followin	g is an amphoteric oxide?		
	a) ZnO	b) Na ₂ O	c) SO ₂	d) $B_2 O_3$
43.	The shape of ClO_4^- ion is:			
	a) Square planar	b) Square pyramidal	c) Tetrahedral	d) Trigonal bipyramidal
44.	Which one is correct?			
	a) Dinitrogen is paramag	netic		
	b) Dihydrogen is paramag	gnetic		
	c) Dioxygen is paramagne	etic		
	d) Dioxygen is diamagnet	ic		
45.	In which one of the follow	ving pairs the radius of the	second species is greater t	han that of the first?
	a) Na, Mg	b) 0^{2-} , N^{3-}	c) Li ⁺ , Be ²⁺	d) Ba^{2+} , Sr^{2+}

46.	Atomic radii of fluorine and neon in angstrom unit are	e respectively given by:	
	a) 0.72, 1.60 b) 1.60, 1.60	c) 0.72, 0.72	d) 1.60, 0.72
47.	According to IUPAC nomenclature, a newly discovered number of the element is	d element has been named	l as Uun. The atomic
	a) 111 b) 112	c) 109	d) 110
48.	The correct order of increasing electron affinity of hal	logens is	,
	a) $F < Cl < Br < I$ b) $I < Br < F < Cl$	c) $I > Br > Cl > F$	d) Br > $I > F > Cl$
49.	Al element X has 3 electrons in p -orbitals and also be	longs to III period. Its mole	ecular formula should be:
	a) X b) X_2	c) X ₄	d) X _r
50.	Which of the following sequence regarding ionisation	potential of coinage metal	l is correct:
00.	a) $Cu > Aa > Au$ b) $Cu < Aa < Au$	c) $Cu > Aa < Au$	d) Ag > $Cu < Au$
51.	The bond length is maximum in:	oj ca / 11g (11a	
011	a) $H_{a}S$ b) HF	c) H ₂ O	d) Ice
52	Which of the following is the most electropositive electrop	ment?	
0	a) P b) S	c) Mg	d) Al
53.	Which group of atoms have nearly same atomic radiu	s?	
00.	a) Na, K, Rb, Cs b) Li, Be, B, C	c) Fe. Co. Ni. Cu	d) F. Cl. Br. I
54.	Which of the following statements is wrong?	ej 1 e, ee, 11, eu	aj 1 / al 21 / 1
	a) Metals are more than non-metals.		
	b) There are only few metalloids.		
	c) Hydrogen can be placed with alkali metals as well a	as with halogen in Periodic	z Table.
	d) Non-metals are more than metals.		
55.	Which one of the following has the lowest ionisation e	energy?	
	a) $1s^2 2s^2 2p^6$ b) $1s^2 2s^2 2p^6 3s^1$	c) $1s^2 2s^2 2n^5$	d) $1s^2 2s^2 2p^3$
56.	The set representing the correct order of first ionisati	ion potential is:	
	a) $K > Na > Li$ b) Be $> Ma > Ca$	c) $B > C > N$	d) Ge $> Si > C$
57.	Which one of the following belongs to representative	group of elements in the P	Periodic Table?
_	a) Aluminium b) Chromium	c) Argon	d) Lanthanum
58.	The shape of NO_2^- is planar. It is formed by the overla	pping of oxygen orbitals w	ith orbitals of nitrogen
	a) sp^3 -hybridized b) sp^2 -hybridized	c) Three <i>p</i> -orbitals	d) None of these
59.	If a molecule MX_2 has zero dipole moment the sigma	bonding orbitals used by <i>N</i>	I(at, no. < 21) is:
	a) Pure <i>p</i> b) <i>sp</i> -hybrid	c) sn^2 -hybrid	d) sn^3 -hybrid
60.	1. 3-butadiene has:	cy op nyona	a) op ingonia
00.	a) 6σ and 2π -bonds b) 2σ and 2π -bonds	c) 9σ and 2π -bonds	d) 6σ and 2π -bonds
61.	Which of the following transitions involves maximum	amount of energy?	
	a) $M^{-}(g) \rightarrow M(g)$ b) $M(g) \rightarrow M^{+}(g)$	c) $M^+(g) \rightarrow M^{2+}(g)$	d) $M^{2+}(g) \to M^{3+}(g)$
62.	Which of the following molecular species has unpaire	d electron(s)?	
	a) N_2 b) F_2	c) $0_{\overline{2}}$	d) 0^{2-}_{2}
63.	The element having lowest ionisation energy among t	the following is:	-) - <u>/</u>
	a) $1s^2 \cdot 2s^2 2p^3$ b) $1s^2 \cdot 2s^2 2p^6 \cdot 3s^1$	c) $1s^2 \cdot 2s^2 2p^6$	d) $1s^2 \cdot 2s^2 2p^5$
64.	Which of the following has largest ionic radius?	-) , <u>F</u>	-) , _F
	a) Li ⁺ b) K ⁺	c) Na ⁺	d) Cs ⁺
65.	Which will not conduct electricity?	-)	
	a) Aqueous KOH solution		
	b) Fused NaCl		
	c) Graphite		
	d) KCl in solid state		
66.	The bond order is maximum in:		
2.	a) H_2 b) H_2^+	c) He ₂	d) He ⁺ ₂
67.	The isoelectronic species among the following are:		
	-		

	$I - CH_3^+$; $II - NH_2^+$; $III - NH_4^+$; $IV - NH_3$		
	a) I, II, III b) II, III, IV	c) I, II, IV	d) II, I
68.	The screening effect of <i>d</i> -electros is		
	a) Equal to that of <i>p</i> -electrons	b) More than that of <i>p</i>	-electrons
	c) Same as <i>f</i> -electrons	d) Less than <i>p</i> -electro	ns
69.	OF ₂ is:		
	a) Linear molecule and <i>sp</i> -hybridized		
	b) Tetrahedral molecule and sp^3 -hybridized		
	c) Bent molecule and sp^3 -hybridized		
	d) None of the above		
70.	Be and Al exhibit diagonal relationship. Which	of the following statement ab	oout them is/are not true?
	I. Both react with HCl to liberate H_2		
	II. They are made passive by HNO_3		
	III. Their carbides given acetylene on treatmen	nt with water	
	IV. Their oxides are amphoteric		
	a) (iii) and (iv) b) (i) and (iii)	c) (i) only	d) (iii) only
71.	Which is not linear?		
	a) CO ₂ b) HCN	c) C ₂ H ₂	d) H ₂ O
72.	In which of the following bond angle is maximu	ım?	
	a) NH ₃ b) NH ₄ ⁺	c) PCl ₅	d) SCl ₂
73.	The molecule which has pyramidal shape is:		
	a) PCl_3 b) SO_3	c) CO ₃ ²⁻	d) NO_3^-
74.	The complex ion which has no $'d'$ electrons in t	he central metal atom is:	
	a) $[MnO_4]^-$ b) $[Co(NH_3)_6]^{3+}$	c) $[Fe(CN)_6]^{3-}$	d) $[Cr(H_2O)_6]^{3+}$
75.	For the formation of covalent bond, the different	nce in the value of electroneg	ativities should be:
	a) Equal to or less than 1.7		
	b) More than 1.7		
	c) 1.7 or more		
	d) None of the above		
76.	Strongest bond is in:		
	a) NaCl b) CsCl	c) Both (a) and (b)	d) None of these
77.	The formation of the oxide ion $0^{2-}(g)$ requires	first an exothermic and then	an endothermic step as shown
	below,		
	$O(g) + e \rightarrow O^{-}(g); \Delta H = -142 \text{ kJ/mol}$		
	$0^{-}(g) + e \rightarrow 0^{2-}(g); \Delta H = 844 \text{ kJ/mol}$		
	These is because:		
	a) 0^- ion has comparatively larger size than ox	xygen atom	
	b) Oxygen has high electron affinity		
	c) O^- ion will lead to resist the addition of another the addition of another the second	ther electron	
	d) Oxygen is more electronegative		
78.	Which among the following has the largest dipe	ole moment?	
	a) NH_3 b) H_2O	c) HI	d) SO_3
79.	The correct order of radii is		
	a) N < Be < B b) F ⁻ < O^{2-} < N ³⁻	c) $Fe^{3+} < Fe^{2+} < Fe^4$	d) Na $< Li < K$
80.	Diagonal relationship is for		
	a) Li-Na b) Be-Mg	c) Si-C	d) B-Si
81.	Bond order of 1.5 is shown by:		
	a) $0^{2^{-}}_{2^{-}}$ b) 0_{2}	c) 0 ⁺ ₂	d) 0_{2}^{-}
82.	Which one of the following is an amphoteric ox	tide?	
	a) ZnO b) Na_2O	c) SO ₂	d) B_2O_3

83. Among, Al_2O_3 , SiO_2 , P_2O_3 and SO_2 the correct order of acid strength is

a)
$$SO_2 < P_2O_3 < SiO_2 < Al_2O_3$$

b) $SiO_2 < SO_2 < Al_2O_3 < P_2O_3$

c)
$$Al_2O_3 < SiO_2 < SO_2 < P_2O_3$$
 d) $Al_2O_3 < SiO_2 < P_2O_3 < SO_2$

84. Point out the wrong statement. On moving horizontally from left to right across a period in the Periodic Table

- a) Metallic character decreases
- b) Electronegativity increases
- c) Gram atomic volume first decreases and then increases
- d) Size of the atoms increases for normal elements
- 85. The correct increasing bond angles order is:

a) $BF_3 < NF_3 < PF_3 < ClF_3$

- b) $ClF_3 < PF_3 < NF_3 < BF_3$
- c) $BF_3 \approx NF_3 < PF_3 < ClF_3$
- d) $BF_3 < NF_3 < PF_3 > ClF_3$
- 86. The incorrect statement among the following is
 - a) The first ionisation potential of Al is less than the first ionisation potential of Mg
 - b) The second ionisation potential of Mg is greater than the second ionisation potential of Na
 - c) The first ionisation potential of Na is less than the first ionisation potential of Mg
 - d) The third ionisation potential of Mg is greater than that of Al
- 87. Concept of bond order in the molecular orbital theory depends on the number of electrons in the bonding and antibonding orbitals. The bond order:
 - a) Can have a -ve value
 - b) Has always an integral value
 - c) Is a non-zero quantity
 - d) Can assume any +ve value, including zero

88.	Which hybridization resu	lts non-polar orbitals?		
	a) <i>sp</i>	b) sp^2	c) <i>sp</i> ³	d) dsp^2
89.	The total number of valer	try electrons for PO_4^{3-} ion i	S:	
	a) 32	b) 16	c) 28	d) 30
90.	Intramolecular hydrogen	bonding is found in:		
	a) Salicyldehyde	b) Water	c) Acetaldehyde	d) Phenol
91.	Amphoteric oxide combin	nations are in		
	a) ZnO, K_2O , SO ₃	b) ZnO , P_2O_5 , Cl_2O_7	c) SnO_2 , Al_2O_3 , ZnO	d) PbO_2 , SnO_2 , SO_3
92.	Chlorine atom tends to ac	equire the structure of:		
	a) He	b) Ne	c) Ar	d) Kr
93.	Which of the following ion	n is the smallest ion?		
	a) 0 ₂	b) 0 ⁺ ₂	c) 0_2^-	d) 0_2^{2-}
94.	Variable valency is charac	cteristic of:		
	a) Noble gas			
	b) Alkali metals			
	c) Transition metals			
	d) Non-metallic elements			
95.	Which force is strongest?			
	a) Dipole-dipole forces			
	b) Ion-ion forces			
	c) Ion-dipole forces			
	d) Ion-induced dipole for	ces		
96.	Identify the transition ele	ment.		
	a) $1s^2$, $2s^22p^6$, $3s^23p^6$, $4s^2$	S ²	b) $1s^2$, $2s^22p^6$, $3s^23p^63d$	² , 4 <i>s</i> ²
	c) $1s^2$, $2s^22p^6$, $3s^23p^63d$	10 , $4s^2 4p^2$	d) $1s^2$, $2s^22p^6$, $3s^23p^63d$	$^{10}, 4s^2 4p^1$

97.	For a covalent solid, the units which oc	ccupy lattice points are:	
	a) Atoms b) Ions	c) Molecules	d) Electrons
98.	Which is not true in case of ionic bond	?	
	a) It is linear bond		
	b) It is 100% ionic		
	c) It is formed between two atoms wit	h large electronegativity differenc	e
	d) None of the above		
99.	In the following molecule, the two ca	arbon atoms marked by asterisk	(*) possess the following type of
	hybridized orbitals:		
		и.с. [*] — *	
		$H_3C \longrightarrow C \implies C \longrightarrow CH_3$	
	a) sp^3 -orbital b) sp^2 -orbit	tal c) <i>sp</i> -orbital	d) <i>s</i> -orbital
100	. The element which exists in both hard	and soft form is:	
	a) Fe b) Si	c) C	d) Al
101	. Resonance is not shown by:		
	a) C_6H_6 b) CO_2	c) CO ₃ ^{2–}	d) SiO ₂
102	. The hybridization of P in PO_4^{3-} is same	as in:	
	a) I in ICl_4^- b) S in SO_3	c) N in NO ₃	d) S in SO_4^{2-}
103	. Dipole moment is highest for:		
	a) $CHCl_3$ b) CH_4	c) CHF ₃	d) CCl ₄
104	. What is the correct decreasing order o	f ionic radii of following ions? N ^{3–}	, O ^{2–} , F [–] , Na ⁺ , Mg ²⁺
	a) $N^{3-} > O^{2-} > F^- > Mg^{2+} > Na^+$	b) $N^{3-} > O^{2-} > F^{-}$	$- > Na^+ > Mg^{2+}$
	c) $N^{3-} > O^{2-} > Mg^{2+} > Na^+ > F^-$	d) $Na^+ > F^- > O^{2-}$	$- > Mg^{2+} > N^{3-}$
105	. In which of the following crystals of ion	nic compounds would you expect	maximum distance between the
	centres of cotions and anions		
	a) LiF b) CsF	c) CsI	d) LiI
106	. Which of the following has lowest bon	d angle?	
	a) BeF_2 b) H_2O	c) NH ₃	d) CH ₄
107	. The state of hybridization of C_2 , C_3 , C_5	and C_6 of the hydrocarbon,	
	CH ₃ CH ₃		
	$CH_3 - {}_6C - CH = CH - C = CH$		
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	Is in the following sequence:	2 1 3 3 3 2 2	
100	a) sp , sp^2 , sp^3 and sp^2 b) sp , sp^3 , sp^3 , sp^3	p^2 and sp^3 c) sp^3 , sp^2 , sp^2 and	$1 sp$ (1) sp , sp^2 , sp^2 and sp^3
108	Among the following elements La , Mg ,	P and CI the order of increasing at	omic radius is: $M_{T} \neq D_{T} \neq C_{T}$
100	a) Mg $< la < li < P$ b) $li < P <$	Mg < Ca c) $P < Cl < Ca < l$	Mg a) $Ca < Mg < P < Ci$
109	Alkali metals in each period have:		
	a) Largest size		
	b) Lowest IE		
	c) Highest <i>IE</i>		
110	a) Hignest electronegativity		
110	. The critical temperature of water is hig	gner than that of O_2 because H_2O i	noiecules has:
	a) Fewer electrons than O_2		
	b) I wo covalent bonds		
	cj v-snape		
111	a) Jipole moment	Identify the same to dealer by	ah tha hand and an is in a start in
111	. For ulatomic species are listed below.	identity the correct order in whi	ch the bond order is increasing in
	unem: $(2^{2} - 4)^{2} = (1^{2} - 4)^{4}$		
	$a_1 NU \leq U_2 \leq U_2 \leq \Pi e_2$		

a) NO
$$< O_2^- < C_2^{2-} < He_2^+$$

b) $O_2^- < NO < C_2^{2-} < He_2^+$

c) $C_2^{2-} < He_2^+ < O_2^- < NO$			
d) He ₂ ⁺ < O_2^- < NO < C_2^{2-}			
112. Which of the following is le	ast ionic?		
a) CaF_2	b) $CaBr_2$	c) Cal ₂	d) $CaCl_2$
113. The bond order of individu	al carbon-carbon bonds in	benzene is:	, <u> </u>
a) One			
b) Two			
c) Between 1 and 2			
d) One and two alternately			
114. The total number of valence	v electrons in PH ⁺ ion is:		
a) 8	h) 9	c) 6	d) 14
115. Pauling's equation for deter	rmining the electronegativ	vity of an element, is	-)
$X_{A}, X_{B} = \text{electronegativity y}$	values of elements A and B		
Δ =represents polarity of A	-B bond		
a) $X_1 = X_2 = 0.208\sqrt{\Lambda}$	b) $X_1 + X_2 = 0.208\sqrt{\Lambda}$	c) $X_4 - X_7 = 0.208 \Lambda^2$	d) $X_{1} = X_{2} = \sqrt{\Lambda}$
116 The set representing the co	$A_A + A_B = 0.200 V \Delta$		$a_{J} n_{A} n_{B} = \sqrt{\Delta}$
a) Na ⁺ > Li^+ > Mg^{2+} > Re	$_{2}^{2+}$	13.	
h) $Li^+ > Na^+ > Mg^{2+} > Rg^{2+}$	- 2+		
c) $Mg^{2+} > Re^{2+} > Li^+ > Ni$	c /+		
d) $Li^+ > Be^{2+} > Na^+ > Ma^+$	7a 72+		
117 The pair baying similar geo	5 matry is :		
a) RF. NH.	h) RF. AIF.	c) BoF, H.O	d) BCL DCL
118 The attraction that non-nol	or molecules have for eac	b other is primarily caused	uj Del3, i el3
a) Hydrogen bonding	ar molecules have for each	i other is primarily caused	by.
b) Difference in electroneg	ativities		
c) High ionisation energy			
d) Van der Waals' forces			
119 The structure of $ICL_{=}^{-}$ is			
a) Trigonal			
b) Octabedral			
c) Square planar			
d) Distorted trigonal hinyra	amid		
120 The correct order of increa	sing oxidising nower is		
a) $F_2 \leq C I_2 \leq I_2 > Br_2$	h) $F_a < Br_a < Cl_a < I_a$	c) $Cl_{2} \leq Br_{2} \leq F_{2} \leq I_{2}$	d) $I_a < Br_a < C I_a < F_a$
121 Which of the following oxid	les is not expected to react	t with sodium hydroxide?	
a) BeO	h) $B_{a}O_{a}$	c) CaO	d) SiO
122. In which molecule, the cent	Tral atom does not use sn^3	-hybrid orbitals in its bond	ling?
a) NH ₂	h) BeF_{2}^{-}	c) $SO_{2}Cl_{2}$	d) SO_{2}^{2-}
123 Which element has the low	est electronegativity?	c) 502012	uj 504
a) Li	h) F	റി	d) Fe
124 Amongst the following elem	nents the configuration ha	ving the highest ionization	energy is:
a) $[Ne]3s^23 n^1$	h) $[N_{P}]$ 3 s ² 3 n ³	c) $[N_{P}]3s^{2}3n^{2}$	d) $[Ar] 3d^{10} 4s^2 4n^3$
125 Which species does not exist	st?		
a) $(Sn(1_2)^{2-})^{1/2}$	b) $(GeCl_{2})^{2-}$	c) $((()_{2})^{2}$	d) $(SiCl_{2})^{2-}$
126 Which one of the following	has not triangular nyrami	dal shane?	uj (5161 ₆)
a) NH ₂	h) NCl.	c) PF ₂	d) BCl
127 Among NH ₂ ReCl ₂ CO ₂ and	H ₂ O, the non-linear mole	cules are:	uj D013
a) BeCl ₂ and H_2O	h) BeCl_{2} and CO_{2}	c) NH_{2} and $H_{2}O$	d) NH ₂ and CO_2
128. When the hybridization sta	te of carbon atom change	s from sn^3 to sn^2 and final	1 1 1 1 1 1 1 1 1 1
the hybridized orbitals	te of carbon atom change		, to op, the angle between
site ing strailed of study			

a) Decreases gradually	_		
b) Decreases considerab	ly		
c) Is not affected			
d) Increases progressive	ly		
129. Which is distilled first?			
a) Liquid H_2	b) Liquid CO ₂	c) Liquid O_2	d) Liquid N ₂
130. The equilateral triangle s	shape has:	2	
a) <i>sp</i> -hybridization	b) <i>sp</i> ² -hybridization	c) <i>sp</i> ³ -hybridization	d) <i>sp³d</i> -hybridization
131. Which atomic orbital is a	lways involved in sigma bo	nding only?	
a) <i>s</i>	b) <i>p</i>	c) d	d) <i>f</i>
132. Two ice cubes are press	sed over each other and ur	nite to form one cube. Wh	ich force is responsible for
holding them together?			
a) van der Waals' forces			
b) Covalent attraction			
c) Hydrogen bond forma	tion		
d) Dipole-dipole attractio	on		
133. The decreasing values of	t bond angles from $NH_3(106)$	5°) to SbH ₃ (101°) down gr	oup-15 of the periodic table
is due to:			
a) Increasing $bp - bp$ re	pulsion		
b) Increasing <i>p</i> -orbital cl	haracter in <i>sp</i> ³		
c) Decreasing $lp - bp$ re	pulsion		
d) Decreasing electroneg	ativity		
134. The bond that determine	es the secondary structure o	f a protein is:	
a) Coordinate bond	b) Covalent bond	c) Hydrogen bond	d) Ionic bond
135. Which is not an exceptio	n to octet rule?		
a) BF ₃	b) SnCl ₄	c) Bel ₂	d) ClO_2
136. Higher is the bond order	, greater is:		
a) Bond dissociation ene	rgy		
b) Covalent character			
c) Bond length			
d) Paramagnetism			
137. Highest electron affinity	among the following is		
a) Fluorine	b) Chlorine	c) Sulphur	d) Xenon
138. According to molecular of	orbital theory for O_2^+ :		
a) Bond order is less tha	n O_2 and O_2^+ is paramagnetic	С	
b) Bond order is more th	an O_2 and O_2^+ is paramagne	tic	
c) Bond order is less tha	n O_2 and O_2^+ is diamagnetic		
d) Bond order is more th	an O_2 and O_2^+ is diamagnetic	с	
139. Which of the following h	as fractional bond order?		
a) 0_2^{2+}	b) 0_2^{2-}	c) F_2^{2-}	d) H ₂
140. Which of the following is	not isostructural with SiCl ₄	?	
a) PO_4^{3-}	b) NH ₄ ⁺	c) SCl ₄	d) SO_4^{2-}
141. The correct order of deci	reasing second ionisation er	nthalpy of Ti (22), V (23), C	r (24) and Mn (25) is:
a) V > Mn > Cr > Ti	b) $Mn > Cr > Ti > V$	c) Ti > $V > Cr > Mn$	d) $Cr > Mn > V > Ti$
142. The electrons used in bo	nding atoms:		
a) Belong to outermost s	hell		
b) Belong to penultimate	shell		
c) Belong to outermost s	hell and sometimes penulting	mate shell	
d) Belong to penultimate	shell and sometimes to out	ermost shell	
143. The discovery of which o	of the following group of elements	ments gave death blow to t	he Newland's law of

octaves? a) Inert gases b) Alkaline earths c) Rare earths d) Actinides 144. Generally, the first ionisation energy increases along a period. But there are some exceptions. One which is not an exception is a) N and O b) Na and Mg c) Mg and Al d) Be and B 145. Which one of the following orders presents the correct sequence of the increasing basic nature of the given oxides? a) $Al_2O_3 < MgO < Na_2O < K_2O$ b) Mg0 < K_20 < Al_20_3 < Na_20 c) $Na_2 0 < K_2 0 < Mg 0 < Al_2 0_3$ d) $K_2 0 < Na_2 0 < Al_2 0_3 < Mg0$ 146. The basis of keeping the elements in the groups of The Periodic Table is a) Ionisation potential b) Electronegativity c) Electron affinity d) Number of valence electrons 147. Ist and IInd IE of Mg are 7.646 and 15.035 eV respectively. The amount of energy needed to convert all the atoms of magnesium into Mg^{2+} ions present in 12 mg of magnesium vapours is [Given, 1eV = 96.5 kJ] mol^{-1}] a) 1.5 d) 0.5 b) 2.0 c) 1.1 148. K⁺, Cl⁻, Ca²⁺, S²⁻ ions are isoelectronics. The decreasing order of their size is: a) $S^{2-} > Cl^{-} > K^{+} > Ca^{2+}$ b) $Ca^{2+} > K^+ > Cl^- > S^{2-}$ c) $K^+ > Cl^- > Ca^{2+} > S^{2-}$ d) $Cl^- > S^{2-} > Ca^{2+} > K^+$ 149. The first four ionisation energy values of an element are 191, 578, 872 and 5962 kcal. The number of valence electrons in the element is c) 3 d) 4 a) 1 b) 2 150. Which are true statements among the following? (1) PH₅ and BiCl₅ does not exist (2) $p \pi - d\pi$ bonds are present in SO₂ (3) Electrons travel with speed of light (4) SeF_4 and CH_4 has same shape (5) I_3^+ has bent geometry a) 1, 3 b) 1, 2, 5 c) 1, 3, 5 d) 1, 2, 4 151. Correct increasing order of first ionisation potential is a) Na < Mg > Al < Sib) Na < Mg < Al < Sic) Na > Mg > Al > Sid) Na < Mg < Al > Si152. Which pair represents isostructural species? b) NH_4^+ and NH_3 c) SO_4^{2-} and BF_4^{-} d) NH_2^- and BeF_2 a) CH_3^- and CH_3^+ 153. The first ionisation potential (eV) of Be and B respectively are d) 9.32 eV, 8.29 eV a) 8.29 eV, 8.29 eV b) 8.29 eV, 9.32 eV c) 9.32 eV, 9.32 eV 154. The correct order according to size is a) $0 > 0^- > 0^{2-}$ b) $0^- > 0^{2-} > 0$ c) $0^{2-} > 0^{-} > 0$ d) $0 > 0^{2-} > 0^{-}$ 155. The correct order of electron affinity is a) B < C < 0 > Nb) B > C > N > Oc) 0 > C > B > Nd) 0 < C < B < N156. Which of the following is a false statement? a) Fluorine is more electronegative than chlorine b) Nitrogen has greater IE₁than oxygen c) Lithium is amphoteric d) Chlorine is an oxidising agent 157. Solid NaCl is a bad conductor of electricity because: a) In solid NaCl there are no ions b) Solid NaCl is covalent c) In solid NaCl there is no velocity of ions d) In solid NaCl there are no electrons

158. Which of the following configuration is associated with biggest jump between 2nd and 3rd IE?

159.	a) 1s ² , 2s ² 2p ²	b) 1s ² , 2s ² 2p ⁶ , 3s ¹	c) $1s^2$, $2s^22p^6$, $3s^2$	d) $1s^2$, $2s^22p^1$
	Consider the ions K^+ , S^{2-} ,	Cl^{-} and Ca^{2+} . The radii of	these ionic species follow t	he order
	a) $Ca^{2+} > K^+ > Cl^- > S^{2+}$	-	b) $Cl^- > S^{2-} > K^+ > Ca^{2+}$	F
	c) $Ca^{2+} > Cl^- > K > S^{2-}$		d) $S^{2-} > Cl^- > K^+ > Ca^{2-}$	+
160	The correct order of ionis	ation energy for comparing	g carbon, nitrogen and oxyg	gen is
	a) C < N > 0	b) $C > N < 0$	c) $C > N > 0$	d) C < N < 0
161	A π -bond is formed by sid	eways overlapping of:		
	a) <i>s-s</i> orbitals	b) <i>p-p</i> orbitals	c) <i>s-p</i> orbitals	d) <i>s-p-s</i> orbitas
162	Which oxide of nitrogen is	s isoelectronic with CO ₂ ?		
	a) NO ₂	b) N ₂ O	c) NO	d) $N_2 O_2$
163	In which of the following	pairs of molecules/ions, the	e central atom has sp^2 -hyb	ridization?
	a) NO ₂ and NH ₃	b) BF_3 and NO_2^-	c) NH_2^- and H_2O	d) BF_3 and NH_2^-
164	Which of the following ha	s largest ionic radius?		
	a) Cs ⁺	b) Li ⁺	c) Na ⁺	d) K+
165	Boron cannot form which	one of the following anions	s?	
	a) BF ₆ ^{3–}	b) BH ₄	c) B(OH) ₄	d) BO ₂
166	Most covalent halide of al	uminium is:		
	a) AlCl ₃	b) AlI ₃	c) AlBr ₃	d) AlF ₃
167.	The shape of ClO_3^- according	ing to VSEPR model is:		
	a) Planar triangle	b) Pyramidal	c) Tetrahedral	d) Square planar
168	. The correct order of incre	asing bond angles in the fo	llowing triatomic species is	5:
	a) $NO_2^- < NO_2 < NO_2^+$	b) $NO_2^+ < NO_2 < NO_2^-$	c) $NO_2^+ < NO_2^- < NO_2$	d) $NO_2^- < NO_2^+ < NO_2$
169	. Which of the following pa	irs has both members from	the same group of the Peri	iodic Table?
	a) Mg – Ba	b) Mg – Cu	c) Mg - K	d) Mg – Na
170	Silicon has 4 electrons in t	the outermost orbit. In form	ning the bond:	
	a) It gains electrons	b) It losses electrons	c) It shares electrons	d) None of these
171	. sp^2 -hybridization is show	m by:		
	a) BeCl ₂	b) BF ₃	c) NH ₃	d) XeF ₂
172	A <i>p</i> -block element in whice	ch last electron enters into a	s-orbitals of valence shell i	nstead of <i>p</i> -orbital is:
	a) As	b) Ga	c) No such element exist	d) He
173	a) As . Which of the following are	b) Ga e not correct?	c) No such element exist	d) He
173	a) AsWhich of the following area) Lone pair of electrons p	b) Ga e not correct? present on central atom car	c) No such element exist	d) He
173.	a) AsWhich of the following area) Lone pair of electrons pb) Dipole moment is vector	b) Ga e not correct? present on central atom car pr quantity	c) No such element exist	d) He
173.	 a) As Which of the following are a) Lone pair of electrons p b) Dipole moment is vector c) CO₂ molecule has dipole 	b) Ga e not correct? present on central atom car pr quantity e moment	c) No such element exist	d) He
173	 a) As Which of the following are a) Lone pair of electrons p b) Dipole moment is vector c) CO₂ molecule has dipole d) Difference in electrone 	b) Ga e not correct? oresent on central atom car or quantity e moment gativities of combining ator	c) No such element exist a give rise to dipole momen ns can lead to dipole mome	d) He t
173	 a) As Which of the following are a) Lone pair of electrons p b) Dipole moment is vector c) CO₂ molecule has dipole d) Difference in electrone The order of first ionisation 	b) Ga e not correct? oresent on central atom car or quantity e moment gativities of combining atom on energies of the element	c) No such element exist n give rise to dipole momen ns can lead to dipole mome Li, Be, B, Na is	d) He it ent
173.	a) As Which of the following are a) Lone pair of electrons p b) Dipole moment is vector c) CO_2 molecule has dipol d) Difference in electrone The order of first ionisation a) Li > Be > B > Na	b) Ga e not correct? oresent on central atom car or quantity e moment gativities of combining atom on energies of the element P b) Be > B > Li > Na	c) No such element exist a give rise to dipole moments and to dipole moments Li, Be, B, Na is c) Na $> Li > B > Be$	d) He t ent d) Be > $Li > B > Na$
173. 174. 175.	a) As Which of the following are a) Lone pair of electrons p b) Dipole moment is vector c) CO_2 molecule has dipol d) Difference in electrone The order of first ionisation a) Li > Be > B > Na Differentiating electron in	b) Ga e not correct? oresent on central atom car or quantity e moment gativities of combining atom on energies of the element 1 b) Be $> B > Li > Na$ inner transition elements	c) No such element exist a give rise to dipole moments and to dipole moments Li, Be, B, Na is c) Na $> Li > B > Be$ enters the orbital.	d) He at ent d) Be $> Li > B > Na$
173. 174. 175.	a) As Which of the following are a) Lone pair of electrons p b) Dipole moment is vector c) CO_2 molecule has dipol d) Difference in electrone The order of first ionisation a) Li > Be > B > Na Differentiating electron in a) s	b) Ga e not correct? oresent on central atom car or quantity e moment gativities of combining atom on energies of the element b b) Be $> B > Li > Na$ inner transition elements b) <i>p</i>	c) No such element exist n give rise to dipole moments ns can lead to dipole moment Li, Be, B, Na is c) Na $> Li > B > Be$ enters the orbital. c) d	d) He it ent d) Be $> Li > B > Na$ d) f
173 174 175 176	a) As Which of the following are a) Lone pair of electrons p b) Dipole moment is vector c) CO_2 molecule has dipol d) Difference in electrone The order of first ionisation a) Li > Be > B > Na Differentiating electron in a) s Which is expected to conc	b) Ga e not correct? present on central atom car or quantity e moment gativities of combining atom on energies of the element 1 b) Be $> B > Li > Na$ inner transition elements b) <i>p</i> luct electricity?	c) No such element exist a give rise to dipole moments as can lead to dipole moment Li, Be, B, Na is c) Na $> Li > B > Be$ enters the orbital. c) d	d) He at ent d) Be > $Li > B > Na$ d) f
173 174 175 176	a) As Which of the following are a) Lone pair of electrons p b) Dipole moment is vector c) CO_2 molecule has dipol d) Difference in electrone The order of first ionisation a) Li > Be > B > Na Differentiating electron in a) s Which is expected to concord a) Diamond	b) Ga e not correct? oresent on central atom car or quantity e moment gativities of combining atom on energies of the element 1 b) Be $> B > Li > Na$ inner transition elements b) <i>p</i> luct electricity? b) Molten sulphur	c) No such element exist a give rise to dipole moment ns can lead to dipole moment Li, Be, B, Na is c) Na $> Li > B > Be$ enters the orbital. c) d c) Molten KCl	d) He it ent d) Be $> Li > B > Na$ d) f d) Crystalline NaCl
173. 174. 175. 176. 177.	a) As Which of the following are a) Lone pair of electrons p b) Dipole moment is vector c) CO_2 molecule has dipol d) Difference in electrone The order of first ionisation a) Li > Be > B > Na Differentiating electron in a) s Which is expected to concord a) Diamond Elements whose electrone	b) Ga e not correct? present on central atom car or quantity e moment gativities of combining atom on energies of the element 1 b) Be $> B > Li > Na$ inner transition elements b) <i>p</i> luct electricity? b) Molten sulphur egativities are 1.2 and 3.0, f	c) No such element exist a give rise to dipole moment ms can lead to dipole moment Li, Be, B, Na is c) Na $> Li > B > Be$ enters the orbital. c) d c) Molten KCl form:	d) He at ent d) Be $> Li > B > Na$ d) f d) Crystalline NaCl
173. 174. 175. 176. 177.	a) As Which of the following are a) Lone pair of electrons p b) Dipole moment is vector c) CO_2 molecule has dipol d) Difference in electrone The order of first ionisatio a) Li > $Be > B > Na$ Differentiating electron in a) s Which is expected to cond a) Diamond Elements whose electrone a) Ionic bond	b) Ga e not correct? oresent on central atom car or quantity e moment gativities of combining atom on energies of the element 1 b) Be $> B > Li > Na$ inner transition elements b) <i>p</i> luct electricity? b) Molten sulphur egativities are 1.2 and 3.0, f b) Covalent bond	c) No such element exist a give rise to dipole moment ins can lead to dipole moment Li, Be, B, Na is c) Na $> Li > B > Be$ enters the orbital. c) d c) Molten KCl form: c) Coordinate bond	 d) He d) He at ent d) Be > Li > B > Na d) f d) Crystalline NaCl d) Metallic bond
173. 174. 175. 176. 177. 178.	a) As Which of the following are a) Lone pair of electrons p b) Dipole moment is vector c) CO_2 molecule has dipol d) Difference in electrone The order of first ionisation a) Li > Be > B > Na Differentiating electron in a) s Which is expected to concord b) Diamond Elements whose electrone a) Ionic bond	b) Ga e not correct? present on central atom car or quantity e moment gativities of combining atom on energies of the element 1 b) Be $> B > Li > Na$ inner transition elements b) <i>p</i> luct electricity? b) Molten sulphur egativities are 1.2 and 3.0, f b) Covalent bond r of ionic sizes?) At. no. : Ce	 c) No such element exist n give rise to dipole moment ns can lead to dipole moment Li, Be, B, Na is c) Na > Li > B > Be enters the orbital. c) d c) Molten KCl form: c) Coordinate bond = 58, Sn = 50, Yb = 70 and 	d) He d) He t ent d) Be $> Li > B > Na$ d) f d) Crystalline NaCl d) Metallic bond d Lu = 71)
173. 174. 175. 176. 177. 178.	a) As Which of the following are a) Lone pair of electrons p b) Dipole moment is vector c) CO_2 molecule has dipol d) Difference in electrone . The order of first ionisation a) Li > Be > B > Na Differentiating electron in a) s . Which is expected to cond a) Diamond . Elements whose electrone a) Ionic bond . Which is the correct order a) Ce > Sn > Yb > Lu	b) Ga e not correct? bresent on central atom car or quantity e moment gativities of combining atom on energies of the element 1 b) Be $> B > Li > Na$ inner transition elements b) <i>p</i> luct electricity? b) Molten sulphur egativities are 1.2 and 3.0, f b) Covalent bond r of ionic sizes?) At. no. : Ce b) Sn $> Yb > Ce > Lu$	c) No such element exist in give rise to dipole moment ins can lead to dipole moment Li, Be, B, Na is c) Na > Li > B > Be enters the orbital. c) d c) Molten KCl form: c) Coordinate bond = 58, Sn = 50, Yb = 70 an c) Sn > Ce > Yb > Lu	d) He d) He it ent d) Be $> Li > B > Na$ d) f d) Crystalline NaCl d) Metallic bond d Lu = 71) d) Lu $> Yb > Sn > Ce$
 173. 174. 175. 176. 177. 178. 179. 	a) As Which of the following are a) Lone pair of electrons p b) Dipole moment is vector c) CO_2 molecule has dipol d) Difference in electrone The order of first ionisatio a) Li > Be > B > Na Differentiating electron in a) s Which is expected to conce a) Diamond Elements whose electrone a) Ionic bond Which is the correct order a) Ce > Sn > Yb > Lu Oxygen is divalent, but su	b) Ga e not correct? oresent on central atom car or quantity e moment gativities of combining atom on energies of the element 1 b) Be $> B > Li > Na$ inner transition elements b) p luct electricity? b) Molten sulphur egativities are 1.2 and 3.0, f b) Covalent bond c of ionic sizes?) At. no. : Ce b) Sn $> Yb > Ce > Lu$ lphur exhibits variable vale	c) No such element exist n give rise to dipole moment ins can lead to dipole moment Li, Be, B, Na is c) Na $> Li > B > Be$ enters the orbital. c) d c) Molten KCl form: c) Coordinate bond = 58, Sn = 50, Yb = 70 an c) Sn $> Ce > Yb > Lu$ ency of 2, 4 and 6, because:	d) He d) He t ent d) Be $> Li > B > Na$ d) f d) Crystalline NaCl d) Metallic bond d Lu = 71) d) Lu $> Yb > Sn > Ce$
 173. 174. 175. 176. 177. 178. 179. 	a) As Which of the following are a) Lone pair of electrons p b) Dipole moment is vector c) CO_2 molecule has dipol d) Difference in electrone . The order of first ionisatio a) Li > $Be > B > Na$ Differentiating electron in a) s Which is expected to cond a) Diamond . Elements whose electrone a) Ionic bond . Which is the correct order a) Ce > $Sn > Yb > Lu$. Oxygen is divalent, but su a) Sulphur is less electrone	b) Ga e not correct? bresent on central atom car or quantity e moment gativities of combining atom on energies of the element 1 b) Be $> B > Li > Na$ inner transition elements b) <i>p</i> luct electricity? b) Molten sulphur egativities are 1.2 and 3.0, f b) Covalent bond r of ionic sizes?) At. no. : Ce b) Sn $> Yb > Ce > Lu$ lphur exhibits variable vale	c) No such element exist a give rise to dipole moment in s can lead to dipole moment in s	d) He d) He it ent d) Be $> Li > B > Na$ d) f d) Crystalline NaCl d) Metallic bond d Lu = 71) d) Lu $> Yb > Sn > Ce$
 173. 174. 175. 176. 177. 178. 179. 	a) As Which of the following are a) Lone pair of electrons p b) Dipole moment is vector c) CO_2 molecule has dipol d) Difference in electrone The order of first ionisatio a) Li > Be > B > Na Differentiating electron in a) s Which is expected to conce a) Diamond Elements whose electrone a) Ionic bond Which is the correct order a) Ce > Sn > Yb > Lu Oxygen is divalent, but su a) Sulphur is less electrone b) Sulphur is bigger atom	b) Ga e not correct? oresent on central atom car or quantity e moment gativities of combining atom on energies of the element 1 b) Be > $B > Li > Na$ inner transition elements b) p luct electricity? b) Molten sulphur egativities are 1.2 and 3.0, f b) Covalent bond r of ionic sizes?) At. no. : Ce b) Sn > $Yb > Ce > Lu$ lphur exhibits variable vale egative than oxygen than oxygen	c) No such element exist n give rise to dipole moment ns can lead to dipole moment Li, Be, B, Na is c) Na $> Li > B > Be$ enters the orbital. c) d c) Molten KCl form: c) Coordinate bond = 58, Sn $= 50$, Yb $= 70$ an c) Sn $> Ce > Yb > Lu$ ency of 2, 4 and 6, because:	d) He d) He t ent d) Be $> Li > B > Na$ d) f d) Crystalline NaCl d) Metallic bond d Lu = 71) d) Lu $> Yb > Sn > Ce$
 173. 174. 175. 176. 177. 178. 179. 	a) As Which of the following are a) Lone pair of electrons p b) Dipole moment is vector c) CO_2 molecule has dipol d) Difference in electrone The order of first ionisatio a) Li > Be > B > Na Differentiating electron in a) S Which is expected to conc a) Diamond Elements whose electrone a) Ionic bond Which is the correct order a) Ce > Sn > Yb > Lu Oxygen is divalent, but su a) Sulphur is less electrone b) Sulphur is bigger atom c) Ionisation potential of a	b) Ga e not correct? oresent on central atom car or quantity e moment gativities of combining atom on energies of the element 1 b) Be $> B > Li > Na$ inner transition elements b) <i>p</i> luct electricity? b) Molten sulphur egativities are 1.2 and 3.0, f b) Covalent bond r of ionic sizes?) At. no. : Ce b) Sn $> Yb > Ce > Lu$ lphur exhibits variable vale egative than oxygen than oxygen sulphur is more than oxyge	c) No such element exist a give rise to dipole moment in s can lead to dipole moment is can lead to dipole moment	d) He d) He it ent d) Be > $Li > B > Na$ d) f d) Crystalline NaCl d) Metallic bond d Lu = 71) d) Lu > Yb > Sn > Ce

180	. In the Periodic Table, goir	ng down in the fluorine gro	up	
	a) Stability of hydrides with	ill increases	b) Ionic radii will increase	es
	c) Electronegativity will i	ncreases	d) IE will increases	
181	. The ionisation energy of r	nitrogen is larger than that	of oxygen because of	
	a) Of greater attraction of	electrons by the nucleus		
	b) Of the size of nitrogen a	atom being smaller		
	c) The half-filled <i>p</i> -orbita	ls possess extra stability		
	d) Of greater penetration	effect		
182	. Which has the highest ion	isation potential?		
	a) Na	b) Mg	c) C	d) F
183	. Which of the following do	es not represents the corre	ect order of the property in	dicated?
	a) $Sc^{3+} > Cr^{3+} > Fe^{3+} >$	Mn ³⁺ –ionic radii	b) Sc $< Ti < Cr < Mn - c$	density
	c) $Mn^{2+} > Ni^{2+} > Co^{2+} < Co^{2+}$	< Fe ²⁺ — ionic radii	d) FeO < <i>CaO</i> < <i>MnO</i> < 0	<i>CuO –</i> basic nature
184	. The electronic configurati	ion of most electronegative	e elements is	
	a) $1s^2$, $2s^2$, $2p^5$	b) $1s^2$, $2s^2$, $2p^4$, $3s^1$	c) $1s^2$, $2s^2$, $2p^6$, $3s^1$, $3p^1$	d) $1s^2$, $2s^2$, $2p^6$, $3s^2$, $3p^5$
185	. Which group of the Period	dic Table does not contain	only metals?	
	a) IB	b) IA	c) IIA	d) IIIA
186	The species showing $p\pi$ –	- $d\pi$ overlapping is:	,	,
	a) NO_2^-	b) PO_4^{3-}	c) CO_2^{2-}	d) NO_{2}^{-}
187	. Variable oxidation state a	nd degenerated orbital sho)WS	-)2
10.	a) s-block elements	b) <i>n</i> -block elements	c) <i>d</i> -block elements	d) All of these
188	Which of the following is:	a metalloid?		
100	a) Sh	h) Mg	c) Zn	d) Bi
189	Which does not use sn^3 -h	whrid orbitals in its bondin	ο ²	
107	a) $\operatorname{BeF}_{-}^{-}$	h) OH ⁺	c) NH ⁺	d) NF-
190	Which of the following ha	ve highest electron affinity	<i>c</i>) 1114	u) 11 3
170	a) N	h) f	c) F	ብ) CI
191	The correct order of incre	esing electronositive char:	acter among Cu Fe and Mg	is [,]
171	a) $(u \approx E_0 < M_a$	b) For $C_{11} < M_{a}$	c) $F_{0} < M_{a} < C_{u}$	d) $C_{\rm H} < F_{\rm P} < M_{\rm C}$
102	As one moves along a give	DJIC $< Cu < My$	$c_j r c < my < c_u$	uj cu < i e < mg
192	a) Increases from left to r	ight	b) Decreases from left to a	right
	c) First increases then de	igiit ocroases	d) Remains the same	light
102	The lightest metal is		uj Kelliallis tile salile	
195		h) Na	c) Ma	d) Ca
10/	Which is the property of r	DJ Na non-motal?	c) mg	u) ca
194	a) Electronogative		h) Basic naturo of ovido	
	a) Reducing property		d) Low ionisation potenti	าไ
105	In a given shell the order	of scrooping offact is	uj Low iomsation potenti	dI
195	. In a given shen the order $a > c > n > d > f$	b) $c > n > f > d$	c) $f > d > n > c$	d) $c < n < d < f$
106	a) $S > p > u > j$	DJS $> p > j > u$	(j) / (a) / (p) / (s)	ujs $$
190		b) SE	a) RE	d) UCIO
107	a) $\Pi_2 \cup U_3$ The formation of the oxid	$UJ SIF_4$	$CJ DF_3$	$U \int \Pi U U_2$
197	heless	e ion 0 ⁻ (g) requires inst	an exothermic and then an	endothermic step as shown
	Delow; $O(\alpha) + \alpha^{-} = O^{-}(\alpha) + AU^{0}$	$-142 \mathrm{JrJm} \mathrm{s} \mathrm{t}^{-1}$		
	$O(g) + e^{-1} = O(g); \Delta H^{-1}$	= -142 KJIII01		
	$O(g) + e = 0^2 (g); \Delta H$	$^{\circ} = 844 \text{ kJm} 01^{-1}$		
	I IIS IS Decause			
	a) Uxygen is more electro	negative		
	b) Uxygen has high electro	on affinity		
	c) U ion will tend to resist $0 = 1$	st the addition of another e	lectron	
	d) O ⁻ has comparatively la	arger size than oxygen ator	n	

198. Which of the following state	ements is correct?		
a) X^- ion is larger in size th	an X-atom	b) <i>X</i> ⁺ ion is larger in size t	than X-atom
c) X^+ ion is larger in size th	$an X^{-}$ ion	d) X^+ and X^- ions are equ	al in size
199. Number of elements preser	nts in the fifth period of pe	riodic table is	
a) 32 b	o) 10	c) 18	d) 8
200. The compound possessing	most strongly ionic nature	e is:	
a) SrCl ₂	b) $BaCl_2$	c) CaCl ₂	d) CsCl
201. What is the name of elemen	nt with atomic number 10	5?	
a) Kurchatovium b	o) Dubnium	c) Nobelium	d) Holmium
202. Among the following which	is the strongest oxidising	agent?	
a) Cl ₂ b	o) F ₂	c) Br ₂	d) I ₂
203. The outermost electronic co	onfiguration of the most e	lectronegative element is	
a) ns^2np^3 b	b) ns^2np^4	c) ns^2np^5	d) ns^2np^6
204. The incorrect statements re	egarding bonding molecul	ar orbitals because:	
a) Bonding molecular orbit	al possess less energy tha	n combining atomic orbital	ls.
b) Bonding molecular orbit	als have low electron den	sity between the two nucle	i.
c) Every electron in bondin	g molecular orbitals conti	ributes to attraction betwe	en atoms.
d) They are formed when th	ne lobes of the combining	atomic orbitals have same	sign.
205. Which of the following has	largest size?		
a) Al b	o) Al ⁺	c) Al ²⁺	d) Al ³⁺
206. Carbon atoms in $C_2(CN)_4$ at	re:		
a) <i>sp</i> -hybridized	o) sp^2 -hybridized	c) <i>sp</i> -and sp^2 - hybridized	d) $\frac{sp, sp^2}{hybridized}$ and $\frac{sp^3}{hybridized}$
207. The common feature among	g the species CN ⁻ , CO and	NO ⁺ are:	2
a) Bond order three and isc	electronic		
b) Bond order three and we	eak filed ligands		
c) Bond order two and π -ac	cceptors		
d) Isoelectronic and weak fi	iled ligands		
208. Which one of the elements	has the maximum electroi	n affinity?	
a) F b	o) Cl	c) Br	d) I
209. The internuclear distance in	n H ₂ and Cl ₂ molecules are	e 74 and 198 pm respective	ely. The bond length of
H — Cl may be:			
a) 272 pm b	o) 70 pm	c) 136 pm	d) 248 pm
210. PCl ₅ exists but NCl ₅ does no	ot because:		
a) Nitrogen has no vacant 2	d-orbitals		
b) NCl ₅ is unstable			
c) Nitrogen atom is much s	maller than p		
d) Nitrogen is highly highly	inert		
211. Which one of the following	process requiring absorp	tion of energy?	
a) $Cl \rightarrow Cl^-$ k	o) H → H ⁻	c) $0 \to 0^{2-}$	d) $F \rightarrow F^-$
212. The hybridization of carbor	n in diamond, graphite and	d acetylene is:	
a) sp^3 , sp^2 , sp b	b) sp^3 , sp , sp^2	c) <i>sp</i> ² , <i>sp</i> ³ , <i>sp</i>	d) sp , sp^3sp^2
213. Which ionisation potential	(IP) in the following equa	tions involves the greatest	amount of energy?
a) $K^+ \to K^{2+} + e^-$ b	b) Na → Na ⁺ + e^-	c) $C^{2+} \to C^{3+} + e^{-}$	d) $Ca^+ \rightarrow Ca^{2+} + e^-$
214. The pairs of bases in DNA a	re held together by:		
a) Hydrogen bonds b	o) Ionic bonds	c) Phosphate groups	d) Deoxyribose groups
215. The energy of $\sigma 2s$ -orbital is	s greater than $\sigma^* 1s$ orbital	because:	
a) $\sigma 2s$ orbital is bigger than	$\sigma \sigma 1s$ orbital		
b) $\sigma 2s$ orbital is a bonding σ	orbital whereas, σ*1s an a	ntibonding orbital	
c) $\sigma^2 c$ orbital has a greater	value of <i>n</i> than $\sigma^* 1s$ orbit	tal	

d) None of the above

216. Who developed the long form of Periodic Table?

-10				
	a) Niels Bohr	b) Moseley	c) Mendeleef	d) Lothar Meyer
217.	At ordinary temperat	ture and pressure, among h	alogens, the chlorine is a g	gas, bromine is a liquid and
	iodine is a solid. This	is because:		
	a) The specific heat is	in the order $Cl_2 > Br_2 > I_2$		
	b) Intermolecular for	ces among molecules of chlor	ine are the weakest and tho	se in iodine are the
	strongest			
	c) The order of densit	$y \text{ is } I_2 > Br_2 > Cl_2$		
	d) The order of stabili	ty is $Cl_2 > Br_2 > I_2$		
218	The radii F, F^-, O and	O^{2-} are in the order of		
	a) $F^- > 0^{2-} > F > 0$	b) $F > F^- > 0 > 0^{2-}$	c) $0^{2-} > F^- > 0 > F$	d) $F > 0 > F^- > 0^{2-}$
219	Which of the following	g is the smallest in size?		
	a) Na ⁺	b) F ⁻	c) 0 ²⁻	d) N ^{3–}
220	Which of the following	g pairs show reverse propert	ies on moving along a perio	d from left to right and from
	top to down in a grou	p?		
	a) Nuclear charge and	l electron affinity	b) Ionisation energy and	electron affinity
	c) Atomic radius and	electron affinity	d) None of the above	
221	Which of the following	g relation is correct?		
	a) I^{st} IE of $C > I^{st}$ IE of	of B	b) I st IE of C < I st IE of B	
	c) II^{nd} IE of C > II^{nd} I	E of B	d) Both (b) and (c)	
222.	KF combines with HF	to form KHF ₂ . The compound	d contains the species:	
	a) K^+ , F^- and H^+	b) K^+ , F^- and HF	c) K ⁺ and $[HF_2]^-$	d) [KHF] ⁺ and F^-
223	The bond angle betwe	een H $-$ O $-$ H in ice is closest	t to:	
	a) 115°	b) 109°28′	c) 110°	d) 90°
224	Which has higher bon	d energy and stronger bond?	-) -	-)
	a) F ₂	b) Cl ₂	c) Br ₂	d) I2
225	The example of the <i>n</i> -	<i>p</i> -orbital overlapping is the f	ormation of:	
	a) H_2 molecule	p of broad of of the pping to one of		
	b) Cl ₂ molecule			
	c) Hydrogen chloride			
	d) Hydrogen bromide	molecule		
226	In compound X, all the	e bond angles are exactly 109)°28′. X is:	
	a) Chloromethane	b) Iodoform	c) Carbon tetrachloride	d) Chloroform
227	Which of the following	g species has four lone pairs	of electrons in its outer shell	12
,	a) I	b) 0 ⁻	c) Cl ⁻	d) He
228	The type of bond form	$_{\rm red}$ between H ⁺ and NH ₂ in N	JH ⁺ ion is:	
220	a) Ionic	b) Covalent	c) Dative	d) Hydrogen
229	Which transition invo	lyes maximum amount of en	erov?	aj nyarogen
	a) $M^{-}(g) \rightarrow M(g) + e$		51.67	
	h) $M^{-}(g) \rightarrow M^{+}(g) +$	20		
	c) $M^+(g) \rightarrow M^{2+}(g) +$	- P		
	d) $M^{2+}(\sigma) \rightarrow M^{3+}(\sigma)$	+ 0		
230	The order of stability	of metal oxides is		
250	a) Al ₂ O ₂ \leq MaO \leq Fi	$P_{-}O_{-} \leq Cr_{-}O_{-}$	b) $(r_{2} \cap A \subset Ma \cap A \to A \cap A$	$c \leq Fe_0$
	c) $Fe_2O_3 < MgO < 1$	$Al_{2}O_{3} \leq MaO$	d) $\operatorname{Ee}_{0} < 4 \operatorname{Ie}_{0} < 6$	$\Omega_{2} < M_{2}\Omega_{3}$
721	The first ionication nc	nzo3 < myo Mantial of Na Ma Al and Gar	$u_1 r c_2 c_3 < \pi c_2 c_3 < C c_2$	$03 \leq my0$
201	a) Na $< Ma > M > C$	i h) Na $\searrow Ma \supset Ma \supset Ml \subset Ci$	c) Na $< Ma < M > G$	d) Na > $Ma > M / Ci$
<u> </u>	The electronic configuration $f(x) = \frac{1}{2} \int dx + \frac{1}{2} \int dx $	i of Ma > My > Mi < Si	and N are	$u_j na > my > ni < 3i$
232	$K = 1c^2 2c^2 2n^1$	$I = 1 e^2 2 e^2 2n^6$	ana iv arc,	
	$n = 13, 23 2 \mu$	L = 13, 23, 29		

	$M = 1s^2, 2s^2 2p^4$ $N =$	$1s^2$, $2s^22p^3$			
	The element that would form a diatomic molecule with double bond is:				
	a) <i>K</i>	b) <i>L</i>	c) <i>M</i>	d) <i>N</i>	
233	In the formation of N_2^+ from	m N ₂ , the electron is lost fi	com:		
	a) a σ-orbital	b) a π-orbital	c) a σ^* -orbital	d) a π^* -orbital	
234	Which of the following tw	o are isostructural?			
	a) XeF ₂ , IF ₂	b) NH ₃ , BF ₃	c) CO_3^{2-} , SO_3^{2-}	d) PCl ₅ , ICl ₅	
235	Which has sp^2 -hybridizat	ion?			
	a) CO ₂	b) SO_2	c) N ₂ O	d) CO	
236	Which of the following me	etal oxides is most basic?		-	
	a) ZnO	b) Al_2O_3	c) As ₂ O ₃	d) K ₂ 0	
237	Which of the following ph	enomenon will occur when	n two atoms of same spin w	vill react?	
	a) Bonding will not occur		_		
	b) Orbital overlap will not	toccur			
	c) Both (a) and (b)				
	d) None of the above				
238	The bonds present in N ₂ O	₅ are:			
	a) Ionic				
	b) Covalent and coordinat	te			
	c) Covalent				
	d) Ionic and covalent				
239	How many σ -and π -bonds	are there in the molecule	of tetracyanoethylene?		
		N=C	∠C≡N		
			$=C\langle \underline{} $		
		N=C'			
240	a) Nine σ - and nine π	b) Five σ - and nine π	c) Nine σ - and seven π	d) Five σ - and eight π	
240.	The maximum valency of	an element with atomic nu	niber / is	4) L	
241	a) Z	DJ 3	CJ 4	a) 5	
241	which of the following co	mpounds has the lowest m	eiting point?		
242	aj Car ₂ Nitrogan diavida connat h	D $Ld Ll_2$	cj Cabr ₂	$a_j cal_2$	
242.	Nitrogen dioxide cannot t	b) ph(NO)	a) Cu(NO)	d) AgNO	
242	$dJ \text{ NNU}_3$	DJ PD(NO_3) ₂	C_{1} C_{1} C_{1} C_{1} C_{1} C_{2} C_{2} C_{1} C_{2} C_{2} C_{1} C_{2} C_{2	$u_J AgnO_3$	
243	which of the following is (torrect order of increasing $+ \sum M \alpha^2 + \sum D \alpha^2 +$	Size: b) $D_0^{2+} > M_{\alpha}^{2+} > N_0^{++}$	$\sim c^2 - \sim c^2 - \sim D^{n-2}$	
	a) $B^{2} > S^{2} > C^{2} > N^{2}$	$Mg^{-1} > Mg^{-1} > Be^{-1}$	D) $Be^{-1} > Mg^{-1} > Na^{-1}$	$> 5^{-} > CI > BI^{-}$	
244	$CJS^{-} > CI > Br > Na$	l' > Mg ⁻ · > Be ⁻	a) Na ^{\circ} > Mg ^{$-\circ$} > Be ^{$-\circ$} >	$Br > Cl > S^2$	
244.	The correct order of bond a) DE < DC < DD = c	angles is:			
	a) $PF_3 < PU_3 < PDI_3 < .$	Г 1 ₃			
	$P_{3} < P_{3} < P_{3$	P_{1_3}			
	$C PI_3 < PBI_3 < PCI_3 < P$	² Γ ₃			
245	$u_{J} PF_{3} > PCI_{3} < PBI_{3} < .$	^{P1} 3 als interatomis forces are r	robably weaker in		
245	Allong the following meta	a is interatornic forces are p	a) 7n	d) Ug	
246	d) Uu The element with storming	UJ Ag number 117 if diagovered i	CJ ZII	u) ng	
240	a) Neble ges family	h) Allvali family	a) Allealing conth family	d) Halagan familu	
247	The element with stormin	DJ AIKall Iallilly		u) halogen lanniy	
247.	a) Neble gages	h) Helegene	a) Hoory motolo	d) Light motols	
240	A actia acid ovieta ac dimo	D) Halogens	c) neavy metals	u) Light metals	
240.	a) Condensation reaction	i in benzene due lo:			
	a) convensation reaction				
	a) Droson co of corbowy -	20110			
	d) Proconce of hudrogen	oup			
	u) Presence of nydrogen a	α -carbon			

249. In w	249. In which of the following arrangements the order is not correct according to property indicated against it?					
a) li	a) Increasing size : $Al^{3+} < Mg^{2+} < Na^+ < F^-$					
b) li	b) Increasing IE_1 : B < C < N < O					
c) I	c) Increasing $EA_1 : 1 < Br < F < Cl$					
d) I	ncreasing metallic rad	ius: Li <i>< Na < K < Rb</i>				
250. The	e forces present in the o	crystals of naphthalene are	:			
a) V	/an der Waals' forces	b) Electrostatic forces	c) Hydrogen bonding	d) None of these		
251. Whi	ich has zero dipole mo	ment?				
a) C	ClF	b) PCl ₃	c) SiF ₄	d) CFCl ₃		
252. Whi	ich group of the Period	lic Table contains coinage n	netal?			
a) I	IA	b) IB	c) IA	d) None of these		
253. The	e bond angle and hybri	dization in ether (CH ₃ OCH ₃	₃) is:			
a) 1	106° 51′, sp ³	b) 104° 31′, <i>sp</i> ³	c) 110°, <i>sp</i> ³	d) None of these		
254. Ioni	isation potential value	es of ' d ' block elements as	compared to ionisation p	otential values of $'f'$ block		
eler	nents are:					
a) H	ligher	b) Lower	c) Equal	d) Either of these		
255. Hov	w many bonded electro	on pairs are present in IF ₇ r	nolecule?			
a) 6	-)	b) 7	c) 5	d) 8		
256. For	mation of π -bond:					
a) I	ncreases bond length					
b) [Decreases bond length					
c) [Distorts the geometry of	of molecule				
d) N	Makes homoatomic mo	lecules more reactive				
257. An e	element with atomic n	umber 20 will be placed in	which period of the Period	ic Table?		
a) 1	L	b) 2	c) 3	d) 4		
,		,	,	2		
258. Whi	ich bond angle results	in the minimum dipole more	ment for the triatomic mol	ecule XY_2 shown below?		
258. Whi a) 9	ich bond angle results 90°	in the minimum dipole more b) 120°	ment for the triatomic mole c) 150°	ecule <i>XY</i> ₂ shown below? d) 180°		
258. Whi a) 9 259. NHa	ich bond angle results 90° 3 has a net dipole mom	in the minimum dipole mor b) 120° nent, but boron trifluoride (ment for the triatomic mole c) 150° BF ₃) has zero dipole mom	ecule <i>XY</i> ₂ shown below? d) 180° ent, because:		
258. Whi a) 9 259. NH ₃ a) B	ich bond angle results 90° 3 has a net dipole mom 3 is less electronegative	in the minimum dipole mor b) 120° nent, but boron trifluoride (e than N	ment for the triatomic mole c) 150° BF ₃) has zero dipole mome	ecule <i>XY</i> ₂ shown below? d) 180° ent, because:		
258. Whi a) 9 259. NH ₃ a) E b) F	ich bond angle results 90° 3 has a net dipole mom 3 is less electronegativ 5 is more electronegati	in the minimum dipole mor b) 120° nent, but boron trifluoride (e than N ve than H	ment for the triatomic mole c) 150° BF ₃) has zero dipole mome	ecule <i>XY</i> ₂ shown below? d) 180° ent, because:		
258. Whi a) 9 259. NH ₃ a) E b) F c) E	ich bond angle results 90° 3 has a net dipole mom 3 is less electronegativ 5 is more electronegati 3F2 is pyramidal while	in the minimum dipole mor b) 120° nent, but boron trifluoride (e than N ve than H NH2 is planar	ment for the triatomic mole c) 150° BF ₃) has zero dipole mome	ecule <i>XY</i> ₂ shown below? d) 180° ent, because:		
258. Whi a) 9 259. NH ₃ a) E b) F c) E d) N	ich bond angle results 90° 3 has a net dipole mom 3 is less electronegativ 5 is more electronegati 3F ₃ is pyramidal while NH ₂ is pyramidal while	in the minimum dipole mor b) 120° nent, but boron trifluoride (e than N ve than H NH ₃ is planar BF ₂ is trigonal planar	ment for the triatomic mole c) 150° BF ₃) has zero dipole mom	ecule <i>XY</i> ₂ shown below? d) 180° ent, because:		
258. Whi a) 9 259. NH ₃ a) E b) F c) E d) N 260. The	ich bond angle results 90° $_{3}$ has a net dipole mom $_{3}$ is less electronegative $_{5}$ is more electronegati $_{3}$ is pyramidal while $_{3}$ is pyramidal while $_{3}$ geometry of PF _r mole	in the minimum dipole mon b) 120° nent, but boron trifluoride (e than N ve than H NH ₃ is planar e BF ₃ is trigonal planar ecule is:	ment for the triatomic mole c) 150° BF ₃) has zero dipole mom	ecule <i>XY</i> ₂ shown below? d) 180° ent, because:		
258. Whi a) 9 259. NH ₃ a) E b) F c) E d) N 260. The	ich bond angle results 90° 3 has a net dipole mom 3 is less electronegative 5 is more electronegati 3F ₃ is pyramidal while NH ₃ is pyramidal while e geometry of PF ₅ mole	in the minimum dipole more b) 120° nent, but boron trifluoride (e than N ve than H NH ₃ is planar e BF ₃ is trigonal planar ecule is: b) Square planar	ment for the triatomic mole c) 150° BF ₃) has zero dipole mome	ecule <i>XY</i> ₂ shown below? d) 180° ent, because: d) Tetrahedral		
258. Whi a) 9 259. NH ₃ a) E b) F c) E d) N 260. The a) P 261. The	ich bond angle results 90° $_{3}$ has a net dipole mom 3 is less electronegative F is more electronegative $3F_{3}$ is pyramidal while $3F_{3}$ and $3F_{3}$ mole $3F_{3}$ and $3F_{3}$ mole	in the minimum dipole more b) 120° ment, but boron trifluoride (e than N ve than H NH ₃ is planar e BF ₃ is trigonal planar ecule is: b) Square planar ation energy for comparing	ment for the triatomic mole c) 150° BF ₃) has zero dipole mome c) Trigonal bipyramidal	ecule <i>XY</i> ₂ shown below? d) 180° ent, because: d) Tetrahedral		
258. Whi a) 9 259. NH ₃ a) E b) F c) E d) N 260. The a) P 261. The	ich bond angle results $P0^{\circ}$ P_3 has a net dipole mom P_3 is less electronegative P_5 is more electronegative P_3 is pyramidal while P_3 is pyramidal while P_3 is pyramidal while P_3 ecometry of PF_5 mole P_1 P_2 mole P_2 P_3 mole P_3 mole	in the minimum dipole mon b) 120° nent, but boron trifluoride (e than N ve than H NH ₃ is planar e BF ₃ is trigonal planar ecule is: b) Square planar ation energy for comparing b) $C > N < O$	ment for the triatomic mole c) 150° BF ₃) has zero dipole moment c) Trigonal bipyramidal carbon, nitrogen and oxyg	ecule XY_2 shown below? d) 180° ent, because: d) Tetrahedral gen atom is d) $C \le N \le O$		
258. Whi a) 9 259. NH ₃ a) E b) F c) E d) N 260. The a) P 261. The a) C	ich bond angle results 00° 3 has a net dipole mom 3 is less electronegative F is more electronegative $3F_3$ is pyramidal while $3F_3$ is pyramidal while $3F_3$ is pyramidal while $3F_3$ is pyramidal while $4F_5$ mole $2F_5$ mole	in the minimum dipole mon b) 120° nent, but boron trifluoride (e than N ve than H NH ₃ is planar e BF ₃ is trigonal planar ecule is: b) Square planar ation energy for comparing b) $C > N < O$	ment for the triatomic mole c) 150° BF ₃) has zero dipole mome c) Trigonal bipyramidal carbon, nitrogen and oxyg c) $C < N > O$	ecule XY_2 shown below? d) 180° ent, because: d) Tetrahedral gen atom is d) C < N < O		
258. Whi a) 9 259. NH ₃ a) E b) F c) E d) M 260. The a) P 261. The a) C 262. In w	ich bond angle results 20° $_{3}$ has a net dipole mom $_{3}$ is less electronegative $_{5}$ is more electronegative $3F_{3}$ is pyramidal while $3F_{3}$ is pyramidal while $3F_{3}$ is pyramidal while $4F_{3}$ is pyramidal while $4F_{3}$ ecorrect order of ionis 2 > N > 0 which of the following a $3F_{3} < Na < K < Bh$ incr	in the minimum dipole mon b) 120° nent, but boron trifluoride (e than N ve than H NH ₃ is planar e BF ₃ is trigonal planar ecule is: b) Square planar ation energy for comparing b) $C > N < O$ arrangements the order is r	ment for the triatomic mole c) 150° BF ₃) has zero dipole moment c) Trigonal bipyramidal carbon, nitrogen and oxyg c) C < $N > O$ not according to the proper	ecule XY_2 shown below? d) 180° ent, because: d) Tetrahedral gen atom is d) C < N < O rty indicated against it?		
258. Whi a) 9 259. NH ₃ a) E b) F c) E d) N 260. The a) P 261. The a) C 262. In w a) L	ich bond angle results 90° $_{3}$ has a net dipole mom 3 is less electronegative F is more electronegative $3F_{3}$ is pyramidal while NH_{3} is pyramidal while $2F_{3}$ i	in the minimum dipole mon b) 120° nent, but boron trifluoride (e than N ve than H NH ₃ is planar e BF ₃ is trigonal planar ecule is: b) Square planar ation energy for comparing b) C > $N < O$ arrangements the order is r reasing metallic radius	ment for the triatomic mole c) 150° BF ₃) has zero dipole mome c) Trigonal bipyramidal carbon, nitrogen and oxyg c) C < $N > O$ not according to the proper	ecule XY_2 shown below? d) 180° ent, because: d) Tetrahedral gen atom is d) C < N < O rty indicated against it?		
258. Whi a) 9 259. NH ₃ a) E b) F c) E d) N 260. The a) P 261. The a) C 262. In w a) L b) I	ich bond angle results 20° $_{3}$ has a net dipole mom $_{3}$ is less electronegative $_{5}$ is more electronegative $_{5}$ is more electronegative $_{3}$ is pyramidal while $_{3}$ is pyramidal while $_{2}$ geometry of PF ₅ mole $_{3}$ and $_{4}$ build $_{5}$ correct order of ionist $_{5}$ correct $_{6}$ correct $_{6}$ correct $_{6}$ correct $_{6}$ correct $_{6}$ correct $_{7}$ c	in the minimum dipole mon b) 120° nent, but boron trifluoride (e than N ve than H NH ₃ is planar e BF ₃ is trigonal planar ecule is: b) Square planar ation energy for comparing b) C > $N < O$ arrangements the order is r reasing metallic radius using electron gain enthalp (ment for the triatomic mole c) 150° BF ₃) has zero dipole moment c) Trigonal bipyramidal carbon, nitrogen and oxyg c) C < $N > O$ not according to the proper (with negative sign)	ecule XY_2 shown below? d) 180° ent, because: d) Tetrahedral gen atom is d) C < N < O rty indicated against it?		
258. Whi a) 9 259. NH ₃ a) E b) F c) E d) M 260. The a) P 261. The a) C 262. In w a) L b) I c) E	ich bond angle results 90° $_{3}$ has a net dipole mom $_{3}$ is less electronegative $_{5}$ is more electronegative $8F_{3}$ is pyramidal while $8F_{3}$ electronegative $8F_{3}$ is pyramidal while $8F_{3}$ correct order of ionist C > N > 0 which of the following a C > N > 0 which of the following a C > N < 0 increas 8 < C < N < 0 increas $8F_{3} < Ma^{2+} < Ma^{2+} < Ca^{2+}$	in the minimum dipole mon b) 120° nent, but boron trifluoride (e than N ve than H NH ₃ is planar e BF ₃ is trigonal planar ecule is: b) Square planar ation energy for comparing b) C > $N < O$ arrangements the order is r reasing metallic radius using electron gain enthaly (sing first ionisation enthalp)	ment for the triatomic mole c) 150° BF ₃) has zero dipole moment carbon, nitrogen and oxyg c) C < $N > O$ not according to the proper (with negative sign) hy	ecule XY_2 shown below? d) 180° ent, because: d) Tetrahedral gen atom is d) C < N < O ty indicated against it?		
258. Whi a) 9 259. NH ₃ a) E b) F c) E d) N 260. The a) P 261. The a) C 262. In w a) L b) I c) E d) A	ich bond angle results 20° $_{3}$ has a net dipole mom $_{3}$ is less electronegative $_{5}$ is more electronegative $_{5}$ is pyramidal while $_{3}$ is pyramidal while $_{3}$ is pyramidal while $_{4}$ geometry of PF ₅ mole $_{5}$ mole $_{6}$ ecorrect order of ionist $_{7}$ correct order of ionist $_{8}$ correct order of ionist	in the minimum dipole mon b) 120° nent, but boron trifluoride (e than N ve than H NH ₃ is planar e BF ₃ is trigonal planar ecule is: b) Square planar ation energy for comparing b) C > N < O arrangements the order is r reasing metallic radius using electron gain enthaly (sing first ionisation enthalp) F^- increasing ionic size	ment for the triatomic mole c) 150° BF ₃) has zero dipole moment c Trigonal bipyramidal c carbon, nitrogen and oxyg c) C < $N > O$ not according to the proper (with negative sign) hy	ecule XY_2 shown below? d) 180° ent, because: d) Tetrahedral gen atom is d) C < N < O rty indicated against it?		
258. Whi a) 9 259. NH ₃ a) E b) F c) E d) M 260. The a) P 261. The a) C 262. In w a) L b) I c) E d) A 263. Pau	ich bond angle results 20° $_{3}$ has a net dipole mom $_{3}$ is less electronegative $_{5}$ is more electronegative $_{5}$ is more electronegative $_{3}$ is pyramidal while $_{3}$ is pyramidal while $_{2}$ geometry of PF ₅ mole $_{3}$ is pyramidal while $_{4}$ geometry of PF ₅ mole $_{5}$ nole $_{6}$ equation of the following a $_{6}$ i $< Na < K < Rb$ incr < Br < F < Cl increas $_{3}$ $< C < N < O$ increas $_{3}$ $< C < N < O$ increas $_{3}$ $< Mg^{2+} < Na^{+} <$ lling received Nobel Pr	in the minimum dipole mon b) 120° nent, but boron trifluoride (e than N ve than H NH ₃ is planar e BF ₃ is trigonal planar ecule is: b) Square planar ation energy for comparing b) C > N < O arrangements the order is r reasing metallic radius using electron gain enthalp F ⁻ increasing ionic size rize for his work on:	ment for the triatomic mole c) 150° BF ₃) has zero dipole moment c) Trigonal bipyramidal carbon, nitrogen and oxyg c) C < $N > O$ not according to the proper (with negative sign) hy	ecule XY_2 shown below? d) 180° ent, because: d) Tetrahedral gen atom is d) C < N < O rty indicated against it?		
258. Whi a) 9 259. NH ₃ a) E b) F c) E d) N 260. The a) P 261. The a) C 262. In w a) L b) I c) E d) A 263. Pau a) P	ich bond angle results 20° $_{3}$ has a net dipole mom 3 is less electronegative 5 is more electronegative $3F_{3}$ is pyramidal while $3F_{3}$ is pyramidal while $3F_{3}$ is pyramidal while $2F_{3}$ is pyramidal while $2F_{3}$ is pyramidal while $2F_{3}$ electrone effective $2F_{3}$ is pyramidal while $2F_{3}$ electrone effective $2F_{3}$ mole $2F_{3}$ m	in the minimum dipole more b) 120° nent, but boron trifluoride (e than N ve than H NH ₃ is planar e BF ₃ is trigonal planar ecule is: b) Square planar ation energy for comparing b) C > N < O arrangements the order is re- reasing metallic radius using electron gain enthaly (sing first ionisation enthalp) F^- increasing ionic size rize for his work on: b) Atomic structure	ment for the triatomic mole c) 150° BF_3) has zero dipole moment c) Trigonal bipyramidal carbon, nitrogen and oxyg c) C < $N > O$ not according to the proper (with negative sign) hy	ecule <i>XY</i> ₂ shown below? d) 180° ent, because: d) Tetrahedral gen atom is d) C < <i>N</i> < <i>O</i> rty indicated against it? d) Thermodynamics		
258. Whi a) 9 259. NH ₃ a) E b) F c) E d) M 260. The a) P 261. The a) C 262. In w a) L b) I c) E d) A 263. Pau a) P 264. For	ich bond angle results O°	in the minimum dipole more b) 120° nent, but boron trifluoride (e than N ve than H NH ₃ is planar e BF ₃ is trigonal planar ecule is: b) Square planar ation energy for comparing b) C > N < O arrangements the order is r reasing metallic radius using electron gain enthalp F ⁻ increasing ionic size rize for his work on: b) Atomic structure logens, which of the followi	ment for the triatomic mole c) 150° BF_3) has zero dipole moment (c) Trigonal bipyramidal carbon, nitrogen and oxyg c) C < N > O not according to the proper (with negative sign) hy c) Chemical bonding ng is correct?	ecule XY_2 shown below? d) 180° ent, because: d) Tetrahedral gen atom is d) C < N < O rty indicated against it? d) Thermodynamics		
258. Whi a) 9 259. NH ₃ a) E b) F c) E d) N 260. The a) P 261. The a) C 262. In w a) L b) I c) E d) A 263. Pau a) P 264. For a) F	ich bond angle results O°	in the minimum dipole more b) 120° nent, but boron trifluoride (e than N ve than H NH ₃ is planar e BF ₃ is trigonal planar ecule is: b) Square planar ation energy for comparing b) $C > N < O$ arrangements the order is re- reasing metallic radius using electron gain enthalp F^- increasing ionic size rize for his work on: b) Atomic structure logens, which of the followi b) $F < I$	ment for the triatomic mole c) 150° BF_3) has zero dipole moment carbon, nitrogen and oxyg c) C < $N > O$ not according to the proper (with negative sign) hy c) Chemical bonding ng is correct? c) Br > <i>F</i>	ecule XY_2 shown below? d) 180° ent, because: d) Tetrahedral gen atom is d) C < N < O 'ty indicated against it? d) Thermodynamics d) Br < Cl		
258. Whi a) 9 259. NH ₃ a) E b) F c) E d) M 260. The a) P 261. The a) C 262. In w a) L b) I c) E d) A 263. Pau a) P 264. For a) F 265. The	ich bond angle results OO°	in the minimum dipole more b) 120° nent, but boron trifluoride (e than N ve than H NH ₃ is planar e BF ₃ is trigonal planar ecule is: b) Square planar ation energy for comparing b) C > N < O arrangements the order is r reasing metallic radius using electron gain enthalp F ⁻ increasing ionic size rize for his work on: b) Atomic structure logens, which of the followi b) F < I vity order is:	ment for the triatomic mole c) 150° BF_3) has zero dipole moment carbon, nitrogen and oxyg c) C < N > O not according to the proper (with negative sign) hy c) Chemical bonding ng is correct? c) Br > F	 ecule XY₂ shown below? d) 180° ent, because: d) Tetrahedral gen atom is d) C < N < O rty indicated against it? d) Thermodynamics d) Br < Cl 		
258. Whi a) 9 259. NH ₃ a) E b) F c) E d) N 260. The a) P 261. The a) C 262. In w a) L b) I c) E d) A 263. Pau a) P 264. For a) F 265. The a) C	ich bond angle results $P0^{\circ}$ P_{3} has a net dipole mom P_{3} is less electronegative P_{3} is peramidal while P_{3} is pyramidal while P_{3} ecorrect order of ionist P_{3} correct order of ionist P_{4} and P_{5} mole P_{4} and P_{5} mole P_{5} m	in the minimum dipole mon b) 120° nent, but boron trifluoride (e than N ve than H NH ₃ is planar e BF ₃ is trigonal planar ecule is: b) Square planar ation energy for comparing b) $C > N < O$ arrangements the order is r reasing metallic radius using electron gain enthaly (sing first ionisation enthalp) F^- increasing ionic size rize for his work on: b) Atomic structure logens, which of the followi b) $F < I$ vity order is: b) N, Si, C, P	ment for the triatomic mole c) 150° BF_3) has zero dipole moment c) Trigonal bipyramidal carbon, nitrogen and oxyg c) C < $N > O$ not according to the proper (with negative sign) hy c) Chemical bonding ng is correct? c) Br > <i>F</i> c) Si, P, C, N	 ecule XY₂ shown below? d) 180° ent, because: d) Tetrahedral gen atom is d) C < N < O rty indicated against it? d) Thermodynamics d) Br < Cl d) P, Si, N, C 		
258. Whi a) 9 259. NH ₃ a) E b) F c) E d) N 260. The a) P 261. The a) C 262. In w a) L b) I c) E d) A 263. Pau a) P 264. For a) F 265. The 266. Whi	ich bond angle results $P0^{\circ}$ P_{3} has a net dipole mom P_{3} is less electronegative P_{3} is peramidal while P_{3} is pyramidal while P_{3} is pyramidal while P_{3} is pyramidal while P_{3} geometry of PF ₅ mole P_{3} mole P_{4} and P_{5} mole P_{4} and P_{5} mole P_{5} mole P_{4} and P_{5} mole P_{5} mole	in the minimum dipole mode b) 120° nent, but boron trifluoride (e than N ve than H NH ₃ is planar e BF ₃ is trigonal planar ecule is: b) Square planar ation energy for comparing b) C > $N < O$ arrangements the order is re- reasing metallic radius using electron gain enthaly (sing first ionisation enthalp) F ⁻ increasing ionic size rize for his work on: b) Atomic structure logens, which of the followi b) F < <i>I</i> vity order is: b) N, Si, C, P operties show gradual decre	ment for the triatomic mole c) 150° BF_3) has zero dipole moment carbon, nitrogen and oxyg c) C < $N > O$ not according to the proper (with negative sign) hy c) Chemical bonding ng is correct? c) Br > F c) Si, P, C, N ease with increase in atom	 ecule XY₂ shown below? d) 180° ent, because: d) Tetrahedral gen atom is d) C < N < O rty indicated against it? d) Thermodynamics d) Br < Cl d) P, Si, N, C ic number across a period 		
258. Whi a) 9 259. NH ₃ a) E b) F c) E d) M 260. The a) P 261. The a) C 262. In w a) L b) I c) E d) A 263. Pau a) P 264. For a) F 265. The a) C 266. Whi in th	ich bond angle results $P0^{\circ}$ P_{3} has a net dipole mom P_{3} is less electronegative P_{3} is pyramidal while P_{3} ecorrect order of ionist P_{3} correct order of ionist P_{4} of the following a P_{5} mole P_{4} of the following a P_{5} of P_{5} mole P_{5} mole P_{5} mole P_{5} mole P_{5} mole P_{5} mole P_{5} mole P_{5} mole P_{5} mole P_{5} or P_{5} or P_{5} cl P_{5} cl	in the minimum dipole mon b) 120° nent, but boron trifluoride (e than N ve than H NH ₃ is planar e BF ₃ is trigonal planar ecule is: b) Square planar ation energy for comparing b) C > N < O arrangements the order is r reasing metallic radius using electron gain enthalp F ⁻ increasing ionic size tize for his work on: b) Atomic structure logens, which of the followi b) F < <i>I</i> vity order is: b) N, Si, C, P operties show gradual decr	ment for the triatomic mole c) 150° BF ₃) has zero dipole moment c) Trigonal bipyramidal carbon, nitrogen and oxyg c) C < $N > O$ not according to the proper (with negative sign) hy c) Chemical bonding ng is correct? c) Br > <i>F</i> c) Si, P, C, N ease with increase in atom	 ecule XY₂ shown below? d) 180° ent, because: d) Tetrahedral gen atom is d) C < N < O rty indicated against it? d) Thermodynamics d) Br < Cl d) P, Si, N, C ic number across a period 		

267. Difference between S and	$1 S^{2-}$ as S^{2-} has		
a) Larger radii and larger	· size	b) Smaller radii and large	er size
c) Larger radii and small	er size	d) Smaller radii and smal	ler size
268. Two lone pairs of electro	ns and two bond pairs are	present in:	
a) NH ₃	b) BF ₃	c) CO_3^{2-}	d) NH_2^-
269. The lattice energy order f	for lithium halide is:	2 0	
a) LiF > $LiCl$ > $LiBr$ > L	iI		
b) LiCl > LiF > $LiBr$ > L	iI		
c) LiBr > $LiCl$ > LiF > L	iI		
d) LiI > $LiBr > LiCl > Li$	iF		
270. The number of σ and π -h	onds in nent-4-en-1-vne ar	e respectively:	
a) 3 10	h) 9 4	c) 4 9	d) 10 3
271 The correct increasing or	der off polarising power is		uj 10,0
a) $(a^{2+} < Mg^{2+} < Be^{2+})$	< K ⁺		
h) $Mg^{2+} < Ra^{2+} < K^+ < K^+$	C_{2}^{2+}		
$D = \frac{1}{2} = $	Ua Ma ²⁺		
C) $De < K < Ca < L$	mg		
$U K^{-} < C a^{-} < M g^{-} <$			
2/2. Increase in atomic size do	own the group is due to		
a) Increase in number of	electrons		
b) Increase in number of	protons and neutrons		
c) Increase in number of	protons		
d) Increase in number of	protons, neutrons and elec	trons	
273. When the first ionisation	energies are plotted agains	st atomic number, the peak	s are occupied by
a) Alkali metals	b) Halogens	c) Transition metals	d) Rare gases
274. Which of the following is	non-metallic?		
a) B	b) Be	c) Mg	d) Al
275. Structure of ICl_2^- is:			
a) Trigonal			
b) Octahedral			
c) Square planar			
d) Distorted trigonal pyra	amidal		
276. Which compound does no	ot contain double bond or t	riple bond?	
a) C ₂ H ₄	b) H ₂ 0	c) N ₂	d) HCN
277. The correct order of incre	easing oxidising power is		
a) $F_2 < Cl_2 < Br_2 < I_2$		b) $I_2 < F_2 < Cl_2 < Br_2$	
c) $Br_2 < I_2 < F_2 < Cl_2$		d) $I_2 < Br_2 < Cl_2 < F_2$	
278. Which is soluble in water	?		
a) AgF	b) AgCl	c) AgBr	d) AgI
279. Highest energy will be ab	sorbed to eject out the elec	tron in the configuration	
a) $1s^2 2s^2 2p^1$	b) $1s^2 2s^2 2p^3$	c) $1s^2 2s^2 2p^2$	d) $1s^2 2s^2 2p^4$
280. Most acidic oxide is			
a) Na ₂ O	b) ZnO	c) MgO	d) P_2O_5
281. The process requiring the	e absorption of energy is:		
a) $F \rightarrow F^-$	b) $H \rightarrow H^-$	c) $Cl \rightarrow Cl^{-}$	d) $0 \rightarrow 0^{2-}$
282. Each of the followings ha	s non-zero dipole moment.	except:	,
a) C _c H _c	b) CO	c) SO_2	d) NH2
283. H-bonding is not present	in:) <u>2</u>	5-5
a) Glycerine	b) Water	c) H ₂ S	d) HF
,,	- j · · · · · · · ·	- , 2-	·-,

284. Which formulae does not correctly represent the bonding capacity of the atom involved?

Г			
a) _HP_	$\rightarrow_{\rm H}$ b) $\stackrel{\rm F}{\searrow}^{\rm F}$	c) O-N - H	d) H-C=C
		<0>	×0×
285. The higher	values of specific heat of water in co	mparison to other liquids is	due to:
a) High die	lectric constant		
b) Polarity			
c) H-bond	ng		
d) None of	the above		
286. Which one	of the following combinations repres	sents a metallic element?	
a) 2, 8, 2	b) 2, 8, 4	c) 2, 8, 7	d) 2, 8, 8
287. Which bon	d has the highest bond energy?		
a) Coordin	ate bond b) Sigma bond	c) Multiple bond	d) Polar covalent bond
288. The increa	sing order of first ionisation enthalpi	es of the elements B, P, S and	d F (lowest first) is
a) F < <i>S</i> <	P < B b) $P < S < B < F$	c) $B < P < S < F$	d) $B < S < P < F$
289. Which of t	ne following pairs are isostructural?		
a) SO ₃ ²⁻ , N	D_3^- b) BF ₃ , NF ₃	c) BrO_3^- , XeO_3	d) SF ₄ , XeF ₄
290. The electro	onic configuration of transition eleme	ents is exhibited by	
a) (<i>n</i> − 1)	l^{1-10} , ns^2 b) $ns^2(n-1)d^{10}$	c) <i>ns</i> ¹	d) ns^2 , np^5
291. The bond s	strength in 0^+_2 , 0^2 , 0^2 and 0^{2-}_2 follows	s the order:	
a) $0_2^{2-} > 0_2^{2-}$	$0_2^- > 0_2 > 0_2^+$ b) $0_2^+ > 0_2 > 0_2^- > 0_2^-$	0_2^{2-} c) $0_2 > 0_2^{-} > 0_2^{2-} > 0_2^{2-}$	0_2^+ d) $0_2^- > 0_2^{2-} > 0_2^+ > 0_2$
292. The first ic	nisation energy of oxygen is less than	n that of nitrogen. Which of t	the following is the correct
reason for	this observation?	-	-
a) Lesser e	ffective nuclear charge of oxygen tha	in nitrogen	
b) Lesser a	tomic size of oxygen than nitrogen	0	
c) Greater	interelectron repulsion between two	electrons in the same <i>p</i> -orb	oital counter balances the
increase	e in effective nuclear charge on movir	ng from nitrogen to oxygen	
d) Greater	effective nuclear charge of oxygen th	an nitrogen	
293. A C \equiv C bo	nd is :		
a) Weaker	than $C = C$ bond		
b) Weaker	than $C - C$ bond		
c) Longer	than $C = C$ bond		
d) Shorter	than $C = C$ bond		
294 Which is li	e^{-1}	t?	
2) I. Willen IS II	h) CsF	c) NH ₂	d) CHCl-
295 Which of t	he two ions from the list given below	that have the geometry that	is explained by the same
hybridizat	ion of orbitals $NO_{-}^{-} NO_{-}^{-} NH_{-}^{-} NH_{+}^{+}$	SCN ⁻ ?	is explained by the same
a) NO^{-} and	$d \text{ NH}^-$ b) NO^- and NO^-	c) NH^+ and NO^-	d) SCN^{-} and NH^{-}
206 Valongy m	$b_1 N b_2$ and $N b_3$	c_{j} m_{4} and m_{3}	uj sen anu m ₂
290. Valency In	ans.		
a) Combin	ty of an element		
D) Atomici	ly of an element		
c) Oxidatio	the abase		
d) None of	the above		
297. The hybric	ization of carbon atoms in $C - C$ sing	gie bond of HC \equiv C – CH = C	H_2 IS:
a) $sp^3 - sp^3 = sp^3 - sp^3 = sp^3 - sp^3 = sp^3 - sp^3 = sp^3$	b) $sp^2 - sp^3$	c) $sp - sp^2$	d) <i>sp³</i> – <i>sp</i>
298. The IP_1 is r	naximum for:		
a) K	b) Na	c) Be	d) He
299. Which of t	ie following has highest bond angle?		
a) H ₂ O	b) H ₂ S	c) NH ₃	d) PH ₃
300. The haloge	n that most easily reduced is		

	a) F ₂	b) Cl ₂	c) Br ₂	d) I ₂
30	1. The enhanced force of co	hesion in metals is due to:		
	a) The covalent linkages	between atoms		
	b) The electrovalent link	ages between atoms		
	c) The lack of exchange of	f valency electrons		
	d) The exchange energy (of mobile electrons		
30	2. Which contains both pola	ar and non-polar covalent b	onds?	
	a) NH ₄ Cl	b) HCN	c) H ₂ O ₂	d) CH ₄
30	3. Electron deficient species	s are known as:		
	a) Lewis acids	b) Hydrophilic	c) Nucleophiles	d) Lewis bases
30	4. Metallic bonds do not pla	y a role in:		
	a) Brass	b) Copper	c) Germanium	d) Zinc
30	5. A number of ionic compo	ounds, e.g., AgCl, CaF ₂ , BaSO	D_4 are insoluble in water. T	his is because:
	a) Ionic compounds do n	ot dissolve in water		
	b) Water has a high diele	ctric constant		
	c) Water is not a good ion	nizing solvent		
	d) These molecules have	exceptionally high attractiv	ve forces in their lattice	
30	6. Pauling's electronegativi	ty values for elements are u	seful in predicting:	
	a) Polarity of bonds in m	olecules		
	b) Position of elements in	n electromotive series		
	c) Coordination number			
	d) Dipole moment of vari	ious molecules		
30	7. Among the following eler	nents, the most electronega	ative is:	
	a) Oxygen	b) Chlorine	c) Nitrogen	d) Fluorine
30	8. The correct order of decr	easing first ionization pote	ntial is:	-
	a) C > B > Be > Li	b) $C > Be > B > Li$	c) $B > C > Be > Li$	d) Be > $Li > B > C$
30	9. Ionization potential of Na	a would be numerically the	same as:	-
	a) Electron affinity of Na	+		
	b) Electronegativity of Na	a ⁺		
	c) Electron affinity of He			
	d) Ionization potential of	Mg		
31	0. The atomic number of ele	ements A, B, C and D are Z	-1, Z + 1, and Z + 2, respectively.	ectively. If 'B' is a noble gas,
	choose the correct answe	er from the following staten	nents.	
	V. 'A' has higher electro	n affinity		
	VI. 'C' exists in $+2$ oxidat	tion state		
	VII. 'D' is an alkaline eart	h metal		
	a) I and II	b) II and III	c) I and III	d) I, II and III
31	1. The type of hybridization	of sulphur atom present ir	1 SO ₂ and SO ₃ is respective	ly:
	a) sp, sp^2	b) sp^2 , sp^2	c) sp^2 , sp^3	d) sp, sp^3
31	2. Dipole moment is exhibit	ed by:		
	a) 1, 4-dichlorobenzene	,		
	b) 1, 2-dichlorobenzene			
	c) Trans-1, 2-dichloroeth	nene		
	d) Trans-1, 2-dicloro-2-b	outene		
31	3. The formation of the oxid	le ion $O^{2-}(g)$ requires first	an exothermic and then an	endothermic step as shown
	below $O(g) + e^{-} = O^{-}(g)$); $\Delta H^o = -142 \text{ kJ mol}^{-1}$		Ĩ
	$0^{-}(g) + e^{-} = 0^{2-}(g) \Delta h$	$l^o = 844 \text{ kI mol}^{-1}$ This is be	ecause	
	a) 0^- ion will tend to res	ist the addition of another e	electron	
	b) Oxygen has high electr	o affinity		
	a) Ovygon is more electric	anogativo		

d) 0^- ion has comparatively larger size than oxygen atom				
314. Which pair of the atomic numbers represents <i>s</i> -block elements?				
a) 3, 12	b) 6, 12	c) 7, 15	d) 9, 17	
315. Which of the following doe	es not reflect the periodicit	y of elements?		
a) Bonding behaviour	b) Electronegativity	c) Ionisation potential	d) Neutron/proton ratio	
316. In the Periodic Table meta	ls usually used as catalyst	belong to		
a) <i>f -</i> block	b) <i>d</i> -block	c) <i>p</i> -block	d) s-block	
317. Four diatomic species are	listed below in different se	equences. Which of these r	epresents the correct order	
of their increasing bond of	rder?	1	1	
a) NO < $C_2^{2-} < O_2^{-} < He_2^{+}$				
b) $C_2^{2-} < He_1^+ < NO < O_2^-$				
c) He ⁺ < Ω_{-}^{-} < NO < Ω_{-}^{2-}				
d) $O_{-}^{-} < NO < C_{-}^{2-} < H_{0}^{+}$				
$1002 < NO < 02 < Mc_2$	r roculte in			
a) Degraage in bond lengt	r results III.	Mart		
a) Decrease in bond length	and hand anargy	rgy		
b) Decrease in bond length	and hand an argy			
d) Name of the above	and bond energy			
a) None of the above				
319. In which molecule all atom	is are coplanar?			
a) CH_4	DJBF3	$CJ PF_3$	aj nh ₃	
320. Length of hydrogen bond	ranges from 2.5 A to:	. 0		
a) 3.0 A	b) 2.75 A	c) 2.6 A	d) 3.2 A	
321. XeF ₆ is:				
a) Octahedral				
b) Pentagonal pyramidal				
c) Planar				
d) Tetrahedral				
322. HCl molecule in the vapou	r state is an example of:			
a) Non-polar bond	b) Ionic bond	c) Polar covalent bond	d) Pure covalent bond	
323. Which of the following spe	ecies has a linear shape?			
a) NO ₂ ⁺	b) 0 ₃	c) NO ₂	d) SO ₂	
324. Which represents a collect	tion of isoelectronic species	s?		
a) Be, Al ³⁺ , Cl ⁻	b) Ca ²⁺ , Cs ⁺ , Br	c) Na ⁺ , Ca ²⁺ , Mg ²⁺	d) N ^{3–} , F [–] , Na ⁺	
325. In which of the following r	nolecules/ions are all the b	oonds not equal?		
a) SF ₄	b) SiF ₄	c) XeF ₄	d) BF ₄	
326. Solid CH ₄ is:				
a) Molecular solid	b) Ionic solid	c) Covalent solid	d) Not exist	
327. Which has the highest bon	d energy?			
a) Hydrogen bond	b) Triple bond	c) Double bond	d) Single bond	
328. The electron affinity value	s (in kJ mol ^{-1}) of three hal	ogens X,Y and Z are respe	ctively -349 , -333 and	
-325. Then X, Y and Z res	pectively, are	U		
a) F_2 , Cl_2 and Br_2	b) Cl_2 , F_2 and Br_2	c) Cl_2 , Br_2 and F_2	d) Br_2 , Cl_2 and F_2	
329. According to MO theory, w	which of the following lists	ranks the nitrogen species	in terms of increasing bond	
order?	0		0.1	
a) $N_{2}^{-} < N_{2}^{2-} < N_{2}$	b) $N_2^- < N_2 < N_2^{2-}$	c) $N_2^{2-} < N_2^{-} < N_2^{-}$	d) $N_2 < N_2^{2-} < N_2^{-}$	
330 Be resembles much with				
a) Li	b) Al	c) Zn	d) Ra	
331. The pair of species with th	e same hond order is			
	b) N_2 O_2	c) 0^{2-}_{2} B ₂	d) 0^+_{2} , NO ⁺	
332. Which molecule is planar?	5, 12, 5Z		~, ~ <u>/</u> ,	
ssa, minen morecule is planal i				

a) NH ₃	b) CH ₄	c) C ₂ H ₄	d) SiCl ₄
333. Which is present in per	oxides?		
a) 0 ₂	b) 0 ^{2–}	c) 0 ₂ ²⁻	d) 0 ₂
334. The number of valency	electrons in carbon ator	n is:	
a) Zero	b) 2	c) 6	d) 4
335. Which does not form tw	vo or more chlorides?		
a) NA	b) Hg	c) Cu	d) Fe
336. CCl ₄ is insoluble in wat	er because:		
a) CCl_4 is non-polar and	d water is polar		
b) Water is non-polar a	and CCl_4 is polar		
c) Water and CCl ₄ both	are polar		
d) None of the above			
337. In the transition of Cu t	to Cu ²⁺ , there is a decrea	se in :	
a) Atomic number			
b) Atomic mass			
c) Equivalent weight			
d) Number of valency e	lectrons		
338. In coordinate bond, the	e acceptor atoms must es	sentially contain in its valen	cy shell an orbitals:
a) With paired electror	b) With single electr	on c) With no electron	d) With three electrons
339. Which one of the follow	ving statement is false?		
a) The electron affinity	of chlorine is less than t	hat of fluorine.	
b) The electronegativit	y of fluorine is more tha	n that of chlorine.	
c) The electron affinity	of bromine is less than t	hat of chlorine.	
d) The electronegativit	y of chlorine is more tha	n that of bromine.	
340. Which of the following	halides is most acidic?		
a) CCl ₄	b) PCl ₃	c) BiCl ₃	d) SbCl ₃
341. Hybridization state of I	in ICl_2^+ is:		
a) dsp^2	b) sp	c) sp^2	d) sp^3
342. Identify the correct ord	ler in which the covalent	radius of the following elem	ents increases
(I)Ti	(II) Ca	(III) Sc	
a) (I), (II), (III)	b) (III), (II), (I)	c) (II), (I), (III)	d) (I), (III), (II)
343. Experiment shows tha	t H_2O has a dipole mon	tent whereas, CO_2 has not.	Point out the structures which
best illustrate these fac	its:	· 2	
a) O=C=O, H-O	О—Н		
С			
b) , H—O—H	ł		
0 O			
	0		
c) $0 = C = 0, /$	\mathbf{i}		
H	Н		
d) O H			
244 Which is showing all $x = 0$	at active non motal?		
איז	b) O	c) F	d) N
aj s 245 Electron affinity is the	$0_{\rm J}$ $0_{\rm Z}$	ιj Γ ₂	uj 1v ₂
a) Enormy released	n an alactuan is addadt	an isolated atom in the	aque stata
aj Energy released whe	en an electron is added to	o an isolated atom in the gas	eous state

- b) Energy absorbed when an electron is added to an isolated atom in the gaseous state
- c) Energy required to take out an electron from an isolated gaseous atom
- d) Power of an atom to attract an electron to itself
- 346. Which is paramagnetic?

a) Cl ₂ O ₆	b) Cl_2O_7	c) Cl ₂ O	d) ClO_2
347. The bond length of	of LiF will be		
a) Equal to that o	f KF	b) More than that of KF	7
c) Equal to that o	f NaF	d) Less than that of Na	F
348. The bond order o	of CO molecule on the basis	of molecular orbital theory is:	
a) Zero	b) 2	c) 3	d) 1
349. Compounds form	ed by sp^3d^2 -hybridization	will have configuration:	
a) Square planar			
b) Octahedral			
c) Trigonal bipyra	amidal		
d) Pentagonal bip	oyramidal		
350. Ionic radii are:			
a) $\propto \frac{1}{aff_0 ative nue}$	lear charge		
effective nuc	1		
b) $\propto \frac{1}{(\text{effective nu})}$	<u>I</u> Iclear charge) ²		
$(c) \propto effective nuc$	lear charge		
d) α (effective nu	iclear charge) ²		
351. The predominent	intermolecular forces in h	vdrogen fluoride is due to:	
a) Dipole-induced	d dipole interaction		
b) Dipole-dipole i	interaction		
c) Hydrogen bon	d interaction		
d) Dispersion inte	eraction		
352. Which of the follo	wing species does not exis	t under normal conditions?	
a) Be ²⁺	b) Be ₂	c) B ₂	d) Li ₂
353. An element with a	atomic number 21 is a		
a) Halogen		b) Representative elem	nent
a) Halogen c) Transition eler	nent	b) Representative elem d) Alkali metal	nent
a) Halogen c) Transition eler 354. Linear combinatio	nent on of two hybridized orbita	b) Representative elem d) Alkali metal als, belonging to two atoms and o	nent each having one electron leads
a) Halogen c) Transition eler 354. Linear combination to:	nent on of two hybridized orbita	b) Representative elem d) Alkali metal als, belonging to two atoms and o	nent each having one electron leads
a) Halogen c) Transition eler 354. Linear combination to: a) Sigma-bond	nent on of two hybridized orbita	b) Representative elem d) Alkali metal als, belonging to two atoms and o	nent each having one electron leads
a) Halogen c) Transition eler 354. Linear combination to: a) Sigma-bond b) Double-bond	nent on of two hybridized orbita	b) Representative elem d) Alkali metal als, belonging to two atoms and o	nent each having one electron leads
a) Halogen c) Transition eler 354. Linear combination to: a) Sigma-bond b) Double-bond c) Coordinate cov	nent on of two hybridized orbita valent bond	b) Representative elem d) Alkali metal als, belonging to two atoms and o	nent each having one electron leads
 a) Halogen c) Transition eler 354. Linear combination to: a) Sigma-bond b) Double-bond c) Coordinate covoid) Pi-bond 	nent on of two hybridized orbita valent bond	b) Representative elem d) Alkali metal als, belonging to two atoms and o	nent each having one electron leads
a) Halogen c) Transition eler 354. Linear combination to: a) Sigma-bond b) Double-bond c) Coordinate cov d) Pi-bond 355. Which one of the	nent on of two hybridized orbita valent bond following oxides is amphot	b) Representative elem d) Alkali metal als, belonging to two atoms and o ceric in character?	each having one electron leads
 a) Halogen c) Transition eler 354. Linear combination to: a) Sigma-bond b) Double-bond c) Coordinate cove d) Pi-bond 355. Which one of the a) SnO₂ 	nent on of two hybridized orbita valent bond following oxides is amphot b) SiO ₂	b) Representative elem d) Alkali metal als, belonging to two atoms and o ceric in character? c) CO ₂	nent each having one electron leads d) CaO
 a) Halogen c) Transition eler 354. Linear combination to: a) Sigma-bond b) Double-bond c) Coordinate cove d) Pi-bond 355. Which one of the a) SnO₂ 356. The correct order a) Na K Ba 	nent on of two hybridized orbita valent bond following oxides is amphot b) SiO ₂ r in which the first ionisation	b) Representative elem d) Alkali metal als, belonging to two atoms and o ceric in character? c) CO ₂ on potential increases is	each having one electron leads d) CaO d) Ro No k
 a) Halogen c) Transition eler 354. Linear combination to: a) Sigma-bond b) Double-bond c) Coordinate cover d) Pi-bond 355. Which one of the a) SnO₂ 356. The correct order a) Na, K, Be 357. The correct order 	nent on of two hybridized orbita valent bond following oxides is amphot b) SiO ₂ r in which the first ionisatio b) K, Na, Be	b) Representative elem d) Alkali metal als, belonging to two atoms and o ceric in character? c) CO ₂ on potential increases is c) K, Be, Na	hent each having one electron leads d) CaO d) Be, Na, k
 a) Halogen c) Transition eler 354. Linear combination to: a) Sigma-bond b) Double-bond c) Coordinate cove d) Pi-bond 355. Which one of the a) SnO₂ 356. The correct order a) Na, K, Be 357. The correct order 17, 35 and 53 res 	nent on of two hybridized orbita valent bond following oxides is amphot b) SiO ₂ r in which the first ionisatio b) K, Na, Be r of electron gain enthalpy y	b) Representative elem d) Alkali metal als, belonging to two atoms and o ceric in character? c) CO ₂ on potential increases is c) K, Be, Na with negative sign of F, Cl, Br and	hent each having one electron leads d) CaO d) Be, Na, k d I, having atomic number 9,
 a) Halogen c) Transition eler 354. Linear combination to: a) Sigma-bond b) Double-bond c) Coordinate cove d) Pi-bond 355. Which one of the a) SnO₂ 356. The correct order a) Na, K, Be 357. The correct order 17, 35 and 53 res a) Cl > F > Br > L 	nent on of two hybridized orbita valent bond following oxides is amphot b) SiO ₂ r in which the first ionisatio b) K, Na, Be r of electron gain enthalpy v pectively, is	b) Representative elem d) Alkali metal als, belonging to two atoms and o ceric in character? c) CO_2 on potential increases is c) K, Be, Na with negative sign of F, Cl, Br and	hent each having one electron leads d) CaO d) Be, Na, k d I, having atomic number 9, d) I > Br > F > Cl
 a) Halogen c) Transition eler 354. Linear combination to: a) Sigma-bond b) Double-bond c) Coordinate cove d) Pi-bond 355. Which one of the a) SnO₂ 356. The correct order a) Na, K, Be 357. The correct order 17, 35 and 53 res a) Cl > F > Br > I 358. As the s-character 	nent on of two hybridized orbita valent bond following oxides is amphot b) SiO ₂ r in which the first ionisatio b) K, Na, Be r of electron gain enthalpy y pectively, is b) F > Cl > Br > I r of hybridization orbitals i	 b) Representative elem d) Alkali metal als, belonging to two atoms and of c) co₂ on potential increases is c) K, Be, Na with negative sign of F, Cl, Br and c) I > Br > Cl > F increases the bond angle: 	hent each having one electron leads d) CaO d) Be, Na, k d I, having atomic number 9, d) I > Br > F > Cl
 a) Halogen c) Transition eler 354. Linear combination to: a) Sigma-bond b) Double-bond c) Coordinate cove d) Pi-bond 355. Which one of the a) SnO₂ 356. The correct order a) Na, K, Be 357. The correct order a) Na, K, Be 357. The correct order a) Na, K, Be 357. The correct order a) Cl > F > Br > I 358. As the <i>s</i>-characte a) Increases 	nent on of two hybridized orbita valent bond following oxides is amphot b) SiO ₂ r in which the first ionisatio b) K, Na, Be r of electron gain enthalpy y pectively, is b) F > Cl > Br > I r of hybridization orbitals i b) Decreases	 b) Representative elem d) Alkali metal als, belonging to two atoms and of c) CO₂ on potential increases is c) K, Be, Na with negative sign of F, Cl, Br and c) I > Br > Cl > F increases, the bond angle: c) Does not change 	 hent each having one electron leads d) CaO d) Be, Na, k d I, having atomic number 9, d) I > Br > F > Cl d) Becomes zero
 a) Halogen c) Transition eler 354. Linear combination to: a) Sigma-bond b) Double-bond c) Coordinate cove d) Pi-bond 355. Which one of the a) SnO₂ 356. The correct order a) Na, K, Be 357. The correct order 17, 35 and 53 res a) Cl > F > Br > I 358. As the <i>s</i>-characte a) Increases 359. Dipole-dipole attraction 	nent on of two hybridized orbita valent bond following oxides is amphot b) SiO ₂ r in which the first ionisatio b) K, Na, Be r of electron gain enthalpy y pectively, is b) F > Cl > Br > I r of hybridization orbitals i b) Decreases	b) Representative elem d) Alkali metal als, belonging to two atoms and of ceric in character? c) CO_2 on potential increases is c) K, Be, Na with negative sign of F, Cl, Br and (c) I > Br > Cl > F increases, the bond angle: c) Does not change t between the molecules of:	 hent each having one electron leads d) CaO d) Be, Na, k d I, having atomic number 9, d) I > Br > F > Cl d) Becomes zero
 a) Halogen c) Transition eler 354. Linear combination to: a) Sigma-bond b) Double-bond c) Coordinate cover d) Pi-bond 355. Which one of the a) SnO₂ 356. The correct order a) Na, K, Be 357. The correct order a) Na, K, Be 357. The correct order a) Na, K, Be 357. The correct order a) Cl > F > Br > I 358. As the <i>s</i>-character a) Increases 359. Dipole-dipole attra a) He 	nent on of two hybridized orbita valent bond following oxides is amphot b) SiO ₂ r in which the first ionisatio b) K, Na, Be r of electron gain enthalpy v pectively, is b) F > Cl > Br > I r of hybridization orbitals i b) Decreases ractive forces are strongest b) CH ₄	b) Representative elem d) Alkali metal als, belonging to two atoms and of ceric in character? c) CO_2 on potential increases is c) K, Be, Na with negative sign of F, Cl, Br and (c) I > Br > Cl > F increases, the bond angle: c) Does not change t between the molecules of: c) CO_2	 hent each having one electron leads d) CaO d) Be, Na, k d I, having atomic number 9, d) I > Br > F > Cl d) Becomes zero d) H₂O
 a) Halogen c) Transition eler 354. Linear combination to: a) Sigma-bond b) Double-bond c) Coordinate cove d) Pi-bond 355. Which one of the a) SnO₂ 356. The correct order a) Na, K, Be 357. The correct order 17, 35 and 53 res a) Cl > F > Br > I 358. As the <i>s</i>-character a) Increases 359. Dipole-dipole attra a) He 360. Among Na⁺, Na, M 	nent on of two hybridized orbits valent bond following oxides is amphot b) SiO ₂ r in which the first ionisatio b) K, Na, Be r of electron gain enthalpy v pectively, is (b) $F > Cl > Br > I$ r of hybridization orbitals i b) Decreases ractive forces are strongest b) CH ₄ Mg and Mg ²⁺ , the largest pa	b) Representative elem d) Alkali metal als, belonging to two atoms and of terric in character? c) CO_2 on potential increases is c) K, Be, Na with negative sign of F, Cl, Br and (c) I > Br > Cl > F increases, the bond angle: c) Does not change t between the molecules of: c) CO_2 article is	 hent each having one electron leads d) CaO d) Be, Na, k d I, having atomic number 9, d) I > Br > F > Cl d) Becomes zero d) H₂O
 a) Halogen c) Transition eler 354. Linear combination to: a) Sigma-bond b) Double-bond c) Coordinate cover d) Pi-bond 355. Which one of the a) SnO2 356. The correct order a) Na, K, Be 357. The correct order a) Na, K, Be 359. Dipole-dipole attracter a) Increases 359. Dipole-dipole attracter a) He 360. Among Na⁺, Na, Ma A) Mg²⁺ 	ment on of two hybridized orbita valent bond following oxides is amphot b) SiO2 r in which the first ionisatio b) K, Na, Be r of electron gain enthalpy v pectively, is b) F > Cl > Br > I r of hybridization orbitals i b) Decreases ractive forces are strongest b) CH4 Mg and Mg ²⁺ , the largest pa b) Mg	 b) Representative elem d) Alkali metal als, belonging to two atoms and of als, belonging to two atoms and of c) CO₂ on potential increases is c) K, Be, Na with negative sign of F, Cl, Br and c) I > Br > Cl > F increases, the bond angle: c) Does not change between the molecules of: c) CO₂ article is c) Na 	 hent each having one electron leads d) CaO d) Be, Na, k d I, having atomic number 9, d) I > Br > F > Cl d) Becomes zero d) H₂O d) Na⁺
 a) Halogen c) Transition eler 354. Linear combination to: a) Sigma-bond b) Double-bond c) Coordinate cover d) Pi-bond 355. Which one of the a) SnO2 356. The correct order a) Na, K, Be 357. The correct order a) Increases a) Cl > F > Br > I 358. As the <i>s</i>-character a) Increases 359. Dipole-dipole attra a) He 360. Among Na⁺, Na, Na a) Mg²⁺ 361. If the IP of Na is 5 	nent on of two hybridized orbits valent bond following oxides is amphot b) SiO ₂ r in which the first ionisatio b) K, Na, Be r of electron gain enthalpy v pectively, is b) F > Cl > Br > I r of hybridization orbitals i b) Decreases ractive forces are strongest b) CH ₄ Mg and Mg ²⁺ , the largest pa b) Mg	b) Representative elem d) Alkali metal als, belonging to two atoms and of terric in character? c) CO_2 on potential increases is c) K, Be, Na with negative sign of F, Cl, Br and (c) I > Br > Cl > F increases, the bond angle: c) Does not change t between the molecules of: c) CO_2 article is c) Na ntial of K will be	 hent each having one electron leads d) CaO d) Be, Na, k d I, having atomic number 9, d) I > Br > F > Cl d) Becomes zero d) H₂O d) Na⁺
 a) Halogen c) Transition eler 354. Linear combination to: a) Sigma-bond b) Double-bond c) Coordinate cover d) Pi-bond 355. Which one of the a) SnO2 356. The correct order a) Na, K, Be 357. The correct order a) Cl > F > Br > I 358. As the <i>s</i>-characte a) Increases 359. Dipole-dipole attra a) He 360. Among Na⁺, Na, Ma a) Mg²⁺ 361. If the IP of Na is 5 a) Same as that or 	nent on of two hybridized orbits valent bond following oxides is amphot b) SiO ₂ r in which the first ionisatio b) K, Na, Be r of electron gain enthalpy v pectively, is b) $F > Cl > Br > I$ r of hybridization orbitals i b) Decreases ractive forces are strongest b) CH ₄ Mg and Mg ²⁺ , the largest pa b) Mg 5.48 eV, the ionisation poten f Na b) 4.34 eV	b) Representative elem d) Alkali metal als, belonging to two atoms and of terric in character? c) CO_2 on potential increases is c) K, Be, Na with negative sign of F, Cl, Br and (c) I > Br > Cl > F increases, the bond angle: c) Does not change t between the molecules of: c) CO ₂ article is c) Na ntial of K will be c) 5.68 eV	hent each having one electron leads d) CaO d) Be, Na, k d I, having atomic number 9, d) $I > Br > F > Cl$ d) Becomes zero d) H_2O d) Na ⁺ d) 10.88 eV
 a) Halogen c) Transition eler 354. Linear combination to: a) Sigma-bond b) Double-bond c) Coordinate cover d) Pi-bond 355. Which one of the a) SnO2 356. The correct order a) Na, K, Be 357. The correct order a) Increases a) Cl > F > Br > I 358. As the <i>s</i>-character a) Increases 359. Dipole-dipole attra a) He 360. Among Na⁺, Na, Na a) Mg²⁺ 361. If the IP of Na is 5 a) Same as that or 362. The electronic correct or set a) Same as that or 362. The electronic correct or set a) Same as that or 362. The set a) Same as tha set a) Same as tha set a) Same as tha set a) Same as that or 362. The set a) Same as tha set a) Same a) S	nent on of two hybridized orbits valent bond following oxides is amphot b) SiO ₂ r in which the first ionisatio b) K, Na, Be r of electron gain enthalpy v pectively, is b) F > Cl > Br > I r of hybridization orbitals i b) Decreases ractive forces are strongest b) CH ₄ Mg and Mg ²⁺ , the largest pa b) Mg 5.48 eV, the ionisation poten f Na b) 4.34 eV nfiguration of the atom hav	b) Representative elem d) Alkali metal als, belonging to two atoms and of terric in character? c) CO_2 on potential increases is c) K, Be, Na with negative sign of F, Cl, Br and (c) I > Br > Cl > F increases, the bond angle: c) Does not change t between the molecules of: c) CO ₂ article is c) Na ntial of K will be c) 5.68 eV ving maximum difference in first	hent each having one electron leads d) CaO d) Be, Na, k d I, having atomic number 9, d) $I > Br > F > Cl$ d) Becomes zero d) H_2O d) Na^+ d) 10.88 eV and second ionisation

a) $1s^2$, $2s^2$, $2p^6$, $3s^1$	b) 1s ² , 2s ² , 2p ⁶ , 3s ²	
c) $1s^2, 2s^2, 2p^1$	d) $1s^2$, $2s^2$, $2p^6$, $3s^2$, $3p^1$	
363. Amongst LiCl, RbCl, BeCl ₂ and MgCl ₂ , the compo	ounds with the gratest and	d the least ionic character
respectively are:	Ū.	
a) LiCl and RbCl b) RbCl and BeCl ₂	c) RbCi and MgCl ₂	d) MgCl ₂ and BeCl ₂
364. Pick the odd man out (The one having zero dipole r	noment):	, , , , , , , , , , , , , , , , , , , ,
a) NH ₂ b) H ₂ O	c) BCl ₂	d) SO_2
365. The property of attracting electrons by the halogen	atoms in a molecule is calle	d
a) Ionisation potential b) Electrons affinity	c) Electronegtivity	d) Electronic attraction
366 The oxide of an element whose electronic configura	ation is $1s^2$ $2s^2$ $2n^6$ $3s^1$ is	
a) Neutral b) Amphoteric	c) Basic	d) Acidic
367 Which among the following elements has lowest va	lue of ionisation energy?	
a) Mg b) Ca	c) Ba	d) Sr
368 The pair of elements which on combination are mo	c) ba st likely to form an ionic cor	npound is:
a) Na and Ca	c) 0 and Cl	d) Al and I
260 A molecule which cannot exist theoretically is:	C_{1} C_{2} and C_{12}	uj Ai aliu 1 ₂
a) SE	a) OE	4) O E
a) SF_4 D) UF_2 270 The interval Ω^{2-} F^- Not Mz^{2+} and Λ^{13+} are inclusion	CJ UF4	$U_{j}U_{2}F_{2}$
370. The lons O^2 , F, Na ⁺ , Mg ⁺ and A1 ⁺⁺ are isoelectr	Onic. Their fonic radii show	
a) A decrease from U^2 to F and then increase fro	m Na' to Al ³ '	
b) A significant increase from 0^{2} to Al ³⁺		
c) A significant decrease from O^{2-} to Al ³⁺		
d) An increase from O^{2-} to F^{-} and then decrease from	hmom Na ⁺ to Al ³⁺	
371. A sudden large jump between the values of second	and third ionisation energie	es of an element would be
associated with the electronic configuration		
a) $1s^2$, $2s^2$, $2p^6$, $3s^2$	b) 1s ² ,2s ² ,2p ⁶ ,3s ¹	
c) $1s^2$, $2s^2$, $2p^6$, $3s^2$, $3p^1$	d) 1s ² , 2s ² , 2p ⁶ , 3s ² , 3p ²	
372. Among O, C, F, Cl, Br the correct order of increasing	atomic radii is:	
a) $F < 0 < C < Cl < Br$ b) $F < C < 0 < Br < Cl$	c) F < Cl < Br < O < C	d) C < 0 < F < Cl < Br
373. The correct order of radii is:		
a) N < Be < B b) $F^- < O^{2-} < N^{3-}$	c) Na <i>< Li < K</i>	d) $Fe^{3+} < Fe^{2+} < Fe^{4+}$
374. The ionic radius of 'Cr' is minimum in which of the	following compounds?	
a) CrO_2 b) K_2CrO_4	c) CrF ₃	d) CrCl ₃
375. Which molecule has trigonal planar geometry?		
a) IF_3 b) PCl_3	c) NH ₃	d) BF ₃
376. Which is the general outer electronic configuration	of the coinage metals?	2
a) ns^2np^6 b) $(n-1)d^{10}ns^1$	c) $(n-1)d^{10}ns^2$	d) $(n-1)d^9ns^2$
377. Which among the following elements have lowest v	value of IE₁?	
a) Pb b) Sn	c) Si	d) C
378. The values of electronegativity of atom A and B are	1.20 and 4.0 respectively. T	'he percentage of ionic
character of $A - B$ bond is		ne per contage of torne
a) 58.3% b) 48%	c) 79.6%	d) 73.6%
379 Which of the following element is most electronosit	tive?	aj / 5.070
a) Al b) Mg	c) P	d) S
380 Super actet molecule ic:	C) I	4)5
a) E Cl b) BCl		d) None of these
d) $\Gamma_3 \cup I$ U) $\Gamma \cup I_3$ 201 Which of the following elements will have the lower	$C_{\rm J}$ NH ₃	d) None of these
a) Li	a) Co	d) Dh
aj Li Dj Mg	cj ta	
502. An element A which occurs in the first short period	has an outer electronic stru	icture s^-p^- . what are the
iormula and acid-base character of its oxides?		
a) XU_3 , basic b) X_2U_3 , basic	cJ $X_2 O_3$, amphoteric	d J $X O_2$, acidic

383	. The diamagnetic molecul	es are:		
	a) B ₂ , C ₂ , N ₂	b) 0 ₂ , N ₂ , F ₂	c) C ₂ , N ₂ , F ₂	d) B ₂ , O ₂ , N ₂
384	. Which of the following ele	ectronic configuration repr	esents noble gas?	
	a) ns²np ⁶	b) ns^2np^5	c) ns^2np^4	d) $ns^2 np^3$
385	. The number of naturally o	occurring <i>p</i> - block element	s that are diamagnetic is	
	a) 18	b) 6	c) 5	d) 7
386	. Which of the following ele	ement shows maximum val	lency?	-
	a) Carbon	b) Barium	c) Nitrogen	d) Sulphur
387	. The pair likely to form the	e strongest hydrogen bond	ing:	y 1
	a) H_2O_2 and H_2O	0 , 0	0	
	b) HCOOH and CH ₃ COOH			
	c) CH ₃ COOH and CH ₃ COO)CH ₃		
	d) SiH ₄ and SiCl ₄	5		
388	. Highest covalent characte	er is found in which of the f	following?	
	a) CaF_2	b) $CaCl_2$	c) CaI_2	d) CaBr ₂
389	. How many bridging oxyg	en atoms are present in P_{A}	D_{10} ?	, 2
	a) 6	b) 4	c) 2	d) 5
390	. Which element has the hi	ghest electronegativity?	-)	-) -
	a) C	b) 0	c) Mg	d) S
391	. Metallic nature and basic	nature of the oxides as	we move along a period	
	a) Increases		b) Decreases	
	c) Remains constant		d) First increases then de	creases
392	. In which block does 106t	h element belong?		
	a) s-block	b) <i>n</i> -block	c) <i>d</i> -block	d) <i>f</i> -block
393	. Which of the following is	more ionic?		
070	a) NaCl	b) KCl	c) MgCl ₂	d) CaCla
394	Which one of the followin	g orders is not in according	g with the property stated :	against it?
0,1	a) $F_2 > Cl_2 > Br_2 > l_2 : I$	Electronegativity	g min nie propercy statea (Sumstin
	h) $F_a > C I_a > B r_a > I_a : I$	Rond dissociation energy		
	c) $F_2 > CI_2 > Br_2 > I_2$	Oxidising nower		
	d) HI > HBr > HCl > HF	7 : Acidic property in water		
395	. Which one is electron def	icient compound?		
070	a) NH ₂	b) ICl	c) BCla	d) PCla
396	. Which of the following is	largest ion?	0) 2013	
	a) Na ⁺	b) Mg^{2+}	c) 0^{2-}	d) F-
397	Which of the following ha	is the minimum bond lengt	h?	
07.	a) Ω_2	b) 0^+_2	c) 0 <u>-</u>	d) 0^{2-}_{2-}
398	Ionisation energy in grou	n 1-A varies in the decreas	ing order as	
070	a) $Li > Na > K > Cs$	b) Na > $Li > K > Cs$	c) Li > Cs > K > Na	d) $K > C_S > N_a > L_i$
399	Paramagnetism is exhibit	ed by molecules:	cj II > 03 > N > Nu	
577	a) Not attracted into a ma	agnetic field		
	h) Containing only naired	electrons		
	c) Carrying a positive cha	irde		
	d) Containing unnaired el	lectrons		
400	The value of bond order i	n nitrogen and oxygen mol	ecule is:	
100		h) 4. 2	c) 2 3	d) 1 2
4.01	In third row of Periodic T	b) 7,2 able the stomic radii from	C_{J} Z_{J} S_{J}	u) 1, 2
101	a) Continuously decrease		h) Continuously increased	3
	c) Remains constant	ن .	d) Increases hut not conti	, nuously
402	Which has a giant covalor	nt structure?	aj ma cases but not conti	inuousiy
102	. Winch has a gialit covaler			

	a) PbO ₂	b) SiO ₂	c) NaCl	d) AlCl ₃
403	. Which has an odd electro	n and shows paramagnetic	character?	
	a) NO	b) SO ₂	c) CO ₂	d) H ₂ O
404	. The correct order of incre	easing bond length of C – H	I, C - O, C - C and $C = C$ is :	
	a) $C - H < C - 0 < C - 0$	C < C = C		
	b) $C - H < C = C < C - C$	0 < C - C		
	c) $C - C < C = C < C - C$	О < C — Н		
	d) $C - 0 < C - H < C - 0$	C < C = C		
405	$5. NF_3$ is :			
	a) Non-polar compound			
	b) Electrovalent compour	nd		
	c) Having low value of di	pole moment than NH ₂		
	d) Having more dipole m	oment than NH ₂		
406	Atomic radii of F and Ne,	in Å, are given by		
	a) 0.72, 0.71	b) 0.72, 1.6	c) 1.6, 1.58	d) 0.71, 0.72
407	. When an electron is remo	oved from an atom. its ener	gv	,
	a) Increase	b) Decrease	c) Remains the same	d) None of these
408	8. In which of the following	$p\pi - d\pi$ bonding is observ	red?	,
	a) NO ₂	b) SO_2^{2-}	c) BO_2^{3-}	d) CO_2^{2-}
409	. In BrF ₂ molecule, the long	e pair occupy equatorial po	sition to minimize :	-) 3
105	a) Lone pair-bond pair re	epulsion only		
	b) Bond pair-found pair r	epulsion only		
	c) Lone pair-lone pair rei	oulsion and lone pair-bond	pair repulsion	
	d) Lone pair-lone pair rep	oulsion only	F	
410	The number of lone pairs	is same in PCl ₂ and:		
110	a) BCl ₂	b) NCl ₂	c) CCl	d) PCl-
411	As a result of resonance:	5) 11013	0) 0014	
	a) Bond length decreases			
	b) Energy of the molecule	es decreases		
	c) Stability of the molecul	le increases		
	d) All are correct			
412	The number of ions form	ed when a molecule of K F	e(CN), dissociate is:	
	a) 4	b) 5		d) 2
413	Polar covalent compound	ls are soluble in:		~) _
110	a) Polar solvents	b) Non-polar solvents	c) Concentrated acids	d) All solvents
414	The elements with atomic	c numbers 9, 17, 35, 53, 85	are all	
	a) Halogens	b) Noble gases	c) Heavy metals	d) Light metals
415	. Which among the followi	ng has highest ionic radius	?	
110	a) F ⁻	h) B ³⁺	c) 0^{2-}	d) Li+
416	Strongest bond is formed	by the head on overlannin	g of	
110	a) 2s- and 2 <i>n</i> -orbitals	b) 2 <i>n</i> - and 2 <i>n</i> -orbitals	c) 2s- and 2s-orbitals	d) All of these
417	$A \rightarrow A^+ + e E_1$ and $A^+ \rightarrow A^+$	$A^{2+} + e E_{2}$ The energy re	equired to pull out the two e	electrons are E_4 and E_5
11/	respectively. The correct	relationship hetween two	energy would be	Lie chi oni oni one D_1 and D_2
	a) $F_{\star} < F_{\circ}$	h) $F_{c} > F_{c}$	c) $F_{4} = F_{2}$	d) $F_{4} \neq F_{2}$
418	The element having high	est electron affinity is	$U_1 = U_2$	$u_1 u_1 + u_2$
110	a) Bromine	b) Iodine	c) Fluorine	d) Chlorine
419	Fluorine has low electron	affinity than chlorine beca	use of	aj unornic
11)	a) Rigger radius of fluori	ne less density	h) Smaller radius of fluori	ne high density
	c) Smaller radius of chlor	ine high density	d) Smaller radius of chlor	ine less density
420	The angle between two of	ovalent honds is maximum	in.	ine, iess aclisity
120		o, arene oonuo io maximum	****	

	a) CH ₄	b) H ₂ O	c) CO ₂	d) SO ₃	
421	. Which species has lone pa	air on central atom?			
	a) CCl ₄	b) CH ₄	c) NH ₄ ⁺	d) H ₂ O	
422	. The decreasing order of t	he second ionization energy	/ of K, Ca and Ba is:		
	a) K > $Ca > Ba$	b) Ca > <i>Ba</i> > <i>K</i>	c) Ba > $K > Ca$	d) K > Ba > Ca	
423	. Which contains both cova	lent and ionic bonds?	-	-	
	a) CCl4	b) KCN	c) CaCl ₂	d) H_20	
424	. The covalency of nitrogen	in HNO ₃ is :	, 1		
	a) Zero	b) 3	c) 4	d) 5	
425	. The orbitals of same ener	gy level providing the most	efficient overlapping are:	,	
	a) $sp^3 - sp^3$	b) $sp - sp$	c) $sp^2 - sp^2$	d) All of these	
426	. Which of the following ha	s unchanged valency?		,	
	a) H	b) Na	c) Fe	d) 0	
427	. The general electronic co	nfiguration of the transitior	elements is	,	
	a) $(n-1)d^{10}$, $(n+1)s^2$	0	b) $(n-1)d^{1-10}$, $(n+1)s^{1}$	1-2	
	c) $(n-1)d^{1-10}$. np^6 . ns^2		d) $(n-1)d^{1-10} \cdot ns^{1-2}$		
428	. The order of first electron	affinity of O.S and Se is:			
	a) $0 > S > Se$	b) $S > 0 > Se$	c) Se > 0 > S	d) Se $> S > O$	
429	. Which of the following ox	ides doesn't react with both	of an acid and alkali. is?		
	a) ZnO	b) SnO_2	c) Al ₂ O ₂	d) BeO	
430	. Which of the following is i	soelectronic with carbon a	tom?		
100	a) Na ⁺	b) Al ³⁺	c) 0^{2-}	d) N+	
431	The ionic radii of ioselect	conic species N^{3-} Ω^{2-} and F	Tare in the order?		
101	a) 136 140 171	b) $136 \ 171 \ 140$	c) $171 140 136$	d) 1 71 1 36 1 40	
432	Which bond angle A wou	ld result in the maximum	dinale moment for the tria	tomic molecule XV shown	
752	holow?				
	a) $A = 90^{\circ}$	h) A — 120°	c) A – 150°	d) A – 180°	
433	The electronegativity value	10,0 = 120 $100 \text{ of } C + O + 0 \text{ and } S \text{ are } 2^{-1}$	5, 2, 1, 2, 5, 3, 0, and 2, 5, respectively.	ctively. Which of the	
433	following bonds is most n	olar?	5, 2.1, 5.5, 5.0 and 2.5 respe	cuvely. which of the	
	a) $C = H$	b) N $=$ H	c) S – H	d) 0 – H	
434	Which of the following set	ujance correctly represent	cj 5 II s the decreasing acidic nati	uj 0 11 ire of ovides?	
151	a) $Li_{2}O > RaO > CO_{2} > N$	$V_{a} \cap S = 0$	b) $CO_2 > N_2O_2 > B_2O_2 > CO_2 > $	Iic of oxides.	
	a) $E_{12}O > DeO > CO_2 > 1$ c) N O > CO > B O > N	$1_{2}O_{3} > D_{2}O_{3}$	d) $C_{0} > R_{2}O_{3} > D_{2}O_{3} > D_{2}$	$L_{10} > D_{20}$	
435	In which α the following α	$DCO > DI_2O$	the largest nercentage of i	203 > 1203	
433		b) HE	c) IBr	d) $N_{\rm s}$ O	
436	Which ion has a higher no	larizing nower?		u) N ₂ 04	
430	a) $M\sigma^{2+}$	b) Δl^{3+}	c) (2^{2+})	d) Na+	
437	The first ionisation noten	tial is maximum for	cj ca	u) Na	
737	ר אין איז		c) ()	d) Bo	
120	a) D The highest first ionisatio	n notontial is of	0	u) De	
450	a) Carbon	h) Boron	c) Ovugon	d) Nitrogon	
1.20	The ionic radii $(^{\text{A}})$ of C^{4-}	DJ DOI 011 and Ω^{2-} respectively are 2.	C) Oxygell S0 and 1.40. The ionic radiu	u) Nitrogen	
437	137. The forme radius of the isoelectronic ion N^{3-} would be				
		h) 1 71	a) 1 4	4) 0.05	
110	d) 2.0	UJ 1.7 I the energy of a 2 m orbital i	CJ 1.4	uj 0.95	
440	. III a IIIuiu-electron atom,	che energy of a 2 p-orbital i	8:		
	a) Less than that of 2 <i>s</i> -orbital				
	h) More than that of 25 or	bital			
	b) More than that of 2s or a) Equal to that of 2s or	bital			
	 b) More than that of 2s or c) Equal to that of 2s orbit d) Double that of 2s orbit 	rbital Ital			
111	 b) More than that of 2s or c) Equal to that of 2s-orbit d) Double that of 2s-orbit 	rbital tal al			

	a) Much lesser than NH ₃		
	b) Equal to that in NH_3		
	c) Much greater than in NH_3		
	d) Slightly more than in NH_3		
442	. The dipole moment of CHCl_3 is 1.05 debye while that	t of CCl ₄ is zero, because CC	21 ₄ is:
	a) Linear b) Symmetrical	c) Planar	d) Regular tetrahedral
443	. The high boiling point of water is due to:		
	a) Weak dissociation of water molecules		
	b) Hydrogen bonding among water molecules		
	c) Its high specific heat		
	d) Its high dielectric constant		
444	. The number of unpaired electrons in O ₂ molecule is:		
	a) Zero b) 1	c) 2	d) 3
445	. Variable valency in general, is exhibited by		
	a) Transition elements b) Gaseous elements	c) Non-metals	d) s-block elements
446	. Which statement is true?		
	a) Absolutely pure water does not contain any ion.		
	b) Some covalent compounds may also give ions in a	queous solution.	
	c) In aqueous solution only electrovalent compound	s give ions.	
	d) Very sparingly soluble substances do not dissociat	te in aqueous solution	
447	. The bond strength increases:		
	a) With increasing bond order		
	b) With increasing extent of overlapping of orbitals		
	c) With decreasing difference between energies of or	verlapping orbitals	
	d) All of the above		
448	. If the ionic radii of K^+ and F^- are about 1.34 Å eac	h, then the expected values	s of atomic radii of K and F
	should be respectively:	-	
	a) 1.34 and 1.34 Å b) 2.31 and 0.64 Å	c) 0.64 and 2.31 Å	d) 2.31 and 1.34 Å
449	. Which species is paramagnetic?	,	,
	a) 0_2^- b) CH ₃	c) CO	d) NO ⁺
450	. Chemical bond formation takes place when:	,	,
	a) Energy is absorbed		
	b) Forces of attraction overcome forces of repulsion		
	c) Forces of repulsion overcome forces of attraction		
	d) Forces of attraction are equal to forces of repulsio	n	
451	H_2O has a net dipole moment, while BeF ₂ has zero di	ipole moment, because:	
	a) H_2O molecule as linear while BeF ₂ is bent	. ,	
	b) BeF ₂ molecule is linear while H_2O is bent		
	c) Fluorine is more electronegative than oxygen		
	d) Be is more electronegative than oxygen		
452	. Which has the smallest size?		
	a) Na ⁺ b) Mg ²⁺	c) Al ³⁺	d) P ⁵⁺
453	Observe the following statement	-)	-)-
100	VIII. The physical and chemical properties of elem	ents are periodic functions	s of their electronic
	configuration.		
	IX Electronegativity of fluorine is less than the elec	tronegativity of chlorine	
	X. Electropositive nature decreases from ton to hot	tom in a groun.	
	The correct answer is	a broup.	
	a) I II and III are correct	h) Only Lis correct	
	c) Only L and IL is correct	d) Only II and III are corre	٥ct
		a, only it and in are cont	

4	454. The only non-metal	which is liquid at ordinary t	emperature is	
	a) Hg	b) Br ₂	c) NH ₃	d) None of these
2	455. Which has triangula	r planar shape?		
	a) CH ₃ +	b) ClO_2^-	c) H ₃ 0 ⁺	d) ClO_3^-
2	456. With respect to chlor	rine, hydrogen will be		
	a) Electropositive	b) Electronegative	c) Neutral	d) None of these
4	457. In the case of alkali r	netals, the covalent charact	er decreases in the orde	r:
	a) MI > MBr > MCl	> MF		
	b) MCl $> MI > MBr$	> MF		
	c) MF > MCl > $MB\eta$	r > MI		
	d) MF > $MCl > MI$	> MBr		
2	458. The set representing	the correct order of ionic r	adius is	
	a) $Li^+ > Be^{2+} > Na^+$	$^{+} > Mg^{2+}$	b) $Na^+ > Li^+ > M$	$g^{2+} > Be^{2+}$
	c) $Li^{2+} > Na^+ > Mg$	$e^{2+} > Be^{2+}$	d) $Mg^{2+} > Be^{2+} >$	$> Li^+ > Na^+$
2	459. Which element has r	naximum electron affinity?		
	a) Na	h) Mg	c) Al	d) S
2	460 Ionisation notential	is lowest for	c) m	aj b
	a) Alkali metals	13 10 west 101	h) Inert gas	
	c) Halogens		d) Alkaline earth r	netals
4	461 It is thought that a	atoms comhine with each	other such that the c	nictais nitermost orbit acquires a stable
	configuration of 8 el	ectrons If stability were at	tained with 6 electrons	rather than with 8 what would be
	the formula of the st	able fluoride ions?	tained with 0 ciections	rather than with 0, what would be
	$rac{1}{2}$	b) F ⁺	c) F ⁻	d) E^{2-}
,	aj r 162 The outermost confi	of the least reactive	c) r	u) r
-	(402.11) m $(2m^3)$	b) ma ² m ⁴	c) mc^2m^5	d) ma^2m^6
	a) its p^{*}	ν μ	$C ns p^{2}$	u) ns p
2	403. Elements of the sam	e vertical group of the Peric	b) Same atomia si	
	a) Same atomic num	bei	d) Same number of	felectrone in outermeet shell
	c) Same number of a	lloms	d) same number o	a electrons in outermost shell
2	464. Ionisation potential	for a noble gas is	b) Minimum in a m	
	a) Maximum in a per	100	b) Minimum in a p	berloa
	C) Either minimum (or maximum	d) Constant	
2	465. Which of the followi	ng possess maximum hydra	ition energy?	
	a) MgSO ₄	b) $RaSO_4$	c) $SrSO_4$	d) $BaSU_4$
2	466. The correct order o	f hybridization of the cent	ral atom in the following	ng species NH_3 , $[PtCl_4]^2^-$, PCl_5 and
	BCl_3 is:	2 1 2 2 2 2 2	2	
	a) dsp^2 , dsp^3 , sp^2 , sp^2	b) sp ³ , dsp ² , dsp ³ , sp	$c) dsp^2, sp^2, sp^3, c$	$d) dsp^2, sp^3, sp^2, dsp^3$
4	467. Following statement	s regarding the periodic tre	ends of chemical reactivi	ty to the alkali metals and the
	halogens are given.	Which of these statements g	ives the correct picture?	,
	a) The reactivity dec	creases in the alkali metals h	out increases in the halo	gens with increase in atomic
	number down the	e group.		
	b) In both the alkali	metals and the halogens the	e chemical reactivity dec	reases with increase in atomic
	number down the	group		
	c) Chemical reactivition and halogens.	ty increases with increase in	n atomic number down t	he group in both the alkali metals
	d) In alkali metals th down the group.	e reactivity increases but ir	the halogens it decreas	es with increase in atomic number
4	468. The correct order of	ionisation energy of C, N, O	, F is	
	a) F < 0 < N < C	b) F < N < C < 0	c) C < N < O < F	d) C < $O < N < F$
4	469. Which has minimum	ionic radius?		
	a) N ^{3–}	b) K+	c) Na ⁺	d) F ⁻

470. In the isoelectronic species the ionic radii $(Å)$) of N^{3-} , O^{2-} and F^{-} are respect	ively given by
a) 1.71, 1.40, 1.36 b) 1.71, 1.36, 1.40	c) 1.36, 1.40, 1.71	d) 1.36, 1.71, 1.40
471. The ionisation potential order for which set is	s correct?	
a) Cs < Li < K b) Cs < Li > B	c) Li > K > Cs	d) B > Li < K
472. The correct sequence which shows decreasin	g order of the ionic radii of the	elements is
a) $Al^{3+} > Mg^{2+} > Na^+ > F^- > O^{2-}$	b) $Na^+ > Mg^{2+} > Al^{3+}$	$> 0^{2-} > F^{-}$
c) $Na^+ > F^- > Mg^{2+} > O^{2-} > Al^{3+}$	d) $0^2 > F^- > Na^+ > Ma^+$	$Ig^{2+} > Al^{3+}$
473. Among H <i>X</i> , the maximum dipole moment is c	of:	
a) HF b) HCl	c) HBr	d) HI
474. Compound formed by sp^3d -hybridization will	ll have structure:	-
a) Trigonal bipyramidal		
b) T-shaped		
c) Linear		
d) Either of these depending on number of lo	ne pair of electrons of central at	tom
475. The energy change accompanying the proces	s given below is,	
$Na^+(g) + Cl^-(g) \rightarrow NaCl(s)$	-	
a) Hydration energy b) Ionization energy	gy c) Electron affinity	d) Lattice energy
476. Ice has an open structure compared to wa	ter due to which it floats on v	water and occupies a greater
volume of space. The open structure of ice is	due to:	
a) Solid state of ice b) Its low density	c) Crystalline nature	d) Hydrogen bonding
477. The electrons in an incomplete outershell are	e known as :	
a) Kernel electrons b) Valency electron	ns c) Shell electrons	d) None of the above
478. Which of the following is not a correct statem	nent?	-
a) Every AB ₅ molecule does in fact have squa	re pyramid structure	
b) Multiple bonds are always shorter than co	rresponding single bonds	
c) The electron-deficient molecules can act as	s Lewis acids	
d) The canonical structures have no real exist	tence	
479. Van der Waals' forces are applied to:		
a) Inert gases only		
b) Rare gases only		
c) Mixture of gases		
d) Elementary gases only		
480. The correct order of dipole moment is:		
a) $CH_4 < NF_3 < NH_3 < H_2O$		
b) $NF_3 < CH_4 < NH_3 < H_2O$		
c) $NH_3 < NF_3 < CH_4 < H_2O$		
d) $H_2 O < NH_3 < NF_3 < CH_4$		
481. Which of the following species contains three	e bond pairs and one lone pair a	round the central atom?
a) NH_2^- b) PCl_3	c) H ₂ O	d) BF ₃
482. In H_2^- ion, the bond order is:		
a) Zero b) 1/2	c) -1/2	d) 1
483. Which statement is correct?		
a) Pi-bond always exists with sigma-bond		
b) Pi-bond can exist independently		
c) Sigma-bond is weaker than pi-bond		
d) Pi-bond is less reactive than sigma-bond		
484. Which is highest melting point halide?		
a) NaCl b) NaBr	c) NaF	d) NaI
485. The following compounds have been arrange correct order:	d in order of their increasing th	ermal stabilities. Identify the
· · · · · · · · · · · · · · · · · · ·		

K_2CO_3 (I) MgCO ₃ (II)			
$CaCO_3$ (III) $BeCO_3$ (IV)			
a) I < <i>II</i> < <i>III</i> < <i>IV</i>	b) IV < <i>II</i> < <i>III</i> < <i>I</i>	c) IV < <i>II</i> < <i>I</i> < <i>III</i>	d) II < <i>IV</i> < <i>III</i> < <i>I</i>
486. Elements of which group	form anions most readily?		
a) Halogens	b) Alkali metals	c) Oxygen family	d) Nitrogen group
487. The bond order of C_2^+ is:			
a) 1	b) 2	c) 3/2	d) 1/2
488. Which is not a scale of me	easuring electronegativity?		
a) Stevenson's scale		b) Mulliken's scale	
c) Allred-Rochow's scale		d) Pauling scale	
489. In the series ethane, ethy	lene and acetylene, the C $-$	H bond energy is :	
a) The same in all the thr	ee compounds		
b) Greatest in ethane			
c) Greatest in ethylene			
d) Greatest in acetylene			
490. Which ion is not isoelectr	onic with 0 ^{2–} ?		
a) N ^{3–}	b) Na ⁺	c) F ⁻	d) Ti ⁺
491. The ionic radii of N^{3-} , O^2	[–] and F [–] are respectively g	iven by:	
a) 1.36, 1.40, 1.71	b) 1.36, 1.71, 1.40	c) 1.71, 1.40, 1.36	d) 1.71, 1.36, 1.40
492. During change of O_2 to O_2	$\frac{1}{2}$ ion, the electron adds on v	which one of the following	orbitals?
a) π^* orbital	b) π orbital	c) σ^* orbital	d) σ orbital
493. Which of the following ha	as largest size?		
a) Al	b) Al ⁺	c) Al ²⁺	d) Al ³⁺
494. The correct order of incre	easing bond angles in the fo	llowing species is:	
a) $Cl_2 0 < Cl 0_2 < Cl 0_2^-$	b) $ClO_2 < Cl_2O < ClO_2^-$	c) $Cl_2 0 < Cl 0_2^- < Cl 0_2$	d) $ClO_2^- < Cl_2O < ClO_2$
495. In the Periodic Table met	allic character of elements	shows one of the following	trend
a) Decreases down the g	roup and increases across tl	he period	
b) Increases down the gr	oup and decreases across th	ne period	
c) Increases across the p	eriod and also down the gro	oup	
d) Decreases across the p	eriod and also down the gr	oup	
496. When sodium and chlorin	ne react, energy is:		
a) Released and ionic bor	nd is formed		
b) Released and covalent	bond is formed		
c) Absorbed and covalen	t bond is formed		
d) Absorbed and ionic bo	nd is formed		
497. In third row of Periodic T	able from Na to Cl		
a) Electronegativity incre	eases	b) Electronegativity decre	eases
c) Ionisation energy decr	eases	d) Atomic volume increas	es
498. The molecule having sma	llest bond angle is:		
a) AsCl ₃	b) SbCl ₃	c) PCl ₃	d) NCl ₃
499. Which of the following st	atements regarding carbon	monoxide is correct?	
a) It involves <i>sp</i> -orbitals	of carbon		
b) It contains a lone pair	only on carbon		
c) It contains a lone pair	only on oxygen		
d) It carbonyl, oxygen en	d is attached to the metal at	coms	
500. The hydration of ionic co	mpounds involves:		
a) Evolution of heat			
b) Weakening of attractiv	ve forces		
c) Dissociation into ions			

501. Ionic radii are a) Inversely proportional to effective nuclear charge b) Inversely proportional to square of effective nuclear charge c) Directly proportional to effective nuclear charge d) Directly proportional to square of effective nuclear charge 502. Which of the following is the atomic number of a metal? a) 32 d) 38 b) 34 c) 36 503. The electronic configurations of four elements are given below. Arrange these elements in the correct order of the magnitude (without sign) of their electron affinity. XI. $2s^2 2p^5$ XII. $3s^2 3p^5$ $2s^2 2p^4$ XIII. $3s^2 3p^4$ XIV. Select the correct answer using the codes given below a) (i) < (ii) < (iv) < (iii) b) (ii)<(i)<(iv)<(iii) c) (i)<(iii)<(iv)<(ii) d) (iii) < (iv) < (i) < (ii) 504. Which statement is correct? a) X^+ ion is larger than X^- ion b) X^{-} ion is larger in size than X atom c) X^+ and X^- have the same size d) X^+ ion is larger in size than X atom 505. The correct order of size of iodine species is a) $I > I^- > I^+$ b) $I^- > I > I^+$ c) $I^+ > I > I^$ d) $I^- > I^+ > I$ 506. Which of the following statement is wrong? a) The stability of hydrides increase from NH_3 to BiH_3 in group 15 of the periodic table. b) Nitrogen cannot form $d\pi - p\pi$ bond. c) Single N—N bond is weaker than the single P—P bond d) N_2O_4 has two resonance structure 507. Methanol and ethanol are miscible in water due to: a) Covalent character b) Hydrogen bonding character c) Oxygen bonding character d) None of the above 508. Bond order of N_2^- anion is : c) 2.5 d) 1.5 a) 3.0 b) 2.0 509. Among the following, the number of elements showing only one non-zero oxidation state is O, Cl, F, N, P, Sn, Tl, Na, Ti c) 3 d) 4 a) 1 b) 2 510. The structure of IF₅ can be best demonstrated as: d) None of these b) 120 c) a) 511. The correct decreasing order of first ionisation enthalpies of five elements of the second period is a) Be > B > C > N > F b) N > F > C > B > Bec) F > N > C > Be > Bd) N > F > B > C > Be512. The correct order of second ionisation potential of carbon, nitrogen, oxygen and fluorine is: a) C > N > 0 > Fd) F > 0 > N > Cb) 0 > N > F > Cc) 0 > F > N > C513. Of the following elements, which one has the highest electronegativity? a) F b) Cl c) Br d) I 514. A molecule in which sp^2 -hybrid orbitals are used by the central atom in forming covalent bond is:

	a) Hea	h) SO_{2}	c) PCI-	d) Na
515	The hydrogen bonding is	strongest in		
010	a) $0 - H \cdots S$	b) $S - H \cdots O$	c) F — H … F	d) F – H … O
516	In which of the following	process energy is liberated	?	
010	a) $Cl \rightarrow Cl^+ + e$	b) HCl \rightarrow H ⁺ + Cl ⁻	c) $C] + e \rightarrow C]^{-}$	d) $0^{-} + e \rightarrow 0^{2-}$
517	A covalent bond is formed	between the atoms by the	overlapping of orbitals co	ntaining:
01.	a) Single electron			
	b) Paired electron			
	c) Single electron with pa	rallel spin		
	d) Single electron with on	posite spin		
518	. Which main group element	nts have a different number	r of outermost electrons th	an their group number?
	a) Alkali metals	b) Noble gases	c) Halogens	d) None of these
519	. Which one of the followin	g has the highest electrone	gativity?	
	a) Br	b) Cl	c) P	d) Si
520	. If the ionization potentia	l for hydrogen atom is 13.	6 eV. then the ionization p	otential for He ⁺ ion should
	be:		· , F	
	a) 72.2 eV	b) 54.4 eV	c) 6.8 eV	d) 13.6 eV
521	. Which property is commo	only exhibited by a covalent	t compound?)
	a) High solubility in water	r	1	
	b) Low m. p.			
	c) High electrical conduct	ivity		
	d) High b. p.	5		
522	. The energy of antibonding	g molecular orbitals is:		
	a) Greater than the bondi	ng M. O.		
	b) Smaller than the bondi	ng M. O.		
	c) Equal to that of bondin	g M. O.		
	d) None of the above			
523	. Which is not characteristi	c of π -bond?		
	a) π -bond is formed when	n a sigma bond already forr	ned	
	b) π -bond is formed from	hybrid orbitals		
	c) π -bond may be formed	by the overlapping of <i>p</i> -or	bitals	
	d) π -bond results from lat	teral overlap of atomic orbi	tals	
524	. An atom with atomic num	ber 20 is most likely to cor	nbine chemically with the a	atom whose atomic number
	is:			
	a) 11	b) 16	c) 18	d) 10
525	. How does the ionisation e	energy of 1st group elemen	ts vary?	
	a) Increases down the gro	oup	b) Decreases down the gr	oup
	c) Remains unchanged		d) Variation is not regular	•
526	. Which one of the followin	g pairs is isostructural (i. e	., having the same shape ar	nd hybridization)?
	a) [NF ₃ and BF ₃]	b) $[BF_4^- \text{ and } NH_4^+]$	c) [BCl ₃ and BrCl ₃]	d) $[NH_3 \text{ and } NO_3^-]$
527	. Which shows the highest	lattice energy?		
	a) RbF	b) CsF	c) NaF	d) KF
528	. The hybridization of phos	phorus in POCl ₃ is same as	in:	
	a) P in PCl ₃	b) S in SF ₆	c) Cl and ClF ₃	d) B in BCl ₃
529	. Which does not have pyra	amidal geometry?		
	a) SO ₃ ²⁻	b) NO_3^-	c) NH ₃	d) $C(C_6H_5)_3^-$
530	. Dative bond is present in:			
	a) SO ₃	b) NH ₃	c) BaCl ₂	d) BF ₃
531	. Amongst H_2O , H_2S , H_2Se a	and H ₂ Te, the one with high	est boiling point is:	
	a) H ₂ O because of hydrog	en bonding		

	b) H ₂ Te because of higher	r molecular weight		
	c) H ₂ S because of hydrogen bonding			
	d) H ₂ Se because of lower	molecular weight		
532	Which of the following ha	lides is least stable and has	doubtful existence?	
	a) CI ₄	b) GeI ₄	c) SnI ₄	d) PbI ₄
533	Which property of haloge	ens increases from F to I?		
	a) Electronegativity			
	b) First ionisation energy			
	c) Bond length in the mol	ecule		
	d) None of the above			
534	. Which has highest meltin	g point?		
	a) LiCl	b) BeCl ₂	c) BCl ₃	d) CCl ₄
535	Which of the following pl	henomenon will occur whe	n two atoms of an element	with same spin of electron
	in orbitals approach each	other?		
	a) Orbitals will overlap			
	b) Orbitals will not overla	ıp		
	c) Bonding will take place	<u>e</u>		
	d) A diatomic molecule w	ill be formed		
536	The least stable ion amon	g the following is		
	a) Li [_]	b) Be ⁻	c) B ⁻	d) C-
537	. The electron affinity value	es for the halogens show th	e following trend	
	a) $F < Cl > Br > I$	b) F < Cl < Br < I	c) $F > Cl > Br > I$	d) F < Cl > Br < I
538	CO_2 has the same geomet	ry as:		
	(A)HgCl ₂ , (B) NO ₂ , (C) SnO	$\operatorname{Cl}_4,(D)\operatorname{C}_2H_2$		
	a) A and C	b) B and D	c) A and D	d) C and D
539	In which of the following	molecule, the central atom	does not have <i>sp</i> ³ -hybridiz	zation?
	a) CH ₄	b) SF ₄	c) BF_4^-	d) NH_4^+
540	The elements present in t	the core of earth are collecti	vely known as	
	a) Lithophiles	b) Nucleophiles	c) Chalcophiles	d) Siderophiles
541	In the Modern Periodic Ta	able, elements are arranged		
	a) Alphabetically		b) With increasing volum	e
F 40	c) With increasing mass	1 1. 2	d) With increasing atomic	cnumber
542	. Which of the lons has the $x = \frac{2}{2}$	largest ionic radius?	-2 - 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 +	$h \circ 2^+$
F 40	a) Be ²	DJ Mg ²	C) La^{-1}	a) Sr ²
543	. The elements having the	electronic configuration [Kr	$4a^{10}f^{11}, 5s^2p^0a^2, 6s^2$ be	longs to
F 4 4	a) S-DIOCK	D) p -DIOCK	C) a -DIOCK	a) J-DIOCK
544	some of the properties (of the two species, NO_3 at	Id H ₃ 0° are described be	now. which one of them is
	correct?	tion for the control store wi	the different structure	
	a) Dissimilar in hydrioiza	a hyperidization for the cont	ith different structure	
	a) Jacostructural with diffe	e hydridization for the cent	ral atom	
	d) Similar is hybridization	e fon the control stom with	different structure	
E1E	Which compound shows	hudrogon bonding?	unierent structure	
545		b) C H	с) РСН СНО	а) рец мисц
516	The ionization notantial c	$UJ U_2 II_6$	+2	uj Kuliziniuli3
540	a) $I_i > K > C_s$	b) $\mathbb{R} > I_i > K$	c) $C_{S} > I_{i} > B$	d) $C_{S} < I_{i} < K$
54.7	Which shows non-directiv	onal honding?		$u_j u_j \sim Li < K$
577	a) BCl ₂	h) CsCl	c) NCla	d) BeCla
548	Maximum number of cov	alent honds hetween two lil	ke atoms can he	a, 20013
510	a) Three	h) Two	c) Four	d) One
	aj 11100	~, I WO		

549.	<i>o</i> -hydroxy benzaldehyde, alt because:	though contains enolic	group but does not give	test of group with \ensuremath{FeCl}_3	
	a) It is steam volatile				
	b) Of intermolecular H-bondi	ng			
	c) Of intermolecular H-bondi	ng			
	d) All of the above				
550.	Bond energy of covalent 0 $-$	H bond in water is :			
	a) Greater than bond energy	of hydrogen bond			
	b) Equal to bond energy of hy	drogen bond			
	c) Less than bond energy of h	ıydrogen bond			
	d) None of the above				
551.	Which is expected to show pa	aramagnetism?			
	a) ClO_2 b)	SO ₂	c) CO ₂	d) SiO_2	
552.	Which pair has both member	s from the same period of	of Periodic Table?		
	a) Cl, Br b)	Ca, Cl	c) Na, Ca	d) Na, Cl	
553.	In which of the following arra	angements, the sequence	e is not strictly according to	o the property written	
	against it?				
	a) $HF < HCl < HBr < HI$: in	creasing acid strength	_		
	b) $\operatorname{NH}_3 < \operatorname{PH}_3 < \operatorname{AsH}_3 < \operatorname{SbH}_3$	H_3 : increasing basic stre	ngth		
	c) $B < C < O < N$: increasin	g first ionization enthalp	у		
	d) $CO_2 < SiO_2 < SnO_2 < PbO_2$	O ₂ : increasing oxidizing	power		
554.	The half of the difference bet	ween the number of ele	ctrons in bonding molecula	ar orbitals and antibonding	
	molecular orbitals is known a	as:			
	a) Bond order b)	Proton order	c) Molecular order	d) Electron order	
555.	Which can be described as a r	molecule with residual b	onding capacity?		
	a) N_2 b)	CH ₄	c) NACI	d) $BeCl_2$	
556. The intermolecular attractive forces vary in the order:					
	a) water < <i>alcohol</i> < <i>ether</i>				
	b) water > alconol > ether				
	c) alconol > water < etner				
557	a) etner > water > alconol	ant?			
557.	a) 1 1 dishlaraathana	ent:			
	b) Cic_1 2-dichloroothone				
	c) Trans 1 2-dichlorothene				
	d) None of the above				
558	When ionic compounds get d	issolved in water			
550.	a) They involve heat changes				
	b) Inter-ionic attraction is reduced				
	c) long show dipole-ion attraction with water molecules				
	d) All are correct				
559.	H_2O boils at higher temperat	ure than H ₂ S because it i	is capable of forming:		
	a) Ionic bonds b)	Covalent bonds	c) Hydrogen bonds	d) Metallic bonds	
560.	Which one of the following el	ements has the highest i	onisation energy?	.,	
	a) [Ne] $3s^2 3p^1$ b)	$[Ne]3s^23p^3$	c) [Ne] $3s^2 3p^2$	d) [Ar] $3d^{10}$, $4s^24p^2$	
561.	Which element exist as a solid	d at 25°C and 1 atm pres	sure among the following?	1	
	a) Br b)	Cl	c) Hg	d) P	
562.	In allene structure, three cark	bon atoms are joined by:	-		
	a) Three σ -and three π -bonds				
		5			

	c) Two σ -and two π -bond	ls			
F62	a) Three π -bonds only	mont the compatistation of	nt about DIL and NIL is.		
503.	63. Among the following statement, the correct statement about PH_3 and NH_3 is: a) NH_3 is a better electron donor because the lone pair of electron occupies spherical <i>s</i> -orbital and is less directional				
	b) $\frac{PH_3}{directional}$ is a better electron	n donor because the lone pa	air of electron occupies sp^3	-orbital and is more	
	c) $\frac{\text{NH}_3 \text{ is a better electron}}{\text{directional}}$	n donor because the lone p	air of electron occupies sp ³	³ -orbital and more	
	d) $\frac{PH_3}{directional}$ is a better electron	n donor because the lone pa	air of electron occupies sph	erical <i>s</i> -orbital and is less	
564.	Which of the following pa top to down in a group?	irs show reverse propertie	es on moving along a period	from left to right and from	
FCF	a) Nuclear charge and ele c) Atomic radius and elec	ctron affinity tron affinity	b) Ionisation radius and e d) None of the above	electron affinity	
565.	Covalent radius of Li is 12	3 pm. The crystal radius of	f Li will be:	100	
	a) > 123 <i>pm</i>	b) < 123 <i>pm</i>	c) +123 pm	$d) = \frac{125}{2} pm$	
566.	 566. Bond length decreases with: a) Decrease in size of the atom b) Increase in the number of bonds between the atoms c) Decrease in bond order d) Decrease in the number of bonds between the atoms 				
567.	Effective nuclear charge of	of an atom depends on:			
	a) The atomic number of	the atom			
	b) The charge on the ion				
	c) The shielding effect				
	d) Both the actual nuclear	charge and the shielding e	effect		
568.	Which of the following ox	ides is most basic?			
	a) Na_20	b) SiO_2	c) SO_2	d) All are equally basic	
569.	Which one of the followin	g ions has the highest value $1 > R^{2+}$	e of ionic radius?	N 8-	
FFO	aj Li'	b) B ³⁺	c) 0 ²	d) F	
570.	Which has the lowest bon	d angle?			
F7 4	a) NH_3	b) BeF ₂	$CJ H_3 U'$	d) CH ₄	
5/1.	Pauling's electronegativit	y values for elements are u	Setul in predicting		
	a) Polarity of bonds in mo	Diecules	b) Position of elements in	electromotive series	
F7 0	c) Coordination number		d) Dipole moment of varie	ous molecules	
572.	The correct order of decre	easing polarisability of ion			
F7 0	a) CI, Br, I, F	bJF,I,Br,CI	CJI,Br,CI,F	a)F,CI,Br,I	
5/3.	Strongest oxidising agent	among nalogen is		ם (נ	
F7 4	a) I ₂ Which contains a coordin	$DJB\Gamma_2$	cj cl ₂	a) F ₂	
574.	which contains a coordin	ate and covalent bond?			
	a) $BaUl_2$				
575	$U_J \Pi_2 U$ Which of the following est	te comptimes as a motal an	d comptimes as a non-mate	512	
575.	a) Ha	b) Cl	u somennes as a non-ineta م) لا	u: d) ለተ	
576	aj 11g The lowest ionization and	UJUI would be accorded w	UJ IN ith the electronic structure	иј лі	
570.	a) $1s^2$, $2s^2$ $2p^6$, $3s^1$	b) $1s^2$, $2s^22p^5$	c) $1s^2$, $2s^22p^6$	d) 1s ² , 2s ² 2p ⁶ , 3s ²	

577.	IP is influenced by:					
	a) Size of atom					
	b) Charge on nucleus					
	c) Electrons present in inner shells					
	d) All of the above					
578.	The bond between chlori	ne and bromine in BrCl ₃	is:			
	a) Ionic					
	b) Non-polar					
	c) Polar with negative er	id on Br ⁻				
	d) Polar with negative er	id on Cl ⁻				
579.	The hydration energy of	Mg ²⁺ is larger than that o	of:			
	a) Al ³⁺	b) Na ⁺	c) Be ²⁺	d) None of these		
580.	Which of the following ch	naracteristics regarding h	alogens is not correct?			
	a) Ionization energy deci	reases with increase in at	omic number.			
	b) Electronegativity decr	eases with increase in ato	omic number.			
	c) Electron affinity decre	ases with increase in ato	mic number.			
	d) Enthalpy of fusion inc	reases with increase in at	comic number.			
581.	IP ₂ for an element is inva	riably higher than IP ₁ bec	cause :			
	a) The size of cation is sr	naller than its atom				
	b) It is difficult to remove	e 'e' from cation				
	c) Effective nuclear char	ge is more for cation				
	d) All of the above					
582.	Which of the following is	correct?				
	a) Decreases in bond len	gth means increase in bo	nd strength			
	b) Covalent radius of car	bon is less than that of nit	trogen			
	c) Single bonds are stron	ger than double bonds				
	d) Fe (III) chloride canno	t exist in the dimeric form	n Fe ₂ Cl ₆			
583.	Molecular orbitals theory	/ was proposed by:				
	a) Werner	b) Kossel	c) Moseley	d) Mullikan		
584.	Proton plays an importan	nt role in bonding .				
	a) Electrovalent	b) Hydrogen	c) Covalent	d) Coordinate		
585.	Which cannot exist on th	e basis of M. O. theory?				
	a) C ₂	b) He ₂ ⁺	c) H ₂ ⁺	d) He ₂		
586.	Which of the following st	atement is correct?				
	a) Polarization of an anio	on is maximum by high ch	arged cation			
	b) Small sized cation min	imises the polarisation				
	c) A small anion brings a	bout a large degree of po	larization			
	d) A small anion undergo	es a high degree of polar	ization			
587.	The double bonds betwe	en the two carbon atoms	in ethylene consists of:			
	a) Two sigma-bonds at r	ight angles to each other.				
	b) One sigma-bond and o	one pi-bond				
	c) Two pi-bonds at right	angles to each other				
	d) Two pi-bonds at an an	gle of 60° to each other				
588.	Which compound among	the following has more o	covalent character?			
	a) AlCl ₃	b) AlI ₃	c) MgI ₂	d) Nal		
589.	Iron is tougher than sodi	um because:				
	a) Iron atom is smaller					
	b) Iron atoms are more o	losely packed				
	c) Metallic bonds are stre	onger in iron				
	d) None of the above					
590. In HCHO carbon atom h	as hybridisation:					
--	---	-----------------------------------	--			
a) <i>sp</i>	b) <i>sp</i> ²	c) <i>sp</i> ³	d) None of these			
591. Amongst the elements	with following electronic co	nfigurations, which one of	them may have the highest			
ionization energy?						
a) Ne[3s ² 3 p ¹]	b) Ne[3 <i>s</i> ² 3 <i>p</i> ³]	c) Ne[$3s^23 p^2$]	d) Ar[$3d^{10}4s^24p^3$]			
592. In which pair, the first a	tom or ion is not larger than	the second?				
a) N, F	b) Cl [–] , Cl	c) 0, S	d) Fe ²⁺ , Fe ³⁺			
593. The correct order of ion	ic radii is:					
a) $Fe > Fe^{2+} > Fe^{3+}$	b) $0^{2-} > 0^{-} > 0^{+}$	c) $I^- > I > I^+$	d) All of these			
594. Greater the dipole mom	ent:					
a) Grater is the ionic nat	ture					
b) Lesser the polarity						
c) Smaller the ionic natu	ure					
d) None of these						
595. The element with the element	ectronic configuration as [Ai	r] $3d^{10}4s^24p^3$ represents a				
a) Metal	b) Non-metal	c) Metalloid	d) Transition element			
596. Bonded electron pairs p	resent in octahedral SF ₆ mo	lecule:				
a) 3	b) 4	c) 6	d) 5			
597. First ionisation energy i	s highest for					
a) Noble gases		b) Platinum metals				
c) Transition elements		d) Inner-transition eleme	ents			
598. According to the Period	ic Law of elements, the varia	ition in properties of eleme	nts is related to their			
a) Atomic masses		b) Nuclear masses				
c) Atomic masses		d) Nuclear neutron-proto	on number ratios			
599. The angle between the o	overlapping of one s-orbital	and one <i>p</i> -orbital is:				
a) 180°	b) 120°	c) 109°28′	d) 120°60′			
600. The ionisation energy w	vill be maximum for the proc	ess:				
a) Ba \rightarrow Ba ²⁺	b) Be \rightarrow Be ²⁺	c) $Cs \rightarrow Cs^+$	d) Li → Li ⁺			
601. Ionization energy of nitr	rogen is more than oxygen b	ecause:				
a) Nucleus has more att	raction for electrons					
b) Half-filled <i>p</i> -orbitals a	are more stable					
c) Nitrogen atom is sma	ll					
d) More penetration effe	ect					
602. One would expect the el	emental form of Cs at room	temperature to be:				
a) A network solid	b) A metallic solid	c) Non-polar liquid	d) An ionic liquid			
603. The carbon atom in grap	phite is:					
a) <i>sp</i> ² -hybridized	b) <i>sp</i> ³ - hybridized	c) sp-hybridized	d) None of these			
604. Which involves a bond f	forming process?					
a) Stretching rubber						
b) Dissolution of sugar i	n water					
c) Rusting of iron						
d) Emission of γ -rays by	radioactive iron					
605. Which element has high	est electronegativity?					
a) F	b) He	c) Ne	d) Na			
606. The trivalent ion having	largest size in lanthanide se	eries is				
a) Ti	b) Zr	c) Hf	d) La			
607. PF_3 molecule is:	15m (11 (17 -					
a) Square planar	b) Trigonal bipyramidal	c) Tetrahedral	d) Trigonal pyramidal			
608. When an element of ver	y low ionisation potential is	allowed to react with an e	lement of very high electron			
affinity, we get:						

	a) A weak ionic bond b) A strong ionic bond	c) A polar covalent bond	d) No bond
ł	609. Which of the following is an amphoteric oxide?		
	a) SO_3 b) MgO	c) Al_2O_3	d) P ₄ O ₁₀
6	610. In which element shielding effect is not possible?		
	a) H b) Be	c) B	d) N
6	611. One mole of magnesium in the vapour state absorbe	d 1200 kJmol ⁻¹ of energy. I	If the first and second
	ionisation energies of Mg are 750 and 1450 kJmol $^{-1}$	respectively, the final com	position of the mixture is
	a) 31%Mg ⁺ + 69%Mg ²⁺	b) 69%Mg ⁺ + 31%Mg ²⁺	
	c) $86\%Mg^+ + 14\%Mg^{2+}$	d) 14%Mg ⁺ + 86%Mg ²⁺	
(612. The Cl – C – Cl angle in 1, 1, 2, 2-tetrachloroethene a	nd tetrachloromethane res	spectively will be about:
	a) 109.5° and 900° b) 120° and 109.5°	c) 90° and 109.5°	d) 109.5° and 120°
ł	613. In which of the following pairs bond angle is 109°28	?	
	a) $[NH_4^+], [BF_4^-]$ b) $[NH_4^+], [BF_3]$	c) [NH ₃], [BF ₄]	d) [NH ₃], [BF ₃]
ł	614. Polarization of electrons in acrolein may be written a	as:	
	a) $CH_2 = CH - CH = O$ b) $CH_2 = CH - CH = O$	c) $\operatorname{CH}_{2}^{\delta^{-}} = \operatorname{CH}_{\delta^{+}} - \operatorname{CH} = O$	d) $\operatorname{CH}_{2}^{\delta^{+}} = \operatorname{CH} - \operatorname{CH} = \operatorname{O}^{\delta^{-}}$
1	615. Molecular shape of SF ₄ , CF ₄ and XeF ₄ are:		
	a) The same with 2, 0 and 1 lone pair of electrons res	spectively	
	b) The same with 1, 1 and 1 lone pair of electrons res	spectively	
	c) Different with 0, 1 and 2 lone pairs of electrons re	spectively	
	d) Different with 1, 0 and 2 lone pairs of electrons re	spectively	
(616. Which one is the weakest bond?		
	a) Hydrogen b) Ionic	c) Covalent	d) Metallic
(617. Which has the lowest anion to cation size ration?		
	a) LiF b) NaF	c) CsI	d) CsF
(618. Which set has strongest tendency to form anions?		
	a) Ga, In, Te b) Na, Mg, Al	c) N, O, F	d) V, Cr, Mn
(619. Which one is most polar?		
	a) CCl_4 b) $CHCl_3$	c) CH ₃ Cl	d) CH ₃ OH
ł	620. Acetate ion contains:		
	a) One C, O single bond and one C, O double bond		
	b) Two C, O single bonds		
	c) Two C, O double bonds		
	d) None of the above		
(621. The nodal plane in the π -bond of ethane is located in	:	
	a) The molecular plane		
	b) A plane parallel to the molecular plane		
	c) A plane perpendicular to the molecular plane whi	ch bisects the carbon-carbo	on σ -bond at right angle
	d) A plane perpendicular to the molecular plane whi	ch contains the carbon-car	bon σ-bond
(622. Which of the following isoelectronic ions has lowest	ionisation energy?	N 6 ²
	a) Cl^2 b) Ca^{2+}	c) K ⁺	d) S ²
(623. The electronegativity difference between N and F is	greater than that between	N and H yet the dipole
	moment of $NH_3(1.5 \text{ D})$ is larger than that of $NF_3(0.2 \text{ D})$	D). this is because:	
	a) In NH_3 as well as NF_3 the atomic dipole and bond	dipole are in opposite dire	ctions.
	In NH ₃ the atomic dipole and bond dipole are in t b)	ne opposite directions whe	ereas in NF_3 these are in the
	same direction.	ad dinala and in the second	ination
	c) III $N\Pi_3$ as well as III NF_3 the atomic dipole and bol	in the same direction	II ECUOII.
	d) $\frac{111}{000}$ NH ₃ the atomic dipole and bond dipole are d) opposite directions.	in the same direction wi	nereas in NF ₃ these are in

624. In the electronic structure of acetic acid there are:

a) 16 shared and 8 unshared va	alency electrons											
 b) 8 shared and 16 unshared valency electrons c) 12 shared and 12 unshared valency electrons d) 18 shared and 6 unshared valency electrons 												
 c) 12 shared and 12 unshared valency electrons d) 18 shared and 6 unshared valency electrons 25. Van der Waals' forces between molecules depend upon: 												
d) 18 shared and 6 unshared va	alency electrons											
625. Van der Waals' forces between	molecules depend up	on:										
a) Number of electrons b) C	a) Number of electrons b) Charge on nucleus c) Radius of atoms d) All of these 26 . IP ₁ and IP ₂ of Mg are 178 and 348 kcal mol ⁻¹ . The energy required for the reaction,											
626. IP_1 and IP_2 of Mg are 178 and 3	48 kcal mol^{-1} . The en	ergy required for the react	ion,									
$Mg \rightarrow Mg^{2+} + 2e^{-}$ is:												
a) +170 kcal b) +	-526 kcal	c) –170 kcal	d) –526 kcal									
627. Among NaF, NaCl, NaBr and Na	I, the NaF has highest	melting point because :										
a) It has maximum ionic charac	a) It has maximum ionic character b) It has minimum ionic character											
b) It has associated molecules												
c) It has associated molecules												
d) It has least molecular weight												
628. Which does not show hydroger	n bonding?											
a) C_2H_FOH b) L	iauid NH2	c) H ₂ O	d) Liquid HBr									
629. A trend common to both group	I and VII elements in	the Periodic Table as atom	ic number increases is									
a) Atomic radius increases		b) Oxidising power increa	ISPS									
c) Reactivity with water increa	ISAS	d) Maximum valency incr	eases									
630. What is the dominant intermol	ecular force or bond t	hat must be overcome in co	onverting liquid CH ₂ OH to a									
gas?												
a) London dispersion force												
h) Hydrogen honding												
c) Dipole-dipole interaction												
d) Covalent bond												
621 Which among the following alo	monte hae loweet val	in of ionisation onergy?										
a) Dh	n		4) C									
a f D	II	c_{j} of a block?	u) C									
a) 7 15			4) 2 12									
a) $7, 15$ DJ 5	, 12 - finat innination an an	CJ 9, 17	uj 3, 12									
633. The correct order of decreasing	g first ionisation energ	gy is										
a) $C > B > Be > Li$ b) C	> Be $>$ B $>$ L1	c) $B > C > Be > Ti$	a) Be $>$ Li $>$ B $>$ C									
634. The total number of bonds in a	cetylene molecules is:											
a) One b) T	WO	c) Three	d) Five									
635. The elements X, Y, Z and T have	e the indicated electro	onic configuration. Starting	with the innermost shell,									
which is the most metallic elem	nent?											
a) $X = 2, 8, 4$ b) Y	7 = 2, 8, 8	c) $Z = 2, 8, 8, 1$	d) $T = 2, 8, 8, 7$									
636. Maximum covalence of an atom	n of an element is equa	al to:										
a) Number of unpaired electron	ns in the <i>s</i> -and <i>p</i> -orbi	tals of valency shell										
b) Number of unpaired electron	ns in the <i>p</i> -orbitals of	valency shell										
c) Total number of electrons in	the <i>s</i> -and <i>p</i> -orbitals of	of valency shell										
d) Total number of electrons in	h the <i>p</i> -orbitals of vale	ncy shell										
637. How many unpaired electrons	are present in N ₂ ⁺ ?											
a) 1 b) 2		c) 3	d) 4									
638. Which of the following has show	rtest carbon-carbon b	ond length?										
a) C ₆ H ₆ b) C	₂ H ₆	c) C ₂ H ₄	d) C ₂ H ₂									
639. Which of the following is larges	st?											
a) Cl ⁻ b) S ⁻	2-	c) Na ⁺	d) F ⁻									
640. Which <i>p</i> -orbitals overlapping v	vould give the stronge	est bond?										

\bigcirc			
X			
a)			
O			
\bigcap			
bJ			
\bigcup			
c)			
d) 🕥			
(\bigcirc)			
\sim			
(())			
641, H = 0 = H bond angle in H ₂	0 is 104.5° and not 109°	28' because of:	
a) High electronegativity of	oxygen		
b) Bond pair-bond pair repu	ulsion		
c) Lone pair-lone pair repu	lsion		
d) Lone pair –bond pair rep	ulsion		
642. Which of the following state	ements is wrong?		
a) The stability of hydrides	increases from NH ₃ to B	iH ₃ in group 15 of the Peric	dic Table.
b) Nitrogen cannot from $d\pi$	$r - p\pi$ bond.) h an d	
c) Single $N - N$ bond is weat	Ker than the single $P - F$	bond.	
M_2O_4 has two resonance	in honzono is:		
a) 2 h)) 6	c) 4	9 (P
644. In which one of the followir	ng species, the central at	om has the type of hybridiz	ation which is not the same
as that present in other three	ee?		
a) SF_4 b) I ₃	c) $SbCl_5^{2-}$	d) PCl ₅
645. Which is correct order for e	lectron gain enthalpy?		
a) $S < O < Cl < F$ b	b) $0 < S < F < Cl$	c) $Cl < F < S < 0$	d) F < Cl < 0 < S
646. The first ionisation energy of	of lithium will be		
a) Greater than Be b) Less than Be	c) Equal to that of Na	d) Equal to that of F
647. When two atomic orbitals c	ombine, they form:		
a) One molecular orbitals			
b) I wo molecular orbitals	arbitala		
d) Two antibonding molecular	lar orbitals		
648. The set representing the co	rrect order of first ionisa	tion energy is	
a) $K > Na > Li$	b) Be > Mg > Ca	c) $B > C > N$	d) Ge > <i>Si</i> > <i>C</i>
649. The electronic configuration	n of the element with ma	ximum electron affinity is	.)
a) $1s^2$, $2s^2$, $2p^3$ b	b) $1s^2$, $2s^2$, $2p^5$	c) $1s^2$, $2s^2$, $2p^6$, $3s^2$, $3p^5$	d) 1s ² , 2s ² , 2p ⁶ , 3s ² , 3p ³
650. Which of the following has a	- cogular totrahodral chan		• · •
a) $[Ni(CN)]^{2-}$	egular tetraneurai shape	e?	
) SF ₄	e? c) [BF ₄] ⁻	d) XeF ₄
651. The smallest among the foll	b) SF_4 owing ions is	e? c) [BF ₄] ⁻	d) XeF ₄

652. Coordinate compounds are formed by: a) Transfer of electrons b) Sharing of electrons c) Donation of electron pair d) None of the above 653. The statement that is true for the long form of the Periodic Table is a) It reflects the sequence of filling the electrons in the order of sub-energy levels s, p, d and fb) It helps to predit the stable valency states of the elements c) If reflects trends in physical and chemical properties of the elements d) All of the above 654. Which of the following elements never show positive oxidation number? b) Fe d) F a) 0 c) Ga 655. The energy released when a neutral gaseous atom takes up an electron is called: b) Solvation energy a) Ionization energy c) Electronegativity d) Electron affinity 656. The structure of XeF₄ is: a) Planar b) Tetrahedral c) Square planar d) Pyramidal 657. Which one of the following is expected to have largest size? b) 0²⁻ c) N³⁻ d) Al³⁺ a) F-658. Debye an unit of dipole moment is of the order of: a) 10^{-10} esu cm b) 10⁻¹⁸ esu cm c) 10⁻⁶ esu cm d) 10⁻¹² esu cm 659. Among LiCl, BeCl₂, BCl₃ and CCl₄, the covalent bond character follows the order: a) LiCl > BeCl₂ > BCl_3 > CCl_4 b) LiCl < BeCl₂ < BCl₃ < CCl₄ c) LiCl > $BeCl_2 > CCl_4 > BCl_3$ d) LiCl < BeCl₂ < BCl₃ > CCl₄ 660. Which one of the following elements has lower value of ionisation energy? a) Mg b) Rb c) Li d) Ca 661. Identify the least stable ion amongst the following: a) Li^{_} b) Be⁻ c) B⁻ d) C⁻ 662. For the type of interactions: (I) Covalent bond, (II) van der Waals' forces, (III) Hydrogen bonding, (IV) Dipole-dipole interaction, which represents the correct order of increasing stability? a) (I) < (III) < (II) < (IV) b) (II) < (III) < (IV) < (I) c) (II) < (IV) < (III) < (*I*) d) (IV) < (II) < (III) < (I)663. According to Fajan's rule polarization is more when: a) Small cation and large anion b) Small cation and small anion c) Large cation and large anion d) Large cation and small anion 664. Which is correct about ionisation potential? a) It is independent of atomic radii b) It increases with increase in atomic radii c) It remains constant with increase in atomic radii d) It decreases with increase in atomic radii 665. A sudden large jump between the value of first and second ionisation energies of elements would be associated with which of the following electronic configurations? c) $1s^2$, $2s^2$, $2p^6$, $3s^13p^2$ d) $1s^2$, $2s^22p^6$, $3s^2$ a) $1s^2$, $2s^22p^6$, $3s^1$ b) $1s^2$, $2s^22p^6$, $3s^23p^1$ 666. The pair of amphoteric hydroxides is a) LiOH, $Al(OH)_3$ b) $Be(OH)_2$, $Mg(OH)_2$ c) $B(OH)_2$, $Be(OH)_2$ d) $Be(OH)_2$, $Zn(OH)_2$

667. Which one has more to	endency to form covalent co	mpounds?	
a) Ba	b) Be	c) Mg	d) Ca
668. The electron affinity for	or inert gases is likely to be:		
a) High	b) Small	c) Zero	d) Positive
669. Increasing order (low	er first) of size of the various	s hybridised orbitals is:	
a) sp, sp^2, sp^3	b) <i>sp</i> ³ , <i>sp</i> ² , <i>sp</i>	c) <i>sp</i> ² , <i>sp</i> ³ , <i>sp</i>	d) sp^2 , sp , sp^3
670. Shape of molecules is	decided by:		
a) Sigma bond			
b) π -bond			
c) Both sigma and π -b	onds		
d) Neither sigma nor τ	r-bonds		
671. Which statement is wi	ong?		
a) Hybridization is the	e mixing of atomic orbitals p	rior to their combining into	molecular orbitals
b) sp^2 -hybrid orbitals	are formed from two <i>p</i> -atom	nic orbitals and one <i>s</i> -atomi	ic orbitals
c) dsp^2 - hybrid orbita	ls are all at 90° to one anoth	er	
d) d^2sp^3 -hybrid orbita	als are directed towards the	corners of a regular tetrahe	dron
672. Which one of the follo	wing has maximum ionisatio	on potential?	
a) K	b) Be	c) Na	d) Mg
673. In OF ₂ , number of bon	d pairs and lone pairs of elec	ctrons are respectively:	-)8
a) 2.6	b) 2.8	c) 2.10	d) 2.9
674. Which is the correct of	rder of electronegativity?	-) _,	-)_,-
a) $F > N < 0 > C$	b) $F > N > O > C$	c) $F > N > 0 < C$	d) $F < N < Q = C$
675 Which of the following	has maximum hond energy	7	
	b) F_{a}	c) Bra	q) la
676 In which molecule sult	abur atom is not sn^3 -hybridi	izod?	uj 12
$2) SO^{2-}$	b) SE	c) SF.	d) None of these
677 Hudrogon fluorido is a	liquid unlike other hydroge	n halidas hasausa	uj None or these
a) HE moloculos assoc	inquiù unike otier nyuroge	il liallues because.	
b) E is highly reactive	s	8	
c) HE is the weakest a	; cid of all hydrogon halidog		
d) Eluorino atom is the	smallest of all halogons		
679 The O U head distant	e sindhest of an halogens		
σ/σ . The $O = \Pi$ bolid distance σ^2	h) 1 22 Å	-) 0.0 <i>C</i> Å	
aj 1.0 A	DJ 1.33 A	CJ 0.96 A	uj 1.45 A
6/9. van der waals forces	are maximum in:		1) A - D
a) HBr	b) LiBr	C) LIUI	a) AgBr
680. The increasing order ($2 = 0^{2} + k^{+}$	b) c_1^{2+} c_2^{++} c_3^{+-} c_3^{2+}	isoelectronic species is: $x^{+} = x^{2} = x^{-2} + x^{-2}$	$1) c_{1} = c_{1}^{2} + u_{2}^{2} + c_{2}^{2} = c_{1}^{2}$
a) S^2 , CI, Ca ²⁺ , K ⁺	b) Ca^{2+} , K^{+} , CI^{-} , S^{2-}	c) K', S ² , Ca ² ', Cl	d) CL, Ca ²⁺ , K ⁺ , S ²
681. Which of the following	g exhibits diamagnetic behav	'10r:	
a) NO	b) O_2^2	c) 0_2^+	d) 0 ₂
682. The electronic configu	ration of sodium and chlorin	ie justifies:	
a) Their physical state			
b) Their reactivity			
c) The formation of el	ectrovalent compound NaCl		
d) None of the above			
683. Identify the correct or	der of solubility of Na ₂ S, CuS	S and ZnS in aqueous mediu	m:
a) Cus > ZnS > Na_2S	b) $ZnS > Na_2S > CuS$	c) $Na_2S > CuS > ZnS$	d) $Na_2S > ZnS > CuS$
684. The correct order of ra	adii is		
a) N < <i>Be</i> < <i>B</i>	b) $F^- < 0^{2-} < N^{3-}$	c) Na <i>< Li < K</i>	d) $Fe^{3+} < Fe^{2+} < Fe^{4+}$
685. The compound showing	ng maximum covalent charao	cter is:	
a) BI ₃	b) BCl ₃	c) BF ₃	d) BBr ₃

686. The nature of bonding in CCl_4 and CaH_2 :		
a) Electrovalent in both CCl ₄ and CaH ₂		
b) Covalent in CCl_4 and electrovalent in CaH_2		
c) Electrovalent in CCl_4 and covalent in CaH_2		
d) None of the above		
687. In which of the following pairs the two species are	not isostructural?	
a) PCl ⁺ and SiCl ₄ b) PF ₅ and BrF ₅	c) AlF ₆ ^{3–} and SF ₆	d) CO_3^{2-} and NO_3^{-}
688. The pair of species having identical shape of both	species:	
a) BF ₃ , PCl ₃ b) PF ₅ , IF ₅	c) CF ₄ , SF ₄	d) XeF ₂ , CO ₂
689. Which of the following halogen acids is least basic	?	
a) HF b) HCl	c) HBr	d) HI
690. Beryllium shows diagonal relationship with		
a) Mg b) Na	c) B	d) Al
691. The compound with the maximum dipole moment	among the following is:	
a) <i>p</i> -dichlorobenzene b) <i>m</i> -dichlorobenzene	c) o-dichlorobenzene	d) Carbon tetrachloride
692. Which of the following molecules is covalent and s	hows expanded octet in it	s formation?
a) HF b) NF ₃	c) BF ₃	d) ClF ₃
693. Correct order of first ionisation potential among th	ne following elements Be,	B, C, N, O is
a) B < Be < C < O < N b) B < Be < C < N < O	c) Be < B < C < N <	0 d) Be $< B < C < 0 < N$
694. For making good quality mirrors, plates of float gla	ass are used. These are ob	tained by floating molten glass
over a liquid metal which does not solidify before	glass. The metal used can	be
a) Mercury b) Tin	c) Sodium	d) Magnesium
695. Which of the following pairs has both members of	the same period of the Pe	riodic Table?
a) Na – Cl b) Na – Ca	c) Ca – Cl	d) Cl – Br
696. The increasing order of the first ionization enthalp	pies of the elements B, P, S	and F (lower first) is:
a) $F < S < P < B$ b) $P < S < B < F$	c) B < P < S < F	d) $B < S < P < F$
697. Which of the following element has higher ionisati	on energy?	-
a) Boron b) Carbon	c) Oxygen	d) Nitrogen
698. The correct order of acidic strength		
a) $Cl_2O_7 > SO_2 > P_4O_{10}$	b) $K_2 0 > Ca 0 > Mg 0$)
c) $CO_2 > N_2O_5 > SO_3$	d) $Na_2 0 > Mg0 > Al_2$	03
699. Which of the following element is metalloid?	,	
a) Bi b) Sn	c) Ge	d) C
700. The number of lone pairs of electron on Xe in XeO	F_4 is:	
a) 1 b) 2	c) 3	d) 4
701. Which of the following metals exhibits more than	one oxidation state?	
a) Na b) Mg	c) Al	d) Fe
702. Among the following which has the highest cation	to anion size ratio?	-
a) CsI b) CsF	c) LiF	d) NaF
703. The correct order of ionic radius is	-	-
a) $Ti^{4+} < Mn^{7+}$ b) ${}^{35}Cl^- > {}^{37}Cl^-$	c) $K^+ > Cl^-$	d) $P^{3+} > P^{5+}$
704. An electrovalent compound does not exhibit space	e isomerism due to:	-
a) Presence of ions		
b) High melting point		
c) Strong electrostatic forces between constituent	ions	
d) Non-directional nature of electrovalent bond		
705. The element with the lowest ionisation potential is	S	
a) Na b) K	c) Rb	d) Cs
706. Which has the largest distance between the carbon	n hydrogen atom?	<i>,</i>
a) Ethane b) Ethene	c) Ethyne	d) Benzene
, , , , , , , , , , , , , , , , , , , ,		,

707. Which one pair of atoms	or ions will have same conf	iguration?	
a) Li ⁺ and He ⁻	b) Cl [–] and Ar	c) Na and K	d) F ⁺ and Ne
708. Atoms or group of atoms	which are electrically charge	ged are known as:	
a) Anions	b) Cations	c) Ions	d) Atoms
709. The element with atomic	number 36 belongs toblo	ock in the Periodic Table.	
a) <i>p</i>	b) <i>s</i>	c) <i>f</i>	d) <i>d</i>
710. Which bond is more pola	r?		
a) Cl – Cl	b) N — F	c) C – F	d) 0 — F
711. If the electronegativity di	ifference between two atom	ns A and B is 2.0, then the p	ercentage of covalent
character in the molecule	e is		C
a) 54%	b) 46%	c) 23%	d) 72%
712. In the following, the elem	ient with the highest ionisat	tion energy is	
a) [Ne] $3s^2 3n^1$	b) [Ne] $3s^23n^3$	c) $[Ne]3s^23n^2$	d) [Ne]3s ² 3n ⁴
713 Ionization potential is low	west for		
a) Halogens	h) Inert gases	c) Alkaline earth metals	d) Alkali metals
714 Electron affinity is nositiv	we when	ej mikanne carti metals	a) mixin metals
a) Ω changes into Ω^-		b) 0^{-} changes into 0^{2-}	
a) 0 changes into 0^+		d) Electron offinity is alw	ave pagative
C) O changes into O	avalant abaya atay batuya ay y	u) Electron annity is alw	ays negative
715. A bond with maximum co	ovalent character between i	ion-metanic elements is io	rmea:
a) Between identical atol	ms		
b) Between chemically si	imilar atoms		
c) Between atoms of wid	ely different electro-negativ	vities	
d) Between atoms of the	same size		
716. A <i>sp</i> ³ -hybrid orbital cont	tains :		
a) 1/4 <i>s</i> -character	b) 1/2 <i>s</i> -character	c) 2/3 <i>s</i> -character	d) 3/4 <i>s</i> -character
717. In a crystal, the atoms are	e located at the positions of	:	
a) Maximum potential er	nergy		
b) Minimum potential en	ergy		
c) Zero potential energy			
d) Infinite potential ener	gy		
718. Water has high heat of va	aporization due to:		
a) Covalent bonding	b) H-bonding	c) Ionic bonding	d) None of the above
719. The IP_1 , IP_2 , IP_3 , IP_4 , and	IP_5 of an element are 7.1,	14.3, 34.5, 46.8, 162.2, eV r	espectively. The element is
likely to be:			
a) Na	b) Si	c) F	d) Ca
720. Stability of hydrides gene	erally increases with:		
a) Increase in bond angle			
b) Decrease in bond angl	e		
c) Decrease in resonance			
d) None of these			
721. The radii of F, F^-, O and ($)^{2-}$ are in the order of:		
a) $0^{2-} > F^- > F > 0$	b) $F^- > 0^{2-} > F > 0$	c) $0^{2-} > 0 > F^{-} > F$	d) $\Omega^{2-} > F^- > \Omega > F$
722 Which one is the stronge	st hond?		
22. Which one is the stronge	b) $F - F$	c) Br – F	d) $Br - Cl$
722 The low solubility of Bas	0 in water is due to:		
23. The low solubility of bas	o ₄ in water is due to:		
b) Jonis bonds	gy		
a) High value of lettice of	orau		
d) None of the shows	тег ду		
a) None of the above			
724. The metal having highest	t meiting point is?		

a) Cr b) Ag	c]) Diamond	d) W
725. Which one species has the longest	bond length?		
a) NO ⁺ b) O_2^-	c]) 0 ⁺ ₂	d) N ₂ ⁺
726. Arrange the following compound	in order of increasing	g dipole moment:	
Toluene (I) $m - dichlorol$	enzene (II)		
o - dichlorobenzene (III) p - dich	nlorobenzene (IV)		
a) I < <i>IV</i> < <i>II</i> < <i>III</i> b) IV <	I < II < III c)) IV < <i>I</i> < <i>III</i> < <i>II</i>	d) IV < <i>II</i> < <i>I</i> < <i>III</i>
727. The correct order regarding the el	ectronegativity of hy	brid orbitals of carbon is:	
a) $sp < sp^2 > sp^3$ b) $sp < b$	$sp^2 < sp^3$ c)) $sp > sp^2 < sp^3$	d) $sp > sp^2 > sp^3$
728. Molecular size of ICl and Br_2 is near the second	arly same, but boiling	g point of ICl is about 40°C	Chigher than Br ₂ . This
might be due to:			
a) I – Cl bond is stronger than Br	– Br bond		
b) Ionisation energy of $1 < ionisation$	tion energy of Br		
c) ICl is polar where as Br_2 is non	polar		
d) The size of I > size of Br			
729. The pair of elements having approximately	ximately equal ionisa	ation potential is	
a) Al, Ga b) Al, S	i c]) Al, Mg	d) Al, B
730. Elements having six electrons in it	s outermost orbit gei	nerally form:	
a) Complex ion b) Nega	tive ion c) Positive ion	d) Zwitter ion
731. In which of the following molecule	es/ions BF_3 , NO_2^- , NH_2^-	$\frac{1}{2}$, and H ₂ O the central ato	om is sp^2 hybridized?
a) BF_3 and NO_2^- b) NO_2^-	and NH_2^- c)) $\rm NH_2^-$ and $\rm H_2O$	d) NO_2^- and H_2O
732. Na ⁺ , Mg ²⁺ , Al ³⁺ , Si ⁴⁺ are isoelectr	onics. Their ionic size	e follows the order:	
a) $Na^+ < Mg^{2+} < Al^{3+} < Si^{4+}$			
b) $Na^+ > Mg^{2+} < Al^{3+} < Si^{4+}$			
c) $Na^+ < Mg^{2+} > Al^{3+} > Si^{4+}$			
d) $Na^+ > Mg^{2+} > Al^{3+} > Si^{4+}$			
733. Which of the following is false?			
a) Methane molecule is tetrahedra	ıl in shape		
b) Nickel tetrachloride is square p	lanar in shape		
c) P_2O_5 is like two pyramids joine	d at their apices		
d) Acetylene is non-linear			
734. In a double bond connecting two a	toms there is a shari	ng of:	
a) 2 electrons b) 4 ele	ctrons c) 1 electron	d) All electrons
735. As we go from left to right in period	d two of the Periodic	: Table, gram atomic volu	me of the elements
a) Will change indefinitely	b) Decreases	
c) Increases at a constant rate	d) First increases then dec	reases
736. Which of the following bond requi	res the largest amou	nt of energy to dissociate	the bond concerned?
a) $H - H$ bond in H_2 b) $C - 1$	H bond in CH_4 c) N \equiv N bond in N ₂	d) $0 = 0$ bond in 0_2
737. Which does not show inert pair ef	fect?		
a) Al b) Sn	c)) Pb	d) Thallium
738. Resonance is due to:			
a) Delocalization of σ -electrons			
b) Delocalization of π -electrons			
c) Migration of H atoms			
d) Migration of protons			
739. The ICl molecule is:			
a) Purely covalent			
b) Purely electrovalent			
c) Polar with negative end on chlo	rine		
d) Polar with negative end on iodi	ne		

740	Н — В -	– H bond angle in E	BH_4^- is:		
	a) 180°	0	b) 120°	c) 109°	d) 90°
741	The lov	vest bond energy e	xist in the following bonds	for:	
	a) C – (С	b) N — N	c) H — H	d) 0 – 0
742	Which	of the following ele	ectronic configurations in tl	ne outermost shell is chara	cteristic of alkali metals?
	a) <i>ns</i> ² p	$p^6 d^1$	b) $(n-1)s^2p^6$, ns^1	c) $(n-1)s^2p^6$, ns^2p^1	d) $(n-1)s^2p^6d^{10}$, ns^1
743	In PCl ₅	molecule, P is:			
	a) <i>sp</i> ³ -	hybridized	b) <i>dsp</i> ² -hybridized	c) ds ³ p-hybridized	d) <i>sp³d</i> -hybridized
744	In dry i	ice there are in b	etween molecules.		
	a) Ionio	c bond	b) Covalent bond	c) Hydrogen bond	d) None of these
745	The sol	lubility of KCl is rela	atively more in (where D is	dielectric constant):	
	a) C ₆ H ₆	$_{6}(D = 0)$	b) $(CH_3)_2CO(D = 2)$	c) $CH_3OH(D = 32)$	d) $CCl_4(D = 0)$
746	The I st	IEs of four consecu	itive elements present in th	ne second period of Periodi	c Table are 8.3, 11.3, 14.5
	and 13	.6 eV respectively.	Which of these is the IE of r	nitrogen?	
	a) 13.6		b) 8.3	c) 14.5	d) 11.3
747.	Which	oxide is amphoteri	c in nature?	-	
	a) ZnO	1	b) CaO	c) Na ₂ O	d) BaO
748	The co	rrect ionic radii ord	ler is:	, <u> </u>	,
	a) N ³⁻	$> 0^{2-} > F^{-} > Na^{-}$	$^{+} > Mg^{2+} > Al^{3+}$		
	b) N^{3-}	$> Na^+ > 0^{2-} > F^-$	$- > Mg^{2+} > Al^{3+}$		
	c) Na ⁺	$> 0^{2-} > N^{3-} > F^{-}$	$-> Mg^{2+} > Al^{3+}$		
	d) 0^{2-}	$> F^- > Na^+ > N^{3-1}$	$- > Mg^{2+} > Al^{3+}$		
749	Which	is a good solvent fo	r ionic and polar covalent	compounds?	
/ 1/	a) H ₂ O		b) $CH_{2}COOH$		d) Liquid NH-
750	Eor wh	ich of the following	by child could be hand an	$c_1 c_{4}$	a) Elquia Mila
750	rorwin	ich of the following	h) cn	c) cn ³	d) dsn^2
751	aj sp Which	of the following do	os not involvo covalont hor	$c_{j} s_{p}$	ujusp
/51		of the following uo	b) CoE		4) L C
752	a) $\Gamma \Pi_3$	rract in graacing co	UJ USF		u) п ₂ 5
132.		$1 < I \leq C \leq P_{0} \leq C$	Ale III II at u le IS: $A = A = A = A = A = A = A = A = A = A =$	a) $P_0(1 < I(1 < N_0(1)))$	d) $I(C) < NaCl < DaCl$
752	a) NAC	$I < LICI < DECI_2$	$D \int De Cl_2 < Nucl < Lici$	$C \int DECI_2 < LiCi < NuCi$	$u_j \text{ Lici} < Nucl < Decl_2$
/53	a) Cove	nu between atoms	b) Logic	number 37 and 53 is:	d) Matallia
754		alent	DJ IOIIIC	c) coordinate	d) Metallic
/54	The spe	ecies naving octane	earal snape is:		N DO3-
	a) SF_6		DJ BF ₄	c) PCI ₅	a) BO_3^3
755	Which	of the following is i	not isoelectronic?		N 0 ^{2±}
	a) NO ⁻		b) CN ⁻	c) N ₂	d) 0_2^{2+}
756	In whic	ch of the following g	gaseous molecules, the ioni	c character of the covalent	bond is greatest?
	a) HCl		b) HBr	c) HI	d) HF
757.	What b	ond order does O_2^2	have?		
	a) 1		b) 2	c) 3	d) 1/2
758	Chlorin	e atom differs fron	n chloride ion in the numbe	er of:	
	a) Prot	ons	b) Neutrons	c) Electrons	d) Protons and electrons
759	Which	molecule is T-shap	ed?		
	a) BeF ₂	2	b) BCl ₃	c) NH ₃	d) ClF ₃
760	The suc	ccessive ionisation	energy values for an eleme	ent 'X' are given below	
	XV. Ist	ionisation energy =	=410 kJ mol ⁻¹		
	XVI.	2nd ionisation ene	$ergy = 820 \text{ kJ mol}^{-1}$		
	XVII.	3rd ionisation ene	$rgy = 1100 \text{ kJ mol}^{-1}$		
	XVIII.	4th ionisation ene	rgy =1500 kJ mol ⁻¹		
	XIX.	5th ionisation ene	rgy =3200 kJ mol ⁻¹		

	Find out the number of va	lence electron for the atom	<i>'X'</i>									
	a) 4	b) 3	c) 5	d) 2								
761.	Organic compounds solub	le in water contain:										
	a) C, H, Cl	b) C, H	c) C, H, O	d) C, S								
762.	Which of the following is r	nost stable?										
	a) Pb ²⁺	b) Ge ²⁺	c) Si ²⁺	d) Sn ²⁺								
763.	Which of the following set	s represents the collection	of isoelectronic species?									
	a) Na ⁺ , Mg ²⁺ , Al ³⁺ , Cl ⁻	b) Na ⁺ , Ca ²⁺ , Sc ³⁺ , F ⁻	c) K ⁺ , Cl ⁻ , Mg ²⁺ , Sc ³⁺	d) K ⁺ , Ca ²⁺ , Sc ³⁺ , Cl ⁻								
764.	4. Which one of the following sets of ions represents a collection of isoelectronic species?											
	a) K ⁺ , Cl ⁻ , Ca ²⁺ , Sc ³⁺	b) Ba ²⁺ , Sr ²⁺ , K ⁺ , Ca ²⁺	c) N ³⁻ , O ²⁻ , F ⁻ , S ²⁻	d) Li ⁺ , Na ⁺ , Mg ²⁺ , Ca ²⁺								
765.	Which one of the following	g arrangements represents	the correct order of electro	on gain enthalpy (with								
	negative sign) of the given atomic species?											
	a) Cl < <i>F</i> < <i>S</i> < <i>O</i>	b) $0 < S < F < Cl$	c) S < 0 < Cl < F	d) F < Cl < 0 < S								
766.	Which of the following mo	olecules does not possess a	permanent electric dipole	moment?								
	a) H ₂ S	b) SO ₂	c) SO ₃	d) CS ₂								
767.	Which one of the following	g has the highest electrone	gativity?									
	a) Si	b) P	c) Cl	d) Br								
768.	The electronic configurati	on, 1s ² , 2s ² 2p ⁶ , 3s ² 3p ⁶ 3d	⁹ represents a									
	a) Metal atom	b) Non-metal atom	c) Non-metallic anion	d) Metallic cation								
769.	The bond order in O_2^+ is equivalent to the bond order of O_2^+ is equivalent to the bond order of O_2^+ and O_2^+ is equivalent to the bond order of O_2^+ is equivalent to the bond order of O_2^+ and O_2^+ is equivalent to the bond order of O_2^+ is equivalent to	qual to bond order in:										
	a) N ₂ ⁺	b) CN ⁻	c) CO	d) NO ⁺								
770.	The molecule having perm	nanent dipole moment is:										
	a) SF ₄	b) XeF ₄	c) SiF ₄	d) BF ₃								

3.CLASSIFICATION OF ELEMENTS AND PERIODICITY IN PROPERTIES

						: ANS	W	ER K	EY						
1)	d	2)	С	3)	b	4)	b	189)	а	190)	d	191)	d	192)	а
5)	b	6)	b	7)	d	8)	а	193)	а	194)	а	195)	а	196)	а
9)	С	10)	b	11)	С	12)	d	197)	С	198)	а	199)	С	200)	d
13)	d	14)	С	15)	b	16)	b	201)	b	202)	b	203)	С	204)	b
17)	d	18)	d	19)	d	20)	а	205)	а	206)	С	207)	а	208)	b
21)	С	22)	b	23)	b	24)	С	209)	С	210)	а	211)	С	212)	а
25)	b	26)	С	27)	а	28)	С	213)	а	214)	а	215)	С	216)	а
29)	С	30)	С	31)	b	32)	b	217)	b	218)	С	219)	а	220)	С
33)	b	34)	а	35)	С	36)	а	221)	а	222)	С	223)	b	224)	b
37)	С	38)	а	39)	С	40)	а	225)	b	226)	С	227)	С	228)	С
41)	b	42)	а	43)	С	44)	С	229)	d	230)	С	231)	а	232)	С
45)	b	46)	а	47)	d	48)	b	233)	b	234)	а	235)	b	236)	d
49)	С	50)	С	51)	а	52)	С	237)	С	238)	b	239)	а	240)	d
53)	С	54)	d	55)	b	56)	b	241)	d	242)	а	243)	а	244)	d
57)	а	58)	b	59)	С	60)	С	245)	d	246)	d	247)	b	248)	b
61)	d	62)	С	63)	b	64)	d	249)	b	250)	а	251)	С	252)	b
65)	d	66)	а	67)	d	68)	d	253)	С	254)	а	255)	b	256)	b
69)	С	70)	d	71)	d	72)	b	257)	d	258)	d	259)	d	260)	С
73)	а	74)	а	75)	а	76)	b	261)	С	262)	С	263)	С	264)	d
77)	С	78)	b	79)	b	80)	d	265)	С	266)	d	267)	а	268)	d
81)	d	82)	а	83)	d	84)	d	269)	а	270)	d	271)	d	272)	а
85)	b	86)	b	87)	d	88)	С	273)	d	274)	а	275)	d	276)	b
89)	а	90)	а	91)	С	92)	С	277)	d	278)	а	279)	b	280)	d
93)	b	94)	С	95)	b	96)	b	281)	d	282)	а	283)	С	284)	d
97)	а	98)	а	99)	С	100)	С	285)	С	286)	а	287)	С	288)	d
101)	d	102)	d	103)	С	104)	b	289)	С	290)	а	291)	b	292)	С
105)	С	106)	b	107)	b	108)	b	293)	d	294)	b	295)	b	296)	а
109)	b	110)	d	111)	d	112)	С	297)	С	298)	d	299)	С	300)	а
113)	С	114)	а	115)	а	116)	а	301)	d	302)	С	303)	а	304)	а
117)	b	118)	d	119)	d	120)	d	305)	d	306)	а	307)	d	308)	b
121)	С	122)	b	123)	а	124)	b	309)	а	310)	С	311)	b	312)	b
125)	С	126)	d	127)	С	128)	d	313)	а	314)	а	315)	d	316)	b
129)	а	130)	b	131)	а	132)	С	317)	С	318)	а	319)	b	320)	b
133)	d	134)	С	135)	b	136)	а	321)	b	322)	С	323)	а	324)	d
137)	b	138)	b	139)	d	140)	С	325)	а	326)	а	327)	b	328)	b
141)	d	142)	С	143)	а	144)	b	329)	С	330)	b	331)	С	332)	С
145)	а	146)	d	147)	С	148)	а	333)	С	334)	d	335)	а	336)	а
149)	С	150)	b	151)	а	152)	С	337)	d	338)	С	339)	а	340)	b
153)	d	154)	С	155)	a	156)	С	341)	d	342)	d	343)	C	344)	С
157)	C	158)	C	159)	d	160)	а	345)	a	346)	d	347)	d	348)	C
161)	b	162)	b	163)	b	164)	а	349)	b	350)	а	351)	С	352)	b
165)	а	166)	b	167)	b	168)	a	353)	С	354)	а	355)	a	356)	b
169)	а	170)	C	171)	b	172)	d	357)	a	358)	а	359)	d	360)	С
173)	С	174)	b	175)	d	176)	C	361)	b	362)	а	363)	b	364)	C
177)	а	178)	C	179)	d	180)	b	365)	С	366)	С	367)	С	368)	b
181)	C	182)	d	183)	а	184)	а	369)	C	370)	C	371)	a	372)	a
185)	d	186)	b	187)	С	188)	а	373)	b	374)	b	375)	d	376)	b

377)	b	378)	d	379)	b	380)	а	577)	d	578)	d	579)	b	580)	С
381)	d	382)	С	383)	С	384)	а	581)	d	582)	а	583)	d	584)	d
385)	С	386)	d	387)	b	388)	С	585)	d	586)	а	587)	b	588)	b
389)	а	390)	b	391)	b	392)	С	589)	С	590)	b	591)	b	592)	С
393)	b	394)	b	395)	С	396)	С	593)	d	594)	а	595)	С	596)	С
397)	b	398)	а	399)	d	400)	a	597)	а	598)	С	599)	a	600)	b
401)	а	402)	b	403)	a	404)	b	601)	b	602)	b	603)	a	604)	С
405)	С	406)	b	407)	а	408)	b	605)	а	606)	d	607)	d	608)	b
409)	С	410)	b	411)	d	412)	b	609)	С	610)	а	611)	b	612)	b
413)	а	414)	а	415)	С	416)	b	613)	а	614)	d	615)	d	616)	а
417)	а	418)	d	419)	b	420)	С	617)	d	618)	С	619)	d	620)	а
421)	d	422)	а	423)	b	424)	С	621)	а	622)	d	623)	d	624)	а
425)	b	426)	b	427)	d	428)	b	625)	d	626)	b	627)	а	628)	d
429)	d	430)	d	431)	С	432)	а	629)	а	630)	b	631)	b	632)	d
433)	d	434)	С	435)	b	436)	b	633)	b	634)	d	635)	С	636)	С
437)	b	438)	d	439)	b	440)	b	637)	а	638)	d	639)	b	640)	С
441)	а	442)	d	443)	b	444)	С	641)	С	642)	а	643)	С	644)	С
445)	а	446)	b	447)	d	448)	b	645)	b	646)	b	647)	b	648)	b
449)	а	450)	b	451)	b	452)	d	649)	С	650)	С	651)	d	652)	С
453)	b	454)	b	455)	а	456)	a	653)	С	654)	d	655)	d	656)	С
457)	а	458)	b	459)	d	460)	a	657)	С	658)	b	659)	b	660)	b
461)	b	462)	d	463)	d	464)	а	661)	b	662)	b	663)	а	664)	d
465)	а	466)	b	467)	d	468)	d	665)	а	666)	d	667)	b	668)	С
469)	С	470)	а	471)	С	472)	d	669)	а	670)	а	671)	d	672)	b
473)	а	474)	d	475)	d	476)	d	673)	b	674)	а	675)	а	676)	b
477)	b	478)	а	479)	С	480)	a	677)	а	678)	С	679)	d	680)	b
481)	b	482)	b	483)	а	484)	С	681)	b	682)	С	683)	d	684)	b
485)	b	486)	а	487)	С	488)	a	685)	С	686)	b	687)	b	688)	d
489)	d	490)	d	491)	С	492)	a	689)	d	690)	d	691)	С	692)	d
493)	а	494)	d	495)	b	496)	а	693)	а	694)	d	695)	а	696)	d
497)	а	498)	а	499)	а	500)	d	697)	d	698)	а	699)	С	700)	а
501)	а	502)	d	503)	d	504)	b	701)	d	702)	b	703)	d	704)	d
505)	b	506)	а	507)	b	508)	С	705)	d	706)	а	707)	b	708)	С
509)	b	510)	С	511)	С	512)	С	709)	а	710)	С	711)	b	712)	b
513)	а	514)	b	515)	С	516)	С	713)	d	714)	b	715)	а	716)	а
517)	d	518)	b	519)	b	520)	b	717)	b	718)	b	719)	b	720)	а
521)	b	522)	а	523)	b	524)	b	721)	d	722)	С	723)	С	724)	d
525)	b	526)	b	527)	С	528)	a	725)	b	726)	b	727)	d	728)	С
529)	b	530)	а	531)	а	532)	d	729)	а	730)	b	731)	а	732)	d
533)	С	534)	а	535)	b	536)	b	733)	d	734)	b	735)	b	736)	С
537)	а	538)	С	539)	b	540)	d	737)	а	738)	b	739)	С	740)	С
541)	d	542)	d	543)	С	544)	a	741)	d	742)	b	743)	d	744)	b
545)	d	546)	b	547)	b	548)	a	745)	С	746)	С	747)	а	748)	a
549)	С	550)	а	551)	а	552)	d	749)	а	750)	b	751)	b	752)	a
553)	b	554)	а	555)	d	556)	b	753)	b	754)	а	755)	а	756)	d
557)	С	558)	d	559)	С	560)	b	757)	а	758)	С	759)	d	760)	a
561)	d	562)	С	563)	С	564)	С	761)	С	762)	а	763)	d	764)	a
565)	а	566)	b	567)	d	568)	a	765)	b	766)	d	767)	С	768)	d
569)	С	570)	а	571)	а	572)	С	769)	а	770)	а				
573)	d	574)	b	575)	d	576)	a								

	: HINTS AND SOLUTIONS :						
1	(d)		parent atom .				
	Born-Haber cycle inter-relates the various energy	17	(d)				
	terms involved in ionic bonding.		S = C = S.				
2	(c)	18	(d)				
	Follow bonding rules.		Cation radius increases down the group.				
3	(b)	19	(d)				
	Alkali metals are most electropositive elements.		Cyanide ion is,				
4	(b)		$-C \equiv N \rightarrow -N \equiv C$.				
_	In H_2 0, H-atom contains only two electrons.	20	(a)				
5	(b)		All are isoelectronic species; more is nuclear				
	Fluorine is more reactive than chiorine, bromine		charge smaller is ionic size.				
6	and loaine	21	(c)				
0	(D) Due to H-bonding in NH		Electron affinity order for halogens is				
7	(d)	22	CI > F > Br > I.				
,	The order of screening effect for a given shell	22	(b)				
	electrons is $s > p > d > f$.	22	N atom has smallest radius.				
8		23	(D) H_{2} $(m_{2}^{2}m_{5}^{2})$ often act ting and electron				
U	The ionisation energy of elements decreases		Halogens $(ns^{-}np^{\circ})$ after getting one electron				
	down the group.	24	occupy $ns^{-}np^{-}$ configuration, thus have EA_2 zero				
9	(c)	24	(c) In general density increases on moving				
	Cl in ClF_3 has sp^3d -hybridization		downward in a group but density of notassium				
	F		(K) is lesser than that of the sodium (Na). This is				
			because of the abnormal increase in atomic size				
	F CI'		on moving from Na (86 pm) to K (227 pm).				
			Thus, the correct order of density is				
	Ė		Li < K < Na < Rb				
	and possesses two axial Cl— F bonds and one	25	(b)				
	equatorial bond Two lone pairs are at equatorial		The oxide having maximum heat of formation per				
10	position give rise to bent "1" shape to ClF_3 .		oxygen atom (thus energy needed to break one				
10	(D)		M - 0 bond will be highest) will be most stable.				
11	(c)		MgO is most stable oxide among Na_2O , SiO_2 , Al_2O_3				
11	S_{2} molecule is paramagnetic like Ω_{2} having 2	26	and MgU.				
	unpaired electrons.	26	(C) If Aufhau rule is not followed than 10th electron in				
13	(d)		If Automatical Function for the formula of the for				
	Along the period acidic strength of oxide	27	(a)				
	increases	21	(a) The most electronegative element is F and next to				
14	(c)		F is 0				
	In order to belong with the same family, the outer	28	(c)				
	configuration must be the same	_	Larger is the size of atom, lesser is the tendency				
15	(b)		for overlapping, lesser is bond energy.				
	Mn^{2+} is most stable as it has half filled <i>d</i> -orbitals.	29	(c)				
16	(b)		Bond angles in $BeCl_2$, NH_3 , H_2O and $SnCl_2$ are				
	The atomic radius decreases along the period.		180° , 107° , 104.5° and 119° respectively. Also				
	Also cations are always smaller than their parent		H_2S , H_2O , H_2Se has sp^3 -hybridization and bond				
	atom and anions are always larger than their						

angles of hydrides decreases down the group.

30 **(c)**

The correct increasing basic strength: SbH₃ $< AsH_3 < PH_3 < NH_3$ NH₃ is the most basic because of its small size, the electron density of electron pair is concentrated over small region. As the size increases, the electron density gets diffused over a large surface area and hence the ability to donate the electron pair (basicity) decreases.

31 **(b)**

Each period consists of a series of elements whose atoms have the same principal quantum number (*n*) of the outermost shell, *ie*, in second period, n = 2, this shell has four orbitals (one 2*s* and three 2*p*) which can have eight electrons, hence second period contain 8 elements from atomic number 3 to 10

32 **(b)**

Om moving along a period, ionisation enthalpy increases. Thus, the order of ionisation enthalpy should be as follow :

F > O > N

But N has half-filled structure, therefore, it is more stable than O, That's why its ionisation erthalpy is highper than O. Thus, the correct order of IE is

F > 0 > N

33 **(b)**

This give rise to polarity in bonds.

34 **(a)**

BeO is most acidic in nature amongst the given choices because acidity of oxides increases with decreases in electropositive character of central atom.

35 **(c)**

NaCl exist as Na⁺Cl⁻.

36 **(a)**

 $\rm NH_3$ has pyramidal shape and thus, possesses three folds axis of symmetry.

37 **(c)**

Larger is the difference in electronegativities of two atom, more is polar character in bond.

38 **(a)**

Non-polar or pure covalent bond has zero per cent ionic character due to the absence of partial charges on either end.

39 **(c)**

N in it has three σ -bonds and one lone pair of electron.

Mendeleef failed to assign positions to isotopes on the basis of atomic mass according to his periodic law

41 **(b)**

The removal of second electron from Mg takes place from 3*s*-orbital whereas, the removal of second electron from Na takes place from 2*p*orbital. More closer are shells to the nucleus, difficult is removal of electron.

42 **(a)**

 $\begin{array}{ll} \text{ZnO can react with acid and base both} \\ \text{ZnO + 2HCl} & \text{ZnCl}_2 + \text{H}_2\text{O} \\ \text{ZnO + 2NaOH} & \text{Na}_2\text{ZnO}_2 + \text{H}_2\text{O} \end{array}$

43 **(c)**

 ClO_4^- has sp^3 -hybridization on Cl atom .

44 (c)

 O_2 has two unpaired electrons .

45 **(b)**

 O^{-2} and N^{3-} both are isoelectronic but differ in the charge possessed by them. As the negative charge increase, the electrons are held less and less tightly by the nucleus, therefore ionic radii increases. Hence, ionic radii of N^{3-} is greater than O^{2-} .

In a period from left to right atomic radii decreases but in a group on moving downwards it increases.

46 **(a)**

Ne has van der Waals radius larger than covalent radius of fluorine.

48 **(b)**

The value of electron affinity decreases with increase in size of atom, because the nuclear attraction decreases as the atomic number increases. Fluorine due to its very small size has lower electron affinity than chlorine. Hence, the increasing order of electron affinity of halogen is I < Br < F < Cl.

49 **(c)**

The element is P which exists as P_4 .

50 **(c)**

Atomic size of Ag and Au are closer to each other but nuclear charge is more on Au

51 **(a)**

S atom is larger in size than O and F.

52 **(c)**

Electropositive character decreases across the period as metallic character decreases

53 **(c)**

Due to shielding effect of (n-1)d-subshell.

40 **(a)**

		1	
54			4s and 3d electrons are lost.
	Non-metals are more than metals is the wrong	75	(a)
	statement.		If difference in electronegativity in between two
55	(b)		atoms is 1.7, the molecule possesses 50%
	$1s^2$, $2s^2$, $2p^6$, $3s^1$. It is an alkali metal; hence has		covalent +50% ionic nature.
	least ionisation potential.	76	(b)
56	(b)		CsCl is most ionic because of most electropositive
	The ionisation potential decreases down the		nature of Cs.
	group.	77	(c)
58	(b)		Anion (0^{-}) repels the test electron because of
	N is sp^2 -hybridized on NO ₃ ⁻ .		same charge.
59	(c)	78	(b)
	e.g., BF ₃ , a non-polar molecule having sp^2 -		It is a fact.
	hybridization.	79	(b)
60	(c)		Ionic radii decreases significantly from left to
	Butadiene is $CH_2 = CH - CH = CH_2$.		right in a period among representative elements
61	(d)	80	(d)
-	$M^{2+} \rightarrow M^{3+}$, after the removal of $2e^{-}$, the nuclear		B and Si shows the diagonal relationship.
	charge per electron increases due to which high	81	(d)
	energy is required to remove $3e^{-}$		$[\pi 2n_{2}^{2}]\pi^{*}2n_{2}^{2}$
62	(c)		$0_2^-: \sigma_{1s^2}, \sigma_{1s^2}, \sigma_{2s^2}, \sigma_{2s^2}, \sigma_{2s^2}, \sigma_{2p^2}^{(n-py)} = \frac{1}{\pi^2 n^2} \frac{1}{\pi^2 n^4}$
02	$\Omega_{\overline{a}}^{-}$ has one unpaired electron in its antihonding		$[n 2p_Z] n 2p_Z$
	molocular orbital		$\therefore B. 0. = \frac{10}{2} = 1.5$
62	(h)	82	(a) 2
05	(D) Removal of electron is easier in the order of shell		ZnO can react with acid and base both
	Removal of electron is easier in the order of shell $4 > 2 > 2 > 1$		$ZnO+2HCl \rightarrow ZnCl_{2} + H_{2}O$
()	4 > 3 > 2 > 1		$7nO+2NaOH \rightarrow Na_{2}7nO_{2} + H_{2}O$
64	(a) Ionia modii in anagoga in a graym	83	(d)
	ionic radii increases in a group	05	While moving along a group from top to bottom
65			acidic nature of ovides decreases and along a
	Ionic compounds conduct current only in fused		actuic flature of oxides decreases and along a
	state.		amphotoria acidia may acidia
66			A1 S; P S
	The bond orders for H_2 , H_2^+ , H_2 and H_2^+ are		Z 13 14 15 16
	1.0, 0.5, 0.0 and 0.5 respectively.		$A_{12}O_2$ SiO_2 P_2O_2 SO_2
67	(d)		amphotoria acidia may acidia
	CH_3^+ and NH_2^+ both have 8 electrons.		
69	(c)	~ -	Thus, $AI_2O_3 < SIO_2 < P_2O_3 < SO_2$
	O atom possesses sp^3 -hybridization with two lone	85	(b)
	pair of electron.		Bond angles of CIF_3 , PF_3 , NF_3 and BF_3 are
70	(d)		(180°, 90°), (101°), (106°) and (120°)
	$Be_2C + 2H_2O \rightarrow CH_4 + 2BeO$		respectively.
	$\mathrm{Al}_4\mathrm{C}_3 + 6\mathrm{H}_2\mathrm{O} \rightarrow 3\mathrm{CH}_4 + 2\mathrm{Al}_2\mathrm{O}_3$	86	(b)
71	(d)		IE (II) of Na is higher than that of Mg because in
	H ₂ O is V shaped.		case of Na, the second e^- has to be removed from
72	(b)		the noble gas core while in case of Mg removal of
	NH_4^+ has angle of 109°28′.		second e^- gives a noble gas core
73	(a)		Mg has high first ionisation potential than Na
	Due to sp^3 -hybridization on P with one lone pair.		because of its stable ns^2 configuration
74	(a)	87	(d)
	In MnO_4^- , the oxidation no. of Mn is +7. <i>i.e.</i> , all the		Follow concept of bond order in M.O. theory.
	••	88	(c)

	sp^3 -hybridization leads to tetrahedral geometry.	106	(b)
89	(a)		Bond angles of BeF_2 , H_2O , NH_3 and CH_4 are
	5 of P + 24 of O + 3 of - ve charge = 32.		180°, 104°31', 106°50', 109°28' respectively.
91	(c)	107	(b)
	SnO ₂ , Al ₂ O ₃ and ZnO are amphoteric oxide.		Count σ and π bonds.
92	(c)	108	(b)
	The inert gas just after chlorine is argon.		The atomic radii decreases along the period and
93	(b)		increases down the gp.
	Cation has small size than parent atom and anion	109	(b)
	has larger size than parent atom		Ionisation energy increases along the period.
94	(c)	110	(d)
	Due to the presence of <i>d</i> -subshell electrons.		Due to dipole moment intramolecular forces of
95	(b)		attraction becomes stronger and thus,
	Coulombic forces are strongest among all .		liquefaction becomes easier.
96	(b)	111	(d)
	Transition elements are those elements which		$\text{He}_2^+(B.0.=0.5) < 0_2^-(B.0.=1.5)$
	have partially filled <i>d</i> -subshells in their		< NO(B. 0. = 2.5) $<$ C ₂ ²⁻ (B. 0. = 3.0)
	elementary form. Therefore, the general	112	(c)
	electronic configuration of <i>d</i> -block element is		Larger is anion, more is covalent character.
	$(n-1)d^{1-10}ns^{1-2}.$	113	(c)
97	(a)		Due to resonance structure of C_6H_6 .
	In ionic solids, ions exist at lattice points. In	114	(a)
	covalent solids atoms lie at lattice points.		5 (on P) + 4(on H) - 1 = 8.
98	(a)	115	(a)
	Ionic bond are non-directional.		Pauling scale is based upon the excess bond
99	(c)		energies. Pauling equation for determining the
	Both carbon atoms have 2 σ - and 2 π -bonds		electronegativity of an element is
100	(c)		$X_A - X_B = 0.208\sqrt{\Delta}$
	Diamond is hard, graphite is soft.		where, X_A , X_B =electronegativity values of elemnt
101	(d)		A and B
100	SiO_2 structure is definite.		Δ =polarity of $A - B$ bond.
102	(d) 2^{2}	116	(a)
100	P in PO_4° has sp^3 -hybridization like S in SO_4° .		Be^{2+} is smallest and Na ⁺ has largest radius.
103		117	(b)
104	C = F bond is more polar than $C = CI$.		Both have sp^2 -hybridization geometry.
104		118	(d)
	Ionic radii $\propto \frac{1}{z_{eff}} \propto$ charge of anion		Non-polar species exert van der Waals' forces
	$\propto \frac{1}{1}$	110	among themselves.
	charge on cation	119	
	1 nus, the order of fonic radii is $N^{3-} > O^{2-} > E^{-} > N_{0}^{+} > M_{0}^{2+}$		ICI_2 has sp^3d -hybridization and has two bond
105	$N^{2} > 0 > r > Na > Mg$	100	pairs and three lone pairs of electrons.
105	Lonic radii is the distance between the nucleus of	120	
	an ion and a point up to which the nucleus has its		Halogens are strong oxidising agents. The
	influence on its electron cloud		oxidising power nalogen decreases from fluorine
	The size of ions increases on moving from ton to		to journe, because their reduction potential
	hottom in a group. Hence, the maximum distance		uect eases from nuorine to louine. The increasing
	between the centres of cations and anions is in Cel		Figure 1 in the interval is the second seco
	because Cs is the largest cation and L is the largest		Element $I_2 \leq DI_2 \leq CI_2 \leq F_2$
	anion.		Reduction
	~~~~~	1	Neudellon

potential +0.54+1.06 +1.36+2.87121 (c) CaO is basic oxide. 122 **(b)** Be in BeF₃⁻ is  $sp^2$ -hybridized. 123 (a)  $_{3}\text{Li} - 1s^{2}2s^{1}$  donates one electron easily 124 (b) 138 (b) Ionization energy increases along the period and decreases down the group. Also (b) has [Ne]  $3s^2$ ,  $3p^3$ , *i.e.*, half filled configuration, being more stable and thus, have high ionization energy 139 (d) 125 (c) Carbon cannot accept 6Cl⁻, since it has no vacant 140 (c) *d*-orbitals. 126 (d)  $BCl_3$  has  $sp^2$ -hybridization. Rest all have  $sp^3$ hybridization having one lone pair of electron and thus, pyramidal in nature. 127 (c) Both NH₃ and H₂O have  $sp^3$ -hybridization. CO₂ and BeCl₂ are linear (*sp*-hybridization) 128 (d) The bond angles in  $sp^3$ ,  $sp^2$  and sp-hybridization 141 (d) are 109°, 120° and 180° respectively. 129 (a) B. p. of  $H_2$  is minimum. 130 **(b)** *e*.*g*., BF₃. 131 (a) 142 (c) *s*-orbitals never go for lateral overlapping because of non-directional nature. 132 (c) 143 (a)  $H_2O$  possesses the tendency for H –bonding. 133 (d) It is a reason for given fact. 134 (c) It is a fact. 135 **(b)** 144 **(b)** Rest all either has incomplete (BF₃, BeF₂) octer or expanded octet  $(ClO_2)$ . 136 (a) Bond energy increases with increase in bond order. 137 (b) Electron affinity is defined as, "The energy 145 (a) released when an extra electron is added to a neutral gaseous atom." Electron affinity of F=332.6 kJ/mol Electron affinity of Cl=348.5 kJ/mol

Electron affinity of S=200.7 kJ/mol Electron affinity of 0=140.9 kJ/mol Highest electron affinity among fluorine, chlorine, sulphur and oxygen, is of chlorine. The low value of electron affinity of fluorine than chlorine is probably due to small size of fluorine atom *i.e.*, electron density is high which hinders the addition of an extra electron. Bond order for  $O_2 = 2$  and for  $O_2^+ = 2.5$ Both are paramagnetic  $(0_2 \text{ has } 2 \text{ unpaired})$ electron,  $0_2^+$  has one unpaired electron). Bond order for  $H_2^- = +1/2$ . S in SCl₄ is  $sp^3d$ -hybridized and possesses seesaw structure whereas SiCl₄ is tetrahedral.  $_{22}$ Ti :  $3s^2$ ,  $4s^2 \xrightarrow{IE_1} 3d^2$ ,  $4s^1$  $_{23}$ V:  $3d^3$ ,  $4s^2 \xrightarrow{IE_1} 3d^3$ ,  $4s^1$  $_{24}$ Cr :  $3d^5$ ,  $4s^1 \xrightarrow{IE_1} 3d^5 \xrightarrow{IE_2 \text{ from}}_{\text{half filled}}$  maximum  $_{25}$ Mn :  $3d^5$ ,  $4s^2 \xrightarrow{IE_1} 3d^5$ ,  $4s^1$ In transition elements, penultimate shell electrons also participate in bonding. With the discovery of inert gases (group zero in Mendeleef's Periodic Table), the law of octaves lost its original significance since, it was now the ninth element which had properties similar to the first one. Na belongs to IA group and Mg belongs to IIA group. On moving from left to right in a period, first ionisation energy increases, thus, IE of Mg is greater than the IE of Na. IE order Mg > Na

nuclear charge increases. But the electron affinity Decreases in a period Oxides of nitrogen is very low due to extra stability of Basic half-filled 2*p*-orbital. Hence, the order of electron affinity is B < C < 0 > N156 (c) Increases in a Lithium is basic in nature and hence, it is not group amphoteric. basic nature of oxides  $Al_2O_3 < MgO < Na_2O <$ 157 (c)  $K_2O$ 147 (c) Total energy required for the conversion of one 158 (c) Mg atom into  $Mg^{2+}is = IE_1 + IE_2$ = 7.646 + 15.035 eV= 22.681 eV159 (d)  $= 2188.6 \text{ kJ mol}^{-1}$ Moles of Mg =  $\frac{12 \times 10^{-3}}{24}$  $= 0.5 \times 10^{-3}$ 160 (a)  $\therefore$  The energy required to convert  $0.5 \times 10^{-3}$  mol Mg into  $Mg^{2+} = 0.5 \times 10^{-3} \times 2188.6$  $= 1.09 \approx 1.1$ 161 **(b)** 148 (a) The size of isoelectronics decreases with increase in atomic number. 162 **(b)** 149 (c) Since, the IVth IE is very high, *ie*, electron is to be 163 (b) removed from stable configuration, thus it has 3 valence electrons 164 (a) 150 **(b)** These are facts. 151 (a) The ionisation energy increases when we move from left to right in a period. But this increase is not regular. The members of second group have 165 (a) greater ionisation potential as compared to third group due to stable configuration. Ionisation potential has following order Na < Mg > Al < Si166 **(b)** 152 (c) Both  $SO_4^{2-}$  and  $BF_4^-$  have  $sp^3$ -hybridization and rule). are tetrahedral. 167 **(b)** 153 (d) First IP of Be > B because of stable  $ns^2$ electron. configuration 170 (c) 154 (c) The correct order according to size is as  $0^{2-} > 0^{-} > 0$ 171 **(b)** 155 (a) Electron affinity generally increases in a period 172 (d) from left to right because size decreases and

Ions are held in NaCl by coulombic forces and thus, possess no velocity. The jump in ionisation energy occurs when valence shell changes during removal of electron. The correct order of ionic radii of these ions is  $S^{2-} > Cl^{-} > K^{+} > Ca^{2+}$ . Nitrogen has more ionisation potential than carbon and oxygen because its outermost orbit is half-filled. So the order is C < N > 0Only *p*-orbitals give rise to  $\sigma$ -bond (head on overlapping) and  $\pi$ -bond (lateral overlapping). Each has 22 electrons.  $BF_3 : sp^2 NO_2^- : sp^2 NH_3 : sp^3 NH_2^- : sp^3 H_2O : sp^3$ 

Atomic and ionic radii increase from top to bottom in a group due to the inclusion of another shell at every step. Hence, Cs⁺ ion will be the largest among given IA group ions  $(Na^+, Li^+ and K^+)$ 

Due to non-availability of *d*-orbitals, boron cannot expand its octet. Therefore, the maximum covalence of boron cannot exceed 4.

Larger anion is easily deformed (Follow Fajans'

 $ClO_3^-$  has  $sp^3$ -hybridization with one lone pair of

Silicon has the tendency to show covalent bonding because of higher IP values.

```
BeCl<sub>2</sub>-sp; BF<sub>3</sub>-sp<sup>2</sup>; NH<sub>3</sub>-sp<sup>3</sup>; XeF<sub>2</sub>-sp<sup>3</sup>d
```

173 174	He has $1s^2$ configuration. (c) $CO_2$ is linear molecule. (b)		will be more electronegative than (d). In choice (a) the atomic number of element is 9, which is of fluorine and it is the most electronegative element of the Periodic Table.
	Ionisation energies increase in a period on moving left to right while it decreases in a group on moving downward. The IE of Be is greater than B due to completely filled <i>s</i> -orbital. Hence, the order of IE is as $Ba \ge B \ge U \ge Ma$	185 186 187	<ul> <li>(d)</li> <li>IIIA group contains both metals and non-metals</li> <li>(b)</li> <li>Only P has <i>d</i>-orbitals.</li> <li>(c)</li> <li>The general electronic configuration of <i>d</i> block.</li> </ul>
175	<b>(d)</b> In inner transition elements, the differentiating electrons enter into $(6n - 2)f$ orbital. Therefore, these elements are also known as <i>f</i> -block elements		element is $(n - 1)d^{1-10}$ , $ns^{1-2}$ . They show variable oxidation state because <i>d</i> -electrons also take part in bond formation. They have degenerated orbitals. <i>s</i> and <i>p</i> -block elements in general do not show variable oxidation states
176	(c) Ionic compounds conduct current in molten state.	189	(a) BeF ₃ involves $sp^2$ -hybridization.
177	(a) Difference of electronegativity > 1.7 produces	190	(d) The electron affinities of some of the elements of second period ( <i>ie</i> , N, O, F, etc.) are however, lower
178	(c) Ionic radii $\propto \frac{1}{Z_{ref}}$		than the corresponding element ( <i>ie</i> , P, S, Cl, etc) of the third period. This is due to the reason that
179	(d) In sulphur, the excitation of <i>np</i> -electrons to <i>nd</i> -subshell gives rise to increase in number of unpaired electrons.		the elements of second period have the smallest atomic size amongst the elements in their respective groups. As a result, there are considerable electron-electron repulsion within
180	(b) As the number of shells increases, ionic radii increases	101	is not accepted with the same ease as is the case with the remaining elements in the same group
182	<ul><li>(d)</li><li>Ionisation potential increases along the period.</li></ul>	191	(d) $E_{op}^{\circ}$ order is Mg > Fe > Cu; more is $E_{op}^{\circ}$ , more is electropositive character.
105	Sc ³⁺ > $Cr^{3+}$ > $Fe^{3+}$ > $Mn^{3+}$ , the correct order is Cr ³⁺ > Mn ³⁺ > Fe ³⁺ > $Sc^{3+}$	194	(a) Non-metals are characteristically electronegative.
184	(a) 1. $1s^2, 2s^2, 2p^5 = 2, 7$	195	(a) The relative extent to which the various orbitals penetrate the electron clouds of other orbitals is c > n > d > f. Electron will experience the
	(* It has capacity to accept electron therefore, it is electronegative.) (b) $1a^2 - 2a^2 - 2m^4 - 2a^4 - $		greatest effective nuclear charge when in $s$ - orbital, then a $p$ -orbital and so on. Ionisation
	(b) 13 , 23 , 2 $p$ , 33 – 2, 6, 1 (configuration not correct $(2p^4)$ ) (c) $1s^2$ , $2s^2$ , $2p^6$ , $3s^1$ , $3p^5 = 2, 8, 6$		energy increases with an increase in penetration power and thus, the order of screening effect is s > p > d > f.
	(configuration not correct $3s^1$ )	196	(a) Carbon in $H_2CO_3$ has $sp^2$ -hybridization and also
	(d) $1s^2$ , $2s^2$ , $2p^6$ , $3s^2$ , $3p^5 = 2$ , 8, 7 (: It has capacity to accept electron therefore, it is electronegative)	197	polar. BF ₃ has $sp^2$ but non-polar. SiF ₄ has $sp^3$ - hybridization. HClO ₂ has $sp^3$ -hybridization. (c)
	Smaller the size, greater will be electronegativity. Since, element in choice (a) is smaller in size, it		$0^{-}(g) + e^{-} \rightarrow 0^{2-}(g), \Delta H^{\circ} = 844 \text{ kJmol}^{-1}$ This process is unfavorable in the gas phase

	because the resulting increase in electron- electron repulsion overweighs the stability gained		$K^+ \rightarrow K^{2+} + e^-$ . Since, $e^-$ is to be removed from stable configuration
199	by achieving the noble gas configuration.	214	(a) Proteins show H-bonding
177	The fifth period from nubidium (37) to xenon	215	(c)
	(54). The last electron enters in 5s, 4d or 5 <i>p</i> -		A reason for the given fact.
	orbitals. Therefore, the fifth period has	217	(b)
	(2+10+6)18 elements.		The intermolecular forces increase with increase
200	(d)		in mol. Wt.
	Cs is more electropositive .	218	(c)
201	(b)		Atomic radius decreases on going from left to
	The element with atomic no. 105 is Dubnium. In		right in a period. Thus, size of $0 > F$ . As $0^{2-}$ and
	IUPAC nomenclature, it is known as Un-nil-pentin.		$F^-$ are isoelectronic, therefore size of $O^{2-} > F^-$
202	(b)	219	(a)
	Oxidizing power : $F_2 > Cl_2 > Br_2 > I_2$ .		$Na^+ < F^- < 0^{2-} < N^{3-}$
203	(c)		All are isoelectronic. Effective nuclear charge is
	Halogens are most electronegative. Their general		highest for Na ⁺ , so it has the smallest size
	configuration is $ns^2np^5$	221	(a)
204	(b)		$_6$ C $\rightarrow 1s^2, 2s^2, 2p^2$
	They have high electron density.		$_5\text{B} \rightarrow 1s^2, 2s^2, 2p^1$
205	(a)		In first case $IE_1$ of $C > IE_1$ of B. Since, carbon is
	Cations are always smaller than their parent		smaller than B in size. But $IE_2(B) > IE_2(C)$
	atoms:		because electron are paired as well as present in
	$\mathrm{Al}^{3+} < \mathrm{Al}^{2+} < \mathrm{Al}^{+} < \mathrm{Al}.$		inner <i>s</i> -orbital whereas for carbon it will be still
206	(c)		in $2p$ -orbital and in unpaired state
	$N \equiv C - C - C \equiv N$	222	(c)
	N = C - C = N		$\mathrm{KHF}_2 \to \mathrm{K}^+ + \mathrm{HF}_2$
	$\frac{1}{1} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}$	223	(b)
	C = C is $sp$ nybridization and $C = N$ is $sp$ -	224	$H_2O$ has $Sp^2$ -hydridizatio.
207		224	(D) Bond onergy of Cl. is higher among all halogon
207	(d) Each spacing has 14 electrons and hand order for		bolic energy of $Cl_2$ is inglief alloing all halogen molecules $B = of E$ (1) $Br = L_2 are 27.58.46$ and
	each is three		$36 \text{ kcal mol}^{-1}$ respectively
208	(h)	225	(h)
200	Fluorine although have highest electronegativity	225	$C_{1}$ involves $3n-3n$ overlapping
	due to its very small size. effective inter electronic	226	(c)
	repulsions are observed which brings down its		CCl ₄ has $sp^3$ -hybridization giving regular
	electron affinity		tetrahedron geometry. In others the geometry is
209	(c)		little distorted inspite of $sp^3$ -hybridization due to
	$r_{\rm H} = \frac{74}{2} = 37 \text{ pm}, r_{\rm Cl} = \frac{198}{2} = 99 \text{ pm}.$		different atoms on the vertices of tetrahedron.
	$\frac{1}{2} = \frac{1}{2} + \frac{1}{2}$	227	(c)
210	<b>b. L. of $\Pi CI = I_{\rm H} + I_{\rm CI}$</b>		$Cl^{-}$ has $1s^2$ , $2s^22p^6$ , $3s^23p^6$ configuration.
210	Thus excitation of 2s-electron in N is not possible	228	(c)
211	(c)		N atom in $NH_3$ provides electron pair to $H^+$ to
	Second electron affinity of oxygen is endothermic		form coordinate or dative bond $(H_3 N \rightarrow H)$ .
	and greater than first electron affinity, which is	229	(d)
	exothermic		$IP_3 > IP_2 > IP_1.$
212	(a)	230	(c)
	Based on geometry of molecule.		The order of stability matel oxides is as :
213	(a)		$Fe_2O_3 < Cr_2O_3 < Al_2O_3 < MgO$
		1	

231	(a)
	First ionisation energy increases from left to right
	across a period, but Mg has extra stability than Al,
	due to full-filled 3 <i>s</i> -orbitals.
	$Na_{11} = 1s^2, 2s^2, 2p^6, 3s^1$
	$Mg_{12} = 1s^2, 2s^2, 2p^6, 3s^2$
	$Al_{13} = 1s^2, 2s^2, 2p^6, 3s^2, 3p^1$
	$Si_{14} = 1s^2, 2s^2, 2p^6, 3s^2, 3p^2$
	The correct order of first ionisation potential is
	Na < Ma > Al < Si
232	(c)
202	$1s^2 2s^22n^4$ leads a sharing of two electron nairs
	to form molecule $e_{a}$ $\Omega_{a}$
222	(h)
255	$M \cap configuration of N_i c$
	M.O. configuration of N ₂ is: $\pi^{1}a^{2}\pi^{*}1a^{2}\pi^{2}a^{2}\pi^{*}2a^{2}\pi^{2}m^{2}\pi^{2}m^{2}\pi^{2}m^{2}$
	$015^{-}015^{-}, 025^{-}025^{-}, \pi 2p_{y}^{-}, \pi 2p_{z}^{-}, 02p_{x}^{-}$
	M.O. configuration of $N_2^+$ is:
	$\sigma 1s^2 \sigma^* 1s^2$ , $\sigma 2s^2 \sigma^* 2s^2$ , $\pi 2p_y^2$ , $\pi 2p_z^2 \sigma 2p_x^1$
234	(a)
	Both are linear.
235	(b)
	$SO_2$ has $sp^2$ -hybridization.
236	(d)
	The basic character of metal oxides decreases
	from left to right in a period due to decrease in
	electropositive character which in turn decreases
	the polarity of bond as well as the internuclear
	distance between the oxygen and metal atom.
	Therefore, alkali metal oxides are most basic and
	halogen oxide (oxvgen halides) are most acidic
	$\therefore$ K ₂ O is most basic metal oxide.
237	(c)
_0.	Same spin electrons in two atoms do not take part
	in honding
220	
239	(a) Count $\sigma_{-}$ and $\pi_{-}$ honds
240	(d)
240	(u) Valency is according to valence shell
	valency is according to valence shell $a_{1}a_{2}^{2}a_{2}^{2}a_{3}^{2}a_{3}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_{5}^{2}a_$
244	configuration which here is $1s^2$ , $2s^2$ , $2p^2$ , $le$ , $5$
241	
	$Cal_2$ has maximum covalent character due to large
	size of anion and possesses lowest lattice energy.
	Thus melting point is lowest.
242	(a)
	Nitrates of alkali metals on heating evolve oxygen
	gas ( <i>e.g.</i> , $KNO_3$ ) while nitrates of $p$ and $d$ -block
	elements [ <i>e.g.</i> , $(NO_3)_2$ , $Cu(NO_3)_2$ and $AgNO_3$ ]
	gives out nitrogen dioxide on heating
	$2\text{KNO}_3 \rightarrow 2\text{KNO}_2 + \text{O}_2$
	$\therefore$ $\qquad$ Nitrogen dioxide cannot be prepared from

 $KNO_2$ .

243 (a) Ions Be²⁺ Cl⁻ S²⁻ Na⁺ Mg²⁺ Br⁻ Valence shell 1 3 3 2 2 4 Now, between Na⁺ and Mg²⁺, Na⁺ > Mg²⁺ (isoelectronic), between Cl⁻ and S²⁻, S²⁻ > Cl⁻ (isoelectronic) because for isoelectronic species size decreases as the atomic number increases. Hence, the order of increasing size is Be²⁺ > Mg²⁺ > Na⁺ > Cl⁻ > S²⁻ > Br⁻

#### 244 **(d)**

 $PCl_3 < PBr_3 < PI_3$ , the bond angle order is explained in terms of increasing electronegativity of halogens, whereas,  $PF_3 > PCl_3$ , bond angle order is explained in terms of  $p\pi - d\pi$  bonding in  $PF_3$ .

### 245 (d)

Hg exists in liquid state.

### 246 **(d)**

 $117{=}[\mathrm{Rn}]5f^{14}, 6d^{10}, 7s^27p^5$ 

Since, the last electron enters in *p*-orbital, it will be a *p*-block element and its group number =5+2=7 (VIIA)

So, the element would be the placed in halogen family.

## 247 **(b)**

The elements with atomic number 9, 17, 35, 53 and 85 are respectively F, Cl, Br, I and At. These are VII A group elements which are also known as halogens (which means originating from sea.) These also have 7 electrons in valence shell (*i.e.*,  $ns^2np^5$ )

*e.g*.,

$$_{9}F = 1s^{2}, 2s^{2}, 2p^{5}$$
  
 $_{17}Cl = 1s^{2}, 2s^{2}2p^{6}, 3s^{2}3p^{5}$ 

249 **(b)** 

 $IE_1$  of N >  $IE_1$  of O due to half filled nature in N. 250 (a)

Solid molecules possess stronger van der Waals' forces.

e 251 (c)

 ${\rm SiF}_4$  has regular tetrahedral geometry.

252 **(b)** 

IA–Alkali metals

IIA–Alkaline earth metals

IB-Coinage metals

253 **(c)** 

The bond angle in  $CH_3OCH_3$  is 110° inspite of  $sp^3$ -hybridization of O and two lone pair due to stearic hindrance.

254	(a)	267	(a)
	Removal of electron is easier in <i>f</i> -block elements		Difference between S and S ²⁻ is larger radii and
	due to more shielding.		larger size os S ^{2–} .
255	(b)		As the radii of the anion is always larger than the
	Seven atoms of fluorine are covalently bonded		atomic radii of its parent atom. In an anion as
	with iodine.		electron or electrons are added to the neutral
256	(b)		atom, the nuclear charge acts on more electrons,
	As a result of more overlapping. Note that $\pi$ -		so that each electron is held less tightly and
	bonds are formed after $\sigma$ -has already formed.		thereby, the electron cloud expands.
257	(d)	268	(d)
	$1s^2$ , $2s^22p^6$ , $3s^23p^6$ , $4s^2$ . Principal quantum		$NH_2^-$ has $sp^3$ -hybridization having two covalent
	number is 4, so it belongs to 4th period		bonds and two lone pair of N atom.
258	(d)	269	(a)
	Resultant of two opposite vectors produces zero		Smaller is size of anion, lesser is its polarization,
	dipole moment.		more is ionic nature, more is lattice energy.
259	(d)	270	(d)
	The trigonal geometry of BF ₃ with three vectors		$HC \equiv C - HC = CH - CH_3 \ 10\sigma, 3\pi$
	$(B \rightarrow F)$ acting at 120° leads to zero dipole	271	(d)
	moment. In NH ₃ three vectors (N $\leftarrow$ H) act at 107°		The charge-size ratio increases and thus
	along with one lone pair giving dipole moment in		polarising power increases.
	molecule.	272	(a)
260	(c)		In a given group, atomic size increase due to
	$PF_5$ involves $sp^3d$ -hybridization.		addition of extra shell which outweighs the effect
261	(c)		of increased nuclear charge. Number of shells
	C < N > O is the correct order because N has		increases with addition of extra electrons. Hence,
	stable configuration (exactly half-filled <i>p</i> -orbital		increase in atomic size down the group is due to
	$1s^2, 2s^2, 2p^3$ ).		increase in number of electrons.
262	(c)	274	(a)
	(a) Metallic radii increase in a group from top to		B is non-metal among Be, Mg, Al and B. Be Mg and
	bottom.		Al are metals. Metallic character increases when
	Thus, Li $< Na < K < Rb$ is true		we move down the group and decreases along
	(b) Electron gain of enthalpy of $Cl > F$ and		period.
	decreases along a group.	275	(d)
	Thus, $I < Br < F < Cl$ is true.		$ICl_2^-$ has $sp^3d$ -hybridized state
	(c) Ionisation enthalpy increases along a period		( <i>i.e.</i> , trigonal bipyramidal shape but distorted
	left to right but due to presence of half-filled		due to the presence of lone pair of electron on I
	orbital in N, ionisation enthalpy of $N > 0$ .		atom.)
	Thus $B < C < N < 0$ is incorrect.	276	(b)
263	(c)		
	Pauling work on chemical bonding.		H O has H H honding
264		277	(d)
	The order of electron affinity among the halogens	277	(vidizing nower decreases in a group
		278	(a)
0.45	CI > F > Br > I	270	Solubility order $\cdot AgF > AaCl > AaBr > Aal$
265	(c)	280	(d)
	Electronegativity of elements increases along the	200	Phosphorus is a non-metallic element. It forms
200	period and, decreases down the group.		acidic oxide.
266	(u) Size of atom domococce with increases in starri-	281	(d)
	number across the period in Deriodic Table		$EA_1$ for elements is exothermic and $EA_2$ is
	number across the period in refloure rable.		endothermic. Also $EA_2$ for $O > EA_1$ for O.

282	(a) $C_6H_6$ has regular hexagonal geometry.		The other reason for the greater IP of nitrogen is that in oxygen, there is a greater interelectronic
283	(c)		repulsion between the electrons present in the
	H-bonding is noticed in molecules having H atom		same <i>p</i> -orbital which counter-balance the
	attached on N, O or F.		increase in effective nuclear charge from nitrogen
284	(d)		to oxygen.
	One carbon has three bonds and other five where	293	(d)
	as each should have four bonds.		Multiplicity in bonds decreases bond lengths.
285	(c)	294	(b)
	h-bonding in $H_2O$ increases forces of attracting		It is an ionic compound. The most ionic compound
	among molecules and develops abnormal		is CsF.
	properties.	295	(b)
286	(a)		$NO_2^ sp^2$
	2, 8, 2 because it would donate electron more		$NO_3^ sp^2$
	easily		$NO_2^ sp^3$
287	(c)		$NO_4^+$ $sp^3$
	Bond energy increases with multiplicity of bonds.		SCN ⁻ sp
288	(d)	296	(a)
	Examine the positions in Periodic Table.		It is the definition of valency.
	BCNOF	297	(c)
	P S		$\equiv$ C – has $2\sigma$ - and $2\pi$ -(thus, <i>sp</i> -hybridization);
	Phosphorus is having stable half-filled		$-CH = has 3\sigma$ - and $1\pi$ -(thus, $sp^2$ -hybridization).
	configuration.		Remember hybridized orbitals do not form $\pi$ -
200	Hence, order is $B < S < P < F$	200	bonds
209	<b>Example 1</b> Reprint $\mathbb{R}^{-1}$ and $\mathbb{R}^{-1}$ have $\mathbb{R}^{3}$ hybridization and	298	(a)
	both $BIO_3$ and $AeO_3$ have $sp$ -hybridisation and	200	IP of inert gases is maximum .
290	(a)	299	(C) Pond angles degreese down the group
270	The electronic configuration of transition	300	(a)
	elements is exhibited by	300	[a] Eluorine being most electronegative atom has a
	$(n-1)d^{1-10}ns^2$		high tendency to gain electron. Thus, it readily
291	(b)		forms anions
	The bond order for $0^{2-}_{2-}, 0^{-}_{2-}, 0^{-}_{2-}, 0^{+}_{2-}$ are	301	(d)
	1.0, 1.5, 2.0, 2.5 respectively. higher is bond order,		A characteristic of metallic bonding.
	more is bond energy.	303	(a)
292	(c)		Electron deficient species can accept lone pair of
	The electronic configuration of nitrogen is		electron and thus, act as Lewis acid.
	$_{7}$ N= 1 $s^{2}$ , 2 $s^{2}$ , 2 $p^{3}$	304	(a)
	$2p^3$ 1 1 1		Brass in an alloy.
	half filled n orbital	305	(d)
	Due to success of half filled is subital (many		Ionic compounds having lattice energy higher
	stable) a large amount of anorgy is required to		than hydration energy are insoluble in water.
	remove an electron from nitrogen. Hence, first	306	(a)
	ionisation energy of nitrogen is greater than that		Electronegativity difference in two atoms
	of oxygen		involved in bonding is a measure of polarity in
	The electronic configuration of oxygen is		molecule.
	$_{8}O=1s^2$ $2s^22n^4$	307	(a)
	$2 - \frac{1}{2} - \frac{1}{2} - \frac{1}{2}$		Electronegativity increases along the period and
		200	decreases down the group.
	Greater repulsion	308	נטן
		•	

Ionization potential increases along the period. Also Be has  $1s^2$ ,  $2s^2$ , *i. e.*, removal of electrons from 2s while in Boron it occurs from 2p and therefore, Be has high I.P. 309 (a)  $Na \rightarrow Na^+ + e$ ; *IE* of Na = +ve $Na^+ + e \rightarrow Na$ ; *EA* of  $Na^+ = -ve$ Both are equal but opposite in nature. 310 (c) Given, Atomic number of element B = Z(:: Noble gas  $\therefore$  Belong to zero group) Atomic number of element A = Z - 1(*i.e.*, halogens) Atomic number of element C = Z + 1(*i.e.*, group IA) Atomic number of element D = Z + 2(*i.e.*, group II A) : Element B is a noble gas. : Element *A* must be a halogen *i.e.*, have highest electron affinity and element C must be an alkali metal and exist in+1 oxidation state. And element *D* must be an alkaline earth metal with +2 oxidation state.

#### 311 **(b)**

Both possess  $sp^2$ -hybridization but different geometry.

#### 313 **(a)**

The addition of second electron in an atom or ion is always endothermic as the incoming electron experience the greater force of repulsion

#### 314 **(a)**

 $3 = 1s^2, 2s^1$ 

 $12 = 1s^2, 2s^2, 2p^6, 3s^2$ 

Since, last electron enters in *s*-orbitals, these are *s*-bloc elements

#### 315 (d)

Rest all are periodic properties of elements.

#### 316 **(b)**

In the Periodic Table metals usually used as catalysts belong to *d* -block *e.g.*, Ni, Pt etc.

## 317 **(c)**

Bond order  $C_2^- > NO > O_2^- > He_2^+$ 3 5/2 3/2 1/2

### 318 **(a)**

It is a fact derived from bond order.

#### 319 **(b)**

Due to  $sp^2$ -hybridization.

#### 320 **(b)**

H-bond has its bond length in the range 2.5 Å to

2.75 Å.

321 **(b)** 

It has  $sp^3d^3$ -hybridization with one lone pair on Xe.

### 322 **(c)**

HCl exists as  $H^{\delta+} - Cl^{\delta-}$  due to difference in electronegativity of H and Cl.

324 (d)

Each has 10 electrons

#### 325 **(a)**

In SF₄, S has  $sp^3d$ -hybridization. Thus, it contains two axial and two equatorial bonds to give seesaw structure.



#### 326 **(a)**

Van der Waals' forces increases in  $CH_4$  to give solid  $CH_4$ .

#### 327 **(b)**

Multiplicity in bonding give rise to an increase in bond energy.

## 328 **(b)**

The electron affinity (in kJ/mol)

Fluorine=332.6 Chlorine=348.5

Bromine=324.7

## Iodine=295.5

Chlorine has highest electron affinity value, so, according to question the correct order of electron affinity will be  $Cl_2 > F_2 > Br_2$ .

#### 329 **(c)**

According to M.O. theory, bond order of  $N_2$ ,  $N_2^-$  and  $N_2^{2-}$  are 3, 2.5 and 2 respectively.

$$O_{2}^{2-}:\sigma 1s^{2},\sigma^{*}1s^{2},\sigma 2s^{2}\sigma^{*}2s^{2}\sigma 2p^{2}\begin{bmatrix}\pi 2p_{y}^{2}\\\pi 2p_{z}^{2}\end{bmatrix}\pi^{*}2p_{y}^{2}$$
  
B. 0. =  $\frac{10-8}{2} = 1$   
B₂ :  $\sigma 1s^{2},\sigma^{*}1s^{2},\sigma 2s^{2},\sigma^{*}2s^{2}\begin{bmatrix}\pi 2p_{y}^{1}\\\pi 2p_{z}^{1}\end{bmatrix}$   
B. 0. =  $\frac{6-4}{2} = 1$ 

 $C_2H_4$  involves  $sp^3$ -hybridization on carbon atoms. 333 (c)

$$[0-0]^2$$

334 **(d)** 

The electronic configuration of carbon is

 $1s^2, 2s^22p^2.$ 

Only Na shows+1 oxidation state. Rest all have +1, +2 (Hg), +1, +2(Cu) and +2, +3(Fe) oxidation states.

336 **(a)** 

Like gets dissolved in like. It is theory.

337 **(d)** 

Cu loses two electron to form  $Cu^{2+}$ .

338 **(c)** 

Only then it can accept lone pair in that shell.

339 **(a)** 

The electron affinity of fluorine is lower than that of chlorine due to the very small size of fluorine in which negative charge is highly concentrated and repels the incoming electron thereby reducing the force of attraction of nucleus towards the adding electron and hence, decreasing the electron affinity.

Thus, chlorine has highest value of electron affinity.

## 340 **(b)**

In the Periodic Table, when one moves from left to right in a period, the acidity of oxides and halides of elements increases while it decreases when one moves from top to bottom in a group. Hence,  $PCl_3$  is most acidic among given species.

# 341 (d)

It is the hybridization of  $ICl_2^+$ .

## 342 (d)

 $_{20}$ Ca = [Ar]4s²  $_{21}$ Sc = [Ar]4s², 3d¹

$$_{22}$$
Ti = [Ar] $4s^2$ ,  $3d^2$ 

As *d*-orbital have diffused shape, hence their electron shields nuclear charge upto lesser extent. Hence, due to increase in effective nuclear charge  $(Z_{eff})$  atomic size decrease, in the following order Ca > Sc > Ti

## 343 **(c)**

 $\mu_{H_2O}\neq 0, \mu_{CO_2}=0$ 

## 344 **(c)**

F₂ is most reactive due to

- (1) highest electronegativity.
- (2)low bond dissociation energy
- (3)high heat of hydration of F⁻ion

## 346 **(d)**

 $\mbox{ClO}_2$  has 33 electron; one will be unpaired.

## 347 **(d)**

Down the group, size of atom increases. Therefore, bond length of LiF is less than that of

NaF 348 (c) Bond order  $=\frac{1}{2}$  [bonding electrons – antibonding electrons] 349 (b)  $sp^3 d^2$ -hybridization leads to octahedral geometry. 350 (a) Ionic radii =  $\frac{n^2 a_0}{Z_{\text{off}}}$ 351 (c) H atom attached of F is responsible for H-bonding. 352 **(b)** Be₂( $\sigma 1s^2$ ,  $\sigma^* 1s^2$ ,  $\sigma 2s^2$ ,  $\sigma^* 2s^2$ ) has bond order equal to zero. 353 (c) The electronic configuration of element with atomic number 21 is  $1s^2, 2s^2, 2p^6, 3s^2, 3p^6, 4s^2, 3d^1$ Since, this element contains partly filled *d*-orbital, so it is a *d*-block element. *d*-block elements are also known as transition elements. 354 (a) Head on overlapping give rise to  $\sigma$ -bond formation. 355 (a) A species is amphoteric if it is soluble in acid (behaves as a base) as well as in base (behaves as an acid.)  $SnO_2 + 4HCl \rightarrow SnCl_4 + 2H_2O$ basic acid  $SnO_2 + 2NaOH \rightarrow Na_2SnO_3 + H_2O$ acid base 356 **(b)** The first ionisation potential generally increases in a period from left to right and decreases in a group from up to down. Thus, the correct order of first ionisation potential is K < Na < Be. 357 (a) As we go down the group in Periodic Table, atomic size increases, force of attraction for the added electron decreases, hence electron gain enthalpy decreases.  $X(g) + e^- \rightarrow X^-(g)$ Actual order, Cl > F > Br > I

The fact that fluorine has a less electron gain enthalpy than chlorine seems to be due to the relatively greater effectiveness of 2*p*-electron in the small F-atom to repel the additional electron

entering the atom than do 3*p*-electrons in the 371 (a)  $1s^2$ ,  $2s^2p^6$ ,  $3s^2$  – In III transition  $e^-$  is to be larger Cl-atom. 358 (a) removed from stable configuration Bond angle for sp,  $sp^2$  and  $sp^3$ -orbitals are 372 (a) 180°, 120° and 109°28' respectively. Atomic radius decreases along the period, 359 (d) increases down the group. 373 (b) Dipole forces exist only in polar molecule. 360 (c) The size of isoelectronic decreases with increase Reason being, as we move in period atomic radii in atomic number. decreases from left to right due to increase of 374 (b) effective nuclear charge. In  $K_2CrO_4$ , the oxidation state of Cr is +6. Therefore, Cr has the minimum radius in K₂CrO₄ Na is larger in size than Mg and a neutral :. atom is larger than its positive ion. 375 (d) B in  $BF_3$  has  $sp^2$ -hybridization. 362 (a) Ionisation energy defined as the energy required 376 (b) to remove an electron from the outermost orbit of Coinage metals are transition metals but they an isolated gaseous atom in its ground state. cannot work as transition metal because they  $Na(11) = 1s^2, 2s^2, 2p^6, 3s^1$ have completely filled *d*-orbital.  $Na \rightarrow Na^+ + e^-$ (First IE) Group 1B elements are called coinage metals (Cu,  $Na^+ \rightarrow Na^{2+} + e^-$ (Second IE) Ag, Au). First IE is lower and second IE is very higher, Their general outer electronic configuration is because removal of an electron from Na⁺is very  $(n-1)d^{10}ns^1$ . 377 (b) difficult. 363 **(b)** The ionisation energy of Tin (Sn) is less than that Follow Fajans' rule to predict covalent nature. of lead (Pb). It is due to the poor sheilding of dand *f*-electron in Pb, due to which it feels greater 364 (c) BCl₃ has equilateral triangular shape leading to attraction from nucleus. vector sum of polar bonds to zero. 378 (d) 365 **(c)** If the EN difference is 1.9, then bond is 50% ionic. The property of attracting electrons by an at atom The difference in electronegativity is 2.8, of a molecule is called electronegativity. However, therefore, percentage ionic character due to EN difference of 2.8 is electron affinity is the amount of energy liberated  $\frac{2.8}{1.9} \times 50 = 73.6\%$ when an electron is added to an isolated gaseous atom. 379 (b) 366 **(c)** In a period from left to right the electropositive  $Na(11): 1s^2, 2s^22p^6, 3s^1$ nature of elements decreases because nuclear It is an alkali metal. Alkali metal oxides are basic charge increases. Hence, magnesium (Mg) is the in nature. most electropositive element among these. 367 (c) 380 (a) Ionisation energy decreases down the group. F₃Cl has 10 electrons on Cl atom. A superoctet 368 **(b)** molecule means for expanded octet on an atom. KO₂ is an ionic compound. 381 (d) 369 (c) IE decreases in a group and increases in a period. Oxygen cannot expand its octet due to absence of Thus, Rb has the lowest IE *d*-orbitals in its valence shell. 382 (c) 370 (c) The outer electronic configuration =  $s^2 p^1$ In case of isoelectronic species Thus, valency = 2 + 1 = 3Ionic radius  $\propto \frac{1}{\text{nuclear charge}}$ Therefore, the formula of the oxide is  $X_2 O_3$ Thus, the order of ionic radii of given ions is Since, it is an oxide of III group element, its nature  $0^{2-} > F^- > Na^+ > Mg^{2+} > Al^{3+}$ is amphoteric

384	(a) Noble gases have fully filled valence shell electronic configuration. Therefore, it represents $nc^2nn^6$							
385	(c) Ne, Ar, Kr, Xe and Rn are diamagnetic in nature.							
386	(d) Sulphur belongs to VI group of Periodic Table	399						
387	(b) Dimerization occurs in carboxylic acids which	400						
388	(c) Larger anion is polarized more (Fajans' rule).	402						
389	(a) $P_4O_{10}$ is	403						
		404						
		405						
390	<b>(b)</b> Because of small atomic size and high nuclear charge, oxygen has the highest electronegativity	406						
392	(c) The electronic configuration of the element having atomic number 106 is $[Rn]_{86}, 7s^1, 5f^{14}, 6d^5$ Since, the last electron enters in <i>d</i> -orbit, it is a <i>d</i> - block element. Its IUPAC name is unnilhexium (IInh)							
393	<b>(b)</b> Larger cation favours ionic bonding (Fajan's rule).	407						
394	(b) Bond dissociation energy order: $Cl_2 > Br_2 > F_2 > I_2$ 242.6 192.8 158.8 151.1 in kl mol ⁻¹	408						
395	(c) BCl ₃ has six electrons in outer shell of boron	409						
396	atom. (c) Anions are larger in size than their parent atom.	410						
397	(b)	411						

 $C_2$ ,  $N_2$  and  $F_2$  has no unpaired electron in their

molecular orbital configuration.

383 (c)

Bond order for  $O_2 = 2$ ;  $O_2^+ = 2.5$ ;  $O_2^- = 1.5$ ,  $O_2^{2-} = -1.5$ 1

Thus bond length is  $0_2^+ < 0_2 < 0_2^- < 0_2^{2^-}$ 

#### 298 (a)

Atomic size increases as we move from top to down in a group, therefore, the amount of energy required for ejection of an electron from atom decreases *i.e.*, ionisation energy decreases. Hence, the correct order of IE₁ is Li > Na > K > Cs

## (d)

Unpaired electrons give rise to paramagnetis.

#### (a)

Bond order =  $\frac{1}{2}$  [no. of bonding electron – no. of antibonding electron]

#### (b)

SiO₂ possesses giant molecular structure due to tetra valence and catenation nature of Si

### (a)

NO has 15 electrons.

### (b)

The bond length are :

$$C - H < C = C < C - 0 < C - C _{107 pm} < C_{134 pm} < C - 0 < C - C _{141 pm} < C - C$$

### (c)

Inspite of three polar bond, the lone pair of electron on N atom decreases the dipole moment of NF₃ than NH₃.

## (b)

Atomic radii decrease in a period from left to right, hence, fluorine has a very less atomic radii (covalent atomic radii =0.72Å). But inert gases (like Ne) are monoatomic gases, hence, their convalent atomic radii cannot be found out. In fact, their calculated atomic radii is the van der Waals' radii, which is found almost double to covalent radii, hence, the van der Waals' radius of neon (Ne) is about 1.60Å.

#### (a)

: During ionisation, energy is supplied to atom in order to take out electron from it. Energy of atom increases when an electron is removed from atom.

## (b)

Only sulphur has *d*-orbitals.

(c)

It is a fact of VSPER theory.

(b)

Both have one lone pair of electron.

(d)

These are characteristics of resonance.

412	(b)		Electron affinity decreases down the group, but
	$K_4 \text{Fe}(\text{CN})_6 \rightarrow 4\text{K}^+ + \text{Fe}(\text{CN})_6^{4-}.$		'O' has small atomic size and 2 <i>p</i> -orbital becomes
413	(a)		very compact and already has 6 electrons, hence,
	Like gets dissolved in like.		there is a repulsive force among the already
414	(a)		present and added electrons. Some of the energy
	These atomic numbers give the configuration		evolved, due to addition of electron, is used to
	$ns^2np^5$ which is of halogen group or VIIth group		reduce the repulsion. Hence, the E.A. of O is less
415	(c)		than S, so the order is $S > 0 > Se$ .
	In $O^{2-}$ effective nuclear charge is minimum due to	429	(d)
	more number of electrons and thus the size of $0^{2-}$		BeO is basic oxide and reacts only with an acid to
	is maximum.		form the salt while
416	(b)		$ZnO_1 SnO_2$ and $Al_2O_3$ are amphoteric oxides which
	More directionally concentrated orbitals show		are react with acid and base both.
	more overlapping	430	(d)
417	(a)		Both C and N ⁺ have six electrons.
117	$E_1 < E_2$ because second IE is greater than first IE	431	(c)
418	(d)		The size of isoelectronic species decreases with
110	Halogens have highest electron affinity in the		increasing nuclear charge. Hence, the order of
	Periodic Table and it decreases down the group		ionic radii of $N^3$ . $O^2$ and F is as
	Chloring has highest electron affinity and fluoring		$N^3 > 0^2 > Fl$
	has lower electron affinity than chloring due to its		171 140 136
	small size and repulsion between electrons	432	(a)
	prosent in it and added electron. The order of	152	$\sqrt{\frac{1}{1}}$
	electron affinity is		$\mu = \sqrt{\mu_1^2 + \mu_2^2 + \mu_1 \mu_2 \cos \theta}, \text{ If } \theta = 90^\circ \mu \text{ Is}$
	E < C > Pr > I	400	maximum.
410	$\mathbf{F} < \mathbf{C} \mathbf{I} > \mathbf{D} \mathbf{I} > \mathbf{I}$	433	
415	(D) Elucring has low EA than chloring because of		More is electronegativity difference, more is ionic
	smaller size of fluoring and compact 2n orbital	42.4	character.
	where interelectronic repulsion is more	434	
420	(c)		On passing from left to right in a period, acidic
420	(c)		character of the normal oxides of the element
421	(d) $Co_2 \operatorname{mas} sp-nybridization.$		goes on increasing with increases in
421	0 has two long pair of electrons	425	electronegativity
122	(a)	435	
722	a) 2nd IE of alkali motals is abnormally higher	120	Due to larger difference in electronegativity.
172	$L_1$ of alkali metals is abilitrally higher.	436	
423	$(\mathbf{U})$ $K^+[C = N]^-, K^+$ and $CN^-$ ionic C and N forms	407	Small cation has more polarizing power .
	K [C = N], $K$ and $CN$ former, $C$ and $N$ forms	437	
425	covarent bonds .		Ionisation potential generally increases in a
425	(D) More is a character smaller is hybridized orbital		period from left to right but $1E_1$ of N ₂ is greater
	more has a more tendency for everylapping more is		than that of $O_2$ . It is due to the more stable (half-
	hand energy losser is hand length	400	filled orbitals) configurations of N.
176	bolid ellergy, lesser is bolid leligtil.	438	
420	(D) Allvali motolo are elvery univelent		Ionisation potential is the amount of energy
107	Aikan metais are aiways univalent.		required to take out most loosely bonded electron
427	(u)		trom isolated gaseous atom. Its value increases in
	denerally, $u$ -block elements are called transition		a period. Element having stable configuration
	eventual as they contain inner partially filled <i>a</i> -		have exceptionally high ionisation potential
	substiell. I nus, their general electronic		N has highest ionisation potential among
	configuration is $(n-1)a^{1-10}, n^{1-2}$ .	1	C, B, O and N (: N has $2p^3$ stable configuration).

C, B, O and N ( $\because$  N has  $2p^3$  stable configuration). 439 **(b)** 

428 **(b)** 

#### Page | 65

	C ^{4–} , N ^{3–} and O ^{2–} are isoelectronic species. The								4.
	ionic radius of isoelectronic species decreases								
	with increase the nuclear charge. Hence, the order								(a)
	of ionic	radius i	S		-				CH ₃ ⁺ p
	Species	5	C ⁴⁻	>	N ³⁻	>	0 ^{2–}	457	(a)
	Ionic ra	adii(Å)	2.60		1.71		1.40		Large
440	(b)							458	(b)
	Energy	level or	der 2 <i>p</i> 3	> 2 <i>s</i> .					The ic
441	(a)								botto
	Bond a	ngles de	creases	on m	oving do	own th	e group		So, th
	for sim	ilar com	pounds	. i. e	$NH_2 > F$	РН₂ >	- 0 - F		Na+ >
	$AsH_2 >$	> <i>Sb</i> H ₂ .	P	,,		3			0.95Å
442	(d)							459	(d)
	The res	sultant d	ipole in	regul	ar tetral	hedro	n is		Electr
	zero.		-p = 10					461	(b)
443	(h)								F has
110	Interm	olecular	H-bond	ling gi	ves rise	to an			attain
	increas	e in h n	ii bone		1001150	to un		464	(a)
444	(c)	e in 0. p.							Ionisa
	M.O. co	nfigurat	ion of C	) _a is					atom
	$\sigma 1 s^2 \sigma$	*1s ² σ2	$s^2 \sigma^* 2$	$s^2 \sigma^{210}$	$n^2$				poten
	$\pi 2n^2$ $\pi$	$2n^2 \pi^*$	$2n^{1}_{}\pi^{*}2$	$n^1$	,			465	(a)
446	(h) $n 2p_x, n$	<i>2py,n</i> 2	$p_{\chi}, n =$	Ру					$Mg^{2+}$
110	HCland		re cova	lent h	ut give i	ons in			more
	solution	n 11013 a				0113 111		466	(b)
447	(d)								NH ₃ ,
11/	Charac	teristics	of hone	lorde	r concer	nt			and s
448	(h)		or bone	loiuc	reoneer	<i>.</i>			hybri
110	Cations	s are alw	avs sho	rter tl	han their	r nare	nt		probl
	atom, a	nion are	always	s large	r.	i pui e		467	(d)
449	(a)		, ai aj c						In alk
	$\Omega_{2}^{-}$ has one unnaired electron								group
450	(b)	P							halog
100	The bo	nd form	ation pr	ocess	is exoth	ermic	and		moled
	thus re	sultant a	couires	slowe	r energy	/ level		468	(d)
451	(b)			, 10 0					Ionisa
	$H_2O$ is:	$sn^3$ -hvh	ridized:	BeF ₂	is <i>sn</i> -hv	vbridiz	zed.		right
452	(d)	- F J	,	2					is gre
	As the	nuclear	charge i	ber ele	ectron is	maxi	mum in		p ³ cor
	P ⁵⁺ . Th	erefore.	its size	is sm	allest				
453	(b)	,						469	(c)
	The ph	The physical and chemical properties of elements							Catio
	are per	riodic fur	nctions	of the	ir electro	onics			atoms
	configu	ration. 7	This is t	he cor	rect stat	temen	t.	470	(a)
454	(b)		•						The o
	2.	Br ₂ is th	e only i	non-m	ietal wh	ich is	liquid at		F
		room te	emperat	ure.					or 1
								471	(c)
	3.	Hg is	metal	which	is liq	uid a	t room		The ic
		temper	ature.						group
									increa

4.	NH ₃ is	gas at room	temperature.
		840 40100	

:55	(a)
	$CH_3^+$ possesses $sp^2$ -hybridization.
57	(a)
	Larger anion is more polarized.
58	(b)
	The ionic radius in general increase moving top to
	bottom and further decreases moving left to right.
	So, the correct order is :
	$Na^+ > Li^+ > Mg^{2+} > Be^{2+}$
	0.95Å 0.68 Å 0.65 Å
-59	(d)
	Electron affinity increases across the period
61	(b)
	F has 7 electrons in its valence shell. Thus, to
	attain stability, it should have lost one electron.
64	(a)
	Ionisation potential is the energy required by an
	atom to lose electron and their ionisation
	potential is high.
65	(a)
	Mg ²⁺ is a smaller cation in these. Smaller is cation
	more is hydration energy.
66	(b)
	$\mathrm{NH}_3$ , $[\mathrm{PtCl}_4]^{2-}$ , $\mathrm{PCl}_5$ and $\mathrm{BCl}_3$ have $sp^3$ , $dsp^2sp^3d$
	and $sp^2$ hybridization respectively. Note that
	hybridization of P in $PCl_5$ is wrongly reported in
	problem.
67	(d)
	In alkali metals reactivity increases down the
	group as electropositivity increases, but for
	halogens $F_2$ is more reactive as moving down
	molecular stability increases.
68	(d)
	Ionisation energy generally increases from left to
	right in a period but ionisation energy of nitrogen
	is greater than oxygen due to stable
	$p^{3}$ configuration. Hence, the order is as
60	C < O < N < F
:69	(C)
	Cations are smaller in size than their parent
70	atoms.
:/0	(a) The order of the ionia redii of the since species is
	The order of the folic radii of the given species is $E^- < O^{2-} < N^{3-}$
	$\Gamma \leq U^{-} \leq N^{-}$
71	01 1.30 1.40 1.71
·/ 1	

The ionisation potential decreases down the group (due to increases in size of atom) and increases in a period from left to right.

470	: Out of the given choices $\text{Li} > K > Cs$ is correct.	485	(b) The stability of sarbonates in groups with
4/2	$\Omega^{2-}$ E ⁻ No ⁺ Mg ²⁺ and $\Lambda^{13+}$ are incolor transfer		increasing electron equitive character of metal
	O, F, Na, Mg and Al ² are isoelectronic	107	(a)
	species and nigher the nuclear charge, smaller the	487	(C) Molecular exhitel configuration of
470	size of isoelectronic species.		Molecular orbital configuration of, $C^{+}_{1} = 1 - 2 = 1 - 2 = 2 - 2 = 2 - 2 = 2 - 2 = 2 - 2 = 2 - 2 = 1$
4/3		100	$C_2 = \sigma 1s^2, \sigma^2 1s^2, \sigma 2s^2, \sigma^2 2s^2, \sigma 2p_x^2, \pi 2p_y^2$
4 77 4	Due to larger difference in electronegativity .	488	(a)
4/4			Stevenson's scale is not a scale of measuring
	$sp^{\circ}a$ -hybridisation leads to trigonal bipyramidal		electronegativity.
	geometry if no lone pair is present, $e. g.$ , $PCI_5$ ; in	489	(d)
	$CIF_3$ geometry is T shaped due to the presence of		An increase in <i>s</i> -character give rise to an increase
	two lone pair of electron. In XeF ₂ , geometry is		in bond strength.
	linear due to the presence of three lone pair of	490	
	electrons.		Ti ⁺ has 21 electrons in it. Rest all have 10
475			electrons.
	Formation of solid lattice from oppositely charged	491	(c)
	ionized gaseous atoms give rise to evolution of		Size of isoelectronics decreases with increasing
	lattice energy.		atomic number.
476	(d)	492	(a)
	Due to H-bonding, $V_{\rm ice} > V_{\rm water}$ .		M.O. configuration of $O_2$ :
477	(b)		$\sigma_{1s^{2}}\sigma_{1s^{2}}\sigma_{2s^{2}}\sigma_{2s^{2}}\sigma_{2s^{2}}\sigma_{2n^{2}}^{2n^{2}}\pi_{2p^{2}}^{2p^{2}}$
	Outer shell electrons are referred as valence		$[\pi^{2} p_{z}^{2}] [\pi^{*} 2p_{z}^{1}]$
	electrons.		Molecular orbitals $\pi^* 2p$ gains electron when $0_2^-$ is
478	(a) $116^{-3} 1^{2} 1^{-1} 1^{-1} 1^{-1}$		formed from $O_2$ .
	IF ₅ is square pyramid ( $sp^3d^2$ -hybridisation in I);	493	(a)
	$PCI_5$ is trigonal bipyramid ( <i>sp</i> ³ <i>d</i> -hybridisation in		During the formation of cation, the size decreases
	P).	494	(d)
479	(C)		Follow text.
400	Operates in each gaseous molecule.	495	(b)
480	(a)		Metallic character atomic size
	Dipole moment of $CH_4 = 0$ .		$\frac{1}{\frac{1}{\frac{1}{\frac{1}{\frac{1}{\frac{1}{\frac{1}{\frac{1}$
481	(b)		Metallic character decreases across a period from
	$PCl_3$ has $sp^3$ -hybrisation and possesses one lone		left to right because atomic size decreases
	pair on P-atom and three bond pairs of electrons		In a group from top to bottom, metallic nature
	3s $3p$		increases due to increase in atomic size
		496	(a)
	$(sp^{3})^{2}$	170	Bond formation is always exothermic. Compounds
	$(sp^3)^1$ $(sp^3)^1$ $(sp^3)^1$		of sodium are ionic.
		498	(a)
	3p of 3p of 3p of	170	The bond angle of $AX_{2}$ type molecules with one
	Cl Cl Cl		lone pair decreases down the gn due to
482	(h)		decreasing electronegativity of central atom
10-	Bond order $= \frac{1}{2} [n_0, of heading electrons, no, of heading elec$		which causes lower repulsion between lone pair-
	boint of the $\frac{1}{2}$ [10. of bointing electrons – 10. of		hond nair electrons
	antibonding electrons].	500	(d)
483	(a)	300	These are characteristic of hydration
	$\pi$ -bonding occurs only after $\sigma$ -bond is formed.	501	(a)
484	(c)	501	lania radii or ¹
	NaF is more ionic; F is smaller anion among all		$\overline{Z_{eff}}$
	and thus, least polarized.		$Z_{eff} = Effective nuclear charge$

	This $Z_{eff}$ is calculated as follows $Z_{eff}=Z$ -screening constant ( $\sigma$ )		IF ₅ has $sp^3d^2$ -hybridization with one lone pair on I atom.
	The value of screening constant is based upon the	511	(c)
	number of electrons in valence shell as well as in		In general ionisation energy increases as we move
	penultimate shells.		from left to right in a period. It is due to the
503	(d)		increase in effective nuclear charge. $IE_1$ of Be and
	Electron affinity is defined as "the energy released		N is high due to stable configuration. Hence, the
	when an extra electron is added to neutral		order is as follows F > N > C > Be > B
	gaseous atom. The increasing order of electron	512	(c)
	affinity is		Notice configuration of $N^+$ , $C^+$ , $O^+$ and $F^+$ .
	$2s^22p^4 < 3s^23p^4 < 2s^22p^5 < 3s^23p^5$	513	(a)
	0 < S < F < Cl		F has the highest electronegativity because of its
	General electron affinity decreases with the		smallest size
	increase in the size of atom, since nuclear	514	(b)
	attraction decrease down a group. The value of		,S,
	electron affinity increase as we move along a		
	period since the size of atoms decrease in a		$SO_2$ has $sp^2$ -hybridization due to O' O
	period. Electron affinity of O and F are less than S		geometry.
	and Cl respectively due to very small size.	515	(c)
504	(b)		H —bonding order:
	Anions are always larger than parent atom:		$\cdots H - F > \cdots H - 0 > \cdots H - N$
	cations are always lesser than parent atom.	516	(c)
505	(h)		First electron affinity is energy releasing process.
	The size of an anion is larger than its	517	(d)
	corresponding neutral atom and the size of cation		The overlapping orbitals must possess half-filled
	is smaller than its corresponding neutral atom.		nature with anti-spin electron.
	Hence, the order of the size of iodine species is as	518	(b)
	$ I^- > I >  I^+$ .		Noble gases are in zero group however they
506	(a)		possess eight electrons in their valence shell.
	The stability of hydrides decreases down the gp,	519	(b)
	<i>i.e.</i> , from $NH_3$ to $BiH_3$ which can be observed		Electronegativity is the tendency to attract the
	from their bond dissociation enthalpy. The correct		shared pair of electron towards itself. It decreases
	order is		down the group and increases in period.
	$NH_3 < PH_3 < AsH_3 < SbH_3 < BiH_3$		Fluorine has highest electronegativity among all
	Property NH ₃ PH ₃ AsH ₃ SbH ₃ BiH ₃		existing elements.
	$\Delta_{\rm diss} H^{-}(E-H)_{280}$ 222 207 255		Elements Cl > Br > P > Si
	$/kJ mol^{-1}$ 309 322 297 233 –		Electrone 3.0 2.8 2.1 1.8
507	(b)		gativity
	$R - O - H \cdots H - O - H$		Electronegativity of Cl is highest among given
508	(c)		elements.
	M.O. configuration of $N_2^-$ :	520	(b)
	$\sigma_{1s^{2}} \sigma_{1s^{2}} \sigma_{2s^{2}} \sigma_{2s^{2}} \sigma_{2s^{2}} \left[ \pi 2p_{y}^{2} \right] \sigma_{2n^{2}}^{2n^{2}} \sigma_{2n^{2}}^{*2n^{1}}$		$E_1$ for He ⁺ = $E_1$ for $H \times Z^2$ (where $Z$ = at.no. of
	$\begin{bmatrix} \pi & 2p_z^2 \end{bmatrix}, \begin{bmatrix} 2p_x & 2p_y \\ p_y \end{bmatrix}$	504	He).
	$B_{0} = \frac{1}{2}[10 = 5] = 25$	521	(b)
	$1.0 - \frac{1}{2}$		Covalent compounds have lower m.p. and b.p.
509	(b)	<b>F</b> 00	than ionic one.
	F is the most electronegative element which	522	(a)
	cannot loose electron to other so it exhibits		Bonding molecular orbitals possess lower energy
	only–1 state. Na is alkali metal which can loose	<b>F</b> 2 2	ieveis than antibonding orbitals.
<b>F</b> 40	only one electron so exhibits only +1 state.	523	(U) Hybrid orbitals nover form a bond
210	(C)		$n_{y}$ or $n_{z}$ or order in $n_{z}$ or $n_{z}$ or $n_{z}$ or $n_{z}$

510 **(c)** 

524	<b>(b)</b> Element with atomic number 20 is metal (Ca); it will combine with non-metal.	540	SF ₄ has $sp^3d$ -hybridization. Rest all have $sp^3$ -hybridization. (d)
525	(b) Ionisation energy of Ist group elements decreases down the group because in groups from top to bottom atomic size increase. Due to increase in atomic size, the nuclear attraction of outer		The elements present in the earth's core are collectively called siderophiles. These are found in their native state. These elements generally have a low reactivity and exhibit an affinity to form metallic bonds. <i>e.g.</i> , Pt, Ru, Pd, Ir, Os etc.
	electron is reduced. They easily removed from valence orbital. So ionisation energy is reduced from top to bottom in a group	542 543	<ul><li>(d)</li><li>The ionic radius increases down the group.</li><li>(c)</li></ul>
526	<b>(b)</b> Both $BF_4^-$ and $NH_4^+$ have $sp^3$ -hybridisation and	545	Since, the <i>d</i> -orbital of the element is incompletely filled, it is a <i>d</i> -block element
	therefore possess tetrahedral geometry. $NF_3 : sp^3  BCl_3 : sp^2$ $PE + sm^2  BrCl_3 = sm^3 d$	544	(a) $H_30^+: sp^3; NO_3^-: sp^2$
	$BF_3: sp^2  BFCI_3: sp^3 a$ $BF_4^-: sp^3  NH_3: sp^3$ $NH_4^+: sp^3  NO_3^-: sp^2$	545 546	(d) H is attached on N atom. (b)
527	(c) Smaller the size of cation, more is ionic character,		$IP_1$ of $B > IP_1$ of Li ENC of boron is more than Li. Also $IP_1$ of Li > $IP_1$ of K because removal of
528	(a) In PCl ₃ and POCl ₃ , P atom is $sp^3$ -hybridized.	547	(b) CsCl is ionic.
529	<b>(b)</b> $NO_3^-$ has $sp^2$ -hybridization and possesses	548	(a) Two like atoms involved in bonding can form only two $\pi$ and one $\pi$ bond within themselves because
531	(a) $H_2O$ shows high b.p. (inspite of lowest mol.wt.) on		$\pi$ -bonds are formed by <i>p</i> -orbitals and only when $\sigma$ -has already formed. Remember only three <i>p</i> -
532	(d) +4 ionic state is not possible for lead with iodide	549	(c) Intramolecular H-bonding in salicyl aldehyde
533	<ul> <li>because I⁻ reduces Pb⁺⁺ to Pb⁺⁺.</li> <li>(c)</li> <li>Electronegativity and ionisation energy decreases</li> </ul>	550	(a) H-bonding is weakest bonding.
534	from F to I. (a) BeCla has the highest melting point due to jonic	551 552	<ul> <li>(a)</li> <li>ClO₂ has 33 electrons, <i>i. e.</i>, one unpaired.</li> <li>(d)</li> </ul>
535	bond (b)		Sodium and chlorine are in same period $_{11}Na = 2, 8, 1$
	According to valence bond theory, overlapping orbitals must possess half-filled nature as well as antispin electron.		$_{17}$ Cl = 2, 8, 7 Both have 3- shells, hence they both are placed in 3rd period of Periodic Table.
536	(b) Be $(1s^22s^2)$ because of the presence of fully filled 2s-subshell has least tendency to take up an	553	<b>(b)</b> Basic character of hydrides decreases down the gp.
538	electron. Hence, Be [–] is least stable (c)	554	(a) The definition of bond order.
539	Both HgCl ₂ and $C_2H_2$ are linear like $CO_2$ because of <i>sp</i> -hybridization. (b)	555 556	(a) In BeCl ₂ , Be atom has incomplete octet. (b)

558	Due to H-bonding which is more in water than alcohol and not in ether.		Pauling's electronegativity values for elements are useful in predicting polarity of bonds in molecules
550	If the lattice energy < hydration energy, then only ionic compounds are soluble	572	(c) Larger is anion more is its polarization
559	(c) H-bonding in molecule gives rise to increase in its	573	(d) Fluorine has maximum reduction electrode
560	b.p.		potential $(E^{\circ}_{F/F^{-}}) = 2.87$ V, hence, it is easily
500	Since, $e^-$ is to be removed from exactly half-filled		reduced into $F^-$ and consequently $F_2$ is the best oxidising agent.
<b>F</b> (1	<i>p</i> -orbital	575	(d)
501	(d) At 25°C and 1 atm pressure bromine and mercury (Hg) are liquid. Chlorine (Cl) is gas and		The metallic character is found in iodine as well as in astatine (At). Note that metallic character
	nhosnhorus (P) is solid (m n of white	576	(a)
	phosphorus=44°C)	570	(a)
562	(c)		decreases down the group.
	Allene is $CH_2 = C = CH_2$ .	577	(d)
563	(c)		These are the factors on which IP depends.
	Basic character of hydrides is $NH_3 > PH_3$ .	578	(d)
564	(c)		Cl is more electronegative than Br.
	(a) Nuclear charge and electron affinity both	579	(b)
	increase in period and decrease in group.		Mg ²⁺ is smaller than Na ⁺ and thus, smaller is
	(b) Ionisation energy and electron affinity both		cation more is hydration energy.
	increase from left to right in a period and top to	580	(c)
	(c) Atomic radius decreases from left to right in a		Electron affinity order for halogens is
	period and increases from ton to bottom in a	E01	CI > F > Br > I.
	group whereas electron affinity increases from	201	(u) The characteristic to be observed during removal
	left to right in a period and decreases from top to		of II electron
	bottom in a group.	582	(a)
565	(a)		It is a concept.
	Covalent radius are always smaller than crystal	583	(d)
	radius as the former involves overlapping region.		Mullikan proposed M.O. theory.
566	(b)	584	(d)
	Multiplicity in bonds decreases bond length.		Proton (H ⁺ ) can only accept a lone pair from
567	(d) These we fortune on which offer the modern		donor atom.
	I hese are factors on which effective nuclear	585	
568	(a)	500	Bond order for $He_2$ is zero.
500	In a period, from left to right basic character of	200	(a) According to Fajans' rule polarization of anion is
	oxides decreases, thus Na ₂ O is most basic		influenced by charge of cation size of cation More
569	(c)		is the charge on cation, more is polarization of
	All the ions belong to same period thus for them		anion.
	cations will be smaller than anions. Now, $O^{2-}$ and	587	(b)
	F ⁻ are isoelectronic and $r_n \propto \frac{1}{7}$		$CH_2 = CH_2$ has $1\sigma$ -and $1\pi$ -in between two $sp^2$ -
	Thus, ionic radius of $0^{2-}(Z = 8) > F^{-}(Z = 9)$ .		hybridized carbon.
570	(a)	588	(b)
	Due to the presence of lone pair on N atom.	<b>F</b> 00	Follow Fajans' rule.
571	(a)	589	

	Stronger is metallic bonding (Fe has <i>d</i> -subshell),		This is due to lanthanide contraction
	more is hardness.	607	(d)
590	(b)		P atom has $sp^3$ -hybridization with one position
	It has $3\sigma$ -and $1\pi$ -bond.		occupied by lone pair of electron.
591	(b)	608	(b)
	Half filled orbitals are more stable.		Lower <i>IE</i> , more <i>EA</i> and high lattice energy are
592	(c)		required conditions for ionic bonding.
	Atomic size decreases along the period and	609	(c)
	increases down the gp.		$Al_2O_3$ behaves as an amphoteric oxide.
593	(d)		$Al_2O_3 + 6HCl \rightarrow 2AlCl_3 + 3H_2O$
	Anions are always larger in size than their parent		$Al_2O_3 + 2NaOH \xrightarrow{\Delta} 2NaAlO_2 + H_2O$
	atom. Cations are always smaller in size than their	610	(a)
	parent atom.		H atom has $1s^1$ configuration. Shielding effect is
594	(a)		property of penultimate shell electrons.
	More is the dipole moment more is ionic nature.	611	(b)
	$\mu = \delta \times d$ ; higher is $\mu$ , more will be $\delta$ on the atom.		$Mg \rightarrow Mg^+, E = 750 kJ$
595	(c)		Remaining energy $=1200-750=450$ kJ
	Electronic configuration reveals that the <i>p</i> -orbital		Energy needed to convert 1 mole of Mg ⁺ to
	of the element is not complete. Therefore, it is a <i>p</i> -		$Mg^{2+} = 1450$
	block element. Moreover, the atomic number of		Number of moles Mg ²⁺ produced
	the element is 33(As). Therefore, it is a metalloid.		1
596	(c)		$=\frac{1450}{1450} \times 450$
	SF ₆ has six S – F bonds.		=0.31
598	(c)		=31%
	All physical and chemical properties of elements		Number of moles of $Mg^+$ produced = $1 - 0.31$
	are periodic function of atomic number-Modern		=0.69
	Periodic Law.		=69%
599	(a)	612	(b)
(00	s-orbitals always lead head on overlapping.		$CCl_2 = CCl_2$ has $sp^3$ -hybridization. $CCl_4$ has $sp^3$ -
600			hybridization.
	Smaller is atom, more is energy needed to remove	613	(a)
	electron, <i>i.e.</i> , ionisation energy. Also removal of		Both $NH_4^+$ and $BF_4^-$ have $sp^3$ -hybridization.
601	two electrons needs more energy.	614	(d)
001	(D) A reason for the given fact		O is more electronegative than C.
602	A reason for the given fact.	615	(d)
002	(v) Cs is metal and solid		SF ₄ has $sp^3d$ -hybridization with one lone pair;
603	(a)		$CF_4$ has $sp^3$ -hybridization with no lone pair and
005	(a) Due to planar equilateral geometry of graphite		XeF ₄ has $sp^3d^2$ -hybridization with two lone pairs
604	(c)	616	(a)
001	$2\text{Fe} + 3[0] \rightarrow \text{Fe}_0(\text{rust})$		H-bonding is weakest bonding.
605	(a)	617	
000	<b>Electronegativity</b> The tendency of an atom in a	(10	Ls' is biggest ion among these. F is smallest.
	compound to attract a pair of bonded electrons	618	(C)
	towards itself is known as electronegativity of the	(10	All are non-metals.
	atom.	619	(u) Directory control CIL OIL is a start in
	Fluorine is most electronegative element because		Dipole moment of $CH_3OH$ is maximum in these .
	of smaller size and greater tendency to gain		
	electron.		
606	(d)		
	The trivalent ion having largest size is lanthanum.		
		1	

## 621 **(a)**

A  $\pi$ -bond has a nodal plane passing through the two bonded nuclei, *i. e.*, molecular plane.

$$\begin{array}{c} & & \\ & \\ H \\ & \\ H \end{array} \\ C \\ & \\ H \end{array} \\ C \\ & \\ H \end{array}$$
 Nodal plane, i.e., molecular plane.

622	(d) S ^{2–} has the largest size and hence, has the lowest	628	Smaller is anion, lesser is its polarization. (d)
625	ionisation energy (d)		H atom attached on N, O, F develops hydrogen bonding molecule.
	These are the factors on which van der Waals' forces depend.	630	<b>(b)</b> $CH_2OH$ shows H – bonding in liquid state.
626	(b)		Shigon Shows in Sonanig in Iquia Sater
	atom requires energy = $IP_1 + IP_2$ .		
627 631	(a) (b)		
	$IP_1$ of Pb > $IP_1$ of Sn(an exception).		
632	(d)	640	(c)
	In <i>s</i> -block elements, electron enter into the <i>ns</i> -orbitals.		It is head on overlapping and thus, forms more stronger bond.
	For atomic number $3=1s^2$ , $2s^1$	641	(c)
	Atomic number $12 = 1s^2$ , $2s^2 2p^6$ , $3s^2$		0 atom possesses two lone pair of electrons .
633	(b)	642	(a)
	Ionisation energy increases in a period from left		Thermal stability of the hydrides decrease as we
	to right. But $IE_1$ of Be is greater than B due to its		go down the group in Periodic Table for group 15
	stable configuration $(1s^2, 2s^2)$ .		(N-family)
	Hence, the order of decreasing		$BIH_3 < SbH_3 < AsH_3 < PH_3 < NH_3$
(24	$IE_1$ is $C > Be > B > Li$		Least stable Most stable
634	(a)		$M-\Pi = 255  247  322  391$
	CH = CH; 3 for triple bonds and two for $C - H$		kImol ⁻¹
635		643	
035	$7 - 2.8.8.1$ Because it would donate $e^-$ more	045	Benzene has $12\sigma$ - and $3\pi$ -honds
	z = 2, 0, 0, 1. Decause it would donate e more	644	(c)
636	(c)	011	ShCl ²⁻ has $sn^3d^2$ and rest all has $sn^3d$ -
000	Maximum covalence in most of the atoms (except		hybridisation
	N. O. F) is given by the number of valency	645	(b)
	electrons. The paired <i>s</i> electrons are also get		Electron gain enthalpy of Cl is maximum.
	unpaired during excitation.	647	(b)
637	(a)		One bonding molecular orbital and one
	In $N_2$ , all electrons are paired. Thus, $N_2^+$ has one		antibonding.
	electron unpaired.	648	(b)
638	(d)		Ionisation energy is the amount of energy
	Bond length decreases with increase in s-		required to take out most loosely bonded electron
	character.		from an isolated gaseous atom. In a group when
639	(b)		we move from top to bottom, ionisation energy
	Anions are always larger than their parent atom.		decreases due to increase in size. In a period
	Also atomic radius increases down the group,		while moving from left to right ionisation energy
	decreases along the period.		increase due to increase in size. In a period while
	moving from left to right ionisation energy increase due to increase in size.		loosing its 2 <i>s</i> completely filled configuration. $EA_1$ for Be is more positive than $EA_1$ for Li. Thus,
-----	-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	-----	---------------------------------------------------------------------------------------------------------------------
	$\therefore$ Be > Mg > Ca (:It is the order of increasing		$Be^-$ is least stable.
	ionisation energy when we move from top to	662	(b)
	bottom in group II A).		It is the order of stability.
649	(c)	663	(a)
	Generally electron affinity increases in a period		Small cation causes more polarization in anion.
	and decreases in a group but due to smaller size		Also larger anions are easily polarized by a cation.
	and high electron density on fluorine atom, it		More is polarization of anion, more is covalent
	experience high interelectronic repulsions. Thus,		character .
	F ion is less stable in comparison to CI ion.	664	
	Hence, electron affinity is nignest for chlorine. Its		we know that ionisation potential gradually
	electronic configuration is $(1 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - $		decreases on moving down the group while
(50	$_{17}\text{Cl} = 15^{\circ}, 25^{\circ}2p^{\circ}, 3p^{\circ}, 3p^{\circ}$		atomic size increases as we move down the group.
650	(C)		netice, larger the atomic size, smaller is ionisation
	Boron in [BF4] has regular tetranedral geometry	665	
([1	because of $sp^{\circ}$ -nybridization on boron atom.	005	$1a^2 2a^2 2a^6 2a^4 $ configuration represents the Na
051	(u) The size of an aposica decreases with increasing		13, 25, 2p, $35$ configuration represents the Na,
	nuclear charge because the attraction for the		ionisation onergy is loss than second ionisation
	indication of the sector of t		anargy because IF, involves the removal of an
652	(c)		electron from the stable configuration
052	(c) Coordinate bonding involves sharing of an		$(i \rho - 1c^2 - 2c^2 - 2n^6)$
	electron pair provided by a dopor atom to	666	(d)
	accentor atom	000	$Be(OH)_{a}$ and $Zn(OH)_{a}$ are amphoteric in nature
653		667	(h)
000	It reflects trends in physical and chemical	007	Be has smallest size and thus. Be cation possesses
	properties of the elements		more polarizing power.
654	(d)	668	(c)
	Fluorine is the most electronegative element in		No scope for addition in completely filled valence
	the Periodic Table so it never shows positive		orbitals of inert gases.
	oxidation state.	669	(a)
655	(d)		As the <i>s</i> -character increases in hybrid orbitals,
	It is the definition of electron affinity.		bond energy increases, size of the hybridized
656	(c)		orbital decreases. <i>s</i> -characters in $sp$ , $sp^2$ and $sp^3$
	$XeF_4$ has $sp^3d^2$ -hybridized Xe atom having two		are 1/2,1/3,1/4 respectively.
	lone pair of electrons and thus, octahedral	670	(a)
	geometry changes to square planar due to lone		Geometry is explained by taking an account of
	pair effect.		single bonds only. However, presence of double
658	(b)		bond may distort bond angles, e.g., HCHO has
	$1 \text{ debye} = 10^{-18} \text{esu.}$		$sp^2$ -hybridization but angle H – C – H is 116° and
659	(b)		angle $H - C - O$ is 122° due to double bond. In
	Smaller cation causes more polarization of anion.		$BF_3$ ( <i>sp</i> ² -hybridization) each angle is of 120°.
660	(b)	671	(d)
	Ionisation energy decreases down the group and		$d^2sp^3$ - leads to octahedral geometry.
	increases along the period.	672	(b)
661	(b)		The ionisation potential increases in a period on
	$Li^-: 1s^2, 2s^2; Be^-: 1s^2, 2s^2, 2p^1; in Li, addition of$		moving left to right while in a group it is
	electron has taken place in 2s orbital; in Be ⁻ ,		decreases on moving from top to bottom. Hence,
	addition of electron has taken place in $2p$ orbital		Be has maximum ionisation potential.

674	(a)	686	<b>(b)</b>		
	Element F O N C		CCL		
	Electronegativity 4.0 3.5 3.1 2.5		bon		
	∴ Correct order of electronegativity		it in		
	F>O>N>C or F>N <o>C</o>	687	(b)		
675	(a)		PF ₅		
	Halogen $F_2$ $Cl_2$ $Br_2$		BrF		
	I ₂	688	(d)		
	Bond dissociation 158.8 242.6 192.8		XeF		
	151.1		line		
	Energy (kJ mol ¹ )	689	(d)		
	The bond dissociation energy of $F_2$ is less than $Cl_2$		HF		
	due to inter electronic repulsions present in small	690	(d)		
	atom of fluorine.		The		
	The order of bond energy is $Cl_2 > F_2 > Br_2 > I_2$		as t		
	and		plac		
	$Cl_2$ has maximum bond energy.		rela		
676	(b)		rela		
	SF ₄ has $sp^3d$ -hybridized sulphur atom.		rela		
677	(a)		IInd		
	A reason for given fact.				
678	(c)				
	It is experimental value.				
679	(d)		IIIre		
	AgBr has higher lattice energy.	691	(c)		
680	(b)		In o		
The size of isoelectronic species increases with					
	decrease in effective nuclear charge.		<i>u</i> =		
681	(b)		μ –		
	$O_2^{2-}$ has no unaired electron.	692	(d)		
682	(c)		Clp		
	Na ⁺ and Cl ⁻ are formed.	693	(a)		
683	(d)		The		
	The $K_{sp}$ value of CuS is less ZnS and thus, ZnS is		righ		
	more soluble. Also sodium salts are highly soluble		of n		
	in water.		fille		
684	(b)		01 R		
	These are isoelectronic species and their radii		orb		
	decreases with increasing their atomic number		as Elsa		
	due to increasing effective nuclear charge $(\mathbf{Z}_{eff})$		Eler		
	$(Z_{\rm eff}) = Z - \sigma$	(04	IP (		
	where, $Z_{eff}$ = effective nuclear charge, $Z$ = atomic	694	(u) Mor		
	number and $\sigma$ =screening constant. For	605	mer (a)		
	$F^-$ , $O^{2-}$ and $N^{3-}$ , the value of $\sigma$ is constant due to	073	(aj Na		
	equal number of electrons. So, order of $Z_{\rm eff}$ is	606	Na ·		
	$F^- < 0^{2^-} > N^{3^-}$	090	(u) Ioni		
	hence, order of radii		and		
	$= \mathbf{F}^- < 0^{2-} < \mathbf{N}^{3-} \left( \text{radii} \propto \frac{1}{\mathbf{Z}_{\text{off}}} \right).$	697	(d)		
685	(C)	0,77	Ioni		
	Due to back bonding in $BF_3$ .	698	(a)		
			()		

**(b)** 

CCl₄ involves two non-metals C and Cl and thus, bonding is covalent. CaH₂ is an ionic compound as it involves alkaline earth metal.

 $PF_5$  has  $sp^3d$  hybridization (trigonal bipyramid);  $BrF_5$  has  $sp^3d^2$  hybridization (square pyramidal) (d)

XeF₂ ( $sp^3d$  with 3 lone pairs) and CO₂(sp) are linear.

HF is least acidic due to the small size of fluorine (d)

The element of II period show similar properties as the elements of III period, which are diagonally placed to them. This is known as diagonal relationship. Hence, Li shows diagonal relationship with Mg and Be shows diagonal relationship with Al.

IInd period



IIIrd period

(c)

In *o*-dichlorobenzene,  $\alpha = 60^{\circ}$  $\therefore \cos \alpha = +ve$ ,

$$\mu = \sqrt{\mu_1^2 + \mu_2^2 + 2\mu_1\mu_2 \cos \alpha}$$

Cl possesses 10 electrons in ClF₃.

The ionisation potential increases from left to right in a period but the first ionisation potential of nitrogen is greater than oxygen due to halffilled stable configuration and ionisation potential of Be is greater than B due to completely filled sorbital. Hence, the order of ionisation potential is as

**Element**: B < Be < C < 0 < N**IP (eV)**: 8.3 9.3 11.2 13.6 14.5

Mercury

# 5 (a)

Na – Cl. Both belongs to III period

Ionisation enthalpy increases along the period and decreases down the group

7 (d)

Ionisation energy order is B < C < 0 < N.

Acidic nature of oxide non-metallic nature of element. Non-metallic nature decreases in the order Cl > S > P.

#### 699 **(c)**

Boron (B), Si, Ge, As, Sb, Te and At are the metalloid elements. Bismuth (Bi) and tin (Sn) are metals while carbon (C) is non-metal.

# 700 **(a)**

Xe in XeOF₄ has  $sp^3d^2$ -hybridization having one lone pair on Xe atom.

# 701 **(d)**

Fe is a transition element, thus exhibits variable oxidation states

702 **(b)** 

 $\mathsf{Cs}^+$  is largest cation and  $\mathsf{F}^-$  is smallest anion.

- 703 **(d)** 
  - Ionic radius  $\propto \frac{1}{Z_{\text{eff}}}$

Since,  $P^{5+}$  has higher  $Z_{eff}$  as compared to  $P^{3+}$ , it has smaller ionic radii

# 704 **(d)**

Isomerism is arised due to directional nature of covalent bonding.

# 705 **(d)**

Ionisation potential is the amount of energy requires to remove an electron from an isolated gaseous atom. Since, on moving down the group, the size of atom increases, thus outer electron gets farther and farther away from the nucleus and hence, the less amount of energy is required to remove it. Thus, ionisation potential decreases and hence, Cs has lowest ionisation potential.

#### 706 (a)

A decrease in *s*-character increases bond length.

707 **(b)** 

Both possess  $1s^2$ ,  $2s^22p^6$ ,  $3s^23p^6$  configuration.

708 **(c)** 

Na⁺ is cation;  $Cl^-$ ,  $PO_4^{3-}$  are anion.

709 **(a)** 

Electronic configuration of element with atomic number 36, will be

 $=1s^2, 2s^22p^6, 3s^23p^63d^{10}, 4s^24p^6$ 

As the last electron is present in *p*-subshell, hence the element will be placed in *p*-block.

#### 710 **(c)**

Due to large electronegativity difference in C and F atoms.

#### 711 **(b)**

According to Hannay and Smith equation  $\div$  % ionic character

 $=16(x_A - x_B) + 3.5(x_A - x_B)^2$ 

Where,  $x_A$  and  $x_B$  are the electronegative of the atoms *A* and *B* respectively.

=32+14=46%

: % ionic charecter =  $16(2) + 3.5(2)^2$ 

# 712 **(b)**

[Ne]  $3s^2 3p^3$  $3s^2 3p^3$ **1 1 1 1** 

Elements having half-filled or fully-filled orbitals are more stable. Hence, much energy is required to remove an electron from the outermost orbit. So, [Ne]  $3s^2 3p^3$  has highest ionisation energy.

#### 713 **(d)**

Ionisation potential increases along the period.

# 714 **(b)**

Electron affinity is the energy change, when an electron is added. When  $O^-$  changes into  $O^{2-}$  the electron affinity is positive *i.e.*, change is endothermic. The reason is that  $O^-$  repels the incoming electron due to similar charge, hence, it needs energy to accept the electron. Hence, electron affinity is positive.

# 715 **(a)**

Like atoms results in covalent bonding leading to the formation of non-polar bond, e. g., H - H or  $H_2$ .

# 716 **(a)**

One of *s*-orbital +3 of *p*-orbital  $= sp^3$ .

#### 717 **(b)**

Lower potential energy level imparts stability.

#### 718 **(b)**

H-bonding in molecules gives rise to increase in b. p.

# 719 **(b)**

The jump in IP values exist in  $IP_5$  and thus, removal of fifth electron occurs from inner shell. Thus, element contains four electrons in its valency shell.

# 720 **(a)**

The stability and bond angle order for hybrides in a group is

$$\mathrm{NH}_3 > P\mathrm{H}_3 > As\mathrm{H}_3 > Sb\mathrm{H}_3 > Bi\mathrm{H}_3$$

#### 721 **(d)**

Size of anions is larger than their parent atoms. Also more is ENC lesser is size.

# 722 **(c)**

The difference of electronegativity is more.

# 723 **(c)**

Lattice energy of  $BaSO_4$  is appreciable high and predominates over hydration energy.

725	(b)	741	(d)
	Larger is bond order, lesser is bond length.		Bond energy for $C - C$ , $N - N$ , $H - H$ and $O - O$ are
726	(b)		: H - H > C - C > N - N > O - O.
	$o-, m-, p$ -derivatives has $\alpha = 60^{\circ}, 120^{\circ}$ and $180^{\circ}$	743	(d)
	and thus, resultant vector has zero dipole moment		PCl ₅ has trigonal bipyramid geometry.
	in <i>p</i> -derivative. Also dipole moment of <i>m</i> -	744	(b)
	dichlorobenzene is more than toluene.		Dry ice is $CO_2$ having C – O covalent bonds.
727	(d)	745	(c)
	As the <i>s</i> character increases in hybridised		Polar solute are more soluble in polar solvents .
	orbitals, its electronegativity increases.	746	(c)
	$sp$ $sp^2$ $sp^3$		Generally in a period, IE increases but nitrogen
	<i>s</i> character 50% 33.3% 25%		due to the presence of half-filled <i>p</i> -subshell
728	(c)		(stable configuration) has higher IE as compared
	Polarity in a molecule gives rise to an increase in		to its consecutive elements. Thus, the IE of
	forces of attractions among molecules and thus,		nitrogen is 14.5
	more becomes boiling point.	747	(a)
729	(a)		Zinc oxide is an amphoteric oxide as it reacts with
	Ionisation energy increases with decrease in		both acid and alkali.
	atomic size and decrease in shielding effect. Ten		$ZnO + 2HCl \rightarrow ZnCl_2 + H_2O$
	<i>d</i> -electrons in Ga shield the nuclear charge less		$ZnO + 2NaOH \rightarrow Na_2ZnO_2 + H_2O$
	effectively than the <i>s</i> and <i>p</i> electrons. Hence, the		sodium zincate
	outer electron is held fairly strongly by the	- 10	Rest all ( $Na_20$ , CaO and BaO) are basic oxides.
	nucleus. Consequently, ionisation energy slightly	748	(a)
	increases inspite of the increase in atomic size		Addition of electrons to an atom results an
	from Al to Ga. Hence, Al ( $IE=577$ ) and	740	increase in its size.
	Ga(IE=578) have approximately equal ionisation	749	(a) Watan in an universal columnt
720	potential (or ionisation energy).	750	water is an universal solvent.
/30	(D)	750	(D)
	Elements having six electrons in valency shell are electronogative elements $a = 0$	751	(b)
721	(a)	/31	(b) CsE is ionic compound
/51	(a) BE. $(sn^2)$ NOT $(sn^2)$ NHT $(sn^3)$ and H. O $(sn^3)$	752	(a)
732	(d) $(3p)$ , $(3p)$ , $(3p)$ , $(3p)$ , $(3p)$ , $(3p)$ , $(3p)$ .	152	Follow Fajan's rule
752	Effective nuclear charge increases in this order	753	(h)
733	(d)	100	37 is atomic number of Rh the electronositive
700	$C_{2}H_{2}$ is a linear molecule with sp-hybridization		element and 53 is atomic number of iodine (the
734	(h)		electronegative element).
701	Double bond involves the sharing of two electron	754	(a)
	pairs or four electrons.	/01	S atom in SF _c is $sn^3d^2$ -hybridized state and shows
736	(c)		octahedral shape.
	Multiplicity of bonds gives higher bond energy.	755	(a)
737	(a)		Except NO ⁻ (16 electrons), rest all have 14
	Inert pair effect is not noticed for elements having		electrons.
	their outermost shell ( <i>n</i> ) if $n < 4$ .	756	(d)
738	(b)		F is more electronegative.
	A characteristic of resonance.	757	(a)
739	(c)		Molecular orbital configuration of,
	Cl is more electronegative than I.		$0_2^{2-} = \sigma 1 s^2, \sigma^* 1 s^2, \sigma 2 s^2, \sigma^* 2 s^2,$
740	(c)		$\sigma 2p^2$ , $\pi 2p_x^2$ , $\pi 2p_y^2$ , $\pi^* 2p_z^2$ , $\pi^* 2p_y^2$
	Due to $sp^3$ -hybridization.	758	(c)
		1	

759	Cl atom has 17 electrons, Cl ⁻ ion has 18 electrons. (d) ClF ₃ has $sp^3d$ -hybridization with two lone pair of	767	<ul><li>CS₂ is linear having zero dipole moment.</li><li>(c)</li><li>Electronegativity increases in a period from left to</li></ul>
760	electron on Cl. (a) The ionisation energy values for valence electrons are comparable to remove electrons from inner shell very high amount of energy is needed. In the given values there is a biggest jump between $IE_4$ and $IE_5$ . Hence, there are four valence electrons for the atom X.	768	right and decreases in a group on moving downwards (d) Electronic configuration of Cu is $1s^2, 2s^22p^6, 3s^23p^6, 4s^1, 3d^{10}$ and electronic configuration of Cu ²⁺ is $1s^2, 2s^2, 2p^6, 3s^2, 3p^6, 3d^9$ . Hence, the given configuration represents metallic cation.
761	(c) Hydrogen bonding is responsible for their solubility.	769	(a) M.O. configuration of $0_2^+$ is: $\sigma_1 s^2 \sigma^{*1} s^2 \sigma_2 s^2 \sigma^{*2} s^2 \sigma_2 n^2 \pi^2 n^2 \pi^2 n^2 \pi^* 2n^2$
762 763	<ul> <li>(a)</li> <li>The tendency to show lower ionic state increases down the group due to inert pair effect.</li> <li>(d)</li> <li>Each has 18 electrons.</li> </ul>		Bond order of $O_2^+ = \frac{1}{2}[6-1] = \frac{5}{2}$ M.O. configuration of $N_2^+$ is: $\sigma 1s^2 \sigma^* 1s^2, \sigma 2s^2 \sigma^* 2s^2, \pi 2p_y^2 \pi 2p_y^2 \sigma 2p^1$ Bond order of $N_2^+ = \frac{1}{2}[5-0] = \frac{5}{2}$
764	(a) Each possesses 18 electrons.	770	- 2 - 2 (a)
765	(b)The correct order of electron gain enthalpy (electron affinity) is $0 < S < F < Cl$ Element0SFClElectron affinity1.482.073.61In eV		SF ₄ has $sp^3d^2$ -hybridization and see-saw geometry.
766	(d)		

DCAM classes Dynamic Classes for Academic Mastery