

4.CHEMICAL KINETICS

Single Correct Answer Type

1. The activation energies of two reactions are E_1 and $E_2(E_1 > E_2)$. If the temperature of the system is increased from T_1 to T_2 , the rate constant of the reactions changes from k_1 to k_1 in the first reaction and k_2 and k_2 in the second reaction. Predict which of the following expression is correct?

a)
$$\frac{k'_1}{k'_1} = \frac{k'_2}{k'_2}$$
 b) $\frac{k'_1}{k'_1} > \frac{k'_2}{k'_2}$ c) $\frac{k'_1}{k'_1} < \frac{k'_2}{k'_2}$ d) $\frac{k'_1}{k'_1} = \frac{k'_2}{k'_2} = 1$

2. Effective collisions are those in which molecules must: a) Have energy equal to or greater than the threshold energy b) Have proper orientation c) Acquire the energy of activation d) All of the above 3. Consider the following statements, The rate law for the acid catalysed hydrolysis of an ester being given as $Rate = k[H^+][ester] = k'[ester].$ If the acid concentration is doubled at constant ester concentration 1. The second order rate constant, k is doubled. 2. The pseudo first order rate constant, k is double. 3. The rate of the reaction is doubled. Which of the above statements are correct? a) 1 and 2 b) 2 and 3 c) 1 and 3 d) 1,2 and 3 Half-life of two samples is 0.1 and 0.8 s. Their respective concentration is 400 and 50 respectively. 4. The order of reaction is a) 0 b) 2 c) 1 d) 4 The units of rate of reaction are 5. c) mol s^{-1} a) $L \mod^{-1} s^{-1}$ b) mol $L^{-1} s^{-1}$ d) None of these Units of rate constant of first and zero order reactions in terms of molarity M unit are respectively 6. a) s^{-1} , M s^{-1} b) s^{-1} , M c) $M s^{-1}, s^{-1}$ d) $M_{.}s^{-1}$ 7. The half time of a second order reaction is: a) Inversely proportional to the square of the initial concentration of the reactants b) Inversely proportional to the initial concentration of the reactants c) Proportional to the initial concentration of reactants d) Independent of the initial concentration of reactants $\frac{1}{|A|^2}$ vs times are a straight line. Order of reaction is 8. a) First b) Second c) Zero d) Third For an endothermic reaction where, ΔH represents the enthalpy of the reaction in kJ/mol, the minimum 9. value for the energy of activation will be a) Less than ΔH b) Zero c) More than ΔH d) Equal to ΔH 10. The unit of rate constant for a zero order reaction a) $L s^{-1}$ b) $L \mod^{-1} s^{-1}$ c) mol $L^{-1} s^{-1}$ d) mol s^{-1} 11. What is the formula to find value of $t_{1/2}$ for a zero order reaction? b) $\frac{2k}{[R]_0}$ a) $\frac{k}{[R]_0}$ c) $\frac{[R]_0}{2k}$ d) $\frac{0.693}{k}$

12. For the reaction, $A + B \rightarrow C + D$. The variation of the concentration of the products is given by the curve:

c) *Z*

d) *W*

- 13. Acid hydrolysis of sucrose is aa) Pseudo first order reaction
 - c) Second order reaction

b) Zero order reaction

- d) Unimolecular reaction
- 14. For a first order reaction the graph $\log [A] vs t$ is given below

Slope = x $Time \rightarrow$

x is equal to a) $\frac{0.693}{k}$

- b) $\frac{k}{2.303}$ c) $-\frac{k}{2.303}$ d) log $[A]_0$
- 15. The rate constant of a first order reaction is $4 \times 10^{-3} \text{sec}^{-1}$. At a reactant concentration of 0.02 *M*, the rate of reaction would be:
- a) $8 \times 10^{-5} M \sec^{-1}$ b) $4 \times 10^{-3} M \sec^{-1}$ c) $2 \times 10^{-1} M \sec^{-1}$ d) $4 \times 10^{-1} M \sec^{-1}$ 16. The rate constant for the reaction, $2N_2O_5 \rightarrow 4NO_2 + O_2$ is $3.0 \times 10^{-5} s^{-1}$. If the rate is $2.4 \times 10^{-5} mol L^{-1} s^{-1}$ then the concentration of $N_2O_5(in mol L^{-1})$ is
 - a) 0.04 b) 0.8 c) 0.07 d) 1.4
- 17. Activation energy of a reaction is:
 - a) The energy released during the reaction
 - b) The energy evolved when activated complex is formed
 - c) Minimum amount of energy needed to overcome the potential barrier of reaction
 - d) The energy needed to form one mole of the product
- 18. The activation energy for a reaction is 9.0 Kcal/mol. The increase in the rate constant when its temperature is increased from 298 K to 308 K is:
 - a) 10% b) 100% c) 50% d) 63%
- 19. The rate of first order reaction, $A \rightarrow$ Products, is 7.5×10^{-4} mol litre⁻¹sec⁻¹. If the concentration of A is 0.5 mol litre⁻¹ the rate constant is:

a)
$$3.75 \times 10^{-4} \text{sec}^{-1}$$
 b) $2.5 \times 10^{-5} \text{sec}^{-1}$ c) $1.5 \times 10^{-3} \text{sec}^{-1}$ d) $8.0 \times 10^{-4} \text{sec}^{-1}$

20. $2N_2O_5 \rightleftharpoons 4NO_2 + O_2$

For the above reaction which of the following is not correct above rates of reaction?

a)
$$\frac{-d[N_2O_5]}{dt} = 2\frac{d[O_2]}{dt}$$

b) $\frac{-2d[N_2O_5]}{dt} = \frac{d[NO_2]}{dt}$
c) $\frac{d[NO_5]}{dt} = 4\frac{d[O_2]}{dt}$
d) $\frac{-2d[N_2O_5]}{dt} = 4\frac{d[NO_2]}{dt} = \frac{d[O_2]}{dt}$

21. A substance undergoes first order decomposition. The decomposition follows to parallel first order reactions as:

$$A \xrightarrow{K_1 = 1.26 \text{ x } 10^{-4} \text{ sec}^{-1}} B$$

$$K_2 = 3.8 \text{ x } 10^{-5} \text{ sec}^{-1} C$$

The percentage distribution of *B* and *C* are:

a) 80% *B* and 20% *C* b) 76.83% *B* and 23.17% *C* c) 90% *B* and 10% *C* d) 60% *B* and 40% *C* 22. In Arrhenius plot intercept is equal to a) $-E_a/R$ b) ln *A* c) ln *k* d) $\log_{10} a$ 23. Half-life period of a first order reaction is 1386 seconds. The specific rate constant of the reaction is: c) $0.5 \times 10^{-2} \text{s}^{-1}$ d) $0.5 \times 10^{-3} \text{s}^{-1}$ a) $5.0 \times 10^{-2} \text{s}^{-1}$ b) $5.0 \times 10^{-3} \text{s}^{-1}$ 24. On addition of AgNO₃ to NaCl, white ppt. occurs: a) Instantaneously b) With a measurable speed c) Slowly d) None of these 25. Which is correct about zero order reaction? a) Rate of reaction depends on decay constant. b) Rate of reaction is independent of concentration. c) Unit of rate constant is $conc^{-1}$ d) Unit of rate constant is *conc*⁻¹ *time*⁻¹ 26. The half-life period of a first order reaction is 1 min 40 s. Calculate its rate constant. a) $6.93 \times 10^{-3} min^{-1}$ b) $6.93 \times 10^{-3} s^{-1}$ c) $6.93 \times 10^{-3}s$ d) $6.93 \times 10^3 s$ 27. The reaction $2A + B + C \rightarrow D + E$ is found to be first order in A, second in B and zero order in C. What is the effect on the rate of increasing concentration of A, B and C two times? b) 8 times d) 36 times a) 72 times c) 24 times 28. In a reaction, the threshold energy is equal to: a) Activation energy + normal energy of reactants b) Activation energy – normal energy of reactants c) Activation energy d) Normal energy of reactants 29. Which one is not correct? a) Rate of zero order reaction depends upon initial concentration of reactant b) Rate of zero order reaction does not depend upon initial concentration of reactant c) $t_{1/2}$ of first order reaction is independent of initial concentration of reaction d) $t_{1/2}$ of zero order reaction is dependent of initial concentration of reaction 30. A reaction proceeds by first order, 75% of this reaction was completed in 32 min. the time required for 50% completion is a) 8 min b) 16 min c) 20 min d) 24 min 31. The rate of the reaction $CCl_3CHO + NO \rightarrow CHCl_3 + NO + CO$ is equal to rate $k[CCl_3CHO][NO]$. If concentration is expressed in mol/L. The unit of *k* is a) $L \mod^{-1} s^{-1}$ c) $L^2 \text{ mol}^{-2} \text{ s}^{-1}$ b) mol $L^{-1} s^{-1}$ d) s^{-1} 32. Observe the following reaction, $2A + B \rightarrow C$ The rate of formation of C is $2.2 \times 10^{-3} mol L^{-1} min^{-1}$. What is the value of $-\frac{d[A]}{dt}$ (mol $L^{-1} \min^{-1}$)? a) 2.2×10^{-3} b) 1.1×10^{-3} c) 4.4×10^{-3} d) 5.5×10^{-3} 33. The unit of rate constant of a third order chemical reaction is a) $mol^{-1} L s^{-1}$ b) mol⁻¹ s⁻² d) s^{-1} mol⁻² L² c) mol L 34. $CH_3COOC_2H_5 + H_2O \xrightarrow{H_+} CH_3COOH + C_2H_5OH$ is an example of order.

	a) Zero	b) Second	c) Third	d) Pseudo first order
35.	Collision theory is app	plicable to		
	a) First order reaction	15	b) Zero order reactions	
	c) Bimolecular reaction	ons	d) Intra-molecular reacti	ons
36.	The efficiency of an er	nzyme in catalyzing a reaction	is due to its capacity	
	a) To form a strong er	nzyme substrate complex	b) To decrease the bond molecules	energy of all substrate
	c) To change the shap	e of the substrate molecule	d) To lower the activation	n energy of the reaction
37.	The reaction			
	$2A + B \rightarrow 3C + D$			
	Which of the following	g does not express the reaction	n rate?	
	a) $\frac{d[D]}{d[D]}$	b) $-\frac{d[A]}{a}$	c) $-\frac{d[C]}{ab}$	d) $-\frac{d[B]}{d}$
20	$\int dt$	2dt	3dt	dt
38.	If E_f and E_r are the ac	cuvation energies of the forwar	ru and reverse reactions an	in the reaction is known to
	be exothermic then			
	a) $E_f < E_r$			
	b) $E_f > E_r$			
	c) $E_f = E_r$			
	d) No relation can be	given between E_f and E_r as da	ta are not sufficient	
39.	Milk turns sour at 40°	°C three times as faster as at 0°	C. The energy of activation	for souring of milk is:
	a) 4.693 kcal	b) 2.6 kcal	c) 6.6 kcal	d) None of these
40.	Which plots will give	the value of activation energy?)	4
	a) <i>K vs</i> . <i>T</i>	b) 1/K vs.T	c) ln <i>K vs</i> . <i>T</i>	d) $\ln K vs. \frac{1}{\pi}$
41	In a second order read	ction when the concentration (of both reactant are equal t	T the reaction is completed in
11.	500 s. How long will i	it take for the reaction to go to	60% completion?	ine reaction is completed in
	a) 1000 s	b) 300 s	c) 3000 s	d) 2000 s
42.	The rate constant (K) for the reaction $2A + B \rightarrow$	Product was found to be	2.5×10^{-5} litre mol ⁻¹ sec ⁻¹
	after 15 sec. 2.60 \times 10	0^{-5} litre mol ⁻¹ sec ⁻¹ after 30	sec and 2.55×10^{-5} litre m	$10l^{-1}$ sec ⁻¹ after 50 sec. The
	order of reaction is:			
	a) 2	b) 3	c) Zero	d) 1
43.	The differential rate e	expression for the reaction H_2	$+ I_2 \rightarrow 2HI$ is:	,
	$-d[H_2] - d[I_2]$	-d[HI]	L	
	a) $\frac{dt}{dt} = \frac{dt}{dt} =$	$=$ $\frac{dt}{dt}$		
	h) $\frac{d[H_2]}{d[H_2]} = \frac{d[I_2]}{d[I_2]} = \frac{d[I_2]}{d[I_2]}$	[HI]		
	dt dt dt	dt		
	c) $\frac{1}{2} \frac{a[H_2]}{h} = \frac{1}{2} \frac{a[I_2]}{h} =$	$=\frac{a[HI]}{h}$		
	$2 at 2 at d[H_{-}] d[L$	at		
	d) $-2\frac{\alpha_1\alpha_2}{dt} = -2\frac{\alpha_1\alpha_2}{dt}$	$\frac{dt}{dt} = \frac{dt}{dt}$		
44.	For the elementary st $(CU_{1}) = CP_{2}(z_{1}z_{2})$	ep , $C^{+}(a_{n}) + D^{n-}(a_{n}) + b_{n}$	nologularitzzia	
	$(U\Pi_3)_3 \cdot UDI(uq) \rightarrow (uq)$	$(UH_3)_3U(aq) + BI(aq) IIIe I$	a) 2	d) Cannot accortained
45	A graph plotted betw	UJ I veen $\log t_{-\infty}$ is $\log a$ concentric	uj 4 ation is a straight line Wh	uj cannot ascertanneu
чJ.	from the given graph?	$v_{50\%}v_{5.10g}u$ concentr	acion is a straight line. Wh	iat conclusion can you urdw
	log t.			
	log a →			

	inversely proportional to	n - 1		1) n-2
47	a) a^{n}	D) \mathcal{U}^{*}		a) a ²
т/.	^{H⁺}			
	$CH_3COOC_2H_5 + H_2O \rightarrow C$	$H_3COOH + C_2H_5OH$ is:		
40	a) First order	b) Second order	c) Third order	d) Zero order
48.	The rate law for a reaction $L[A]^m[D]^m$ On de	n between the substances A	A and B is given by	notion of D the notio of the
	rate = $\kappa[A]^{n}[B]^{n}$. On do	bubling the concentration of	r A and haiving the concent	ration of B, the ratio of the
	1	te of the reaction will be as		
	a) $\frac{1}{2m+n}$	b) (<i>m</i> + <i>n</i>)	c) (<i>n</i> – <i>m</i>)	d) $2^{(n-m)}$
49.	For the reaction			
	$H_2(g) + Br_2(g) \rightarrow 2HBr(g)$	g)		
	The experimental data su	ggest		
	rate = $k[H_2][Br_2]^{1/2}$			
	the molecularity and orde	er of the reaction are respec	ctively	
	a) $1 \frac{1}{-}$	b) 1.1	c) $\frac{3}{-} \frac{3}{-}$	d) 2. $\frac{3}{-}$
50	² 2		2'2	2
50.	I he rate of reaction incre	ases with temperature due	to b) In anoma in activation of	
	a) Decrease in activation	energy	d) Increase in activation e	energy
51	In a first order reaction t	be concentration of the rea	u) increase in concentration	0 M to 0.25 M in 20 minute
51.	The rate constant of the r	eaction would be	ictant is decreased from 1.	
	a) 10 min^{-1}	b) 6.931 min ^{-1}	c) 0.6931min^{-1}	d) 0.06931 min ⁻¹
52.	The reaction obey I order	with respect to H_2 and ICl	both	.,
	$H_2(g) + 2ICl(g) \rightarrow 2HCl(g)$	$(g) + I_2(g)$		
	Which of the following me	echanism is in consistent w	ith the given fact?	
	Mechanism $A: H_2(g) + 2I$	$Cl \rightarrow 2HCl(g) + I_2(g)$		
	Mechanism B : (i) H ₂ (g) +	$(IC)(g) \xrightarrow{\text{slow}} HC(g) + HI(g)$		
	(ii) HI(g) -	+ ICl(g) \rightarrow HCl(g) + I ₂		
	a) A and B both	b) Neither A nor B	c) A only	d) <i>B</i> only
53.	Two reactions $A \rightarrow \text{proc}$	ducts and $B \rightarrow$ products h	have rate constants K_A and	d K_B at temperature T and
	activation energies E_A and	nd E_B respectively. If K_A >	$> K_B$ and $E_A < E_B$ and ass	suming that A for both the
	reactions is same, then:			
	a) At higher temperature	s K_A will be greater than K_B	2	
	b) At lower temperature	K_A and K_B will differ more a	and $K_A > K_B$	
	c) As temperature rises <i>K</i>	A_A and K_B will be close to ea	ch other in magnitude	
E /	a) All of the above	oftomporatura		
54.	a) Independent	i of temperature.		
	b) Increased with increased	e		
	c) Decreased with increased	se		
	d) Dependent			
55.	The following mechanism	has been proposed for the	reaction of NO with Br_2 to	form NOBr
	$NO(g) + Br_2(g) \rightleftharpoons NOBr_2$	(g)	-	
	$NOBr_2(g) + NO(g) \rightarrow 2NG$	OBr(g)		
	If the second step is the ra	ate determining step, the or	der of the reaction with re	spect to NO(g) is
	a) 1	b) 0	c) 3	d) 2
56.	The unit and value of rate	e constant and that of rate o	f reaction are same for	
	a) Zero order	b) First order	c) Second order	d) Third order
57.	According to collision the	ory of reaction rates:		

a)	Every collision	between	reactants	leads to	chemical	reaction
----	-----------------	---------	-----------	----------	----------	----------

- b) Rate of reaction is proportional to velocity of molecules
- c) All reactions which occur in gaseous phase are zero order reactions
- d) Rate of reaction is directly proportional to collision frequency
- 58. Half-life of a reaction is found to be inversely proportional to the cube of initial concentration. The order of reaction is

d) 2

- a) 4 b) 3 c) 5
- 59. A reaction involving two different reactants can never be
 - a) Bimolecular reaction b) Second order reaction
 - c) First order reaction d) Unimolecular reaction
- 60. For the non-equilibrium process, $A + B \rightarrow$ Products, the rate is first order with respect to A and second order respect to B. If 1.0 mole each of A and B are introduced into a 1 litre vessel and the initial rate was 1.0×10^{-2} mol/litre-sec. The rate (in mol litre⁻¹ sec⁻¹) when half of the reactants have been used: a) 1.2×10^{-3} b) 1.2×10^{-2} c) 2.5×10^{-4} d) None of these
- 61. The activation energy of a reaction is zero. The rate constant for the reaction
 - a) Decreases with decrease of temp b) Increases with increase of temp
 - c) Decreases with increase of temp d) Is nearly independent of temp
- 62. The burning of coal represented by the equation; $C(s) + O_2(g) \rightarrow CO_2(g)$. The rate of this reaction is increased by:
 - a) Decrease in the concentration of oxygen
 - b) Powdering the lumps of coal
 - c) Decreasing the temperature
 - d) Providing inert atmosphere for burning
- 63. At room temperature, the reaction between NO and O_2 to give NO₂ is fast, while that between CO and O_2 is slow. It is due to:
 - a) CO is smaller in size than that of NO
 - b) CO is poisonous

The activation energy for the reaction,

- c) $2NO + O_2 \rightarrow 2NO_2$ is less than $2CO + O_2 \rightarrow 2CO_2$
- d) None of the above
- 64. The rate of first order reaction is $1.5 \times 10^{-2} mol L^{-1} min^{-1}$ at 0.5 M concentration of the reactant. The half-life of reaction is
 - a) 0.383 min b) 23.1 min c) 8.73 min d) 7.53 min
- 65. The rate constant of a first order reaction at 27° C is 10^{-3} min⁻¹. The temperature coefficient of this reaction is 2. What is the rate constant (in min⁻¹) at 17° C for this reaction? a) 10^{-3} b) 5×10^{-4} c) 2×10^{-3} d) 10^{-2}

66. The minimum energy required for the reacting molecules to undergo reaction is

- b) Kinetic energy
- c) Thermal energy d) Activation energy
- 67. The decomposition of N_2O_5 occur as $2N_2O_5 \rightarrow 4NO_2 + O_2$, and follows Ist order kinetics, hance
 - b) The reaction is bimolecular

d) None of the above

a) The reaction is unimolecular c) $t_{1/2} \propto a^0$

a) Potential energy

- 68. The rate of a chemical reaction doubles for every 10°C rise of temperature. If the temperature is raised by 50°C, the rate of the reaction increases by about
 - a) 10 times b) 24 times c) 32 times d) 64 times
- 69. Which of the following statement is incorrect about the molecularity of a reaction?
 - a) Molecularity of a reaction is the number of molecules of the reactants presents in the balanced equation
 - b) Molecularity of a reaction is the number of molecules in the slowest step
 - c) Molecularity is always a whole number

d) There is no difference between order and molecularity of a reaction

70. For a reaction $A + B \rightarrow$ Products, the rate of the reaction was doubled when the concentration of A was doubled. When the concentration of A and B were doubled, the rate was again doubled, the order of the reaction with respect to A and B are:

71. An exothermic chemical reaction occurs in two steps as follows

(I) $A + B \rightarrow X$ (fast)

a)

(II) $X \to AB$ (slow)

The progress of the reaction can be best represented by

72. According to the Arrhenius equation a straight line is to be obtained by plotting the logarithm of the rate constant of a chemical reaction (log k) against

a) T b)
$$\log T$$
 c) $\frac{1}{T}$ d) $\log \frac{1}{T}$

73. The rate constant is numerically the same for three reactions of first, second and third order respectively. Which one is true for rate of three reaction?

b) $r_1 > r_2 > r_3$ d) All of these a) $r_1 = r_2 = r_3$ c) $r_1 < r_2 < r_3$ 74. Mathematical expression for $t_{1/4}$ i.e., when (1/4)th reaction is over following first order kinetics can be

given by

a)
$$t_{1/2} = \frac{2.303}{k} \log 4$$
 b) $t_{1/2} = \frac{2.303}{k} \log 2$ c) $t_{1/2} = \frac{2.303}{k} \log \frac{4}{3}$ d) $t_{1/2} = \frac{2.303}{k} \log \frac{3}{4}$

75. The rate of reaction:

 $2NO + Cl_2 \rightarrow 2NOCl$ is given by the rate, equation rate = $k[NO]^2[Cl_2]$. The value of the rate constant can be increased by:

- a) Increasing the temperature
- b) Increasing the concentration of NO
- c) Increasing the concentration of the Cl₂
- d) Doing all of these

.. .

76. A reaction was observed for 15 days and the percentage of the reactant remaining after the days indicated was recorded in the following table.

Time (days)	% Reactant remaining
0	100
2	50
4	39
6	25
8	21
10	18
12	15
14	12.5
15	10

Which one of following best describes the order and the half-life of the reaction? TT 10110 (1)

	Reaction order	Half-life (days)		
	a) First	2	b) First	6
	c) Second	2	d) Zero	6
77.	In the reaction			

d) All are correct

	$BrO_3^-(aq) + 5Br^-(aq) +$	$6\mathrm{H}^+ \rightarrow 3\mathrm{Br}_2(l) + 3\mathrm{H}_2\mathrm{O}(l)$	<i>l</i>)				
	The rate of appearance o	f bromine (Br ₂) is related	to rate of disapp	earance of b	oromide ions	as follo	wing:
	a) $\frac{d(Br_2)}{d(Br_2)} - \frac{3d(Br^{-})}{d(Br^{-})}$	h) $\frac{d(Br_2)}{d(Br_2)} = -\frac{3 d(Br^-)}{d(Br^-)}$	$d(Br_2) = -$	$5 d(Br^{-})$	d) $\frac{d(Br_2)}{d}$ -	$\frac{5d(B)}{2}$	r_)
	dt = 5 dt	dt = 5 dt	dt = dt	3 dt	dt dt	⁻ 3 dt	-
78.	Which one of the following	ng is a second order reacti	on?				
	a) $H_2 + Br_2 \rightarrow 2HBr$		b) $NH_4NO_3 \rightarrow$	$N_2 + 3H_2O$			
	c) $H_2 + Cl_2 \xrightarrow{\text{sunlight}} 2HCl$		d) CH₃COOCH	$_3 + NaOH -$	\rightarrow CH ₃ COONa	$h + H_2O$	
79.	The temperature coeffici	ent of most of the reactior	ıs lies between				
	a) 1 and 3	b) 2 and 3	c) 1 and 4		d) 2 and 4		
80.	In respect of the equation	$h k = A e^{-E_a/RT}$ in chemica	al kinetics, which	one of the s	tatement is o	correct?	1
	a) R is Rydberg constant		b) <i>K</i> is equilib	rium consta	ant		
	c) E_a is energy of activation	ion	d) A is adsorp	tion factor			
81.	The rate of chemical read	tion (except zero order):					
	a) Decreases from mome	ent to moment					
	b) Remains constant thro	oughout					
	c) Is independent of the o	order of reaction					
	d) None of the above						
82.	For a zero order reaction						
	a) $t_{1/2} \propto R_0$	b) $t_{1/2} \propto 1/R_0$	c) $t_{1/2} \propto R_0^2$		d) $t_{1/2} \propto 1$	$/R_{0}^{2}$	
83.	Effect of temperature on	reaction rate is given by					
	a) Claisen-Clapeyron equ	ation	b) Arrhenius e	equation			
	c) Gibbs Helmholtz equa	tion	d) Kirchoff's e	quation			
84.	The Arrhenius equation e	expressing the effect of ter	mperature on the	rate consta	nt of reactio	n is:	
	a) $K = \frac{E_a}{RT}$	b) $K = A e^{-E_a/RT}$	c) $K = \log_e \frac{E_e}{R'}$	a T	d) $K = e^{-E}$	a/RT	
85.	Find the two third life (t_1	/2) of a first order reaction	n in which $k = 5$.	48×10^{-14} j	per second		
	a) $201 \times 10^{13} s$	b) 2.01 × 10 ¹³ s	c) 201 × 10 ²⁰	S	d) 0.201 ×	10 ¹⁰ s	
86.	$A + B \rightarrow \text{Product}$						
	If concentration of A is do	oubled, rate increases 4 tim	mes. If concentra	tion of A an	d B are doub	led, rate	Ş
	increases 8 times. The dif	fferential rate equation of	the reaction will	be			
	a) $\frac{dC}{dC} = kC_{1} \times C_{2}$	h) $\frac{dC}{dC} = kC_1^2 \times C_2^3$	c) $\frac{dC}{dC} = kC^2$	x C _n	d) $\frac{dC}{dt} = kC$	$r^{2} \times C^{2}$	
~-	dt	$dt = \frac{1}{2} dt$	dt	, о <u>в</u>	dt dt		
87.	For the reaction $A \rightarrow B$, t	the rate expression is $r =$	$k[A]^n$. When the	e concentrat	tion of A is de	oubled,	the rate
	of reaction is quadrupled	The value of n is			N 0		
00		b) Zero	CJ 3		d) 2	.1	
88.	The rate constant for the	first order reaction is 60	s ⁻¹ . How much th	ime will it ta	ike to reduce	ethe	
	concentration of the reac	tion to $1/16$ M value ?	(10^{2})		d λ (λ 10	-4 -	
00	a) 4.6×10^{-5}	$0) 4.6 \times 10^{-5}$	$CJ 4.6 \times 10^{-5}$		uj 4.6 × 10	S	
09.	In the reaction, $2N O \rightarrow ANO + O$ init	ial processorie E00 atm an	d rata constant le	ic			
	$2N_2O_5 \rightarrow 4NO_2 + O_2$ IIII.	ai pressure is 500 atm an		15			
	3.30×10^{-5} 3 alter 10 1	h) 250 atm	$r_2 0_5 15$		d) 420 atm		
90	For a chemical reaction	can never to a fraction	c) 400 atm		uj 420 atili		
<i>J</i> 0.	a) Order	h) Half life	c) Rate consta	ant	d) Molecula	arity	
91	The time taken for the co	multiplication of $3/4$ of a first (order reaction is	1110	uj molecule	arrey	
<i>)</i> 1.		$(2 \ 303/k) \log 4$	$(2 \ 303/k)$	oσ1/4	(2 303 <i>/</i> () 75) log	o k
00	a) $(2.303/k) \log 3/4$	b) (c) (2.0007/1/1	~o +/ +	d) (2.000) (
92.	$2N_2U_5(g) \to 4NU_2(g) +$	$U_2(g)$	0 1		2		
	what is the ratio of the ratio 1.2	ate of decomposition of N_2	$_{2}U_{5}$ to rate of form	nation of O_2			
02	aj 1:2 A first order resultion is 7	UJ 2:1 E04 complete offer 22	CJ 1:4	of the rea-	aj 4:1	ad?	
23.	A motoruer reaction IS /	570 complete alter 52 IIII	1. WHEII Was 50%	or the react	.ion compieu	cui	

	a) 16 min	b) 8 mir	1	c) 4 min	d) 32 min		
94.	For a reaction, $A +$	$2B \rightarrow C$, rate is	given by $+\frac{d[C]}{dt} =$	k[A][B],hence, the o	rder of the reaction is		
	a) 3	b) 2		c) 1	d) 0		
95.	The accompanying	figure depicts t	he change in conc	entration of species 2	X and Y for the reaction $X \longrightarrow Y$,		
	as a function of time	e. The point of i	ntersection of the	two curves represer	nts:		
	0.4 -						
	-0.2- O						
	Y						
	0		_				
	a) t	Time \longrightarrow					
	a) $\iota_{1/2}$						
	$(0) t_{3/4}$						
	c) $\iota_{2/3}$	nt to prodict					
96	The rate constant o	f a reaction at t	emperature 200 k	(is 10 times less that	n the rate constant at 400 K What		
<i>y</i> 0.	is the activation end	ergy (E_{α}) of the	reaction?	tis to times less that	in the rate constant at rook. What		
	a) 1842.4 <i>R</i>	b) 921.2	2 R	c) 460.6 <i>R</i>	d) 230.3 <i>R</i>		
97.	A zero order reactio	on is one:		-			
	a) In which reactan	ts do not react					
	b) In which one of t	he reactants is	in large excess				
	c) Whose rate does	not change wit	h time				
00	d) Whose rate incre	eases with time		0 - ft 10	The material second second in		
98.	In a first order reac a) $(2.302 \times 2 \log 2)$	tion the $a/(a - 1)$	(x) was found to 1	c after 10 minute.	I ne rate constant is: $ag^2 = d 10 \times 2202 \times 2 \log 2$		
99	If the rate of reaction $reaction = 100$	$\gamma 10 D (2.30)$	$3 \times 2 \log 3 / 10$ es on increasing the	$C_{10} \times 2.303 \times 200$	4 by 4 times the order of the		
<i>))</i> .	reaction is		es on mer cusing u		by runnes, the order of the		
	a) 2	b) 1		a) 1	d) 4		
		_		$\frac{c}{2}$			
100	The rate of chemica	al reaction	,				
	a) Increase as the r	eaction proceed	1S	b) Decrease the rea	iction proceeds		
101	For zero order reac	tion the integr	g reaction	uj Kellialiis colistal	it as the reaction proceeds		
101	[<i>A</i>]	tion, the integr					
	a) $kt = \frac{1}{[A]_0}$	b) <i>kt</i> =	$[A] - [A]_0$	c) $[A] = -kt + [A]$	d) $[A] = kt - [A]_0$		
102	. The half-life period	of a first order	reaction is 69.3 s.	what is the rate cons	stant?		
	a) 0.01s ⁻¹	b) 0.1 <i>s</i> ⁻	-1	c) 1 <i>s</i> ⁻¹	d) 10 <i>s</i> ⁻¹		
103	A reaction has a	rate constant	of $0.5 \text{ mol}^{-1} \text{ dm}$	³ min ⁻¹ . If initial o	concentration of the reactant is		
	0.2 mol dm^{-3} , half-	life of the react	ion				
104	a) 1.4 min	b) 10 m	in · · · · · · · ·	c) 15 min	d) 20 min		
104	I ne promination of $CH = COCH (aa) + B$	acetone that of $2r$ (ag) $\rightarrow CH$	Cours in acid solut	101 is represented by $\frac{1}{2}(aa) + Br^{-}(aa)$	7 this equation.		
	$CH_3(UCH_3(aq) + Br_2(aq) \to CH_3(UCH_2Br(aq) + H^+(aq) + Br^-(aq)$						
	These kinetic data y	vere obtained f	or given reaction	concentrations			
	These kinetic data v Initial co	were obtained f	or given reaction	concentrations.			
	These kinetic data v Initial co [CH ₃ COCH ₃]	were obtained f ncentrations, M Br ₂] [H ⁺]	or given reaction I Initial rate,	concentrations.			
	These kinetic data v Initial co [CH ₃ COCH ₃] [1	were obtained f ncentrations, <i>M</i> Br ₂] [H ⁺]	or given reaction I Initial rate, disappearan	concentrations.			
	These kinetic data v Initial co [CH ₃ COCH ₃] [1	were obtained f ncentrations, <i>M</i> Br ₂] [H ⁺]	or given reaction I Initial rate, disappearan ce	concentrations.			

0.30	0.05	0.05	5.7×10^{-5}
0.30	0.10	0.05	5.7×10^{-5}
0.30	0.10	0.10	1.2×10^{-4}
0.40	0.05	0.20	3.1×10^{-4}

Based on these data, the rate equation is:

a) rate = k[CH₃COCH₃][Br₂]

b) rate = k[CH₃COCH₃][Br₂][H⁺]²

c) rate = k[CH₃COCH₃][Br₂][H⁺]

d) rate = k[CH₃COCH₃][H⁺]

105. The rate constant for a chemical reaction has units $L mol^{-1}s^{-1}$, order of the reaction will be

d) 3

106. Activation energy of a chemical reaction can be determined by

- a) Evaluating rate constant at standard temperatures
- b) Evaluating velocities of reaction at two different temperatures
- c) Evaluating rate constants at two different temperatures
- d) Changing concentration of reactants

107. Which statement about molecularity of a reaction is wrong?

- a) It is the number of molecules of the reactants taking part in a single step of reaction
 - b) It is calculated from the reaction mechanism
 - c) It may be either whole number or fractional
 - d) None of the above
- 108. Arrhenius equation may not be represented as

a)
$$\ln \frac{A}{k} = \frac{E_a}{RT}$$

b) $\frac{d \ln k}{dT} = \frac{E}{RT^2}$
c) $\log A = \log k + \frac{E_a}{2.303 RT}$
d) $\log \left[-\frac{E_a}{RT} \right] = \frac{k}{A}$

109. The reaction $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$ is carried out in a $1dm^3$ vessel and $2dm^3$ vessel separately. The ratio of the reaction velocities will be

a) 1:8 b) 1:4 c) 4:1 d) 8:1

110. The rate for the reaction, $RCl + NaOH(aq) \rightarrow ROH + NaCl$ is given by rate =k[RCl], the freezing point of the reaction is

- a) Unaffected by increasing the temperature of the reaction
- b) Decreased on increasing the temperature of the reaction
- c) Halved on reducing the concentration of RCl to half
- d) Doubled on doubling the concentration of NaOh
- 111. In the sequence of reaction,

$$A \xrightarrow{k_1} B \xrightarrow{k_2} C \xrightarrow{k_3} D k_3 > k_2 > k_1 \text{ then the rate determining step of reaction is}$$

a) $A \to B$ b) $B \to C$ c) $C \to D$ d) $A \to D$

112. A first order reaction is 20% complete in 10 min. What is the rate constant of the reaction?

a) 0.223 b) 0.0223 c) 0.322 d) 0.0322

113. The activation energy of exothermic reaction $A \rightarrow B$ 80 kJ mol⁻¹. The heat of reaction is 200 kJmol⁻¹. The activation energy for the reaction $B \rightarrow A(\text{in kJ mol}^{-1})$ will be a) 80 b) 120 c) 40 d) 280

114. An endothermic reaction
$$A \rightarrow B$$
 has an activation energy of 15 kcal/mol and the energy of reaction is 5 kcal/mol. The activation energy for the reaction $B \rightarrow A$ is

a) 20 kcal/mol b) 15 kcal/mol c) 10 kcal/mol d) Zero

- 115. *K* for a zero order reaction is 2×10^{-2} mol L⁻¹sec⁻¹. If the concentration of the reactant after 25 sec is 0.5 *M*, the initial concentration must have been:
 - a) 0.5 M b) 1.25 M c) 12.5 M d) 1.0 M

116. Rate constant for a reaction is $10^{-3}s^{-1}$. The to leave 25% reaction is

	a) 693 s	b) 1386 s	c) 6930 s	d) 2029 s
117.	By increase in temperatur	e by 10 K, the rate of react	ion becomes double. How i	many times the rate of
	reaction will be if the tem	perature is increased from	303K to 353 K?	
	a) 4	b) 8	c) 16	d) 32
118.	Temperature coefficient o	f a reaction is 2. When tem	perature is increased from	30°C to 100°C. rate of the
	reaction increases hv		r	,
	a) 128 times	h) 100 times	c) 500 times	d) 250 times
119	The activation energy of a	reaction is 9 kcal/mol Th	e increase in the rate const	tant when its temperature
117.	is raised from 205 to 200	K is approximately		tant when its temperature
	a) 100%	b) 500%	c) 10006	d) 2804
120		0) 50%	CJ 100%	
120.	For a reaction $\frac{-}{2}A \rightarrow 2B$, ra	ate of disappearance of 'A'	is related to the rate of app	bearance of B by the
	expression			
	a) $-\frac{d[A]}{d[A]} - \frac{1}{d[B]}$	h) $-\frac{d[A]}{a} - \frac{1}{a}\frac{d[B]}{a}$	c) $-\frac{d[A]}{d[B]}$	d) $-\frac{d[A]}{d[A]} - 4\frac{d[B]}{d[B]}$
	$dt = \frac{1}{2} \frac{1}{dt}$	$dt = \frac{dt}{dt} = \frac{1}{4} \frac{dt}{dt}$	$dt = \frac{dt}{dt}$	$df = \frac{dt}{dt} = 4 \frac{dt}{dt}$
121.	For a first order reaction	, $(A) \rightarrow$ products, the condition	centration of A changes fr	rom 0.1 M to 0.025 M in 40
	minutes. The rate of react	ion when the concentration	n of <i>A</i> is 0.01 M, is:	
	a) 3.47 × 10 ⁻⁴ M/min	b) 3.47 × 10 ⁻⁵ M/min	c) 1.73 × 10 ⁻⁴ M/min	d) 1.73 × 10 ⁻⁵ M/min
122.	In a 1 st order reaction, rea	ctant concentration C varie	es with time t as	
	a) 1/C increases linearly v	vith t	b) Log C decreases linear	ly with t
	c) C decreases with 1/t		d) Log C decreases with 1	/t
123.	The rate constant of a zer	ro order reaction is 0.2 mo	ol dm ^{-3} h ^{-1} . If the concent	tration of the reactant after
	$30 \text{ min} \text{ is } 0.05 \text{ mol} \text{ dm}^{-3}$.	Then its initial concentrati	on would be	
	a) 0.01 mol dm ⁻³	b) 0.15 mol dm ⁻³	c) 0.25 mol dm ⁻³	d) 4.00 mol dm^{-3}
124.	For a chemical reaction 22	$X + Y \rightarrow Z$, the rate of appe	arance of Z is 0.05 mol L ⁻¹	. The rate of disappearance
	of <i>X</i> will be	, 11		
	a) 0.05 mol L^{-1} h ⁻¹	b) 0.05 mol L^{-1} min ⁻¹	c) 0.1 mol L^{-1} min ⁻¹	d) 0.25 mol L^{-1} min ⁻¹
125.	For a reaction $x(a) \rightarrow y(a)$	(1) + z(q) the half-life perio	d is 10 min. in what period	l of time would the
	concentration of X he red	uce to 10% of original cond	entration?	
	a) 20 min	h) 33 min	c) 15 min	d) 25 min
126	When is the activation end	by 55 mm	of $N_{-}\Omega_{-}$ as	u) 25 mm
120.	1	ingy for the decomposition	01 11205 03,	
	$N_2O_5 \rightleftharpoons 2NO_2 + \frac{1}{2}O_2$			
	If the values of rate consta	$nt = 3.45 \times 10^{-5}$ at 27°C a	and rate constant = 6.9×1	0^{-3} at 67°C?
	a) 112.5 kl	b) 200 kl	c) 149.5 kl	d) 11.25 kl
127.	Rate equation for a second	d order reaction is:	-) ,	
	2.303 a	1 a	1 x	1 a
	a) $K = \frac{\log (a - x)}{(a - x)}$	b) $K = \frac{1}{t} \log \frac{1}{a(a-x)}$	c) $K = \frac{1}{t} \cdot \frac{1}{a(a-x)}$	d) $K = \frac{1}{t^2} \cdot \frac{1}{(a-x)}$
128	Which of the following sta	tements are correct?		
1201	1 Order of a reaction can	he known from experiment	tal result and not from the	stoichiometry of reaction
	2 Overall molecularity of	a reaction may be determined	hed in a manner similar to	overall order of reaction
	3 Overall order of reaction	n	icu in a manner similar to	overall order of reaction
	$\Delta^m \pm B^n \rightarrow AB$ is $(m \pm$	n)		
	$A \mid D \rightarrow AD_{\chi}$ is $(R \mid A M olecularity of a reactive$	n refers to		
	(i) Molecularity of each of	the elementary store (close	u stans) in a multistan raa	tion
	(i) Molecularity of each of	the elementary steps (slow	v steps) in a multistep read	
	Colort the competences	hu uging the order single ste		
	select the correct answer	b) 1. 2 and 2		d) 1 2 and 4
100	aj 1, 3 and 4	U_{j} 1, 2 and 3	cj 2 , 3 and 4	u_{j} 1, 2 and 4
129.	ror the order reaction wit	n rate constant 'K' and init	ial concentration 'a', the ha	III-IIIE period given by
	a) $\frac{1\pi 2}{1}$	b) $\frac{1}{l_{1}}$	c) $\frac{3}{2k_{e}r^{2}}$	a) None of these
120	\mathcal{K} For the reaction $24 + P$	$Ka \rightarrow C \perp D$ the order of react	$2K.a^2$	
100.	For the reaction, $2A + D$.	$v = \pm \nu$, the order of react	1011 13	

- a) One with respect[B]
- c) Three
- 131. Which expression is wrong for fist order reaction?

a)
$$k = \frac{2.303}{t} \log\left(\frac{A_0}{A_t}\right)$$

c)
$$-k = \frac{t}{2.303} \log\left(\frac{A_t}{A_0}\right)$$

d) Cannot be predicted

b) Two with respect to [A]

b)
$$k = \frac{t}{2.303} \log\left(\frac{A_0}{A_t}\right)$$

d) Rate=k[A]

132. For a first order reaction, the half-life period is

a) Dependent on the square of the initial concentration.

- b) Dependent on first power of initial concentration.
- c) Dependent on the square root of initial concentration.
- d) Independent on initial concentration
- 133. Give relation between half reaction time $(t_{1/2})$ and initial concentration of reactant for (n 1) order reaction.

a)
$$t_{1/2} \propto [R]_0$$
 b) $t_{1/2} \propto [R]_0^{2-n}$ c) $t_{1/2} \propto [R]_0^{n+1}$ d) $t_{1/2} \propto [R]_0^{n-2}$

134. For a first order reaction $A \rightarrow$ Product, the initial concentration of A is 0.1 M and after 40 minute it becomes 0.025 M. Calculate the rate of reaction at reactant concentration of 0.01M:

a) $3.47 \times 10^{-4} M \min^{-1}$

- b) $3.47 \times 10^{-5} M \min^{-1}$
- c) $1.735 \times 10^{-6} M \text{ min}^{-1}$
- d) $1.735 \times 10^{-4} M \min^{-1}$

135. Rate of reaction

- a) Decreases with increase in temperature
- b) Increases with increase in temperature
- c) May increase or decrease with increase in temperature
- d) Does not depends on temperature
- 136. For the first order reaction with the rate constant k, which expression gives the rate half-life period? (Initial conc. = a)

a)
$$\frac{3}{2}ka^2$$
 b) $\frac{1}{ka}$ c) $\frac{1}{k}$ d) $\frac{0.693}{k}$

137. The rate constant (k') of one of the reaction is found to be double that of the rate constant (k'') of another reaction. Then the relationship between the corresponding activation energies of the two reaction $(E'_a \text{ and } E'_a)$ can be represented as

b) $E'_a = 4E''$ c) $E'_1 = E'_a$ a) $E'_a > E''_a$ d) $E'_a < E''_a$ 138. For a given reaction of first order, it takes 15 minute for the concentration to drop from 0.8 M litre⁻¹ to 0.4 *M* litre⁻¹. The time required for the concentration to drop from 0.1 *M* litre⁻¹ to 0.025 *M* litre⁻¹ will be: a) 60 minute b) 15 minute c) 7.5 minute d) 30 minute

139. The rate constant for a second order reaction is $8 \times 10^{-5} M^{-1} min^{-1}$. How long will it take a 1*M* solution to be reduced to 0.5*M*?

c) 1.25×10^4 minute d) 4×10^{-5} minute b) 8×10^{-5} minute a) 8.665 \times 10³ minute 140. The slope in Arrhenius plot, is equal to c) $-\frac{R}{2.303 E_a}$ d) None of the above

a)
$$-\frac{E_a}{2.303 R}$$
 b) $\frac{E_a}{R}$

141. The rate constants k_1 and k_2 for two different reactions are $10^{16}e^{-2000/T}$ and $10^{15}e^{-1000/T}$, respectively. The temperature at which $k_1 = k_2$ is:

a) $\frac{2000}{2.303}$ K c) $\frac{1000}{2.303}$ K b) 2000 K d) 1000 K

142. If the volume of the vessel in which the reaction $2NO + O_2 \rightarrow 2NO_2$ is occurring is diminished to $1/3^{rd}$ of its initial volume. The rate of the reaction will be increased by

a) 3 times b) 9 times c) 27 times d) 36 times 143. The time for half-life period of a creation reaction $A \rightarrow$ products is 1 h. when the initial concentration of the reactant 'A', is 2.0 mol L^{-1} , how much time does it take for its concentration to come from 0.50 to 0.25 mol L^{-1} , if it is a zero order reaction?

- a) 4 h b) 0.5 h c) 0.25 h d) 1 h
- 144. For a reaction $A + B \rightarrow C + D$, if the concentration of A is doubled without altering the concentration of B, the rate gets doubled. If the concentration of B is increased by nine times without altering the concentration of A, the rate gets tripled. The order of the reaction is a) 2 b) 1 c) 3/2 d) 4/3
- 145. What fraction of a reactant showing first order remains after 40 minute if $t_{1/2}$ is 20 minute? a) 1/4 b) 1/2 c) 1/8 d) 1/6
- 146. At 500 k, the half-life period of a gaseous reaction at an initial pressure of 80 kPa is 350 s. when the pressure is 40 kPa, the half-life period is 175 s. The order of the reaction is
 a) Zero
 b) One
 c) Two
 d) Three
- 147. Which of the following statements are incorrect?
 - a) Rate of the reaction involving conversion of *ortho* hydrogen to *para* hydrogen = $-\frac{d[H_2]}{dt} = k[H_2]^{3/2}$
 - b) Rate of the reaction involving the thermal decomposition of acetaldehyde = $k[CH_3CHO]^{1/2}$
 - c) In the formation of phosgene from CO and Cl_2 , the rate of the reaction = $k[CO][Cl_2]^{1/2}$
 - d) In the decomposition of H_2O_2 , the rate of reaction = $k[H_2O_2]$
- 148. At 373 K, a gaseous reaction $A \rightarrow 2B + C$ is found to be of first order. Starting with pure A, the total pressure at the end of 10 min was 176 mm and after a long time when A was completely dissociated, it was 270 mm. The pressure of A at the end of 10 min was
 - a) 94 mm b) 47 mm c) 43 mm d) 90 mm
- 149. For a reversible reaction, $A \rightleftharpoons B$, which one of the following statements is wrong from the given energy profile diagram?

Reaction coordinate

- a) Activation energy of forward reaction is greater than backward reaction
- b) The forward reaction is endothermic
- c) The threshold energy is less than that of activation energy
- d) The energy of activation of forward reaction is equal to the sum of heat of reaction and the energy of activation of backward reaction
- 150. Which one of the following is wrongly matched?
 - a) Saponification of $CH_3COOC_2H_5$ -second order reaction
 - b) Hydrolysis of *CH*₃*COOCH*₃ -pseudo unimolecular
 - c) Decomposition of H_2O_2 -first order reaction
 - d) Combination of H_2 and Br_2 to give HBr -first order reaction

151. For the reaction,

$$2N_2O_5(g) \to 4NO_2(g) + O_2(g)$$

If the concentration of NO_2 increase by $5.2 \times 10^{-3} M$ in 100 s then the rate of the reactions

- a) $1.3 \times 10^{-5} M s^{-1}$ b) $0.5 \times 10^{-4} M s^{-1}$ c) $7.6 \times 10^{-4} M s^{-1}$ d) $2 \times 10^{-3} M s^{-1}$
- 152. The rate of the reaction $A \rightarrow \text{product}$, at the initial concentration of $3.24 \times 10^{-2}M$ is nine times its rate at another initial concentration of $1.2 \times 10^{-3}M$. The order of the reaction is

a) $\frac{1}{2}$	b) $\frac{3}{4}$	c) $\frac{3}{2}$	d) $\frac{2}{3}$

- 153. The half-life period for zero order reaction $A \rightarrow$ product, is 100 min. How long will it take in 80% completion?
- a) 80 min b) 160 min c) 100 min d) 200 min 154. Consider the reaction $2A + B \rightarrow product$

When concentration of B alone was doubled, the half-life did not change. When the concentration of Aalone was doubled, the rate increased by two times. The unit of rate constant for this reaction isa) $L mol^{-1}s^{-1}$ b) No unitc) $mol L^{-1}s^{-1}$ d) s^{-1}

155. The expression for rate constant of a first order chemical reaction is

a) $k = \frac{1}{t} \cdot \frac{x}{a(a-x)}$ b) $k = \frac{2.303}{t} \log_{10} \frac{a}{(a-x)}$ c) $k = \frac{x}{t}$ d) $k = \frac{1}{2t} \left[\frac{1}{(a-x)^2} - \frac{1}{a^2} \right]$

156. In gaseous reactions important for the understanding of the upper atmosphere H_2O and O react bimolecularly to form two OH radicals. ΔH for this reaction is 72kJ at 500 K and E_a is 77 kJ mol⁻¹, then E_a for the bimolecular recombination of two OH radicals to form H_2O and O is: a) 3 kJ mol⁻¹ b) 4 kJ mol⁻¹ c) 5 kJ mol⁻¹ d) 7 kJ mol⁻¹

157. Activation energy of a reaction

a) Is independent of temperature

b) Increases with temperature

- c) Gets doubled for every 10 degree rise in temperature
- d) Decreases with temperature
- 158. For a I order reaction $A \rightarrow B$ the reaction rate at reactant concentration 0.01*M* is found to be 2.0 × $10^{-5} Ms^{-1}$. The half-life period of the reaction is:
 - a) 30s b) 300s c) 220s d) 347s
- 159. For a zero order reaction, the plot of concentration of reactant vs time is (intercept refers to concentration axis)
 - a) Liner with positive slope and zero intercept
 - b) Linear with negative slope and zero intercept
 - c) Linear with negative slope and non-zero intercept
 - d) Linear with positive slope and non-zero intercept
- 160. The rate of reaction between two reactants A and B decreases by a factor 4, if the concentration of reactant B is doubled. The order of this reaction with respect to B is:

a)
$$-1$$
b) -2 c) 2 d) 1 161. The velocity constant of a reaction at 290 K was found to be 3.2×10^{-3} at 300 K, it will bea) 6.4×10^{-3} b) 1.28×10^{-2} c) 9.6×10^{-3} d) 3.2×10^{-4}

162. The term $\frac{-dc}{dt}$ in a rate equation refers to

a) The decrease in concentration of the reactant with time

b) The concentration of the reactant

c) The change in concentration of the reactant

d) The velocity constant of the reaction

163. In a first order reaction the concentration of reactant decreases from 800 mol/dm^6 to 50 mol/dm^6 in 2×10^4 s. The rate constant of reaction in s^{-1} is

a) 2×10^4 b) 3.45×10^{-5} c) 1.386×10^{-4} d) 2×10^{-4} 164. Consider the chemical reaction,

 $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$

The rate of this reaction can be expressed in terms of time derivative of concentration of $N_2(g)$, $H_2(g)$ and $NH_3(g)$. Identify the correct relationship amongst the rate expressions:

a) Rate =
$$-d[N_2]/dt = -\frac{1}{3}d[H_2]/dt = \frac{1}{2}d[NH_3]/dt$$

b) Rate = $-d[N_2]/dt = -3d[H_2]/dt = 2d[NH_3]/dt$

c) Rate = $d[N_2]/dt$ =	$\frac{1}{2}d[H_2]/dt = \frac{1}{2}d[NH_3]/dt$				
d) Poto $-d[N_1]/dt$	$3 = \frac{1}{2} = \frac{1}{2} = \frac{1}{2}$				
165 Pate of reaction can b	$= -u[\Pi_2]/ut = u[\Pi\Pi_3]/ut$	$k = k [A]^2 [E$	2] if concontration of A is		
increased by 2 times	e expressed by following rat	reased by 2 times how mar	y times rate of reaction		
increased by 5 times a		reased by 2 times, now mar	ly times rate of reaction		
a) Q times	h) 27 timos	c) 18 timos	d) 8 times		
a) 9 tilles	DJ 27 times	c) to times	u) o unies		
a) Increases	esses, the rate of reaction	h) Dograagaa			
a) Increases		d) Einst in groaded then	dograaga		
167 The data for the readt	ion ALD C	d) First increases, then	uecreases		
107. The data for the feact	loll, A+D→C				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0 10				
1 0.012 0.033 2 0.024 0.070	0.80				
3 0.024 0.035	0.10				
4 0.012 0.070	0.80				
The rate law correspo	nds to the above data is				
a) $rate = k[B]^3$	b) $rate = k[B]^4$	c) $rate = k[A][B]^3$	d) $rate = k [A]^2 [B]^2$		
168. In a reaction, when th	e concentration of reactant i	s increased two times, the i	increase in rate of reaction		
was four times. Order	of reaction is				
a) Zero	b) 1	c) 2	d) 3		
169. For the reaction	-				
$N_2 + 3H_2 \rightleftharpoons 2NH_3$					
The rate of change of	concentration for hydrogen	is $0.3 \times 10^{-4} M s^{-1}$			
The rates of change of	concentration of ammonia i	İS			
a) -0.2×10^{-4}	b) 0.2×10^{-4}	c) 0.1×10^{-4}	d) 0.3×10^{-4}		
170. Which of the following	g statement is in accordance	with collision theory?	,		
Rate is directly propo	rtional to collision frequency	J			
Rate depend upon ori	entation of atoms				
Temperature determi	nes the rate				
a) Only III		b) Only I and II			
c) Only II and III		d) All of these			
171 , N ₂ (g) + 3H ₂ (g) \rightleftharpoons 2N	$H_{2}(g) + 22$ kcal.				
The activation energy	for the forward reaction is 5	50 kcal. What is the activation	on energy for the backward		
reaction?					
a) -72 kcal	h) -28 kcal	c) ± 28 kcal	d) $+72$ kcal		
172. According to collision	theory:				
a) Collisions are suffic	viently violent				
b) All collision are res	nonsible for reaction				
c) All collisions are ef	fective				
d) Only highly energe	tic molecules have enough e	nergy to react			
173 The rate constant of a	first order reaction whose h	alf-life is 480 s is			
a) 1.44 s^{-1}	b) 1.44 $\times 10^{-3}$ s ⁻¹	c) 2.88 $\times 10^{-3}$ s ⁻¹	d) 0.72 $\times 10^{-3}$ s ⁻¹		
$174.24 \rightarrow B \perp C \cdot \text{It would}$	b) 1.11 × 10 3	c) 2.00 × 10 - 3	uj 0.72 × 10 3		
174. $2A \rightarrow D + C$, it would a) The rate of reaction	is proportional to square of	f conc of A			
a) The rate of reaction	romains same at any conc	of A			
a) The rate remains u	nahangad at any conc.	nd C			
d) The rate of reaction	nonangeu at any conc. of B a	nu c			
175 For a position 4 + 22	\sim C rate is given by	eased to double			
175. FOI a reaction $A + 2B$	\rightarrow c, rate is given by $[\Lambda][D]^2$				
T = K	נהןנסן ופי				
	The order of reaction is:				

a) 3 b) 6 c) 5 d) 7
176. Rate constant for a reaction is
$$\lambda$$
. Average life is represent by
a) $\frac{1}{\lambda}$ b) $\frac{\ln^2}{\lambda}$ c) $\frac{\lambda}{\sqrt{2}}$ d) $\frac{0.693}{\lambda}$
177. The plot between concentration versus time for a zero order reaction is represented by
a) $\frac{1}{c}$ b) $\ln c$ c) $\frac{1}{c}$ c) $\frac{1}{c}$ d) $\frac{1}{c}$ c) $\frac{1$

- c) Both (a) and (b)
- d) None of these

Page | 16

pressure terms for gaseous phase reactant $A(g) \rightarrow$ product? a) $-\frac{dc}{dt} = -\frac{1}{V}\frac{dn}{dt}$ = $-\frac{1}{RT}\frac{dP}{dt}$ b) $\frac{dc}{dt} = \frac{dn}{dt} = -\frac{dP}{dt}$ c) $\frac{dc}{dt} = \frac{RT}{V}\frac{dn}{dt} = -\frac{dP}{dt}$ d) All of the above 185. The rate constant of a reaction is found to be $3 \times 10^{-3} mol L^{-1} min^{-1}$. The order of reaction is a) Zero b) 1 c) 2 d) 1.5 186. A reactant (A) forms two products : $A \xrightarrow{k_2} B$, Activation energy E_{a_1} $A \xrightarrow{k_2} C$, Activation energy E_{a_2} If $E_{a_2} = 2 E_{a_1}$, than k_1 and k_2 are related as a) $k_1 = 2k_2 e_{E_{a_2}}/RT$ b) $k_1 = k_2 e_{E_{a_1}}/RT$ c) $k_2 = k_1 e_{E_{a_2}}/RT$ d) $k_1 = Ak_2 e_{E_{a_1}}/RT$ 187. For the reaction $2A + B \rightarrow A_2B$, the rate Law given is b) $k[A]^{3}[B]$ c) $k[A][B]^3$ d) $k[A]^{2}[B]$ a) k[2A][B] 188. For producing the effective collisions the colliding molecules must have: a) A certain minimum amount of energy b) Energy lesser than threshold energy c) Improper orientation d) Proper orientation and energy equal or greater than threshold energy 189. The chemical reaction $20_3 \rightarrow 30_2$ proceeds as follows $0_3 \rightleftharpoons 0_2 + 0$ (fast) $0 + 0_3 \rightarrow 20_2$ (slow) The rate law expression should be a) $r = k[0_3]^2$ b) $r = k[0_3]^2 [0_2]^{-1}$ c) $r = k[0_3][0_2]$ d) Unpredictable 190. Two substances A and B are present such that [A] = 4[B] and half-life of A is 5 minute and of B is 15 minute. If they start decaying at the same time following first order, how much time later will the concentration of both of them would be same? a) 15 minute b) 10 minute c) 5 minute d) 12 minute 191. A reaction involving A, B and C as reactants is found to obey the rate law, rate= $k[A]^x[B]^y[C]^z$. When the concentration of A, B and C are doubled separately, the rate is also found to increase two, zero and four times respectively. The overall order of the reaction is a) 1 b) 2 c) 3 d) 4 192. The rate constant of *n*th order has units: a) $\operatorname{litre}^{1-n}\operatorname{mol}^{1-n}\operatorname{sec}^{-1}$ b) $\operatorname{mol}^{n-1}\operatorname{litre}^{n-1}\operatorname{sec}^{-1}$ c) $\operatorname{mol}^{1-n}\operatorname{litre}^{n-1}\operatorname{sec}^{-1}$ d) None of these 193. The reaction; N_2O_5 in $2NO_2 + 1/2 O_2(g)$ is of first order for N_2O_5 with rate constant $6.2 \times 10^{-4} \text{s}^{-1}$. What is the value of rate of reaction when $[N_2O_5] = 1.25$ mole L⁻¹? a) 5.15×10^{-5} mole L⁻¹s⁻¹ b) 6.35×10^{-3} mole L⁻¹s⁻¹ c) 7.75×10^{-4} mole L⁻¹s⁻¹ d) 3.85×10^{-4} mole L⁻¹s⁻¹ 194. $t_{1/4}$ can be taken as the time taken for the concentration of reactant to drop to $\frac{3}{4}$ of its initial value. If the rate constant for a first order reaction is k the $t_{1/4}$ can be written as a) 0.75 /k b) 0.69 /k c) 0.29 /k d) 0.10 /k 195. In a chemical reaction two reactants take part. The rate of reaction is directly proportion to the concentration of one of them and inversely proportional to the concentration of the other. The order of reaction is d) 4 a) 0 b) 1 c) 2 196. Which of the following is not the example of pseudo unimolecular reaction?

184. Which is correct relation in between $\frac{dc}{dt}$, $\frac{dn}{dt}$ and $\frac{dP}{dt}$, where *c*, *n*, and *P*, represent concentration, mole and

	77+	
a) $CH_3COOC_2H_5 + H_2O \xrightarrow{H^+} CH_3COOH + C_2H_5OH$	b) $C_{12}H_{22}O_{11} + H_2O \xrightarrow{H^+} C_6H_{12}O_6 + C_6H_{12}O_6$ Glucose fructose	
c) $CH_3COCl + H_2O \rightarrow CH_3COOH + HCl$	d) $CH_3COOC_2H_5 + H_2O \xrightarrow{OH^-} CH_3COOH + C_2H_5OH$	Н
197. The differential rate law for the reaction,	5 2 5 2 5 2 5	
$4NH_3(g) + 5O_2(g) \rightarrow 4NO(g) + 6H_2O(g)$		
a) $-\frac{d[NH_3]}{dt} = -\frac{d[O_2]}{dt} = -\frac{d[NO]}{dt} = -\frac{d[H_2O]}{dt}$	b) $\frac{d[NH_3]}{dt} = \frac{d[O_2]}{dt} = -\frac{1}{4}\frac{d[NO]}{dt} = -\frac{1}{6}\frac{d[H_2O]}{dt}$	
c) $\frac{1}{4} \frac{d[NH_3]}{d[NH_3]} = \frac{1}{4} \frac{d[U_2]}{d[U_2]} = \frac{1}{4} \frac{d[NU]}{d[NU]} = \frac{1}{4} \frac{d[H_2U]}{d[H_2U]}$	d) $-\frac{1}{2}\frac{d[NH_3]}{d[NH_3]} = -\frac{1}{2}\frac{d[O_2]}{d[O_2]} = \frac{1}{2}\frac{d[NO]}{d[O_2]} = \frac{1}{2}\frac{d[H_2O]}{d[O_2]}$	<u>′</u>]
4 dt 5 dt 4 dt 6 dt	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
198. 1 g of $_{79}$ Au ¹⁹⁶ ($t_{1/2} = 65$ h) give stable mercury b	y B- emission. What amount of mercury will left after	r
260 h?		
a) 0.9375 g b) 0.3758 g	c) 0.7586 g d) 0.9000 g	
199. The rate law for the chemical reaction		
$2NO_2CL \rightarrow 2NO_2 + CL_2$ is rate =k[NO_2Cl]. The rate	determining step is	
a) $2NO_2Cl \rightarrow 2NO_2 + 2Cl$	b) $NO_2 + Cl_2 \rightarrow NO_2Cl + Cl$	
c) $NO_2Cl + Cl \rightarrow NO_2 + Cl_2$	d) $NO_2Cl \rightarrow NO_2 + Cl$	
200. The rate law for the reaction		
$RCl + NaOH \rightarrow ROH + NaCl$ is given by Rate = $k[h]$	Cl]. The rate of this reaction	
a) Is doubled by doubling the concentration of Na	ОН	
b) Is halved by reducing the concentration of <i>RCl</i>	by one half	
c) Is increased by increasing the temperature of t	ne reaction	
d) In unaffected by change in temperature		
201. The rate constant of a reaction increases by $5\%~w$	hen its temperature is raised from 27°C to 28°C. The	,
activation energy of the reaction is		
a) 36.6 kJ/mol b) 16.6 kJ/mol	c) 46.6 kJ/mol d) 26.6 kJ/mol	
202 of a reaction cannot be determined expe	rimentally.	
a) Order b) Rate	c) Rate of constant d) Molecularity	
203. A first order reaction is carried out with an init	tial concentration of 10 mole per litre and 80% of	f the
reactant changes into the product. Now if the sam	e reaction is carried out with an initial concentration	ı of 5
mol per litre the percentage of the reactant chang	ing to the product is:	
a) 40 b) 80	c) 160 d) Cannot be calculate	ed
204. For a reaction of the type $A + B \rightarrow x$ products, it is	s observed that doubling the concentration of A cause	es
the reaction rate (k_1) to be four times as great but	doubling the amount of <i>B</i> does not affect the rate (<i>k</i>	: ₂).
The rate equation is		
	$k_1 = k_1$	
a) $\kappa = \kappa_1 + \kappa_2$ b) $\kappa = \kappa_1 \kappa_2$	c) $\kappa = \frac{1}{k_2}$ d) $\kappa^{1/2} = \kappa_1 \times \kappa_2$	
205. Which increases on increase of temperature?		
a) Energy of activation (E_a)	b) Collision frequency (Z)	
c) Rate constant (k)	d) Both (a) and (c)	
206. In the first order reaction, the concentration of the	e reactants is reduced to 25% in one hour. The half-li	fe
period of the reaction is		
a) 2h b) 4h	c) 1/2h d) 1/4h	
207. In the given graph the activation energy, E_a for th	e reverse reaction will be	

200 1	κJ			
E	Ea = 150 kJ	Products $J \Delta H = +100 \text{ kJ}$		
R	eactants			
Re	action coordinate	→		
a) 15	50 kJ	b) 50 kJ	c) 200 kJ	d) 100 kJ
208. What	t is the order of a rea	ction which has a rate exp	pression rate = $k[A]^{3/2}[B]^{-1}$	1?
a) $\frac{3}{2}$		b) Zero	c) $\frac{1}{2}$	d) None of these
209. For a conce a) 30	fist order reaction, t entration to change f Min	the concentration changes from 0.1 M to 0.025 M is b) 15 Min	s from 0.8 to 0.4 in 15 min. 7	The time taken for the
210. Give	the hypothetical rea	ction mechanism		uj co min
A — Spe form	$\rightarrow B \xrightarrow{II} C \xrightarrow{III} D \xrightarrow{I}$ cies ned Rate of its 1	v → E and the date as Formation		
	0.002 mol/ B A 0.030 mol/ C B 0.011 mol/	/h, per mole of /h, per mole of /h, per mole of		
The	D C 0.420 mol/ E D rate determining step	/h, per mole of p is		
a) St	ep I	b) Step II	c) Step III	d) Step IV
211. For A	$A + B \longrightarrow C + D, \Delta H =$	$= -20 \text{ kJ mol}^{-1}$ the activation	ation energy of the forward	l reaction is 85kJ mol ⁻¹ . The
activ	ation energy for bacl	kward reaction iskJ mol	l ⁻¹ .	
a) 65		b) 105	c) 85	d) 40
212. For t	the reaction $N_2 + 3H$	$I_2 \rightarrow 2NH_3$, the rate $\frac{d_1NH_3}{dt}$	$\frac{13}{2} = 2 \times 10^{-4} M \text{ s}^{-1}$. Theref	fore, the rate $-\frac{d[N_2]}{dt}$ is given
as:				
a) 10	$^{-4}M {\rm s}^{-1}$	b) $10^4 M \mathrm{s}^{-1}$	c) $10^{-2}M \mathrm{s}^{-1}$	d) 10^{-4} s M^{-1}
213. The left.	reaction $L \rightarrow M$ is stated at the reaction $L \rightarrow M$ is stated at the reaction of the reaction	arted with 10.0 g of L. Aft ction is	er 30 and 90 min, 5.0 g and	1.25 g of <i>L</i> respectively are
214. The r + $\frac{1}{2}\frac{d}{d}$ The r	rate of a reaction is e $\frac{l[C]}{dt} = -\frac{1}{5}\frac{d[D]}{dt} = +$ reaction is	b) 1 xpressed in different way $\frac{1}{3}\frac{d[A]}{dt} = -\frac{d[B]}{dt}$	c) Z is as follows	d) 3
a) 4A	$A + B \rightarrow 2C + 3D$		b) $B + 5D \rightarrow 3A + 2C$	
c) 44	$A + 2B \rightarrow 2C + 3D$		d) $B + \frac{1}{2}D \rightarrow 4A + 2C$	
215. The ten fo	rate of elementary re olds. The order of the	eaction, $A \rightarrow B$, increases e reaction with respect to	by 100 times when the co A is:	ncentration of A is increased
		1.2.0	2.40	1) 400

a) 1 b) 2 c) 10 d) 100 216. The differential rate law for the reaction $4NH_3(g) + 5O_2(g) \rightarrow 4NO(g) + 6H_2O(g)$ is

	a) $-\frac{d[NH_3]}{d[NH_3]}\frac{d[O_2]}{d[O_2]}\frac{d[NO]}{d[NO]}\frac{d[H_2O]}{d[H_2O]}$	h) $\frac{d[\text{NH}_3]}{d[\text{NH}_3]} - \frac{d[0_2]}{d[0_2]} - \frac{1}{2}$	$\frac{d[\text{NO}]}{2} = \frac{1}{2} \frac{d[\text{H}_2\text{O}]}{d[\text{H}_2\text{O}]}$
	$\frac{dt}{dt} = -\frac{dt}{dt} = -\frac{dt}{dt} = -\frac{dt}{dt}$	$dt = \frac{dt}{dt} = \frac{dt}{4}$	dt = 6 dt
	c) $\frac{1}{4} \frac{d[NH_3]}{h} = \frac{1}{5} \frac{d[O_2]}{h} = \frac{1}{4} \frac{d[NO]}{h} = \frac{1}{5} \frac{d[H_2O]}{h}$	d) $-\frac{1}{4}\frac{d[NH_3]}{h} = -\frac{1}{5}\frac{d[O_2]}{h}$	$\frac{1}{2} = \frac{1}{4} \frac{d[NO]}{h} = \frac{1}{6} \frac{d[H_2O]}{h}$
217	4 <i>at</i> 5 <i>at</i> 4 <i>at</i> 6 <i>at</i> For the reaction $A \rightarrow B$ when concentration of A is	4 <i>at</i> 5 <i>at</i> smade 15 times the rate	4 <i>at</i> 6 <i>at</i> of reaction becomes 1837
217.	times The order of reaction is	made 1.5 times, the rate	of reaction becomes 1.037
	a) 1 b) 1.5	c) 2	d) 2.5
218.	For the reaction $Cl_2 + 2l^- \rightarrow l_2 + 2Cl^-$, the initial cor	centration of I^- was 0.20	mol L^{-1} and the
	concentration after 20 min was 0.20 mol L^{-1} . Then the	the rate of formation of I_2 in	mol L^{-1} would be
	a) 1×10^{-4} b) 5×10^{-4}	c) 1×10^{-3}	d) 5×10^{-3}
219.	The energies of activation for forward and reverse re	eactions for $A_2 + B_2 \rightleftharpoons 2AB$	3 are 180 kJ mol ⁻¹ and 200
	kJ mol ⁻¹ respectively. The presence of a catalyst low	ers the activation energy o	f both (forward and
	reverse) reactions by 100 kJ mol ⁻¹ . The enthalpy cha	ange of the reaction $(A_2 + A_2)$	$B_2 \rightarrow 2AB$) in the presence
	of catalyst will be (in kJ mol ⁻¹)		
	a) 300 b) 120	c) 280	d) 20
220.	Which statement is correct?		
	a) Reactions with low activation energy are usually e	exothermic	
	b) The rate law sometimes enable to deduce the mec	hanism of a reaction	
	c) The rate law for reaction is an algebraic expressio	n relating the forward read	ction rate to product
	concentration		a lliai an a affa atian in
	a) increase in the total pressure of a gas phase reaction	on increase the fraction of	collisions effective in
221	The temperature coefficient of a reaction ic:		
221.	a) The rate constant at a fixed temperature		
	b) The ratio of rate constant at two temperature		
	c) The ratio of rate constant differing by 10° preferal	bly 25° and 35°C	
	d) None of the above		
222.	The term $(-dc/dt)$ in rate equation refers to:		
	a) The concentration of a reactant		
	b) The decrease in concentration of the reactant with	n time	
	c) The velocity constant of reaction		
	d) None of the above		
223.	For a first order reaction, the initial concentration of	a reactant is 0.05 M. After	45 min it is decreased by
	0.015 M. calculation half reaction time $(t_{1/2})$		
	a) 87.42 min b) 25.90 min	c) 78.72 min	d) 77.20 min
224.	The order of a gaseous phase reaction for which ra	ate becomes half if volume	e of container having same
	amount of reactant is doubled is:		1) 1 /0
225	a) 1 D $1/2$	C) Z	a) 1/3
225.	For the reaction, $N_2O_5 \rightarrow 2NO_2 + \frac{1}{2}O_2$		
	Given, $-\frac{d[N_2O_5]}{dt} = K_1[N_2O_5]$		
	$\frac{d[\text{NO}_2]}{W} = K_2[\text{N}_2\text{O}_5]$		
	$dt = d[0_2]$		
	and $\frac{w[0_2]}{dt} = K_3[N_2O_5]$		
	The relation in between K_1, K_2 and K_3 is:		
	a) $2K_1 = K_2 = 4K_3$ b) $K_1 = K_2 = K_3$	c) $2K_1 = 4K_2 = K_3$	d) None of these
226.	Temperature dependent equation can be written as		
	a) In $k = \ln A - e^{E_a/RT}$	b) In $k = \ln A + e^{E_a/RT}$	
	c) In $k = \ln A - e^{RT/E_a}$	d) None of these	
227.	A first order reaction is 50% complete in 30 min at 2	7°C and in 10 min at 47°C.	The energy of activation of

	the reaction is			
	a) 52.8 kJ	b) 23.6 kJ	c) 29.5 kJ	d) 43.8 kJ
228	. Increase in the concent	ration of the reactants leads	to the change in	
	a) Activation energy		b) Heat of reaction	
	c) Collision frequency		d) Threshold energy	
229	. When a graph is plotte	ed between $\ln k$ and $1/T$ for	a first order reaction, a st	raight line is obtained. The
	slope of the line is equa	ll to		
	$a) - \frac{E_a}{E_a}$	E_a	$() - \frac{2.303}{2.303}$	d) $-\frac{E_a}{E_a}$
	2.303	2.303 <i>R</i>	$E_a R$	R
230	. For the two gaseous rea	actions, following data are gi	ven	
	$A \to B; k_1 = 10^{10} e^{-20,0}$	100/T		
	$C \to D; k_2 = 10^{12} e^{-24}$	606/T		
	The temperature at wh	ich k_1 becomes equal to k_2 is	5	
	a) 400 K	b) 1000 K	c) 800 K	d) 1500 K
231	. Hydrogenation of vege	table ghee at 25°C reduces p	pressure of H_2 from 2 atm	to 1.2 atm in 50 minute. The
	rate of reaction in term	s of molarity per second is:	_	
	a) 1.09×10^{-6}	b) 1.09×10^{-5}	c) 1.09×10^{-7}	d) 1.09×10^{-8}
232	In the reaction $A + B -$	\rightarrow products, if <i>B</i> is taken in exp	cess, then it is an example o	of
	a) Second order reaction	on	b) Zero order reaction	
	c) Pseudounimolecular	· reaction	d) First order reaction	
233	. The rate of a chemical r	reaction depends upon:		
	a) Time	b) Pressure	c) Concentration	d) All of these
234	. The rate constant for th	the reaction, 10^{-5} -1 Keyler is the	0.40 40-F.1 1	
	$2N_2O_5 \rightarrow 4NO_2 + O_2 \text{ is}$	$3.0 \times 10^{-3} \text{ s}^{-1}$. If the rate is	2.40×10^{-3} then the conce	entration of N_2O_5 (in mol/L)
	IS	1.) 4.0	2004	
225	a) 1.4 The following data are	D) 1.2 for the decomposition of any	C) 0.04	a) 0.8
235	. The following data are	for the decomposition of ann	monium murite în aqueous	solution.
	Vol. of N_2 in cc Tin	ne (min)		
	6.25	10		
	9.00	15		
	11.40	20		
		Z5 n finites		
	The order of reaction is	iiiiiiity		
	a) Zero	, h) One	c) Two	d) Three
236	Equation 4 Dr	d[A] = V[1. The concentration of (1 left often time t when $t = \frac{1}{2}$
200	For a reaction $A \rightarrow Pro$	bouch, rate law is $-\frac{dt}{dt} = K[$	A_{10} . The concentration of A_{10}	There after time t when $t = \frac{1}{K}$
	is:		F 43	1
	a) $\frac{[A]_0}{$	b) $[A]_0 \times e$	c) $\frac{[A]_0}{2}$	d) $\frac{1}{[4]}$
227	e Four officient and an una ottag	···· A ·· D the terror conterner (7	e^2	$[A]_0$
237	. For a first order reaction	on $A \rightarrow P$, the temperature (1)) dependent rate constant	(k) was found to follow the
	equation. $\log k = (2000)/T + 6$	0		
	$\log k = -(2000)/1 + 0$	o.u ator 1 and the activation and	rau E rospostivolu aro	
	a) $1.0 \times 10^{6} c^{-1}$ and 0.2	kI mol-1	a_a , respectively, are	1-1
	a) 1.0×10^{6} s and 9.2 c) 1.0×10^{6} s -1 and 16	K = 100	d) 1.0 \times 106 c^{-1} and 20.2	r = 1
220	$C_{j} = 1.0 \times 10^{\circ} S_{j}$ and 10° .	$V = A e^{-E_a/RT}$ the quantity	$U_{j} = 1.0 \times 10^{\circ}$ and 30.3°	KJ IIIOI
230	a) Poltzmann factor	$A = Ae^{-u/m}$, the quantity –	$-E_a/RT$ is referred as:	d) None of these
220	Among the following re	b) riequency factor	CJ ACTIVATION IACTOR	uj none of these
239	a) Burning of coal	מכנוסוו, נווב ומסובסו טווב וס.		
	h) Rusting of iron in m	nist air		
	UT INVOLUES OF IT OFFICE	nocall		

	c) Conversion of monoclinic sulphur to rhombic sulphur						
	d) Precipitation of silver chloride by mixing silver nitrate and sodium chloride solutions						
240	40. The following homogeneous gaseous reactions were experimentally found to be second order overall.						
	$1.2NO \rightarrow N_2 + O_2 \ 2.3O_2 \rightarrow 2O_3$						
	$3.N_2O_3 \rightarrow NO + NO_2 \qquad 4$	$H_2 + I_2 \rightarrow 2HI$					
	Which of these are most l	ikely to be elementary reac	tion that occur in one step?				
	a) 3 only	b) 1 and 3	c) 1 and 4	d) 3 and 4			
241	. Consider a reaction; aG +	$-bH \rightarrow Products$					
	When concentration of bo	oth the reactants G and H is	doubled, the rate increases	s by eight times. However,			
	when concentration of G	is doubled keeping the cond	centration of H fixed, the ra	te is doubled. The overall of			
	the reaction,						
	a) 0	b) 1	c) 2	d) 3			
242	. The rate constant for a ze	ro order reaction is					
	$c_0 - c_t$	$c_0 - c_t$	$k = \frac{c_0}{c_0}$	$d b k = c_0$			
	a) $\kappa = m \frac{2t}{2t}$	b) $\kappa = \frac{t}{t}$	$c_{j} \kappa - \frac{1}{c_{t}}$	a) $\kappa = \frac{1}{2t}$			
243	. The ratio of the times for	99.9% of the reaction to co	mplete and half of the reac	tion to complete is			
	a) 2	b) 4	c) 8	d) 10			
244	. The activation energy for	a simple chemical reaction	$A \rightarrow B$ is E_a in forward dimensional dimensionada dimensionada dimensi dimensionada dimensionada dimensionada	rection. The activation			
	energy for the reverse rea	action					
	a) Is negative of E_a		b) Is always less than E_a				
	c) Can be less than or mo	re than E_a	d) Is always double of E_a				
245	. After how many second w	vill the concentration of the	reactant in a first order rea	action be halved if the rate			
	constant is 1.155×10^{-3} s	s ⁻¹ ?					
	a) 600	b) 100	c) 60	d) 10			
246	. For the reaction $A + 2B$ –	$\rightarrow C$, the rate of reaction at a	a given instant can be given	bv			
_ 10	d[A] $1d[B]$	d[C]	d[A] $1d[B]$ d	[C]			
	a) $+\frac{d}{dt} = +\frac{1}{2}\frac{d}{dt} = +\frac{1}{2}\frac{d}{dt} = +\frac{1}{2}\frac{d}{dt}$	$-\frac{dt}{dt}$	b) $\frac{dt}{dt} = -\frac{1}{2} \frac{dt}{dt} = -\frac{1}{2} \frac{dt}{dt}$	$\frac{1}{dt}$			
	d[A] $1 d[B]$	d[C]	d[A] = 1 d[B]	d[C]			
	c) $-\frac{dt}{dt} = -\frac{1}{2}\frac{dt}{dt} = +$	$\frac{dt}{dt}$	$d + \frac{d}{dt} = + \frac{1}{2} \frac{d}{dt} = + \frac{1}{2} \frac{d}{dt} = + \frac{1}{2} \frac{d}{dt} = + \frac{1}{2} \frac{d}{dt} \frac{d}{dt} \frac{d}{dt} = + \frac{1}{2} \frac{d}{dt} $	$\frac{dt}{dt}$			
247	. Which of the following th	eory is not related to chemi	ical kinetics?				
	a) Collision theory						
	b) Activated complex the	ory					
	c) Absolute reaction rate	theory					
	d) VSPER theory						
248	. For the chemical change A	$A \rightarrow B$ it is found that the ratio	te of reaction doubles whe	n the concentration is			
	increased by 4 times. The	e order of the reaction is					
	a) One	b) Two	c) Half	d) None of these			
249	. If a certain reaction is firs	st order with respect to A, s	econd order with respect to	o <i>B</i> and zero order with			
	respect to <i>C</i> then what is	the order of reaction?	Ĩ				
	a) First	b) Second	c) Third	d) Zero			
250	. If a plot of $\log_{10} C$ versus	t give a straight line for a gi	iven reaction, then the reac	tion is			
	a) Zero order	b) First order	c) Second order	d) Third order			
251	. The given reaction		·)				
	$2\text{FeCl}_2 + \text{SnCl}_2 \rightarrow 2\text{FeCl}_2$	+ SnCl ₄ is an example of					
	a) Third order reaction	· •··•·4 ·• •·······	b) Second order reaction				
	c) First order reaction		d) None of these				
252		hv	,				
	i ne order for the reaction	$H_2 + CI_2 \rightarrow 2HCl \text{ over wat}$	ter is:	N 0			
0.50	aju		cj Z	aj 3			

254. For the reaction, $N_2 + 3H_2 \rightarrow 2NH_3$, if $\frac{d[NH_3]}{d[NH_3]} = 2 \times$	$\times 10^{-4}$ mol L ⁻¹ s ⁻¹ , the valu	e of $\frac{-d[H_2]}{d}$ would be:					
a) 1×10^{-4} mol $L^{-1}s^{-1}$ b) 3×10^{-4} mol $L^{-1}s^{-1}$ c) 4×10^{-4} mol $L^{-1}s^{-1}$ d) 6×10^{-4} mol $L^{-1}s^{-1}$							
$255.$ No 0.2 $N_{2}0_{2}$ $2NO_{2} + \frac{1}{2}O_{2}$ $N_{2}O_{2} + \frac{1}{2}O_{2} + \frac{1}{2}O_{2}$ $N_{2}O_{2} + \frac{1}{2}O_{2} + \frac{1}{2}O_{2}$ $N_{2}O_{2} + \frac{1}{2}O_{2} + \frac{1}{2}$							
For the reaction $(g) \xrightarrow{2} (g) \xrightarrow{2} (g)$, the rate of disap	pearance of N_2O_5 is 6.25 ×	10 ^s mol L ¹ s ¹ . The rate of					
formation of NO_2 and O_2 will be respectively.	1						
a) 6.25×10^{-5} mol L ⁻¹ s ⁻¹ and 6.25×10^{-5} mol L ⁻¹ s	5 ⁻¹						
b) 1.25×10^{-2} mol L ⁻¹ s ⁻¹ and 3.125×10^{-3} mol L ⁻¹	¹ S ¹						
c) 6.25×10^{-2} mol L $^{-1}$ s $^{-1}$ and 6.25×10^{-3} mol L $^{-1}$	-S - -1						
1.25×10^{-1101} L S and 0.25×10^{-1101} L S	o han the value of rate consta	unt of first order will:					
a) Increase by <i>n</i> times	iten the value of fate consta						
b) Decrease by factor of <i>n</i>							
c) Not change							
d) None of these							
257. Unit of frequency factor (<i>A</i>) is							
a) mol/L	b) mol/L× s						
c) Depends upon order of reaction	d) It does not have any u	init					
258. The ionic reactions are usually very fast because:							
a) It does not involve bond breaking							
b) The energy of activation between charged ions is	s greater than that between	neutral molecules					
c) Collision frequency is very low							
250 In the first order reaction 75% of the reactant gets	disappoared in 1 286h Th	a rate constant of the					
reaction is	uisappeareu ili 1.500ll. The						
a) $3.0 \times 10^{-3} \text{s}^{-1}$ b) $2.8 \times 10^{-4} \text{s}^{-1}$	c) $17.2 \times 10^{-3} \text{s}^{-1}$	d) $1.8 \times 10^{-3} \text{s}^{-1}$					
260. Number of mole of a substance present in 1 litre vo	lume is known as:						
a) Activity b) Molar concentration	c) Active mass	d) None of these					
261. The rate of a reaction is doubled when temperature	e increases by 10°C. If temp	erature is increased by					
100°C, then rate of reaction will become							
a) 64 times b) 256 times	c) 512 times	d) 1024 times					
262. For a hypothetical reaction							
$A + 2B \rightarrow 3C + D$							
d[C]/dt is equal to	[م]	1[4]					
a) $\frac{3a[A]}{4}$ b) $-\frac{3a[B]}{2}$	c) $-\frac{a[B]}{k}$	d) $-\frac{d[A]}{k}$					
at 2 $at263 The half-life of two samples is 0.1 and 0.4 s. Their re$	at eactive concentration is 20	at 0 and 50 respectively. What					
is the order of reaction?		o and 50 respectively. What					
a) 0 b) 2	c) 1	d) 4					
264. Consider following two reaction,	,	,					
$d[A] = h [A]^0$							
$A \rightarrow product - \frac{dt}{dt} = k_1[A]^\circ$							
$B \rightarrow product - \frac{d[B]}{d} = k_2 [B]^0$							
dt	-1) and time (a^{-1}) as						
$k_1 una k_2$ are expressed in term of motality (<i>mot L</i> 2) $s^{-1} M s^{-1} I^{-1}$ b) $M s^{-1} M s^{-1}$) and time (s) as c) $s^{-1} M^{-1} s^{-1}$	d) $M_{c}^{-1} I_{c}^{-1}$					
265 The reaction NO + $(1/2)O_2 \rightarrow NO_2$ exhibits:	CJ S , M S	uj 143 , 123					
a) Small negative temperature coefficient							
b) Decrease in value of K with temperature							
c) Decrease in value of rate with temperature							
d) All of the above							
266. Consider the reaction,							
c) Decrease in value of rate with temperature							
266. Consider the reaction,							

 $Cl_2(aq) + H_2S(aq) \rightarrow S(s) + 2H^+(aq) + 2Cl^-(aq)$ the rate equation for this reaction is , rate = $k[Cl_2][H_2S]$ Which of these mechanisms is/are consistent with this rate equation? $Cl_2 + H_2S(aq) \rightarrow H^+Cl^- + Cl^+ + HS^-(slow)$ $Cl^+ + HS^- \rightarrow H^+Cl^- + S(fast)$ II. $H_2S \leftrightarrow H^+ + HS^-(fast equilibrium)$ $Cl_2 + HS^- \rightarrow 2Cl^- + H^+S(slow)$ a) (B) only b) Both (A) and (B) c) Neither (A) nor (B) d) (A)Only 267. In a reaction $2A \rightarrow$ Products; the concentration of A decreases from 0.5 mol litre⁻¹ to 0.4 mol litre⁻¹ in 10 minute. The rate of reaction during this interval is: c) $0.5 M \text{ min}^{-1}$ a) $0.05 M \text{ min}^{-1}$ b) $0.005 M \min^{-1}$ d) 5 $M \min^{-1}$ 268. What is the two third life of a first order reaction having $k = 5.48 \times 10^{-14} \text{ s}^{-1}$? c) 4.02×10^{13} s b) 2.01 × 10¹² s a) 2.01×10^{13} s d) 4.02×10^{26} s 269. In a 1st order reaction the concentration of reactant decreases from 800 mol/dm³ to 50 mol/dm³ in 2 × 10^4 s. The rate constant of reaction in S⁻¹ is a) 2×10^4 b) 3.45×10^{-5} c) 1.386×10^{-4} d) 2×10^{-4} 270. The rate constant of a first order reaction is $6.9 \times 10^{-3} s^{-1}$. How much time will it take to reduce the initial concentration to its 1/8th value? a) 100s c) 300s d) 400s b) 200s 271. In a reaction, the rate expression is, rate = $K[A][B]^{2/3}[C]^0$, the order of reaction is: b) 2 d) Zero a) 1 c) 5/3 272. In the Synthesis of ammonia by Haber process, if 60 moles of ammonia is obtained in one hour, then the rate of disappearance of nitrogen is c) 0.5 mol/min a) 30 mol/min b) 6 mol/min d) 60 mol/min 273. Half-life period of second order reaction is a) Proportional to initial concentration of reactants b) Independent of initial concentration of reactants c) Inversely proportional to initial concentration of reactants d) None of the above 274. A reactant with initial concentration 1.386 mol litre⁻¹ showing first order change takes 40 minute to become half. If it shows zero order change taking 20 minute to becomes half under the similar conditions, the ratio, $\frac{K_1}{K_0}$ for first order and zero order kinetics will be: a) 0.5 mol^{-1} litre b) 1.0 mol/litre c) 1.5 mol/litre d) 2.0 mol^{-1} litrte 275. The reason for almost doubling the rate of reaction on increasing the temperature of the reaction system by 10°C is a) The value of threshold energy increases b) Collision frequency increases c) The fraction of the molecules having energy equal to threshold energy increases d) Activation energy decreases 276. Plot of log(a - x) versus time t is straight line. This indicates that the reaction is of: a) Second order b) First order c) Zero order d) Third order 277. The $t_{1/2}$ of the first order reaction is a) Dependent of initial concentration b) Directly proportional to initial concentration c) indirectly proportional to initial concentration d) Independent of initial concentration 278. In a zero-order reaction for every 10° rise of temperature, the rate is doubled. If the temperature is increased from 10°C to 100°C, the rate of the reaction will become: a) 64 times b) 128 times d) 512 times c) 256 times 279. The time required for 100% completion of a zero order reaction is b) $\frac{a}{2k}$ c) $\frac{a}{k}$ d) $\frac{2k}{a}$ a) ak

280. The reaction, $2N_2O_5 \rightleftharpoons 2N_2O_4 + O_2$ is

- a) Bimolecular and second order
- c) Bimolecular and first order

- b) Unimolecular and first order
- d) Bimolecular and zero order

281. The thermal decomposition of a compound is of first order. If a sample of the compound decompose 50%

in 120 min. What time will it take to undergo 90% decomposition? a) Nearly 400 min b) Nearly 45 min c) Nearly 480 min

d) Nearly 240 min

282. Which one of the following statements for the order of a reaction is incorrect?

- a) Order of reaction is always a whole number
- b) Order can be determined only experimentally
- c) Order is not influenced by stoichiometric coefficient of the reactants

d) Order of reaction is sum of power to the concentration terms of reactants to express the rate of reaction 283. The rate of chemical reaction depends on the nature of chemical reactions, because:

a) The threshold energy level differs from one reaction to another

- b) Some of the reactants are solid at room temperature
- c) Some of the reactants are coloured
- d) All of the above

284. If the rate of reaction between A and B is given by, rate $= K[A][B]^n$, then the reaction is:

- a) First order in A
- b) *n*th order in *B*
- c) Overall order is (1 + n)
- d) All are correct
- 285. In a reaction, $A + B \rightarrow$ Product, rate is doubled when the concentration of *B* is doubled, and rate increases by a factor of 8 when the concentrations of both the reactants (*A* and *B*) are doubled, rate law for the reaction can be written as:

a) Rate =
$$k[A][B]$$
 b) Rate = $k[A]^2[B]$ c) Rate = $k[A][B]^2$ d) Rate = $k[A]^2[B]^2$

- 286. Combustion of carbon is exothermic, but coal stored in coal depots does not burn automatically because of:
 - a) High threshold energy barrier
 - b) Kinetic stability of coal
 - c) Higher energy of activation needed for burning

d) All of the above

```
287. A drop of a solution (volume = 0.05 \text{ mL}) contains 6 \times 10^{-7} mol of H<sup>+</sup>. If the rate of disappearance of H<sup>+</sup> is 6.0 \times 10^5 mol/L × s, how long will it take for H<sup>+</sup> to disappear from the drop
```

b) Third order reaction

a)
$$8.0 \times 10^{-8}$$
 s b) 2.0×10^{-8} s c) 6.0×10^{-6} s d) 2.0×10^{-2} s

288. The inversion of cane sugar into glucose and fructose according to the equation

- $C_{12}H_{22}O_{11} + H_2O \rightarrow C_6H_{12}O_6 + C_6H_{12}O_6$ is an example of
- a) First order reaction
 - c) Second order reaction d) Zero order reaction
- 289. In the reversible reaction

$$2NO_2 \xrightarrow{k_1}{k_2} N_2O_4$$

The rate of disappearance of NO_2 is equal to

a)
$$\frac{2k_1}{k_2}[NO_2]^2$$

b) $2k_1[NO_2]^2 - 2k_2[N_2O_4]$
c) $2k_2[NO_2]^2 - k_2[N_2O_4]$
d) $(2k_1 - k_2)[NO_2]$

290. For the reaction, $N_2 + 3H_2 \rightleftharpoons 2NH_3$ the rate of change of concentration for hydrogen is $-0.3 \times 10^{-4} \text{ Ms}^{-1}$. The rate of change of concentration of ammonia is

a) -0.2×10^{-4} b) 0.2×10^{-4} c) 0.1×10^{-4} d) 0.3×10^{-4}

291. In the reaction; $A + 2B \rightarrow 3C + D$ which of the following expressions does not describe changes in the concentration of various species as a function of time?

a) $\frac{d[C]}{dt} = \frac{-3d[A]}{dt}$ b) $\frac{3d[D]}{dt} = \frac{d[C]}{dt}$ c) $\frac{3d[B]}{dt} = \frac{-2d[C]}{dt}$ d) $\frac{2d[B]}{dt} = \frac{d[A]}{dt}$ 292. The order of reaction, with respect to one of the reacting component Y, is zero. In implies that a) The reaction is going on at a constant rate. b) The rate of reaction does not very with temperature. c) The reaction rate is independent of the concentration of Y. d) The rate of formation of the activated complex is zero. 293. The rate of disappearance of SO₂ in the reaction; $2SO_2 + O_2 \rightarrow 2SO_3$ is 1.28×10^{-3} g/sec. Then the rate of formation of SO₃ is: b) 0.80×10^{-3} g/sec c) 1.28×10^{-1} g/sec d) 1.60×10^{-3} g/sec a) 0.64×10^{-3} g/sec 294. For the first order reaction half-life is 14 s, the time required for the initial concentration to reduce to 1/8 of its value is a) $(14)^3 s$ b) 28 s c) 42 s d) $(14)^2 s$ 295. Given that K is the rate constant for some order of any reaction at temp. T then the value of $\lim_{T\to\infty} \log K =$ (where *A* is the Arrhenius constsnt): a) A/2.303 b) A c) 2.303 A d) $\log A$ 296. The rate constant of a first order reaction is 3×10^{-6} per second and initial concentration is 0.10 M. Then the initial rate of reaction is b) $3 \times 10^{-8} m s^{-1}$ c) $3 \times 10^{-7} m s^{-1}$ d) $3 \times 10^{-9} m s^{-1}$ a) $3 \times 10^{-6} m s^{-1}$ 297. With respect to the figure given below which of the following statements is correct? ſ PE a) E_a for the forward reaction is C - Bb) E_a for the forward reaction is B - Ac) $E_{a_{\text{(forward)}}} < E_{a_{\text{(backward)}}}$ d) E_a (for reverse reaction) = C - A298. For a first order reaction, $A \rightarrow$ products, the rate of reaction at [A] = 0.2 M is $1.0 \times 10^{-2} \text{ mol L}^{-1} \text{min}^{-1}$. The half-life period for the reaction is b) 496 s d) 242 s a) 476 s c) 832 s 299. From the following data, the activation energy for the reaction (cal/mol): $H_2 + I_2 \rightarrow 2HI$ T,K $1T, K^{-1}$ $\log_{10} K$ 1.3×10^{-3} 2.9 769 667 1.5×10^{-3} 1.1 b) 2×10^4 c) 8×10^4 a) 4×10^4 d) 3×10^4 300. An elementary reaction is given as $2P + Q \rightarrow$ products. If concentration of Q is kept constant and concentration of *P* is doubled then rate of reaction is: a) Doubled b) Halved c) Quadrupled d) Remains same 301. The hydrolysis of ethyl acetate was carried out separately with 0.05 M HCl and 0.05 M H₂SO₄. The rate constants were found to be k_1 and k_2 respectively then b) $k_1 > k_2$ c) $k_1 = k_2$ d) $k_2 = 2k_1$ a) $k_1 < k_2$ 302. Which one of the following statement for order of reaction is not correct? a) Order can be determined experimentally b) Order of reaction is equal to sum of the power of concentration terms in differential rate law c) It is not affected with stoichiometric coefficients of the reactants d) Order cannot be fractional

303. For a single step, reaction, $A + 2B \rightarrow$ Products, the molecularity is

a) 0 b) 1 c) 2 d) 3

304. Which of the following statement is correct for a reaction $X + 2Y \rightarrow$ Products?

a) The rate of disappearance of X = twice the rate of disappearance of Y

b) The rate of disappearance of X = 1/2 rate of appearance of products

c) The rate of appearance of products = 1/2 the rate of disappearance of *Y*

d) The rate of appearance of products = 1/2 the rate of disappearance of X

305. For the reaction
$$A \rightarrow B$$
, the rate law is; rate = $K[A]$. Which of the following statements is incorrect?

a) The reaction follows first order kinetics

b) The $t_{1/2}$ of reaction depends upon initial concentration of reactant

c) *K* is constant for the reaction at a constant temperature

d) The rate law provides a simple way of predicting the concentration of reactants and products at any times after the start of the reaction

306. For a first order reaction $k = 100 \text{ s}^{-1}$. The time for completion of 50% reaction is

a) 1 milli-second b) 4 milli-second c) 7 mili-second d) 10 milli-second

307. Pieces of wood burn faster than a log of wood of the same mass because

a) Surface area of log of wood is larger and needs more time to burn

b) Pieces of wood have large surface area

c) All pieces of wood catch fire at the same time

d) Block of wood has higher density than pieces of the same wood

308. Which statement is not correct?

a) For endothermic reactions, heat of reaction is lesser than energy of activation

b) For exothermic reactions, heat of reaction is more than energy of activation

c) For exothermic reactions energy of activation is less in forward reaction than in backward reaction

d) For endothermic reactions energy of activation is more in forward reaction than in backward reaction 309. Which statement is true?

a) Endothermic reactions have higher activation energies than exothermic reactions

b) The specific rate constant for a reaction is independent of the concentration of the reacting species

c) There is a single rate determining step in any reaction mechanism

d) None of the above

310. If k_1 = rate contant at temperature T_1 and k_2 =rate constant at temperature T_2 for a first order reaction, then which of the following relations is correct?

 $(E_a : activation energy)$

a)
$$\log \frac{k_1}{k_2} = \frac{2.303 E_a}{R} \left(\frac{T_2 - T_1}{T_1 T_2} \right)$$

b) $\log \frac{k_2}{k_1} = \frac{E_a}{2.303R} \left(\frac{T_1 T_2}{T_1 T_2} \right)$
c) $\log \frac{k_2}{k_1} = \frac{E_a}{2.303R} \left(\frac{T_1 T_2}{T_2 + T_1} \right)$
d) $\log \frac{k_1}{k_2} = \frac{E_a}{2.303 R} \left(\frac{T_1 T_2}{T_2 - T_1} \right)$

311. What is the half-life of Na-24 if 2×10^{-4} g sample of it disintegrate at the rate of 7.0×10^{12} atoms per s? a) 4.97×10^5 s b) 4.97×10^4 s c) 4.97×10^6 s d) 4.97×10^2 s

312. The concentration of a reactant X decreases from 01 M to 0.005 m in 40 min. If the reaction follows first order kinetics, the rate of the reaction when the concentration of X is 0.01 M will be

a)
$$1.73 \times 10^{-4} Mmin^{-1}$$
 b) $3.47 \times 10^{-4} Mmin^{-1}$

c)
$$3.47 \times 10^{-5} M \min^{-1}$$
 d) $7.5 \times 10^{-4} M \min^{-1}$

313. For zero order reaction the integrated rate equation is

a)
$$kt = \frac{[A]}{[A]_0}$$
 b) $kt = [A] - [A]_0$ c) $[A] = -kt + [A]_0$ d) $[A] = kt - [A]_0$

314. The rate equation for the reaction $2A + B \rightarrow C$ is found to be Rate=k[A][B]

The correct statement in relation to this reaction that the a) Unit of k must be s^{-1}

	b) $t_{1/2}$ is constant				
	c) Rate of formation of C is twice the rate of disappearance of A				
	d) Value of k is independe	ent of the initial concentrat	ion of A and B		
315	The unit of rate constant	of second order reaction			
	a) time ⁻¹	b) conc ⁻¹ time ⁻¹	c) conc time ⁻¹	d) $conc^{-2}time^{-1}$	
316	. The rate constant for the	he first order reaction is	6 s^{-1} . How much time	will it take to reduce the	
	concentration of the reac	tant to $\frac{1}{16}$ th value?			
	a) 4.6×10^{-2} s	b) 4.6×10^4 s	c) 4.6×10^2 s	d) 4.6×10^{-4} s	
317	. Rate constant of a chemic	al reaction can be kept con	stant by:		
	a) Stirring the compound	S	ÿ		
	b) Keeping the temperatu	ire constant			
	c) Both (a) and (b)				
	d) None of the above				
318	. The rate of a chemical rea	action doubled for every 10	°C rise in temperature. If t	he temperature is increased	
	by 60°C the rate of reaction	on increase by	-	-	
	a) 20 times	b) 32 times	c) 64 times	d) 128 times	
319	If ' a ' is the initial concent	ration of the reactant, the h	alf-life period of the reaction	on of <i>n</i> th order is	
	proportional to		-		
	a) a^{n-1}	b) <i>aⁿ</i>	c) a^{1-n}	d) a^{n+1}	
320	. Rate of reaction depends	upon			
	a) temperature	b) catalyst	c) concentration	d) All of these	
321	For a reaction, the rate	of reaction was found to	increase about 1.8 times	when the temperature was	
	increased by 10°C. The in	crease in rate is due to:			
	a) Increase in number of	active molecules			
	b) Increase in activation e	energy of reactants			
	c) Decrease in activation	energy of reactants			
	d) Increase in the number	r of collisions between reac	ting molecules		
322	A hypothetical reaction A	$_2 + B_2 \rightarrow 2AB$ follows the r	nechanism as given below,		
	$A_2 \rightleftharpoons A + A (fast)$				
	$A + B_2 \rightarrow AB + B$ (slow)				
	$A + B \rightarrow AB$ (fast)				
	The order of the overall r	eaction is			
	a) 2	b) 1	c) $1 - \frac{1}{2}$	d) 0	
222			^y ²		
323	A chemical reaction proce	eeds following formula			
	$K = PZe^{-2u/m}$	a a a a will in an a a a tha nata	of you ation?		
	a) Lowering of E	ocess will increase the rate	b) Lowering of D		
	a) Lowering of Z_a		d) Independent of all the	abovo factors	
224	Lowering of Z	tion $k = A e^{-E_a/RT}$ in showing	al linetice which one of the	above factors	
324	and the respect of the equa	$\operatorname{Hom} K = Ae^{-\omega} \operatorname{III} \operatorname{Chehn}$	cal killetics, which one of th	le following statements is	
	COTTELL:	ant	b) 1 is adsorption factor		
	c) E is operative of active ti	on	d) P is Pudborg constant		
325	For the reaction $2NO_{a} + 1$	$F_{a} \rightarrow 2NO_{a}F$ following me	chanism has been provided	1	
525	Slow	12 / 21021, 1010Wing me	chamsin has been provided	4,	
	$NO_2 + F_2 \longrightarrow NO_2F + F$				
	$NO_2 + F \xrightarrow{rast} NO_2F$				
	Thus, rate expression of t	he above reaction can be w	ritten as:		
	a) $r = K[NO_2]^2[F_2]$	b) $r = K[NO_2][F_2]$	c) $r = K[NO_2]$	d) $r = K[F_2]$	
326	For the reaction:				

	$[Cu(NH_3)_4]^{2+} + H_20 \rightleftharpoons [Cu(NH_3)_3H_20]^{2+} + NH_3$, the net rate of reaction at any time is given by, net rate						
	$= 2.0 \times 10^{-4} [Cu(NH_3)_4]^{2+} [H_2O] - 3.0 \times 10^5 [Cu(NH_3)_3H_2O]^{2+} \cdot [NH_3]$						
	Then correct statement is/are:						
	a) Rate constant for forward reaction = 2×10^{-4}						
	b) Rate constant for backward reaction = 3×10^5						
	c) Equilibrium constant fo	or the reaction = 6.6×10^{-1}	10				
	d) All of the above						
327.	For a reaction between ga	seous compounds,					
	$2A + B \to C + D$		4				
	The reaction rate=k[A][B]]. If the volume of the conta	ainer is made $\frac{1}{4}$ of the initia	l, then what will be the rate			
	of reaction as compared to	o the initial rate?	-				
	a) 16 times	b) 4 times	c) 1/8 times	d) 1/16 times			
328.	The rate constant for a first	st order reaction whose ha	lf-life, is 480 s is				
	a) $2.88 \times 10^{-3} s^{-1}$	b) $2.72 \times 10^{-3} s^{-1}$	c) $1.44 \times 10^{-3} s^{-1}$	d) 1.44 <i>s</i> ⁻¹			
329.	If <i>X</i> is the total number of	collisions which a gas mole	ecule register with others p	per unit time under			
	particular conditions, the	n the collision frequency of	the gas containing N mole	cules per unit volume is			
	a) <i>X/N</i>	b) <i>NX</i>	c) 2 <i>NX</i>	d) <i>NX</i> /2			
330.	For a reaction, the rate co	nstant is $2.34s^{-1}$. The half-	life period for reaction is				
	a) 0.30 s	b) 0.60 s	c) 3.3 s	d) Data is insufficient			
331.	If "a" and " $t_{1/2}$ " are initial	concentration of reactant a	and half-life of a zero order	reaction respectively,			
	which of the following is c	correct ?					
	a) $t_{\rm ell} \propto \frac{1}{2}$	h) $t_{1/2} \propto a$	() $t_{1/2} \propto \frac{1}{2}$	d) $t_{1/2} \propto a^2$			
	a		a^{2}				
332.	The temperature depende	ence of rate constant (k) of	a chemical reaction is writ	ten in terms of Arrhenius			
	equation, $k = Ae^{-L + KI}$. Ac	ctivation energy (E^*) of the	e reaction can be calculated	by plotting			
	a) $\log k vs \frac{1}{\pi}$	b) $\log k vs \frac{1}{\log T}$	c) <i>k vs T</i>	d) k vs $\frac{1}{\log T}$			
222	I The rate constant of a read	$\log I$	$1010 \exp(-2700 PT)$	log I			
555.	55. The face constant of a reaction is given by $\kappa = 2.1 \times 10^{-5} \exp(-2700 \text{ kT})$.						
	It means that		2700				
	a) log k vs 1/T will be a curved line with slope $= -\frac{2700}{2303}$						
	b) log k vs 1/T will be a straight line with intercept on log k axis = log 2.1 × 10 ¹⁰						
	c) The number of effective	e collisions are 2.1×10^{10} c	$cm^{-3}s^{-1}$				
	d) Half-life of the reaction	increases with increase of	temperature				
334.	The unit of the rate of a se	econd order reaction					
	a) time ⁻¹	b) mol L ⁻¹ time ⁻¹	c) L mol ⁻¹ time ⁻¹	d) L ² mol ⁻² time ⁻¹			
335.	Rate of a reaction can be e	expressed of by following ra	ate expression				
	Rate= $k[A]^2[B]$, if concent	ration of A is reduced by h	alf by what times concentra	ation of B is to be increased			
	to have same rate of react	ion?					
	a) 4 times	b) 2 times	c) ¼ times	d) 8 times			
336.	Select the intermediate in	the following reaction med	chanism:				
	$O_3(g) \rightleftharpoons O_2(g) + O(g)$						
	$0(g) + 0_3(g) \rightarrow 20_2(g)$						
	a) $0_3(g)$	b) 0(g)	c) $0_2(g)$	d) None of these			
337.	For a certain reaction of	order n' the time for half	change $t_{1/2}$ is given by; $t_{1/2}$	$c_{1/2} = \frac{2 - \sqrt{2}}{\kappa} \times c_0^{1/2}$, where <i>K</i> is			
	rate constant c_0 is initial c	concentration. The value of	n is:	K			
	a) 1	b) 2	c) 0	d) 0.5			
338.	For a reaction between A	and B, the initial rate of rea	action is measured for varie	ous initial concentrations A			
	and B. the data provided a	are					
	[A] [B] Ir	nitial					

			reaction rate		
1	0.20 M	0.30 M	5×10^{-5}		
2	0.20 M	0.10 M	5×10^{-5}		
3	0.40 M	0.05 M	1×10^{-5}		
The	overall or	rder of the	e reaction is		
a) 0	ne		b) Two	c) Two and half	d) Three
Whi	ch order o	of reaction	n obeys the rela	tion $t_{1/2} = 1/Ka$?	
a) F	irst		b) Second	c) Third	d) Zero
. How	v much fas	ster would	d a reaction pro	ceed at 25°C than at 0°C if the activ	vation energy is 65 kJ?
a) 2	times		b) 16 times	c) 11 times	d) 6 times
The	activation	n energy o	of a reaction at a	given temperature is found to be 2	2.303 <i>R</i> T J mol ^{-1} . The ratio of
rate	constant	to the Arr	henius factor is		
a) 0	.01		b) 0.1	c) 0.02	d) 0.001
Con	sider an e	ndotherm	nic reaction $X \rightarrow$	<i>Y</i> with the activation energies E_b	and E_f for the backward and
forv	vard react	tions resp	ectively. In gene	ral	,
a) T	here is no	definite i	relation betwee	E_b and E_f b) $E_b = E_f$	
c) E	$E_h > E_f$			$d) E_{h} < E_{f}$	
For	the reacti	on $A \rightarrow r$	$B_{\rm e}$ at the point of	of intersection of two curves show	the $[B]$ is can be given by:
A	the reacti	01111	iz) at the point		
Ī					
	\backslash				
Cot	>	<			
	/		>		
	4	Time	4		- 1-
a) <u>n</u>	$\frac{A_0}{2}$		b) $\frac{A_0}{1}$	c) $\frac{nA_0}{n+1}$	d) $\left \frac{n-1}{n+1} \right A_0$
Tho	2 olomonta	ry stop of	n-1	n + 1 $l_2 + Cl_2 - 2N_2Cl$ is found to follow	[n + 1]
mol	ecularity i	is.	the reaction, 21	$a + G_2 = 21$ and 13 found to follow	in order kineties, its
a) 1	ceutarity		h) 2	c) 3	d) 4
Foll	owing me	chanism l	as been propos	ed for a reaction	uj i
24 -	$+ R \longrightarrow D$	+ F	ius been propos		
A +	$B \rightarrow C +$		(Slow)		
A +	$C \longrightarrow F$	<i>D</i>	(fast)		
The	rate law e	 expression	n for the reaction	n is:	
a) r	$= K[A]^2[$	B]	b) $r = K[A]$	[B] c) $r = K[A]^2$	d) $r = K[A][C]$
Two	first ord	er reactio	on have half-live	s_{1} in the ratio 8 : 1 Calculate the	ratio of time intervals $t_1 : t_2$ The
time	t_1 and t_2	are the ti	me period for (1/4)th and $(3/4)$ th completion	
a) 1	: 0.602		b) $2:301$	c) 0.256 ; 0.603	d) 0.2 : 0.301
Ord	er of a rea	iction can	be	e, e. <u>_</u> ee e.eee	
a) F	ractional		b) Zero	c) Integer	d) All of these
The	half-life r	eriod for	a zero order rea	iction is equal to	
2	2k		[<i>A</i>] ₀	0.693	0.693
a) [/	410		b) $\frac{1230}{2k}$	c) $\frac{k}{k}$	d) $\frac{1}{k[A]_{o}}$
Ina	reaction A	$4 + B \rightarrow 0$	$\sum_{n=1}^{2n}$	ssion is $R = k[A][B]^2$. If the conce	ntration of both the reaction is
dou	bled at co	nstant vo	lume then the ra	te of the reaction will be	
a) E	ight time		b) Double	c) Ouadruple	d) Triple
For	a gaseous	reaction.	the units of rate	e of rate of reaction are	· / · · · ·
<u>ь</u> т	atm a=1	,	h) -t		
a) L	aun s -		b) atm s +	c) atm mol ⁻¹ s ⁻¹	d) mol s^{-1}
	a) The mol	10.20 M20.20 M30.40 MThe overall ora) OneWhich order ofa) FirstHow much fasta) 2 timesThe activationrate constanta) 0.01Consider an efforward reacta) There is notc) $E_b > E_f$ For the reactiona) $\frac{nA_0}{2}$ The elementationmolecularity faileda) $\frac{nA_0}{2}$ The elementationmolecularity faileda) 1 Following me $2A + B \rightarrow D$ $A + B \rightarrow C + A + C \rightarrow E$ The rate law ofa) $r = K[A]^2[$ Two first ordtime t_1 and t_2 a) 1 : 0.602Order of a reada) FractionalThe half-life pa) $\frac{2k}{[A]_0}$ In a reaction Adoubled at coa) Eight timeFor a gaseousa) L atm a^{-1}	10.20 M0.30 M20.20 M0.10 M30.40 M0.05 MThe overall order of the a) One0.01Which order of reaction a) FirstHow much faster would a) 2 timesThe activation energy of rate constant to the Arr a) 0.01Consider an endotherm forward reactions resp a) There is no definite of c) $E_b > E_f$ For the reaction $A \rightarrow r$ A_0 \uparrow_{g_0} The elementary step of molecularity is: 	Image: constraint of the second se	$\frac{1}{1} 0.20 \text{ M} 0.30 \text{ M} 5 \times 10^{-5}}{2 0.20 \text{ M} 0.10 \text{ M} 5 \times 10^{-5}}{3 0.40 \text{ M} 0.05 \text{ M} 1 \times 10^{-5}}$ The overall order of the reaction is a) One b) Two c) Two and half Which order of reaction obeys the relation $t_{1/2} = 1/Ka?$ a) First b) Second c) Third How much faster would a reaction proceed at 25°C than at 0°C if the active a) 2 times b) 16 times c) 11 times The activation energy of a reaction at a given temperature is found to be if rate constant to the Arrhenius factor is a) 0.01 c) 0.02 Consider an endothermic reaction $X \to Y$ with the activation energies E_b forward reactions respectively. In general a) There is no definite relation between E_b and E_f b) $E_b = E_f$ c) $E_b > E_f$ d) $E_b < E_f$ For the reaction $A \to nB$, at the point of intersection of two curves show. A $\frac{1}{2}$ $\frac{1}{2$

reaction to proceed more rapidly? a) T b) Z c) A d) *E*_{*a*} 352. The activation energy for most of the reactions is approximately 50 kJ mol⁻¹. The value of temperature coefficient for such reactions is c) <1 d) >4 a) > 2 b) >3 353. The half-life period for a first order reaction is 693 s. The rate constant of this reaction would be b) $0.01 \, \mathrm{s}^{-1}$ c) $0.001 \, \text{s}^{-1}$ a) $0.1 \, \mathrm{s}^{-1}$ d) 0.0001 s^{-1} 354. For the reaction $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$ under certain condition of temperature and partial pressure of the reactants, the rate of formation of NH_3 is 10^{-3} kg hr⁻¹. The rate of conversion of H_2 under same condition is: a) 1.5×10^{-3} kg hr⁻¹ b) 1.76×10^{-4} kg hr⁻¹ c) 2×10^{-3} kg hr⁻¹ d) 3×10^{-3} kg hr⁻¹ 355. In a first order reaction $A \rightarrow B$, if K is the rate constant initial concentration of the reactant is 0.5 M, then half-life is: a) $\frac{\ln 2}{K}$ b) $\frac{\ln 2}{K\sqrt{0.5}}$ c) $\frac{\log_{10} 2}{K}$ d) $\frac{0.693}{0.5 K}$ 356. A reaction $A \rightarrow B$ follows a second order kinetics. Doubling the concentration of A will increase the rate of formation of B by a factor of a) 1/4 c) ½ d) 2 b) 4 357. With increase in temperature, rate of reaction a) increases b) decreases c) Remains same d) May increase or decrease 358. Which of the following statement is not correct? a) In zero order reaction the rate of the reaction remains constant throughout. b) A second order reaction would become a pseudo first order reaction when one of the reactant is taken in large excess. c) The value of first order rate constant expends on the units of the concentration term used. d) In a first order reaction the plot of log (a-x) vs time gives a straight line. 359. A drop of solution (volume 0.05 mL) contains 3.0×10^{-6} mole of H⁺. If the rate constant of disappearance of H⁺ is 1.0×10^{-7} mol litre⁻¹sec⁻¹. How long would it take for H⁺ in drop to disappear? a) 6×10^{-8} sec b) 6×10^{-7} sec c) 6×10^{-9} sec d) 6×10^{-10} sec 360. For the reaction, $2A + B \rightarrow$ products, the active mass of *B* is kept constant, and that of *A* is doubled. The rate of reaction will be then a) Decrease 4 times b) Decrease 2 times c) Increase 4 times d) Increase 2 times 361. Which of the following expression is correct for second order reaction. (C_0 refers to initial concentration of reactant)? b) $t_{1/2} \propto C_0^0$ c) $t_{1/2} \propto C_0^{-1}$ a) $t_{1/2} \propto C_0$ d) $t_{1/2} \propto C_0^{-2}$ 362. A first order reaction is 10% complete in 20 min. The time taken for 19% completion is b) 40 Min a) 30 min c) 50 min d) 38 min 363. A graph plotted between log k versus $\frac{1}{r}$ for calculating activation energy is shown by c) $\int_{\log k} dx$ $\log k$ (q d) 0^g k a) ซู้

364. In the following reaction $A \rightarrow B + C$, rate constant is 0.001 Ms⁻¹. Half-life and completion time of the given reaction are

a) 500 s, 1000 s b) 500 s, 750 s c) 250 s, 500 s d) 300 s, 600 s

365. A reaction was found to order with respect to the concentration of carbon monoxide. If the concentration of carbon monoxide is doubled, with everything else kept the same, the rate of reaction will

a) Remain unchanged

c) Increases by factor of four

d) Double 366. The following data were obtained the first order decomposition of $2A(g) \rightarrow B(g) + C(S)$ at a constant volume and at a particular temperature

b) Triple

b) $\ln \frac{k_2}{k_1} = -\frac{E_a}{R} \left[\frac{1}{T_1} - \frac{1}{T_2} \right]$

d) $\ln \frac{k_2}{k_1} = \frac{E_a}{R} \left[\frac{1}{T_1} + \frac{1}{T_2} \right]$

d) Trimolecular reaction

b) Pseudo-unimolecular reaction

volume and at a particular temperature					
		Total			
S		pressure in			
Ν	Time	Pascal			
1	At the end of 10 min	300			
2	After completion	200			
The rate constant in min ^{-1} is					

he rate constant in min

a) 0.0693 b) 69.3 c) 6.93 d)
$$6.93 \times 10^{-4}$$

367. According to Arrhenius equation, the rate constant (k) is related to temperature (T) as

a)
$$\ln \frac{k_2}{k_1} = \frac{E_a}{R} \left[\frac{1}{T_1} - \frac{1}{T_2} \right]$$

c) $\ln \frac{k_2}{k_1} = \frac{E_a}{R} \left[\frac{1}{T_1} + \frac{1}{T_2} \right]$

368. Inversion of cane-sugar in dilute acid is a

a) Bimolecular reaction

c) Unimolecular reaction

369. Consider the reaction

$$N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$$

The equality relationship between $\frac{d[NH_3]}{dt}$ and $-\frac{d[H_2]}{dt}$ is:

a)
$$+ \frac{d[NH_3]}{dt} = -\frac{3}{2} \frac{d[H_2]}{dt}$$

b) $\frac{d[NH_3]}{dt} = -\frac{d[H_2]}{dt}$
c) $\frac{d[NH_3]}{dt} = -\frac{1}{3} \frac{d[H_2]}{dt}$
d) $+ \frac{d[NH_3]}{dt} = -\frac{2}{3} \frac{d[H_2]}{dt}$

370. For a reaction $aA \rightarrow bB$ when [A] = 2.2 mM, the rate was found to be 2.4 mMs⁻¹. On reducing concentration of [A] to half, the rate changes to 0.6 mMs⁻¹. The order of reaction with respect to A is: a) 1.5 b) 2.0 c) 2.5 d) 3.0

371. The units of the rate constant of a second order reaction are

- a) $mol^{-1}L^{-1}s^{-1}$ b) $mol^{-1}Ls^{-1}$ c) $mol^{-1}Ls$ d) mol $L^{-1}s^{-1}$
- 372. A follows first order reaction , A \rightarrow product Concentration of A, change from 0.1 M to 0.025 M in 40 min. find the rate of reaction of A when concentration of A is 0.01 M.
 - a) $3.47 \times 10^{-4} M \text{ min}^{-1}$
 - b) $3.47 \times 10^{-5} M \text{ min}^{-1}$
 - c) $1.73 \times 10^{-4} M \text{ min}^{-1}$
 - d) $1.73 \times 10^{-5} M \text{ min}^{-1}$

373. In the reaction $2A + B \rightarrow A_2B$, if the concentration of A is doubled and of B is halved, then the rate of the reaction will

- a) Increase by two times b) Decrease by two times
- c) Increase by four times d) Remain the same
- 374. Energy of activation of an exothermic reaction is b) Positive a) Negative c) Zero d) Can't be predict 375. For a reaction, the rate constant is $2.34s^{-1}$. The half-life period for the reaction is d) Data is insufficient
- a) 0.30 s b) 0.60 s c) 3.3 s 376. The rate of a reaction get doubles when the temperature changes from 7°C to 17°C. By what factor will it change for the temperature change from 17°C to 27°C?

a) 1.81	b) 1.71	c) 1.91	d) 1.76
377. Arrhenius e	equation is		
a) $\Delta H = \Delta B$	$\Delta F + \Delta n_g RT$ b) $\Delta G = \Delta H - T$.	$\Delta S \qquad \text{c)} \ k = A e^{-E_a/RT}$	d) None of these
378. Which rate	expression suggests an over all c	order of 0.5 for the reaction	involving substances <i>X</i> , <i>Y</i> , <i>Z</i> ?
a) Rate = k	X[X][Y][Z]		
b) Rate = k	$X[X]^{0.5}[Y]^{0.5}[Z]^{0.5}$		
c) Rate = k	$X[X]^{1.5}[Y]^{-1}[Z]^{0}$		
d) Rate = k	$X[X][Y]^0/[Z]^2$		
379. Rate of a re	action can be expressed by Arrhe	enius equation as	
In this equa	ation F represents		
a) The ener	gy above which all the colliding i	nolecules will react	
b) The ener	gy below which colliding molecu	les will not react	
c) The tota	l energy of the reacting molecules	s at a temperature. T	
d) The frac	tion of molecules with energy gre	eater than the activation ene	ergy of the reaction
380. The minim	um energy required for a molecul	le to take part in a reaction	is called
a) Thresho	ld energy b) Nuclear energy	c) Potential energ	y d) Kinetic energy
381. The rate of	f reaction becomes 2 times for e	every 10°C rise in tempera	ture. How the rate of reaction will
increase wl	hen temperature is increased from	m 30°C to 80°C?	
a) 16	b) 32	c) 64	d) 128
382. In a gaseou	s phase reaction:		
$A_2(g) \rightarrow B$	(g) + (1/2)C(g), the increase in	pressure from 100 mm to 1	120 mm is noticed in 5 minute. The
rate of disa	ppearance of A_2 in mm min ⁻¹ is:		
a) 4	b) 8	c) 16	d) 2
383. The unit of	rate constant of second order rea	action is	
a) Mol/Ls	b) L / Mol s	c) L^2 / mol^2	d) Per second
384. The given r	eaction,		
2FeCl ₃ + Sr	$\operatorname{nCl}_2 \to \operatorname{SnCl}_4 + 2\operatorname{FeCl}_2$ is an exar	nple of:	
a) First ord	ler reaction		
b) Inira or	der reaction		
d) None of	these		
295 For the rea	these $A + P \rightarrow C$ it is found that	loubling the concentration	of A increases the rate by four
times and c	$A + B \rightarrow C$, it is found that the concentration of B d.	oubles the reaction rate Wh	at is the overall order of the
reaction?	four bing the concentration of b u	oubles the reaction rate. Wi	lat is the overall of the
a) 4	b) 3/2	c) 3	d) 1
386. The rate co	K_1 of a reaction is found	to be double that of rate co	onstant K_2 of another reaction. The
relationshi	p between corresponding activat	ion energies of the two read	ctions at same temperature (E_1 and
E_2) can be	represented as:	0	
a) $E_1 > E_2$	b) $E_1 < E_2$	c) $E_1 = E_2$	d) None of these
387. For the rea	ction, $H_2 + I_2 \rightarrow 2HI$, the different	itial rate law is	
$d[H_2]$	$d[I_2] = 1 d[HI]$	$d[H_2] = 2^{d}$	$d[I_2] = 1 d[HI]$
$dJ = \frac{dt}{dt}$	$= -\frac{dt}{dt} = \frac{1}{2} \frac{dt}{dt}$	dt = -2	$dt = \frac{1}{2} dt$
c) $-\frac{d[H_2]}{d[H_2]}$	$=-\frac{d[I_2]}{d[HI]}=\frac{d[HI]}{d[HI]}$	d) $-\frac{d[H_2]}{d} = -\frac{d[H_2]}{d}$	$\frac{[I_2]}{I_2} = -\frac{d[HI]}{I_2}$
dt	dt dt	dt dt dt	lt dt
388. The time fo	or half-life of a first order reaction	on is 1 hr. What is the time	taken for 87.5% completion of the
reaction?		a) 2 h anns	
aj i nour	DJ 2 NOUR	CJ 3 NOUR	uj 4 nour mo it will take for ite
decomposit	tion to 99%?	I-me is to yr. now much th	ine it will take IOI Its
$2 \sum_{n=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_$	h) 70 m	c) 500 m	d) 700 yr
aj 50 yi	UJ /U YI	CJ 500 yl	uj 700 yi

390. In Arrhenius equation, $k = Ae^{-E_a/RT}$; A may be called the rate constant at a) Very low temperature b) Zero activation energy c) The boiling temperature of reaction mixture d) All of the above 391. The phenomenon of emission of visible light as a result of chemical change is known as a) Chemiluminescence b) Fluorescence c) Phosphorescence d) Photosensitization 392. Chemical reactions with very high E_a values are generally b) Very slow c) Moderately fast a) Very fast d) Spontaneous 393. In the reaction $3A \rightarrow 2B$, rate of reaction $+\frac{d(B)}{dt}$ is equal to a) $-\frac{1}{3}\frac{d[A]}{dt}$ b) $-\frac{2}{3}\frac{d[A]}{dt}$ c) $+\frac{2d[A]}{dt}$ d) $-\frac{3}{2}\frac{d[A]}{dt}$ 394. If the half-time for a particular reaction is found to be constant and independent of the initial concentration of the reactants, then the ratio is of a) First order b) Zero order c) Second order d) None of these 395. Under the same reaction condition, initial concentration of 1.386 mol dm^{-3} of a substance become half in 40 s and 20 s through first order and zero order kinetics respectively. Ratio $\left(\frac{K_1}{K_2}\right)$ of the rate constants for first order (k_1) and zero order (k_0) of the reaction is c) $1.5 mol^{-1} dm^{-3}$ d) $2 mol^{-1} dm^{-3}$ a) $0.5 mol^{-1} dm^{-3}$ b) 1.0 mol⁻¹dm⁻³ 396. The order of a reaction with rate equal to $k C_A^{3/2} C_B^{-1/2}$ is a) 1 b) $-\frac{1}{2}$ 397. For reaction $A \to B$, the rate constant $k_1 = A_1 e^{-Ea_1/RT}$ and for the reaction $X \to Y$, the rate constant $k_2 = A_2 e^{-Ea_2/RT}$. If $A_1 = 10^8$, $A_2 = 10^{10}$ and $Ea_1 = 600$ cal/mol, $Ea_2 = 1800$ cal/mol, then the temperature at which $k_1 = k_2$ is (R = 2 cal/k mol) b) $\frac{300}{2303}$ K a) $\frac{200}{3506}$ K c) $\frac{400}{6506}$ K d) $\frac{200}{5204}$ K 398. Which of these does not influence the rate of reaction? a) Nature of the reactants b) Concentration of the reactants c) Temperature of the reaction d) Molecularity of the reaction 399. The concentration of R in the reaction $R \rightarrow P$ was measured as a function of time and the following data is obtained [R](molar) 1.00 0.75 0.40 0.10 t (min) 0.00 0.05 0.12 0.18 The order of the reaction is a) Zero b) First c) Second d) Third 400. A graph plotted between concentration of reactant consumed at any time (*x*) and time *t* is found to be a straight line passing through the origin. Thus, reaction is of: a) First order b) Zero order c) Third order d) Second order 401. Rate constant of a reaction depends upon a) Speed of reaction b) Concentration of the reactants d) Temperature c) Pressure of the surrounding 402. An endothermic reaction $A \rightarrow B$ has an activation energy as x kg mol⁻¹ of A. If energy change of the reaction is y kJ, the activation energy of the reverse reactions is b) v - xd) x - ya) – x c) x + y403. Consider the following statement in respect of zero order reaction. III. The rate of the reaction is independent of reactant concentration. IV. The rate of the reaction is independent of temperature. V. The rate constant of the reaction is independent of temperature. VI. The rate constant of reaction is independent of reactant cogeneration.

Choose the correct statements/s

	time is:										
	a) 4.06	b) 0.246	c) 2.06	d) 0.06							
419.	For which order half-life p	period is independent of ini	tial concentration?								
	a) Zero	b) First	c) Second	d) Third							
420.	For a given reaction, pres	ssure of catalyst reduces t	he energy of activation by	2 kcal at 27°C. The rate of							
	reaction will be increased	by:									
	a) 20 times	b) 14 times	c) 28 times	d) 2 times							
421	u) 10 timeb	K									
121.	For a reversible reaction A	$\stackrel{K_1}{\longrightarrow} B$,									
	The state of the second state of the second	\mathbf{K}_2									
	Ist order in both the direct	tions, the rate of reaction is	s given by:								
	N 17 [4]										
	a) $K_1[A]$										
	$b J - K_2[B]$										
	c) $K_1[A] + K_2[B]$										
	d) $K_1[A] - K_2[B]$										
422.	A first order reaction is 20	0% complete in 10 min. Cal	culate the time for 75% co	mpletion of the reaction							
	a) 0.233 min	b) 62.18 min	c) 112.12 min	d) 36.18 min							
423.	Order of radioactive disint	tegration reaction is									
	a) Zero	b) First	c) Second	d) Third							
424.	Ethylene is produced by c	yclobutane as:									
	$C_4 H_0 \xrightarrow{\Delta} 2C_0 H_4$										
	The rate constant is 2.48	$\times 10^{-4}$ sec ⁻¹ In what time	will the molar ratio of the	ethylene to cyclobutane in							
	reaction mixture attain the	$\sim 10^{\circ}$ 300 \cdot 11 what thire	will the molar ratio of the	emplene to cyclobutane m							
	a) 27.25 minute	b) 20.25 minuto	c) 25 minuto	d) 20 minuto							
425	a) 27.25 minute	DJ 20.25 minute	cj 25 minute								
425.	For a reaction for which the	te activation energies of for	ward and reverse reaction	s are equal?							
10.6	a) $\Delta H = 0$	b) $\Delta S = 0$	c) The order is zero	d) There is no catalyst							
426.	The half-life period of a fir	st order chemical reaction	is 6.93 min. the time requi	red for the completion of							
	99% of the chemical react	ion will be (log $2=0.302$)									
	a) 230.3 min	b) 23.03 min	c) 46.06 min	d) 460.6 min							
427.	The rate of the element	ary reaction, $2NO + O_2 - O_2$	\rightarrow 2NO ₂ , when the volume	e of the reaction vessel is							
	doubled:										
	a) Will grow eight times o	f its initial rate									
	b) Reduce to one-eight of i	its initial rate									
	c) Will grow four times of	its initial rate									
	d) Reduce to one-fourth of	f its initial rate									
428.	For the reaction system										
	$2NO(g) + O_2(g) \rightarrow 2NO_2(g)$	g) if the volume of the read	ction vessel is reduced to or	ne-third of its original							
	volume, what will be the o	order of the reaction?									
	a) Diminished to one four	th of its initial value	b) Diminished to one twee	nty seven of its initial value							
	c) Increase to twenty seve	en times of its initial value	d) Increase to four times of	of its initial value							
429.	The rate constant of a	a second order reaction	is $10^{-2}M$ s ⁻¹ . The rat	e constant expressed in							
	cc. molecule ⁻¹ min ⁻¹ is:			Ĩ							
	a) 9.96 x 10^{-22}	h) 9.96 x 10 ⁻²³	c) 9.96 x 10^{-21}	d) 1.004×10^{-24}							
430	Radioactive decay is a	5, 51, 50 7 10									
150.	a) First order reaction		h) Zero order reaction								
	c) Second order reaction		d) Third order reaction								
<u>1</u> 21	For the decomposition of 1	N. O., at a particular toppo	aj minu oraci reaction	ations							
тут.	$2N \cap \rightarrow 4N \cap = 0$	1205 at a particular temper	ature, according to the equ	10115							
	$211_2 U_5 \rightarrow 411 U_2 + U_2$										
	$N_2 O_5 \rightarrow 2 N O_2 + \frac{1}{2} O_2$										
	The activation energies are E_1 and E_2 respectively then										
------	---	--	-----------------------------------	------------------------	--	--	--	--	--	--	--
	a) $E_1 > E_2$	b) $E_1 < E_2$	c) $E_1 = 2E_2$	d) $E_1 = E_2$							
432.	The rate of a gaseous read	tion is equal to $k[A][B]$. The transmission of transmission of the transmission of transmisa	he volume of the reaction v	essel containing these							
	gases is reduced by one-fourth of the initial volume. The rate of the reaction would be										
	$\frac{1}{2}$	h) $\frac{16}{10}$	$\frac{1}{2}$	$d) = \frac{8}{8}$							
	16	1	8	1							
433.	3. The rate law of the reaction,										
	$A + 2B \rightarrow$ Product.										
	Product is given by $\frac{d[P]}{dt} = K[A]^2 \cdot [B]$. If A is taken in large excess, the order of the reaction will be:										
	a) Zero	b) 1	c) 2	d) 3							
434.	434. A first order reaction has a rate constant $1.15 \times 10^{-3} s^{-1}$. How long will 5g of this reactant take to reduce										
	to 3 g?										
	a) 444 s	b) 402 s	c) 442 s	d) None of these							
435.	^{35.} For a certain reaction a plot of $\frac{[c_0-c]}{c}$ against time t, yields a straight line. c_0 and c are concentrations of										
	reactant at $t = 0$ and $t = t$ respectively. The rate of reaction is:										
	a) 3	b) 0	c) 1	d) 2							
436.	The rate constant is doub	The rate constant is doubled when temperature increases from 27°C to 37°C. Activation energy in kJ is									
	a) 34	b) 54	c) 100	d) 53							
437.	If the concentration of rea	ictants is increased by 'x' the formula x' the formula x' the formula x' is the formula x' is the formula x' the formula x' is the fo	hen rate constant <i>k</i> become	es							
	a) $\ln \frac{k}{x}$	b) $\frac{k}{x}$	c) $k + x$	d) <i>k</i>							

4.CHEMICAL KINETICS

: ANSWER KEY :															
1)	b	2)	d	3)	b	4)	b	189)	b	190)	а	191)	С	192)	С
5)	b	6)	а	7)	b	8)	d	193)	С	194)	С	195)	а	196)	d
9)	С	10)	С	11)	С	12)	b	197)	d	198)	а	199)	d	200)	b
13)	а	14)	С	15)	а	16)	b	201)	а	202)	d	203)	b	204)	b
17)	С	18)	d	19)	С	20)	d	205)	d	206)	С	207)	b	208)	С
21)	b	22)	b	23)	d	24)	а	209)	а	210)	а	211)	b	212)	а
25)	b	26)	С	27)	b	28)	а	213)	b	214)	b	215)	b	216)	d
29)	а	30)	b	31)	а	32)	С	217)	b	218)	b	219)	d	220)	d
33)	d	34)	d	35)	С	36)	d	221)	С	222)	b	223)	а	224)	а
37)	С	38)	а	39)	а	40)	d	225)	а	226)	d	227)	d	228)	С
41)	С	42)	а	43)	d	44)	b	229)	d	230)	b	231)	b	232)	С
45)	С	46)	С	47)	а	48)	d	233)	d	234)	d	235)	b	236)	а
49)	d	50)	С	51)	d	52)	d	237)	d	238)	а	239)	d	240)	С
53)	d	54)	С	55)	d	56)	а	241)	d	242)	b	243)	d	244)	С
57)	d	58)	а	59)	d	60)	а	245)	а	246)	С	247)	d	248)	С
61)	d	62)	b	63)	С	64)	b	249)	С	250)	b	251)	а	252)	а
65)	b	66)	d	67)	С	68)	С	253)	а	254)	b	255)	b	256)	С
69)	d	70)	С	71)	С	72)	С	257)	С	258)	а	259)	b	260)	b
73)	d	74)	С	75)	а	76)	С	261)	d	262)	b	263)	b	264)	d
77)	b	78)	d	79)	b	80)	С	265)	d	266)	d	267)	b	268)	а
81)	а	82)	а	83)	b	84)	b	269)	С	270)	С	271)	С	272)	С
85)	b	86)	С	87)	d	88)	а	273)	С	274)	а	275)	b	276)	b
89)	а	90)	d	91)	b	92)	b	277)	d	278)	d	279)	С	280)	С
93)	а	94)	b	95)	а	96)	b	281)	а	282)	а	283)	а	284)	d
97)	С	98)	а	99)	С	100)	b	285)	b	286)	d	287)	b	288)	а
101)	С	102)	а	103)	b	104)	d	289)	b	290)	b	291)	d	292)	С
105)	С	106)	С	107)	С	108)	d	293)	d	294)	С	295)	d	296)	С
109)	d	110)	С	111)	а	112)	b	297)	С	298)	С	299)	а	300)	С
113)	d	114)	С	115)	d	116)	b	301)	а	302)	d	303)	d	304)	С
117)	d	118)	а	119)	d	120)	b	305)	b	306)	С	307)	b	308)	b
121)	а	122)	b	123)	b	124)	С	309)	b	310)	b	311)	а	312)	d
125)	b	126)	а	127)	С	128)	d	313)	С	314)	С	315)	b	316)	а
129)	а	130)	d	131)	b	132)	d	317)	b	318)	С	319)	С	320)	d
133)	b	134)	а	135)	С	136)	d	321)	а	322)	С	323)	а	324)	С
137)	d	138)	d	139)	С	140)	а	325)	b	326)	d	327)	а	328)	С
141)	С	142)	С	143)	С	144)	С	329)	d	330)	а	331)	b	332)	а
145)	а	146)	а	147)	b	148)	b	333)	b	334)	С	335)	а	336)	b
149)	С	150)	d	151)	а	152)	d	337)	d	338)	а	339)	b	340)	С
153)	b	154)	а	155)	b	156)	С	341)	b	342)	d	343)	С	344)	С
157)	d	158)	d	159)	С	160)	b	345)	b	346)	а	347)	d	348)	b
161)	а	162)	а	163)	С	164)	а	349)	а	350)	b	351)	d	352)	а
165)	С	166)	b	167)	С	168)	С	353)	С	354)	b	355)	а	356)	b
169)	b	170)	d	171)	d	172)	d	357)	а	358)	С	359)	С	360)	С
173)	b	174)	b	175)	а	176)	а	361)	С	362)	b	363)	b	364)	а
177)	d	178)	а	179)	d	180)	а	365)	С	366)	а	367)	а	368)	b
181)	а	182)	С	183)	С	184)	а	369)	d	370)	b	371)	b	372)	а
185)	а	186)	b	187)	d	188)	d	373)	а	374)	b	375)	а	376)	С

377)	C	378)	C	379)	h	380)	а
5775		5705	C	5775		500)	u
381)	b	382)	а	383)	b	384)	b
385)	С	386)	d	387)	а	388)	С
389)	b	390)	b	391)	а	392)	b
393)	b	394)	а	395)	а	396)	а
397)	b	398)	d	399)	а	400)	b
401)	d	402)	d	403)	d	404)	с
405)	С	406)	а	407)	b	408)	b
409)	b	410)	а	411)	а	412)	а
413)	b	414)	d	415)	а	416)	d
417)	b	418)	а	419)	b	420)	С
421)	d	422)	b	423)	b	424)	а
425)	a	426)	С	427)	b	428)	С
429)	а	430)	а	431)	d	432)	b
433)	b	434)	а	435)	d	436)	b
437)	d						
							•

: HINTS AND SOLUTIONS :

6

1 **(b)**

For first reaction, $E_{1} = \frac{2.303RT_{1}T_{2}}{(T_{1} - T_{2})}\log\frac{k'_{1}}{k_{1}} \qquad ... (i)$ For second reaction, $E_{2} = \frac{2.303RT_{1}T_{2}}{(T_{1} - T_{2})}\log\frac{k'_{2}}{k_{2}} \qquad ... (ii)$ Given, $E_{1} > E_{2}$ $\Rightarrow \frac{2.303RT_{1}T_{2}}{(T_{1} - T_{2})}\log\frac{k'_{1}}{k_{1}}$ $> \frac{2.303RT_{1}T_{2}}{(T_{1} - T_{2})}\log\frac{k'_{2}}{k_{2}}$ $\therefore \frac{k'_{1}}{k_{1}} > \frac{k'_{2}}{k_{2}}$

2 (d)

These are the characteristics of effective collisions.

3 **(b)**

Pseudo first order rate constant is doubled as well as rate of reaction is doubled. It may be noted that in presence of acid, hydrolysis of ethyl acetate is a pseudo-unimolecular reaction but the actual value of k depends upon the concentration reaction but the actual value of k depends upon the concentration of H^+ ions, otherwise rate constant of a reaction is constant at constant temperature.

4 **(b)**

We know that, $\frac{(t_{1/2})}{(t_{1/2})} = \left[\frac{a_2}{a_1}\right]^{n-1}$ Where, n=order of reaction Given, $(t_{1/2}) = 0.1s$, $a_1 = 400$ $(t_{1/2}) = 0.8s$, $a_1 = 50$ On substituting the values $\frac{0.1}{08} = \left[\frac{50}{400}\right]^{n-1}$ On taking log both sides $log \frac{0.1}{0.8} = (n-1)log \frac{50}{400}$ $log \frac{1}{8} = (n-1)log \frac{1}{8}$ 0.90 = (n-1)0.90n-1=1 n=2 (a)

For *n*th order reaction

 $k = (\text{mol } L^{-1})^{1-n} \text{ s}^{-1}$

For Ist order reaction

Unit of $k = s^{-1}$

For zero order reaction

Unit of $k = \text{mol } L^{-1} s^{-1} = M s^{-1}$

7 **(b)**

For II order reaction, $t_{1/2} = \frac{1}{Ka}$

(d)

8

9

11

If $\frac{1}{[A]^2}$ vs times are a straight line then order of reaction is third.

(c)

For an endothermic reaction where ΔH represents the enthalpy of the reaction, the minimum value for the energy of activation is more than ΔH , *ie*, $E_a > \Delta H$

(c)

$$T_{\frac{1}{2}} = T_{50}, x = \frac{R}{2}$$

$$\therefore \quad T_{50} = \frac{R}{k_0}$$
So $T_{50} \propto R$

$$T_{50} \propto \frac{R}{k_0}$$

Therefore, the formula of $t_{1/2}$ for a zero order reaction is $\frac{[R]_0}{2k}$

12 **(b)**

The curve *Y* shows a gradual increase in the concentration with time.

13 **(a)**

Acid hydrolysis of sucrose is a pseudo unimolecular or pseudo first order reaction. Hydrolysis of sucrose in presence of mineral acid is a biomolecular reaction. But as water is taken in large excess, so the rate of reaction only depends upon concentration of sucrose. Hence, order of the reaction is one.

Therefore, it is called a pseudo first order reaction.

14 **(c)**

For first order reaction

$$\log[A] = -\frac{kt}{2.303} + \log[A]_0$$

$$\swarrow$$

$$Slope = -\frac{k}{2.303}$$

$$t \longrightarrow$$

15 **(a)**

 $r = K[A] = 4 \times 10^{-3} \times 0.02 = 8 \times 10^{-5} M \text{ sec}^{-1}$ 16 **(b)** For the first order reaction, $2N_2O_5 \rightarrow 2NO_2 + O_2$ $rate \frac{dx}{dt} = k(N_2O_5) \dots (i)$ Given, $\frac{dx}{dt} = 2.400 \times 10^{-5} mol \ L^{-1}s^{-1}$ $k = 3.0 \times 10^{-5}s^{-1}$ $[N_2O_5] = ?$ Substituting these values in (i) $2.4 \times 10^{-5} = 3.0 \times 10^{-5} [N_2O_5]$ $or \ [N_2O_5] = \frac{2.4 \times 10^{-5}}{3.0 \times 10^{-5}}$ $= 0.8 mol \ L^{-1}$ 17 **(c)** The definition of activation energy.

18 **(d)**

19

20

2.303
$$\log \frac{K_2}{K_1} = \frac{E_a}{R} \frac{[T_2 - T_1]}{T_1 T_2}$$

 $\therefore 2.303 \log \frac{K_2}{K_1} = \frac{9}{2 \times 10^{-3}} \left[\frac{10}{298 \times 308}\right];$
 $\therefore \frac{K_2}{K_1} = 1.63; i. e., 63\%$ increase
(c)

$$r = K[A]^{1};$$

Thus, 7.5 × 10⁻⁴ = K × 0.5;
 $\therefore K = 15 \times 10^{-4} \sec^{-1} = 1.5 \times 10^{-3} \sec^{-1}$
(d)
 $2N_2O_5 \rightleftharpoons 4NO_2 + O_2$

Rate

$$= \pm \frac{1}{stoichiometrics}} \frac{d[product or reactant]}{dt}$$

$$\Rightarrow Rate = -\frac{1}{2} \frac{d[N_2 O_5]}{dt} = + \frac{1}{4} \frac{d[NO_2]}{dt} = \frac{d[O_2]}{dt}$$

$$Or - -\frac{d[N_2 O_5]}{dt} = 2 \frac{d[O_2]}{dt}$$

$$Or - \frac{2d[N_2 O_5]}{dt} = 4 \frac{d[NO_2]}{dt}$$

$$Or - \frac{d[N_2 O_5]}{dt} = 4 \frac{d[O_2]}{dt}$$

$$Or - \frac{d[N_2 O_5]}{dt} = 4 \frac{d[O_2]}{dt}$$

$$21 \quad (b)$$
For parallel path reaction

$$K_{average} = K_1 + K_2 = 1.26 \times 10^{-4} + 3.8 \times 10^{-5}$$

$$= 1.64 \times 10^{-4} \text{sec}^{-1}$$
Also fractional yield of $B = \frac{K_B}{K_{av}} = \frac{1.26 \times 10^{-4}}{1.64 \times 10^{-4}} = 0.7683$
Fractional yield of $A = \frac{K_A}{K_{av}} = \frac{3.8 \times 10^{-5}}{1.64 \times 10^{-4}} = 0.2317$
23 (d)
For first order : $K = \frac{0.693}{t_{1/2}} = \frac{0.693}{1386} = 5 \times 10^{-4} \text{s}^{-1}$
24 (a)
Ionic reactions are instantaneous one.
25 (b)
For zero order reaction, rate of reaction is
independent of concentration i.e., rate of reaction
does not depend upon the concentration of
reactant.
 $\frac{dx}{dt} = k[A]^0$
26 (c)
 $t_{1/2} = 100s$
 $k = 6.93 \times 10^{-3} \text{s}^{-1}$
27 (b)
The rate law for the reaction is as
 $r = \frac{dx}{dt} = k(A)(B)^2(C)^0 = k(A)(B)^2$
on increasing the concentration of A,B and C two
times.
 $r' = \frac{dx}{dt} = k(2A)(2B)^2(2C)^0$
 $= 8k(A)(B)^2$
Thus, the rate increases eight times.
28 (a)
Activation energy is the needed by reactant

molecules to gain threshold energy level.

29 **(a)**

The rate of zero order reaction is independent of the concentration of the reactants or the

concentration of the reactant do not change with time. Thus, the rate of reaction remains constant.

$$\frac{dx}{dt} = k(a-x)^0 \Rightarrow \frac{dx}{dt} = k$$

Or Rate=k

30 **(b)**

For first order reaction, $k = \frac{2.303}{t} \log_{10} \frac{a}{a-x}$ Where, a= initial concentration X= change in concentration during time't'. If 75% of the reaction was completed in 32 min, then

$$k = \frac{2.303}{32} \log_{10} \frac{100}{100 - 75} = \frac{2.033}{32} \log_{10} 4$$

$$k = 0.0433 \text{min}^{-1}$$

Hence, time required for the completion of 50% reaction.

$$t = \frac{2.303}{0.0433} \log_{10} \frac{100}{100 - 75}$$
$$= \frac{2.033}{32} \log_{10} 2 = 16 \min$$

31 **(a)**

For the reaction : $CCl_{3}CHO + NO \rightarrow CHCl_{3} + NO + CO$ $Rate = \frac{dx}{dt} = k[CCl_{3}CHO][NO]$ $k = \frac{dx}{dt \times [CCl_{3}CHO][NO]}$ $= \frac{mol/L}{s \times mol/L \times mol/L}$ $k = L mol^{-1} s^{-1}$

32 **(c)**

$$2A + B \rightarrow C$$

Rate of reaction,
$$= -\frac{1}{2} \frac{d[A]}{dt} = -\frac{d[B]}{dt} = \frac{d[C]}{dt}$$
$$\therefore -\frac{d[A]}{dt} = 2 \frac{d[C]}{dt}$$
$$= 2 \times 2.2 \times 10^{-3}$$
$$= 4.4 \times 10^{-3} mol \ L^{-1} min^{-1}$$

33 (d)

For third order reaction,

rate =
$$k[A]^3$$

$$\frac{\text{mol } L^{-1}}{s} = k(\text{mol} - L^{-1})^3$$
$$k = \frac{1}{\text{mol}^2 L^{-2} s}$$
$$= \text{mol}^{-2} L^2 s^{-1}$$

34 **(d)**

 $CH_3COOC_2H_5 + H_2O \xrightarrow{H+} CH_3COOH + C_2H_5OH$ Since, in this reaction, water is excess, it is an example of psedo first order reaction (as rate depends only on the concentration of $CH_3COOC_2H_5$).

36 **(d)**

The efficiency of an enzyme in catalyzing a reaction is due to its capacity to lower the activation energy of the reaction

37 **(c)**

The rate of reaction is:
=
$$-\frac{1}{2}\frac{d[A]}{dt} = -\frac{d[B]}{dt} = \frac{1}{3}\frac{d[C]}{dt} = \frac{d[D]}{dt}$$

38 **(a)**

For exothermic reaction, activation energy of reverse reaction is greater than activation energy of forward reaction, *ie*, $E_f < E_r$

39 **(a)**

2.303
$$\log \frac{K_2}{K_1} = \frac{E_a}{R} \frac{[T_2 - T_1]}{T_1 T_2}$$

 \therefore 2.303 $\log 3 = \frac{E_a}{2} \frac{[313 - 273]}{313 \times 273}$
 \therefore $E_a = 4693$ cal

0.2*a*

40 **(d)**

 $\ln K = \ln A - \frac{E_a}{RT}$ is Arrhenius equation. Thus plots of $\ln K \ vs \ 1/T$ will give slope $= E_a/R$.

41 (c)

$$k = \frac{1}{t} \left[\frac{x}{a(a-b)} \right]$$

$$k = \frac{1}{a(a-b)} \left[\frac{x}{a(a-b)} \right]$$

$$500 \ [a(a - 0.2a)]$$
$$k = \frac{1}{2000a}$$
$$1 \ -1 \ [0.6a]$$

$$\frac{1}{2000a} = \frac{1}{t} \left[\frac{0.00t}{a(a-0.6a)} \right]$$

$$t = 3000 \text{ s}$$

42 **(a)**

K does not change with time; also unit of *K* suggest it to be II order.

43 **(d)**

Follow review of rate of reaction.

44 **(b)**

Molecularity represents the number of molecules of reactants taking part in an elementary step of reaction.

45 (c) $t_{1/2} \propto (a)^{1-n}$ $t_{1/2} = Z(a)^{1-n}$ or $\log_{t_1/2} = \log Z + (1-n)\log a$ or v = c + mxor Thus, slope = m = 1 - n or 1 - n = 0 :: n = 1and for I order reaction $t_{1/2} = \frac{0.693}{\kappa}$. 46 (c) $t_{1/2} \propto (a)^{1-n}$ 47 (a) A pseudounimolecular reaction. 48 (d) Rate becomes x^y times if concentration is made x time of a reactant giving y^{th} order reaction. Rate =k[A]ⁿ[B]^m Concentration of A is doubled hence x=2, y=nand rate becomes = 2^n times Concentration of B is halved ,hence $x=\frac{1}{2}$ and y=mand rate becomes = $\left(\frac{1}{2}\right)^m$ times Net rate becomes = $(2)^n \left(\frac{1}{2}\right)^m$ times $=(2)^{n-m}$ times 49 (d) For the reaction $H_2(g) + Br_2(g) \rightarrow 2HBr(g)$ Rate of reaction = $k[H_2][Br_2]^{1/2}$ Molecularity of reaction = 1 + 1 = 2Order of reaction = $1 + \frac{1}{2} = \frac{3}{2}$ 50 (c) When heat energy is supplied, kinetic energy of reactant molecules increase. This will increase the number of collisions and ultimately rate of reaction will be enhanced.

51 **(d)**

$$t = \frac{2.303}{K} \log \frac{a}{(a-x)}$$

$$\therefore \qquad K = \frac{2.303}{20} \log \frac{1}{0.25}$$

$$= 0.06931 \text{ min}^{-1}$$

52 **(d)**

I step of mechanism *B* shows I order in both reactants.

53 **(d)** $K_a = Ae^{-E_a/RT}$ and $K_b = Ae^{-E_b/RT}$ Also, $K_a > K_b$ $E_a < E_b$

Now notice that all the given facts are satisfied.

54 **(c)**

Half-life depends upon rate constant and rate constant (*K*) varies with temperature as

 $K = A \cdot e^{-E_n/RT}$; *K* increase with temperature. Also $t_{1/2} \propto \frac{1}{K}$

55 (d)

Rate = $k[NOBr_2][NO]$...(i) But $NOBr_2$ is in equilibrium $k_{eq} = \frac{[NOBr_2]}{[NO][Br_2]}$ $[NOBr_2] = k_{eq}[NO][Br_2]$...(ii) Putting the $[NOBr_2]$ in (i) rate = $k.k_{eq}[NO][Br_2][NO]$ Hence, rate = $k.k_{eq}[NO]^2[Br_2]$ rate = $k'[NO]^2[Br_2]$ where, k'.Keq the order, of reaction with respect to NO(g) is 2 56 (a) For zero order reaction, for example,

$$A \to B$$

$$\frac{-d[A]}{dt} = k[A]^{0}$$

$$\frac{-d[A]}{dt} = k$$

57 **(d)**

The increase in collision frequency brings in an increase in effective collisions and thus, rate of reaction increases.

$$t_{1/2} \propto \frac{1}{a^{n-1}}$$

1

When n = 4

$$t_{1/2} \propto \frac{1}{a^3}$$

Hence, order of reaction = 4

59 **(d)**

There are two different reactants (say A and B). $A + B \rightarrow product$

Thus, it is a bimolecular reaction .

If
$$\frac{dx}{dt} = k[A][B]$$

It is second order reaction

If
$$\left(\frac{dx}{dt}\right) = k[A]$$

Or =k[B]

It is first order reaction .

Molecularity is independent of rate ,but is the sum of the reacting substance thus it cannot be unimolecular reaction . 60 (a)

rate = $K[A][B]^2$ $\therefore 10^{-2} = K[1][1]^2$ or $K = 10^{-2} \text{ litre}^2 \text{mol}^{-2} \text{sec}^{-1}$ $\therefore \text{rate II} = 10^{-2}[0.5] \times [0.5]^2$ $= 1.2 \times 10^{-3} \text{mol/litre-sec}$

61 **(d)**

If $E_a = 0$, $k = Ae^{-E_a/RT} = Ae^0 = A$

Hence, k becomes independent of ${\cal T}$

62 **(b)**

Larger is surface area, more is rate of reaction.63 (c)

Reactions having lower energy of activation occurs more fast under similar experimental conditions.

64 **(b)**

For the first order reaction

$$Rate\left(\frac{dx}{dt}\right) = k[A]$$

[A] \rightarrow concentration of reactant K \rightarrow rate constant Given that, dx 4.5 \times 4.0 \times 2.1 \times 1.1 times 1.1 \times 1.1 \times 1.1 \times 1.1 \times 1.1 \times 1.1 \times 1.1 \times

$$\overline{dt} = 1.5 \times 10^{-2} mol \ L^{-1} min^{-2}$$

K=? and [A]=0.5 M
 $1.5 \times 10^{-2} = k \times 0.5$
 $k = \frac{1.5 \times 10^{-2}}{0.5} = 3 \times 10^{-3} min^{-1}$

For first order reaction,

Half-life period
$$t_{1/2} = \frac{0.693}{k} = \frac{0.693}{3 \times 10^{-2}}$$

=23.1min

65 **(b)**

Temperature coefficient,

$$= \frac{k_t + 10}{k_t}$$

$$2 = \frac{10^{-3}}{k_t}$$

$$k_t = \frac{10^{-3}}{2} = \frac{10 \times 10^{-4}}{2} = 5 \times 10^{-4}$$

66 **(d)**

The minimum energy required by reaction molecules to undergo reaction is called activation energy.

67 **(c)**

For an *n*th order reaction

 $t_{1/2} \propto \frac{1}{a^{n-1}}$ For 1st order reaction $t_{1/2} \propto \frac{1}{a^{1-1}} \propto a^0$

68 **(c)**

For every 10°C rise of temperature, rate is doubled. Thus, temperature coefficient of the reaction=2 When temperature is increased by 50°C rate

When temperature is increased by 50°C, rate becomes

 $=2^{50/10} = 2^5$ times=32 times

69 **(d)**

Order may or may not be equal to molecularity. **70 (c)**

Use $r = K[A]^m[B]^n$

71 **(c)**

The reaction occurring in two steps has two activation energy peaks. The first step, being fast needs less activation energy. The second step being slow, needs more activation energy. Therefore, second peak will be higher than the first

73 **(d)**

$$r_1 = K[A]^1; r_2 = K[A]^2, r_3 = K[A]^3$$

if $[A] > t; r_3 > r_2 > r_1$

$$t = \frac{2.303}{k} \log \frac{a}{(a-x)}$$

If $t = t_{1/4}$; $x = a/4$
 $\therefore t_{1/4} = \frac{2.303}{k} \log \frac{a}{(a-1/4)}$
 $\frac{2.303}{k} \log \frac{4}{3}$

7

77

78

$$K = Ae^{-E_a/RT}$$

$$\begin{array}{c} 6 \quad \textbf{(c)} \\ 100 \xrightarrow{2 \ days} 50 \\ 50 \xrightarrow{4 \ days} 25 \end{array}$$

$$25 \xrightarrow{8 \, days}{\longrightarrow} 12.5$$

Hence, the order of reaction is second. For second order reaction,

$$k = \frac{1}{2} \left[\frac{x}{a(a-x)} \right] = \frac{1}{2} \left[\frac{50}{100 \times 50} \right]$$

= $\frac{1}{200}$
 $t_{1/2} = \frac{1}{k.a}$
 $\Rightarrow = \frac{1}{1/200.100}$
= $\frac{200}{100} = 2days$
(b)
 $\frac{1}{3} \frac{d[Br_2]}{dt} = -\frac{1}{5} \frac{d[Br^-]}{dt}$
(d)

The reaction is said to be of second order if its reaction rate is determined by the variation of two concentration terms of reactants. $CH_3COOCH_3 + NaOH \rightarrow CH_3COONa + H_2O$ Is an example of second order reaction.

79 **(b)**

Temperature coefficient is the ratio of two velocity constant having the difference of 10°C. For most of the reaction the value of temperature coefficient lies between 2 and 3

81 **(a)**

Rate is $\frac{dx}{dt}$ or $-\frac{d[A]}{dt}$;

Where *x* stands for product concentration and [*A*] stands for reactant concentration. It continuously decreases with decrease in concentration of reactant with time.

82 **(a)**

For zero order reaction, $t_{1/2} \propto [R]_0$

83 **(b)**

Effect of temperature on reaction rate is given by Arrhenius equation $k = Ae^{-E_a/RT}$

84 **(b)**

This is Arrhenius equation.

85 **(b)**

Let ,initial concentration=a Final concentration= $a - \frac{2}{3}a = \frac{a}{3}$ $t_{\frac{2}{3}} = \frac{2.303}{k}\log\frac{a}{a/3}$ $= \frac{2.303}{5.48 \times 10^{-14}}\log 3$ $= 2.01 \times 10^{13}$ s

86 **(c)**

Let the order with respect to A and B is x and y respectively.

Hence,

Rate
$$r = [A]^{x}[B]^{y}$$
 ...(i)

On doubling the concentration of A, rate increases 4 times, $4r = [A]^{x}[B]^{y}$... (ii)

From Eqs. (i) and (ii)

$$1 (1)^{2}$$

 $\overline{4} = (\overline{2})$

∴ X=2 ∴ order with respect to A is 2 If concentration of A and B both are doubled, $8r = [2A]^x [2B]^y \dots (iii)$ From Eqs. (i) and (iii), we get

$$\frac{1}{8} = \frac{1}{(2)^{x}} \cdot \frac{1}{(2)^{y}} \qquad [\because x = 2]$$

$$\frac{1}{8} = \frac{1}{(2)^{2}} \cdot \frac{1}{(2)^{y}}$$

$$\frac{1}{8} = \frac{1}{4 \times 2^{y}}$$

$$2^{y} = 2$$

$$\therefore Y = 1$$
Hence, differential rate equation is
 $r \propto [A]^{2}[B]^{1}$ or $\frac{dC}{dt} = kC_{A}^{2} \times C_{B}$
[Where, C_{A} and C_{B} =concentrations of A and B]
87 (d)
 $r = k[A]^{n}$...(i)
When concentration is doubled then
 $4r = k(2A)^{n}$...(ii)
Divide Eq. (ii) by (i)
 $4 = 2^{n}$
 $n = 2$
88 (a)
 $t = \frac{0.693}{k} log \frac{[A]_{0}}{[A]}$
 $= \frac{2.303}{60} log \frac{a}{\frac{a}{16}} = \frac{2.303}{60} log 16$
 $= \frac{2.303}{60} \times 1.204$
 $= 0.0462s$
 $= 4.6 \times 10^{-2}s$
89 (a)
From the unit of rate constant (*i.e.*, s^{-1}), it is
clear that the reaction is of first order.
 $2N_{2}O_{5} \rightarrow 4NO_{2} + O_{2}$
Hence, for first order reaction,
 $k = \frac{2.303}{t} log \frac{p_{0}}{p_{t}}$
 $\therefore 3.38 \times 10^{-5} = \frac{2.303}{10 \times 60} log \frac{500}{p_{t}}$
Or $log \frac{500}{p_{t}} = 0.00880$
 $\therefore \frac{500}{p_{t}} = anti \log 0.00880$
 $= 1.02$
 $p_{t} = \frac{500}{1.02} = 490 atm$

91 **(b)**

$$t = \frac{2.303}{k} \log \frac{a}{a - x}$$

$$\therefore x = \frac{3}{4} a$$

$$\therefore t = \frac{2.303}{k} \log \frac{a}{a - \frac{3}{4} a}$$

$$= \frac{2.303}{k} \log 4$$

92 **(b)**

 $2N_2O_5 \rightarrow 4NO_2 + O_2$ Rate of decomposition of $N_2O_5 = -\frac{1}{2}\frac{k[N_2O_5]}{dt}$ Rate of formation of $NO_2 = \frac{1}{4}\frac{k[NO_2]}{dt}$ $\therefore \frac{\text{rate of decompsition of } NO_2}{\text{rate of formation of } NO_2} = \frac{\frac{1}{2}k\frac{[N_2O_5]}{dt}}{\frac{1}{4}k\frac{[NO_2]}{dt}}$ or $\frac{1}{2}k\frac{[N_2O_5]}{dt} \times \frac{4}{1}\frac{dt}{k[NO_2]}$ $= \frac{4}{2} = \frac{2}{1} = 2:1$

93 **(a)**

 $k = \frac{2.303}{t} \log \frac{a}{a - x}$ Given, reaction is75% completed is 32 min A=100,x=75 $k = \frac{2.303}{32} \log \frac{100}{100-75}$ *:*. ...(1) For 50% completion of reaction A=100, x=50 $k = \frac{2.303}{t} \log \frac{100}{100 - 50}$:. ...(2) ÷ LHSof Eq. (1) = Eq. (2) \therefore RHSof Eq. (1) = Eq. (2) $\therefore \quad \frac{2.303}{32} \log \frac{100}{100 - 75} = \frac{2.303}{t} \log \frac{100}{100 - 50}$ $or \frac{2.303}{32} \log 4 = \frac{2.303}{t} \log 2$ $\operatorname{Or} \frac{t}{32} = \frac{\log 2}{\log 4} \text{ or } t = \frac{32 \times \log 2}{2 \log 2}$ \therefore t = 16 min∴ reaction will be 50% completed in 16 min 94 (b) Rate $\left(\frac{+d[C]}{dt}\right) = k[A][B]$ Thus, the order of reaction w.r.t. A=1 The order of reaction w.r.t.B=1 Total order of reaction=1+1=2 95 (a) The intersection point indicates that half of the reactant X is converted into Y. 96 **(b)**

At $T_1 = 200 \ K, T_2 = 400 \ K, k_1 = k, \ k_2 = 10 \ k$ $\because \log \frac{k_2}{k_1} = \frac{E_a}{2.303R} \left(\frac{T_2 - T_1}{T_1 \cdot T_2}\right)$ $\log \frac{10 \ k}{k} = \frac{E_a}{2.303R} \left(\frac{400 - 200}{400 \times 200}\right)$ $E_a = 921.2 \ R$

97 (c)

Zero order reactions occur with constant rate.

98 (a)

$$t = \frac{2.303}{K} \log \frac{a}{(a-x)};$$

Thus, $K = \frac{2.303}{10} \log 8 = (2.303 \times 3 \log 2) / 10$

99 (c)

For the reaction $A \rightarrow B$ On increasing the concentration of reactant (i.e.,A) by 4 times , the rate of reaction becomes double ,hence order of reaction is $\frac{1}{2}$.

100 **(b)**

The rate of chemical reaction always decreases with time as reaction proceeds due to decrease in number of reactant molecules. Only for zero order reactions the rate of chemical reaction remains same.

101 (c)

For a zero order reaction,

$$R \rightarrow \text{product}$$

 $\text{Rate} = -\frac{d[R]}{dt} = k[R]^0 = k$
 $-d[R] = k. dt$
Integrating the above equation.
 $-\int d[R] = k \int dt$
 $-[R] = kt + I$...(i)
Where, I is integration constant
At $t = 0, R = [R]_0$
 $-[R]_0 = k \times 0 + I$
 $I = -[R]_0$
Put this value in Eq. (i)
 $-[R] = kt - [R]_0$
or $[R] = -kt + [R]_0$
102 (a)
For first order reaction,
Half-life period $(t_{1/2}) = \frac{0.693}{k}$
Where, k=rate constant
 $(t_{1/2}) = \frac{0.693}{69.3}s^{-1}$
 $= 0.01 s^{-1}$
103 (b)

For *n*th order reaction :

$$t_{1/2} \propto \frac{1}{a^{n-1}}$$

For second order reaction

$$t_{1/2} = \frac{1}{ka} = \frac{1}{0.5 \times 0.2} = \frac{100}{10} = 10 \text{ min}$$

104 **(d)**

$$r = K[CH_{3}COCH_{3}]^{a}[Br_{2}]^{b}[H^{+}]^{c}$$

∴ 5.7 × 10⁻⁵

$$= K[0.30]^{a}[0.05]^{b}[0.05]^{c}(1)$$

5.7 × 10⁻⁵

$$= K[0.30]^{a}[0.10]^{b}[0.5]^{c}(2)$$

1.2 × 10⁻⁴

$$= K[0.30]^{a}[0.10]^{b}[0.10]^{c}(3)$$

3.1 × 10⁻⁴

$$= K[0.40]^{a}[0.05]^{b}[0.20]^{c}(4)$$

By (1) and (2) $a = 1$
By (2) and (3) $b = 0$

 $r = K[CH_3COCH_3]^1[Br_2]^0[H^+]^1$

105 **(c)**

Unit of rate constant

By (3) and (4) c = 1

$$= \frac{time^{-1}}{conc^{(n-1)}}$$

Where, n=order of reaction
Given, unit of rate constant = $L mol^{-1}s^{-1}$
 $\therefore L mol^{-1}s^{-1} = \frac{(s)^{-1}}{(L mol^{-1})^{n-1}}$

$$= \frac{(s)^{-1}}{(L \ mol^{-1})^{n-1}}$$

= $s^{-1}(L \ mol^{-1})^{n-1}$
Or $1=n-1$
Or $n=2$
 \therefore order of reaction =2

106 **(c)**

Activation energy of a chemical reaction can be determined by evaluating rate constants at two different temperatures

$$\log \frac{k_2}{k_1} = \frac{E_a}{2.303 R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$$

107 **(c)**

Molecularity can never be fractional.

109 **(d)**

 $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$

For this reaction, rate $(r_{r}) = k[SO_{r}]^{2}[O_{r}]$

$$(r_1) = k[SO_2]_1^2[O_2]_1 \qquad \dots (i)$$

On doubling the volume of vessel, concentration would be half. Hence,

Rate $(r_2) = k \left(\frac{[SO_2]_1}{2}\right)^2 \left(\frac{[O_2]_1}{2}\right) = \frac{r_1}{8}$ $\frac{r_1}{r_2} = 8:1$ 110 (c) r = k[RCl]If $[RCl] = \frac{1}{2}$, then rate $=\frac{r}{2}$ 111 (a) $A \xrightarrow{k_1} B \xrightarrow{k_2} C \xrightarrow{k_3} D$ $:: k_3 > k_2 > k_1$ As k_1 is slowest hence $A \rightarrow B$ is the rate determining step of the reaction 112 **(b)** $k = \frac{2.303}{t} \log_{10} \frac{a}{a - x}$ $=\frac{2.303}{10}\log_{10}\frac{100}{80}$ $=\frac{2.303}{10} [\log 10 - 3 \log 2]$ $=\frac{2.303}{10} [1 - 3 \times 0.3010]$ k = 0.0223113 (d) $E_a(A \rightarrow B) = 80 \text{ kJ mol}^{-1}$ Heat of reaction $(A \rightarrow B) = 200 \text{ kJ mol}^{-1}$ For $(B \rightarrow A)$ backward reaction, $E_a(B \rightarrow A) = E_a(A \rightarrow B)$ + heat of reaction = 80 + 200 = 280kJ mol⁻¹ 114 (c) For endothermic reaction $A \rightarrow B$ Activation energy = 15 kcal/molEnergy of reaction = 5 kcal/molHence, activation energy for the reaction $B \rightarrow A$ is 15 - 5 = 10 kcal/mol15 - 5 = 10Energy Progress of reaction 115 (d) For zero order $[A]_t = [A]_0 - kt$ $0.5 = [A]_0 - 2 \times 10^{-2} \times 25$ $[A]_0 = 1.0 \text{ M}$:. 116 **(b)** $t = \frac{2.303}{k} \log \frac{a}{a - x}$

Where,
$$k$$
=rate constant= $10^{-3}s^{-1}$
 a =initial amount=100
 $a - x$ =amount left after time t=25
 t =time to leave 25% reaction
 $\therefore t = \frac{2.303}{10^{-3}} \log \frac{100}{25}$
 $= \frac{2.303}{10^{-3}} \log 4$
 $= \frac{2.303 \times 0.6020}{10^{-3}}$
= 1386s

By increasing 10 K temperature the rate of reaction becomes double. When temperature is increased from 303 K to 353 K, the rate increases in steps of 10° and has been made 5 times. Hence, the rate of reaction should increases 2^{5} times *i. e.*, 32 times.

118 (a)

Temperature coefficient $= \frac{\text{rate of recation at } 35^{\circ}\text{C}}{\text{rate of recation at } 25^{\circ}\text{C}} = 2$ Thus, increase in rate is two times, when temperature is increased 10°C. Hence, by the increase of 70°C(100-30=70°C), the increase in rate will be $= (2)^{7} \quad \because 70^{\circ} = 7 \times 10^{\circ}$

119 **(d)**

$$\log \frac{k_2}{k_1} = \frac{E_a}{2.303R} \left(\frac{T_2 - T_1}{T_1 T_2}\right)$$
$$\log \frac{k_2}{k_1} = \frac{9000}{2.303 \times 2} \left(\frac{5}{295 \times 300}\right)$$
$$\log \frac{k_2}{k_1} = 0.1103$$
$$\frac{k_2}{k_1} = 1.288, k_2 = 1.288 \ k$$

 $ie, {\rm increase}$ by 28.8%

120 **(b)** $\frac{1}{2}A \rightarrow 2B$ Remember for $a A \rightarrow bB$ $-\frac{1}{a}\frac{d[A]}{dt} = \frac{1}{b}\frac{d[B]}{dt}$ = Rate of reaction For the given reaction $-\frac{2d[A]}{dt} = \frac{1}{2}\frac{d[B]}{dt}$ = rate of reaction Rate of disappearance of A $= -\frac{d[A]}{dt} = \frac{1}{2 \times 2} \frac{d[B]}{dt}$ $=\frac{1}{4}\frac{d[B]}{dt}$ 121 (a) $K = \frac{2.303}{k} \log \frac{a}{(a-x)}$ $=\frac{2.303}{40}\log\frac{0.1}{0.025}=0.0347$ $\therefore r = K \times [A] = 0.0347 \times 0.01$ $= 3.47 \times 10^{-4} M/min$ 123 **(b)** For zero order reaction x = kt $= 0.2 \text{ mol } \text{dm}^{-3} \text{ h}^{-1} \times \frac{30}{60} \text{ h}$ $= 0.1 \text{ mol dm}^{-3}$ Now, concentration = 0.05 mol dm^{-3} Hence, initial concentration = 0.1 + 0.05 = 0.15 mol dm^{-3} 124 (c) For the reaction, $2X + Y \rightarrow Z$ Rate = $-\frac{1}{2}\frac{d[X]}{dt} = \frac{d[Z]}{dt}$ $= 0.05 \text{ mol } L^{-1} \text{ min}^{-1}$ $-\frac{1}{2}\frac{d[X]}{dt} = 0.05$ $-\frac{d[X]}{dt} = 2 \times 0.05$ $= 0.1 \text{ mol } L^{-1} \text{ min}^{-1}$

125 **(b)**

$$X(g) \rightarrow Y(g) + Z(g)$$
The reaction is a first order reaction.
Hence,

$$k = \frac{0.693}{t_{1/2}} = \frac{2.303}{t} log \frac{a}{(a-x)}$$
02234 $\frac{0.693}{10} = \frac{2.303}{t} log \frac{a}{a/10}$
Or $t = \frac{2.303 \times 10}{0.693} \times \log 10$
 $= 33 \min$
126 **(a)**
To be solved with the help of formula,
 $log \frac{k_2}{k_1} = \frac{E_a}{2.303 R} \left[\frac{T_2 - T_1}{T_1 T_2} \right]$
 $T_1 = 273 + 27 = 300 \text{ K}$
 $T_2 = 273 + 67 = 340 \text{ K}$
 $log \frac{6.9 \times 10^{-3}}{3.45 \times 10^{-5}} = \frac{E_a}{2.303 \times 8.31} \left[\frac{340 - 300}{340 \times 300} \right]$
 $log 200 = \frac{E_a}{19.1379} \times \frac{40}{102000}$
 $2.3010 = \frac{E_a}{19.14} \times \frac{4}{10200'}$
 $E_a = \frac{19.14 \times 10200 \times 2.3010}{4}$
 $= 112304.907 \text{ J} = 112.3 \text{ kJ}$
127 **(c)**
 $\frac{dx}{dt} = K(a - x)^2$ is differential form of II order.
Integrate it to get (c).
128 **(d)**
 $A^m + B^n \rightarrow ABx$
In this case,
Overall order of reaction $= m + n$
Hence, code 3 is wrong
129 **(a)**
For the first order reaction,
 $t_{1/2} = \frac{1n2}{k}$
 $Or t_{1/2} = \frac{0.693}{k}$
130 **(d)**
Order of reaction is an experimentally determined
quantity and thus, cannot be predicted from the
given equation.
131 **(b)**
The rate for first order reaction is expressed as
 $A \rightarrow products$
Rate $= -\frac{d[A]}{dt}$
Rate $= -\frac{d[A]}{dt}$
And the rate constant (k) is given as
 $k = \frac{2.303}{t} \log \frac{[A_0]}{[A_1]}$

Greater the rate constant lesser will be the

: Rate constant (k') > rate constant (k'')

 $or - k = \frac{t}{2.303} \log \frac{[A_t]}{[A_0]}$

Where, n=order of reaction a= initial concentration For first order reaction,

of initial concentration.

Thus for a first order reaction, $t_{1/2}$ is independent

Relation between $(t_{1/2})$ and initial concentration

 $= 3.47 \times 10^{-4} M \text{ min}^{-1}$

Rate of endothermic reactions increase with

increase in temperature while that of exothermic reactions decrease with increasing temperature.

of reactant for (n-1) order reaction

rate = $K \times 0.01 = 0.03466 \times 0.01$

 $t_{1/2} = \frac{1}{(a)^{n-1}}$

132 **(d)**

n=1

133 (b)

134 (a)

135 (c)

136 (d)

 $t_{1/2} = \frac{1}{a^{n-1}}$

 $a = \frac{1}{a^0} = 0$

 $t_{1/2} \propto [R]_0^{2-n}$

 $K = \frac{2.303}{40} \log \frac{0.1}{0.025}$

 $\therefore K = 0.03466 \text{ min}^{-1}$

 $k = \frac{2.303}{t} \log_{10} \frac{a}{a - x}$

 $t = \frac{2.303}{k} \log_{10} \frac{a}{a - \frac{a}{2}}$

 $t_{1/2} = \frac{2.303 \times 0.3010}{k}$

 $t = \frac{2.303}{k} \log_{10} 2$

 $\because t = t_{1/2}$

 $t_{1/2} = \frac{0.693}{k}$

137 (d)

as

For half-life period, $x = \frac{a}{2}$

activation energy

 $\therefore E'_a < E_a''$

138 (d)

The reactant concentration drop from 0.8 to 0.4 *M*, *i*. *e*. ,50% takes place in 15 minute.

$$K = \frac{2.303}{15} \log \frac{0.8}{0.4} = \frac{0.693}{15} = 0.0462 \text{ min}^{-1}$$

Also, $t = \frac{2.303}{K} \log \frac{0.1}{0.025} = \frac{2.303}{0.0462} \log \frac{0.1}{0.025}$
= 30 min

139 (c)

For II order,
$$t = \frac{1}{Ka} \frac{x}{(a-x)}$$

$$\therefore \quad t = \frac{1}{8 \times 10^{-5} \times 1} \left(\frac{0.5}{0.5}\right)$$

$$= 1.25 \times 10^{-4} \text{ minute}$$

140 (a)

The Arrhenius equation can be written as

$$\log k = \log A - \frac{E_a}{2.303 RT}$$

On comparing this equation with standard
equation of straight line

$$y = mx + c, \text{ we get,}$$

$$y = \log k$$

$$x = \frac{1}{T}$$

$$m = -\frac{E_a}{2.303R}$$

$$c = \log A$$

Hence, on plotting graph between $\log k (y - y)$ axisand lT(x-axis), we get a line with slope equal to

 $m = -\frac{E_a}{2.303 R}$ 141

$$K_{1} = 10^{16} e^{-2000/T}; K_{2} = 10^{15} e^{-1000/T}$$

if $K_{1} = K_{2}$ then $10^{16} e^{-2000/T}$
 $= 10^{15} e^{-1000/T}$
or $\log 10 - \frac{2000}{T} = -\frac{1000}{T}$ or $T = \frac{1000}{2.303}$ K

142 (c)

As we know that, rate of reaction is directly proportional to concentration of reactant and inversely proportional to the volume of vessel.

i.e.,concentration $\alpha \propto \frac{n}{v}$

For a given reaction,

 $2NO(g) + O_2(g) \rightleftharpoons 2NO_2(g)$ Rate of reaction = $k[NO]^2[O_2]$ If volume of vessel is reduced by $\frac{1}{3}rd$ of its initial value, then concentration of compound is increase by 3 times. Hence, the rate of reaction will be increased by 27 times.

1 For a zero order reaction $k_0 = \frac{[A_0]}{2t_{1/2}}$ Since, $[A]_0 = 2 M$, $t_{1/2} = 1 h$ So, $k_0 = 1$ and $k_0 = \frac{\Delta x}{t}$ or $t = \frac{0.50 - 0.25}{1} = 0.25 h$ 144 (c) $A + B \rightarrow C + D$ Rate $(r) = k[A]^{a}[B]^{b}$...(i) $2r = k[2A]^{a}[B]^{b}$... (ii) $3r = k[A]^{a}[9B]^{b}$...(iii) Dividing eq.(ii) by eq.(i) $2 = 2^{a}$ or a = 1Dividing eq (iii)by eq.(i) $3 = 9^b \text{ or } 3 = 3^{2b} \text{ or } 2b = 1 \text{ or } b = 1/2$ So order of reaction = $1 + \frac{1}{2} = \frac{3}{2}$ 145 (a) $N = \frac{N_0}{2^n}$ $n = \frac{T}{t_{1/2}} = \frac{40}{20} = 2$ $\therefore \qquad N = \frac{N_0}{2^2} = \frac{N_0}{4}$ 146 (a) $p_1 = 80 \text{ kPa}$, $(t_{1/2})_1 = 350s$ $p_1 = 40 \text{ kPa}$, $(t_{1/2})_1 = 175s$ $\frac{80}{40} = \frac{350}{175} = 2$ Zero order reaction Concentration - $\because \frac{p_1}{p_2} = \frac{(t_{1/2})_1}{(t_{1/2})_2} = \frac{a_1}{a_2}$ $(t_{1/2}) \propto a(\text{zero order reaction})$ 147 (b) Thermal decomposition,

 $CH_3CHO \xrightarrow{\Delta} CH_4 + CO$ $\frac{dx}{dt} = k[CH_3CHO]^{3/2}$ 148 (b) For the reaction : $A \rightarrow 2B + C$ 0 0 p_1 After 10 min $p_1 - p \quad 2p$ р After long time 0 $2p_1 p_1$ Total pressure = $(p_1 - p + 2p + p) = 176 \text{ mm}$ Total pressure after long time $= 2p_1 + p_1 = 270 \text{ mm}$ Calculate the value of *p* from above two equation and then the difference of p_1 and p will be the pressure of A

149 (c)

Where,

 E_a =activation energy of forward reaction E_a'' = activation energy of backward reaction The above energy profile diagram shows that $E_a > E_a''$

The potential energy of the product is greater than that of the reactant, so the reaction is endothermic.

 $E_a = E_a^{\prime\prime} + \Delta E$ $E_t = E_a \text{ or } E_t > E_a''$

150 (d)

Combination of H_2 and B_{r2} to give HBr is zero order reaction as the rate of reaction is not affected by the concentration of reactants.

 $H_2 + B_{r2} \xrightarrow{hv} 2 HBr$ 1 - 1

Rate of reaction
$$= \frac{1}{4} \frac{d(NO_2)}{dt} = \frac{5.2 \times 10^{-3}}{4 \times 100}$$

= 1.3 × 10⁻⁵ Ms⁻¹
152 (d)
 $9 = \left(\frac{3.24 \times 10^{-2}}{1.2 \times 10^{-3}}\right)^n$
 $9 = (3^3)^{2/3}$

order of the reaction is = 2/3

153 **(b)**

For zero order reaction

$$k = \frac{a}{2t_{1/2}} = \frac{a}{2 \times 100} = \frac{a}{200}$$

When 80% completion take place

$$k = \frac{x}{t}$$
$$\frac{a}{200} = \frac{0.80a}{t}$$

 $t = 200 \times 0.8 = 160 \text{ min}$

154 (a)

 $2A + B \rightarrow product$ [B] is doubled, half-life didn't change Half-life is independent of change in concentration of reactant i.e., first order First order w.r.t. to B When [A] is doubled, rate increased by two times \Rightarrow First order w.r.t.A Hence, net order of reaction =1+1=2Unit for the rate constant=conc.⁽¹⁻ⁿ⁾ t^{-1} $= (mol^{-1})^{-1} . s^{-1}$ $L. mol^{-1}s^{-1}$

156 (c)

 $H_2O + O \rightarrow 2OH; \Delta H = 72kJ$ at 500 K; Given $E_a = 77 \text{ kJmol}^{-1}$ $20H \rightarrow H_20 + 0; E_{a_{B.R.}}$ For a reaction $E_{a_{F,P}} = \Delta H + E_{a_{B,P}}$ $\therefore 77 = 22 + E_{a_{B,R}}$ $\therefore E_{a_{B_R}} = 5 \text{kJ mol}^{-1}$

157 (d)

According to Arrhenius equation, the relationship between the activation energy and temperature is $k = Ae^{-E_a/RT}$

$$\log k = \frac{-E_a}{2.303 \, RT} + \log A$$

: Activation energy decreases with rise in temperature, thereby increasing the rate of the reaction.

158 (d)

rate =
$$K[A]^1$$

 $K = \frac{2.0 \times 10^{-5}}{0.01} = 2.0 \times 10^{-3} \text{s}^{-1}$
 $\therefore \quad t_{1/2} = \frac{0.693}{2 \times 10^{-3}} = 347 \text{s}$

159 (c)

:.

For a zero order reaction, the plot of

concentration of reactant vs time is a straight line (linear) with a negative slope and non-zero intercept.

$$[A]$$
 intercept $[A]_0$
slope = -k

160 **(b)**

$$r = K[A]^{m}[B]^{n};$$

Also, $\frac{r}{4} = K[A]^{m}[2B]^{n}$
 $4 = \left(\frac{1}{2}\right)^{n}$ or $2^{2} = 2^{-n}$
 \therefore $n = -2$

161 (a)

The ratio of rate constant when temperature is raised 10°C, is called temperature coefficient. For most of the reaction, it has a value of 2.

Hence, for the given reaction,

Rate constant at 290 K= 3.2×10^{-3}

 $\therefore \text{ Rate constant at } 300 \text{ K}=2 \times 3.2 \times 10^{-3}$ $= 6.4 \times 10^{-3}$

162 **(a)**

 $\frac{dc}{dt}$ represent the change in concentration of reactant with time. As, in a reaction,

concentration of reactant always decrease with time hence, rate of reaction is represented as -dc

163 (c) $k = \frac{2.303}{t} \log \frac{A_0}{A_t}$ $= \frac{2.303}{2 \times 10^4} \log \frac{800}{50}$ $= 1.386 \times 10^4 s^{-1}$

164 **(a)**

For, $N_2 + 3H_2 = 2NH_3$ Rate of reaction $= -\frac{d[N_2]}{dt} = -\frac{1}{3}\frac{d[H_2]}{dt} = \frac{1}{2}\frac{d[NH_3]}{dt}$ Where, $-\frac{d[N_2]}{dt}$ is rate consumption of N_2 (-ve sign) $-\frac{d[H_2]}{dt}$ is rate of consumption of H_2 (-ve sign) $\frac{+d[NH_3]}{dt}$ is rate of formation of NH_3 (+ve sign) Individual rates become equal when each of these is divided by their respective stoichiometric Given, $R_1 = k[A]^2[B]$ According to equation $R_2 = k[3A]^2[B]$ $= k \times 9[A]^2 2[B]$ $= 18 \times k[A]^2[B]$ $= 18R_1$

167 **(c)**

For the reaction, $A+B \rightarrow C$ $Rate = k[A]_0^x \cdot [B]_0^y$ $\frac{Rate_2}{Rate_3} = \frac{k(0.024)^x(0.070)^y}{k(0.024)^x(0.035)^y} = \frac{0.80}{0.10}$ $(2)^y = 8$ y = 3 $\frac{Rate_3}{Rate_1} = \frac{k(0.024)^x(0.035)^y}{k(0.012)^x(0.035)^y} = \frac{0.10}{0.10}$ $(2)^x = 1$ x = 0 $Rate = k[B]^3$, where, k=rate constant

168 **(c)**

For second order reaction, $\frac{dx}{dt}$ (rate) $\propto [A]^2$ \therefore Rate Of reaction increases four times when concentration of reaction is increased two times. \therefore It is second order reaction.

169 **(b)**

$$N_{2} + 3H_{2} \rightleftharpoons 2NH_{3}$$

$$\frac{d[H_{2}]}{dt} = -0.3 \times 10^{-4} m s^{-1}$$

$$rate = -\frac{1}{3} \frac{d[H_{2}]}{dt} = +\frac{1}{2} \frac{d[NH_{3}]}{dt}$$

$$= \frac{d[NH_{3}]}{dt} = -\frac{2}{3} \frac{d[H_{2}]}{dt}$$

$$= -\frac{2}{3} \times (-0.3 \times 10^{-4})$$

$$= 0.2 \times 10^{-4}$$

170 **(d)**

According to collision theory,

1. The reaction rate depends on collision frequency and effective collisions. For a molecule to have effective collision it should fulfill two conditions; proper orientation and sufficient energy.

2. The collision rate *i.e.*, the number of collisions taking place in unit volume is also termed as collision frequency (*Z*) and is given by

$$z = \frac{\pi n^2 \sigma^2 u_{av}}{\sqrt{2}}$$

3. Greater the temperature, greater will be the

coefficient.

collision rate.

171 **(d)**

 $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g) + 22$ kcal. : The activation energy for the forward reaction = 50 kcal

 \therefore The activation energy for the backward reaction=50+22=72 kcal.

172 **(d)**

Only those collisions are effective collisions which are energetic enough and cross over the threshold energy level.

173 **(b)**

$$k = \frac{0.693}{t_{1/2}} = \frac{0.693}{480} \text{ s}^{-1}$$

 $k = 1.44 \times 10^{-3} \text{ s}^{-1}$

174 **(b)**

It is a characteristic of zero order reaction.

175 **(a)**

Follow review of order of reaction.

176 (a)

Average life is defined as, "reciprocal of decay constant." If decay constant for a reaction is λ then,

Average life= $\frac{1}{\lambda}$

177 **(d)**

[variation in the concentration V_s time plot for a zero order reaction]

178 (a)

Energy of activation does not depend on the stoichiometry of change. It is characteristic value for a chemical reaction.

179 **(d)**

Use ; $r = K[A]^m[B]^n$

180 (a)

Slow reaction rate indicates higher free energy of activation Rat

181 (a)

It is the definition of molecularity.

182 **(c)**

$$\begin{pmatrix} \frac{dx}{dt} \end{pmatrix} = k[NO]^2[o_2]$$

$$= k \left(\frac{n_{NO}}{V}\right)^2 \left(\frac{n_{O_2}}{V}\right)$$

$$\begin{pmatrix} \frac{dx}{dt} \end{pmatrix} = \frac{k}{V^3} (n_{NO})^2 (n_{O_2})$$

$$\begin{pmatrix} \frac{dx}{dt} \end{pmatrix} = \frac{k(n_{NO})^2 (n_{O_2})}{\left(\frac{V}{2}\right)^3}$$

$$= 8 \left(\frac{dx}{dt}\right)$$

183 **(c)**

No doubt order cannot be predicted by merely looking chemical reaction but this can be treated as standard example of II order reaction.

184 **(a)**

Rate
$$= -\left[\frac{dc}{dt}\right] = \left[-\frac{dn}{dt}\right]\frac{1}{V}$$
 $\left[\because c = \frac{n}{V}\right]$
 $\therefore \quad -\left[\frac{dc}{dt}\right] = -\frac{1}{RT}\left[\frac{dP}{dt}\right].$ $\left[c = \frac{P}{RT}\right]$

185 **(a)**

For zero order reaction Rate = $[A]^0 = k$ $\frac{mol \ L^{-1}}{s} = k$ $K = mol L^{-1} s^{-1}$ 186 **(b)** $A \xrightarrow{k_1} B$ $A \xrightarrow{k_2} C$ By Arrhenius equation, $R_1 = A' e^{-E_a 1/RT}$ and $k_2 = A' e^{-E_a 2/RT}$ (*A*' is Arrhenius constant) (Since, $E_{a2} = 2E_{a1}$) $\therefore k_2 = A' e^{-2E_{a'}|RT}$ $\frac{k_1}{k_2} = \frac{A'e^{-E_a \mathbf{1}|RT}}{A'e^{-2E_a|RT}} = e^{E_a \mathbf{1}|RT}$ $\therefore k_1 = k_2 e^{E_a 1/RT}$ 187 (d) For the reaction, $2A + B \rightarrow A_2B$ According to rate laws, Rate ∝ concentration of reactants $rate = k[A]^2[B]$ Where, k=rate constant 188 (d) This is activation state and orientation concept for mechanism of reactions. Rate depends upon the slowest step. Hence, from equation $0 + 0_3 \rightarrow 20_2$ $r = k[0_3][0]$ And from equation $0_3 \rightleftharpoons 0_2 + 0$

$$K_{eq} = \frac{[O_2][O]}{[O_3]}$$

$$[O] = \frac{K_{eq}[O_3]}{[O_2]}$$

$$\therefore r = k[O_3] \frac{K_{eq}[O_3]}{[O_2]}$$

$$= k'[O_3]^2[O_2]^{-1}$$
190 (a)
Amount of *A* left in n_1 halves = $\frac{[A_0]}{2^{n_1}}$
Amount of *B* left in n_2 halves = $\frac{[B_0]}{2^{n_2}}$
Also if $\frac{[A_0]}{2^{n_1}} = \frac{[B_0]}{2^{n_2}}$ when *A* decays to n_1 halves and
B decays to n_2 halves.

$$\therefore \qquad [A_0] = 4[B_0]$$

$$\therefore \qquad 4 = \frac{2^{n_1}}{2^{n_2}} = (2)^{n_1 - n_2}$$
or $(n_1 - n_2) = 2$

$$\therefore \qquad n_2$$

$$= n_1 - 2 \qquad ...(i)$$
Now, $T = n_1 \times t_{1/2A}$ and $T = n_2 \times t_{1/2B}$

$$\therefore \qquad \frac{n_1 \times t_{1/2A}}{n_2 \times t_{1/2B}} = 1$$
or $\frac{n_1 \times 5}{n_2 \times 15} = 1$
or $\frac{n_1}{n_2}$

$$= 3 \qquad ...(ii)$$

$$\therefore$$
 By Eqs. (i) and (ii) $n_1 = 3, n_2 = 1$
Thus, $T = 3 \times 5 = 15$ minute
191 (c)

$$\therefore$$
 On doubling the concentration of A, the rate of reaction becomes two times.

$$\therefore$$
 The order of reaction w.r.t. A is 1

$$\therefore$$
 On doubling the concentration of B, the rate of reaction does not change.

∴ the order of reaction respect to B is 0

 \therefore on doubling the concentration of C, the rate of reaction becomes four times

∴ the order of reaction w.r.t. C is 2

```
\therefore the overall order of reaction=1+0+2=3
```

192 **(c)**

For *n*th order; unit of rate constant may be derived by

 $K = \frac{\text{rate}}{[\text{reactant}]^n}$

193 **(c)**

$$r = K[N_2O_5] = 6.2 \times 10^{-4} \times 1.25$$

= 7.75 \times 10^{-4} M/s

 $A \rightarrow product$

Initially a 0
After time t (a-x) x
After
$$t_{1/4}$$
 $\left(a - \frac{a}{4}\right)$ $\frac{a}{4}$
For the first order kinetics $k = \frac{2.303}{t} \log\left(\frac{a}{a-x}\right)$
 $k = \frac{2.303}{t_{1/4}} \log\frac{a}{\frac{3a}{4}}$
 $t_{1/4} = \frac{2.303 \log \frac{4}{3}}{k}$
 $= \frac{0.29}{k}$

195 **(a)**

The order of reaction is zero. Suppose the following reaction take place .

 $A + B \rightarrow product$ $\therefore rate = [A][B]^{-1}$ $\therefore order = 1 + (-1) = 0$

196 **(d)**

Pseudo first order reactions are those reactions which are not truly first order but show first order kinetics under specific conditions. For examples, acidic hydrolysis of an ester and hydrolysis of cane sugar.

197 **(d)**

The differential rate law for the reaction, $4NH_3(g) + 5O_2(g) \rightarrow 4NO(g) + 6H_2O(g) \text{ is}$ $Rate = -\frac{1}{4}\frac{d[NH_3]}{dt} = -\frac{1}{5}\frac{d[O_2]}{dt}$ $= +\frac{1}{4}\frac{d[NO]}{dt} = +\frac{1}{6}\frac{d[H_2O]}{dt}$

198 (a)

$$_{79}Au^{198} \xrightarrow{-B} {}_{80}Hg^{198}$$

 $k = \frac{0.693}{t_{1/2}} = \frac{0.693}{65}$
After 260 hr,
 $k = \frac{2.303}{260}\log\frac{a}{a-x}$
 $\frac{0.693}{65} = \frac{2.303}{260}\log\frac{a}{a-x}$
 $\frac{a}{a-x} = 16$

$$a - x = 10$$

 $\frac{1}{1 - x} = 16$
 $x = \frac{15}{16} \text{ g} = 0.9375 \text{ g}$

199 **(d)**

Rate $=k[NO_2Cl]$ Hence ,rate determining step is $NO_2CL \rightarrow NO_2 + CL$

200 **(b)**

 $RCl + NaOH \rightarrow ROH + NaCl$

Rate = k[RCl]

For this reaction rate of reaction is depends upon the concentration of *R*Cl

It means, the rate of reaction is halved by reducing the concentration of *R*Cl by one half

201 (a)

$$\log \frac{k_2}{k_1} = \frac{E_a}{2.303 R} \times \frac{T_2 - T_1}{T_1 \cdot T_2}$$
$$\log \frac{105}{100} = \frac{E_a}{2.303 \times 8.314} \times \frac{1}{300 \times 301}$$
$$E_a = 36.65 \text{ kJ}$$

Molecularity of reaction is simply the number of molecules reacting in balanced chemical equation. It can be simply determined by examining balanced equation.

203 **(b)**

Time required to complete a definite fraction is independent of initial concentration.

204 **(b)**

For this reaction

$$2A + B_2 \rightleftharpoons 2AB$$

$$k = \frac{[AB]^2}{[A]^2[B_2]}$$
For this reaction,

$$A + B_2 \rightleftharpoons AB + B$$

$$k_1 = \frac{[AB][B]}{[A][B_2]}$$
For this reaction,

$$A + B \rightleftharpoons AB$$

$$k_2 = \frac{[AB]}{[A][B]}$$

$$k_1 \times k_2 = \frac{[AB][B]}{[A][B_2]} \times \frac{[AB]}{[A][B]}$$

$$= \frac{[AB]^2}{[A]^2[B_2]}$$

$$\therefore k_1 \times k_2 = k$$
205 (d)

The collision frequency (Z) and rate contant(k) increase on increase of temperature. With the increase in temperature, the average kinetic energy of the molecules increases and this leads to an increase in number of collisions per unit time (Z). The rate constant (k) of a reaction is also increases with increase of temperature.

206 (c)

For first order reaction, $k = \frac{2.303}{t_{1/2}} \log \frac{a}{\left(a - \frac{a}{2}\right)} = \frac{2.303}{t} \log \frac{a}{(a - x)}$ $\frac{2.303}{t_{1/2}} \log 2 = \frac{2.303}{1} \log \frac{a}{a/4}$ $\frac{2.303 \times 0.3010}{t_{1/2}} = 2.303 \times \log 4$ $t_{1/2} = \frac{0.3010}{\log 4} = \frac{0.3010}{0.6020} = \frac{1}{2}h$ 207 **(b)**

In the given graph,

$$E_a = E_a'' + \Delta H$$

where, $E_a'' =$ activation energy of reverse reaction
 $150 = E_a'' + 100$
 $E_a'' = 50 \text{ kJ}$

209 (a)

$$T_{50} = 15 \ min$$

$$k = \frac{2.303 \log 2}{T_{50}} = \frac{2.303 \log 2}{15}$$
a=0.1M
$$(a - x) = 0.025 \ M$$
For first order reaction,
$$k = \frac{2.303 \log 2}{T_{50}} \log \left(\frac{a}{a - x}\right)$$

$$\frac{2.303 \log 2}{15} = \frac{2 \times 2.303 \log 2}{t} \log \frac{0.1}{0.025}$$

$$= \frac{2.303}{t} \log 4$$

$$\therefore \frac{2.303 \log 2}{15} = \frac{2 \times 2.303 \log 2}{t}$$

210 (a)

The slowest step is the rate determining step. Formation of B(i.e., step I) is the slowest step, therefore step I is the rate determining step.

211 **(b)**

For a reaction E_a for forward reaction = E_a for backward reaction $+\Delta H$,

:. 85 = A - 20or $A = 105 \text{ kJ mol}^{-1}$.

212 (a)

 $\frac{-d[N_2]}{dt} = \frac{1}{2} \frac{d[NH_3]}{dt}$

213 **(b)**

10 g \rightarrow 5 g \rightarrow 2.5 g \rightarrow 1.25 g takes 30 min in each step, *ie*, $t^{1/2}$ is independent of '*a*' hence, it is a first order reaction

214 **(b)**

$$B + 5D \to 3A + 2C$$

$$-\frac{d[B]}{dt} = -\frac{1}{5}\frac{d[D]}{dt} = +\frac{1}{3}\frac{d[A]}{dt} = +\frac{1}{2}\frac{d[C]}{dt}$$

215 **(b)**

$$r = K[A]^{m};$$

Also, $100r = K[10A]^{m};$

$$\frac{1}{100} = \left(\frac{1}{10}\right)^{m};$$

216 (d) $4NH_3(g) + 5O_2(g) \rightarrow 4NO(g) + 6H_2O(g)$ Rate $= -\frac{1}{4}\frac{d[NH_3]}{dt} = -\frac{1}{5}\frac{d[O_2]}{dt} = +\frac{1}{4}\frac{d[NO]}{dt}$ $= +\frac{1}{6}\frac{d[\mathrm{H}_2\mathrm{O}]}{dt}$ 217 (b) $r = k[A]^{\alpha} = ka^{\alpha}$ $1.837 r = k(1.5a)^{\alpha}$ Dividing, $1.837 = (1.5)^{\alpha}$ $\alpha = 1.5$ Hence, order of reaction = 1.5218 (b) $Cl_2 + 2l^- \rightarrow I_2 + 2Cl^-$ Rate of formation of $I_{2} = \frac{dI_{2}}{dt} = -\frac{1}{2}\frac{dI^{-}}{dt}$ $= \frac{1}{2} \times \frac{0.20 - 0.18}{0.22}$ $=\frac{1}{2}\times\frac{0.02}{20}$ $= 5 \times 10^{-4} mol \ L^{-1} min^{-1}$ 219 (d) $A_2 + B_2 \rightleftharpoons 2AB$ E_a (forward)= 180 kJ mol⁻¹ E_a (backward) = 200 kJ mol⁻¹ In the presence of catalyst E_a (forward)=180-100=80 kJ mol⁻¹ E_a (backward)=200-100=100 kJ mol⁻¹ $\Delta H = E_a (\text{forward}) - E_a (\text{backward})$ = 80 - 100 $= -20 \text{ kJ mol}^{-1}$ 220 (d) Increase in pressure or concentration brings in an

 $\therefore m = 2$

increase in pressure or concentration brings in an increase in collision frequency as well as increase in effective collision. Recall that energy of activation is not at all related with exothermic or endothermic nature.

221 **(c)**

 $\frac{K_{t+10}}{K_t} = 2,3 \ i. \ e.$, temperature coefficient is the ratio of rate constant at two temperatures differing by 10°C, preferably at 35°C and 25°C.

222 **(b)**

Negative sign indicates for the decrease in concentration with time.

For first order reaction

$$k = \frac{2.303}{t} \log \frac{[A_0]}{[A]}$$
Increase is leads to the greater the frequency is constant of the equation of the

227 (d)

$$k_{27^{\circ}\text{C}} = \frac{0.693}{30} \text{ min}^{-1},$$

 $k_{47^{\circ}\text{C}} = \frac{0.693}{10} \text{ min}^{-1}$

 $\therefore k_{47^{\circ}\text{C}} / k_{27^{\circ}\text{C}} = 3$ Or $\log \frac{k_{47^{\circ}\text{C}}}{k_{27^{\circ}\text{C}}} = \log 3$

We know that

$$\log \frac{k_2}{k_1} = \frac{E_a}{2.303 R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$$

So, $E_a = \frac{\log 3 \times 2.303 R \times T_1 T_2}{T_2 - T_1}$
$$= \frac{0.4771 \times 2.303 \times 8.314 \times 300 \times 320}{20}$$
$$= 43.84 \text{ kJ}$$

228 (c)

Increase in the concentration of the reactants leads to the change in collision frequency because greater the concentration, greater is the collision frequency

Arrhenius equation is:

$$k = Ae^{-E_a/RT}$$

$$\ln k = \ln A - \frac{E_a}{RT}$$

$$\ln k = \ln A - \frac{E_a}{RT}$$
Slope = $-\frac{E_a}{R}$

$$i = \int_{1/T} \int_{1/T} \int_{-\infty} \int_{1/T} \int_{-\infty} \int$$

The rate of reaction varies with time as well as with concentration and pressure.

234 **(d)**

For a first order reaction, rate = k[reactant]

$$[reactant] = \frac{rate}{k}$$
$$= \frac{2.40 \times 10^{-5}}{3.0 \times 10^{-5}} = 0.8$$
(b)

$$k = \frac{2.303}{t} \log \frac{a}{a - x}$$

$$k_1 = \frac{2.303}{10} \log \frac{33.05}{33.05 - 6.25}$$

$$= 2 \times 10^{-3} \text{min}^{-1}$$

Constant values of k calculated for different times, shows first order reaction.

236 (a)

235

For I order reaction :

$$[A]_{t} = [A]_{0} \times e^{-Kt}$$
$$= [A]_{0}e^{-K \times \frac{1}{K}} = \frac{[A]_{0}}{2}$$

237 **(d)**

Comparing the slope and intercept of the given equation with the following Arrhenius equation :

 $\log k = -\frac{E_a}{2.303RT} + \log A$ Hence, $\log A = 6 \ i. e., A = 10^6 \text{s}^{-1}$ Comparing slope gives $E_a = 38.3 \text{ kJ/mol}$

238 **(a)**

The factor $-E_a/RT$ is Boltzmann factor and *A* is frequency factor.

239 **(d)**

Ionic reactions are instantaneous.

240 **(c)**

 $2NO \rightarrow N_2 + O_2$ Rate $=k[NO]^2$ Hence, order of reaction is 2 $H_2 + I_2 \rightarrow 2HI$ Rate $=k[H_2][I_2]$ Hence, order of reaction is (1+1)=2Therefore these reactions are most likely to be elementary reaction that occurs in one step.

241 **(d)**

 $aG + bH \rightarrow Products$ Suppose order of reaction =n When concentration of both G and H doubled then rate increases by eight times. $rate = k(reactants)^n$ $(8) = k(2)^n$ $(2)^3 = k(2)^n$ n=3When concentration of G is doubled keeping the concentration of H fixed, the rate is doubled. $Rate = [G]^1$

then, $Rate = [G]^{1}[H]^{2}$ 242 **(b)** For a zero order reaction $A \rightarrow B$ $\frac{-d[A]}{dt} = k$ $Or - \int_{C_0}^{C_t} d[A] = k \int_{t=0}^{t=0} dt$ $(C_0 - C_t) = kt$ $\text{Or } k = (C_0 - C_t)/t$ 243 (d) $t_{99.9\%} = \frac{2.303}{k} \log \frac{a}{a - 99.9a}$ $t_{50\%} = \frac{0.693}{k}$ (b) $k = \frac{1}{t} \ln \frac{100}{100 - 99.9} = \frac{1}{t} \ln \frac{100}{0.1}$ Or $\frac{\ln 2}{t_1/2} = \frac{1}{t} \ln 10^3$ Or $\frac{\log 2}{t_{1/2}} = \frac{1}{t} \log 10^3 = 3/t$ $t_{1/2} = \frac{\log 2}{3} \times t$ $:: t = 10t_{1/2}$ 245 (a) Rate constant $k = 1.155 \times 10^{-3} s^{-1}$ $k = \frac{2.303}{t} \log \frac{a}{(a-x)}$: $a = a, (a-x) = \frac{a}{2}$ $t_{1/2} = \frac{2.303}{t} \log \frac{a}{a/2}$ $=\frac{2.303}{1.155 \times 10^{-3}} \log 2$ $=\frac{2.303}{1.155 \times 10^{-3}} \times 0.3010$ $=\frac{0.693 \times 10^3}{1.155}=600 \ s$ $t_{1/2} = \frac{0.693}{k} = \frac{0.693}{1.155 \times 10^{-3}}$ $= 600 \, s$ 246 (c) For the reaction $A + 2B \rightarrow C$ Rate of reaction at a given instant can be represented by rate = $-\frac{d[A]}{dt} = -\frac{1}{2}\frac{d[B]}{dt} = +\frac{d[C]}{dt}$ 247 (d)

VSEPR theory is for bonding concept.

248 (c)

$$A \rightarrow B$$

 $\frac{dx}{dt} = k[A]^n$
 $\frac{dx'}{dt} = k[4A]^n$
 $\frac{dx'/dt}{dx/dt} = \left(\frac{4}{1}\right)^n$
 $2 = \left(\frac{4}{1}\right)^n$
 $n = \frac{1}{2}$

249 (c)

Rate law
$$\frac{dx}{dt} = k[A]^{1}[B]^{2}[C]^{0} = k[A]^{1}[B]^{2}$$

Hence, order of reaction = 1 + 2 = 3

250 **(b)**

A graph between the log concentration (log c) of reactant and time t for the first order reaction gives a straight line, whose slope is equal to

 $\log_{10} C_A = -\frac{kt}{2.303} + \log_{10} (C_A)_0$

Hence, the order of the above reaction is one.

251 **(a)**

 $2\text{FeCl}_3 + \text{SnCl}_2 \rightarrow 2\text{FeCl}_2 + \text{SnCl}_4$

It is a third order reaction. As the concentration of both $FeCl_3$ and $SnCl_2$ affect the rate of reaction

$$\therefore \text{Rate} = k[\text{FeCl}_3]^2[\text{SnCl}_2]$$

Hence, order of reaction = 2 + 1 = 3

252 (a)

The order of this reaction over water is zero and in general case it is two. This is an experimental fact.

Rate =
$$K[sugar][H_2O]^\circ$$
.

254 **(b)**

$$\frac{1}{2} \frac{d[\mathrm{NH}_3]}{dt} = -\frac{1}{3} \frac{d[\mathrm{H}_2]}{dt}$$

$$\therefore -\frac{d[\mathrm{H}_2]}{dt} = \frac{3}{2} \times \frac{d[\mathrm{NH}_3]}{dt} = \frac{3}{2} \times 2 \times 10^{-4}$$

$$= 3 \times 10^{-4}$$
255 (b)

$$-\frac{d[\mathrm{N}_2\mathrm{O}_5]}{dt} = \frac{1}{2} \frac{d[\mathrm{NO}_2]}{dt} = \frac{2d[\mathrm{O}_2]}{dt}$$
256 (c)
Rate constant is characteristic constant of a reaction and depends only on temperature and catalyst.
257 (c)
Unit of *A* depends on unit of *k*.
258 (a)
Oppositely charged ions are attracted instantaneously to show reaction.
259 (b)
for first order reaction,

$$t = \frac{2.303}{k} \log \frac{[A]_0}{[A]}$$

$$k = \frac{2.303}{1.386 \times 60 \times 60} \log \frac{100}{25}$$

$$k = \frac{2.303 \times 0.6021}{1.386 \times 60 \times 60} = 2.8 \times 10^{-4} \mathrm{s}^{-1}$$

260 **(b)**

Molarity =
$$\frac{\text{Mole of solute}}{\text{Volume of solution in litre}}$$
; Also $a = b \times c_m$

261 **(d)**

We know that if temperature is increased 10°C then velocity increases 2 times.

$$\frac{r_1 + 10}{r_1} = 2$$

Because temperature increases 100°C hence, rate of reaction will increase 2¹⁰ times or 1024 times.

$$\frac{-d[A]}{dt} = -\frac{1}{2}\frac{d[B]}{dt} = \frac{1}{3}\frac{d[C]}{dt} = \frac{d[D]}{dt}$$
$$\frac{d[C]}{dt} = -\frac{3}{2}\frac{d[B]}{dt} = -\frac{3d[A]}{dt} = \frac{3d[D]}{dt}$$

263 **(b)**

We know, $\frac{t_1}{t_2} = \left[\frac{a_2}{a_1}\right]^{n-1}$

Where, t_1 and t_2 are the half-life periods when the initial concentration are a_1 and a_2

According to question $t_1 = 0.1s, a_1 = 200$ $t_2 = 0.4s, a_2 = 50$ On substitution the values $0.1 - \left[\frac{50}{2}\right]^{(n-1)}$

On taking log on both sides

$$log \frac{0.1}{0.4} = (n-1)log \frac{50}{200}$$

$$0.60 = (n-1) \times 0.60$$

$$(n-1) = \frac{0.60}{0.60} = 1$$

$$n-1 = 1$$

$$n = 1 + 1 = 2$$
264 (d)

$$A \rightarrow product$$

$$-\frac{d[A]}{dt} = k_1[A]^0$$
Units of $k_1 = Ms^{-1}$

$$B \rightarrow product$$

B→ product

$$-\frac{d[B]}{dt} = k_2[B]$$
Units of $k_2 = s^{-1}$

265 (d)

Choice (c) is an exceptional case. The rate of reaction always increases with increase in temperature.

50

266 (d)

Slowest step is rate determining step, thus, in case (A), rate law is given as rate = $k[Cl_2][H_2S]$ While for the reaction given in case (B), rate law is given as rate = $k[H_2S][Cl_2][H^+]^{-1}$ Hence, only mechanism (A) is consistent with give rate law.

267 **(b)**

Rate of reaction $1 \left[\frac{d[A]}{d} \right] = 1 r 0.5 - 0.5$

$$= \frac{1}{2} \left[\frac{-d[A]}{dt} \right] = \frac{1}{2} \left[\frac{0.5 - 0.4}{10} \right]$$

= 0.005 mol litre⁻¹min⁻¹.

268 (a)

For 2/3 of a reaction

$$[A]_{0} = a, [A] = a - \frac{2}{3} a = \frac{a}{3}$$

$$\therefore t_{2/3} = \frac{2.303}{k} \log \frac{[A]_{0}}{[A]}$$

$$= \frac{2.303}{5.48 \times 10^{-14}} \log \frac{a}{a/3}$$

$$= \frac{2.303}{5.48 \times 10^{-14}} \log 3$$

$$t_{2/3} = 2.01 \times 10^{13} \text{ s}$$

269 (c) First calculate number of half-lives with $C_n = \frac{C_0}{2^n}$ Then calculate $t_{1/2}$ as $t_{1/2} = \frac{\text{total time taken}}{\text{number of half-lives}}$ afterwards $t_{1/2} = \frac{0.693}{k}$ $50 = \frac{800}{2^n}$ $2^n = \frac{800}{50} = 16 = 2^4$ n = 4 $T = n \times t_{1/2}$ $t_{1/2} = \frac{2 \times 10^4}{4} = 0.5 \times 10^4 \text{ s}$ $k = \frac{0.693}{0.5 \times 10^4} = 1.386 \times 10^{-4}$ 270 (c) Given N_0 = initial concentration = 1 N=concentration after time $t = \frac{1}{2}$ $K = 6.9 \times 10^{-3} s^{-1}$ $N = N_0 \left(\frac{1}{2}\right)^n$ 0r $\frac{1}{8} = 1\left(\frac{1}{2}\right)^n$ $\therefore n = 3$ $t_{1/2} = \frac{0.693}{k} = \frac{0.693}{6.9 \times 10^{-3}} = 100s$ $T=n \times t_{1/2}$ $=3 \times 100$ =300s \therefore after 300s it will be reduced to 1/8 of original concentration. 271 (c) Order of reaction is sum of powers raised on concentration terms in order to write rate expression. 272 (c) In Haber's process, ammonia is synthesized as $N_2 + 3H_2 \frac{Fe, Mo, 300^{\circ}C}{High Pressure} \rightarrow 2NH_3$ Rate of synthesis of ammonia = $\frac{60}{60}$ =1 mol/min: Rate of disappearance of nitrogen, i.e., $\frac{-d[N_2]}{dt} = \frac{1}{2} \frac{d[NH_3]}{dt}$ $=\frac{1}{2} \times = 0.5 \ mol/min$ 273 (c)

$$t_{1/2} \propto \frac{1}{(a)^{n-1}}$$

For second order reaction, n = 2

$$\therefore t_{1/2} \propto \frac{1}{a}$$

274 **(a)**

For I order :
$$(t_{1/2})_1 = \frac{0.693}{K_1}$$

For zero order : $(t_{1/2})_0 = \frac{a}{2K_0}$
 $\therefore \frac{K_1}{K_0} \times \frac{1.386}{2 \times 0.693} = \frac{(t_{1/2})_0}{(t_{1/2})_1}$
 $\frac{K_1}{K_0} = \frac{20 \times 2 \times 0.693}{40 \times 1.386} = 0.5 \text{ mol}^{-1}$ litre

275 **(b)**

On increasing the temperature the kinetic energy of the reacting molecules increases and hence, number of collisions increases. So, the rate of reaction will also be increased.

276 **(b)**

For I order reaction,

$$log(a - x) = log a - \frac{Kt}{2.303}$$
$$y = c + mx$$

277 **(d)**

The half-life period of a first order reaction is independent of the initial concentration of the reactant

$$t_{1/2} = \frac{0.693}{k}$$

278 **(d)**

 $\frac{r_{(t+10)}}{r_t} = 2 \text{ for each } 10^\circ \text{ rise in temperature}$ $\therefore \frac{r_{100}}{r_{10}} = (2)^9 = 512 \text{ times}$

279 **(c)**

For zero order reaction, [A] = -kt + [A]0Where, [A]0= initial concentration=a [A]=remaining concentration= a - a = 0On putting value of $[A]_0$ and [A],we get $t = \frac{a}{k}$ 280 (c)

 $2N_2O_5 \rightleftharpoons 2N_2O_4 + O_2$ Bimolecular but of first order.

281 (a)

For first order reaction : $t = \frac{2.303}{k} \log \frac{a}{a - x}$ For 1st case :

 $a = 100, x = 50, t = 120 \min$ $k = \frac{2.303}{120} \log \frac{100}{100 - 50}$ $=\frac{2.303}{120}\log 2$ $k = \frac{\frac{2.303 \times 0.3010}{120}}{120}$ $k = 0.0057 \text{ min}^{-1}$ For the IInd case : $t = \frac{2.303}{0.0057} \log \frac{100}{100 - 90}$ $=\frac{2.303}{0.0057}\log 10$ $t = 404 \min$ $\approx 400 \text{ min}$ 282 (a) Order of reaction may be fractional. 283 (a) Difference in threshold energy barrier gives different values of energy of activation. Also $K = Ae^{-E_a/RT}$ and rate $= K[reactant]^n$ 284 (d) Order of reaction is sum of powers raised on concentration terms in order to write rate expression. 285 **(b)** Let, $r = K[A]^m [B]^n$ $r_1 = K[A]^m [2B]^n$ $r_{2} = K[2A]^{m}[2B]^{n}$ Also, $\frac{r_{1}}{r} = 2$ and $\frac{r_{2}}{r} = 8$ (Given) Therefore m = 2 and n = 1 $r = K[A]^2[B]^1$ *:*. 286 (d) The higher threshold energy barrier prevents coal to burn spontaneously and provides kinetic stability to fuel. 287 (b) $[\mathrm{H^+}] = \frac{6 \times 10^{-7} \text{ mol}}{5 \times 10^{-5} \text{ J}} = 1.2 \times 10^{-2} \text{M}$ r

rate
$$= \frac{dx}{dt}$$
 or $dt = \frac{dx}{rate} = \frac{1.2 \times 10^{-2} \text{ M}}{6 \times 10^{5} \text{ M/s}}$
= $2 \times 10^{-8} \text{ s}$

289 **(b)**

$$2NO_{2} \frac{k_{1}}{k_{2}} N_{2}O_{4}$$
Rate $= -\frac{1}{2} \frac{d[NO_{2}]}{dt}$

$$= k_{1}[NO_{2}]^{2} - k_{2}[N_{2}O_{4}]$$
 \therefore Rate of disappearance of NO₂
 $ie_{1}, -\frac{d[NO_{2}]}{dt} = 2k_{1}[NO_{2}]^{2} - 2k_{2}[N_{2}O_{4}]$
290 **(b)**
 $N_{2} + 3H_{2} \rightleftharpoons 2NH_{3}$
 $\frac{d[H_{2}]}{dt} = -0.3 \times 10^{-4} \text{ Ms}^{-1}$
Rate $= -\frac{1}{3} \frac{d[H_{2}]}{dt} = +\frac{1}{2} \frac{d[NH_{3}]}{dt}$
 $= \frac{d[NH_{3}]}{dt} = -\frac{2}{3} \frac{d[H_{2}]}{dt}$
 $= -\frac{2}{3} \times (-0.3 \times 10^{-4})$
 $= 0.2 \times 10^{-4} \text{ Ms}^{-1}$
291 **(d)**

For the given reaction,

$$\frac{-d[A]}{dt} = -\frac{1}{2}\frac{d[B]}{dt} = \frac{1}{3}\frac{d[C]}{dt} = \frac{d[D]}{dt}$$

292 **(c)**

The order of reaction with respect to a reacting compound *Y*, is zero. It means rate of reaction is independent of its concentration.

293 (d)

Rate of formation of SO_3 = rate of disappearance of SO_2

$$= 1.28 \times 10^{-3} \text{g/sec} = \frac{1.28 \times 10^{-3}}{64} \text{M/sec}$$
$$= \frac{1.28 \times 10^{-3}}{64} \times 80 \text{ g/sec}$$
$$= 1.60 \times 10^{-3} \text{g/sec}$$

294 **(c)**

$$N = N_0 \times \left(\frac{1}{2}\right)^n$$

$$\frac{1}{8}N_0 = N_0 \times \left(\frac{1}{2}\right)^n$$

$$N=3$$

$$T = n \times t_{1/2}$$

$$=3 \times 14 = 42s$$
295 (d)

 $\log_e K = \log_4 A - \frac{E_a}{RT}; \text{ (Arrhenius eq.)}$ If $T \to \infty$, then $\log_e K = \log_e A$

296 **(c)**

For first order reaction, rate=k[concentration] $k = 3 \times 10^{-6}$ per second, concentration=0.1M

Rate= $3 \times 10^{-6} \times 0.1$ $= 3 \times 10^{-7} m s^{-1}$ 297 (c) î . PE Reaction progress *i.e.*, $E_{a_{(b)}} > E_{a_{(f)}}$ 298 (c) Rate = k[A] $\therefore k = \frac{10^{-2}}{0.2} = 5 \times 10^{-2}$ Now, $t_{1/2} = \frac{0.693}{k} = \frac{0.693}{5 \times 10^{-2}} = 13.86 \text{ min}$ 299 (a) $\log K = \log A - \frac{E_a}{RT}$ $2.9 = \log A - \frac{E_a}{2.303R \times 769}$ $L1 = \log A = \frac{E_a}{2.303R \times 667}$...(i) ...(ii) Eqs. (i) - (ii) $1.8 = \frac{E_a}{R} \left[\frac{1}{667} - \frac{1}{769} \right]$ $1.8 = \frac{E_a}{R} \frac{[769 - 667]}{667 \times 769 \times 2.303}$ $E_a = 4.17 \times 10^4 \text{ cal/mol.}$:. 300 (c) $r = K[P]^2[Q]$ $r_1 = K[2P]^2[Q]$ $\therefore \frac{r_1}{r} = 4$ 301 (a) In the presence of acid, hydrolysis of ethyl acetate is a pseudo-unimolecular reaction but the actual value of k depends upon the concentration of H⁺ ion. As H₂SO₄ is stronger acid than HCl and moreover H⁺ ions produced from 0.05 M H₂SO₄ is double than 0.05 M HCl therefore, $k_1 < k_2$

$$-\frac{d[X]}{dt} = -\frac{1}{2}\frac{d[Y]}{dt} = \frac{d[P]}{dt}$$

305 **(b)**

For first order reaction $t_{1/2} \propto [a]^{\circ}$.

306 **(c)**

$$t_{50\%} = \frac{0.693}{k} = \frac{0.693}{100} \text{ s}$$

$$= 0.693 \times 10^{-3} \text{ s}$$

 \approx 7 milli second

308 **(b)**

For exothermic reaction $E_a \ge \Delta E$. However, rest all are true.

We have

$$\begin{split} E_{a_{(f)}} &= E_{\text{Threshold}} - E_{\text{Reactant}} \\ E_{a_{(b)}} &= E_{\text{Threshold}} - E_{\text{Product}} \\ \text{Thus,} & E_{a_{(f)}} - E_{a_{(b)}} = E_{\text{Product}} - E_{\text{Reaction}} = \Delta E \\ \text{If,} \ \Delta E &= -\text{ve then } E_{a_{(f)}} < E_{(b)} \\ \text{If,} \ \Delta E &= +\text{ve then } E_{a_{(b)}} > E_{(f)} \end{split}$$

309 **(b)**

Rate constant is characteristic of a reaction.

310 **(b)**

For a first order reaction, Arrhenius equation is given as

$$k = A. e^{-E_a/RT}$$

where, E_a = energy of activation $\therefore \frac{k_2}{k_1} = \frac{e^{-E_a/RT_1}}{e^{-E_a/RT_2}}$

$$= e^{E_a/RT_2 - E_a/RT_1} = e^{\frac{E_a}{R}} \left(\frac{1}{T_2} - \frac{1}{T_1}\right) = e^{\frac{E_a}{R}} \left(\frac{T_2 - T_1}{T_1 T_2}\right)$$

Taking log on both the sides, we get $k_0 = E_a (T_0 - T_1)$

$$\log \frac{\kappa_2}{k_1} = \log e^{\frac{\kappa_2}{R}} \left(\frac{T_2 - T_1}{T_1 T_2}\right)$$
$$= \frac{E_a}{2.303R} \left(\frac{T_2 - T_1}{T_1 T_2}\right)$$

311 (a)

24 g of Na has 6.02×10^{23} atoms

 $2 \times 10^{-4} \text{ g of Na will have} = \frac{6.02 \times 10^{23}}{24} \times 2 \times 10^{-4} \text{ atoms}$ $= 0.502 \times 10^{19} \text{ atoms}$ $k = \frac{\text{disintegration (in atom s^{-1})}}{\text{no. of atoms present}}$ $= \frac{7.0 \times 10^{12}}{0.502 \times 10^{19}}$

$$= 13.94 \times 10^{-7} \, \mathrm{s}^{-1}$$

Therefore,
$$t_{1/2} = \frac{0.693}{13.94 \times 10^{-7}} = 4.97 \times 10^5 \text{ s}$$

312 (d)

 $k = \frac{2.303}{t} \log \frac{A_0}{A}$

 $=\frac{2.303}{t}\log\frac{0.1}{0.005}$ $=\frac{2.303}{t}\log 20 = 0.075$ Rate of reaction when concentration of X is 0.01 M will be $0.075 \times 0.01 = 7.5 \times 10^{-4} \text{min}^{-1}$ 313 (c) For a zero order reaction $A \rightarrow \text{product}$ Rate = $\frac{-d[A]}{dt} = k[A]^0 = k$ $-d[A] = k \cdot dt$ Integrating the above equation $-\int d[A] = k \int dt$ $-[A] = kt + \theta$...(i) At $t = 0, A[A]_0$ $-[A]_0 = k \times 0 + \theta$ $\theta = -[A]_{0}$ $\therefore -[A] = kt - [A]_0$ Or $[A] = -kt + [A]_0$ 314 (c) $2A + B \rightarrow C$ Rate = k[A][B]It represents second order reaction. Thus, unit of k is $M^{-1}S^{-1}$ \therefore (a) is false T_{50} is dependent of concentration but not constant \therefore (b) is false $-\frac{1}{2}\frac{d[A]}{dt} = \frac{d[C]}{dt},$ thus (C) is correct 315 **(b)** For *nth* order reaction the unit of k is expressed as $conc.^{(1-n)} time^{-1}$ Hence, for second order, the unit of rate constant is as $conc.^{(1-2)} time^{-1}$ conc.⁻¹ time⁻¹ 316 (a)

$$t = \frac{2.303}{k} \log \frac{[A]_0}{[A]}$$
$$= \frac{2.303}{60} \log \frac{a}{\frac{a}{16}} = \frac{2.303}{60} \log 16$$
$$= \frac{2.303}{60} \times 1.204$$
$$= 0.0462 \text{ s}$$
$$= 4.6 \times 10^{-2} \text{ s}$$

317 **(b)**

The rate constant of reaction depends upon temperature.

318 (c)

If the temperature is increased by 60°C then 10° increase has been made 6 times and therefore, rate will increase by $2^{6} = 64$ times

320 (d)

Rate of reaction depends upon nature of reactants, concentration of the reactants, temperature and presence of catalyst.

321 (a)

No doubt an increase in temperature may increase no. of collisions also but this is the increase in number of effective collisions (with more energy) which decide the rate.

322 (c)

From slow step, rate = $k[B_2][A]$ From 1st equation $k_{eq} = \frac{[A]^2}{[A_2]}$ $Or [A] = \sqrt{k_{eq}[A_2]} = k_{eq}^{1/2} A_2^{1/2}$ Hence, rate = $k[B_2] k_{eq}^{1/2} A_2^{1/2}$ = $k'[A_2]^{1/2}[B_2]$ Hence, order = $1\frac{1}{2}$

323 **(a)**

According to formula $k = PZe^{-\frac{E_a}{RT}}$ Lowering of E_a (activation energy), raises the value of k.

324 (c)

 $k = Ae^{-\frac{E_a}{RT}}$ k = rate constant A = pre-exponential, frequency factor $E_a = \text{activation energy}$ R = gas constantT = temperature

325 **(b)**

Slowest step of mechanism decides the rate expression,

Thus, rate = $K[NO_2][F_2]$

326 (d)

Net rate of reaction = rate of forward reaction – rate of backward reaction

$$= K_f [reactants] - K_b [Product]$$

Also
$$K_c = \frac{K_f}{K_b}$$
 at equilibrium

327 **(a)**

When volume is reduced to one fourth,

concentration become four times. Hence, the rate of reaction becomes 16 times as compared to the initial rate.

328 (c)

We know that,

$$t_{1/2} = \frac{0.693}{k}$$

or $k = \frac{0.693}{t_{1/2}} = \frac{0.693}{480}$
 $= 1.44 \times 10^{-3} s^{-1}$

329 (d)

Number of collisions of one molecules/unit time=*X*

Number of collision of *N* molecules/unit time=*NX*.

As in one collision, two molecules are involved, collision frequency=NX/2.

330 **(a)**

 $K = 2.34s^{-1}$

Unit of k suggest that the reaction is of $1^{\mbox{\scriptsize st}}$ order, hence for $1^{\mbox{\scriptsize st}}$ order reaction,

$$t_{1/2} = \frac{0.693}{k}$$
$$= \frac{0.693}{2.34} = 0.30s$$

331 **(b)**

For zero order reaction integrated rate equation is

$$kt = [A]_0 - [A]$$

If $[A]_0 = a, [A] = \frac{a}{2}, t = t_{1/2}$

$$kt_{1/2} = a - \frac{a}{2}$$

$$kt_{1/2} = \frac{a}{2}$$

$$t_{1/2} = \frac{a}{2k}$$

 $\therefore t_{1/2} \propto a$
332 (a)
Arrhenius equation $k = Ae^{-\frac{E}{R^2}}$

Page | 64

In
$$k = \ln A - \frac{E}{RT}$$

or $\log k = \log A - \frac{E}{2.303 RT}$
Hence, *E* is calculated with the help of slope of following.

$$\int_{\log k} \int_{\frac{1}{T}} \frac{1}{T}$$
333 **(b)**
 $k = 2.1 \times 10^{10} \exp(-2700/RT)$
 $ie, \log k vs 1/T$ will be straight line
Intercept of $\log k$ axis = $\log 2.1 \times 10^{10}$
334 **(c)**
 $\frac{dA}{dt} = k[A]^2$
K= reaction rate constant
Then unit of second order reaction rate constant
 $k = -\frac{d[A]}{dt} \times \frac{1}{[A]^2}$

$$= \frac{1}{s.mol \ L^{-1}}$$

or $L \ mol^{-1}s^{-1}$ or $L \ mol^{-1}t^{-1}$

335 (a)

Given, $R_1 = k[A]^2[B]$ Let concentration of B is changed by x times. Then,

 $R_2 = k[A/2]^2[xB]$ $= k \times x/4[A]^2[B]$ $= x/4 \times k[A]^2[B]$ As $R_2 = R_1$, thus x = 4

336 **(b)**

The intermediates species is one which is formed and used up during the course of reaction.

337 (d)

Integrated rate expression for 1/2 order is $-2c^{1/2} = Kt - 2c_0^{1/2}.$

338 (a)

If the order of reaction w.r.t. A is n and the order of reaction w.r.t. B is m, rate law become Rate $=k[A]^n[B]^m$ From (1) $5 \times 10^{-5} = [0.20]^n [0.30]^m \dots (i)$ From (2) $5 \times 10^{-5} = [0.20]^n [0.10]^m \dots (ii)$

From (3) $1 \times 10^{-4} = [0.40]^n [0.05]^m$... (*iii*) or $10 \times 10^{-4} = [0.40]^n [0.05]^m$ from eqs.(i) and (ii) $\frac{5 \times 10^{-5}}{5 \times 10^{-5}} = \left[\frac{0.20}{0.20}\right]^n \left[\frac{0.30}{0.10}\right]^m$ $1 = (3)^m \Rightarrow (3)^0 = (3)^m \Rightarrow m = 0$ From eqs. (iii) and (iv) $\frac{5 \times 10^{-5}}{5 \times 10^{-5}} = \left[\frac{0.20}{0.40}\right]^n \left[\frac{0.10}{0.05}\right]^m$ $\frac{1}{2} = \left(\frac{1}{2}\right)^n \times \left(\frac{0.10}{0.05}\right)^0$ $\Rightarrow \frac{1}{2} = \left(\frac{1}{2}\right)^n \Rightarrow \left(\frac{1}{2}\right)^1 = \left(\frac{1}{2}\right)^n \Rightarrow n = 1$

Overall order of the reaction = n + m = 1 + 0 = 1

339 (b)

For II order reaction, $t = \frac{1}{K} \frac{x}{a(a-x)}$; if x = a/2, $t_{1/2} = \frac{1}{K \cdot a}$.

340 (c)

constant

$$2.303 \log \frac{K_2}{K_1} = \frac{E_a}{R} \left[\frac{T_2 - T_1}{T_1 T_2} \right]$$

$$\therefore 2.303 \log \frac{K_2}{K_1} = \frac{65 \times 10^3}{8.314} \left[\frac{25}{298 \times 273} \right]$$

$$\therefore \qquad \frac{K_2}{K_1} = 11.05$$

341 (b)

Arrhenius equation is, Rate constant, $k = Ae^{-E_a|RT}$ $k = Ae^{-2.303 RT/RT}$ $\frac{k}{A} = e^{-2.303}$ On solving, we get $\frac{k}{A} = 10^{-1}$

342 (d)

 $X \rightarrow Y$ is an endothermic reaction $\Delta H = +$ ve

 E_b = energy of activation of backward reaction E_f =energy of activation of forward reaction ΔH = heat of reaction Thus, $E_f = E_b + \Delta H$

Thus,
$$E_f > E_b$$

343 (c)
 $[A]_{left} = [B]_{formed} = n \times [A]_{decayed}$
 $A_0 e^{-\lambda t} = n \times A_0 [1 - e^{\lambda t}]$
 $\therefore e^{-\lambda t} = \frac{n}{n+1}$
 $\therefore [B]_{formed} = n \times A_0 \times \left[1 - \frac{n}{n+1}\right] = \frac{nA_0}{n+1}$

344 (c)

Three molecules are taking part in elementary step.

345 **(b)**

The rate expression is derived for slowest step of mechanism.

346 **(a)**

$$t_{1} = \frac{(t_{1/2})_{1}}{0.693} \ln\left(\frac{1}{1 - (1/4)}\right)$$
And $t_{2} = \frac{(t_{1/2})_{2}}{0.693} \ln\left(\frac{1}{1 - (3/4)}\right)$

$$\frac{t_{1}}{t_{2}} = \frac{8}{1} \times \frac{\ln(4/3)}{\ln 4}$$

$$= \frac{8 \times 0.125}{0.602} = \frac{0.001}{0.602}$$

$$= 1: \ 0.602$$
348 **(b)**

For zero order reaction $kt = [A]_0 - [A]$ For $t_{1/2}$, $[A] = [A]_0/2$ $\therefore kt_{1/2} = [A]_0 - [A]_0/2$ $= \frac{[A]_0}{2}$ $t_{1/2} = \frac{[A]_0}{2k}$

Given , $R = k[A][B]^2$ Where [A]=[2A] and B=[2B] $R' = k[2A][2B]^2$ $= k[2A]4[B]^2$ $= 8k[A][B]^2$ R'=8R

Thus, the rate will become eight times

351 **(d)**

A decrease in E_a will increase rate constant K and thus rate of reaction increases.

352 **(a)**

The temperature coefficient is the ratio of two velocity constants having the difference of 10°C. Temperature coefficient

$$=\frac{k_t+10}{k_t}$$

For most of the reactions its value lies between 2

and 3.
353 (c)

$$k = \frac{0.693}{t_{1/2}} = \frac{0.693}{693} = 0.001 \text{ s}^{-1}$$
354 (b)

$$-\frac{1}{3}\frac{d[\text{H}_2]}{dt} = \frac{1}{2}\frac{d[\text{NH}_3]}{dt}$$

$$= \frac{3}{2} \times \frac{d[\text{NH}_3]}{17} \text{ mol hr}^{-1}$$

$$= \frac{3}{2} \times \frac{10^{-3} \times 10^3}{17} \times 2 \times 10^{-3} \text{ kg hr}^{-1}$$

$$= 1.76 \times 10^{-4} \text{ kg hr}^{-1}$$
355 (a)
For l order reaction, $K = \frac{2.303 \log_{10} 2}{t_{1/2}}$
 \therefore $t_{1/2} = \frac{0.693}{K} = \frac{\ln 2}{K}$
356 (b)
For second order reaction
 $r = k[A]^2$...(1)
When concentration of A(reactant) is doubled
 $r' = k[2A]^2$...(2)
Comparing Eqs.(1) and(2)
 $r' = 4r$
357 (a)
With increase in temperature reaction rate
increases due to increase in number of molecules
having threshold energy.
358 (c)
The value of first order rate constant expends on
the units of the concentration term used is not the
correct statement.
359 (c)
Since rate constant = 1.0×10^7 mol litre⁻¹ sec⁻¹
 \therefore Zero order reaction.
For zero order
 $t = \frac{x}{K} = \frac{concentration used}{rate constant}$...(i)
 $\therefore 0.05 \text{ mL has } 3 \times 10^{-6} \text{ mole of H}^+$
 $\therefore 1000 \text{ mL has } \frac{3 \times 10^{-6} \times 10^3}{0.05}$
 $= 0.6 \times 10^{-1} \text{ mol/litre of H}^+$
 $\therefore By Eq. (i), t = \frac{0.6 \times 10^{-1}}{1 \times 10^7} = 6 \times 10^{-9} \text{ second}$
360 (c)
 $2A + B \rightarrow \text{ products}$
Rate of reaction, $r_1 = k[A]^2[B]$
If the concentration of A become double then the
rate will be

$$r_2 = k[2A]^2[B]$$

 $r_2 = 4k[A]^2[B]$
 $r_2 = 4r_1$

361 **(c)**

From $t_{1/2} \propto C_0^{1-n}$

Where, n =order of reaction

For second order n = 2

 $\therefore t_{1/2} \propto C_0^{1-2}$

 $t_{1/2} \propto C_0^{-1}$

362 **(b)**

10% of the reaction is completed in 20min .Next 20% of the reaction will be completed in next 20min. Hence, 10%+9%=19% of the reaction will be completed in 20+20=40min.

363 **(b)**

A graph plotted between log k versus $\frac{1}{T}$ for calculating activation energy is shown as:

From Arrhenius equation

$$\log k = \log A - \frac{E_a}{2.303 \ RT}$$

364 **(a)**

 $A \rightarrow B + C$

$$t_{1/2} = \frac{a}{2k} = \frac{1}{2 \times 0.001} = 500 \text{ s}$$

And
$$T = \frac{a}{k} = \frac{1}{0.001} = 1000 \text{ s}$$

$$r \propto [2C0]^{2}$$

$$r^{1} \propto [2C0]^{2}$$

$$r^{1} \propto 4[C0]^{2}$$
Hence,
$$\frac{r^{1} \propto 4[C0]^{2}}{r^{1} \propto [C0]^{2}}$$

$$r^{1} \propto 4r$$
366 (a)
$$2A \rightarrow B + C$$

$$2p \qquad 0 \qquad 0$$

2p-x x x after 10 min 0 p p after completion Given, P+P=200 After 10 min, 2p - x + x + x = 300 (given) 2p + x = 300 x = 300 - 200 = 100 $k = \frac{2.303}{10} log \frac{200}{100} = 0.0693 \text{ min}^{-1}$ 367 (a) Arrhenius equation is written as $k = Ae^{-E_a/RT}$ Taking logarithm, above equation may be written

$$\ln k = \ln A - \frac{E_a}{R} \times \frac{1}{T}$$

$$\therefore \ln k_1 = \ln A - \frac{E_a}{R} \times \frac{1}{T_1} \qquad \dots (i)$$

$$\ln k_2 = \ln A - \frac{E_a}{R} \times \frac{1}{T_2} \qquad \dots (ii)$$

Subtracting the Eq. (i) from Eq. (ii)

$$\ln k_{2} - \ln k_{1} = \frac{E_{a}}{R} \left[\frac{1}{T_{1}} - \frac{1}{T_{2}} \right]$$
$$\ln \frac{k_{2}}{k_{1}} = \frac{E_{a}}{R} \left[\frac{1}{T_{1}} - \frac{1}{T_{2}} \right]$$

368 (b)

25

$$c_{12}H_{22}O_{11} + H_2O \xrightarrow{Dil.acid} C_6H_{12}O_6 + C_6 + H_{12}O_6$$

Excess glucose fructose

when one of the reactant is present in large excess, the second order reaction confirms to the first order and is knows as Pseudo-unimolecular reaction

369 **(d)**

Rate of reaction = $-\frac{1}{3}\frac{d[H_2]}{dt} = \frac{d[N_2]}{dt} = \frac{1}{2}\frac{d[NH_3]}{dt}$ 370 (b) $r = K[A]^n$ $2.4 = K[2.2]^n$ $0.6 = K[1.1]^n$ $\therefore 4 = (2)^n \text{ or } n = 2$ 371 (b) $\frac{dx}{dt} = k[A]^2$ $k = \frac{dx}{dt[A]^2}$ $= \frac{mol(L)^2}{L \times s \times (mol)^2}$ $mol^{-1}Ls^{-1}$ 372 (a) $A \rightarrow product$ (first order reaction) For first order reaction ,

Rate constant (k) = $\frac{2.303}{t} log_{10} \frac{[A]_0}{[A]_t}$ At $=\frac{2.303}{40}\log_{10}\frac{0.1}{0.025}=\frac{2.303}{40}\log_{10}4$ $\frac{2.303}{40} \times 2log_{10}2 = \frac{2.303}{40} \times 2 \times 0.3010$ $=0.0347 \text{ min}^{-1}$ At concentration of A = 0.01 M = [A] $\frac{dx}{dt}k[A]$ Rate $\frac{dx}{dt} = 0.0347 \times 0.01$ $= 3.47 \times 10^{-4} mol L^{-1} min^{-1}$ 373 (a) $2A + B \rightarrow A_2B$ $r_1 = k[A]^2[B]$ $r_2 = k[2A]^2[B/2]$ Or $r_2 = 2k[A]^2[B]$ $\therefore r_2 = 2r_1$ 375 (a) Given that, $k = 2.34s^{-1}$ unit of 'k' suggest that the reaction is of Ist order, hence for Ist order reaction, $t_{1/2} = \frac{0.693}{k}$ $=\frac{0.693}{2.34}$ =0.30 s376 (c) $2.303 \log \frac{K_2}{K_1} = \frac{E_a}{R} \left[\frac{T_2 - T_1}{T_1 T_2} \right]; T_1 = 280 \text{ K},$ $T_2 = 290 \text{ K}; \frac{\text{K}_2}{K_1} = 2$ $2.303 \log \frac{K_2'}{K_1'} = \frac{E_a}{R} \left[\frac{T_2' - T_1'}{T_1' T_2'} \right]; T_1' = 290 \text{ K}; T_2$ = 310 K377 (c) Arrheniu equation gives relation between rate constant and temperature of a reaction. It can be written in many forms, as $k = Ae^{-E_a/RT}$ Where, k = rate constant E_a = activation energy T =absorbption temperature A = frequency factor 378 (c) Order of reaction is sum of the power raised on concentration terms to express rate expression. 379 **(b)** $k = Ae^{-E/RT}$

E is activation energy, it is that energy, which

molecule must have to give the product. 381 **(b)**

$$\frac{K_{t+10}}{K_t} = \frac{r_t + 10}{r_t} = 2;$$

For an increase of temperature to 50° C, *i. e.*, 5 times, the rate increases by 2^{5} times, *i. e.*, 32 times.

382 **(a)**

$$A_{2}(g) \rightarrow B(g) + \frac{1}{2}C(g)$$

$$\therefore \qquad -\frac{d[A_{2}]}{dt} = 2 \cdot \frac{d[C]}{dt} = \frac{d[B]}{dt}$$

Also the increase in pressure is due to the formation of C because one mole of A_2 gives one mole of *B* and half mole of C. Thus,

$$\frac{d[C]}{dt} = \frac{120 - 100}{5} = 4 \text{ mm min}^{-1}$$

383 **(b)**

The units of the rate constant for nth order reaction is $\left(\frac{mol}{L}\right)^{1-n} s^{-1}$ \therefore for second order reaction,

Unit of rate constant
$$\left(\frac{mol}{L}\right)^{1-n} s^{-1}$$

 $mol^{-1}Ls^{-1} = L /mol - s$

384 **(b)**

However, order should not be suggested from chemical equation. This question is not correct.

385 **(c)**

 $A + B \rightarrow C$

On doubling the concentration of A, rate of reaction increases by 4 times.

 \therefore rate $\propto [A]^2$ (w.r.t. A)

However, on doubling the concentration of B rate of reaction increases two times.

 \therefore rate $\propto [B]^2$ (w.r.t.B)

Thus, overall order of reaction =2+1=3

386 **(d)**

$$K_1 = A_1 e^{-E_1/RT}$$
 and $K_2 = A_2 e^{-E_2/RT}$
 $\frac{K_1}{K} = \frac{A_1}{4} e^{(-E_1 + E_2)/RT}$; A_1 and A_2 are not given.

H₂ + I₂ → 2HI Rate of reaction, $= \frac{-d[H_2]}{dt} = \frac{-d[I_2]}{dt} = \frac{1}{2} \frac{d[HI]}{dt}$ Or $= \frac{-2d[H_2]}{dt} = \frac{-2d[I_2]}{dt} = \frac{d[HI]}{dt}$

388 (c)87.5% completion means 3 half lives.

389 **(b)**

$$k = \frac{0.693}{t_{1/2}}$$

$$k = \frac{0.693}{10} \text{ yr}^{-1}$$

$$t = \frac{2.303}{k} \log \frac{a}{a - x}$$

$$= \frac{2.303 \times 10}{0.693} \log \frac{a}{a - 0.99a}$$

$$= \frac{23.03}{0.693} \log 100$$

$$t = \frac{23.03}{0.693} \times 2 = 66.46 \text{ yr} \approx 70 \text{ yr}$$

391 (a)

Luminescence is the emission of light by a substance for any reason other than rise in its temperature.

- 1. **Chemiluminescence** it is luminescence resulting from a chemical reaction, this is emission of visible light
- 2. **Phosphorescence** if the luminescence persists significantly after the existing cause is removed, it is called phosphorescence if it does not, and it is called **fluorescence**.
- 3. **Bioluminescence** It is luminescence produced by living organism *e*. *g*., firefly.

392 **(b)**

Reactions having low E_a are fast reactions and reactions having high E_a are slow reactions. If the E_a is high, then the number of effective collisions will be small and the reaction will be slow.

393 **(b)**

For the reaction,

$$\begin{aligned} &3A \to 2B \\ &Rate = -\frac{1}{3}\frac{d[A]}{dt} = +\frac{1}{2}\frac{d[B]}{dt} \\ &\vdots \quad +\frac{d[B]}{dt} = -\frac{2}{3}\frac{d[A]}{dt} \end{aligned}$$

394 **(a)**

For first order reaction the half-life period is independent of the initial concentration of the reactants.

 $t_{1/2} = \frac{0.693}{k}$ 395 (a)

First order kinetics,
$$k_1 = \frac{0.693}{t_{1/2}} = \frac{0.693}{40} s^{-1}$$

Zero order kinetics, $k_0 = \frac{C_0}{2t_{1/2}} = \frac{1.386}{2 \times 20}$
Hence, $\frac{k_1}{k_0} = \frac{0.693}{1.386} = 0.5$
396 (a)
Given, $r = KC_A^{3/2}c^{-1/2}$
 \therefore order of reaction $= \frac{3}{2} + (-\frac{1}{2})$
 $= \frac{3-1}{2} = 1$
397 (b)
 $A_1 \cdot e^{-E_{a1}/RT} = A_2 \cdot e^{-E_{a2}/RT}$
 $\frac{A_2}{A_1} = e^{(E_{a_2} - E_{a_1})/RT}$
 $10^2 = \exp\left(\frac{1200}{RT}\right)$
 $2 \ln 10 = \frac{1200}{2T}$
 $T = \left(\frac{600}{4.606}\right) K$

398 **(d)**

Nature and concentration of the reactants and temperature of the reaction influence the rate of reaction. But molecularity does not affect the rate of reaction as it includes the number of atoms, ions or molecules that must collide with one another to result into a chemical reaction.

$$k_{I} = \frac{\Delta[R]}{\Delta t} = \frac{0.25}{0.05} = 5$$
$$k_{II} = \frac{\Delta[R]}{\Delta t} = \frac{0.60}{0.12} = 5$$

So reaction must be zero order

400 **(b)**

For zero order, x = Kt, *i.e.*, y = mx + c; $\therefore c = 0$ or line passes through origin.

For an endothermic reaction

For a zero order reaction rate and rate constant are independent of reactant concentration

404 **(c)**

Rate constant is a characteristic constant for a given reaction.

405 **(c)**

The rate law for an elementary step can be given by simply observing the rate expression.

406 **(a)**

Threshold energy level is a characteristic of a reaction which may be however lowered, if catalyst is used.

407 **(b)**

$$t_{1/2} = 69.3 \text{ sec}$$
 $\therefore K = \frac{0.693}{69.3} = 10^{-2} \text{sec}^{-1}$
Now, $r = K[A] = 10^{-2} \times 0.1 = 10^{-3} M \text{ sec}^{-1}$

408 **(b)**

Rate =
$$k[N_2O_5]$$

2.4 × 10⁻⁵ = 3.0 × 10⁻⁵[N₂O₅]
[N₂O₅] = $\frac{2.4 \times 10^{-5}}{3.0 \times 10^{-5}}$ = 0.8 mol L⁻¹

409 **(b)**

Enzyme catalysed reactions decreases energy of activation to greater extent.

410 **(a)**

 $k = Ae^{-E_a/RT}$, As temperature increases k increases exponentially.

411 **(a)**

For the homogenous gaseous reaction, $A + B \xrightarrow{k} c, the rate law is$ $\frac{dx}{dt} = k[A][B]$ Or $k = \frac{dx}{dt \times [A][B]}$ $\frac{mol \ L^{-1}}{time \times mol \ L^{-1} \times mol \ L^{-1}}$ Or unit of rate constant 'k' is $mol^{-1} L \ time^{-1} or \ mol^{-1} Ls^{-1}.$ 412 (a)

For zero order reaction, $K = \frac{x}{t}$ If x = a (complete reactant to react); $t = \frac{a}{\kappa}$

413 **(b)**

for two-third of a reaction,

$$[A]_0 = a, [A] = a - \frac{2}{3}a = \frac{a}{3}$$
$$t_{2/3} = \frac{2.303}{k} \log \frac{[A]_0}{[A]}$$

 $=\frac{2.303}{k}\log\frac{a}{\frac{a}{2}}=\frac{2.303}{k}\log 3$ $t_{2/3} = \frac{2.303 \times 0.4771}{5.48 \times 10^{-14}} = 2.01 \times 10^{13} s$ 414 (d) Rate constant almost gets doubled by the increase of 10°C in temperature. Hence, the rate constant at 310 K will be $= 3.2 \times 10^{-3} \times (2)^2$ (∵increase in temperature=20 K) $= 1.28 \times 10^{-2} \mathrm{I}^{-1}$ 415 (a) Unit of $k = conc^{1-n}t^{-1}$ $\left(\frac{mol}{L}\right)^{1-4}t^{-1}$ $\left(\frac{mol}{I}\right)^{-3}t^{-1}$ Therefore, the unit of k is $\left(\frac{mol}{L}\right)^{-3} t^{-1}$ for fourth order reaction. 416 (d) It is the definition of chemical kinetics. 417 (b) $r = K[N_2O_5]$ $\therefore [N_2 O_5] = \frac{r}{K} = \frac{1.02 \times 10^{-4}}{3.4 \times 10^{-5}} = 3M$ 418 (a) For 50% *B* reacted, $K_2 = \frac{2.303}{t_2} \log \frac{100}{50}$ For 94% *A* reacted, $K_1 = \frac{2.303}{t_1} \log \frac{100}{6}$ $\frac{K_2}{K_1} = \frac{t_2}{t_1} \times \frac{0.3010}{1.2218}$ ÷ Since $t_2 = t_1$, because 50% *B* has reacted when 94% A has reacted. $\frac{K_2}{K_1} = \frac{0.3010}{1.2218} = 0.246 \text{ and } \frac{K_1}{K_2} = 4.06$ 419 (b) For first order half-life period is independent of initial concentration 420 (c) $K_1 = Ae^{-Ea/RT}$ $K_2 = Ae^{-[E_a - 2]/RT}$ $\frac{K_1}{K_2} = e^{2/RT} = e^{2/2 \times 10^{-3} \times 300} = 28$ 421 (d) Rate = $K_1[A] - K_2[B]$ for a reversible reaction of I order opposed by I order.

422 **(b)**

For Ist order reaction

$$k = \frac{2.303}{t} \log \frac{[A]_0}{[A]}$$

If $[A]_0 = a, [A] = a - \frac{a \times 20}{100} = 0.80a$
 $t = 10 \text{ min}$
 $k = \frac{2.303}{10} \log \frac{a}{0.80 a} = \frac{2.303}{10} \times 0.0969$
 $= 0.0223$
If $[A]_0 = a, [A] = a - \frac{a \times 75}{100} = 0.25 a$
 $t = \frac{2.303}{k} \log \frac{[A]_0}{[A]}$
 $= \frac{2.303}{0.0223} \log \frac{a}{0.25 a}$
 $= \frac{2.303}{0.0223} \times 0.6021$
 $= 62.18 \text{ min}$

423 **(b)**

Order of radioactive disintegration reaction is first. For example ${}_{88}Ra^{226} \rightarrow {}_{86}Rn^{222} + {}_{2}He^{4}$ Radium radon a-particle 424 (a)

$$C_{4}H_{8} \rightarrow 2C_{2}H_{4}$$
Mole at $t = 0$ a 0
Mole at $t = t$ $(a - x)$ $2x$
When $\frac{2x}{a - x} = 1$, then $x = \frac{a}{3}$
 $t = \frac{2.303}{K}\log\frac{a}{a - x}$
 $= \frac{2.303}{2.48 \times 10^{-4}}\log\frac{a}{a - \frac{a}{3}}$
 $= 1635.2$ second = 27.25 minute

425 (a)

If energy of activation for forward and backward reactions are same, reaction is neither exothermic not endothermic.

Half-life=6.93 min $k = \frac{0.693}{6.93} = 0.1$ We know k_1 for per cent completion $k_1 = \frac{2.303}{t} \log\left(\frac{100}{1}\right)$ $0.1 = \frac{2.303}{t} \log \frac{100}{1}$ $0.1 = \frac{2.303}{t} \log 10^2$ $t = \frac{2.303 \times 2}{0.1} = 46.06$ 427 (b) Rate = $K[NO]^2[O_2]^1$; Concentration of each species are reduced by 1/2on increasing volume to two times and thus, rate becomes 1/8 times of initial rate. 428 (c) The rate of reaction is rate = $k[N0]^2[0_2]$ When the volume is reduced to $\frac{1}{2}$, the concentration of each reactant is increased by 3 times $rate' = k[3NO]^2[3O_2]$ $= 27k[N0]^2[0_2]$ $\frac{\text{rate}'}{\text{rate}} = \frac{27k[\text{NO}]^2[\text{O}_2]}{k[\text{NO}]^2[\text{O}_2]}$ rate' = 27 rate429 (a) $K = 10^{-2} \text{mol}^{-1}$ litre sec⁻¹ $=\frac{10^{-2} \times 1000 \times 60}{6.02 \times 10^{23}} \text{ cc molecule}^{-1} \text{min}^{-1}$ $= 9.9618 \times 10^{-22} \text{ cc molecule}^{-1} \text{ min}^{-1}$ 431 (d) Activation energy of a reaction is constant at constant temperature hence, $E_1 = E_2$ 432 **(b)** Rate (r) = k[A][B] = kabWhen volume is reduced by one fourth then concentration becomes 4 times Hence, r' = k(4a)(4b)= 16kab $\therefore r' = 16r$ 433 (b)

426 (c)

The reactant taken in excess obeys zero order reaction;

$$\therefore r = K[B].$$

434 **(a)**

For first order reaction,

$$t = \frac{2.303}{1000} \log \frac{[A]_0}{10000}$$

$$t = \frac{\log \frac{\log 1}{[A]}}{[A]_0} = 5g, [A] = 3g \ k = 1.15 \times 10^{-3} \text{s}^{-1}$$
$$t = \frac{2.303}{1.15 \times 10^{-3}} \log \frac{5}{3}$$
$$= \frac{2.303}{1.15 \times 10^{-3}} [\log 5 - \log 3]$$
$$= \frac{2.303}{1.15 \times 10^{-3}} \times 0.2218$$
$$= 444\text{s}$$

435 (d)

For II order reaction
$$\frac{c_0-c}{c} = K \cdot t \cdot c_0$$
.

436 **(b)**

We know, Given, $T_1 = 27 + 273 = 300 \ KK_1 = k$ $T_2 = 37 + 273 = 310 \ K_2 = 2k$ $R = 8.314 \times 10^{-3} \ \text{kJ}$ $2.303 \ \log \frac{k_2}{k_1} = \frac{E_a}{R} \left(\frac{T_2 - T_1}{T_1 - T_2} \right)$ $2.303 \ \log \frac{2k}{k} = \frac{E_a}{8.314 \times 10^{-3}} \times \left(\frac{310 - 300}{310 \times 300} \right)$

$$2.303 \log 2 = \frac{E_a}{8.314 \times 10^{-3}} \times \frac{10}{93000}$$
$$2.303 \times 0.3010 = \frac{E_a}{8.314 \times 10^{-3}} \times 0.000108$$
$$E_a = \frac{2.303 \times 0.3010 \times 8.314 \times 10^{-3}}{0.000108}$$
$$= \frac{5.7633 \times 10^{-3}}{0.000108}$$
$$E_a = 53.363 \text{ kJ}$$

437 (d)

If the concentration of reactants is increased by x, then rate constant k remains same, *ie*, k because change of concentration has no effect on the rate constant

