## Single Correct Answer Type

1. If $(1+x)^{15}=C_{0}+C_{1} x+C_{2} x^{2}+\ldots+C_{15} x^{15}$, then $C_{2}+2 C_{3}+3 C_{4}+\ldots+14 C_{15}$ is equal to
a) $14.2^{14}$
b) $13.2^{14}+1$
c) $13.2^{14}-1$
d) None of these
2. If the coefficients of second, third and fourth terms in the expansion of $(1+x)^{2 n}$ are in A.P., then
a) $2 n^{2}+9 n+7=0$
b) $2 n^{2}-9 n+7=0$
c) $2 n^{2}-9 n-7=0$
d) None of these
3. If $|x|<\frac{1}{2^{2}}$, then the coefficient of $x^{r}$ in the expansion of $\frac{1+2 x}{(1-2 x)^{2}}$, is
a) $r 2^{r}$
b) $(2 r-1) 2^{r}$
c) $r 2^{2 r+1}$
d) $(2 r+1) 2^{r}$
4. $\binom{30}{0}\binom{30}{10}-\binom{30}{1}\binom{30}{11}+\ldots\binom{30}{20}\binom{30}{30}$ is equal to
a) ${ }^{30} C_{11}$
b) ${ }^{60} C_{10}$
c) ${ }^{30} C_{10}$
d) ${ }^{65} C_{55}$
5. If $\left(1-x+x^{2}\right)^{n}=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{2 n} x^{2 n}$, then $a_{0}+a_{2}+a_{4}+\cdots+a_{2 n}$ is equal to
a) $\frac{3^{n}+1}{2}$
b) $\frac{3^{n}-1}{2}$
c) $\frac{3^{n-1}+1}{2}$
d) $\frac{3^{n-1}-1}{2}$
6. If $C_{0}, C_{1}, C_{2}, \ldots \ldots C_{n}$ denote the binomial coefficient in the expansion of $(1+x)^{n}$, then $C_{0} \frac{C_{1}}{2}+\frac{C_{2}}{3}+\ldots+\frac{C_{n}}{n+1}$ is equal to
a) $\frac{2^{n+1}-1}{n+1}$
b) $\frac{2^{n}-1}{n}$
c) $\frac{2^{n-1}-1}{n-1}$
d) $\frac{2^{n+1}-1}{n+2}$
7. If the ratio of the $7^{\text {th }}$ term from the beginning to the seventh term from the end in the expansion of $\left(\sqrt[3]{2}+\frac{1}{\sqrt[3]{3}}\right)^{x}$ is $\frac{1}{6}$ then $x$, is
a) 9
b) 6,15
c) 12,9
d) None of these
8. If in the expansion of $\left(x^{3}-\frac{1}{x^{2}}\right)^{n}, n \in N$, sum of the coefficients of $x^{5}$ and $x^{10}$ is zero, then $n=$
a) 5
b) 10
c) 15
d) 20
9. The range of the values of the term independent of $x$ in the expansion of $\left(x \sin ^{-1} \alpha+\frac{\cos ^{-1} \alpha}{x}\right)^{10}, \alpha \in[-1,1]$ is
a) $\left[\frac{{ }^{10} \mathrm{C}_{5} \cdot \pi^{10}}{2^{5}},-\frac{{ }^{10} \mathrm{C}_{5} \mathrm{\pi}^{10}}{2^{20}}\right]$
b) $\left[-\frac{{ }^{10} \mathrm{C}_{5} \cdot \pi^{10}}{2^{5}}, \frac{{ }^{10} \mathrm{C}_{5} \cdot \pi^{10}}{2^{20}}\right]$
c) $\left[\frac{{ }^{10} \mathrm{C}_{5} \cdot \pi^{5}}{2^{5}}, \frac{{ }^{10} \mathrm{C}_{5} \cdot \pi^{5}}{2^{20}}\right]$
d) $\left[-\frac{{ }^{10} \mathrm{C}_{5} \cdot \pi^{5}}{2^{5}}, \frac{{ }^{10} \mathrm{C}_{5} \cdot \pi^{5}}{2^{20}}\right]$
10. $\binom{30}{0}\binom{30}{10}-\binom{30}{1}\binom{30}{11}+\ldots+\binom{30}{20}\binom{30}{30}$ is equal to
a) ${ }^{30} C_{11}$
b) ${ }^{60} C_{10}$
c) ${ }^{30} C_{10}$
d) ${ }^{65} C_{55}$
11. The $r$ th terms in the expansion of $(a+2 n)^{n}$ is
a) $\frac{n(n+1) \ldots(n-r+1)}{r!} a^{n-r+1}(2 x)^{r}$
b) $\frac{n(n-1) \ldots(n-r+2)}{(r-1)!} a^{n-r+1}(2 x)^{r-1}$
c) $\frac{n(n+1) \ldots(n-r)}{r+1} a^{n-r}(x)^{r}$
d) None of the above
12. The coefficient of $t^{24}$ in the expansion of $\left(1+t^{2}\right)^{12}\left(1+t^{12}\right)\left(1+t^{24}\right)$ is
a) ${ }^{12} C_{6}+2$
b) ${ }^{12} C_{5}$
c) ${ }^{12} C_{6}$
d) ${ }^{12} C_{7}$
13. The coefficient of $x^{n}$ in the expansion of $\frac{(1+x)^{2}}{(1-x)^{3}}$, is
a) $n^{2}+2 n+1$
b) $2 n^{2}+n+1$
c) $2 n^{2}+2 n+1$
d) $n^{2}+2 n+2$
14. The sum of the coefficient in the expansion of $\left(1+x-3 x^{2}\right)^{3148}$ is
a) 8
b) 7
c) 1
d) -1
15. If $C_{r}$ stands for ${ }^{n} C_{r}$, then the sum of first $(n+1)$ terms of the series $a C_{0}-(a+d) C_{1}+(a+2 d) C_{2}-$ $(a+3 d) C_{3}+\cdots$, is
a) $\frac{a}{2^{n}}$
b) $n a$
c) 0
d) None of these
16. The value of $\frac{18^{3}+7^{3}+3 \cdot 18 \cdot 7 \cdot 25}{3^{6}+6 \cdot 243 \cdot 2+15 \cdot 181 \cdot 4+20 \cdot 27 \cdot 8+15 \cdot 9 \cdot 16+6 \cdot 3 \cdot 32+64^{\prime}}$, is
a) 10
b) 1
c) 2
d) 20
17. The coefficient of $x^{5}$ in the expansion of $\left(1+x^{2}\right)^{5}(1+x)^{4}$, is
a) 30
b) 60
c) 40
d) None of these
18. If $n=5$, then $\left({ }^{n} C_{0}\right)^{2}+\left({ }^{n} C_{1}\right)^{2}+\left({ }^{n} C_{2}\right)^{2}+\ldots+\left({ }^{n} C_{5}\right)^{2}$ is equal to
a) 250
b) 254
c) 245
d) 252
19. The coefficient of $x^{50}$ in the expression $(1+x)^{1000}+2 x(1+x)^{999}+3 x^{2}(1+x)^{998}+\cdots+1001 x^{1000}$ is
a) ${ }^{1000} C_{50}$
b) ${ }^{1001} C_{50}$
c) ${ }^{1002} C_{50}$
d) ${ }^{1000} C_{51}$
20. For $|x|<1$, the constant term in the expansion of $\frac{1}{(x-1)^{2}(x-2)}$ is
a) 2
b) 1
c) 0
d) $-\frac{1}{2}$
21. $1+\frac{2 \cdot 1}{3 \cdot 2}+\frac{2 \cdot 5}{3 \cdot 6}\left(\frac{1}{2}\right)^{2}+\frac{2 \cdot 5 \cdot 8}{3 \cdot 6 \cdot 9} \cdot\left(\frac{1}{2}\right)^{3}+\ldots$ is equal to
a) $2^{1 / 3}$
b) $3^{1 / 4}$
c) $4^{1 / 3}$
d) $3^{1 / 3}$
22. If in the expansion of $\left(3 x-\frac{2}{x^{2}}\right)^{15} r$ th term is independent of $x$, then value of $r$ is
a) 6
b) 10
c) 9
d) 12
23. If $(1+x)^{n}=C_{0}+C_{1} x+C_{2} x^{2}+\ldots+C_{n} x^{n}$, then the value of $\sum_{0 \leq r<s \leq n} \sum(r+s)\left(C_{r}+C_{s}\right)$ is
a) $n^{2} .2^{n}$
b) $n .2^{n}$
c) $n^{2} \cdot 2^{2 n}$
d) None of these
24. If $C_{0}, C_{1}, C_{2}, \ldots, C_{n}$ denote the binomial coefficient in the expansion of $(1+x)^{n}$, then the value of $a C_{0}+(a+b) C_{1}+(a+2 b) C_{2}+\cdots+(a+n b) C_{n}$, is
a) $(a+n b)^{2 n}$
b) $(a+n b) 2^{n-1}$
c) $(2 a+n b) 2^{n-1}$
d) $(2 a+n b) 2^{n}$
25. $C_{0} C_{r}+C_{1} C_{r+1}+C_{2} C_{r+2}+\ldots+C_{n-r} C_{n}$ is equal to
a) $\frac{(2 n)!}{(n-r)!(n+r)!}$
b) $\frac{n!}{r!(n+r)!}$
c) $\frac{n!}{(n-r)!}$
d) None of these
26. If the coefficients of $x^{2}$ and $x^{3}$ in the expansion of $(3+a x)^{9}$ are the same, then the value of $a$, is
a) $-\frac{7}{9}$
b) $-\frac{9}{7}$
c) $\frac{7}{9}$
d) $\frac{9}{7}$
27. The total number of terms in the expansion of $(x+a)^{100}+(x-a)^{100}$ after simplification will be
a) 202
b) 51
c) 50
d) None of these
28. Coefficient of $x^{19}$ in the polynomial $(x-1)(x-2) \ldots . .(x-20)$ is equal to
a) 210
b) -210
c) 20 !
d) None of these
29. The sum of the last eight coefficient in the expansion of $(1+x)^{15}$ is
a) $2^{16}$
b) $2^{15}$
c) $2^{14}$
d) None of these
30. The number of terms in the expansion of $(a+b+c)^{n}$ will be
a) $n+1$
b) $n+3$
c) $\frac{(n+1)(n+2)}{2}$
d) None of these
31. The coefficient of $y$ in the expansion of $\left(y^{2}+c / y\right)^{5}$, is
a) 29 c
b) 10 c
c) $10 c^{3}$
d) $20 c^{2}$
32. The value of $(0.99)^{15}$ is
a) 0.8432
b) 0.8601
c) 0.8502
d) None of these
33. The sum of the coefficients in the expansion of $(x+y)^{n}$ is 4096 . The greatest coefficient in the expansion is
a) 1024
b) 924
c) 824
d) 724
34. If in the expansion of $(1+x)^{n}$, the coefficient of $r$ th and $(r+2)$ th term be equal, then $r$ is equal to
a) $2 n$
b) $\frac{2 n+1}{2}$
c) $\frac{n}{2}$
d) $\frac{2 n-1}{2}$
35. If the second, third and fourth term in the expansion of $(x+a)^{n}$ are 240,720 and 1080 respectively, then the value of $n$ is
a) 15
b) 20
c) 10
d) 5
36. The value of $\frac{1}{81^{n}}-\frac{10}{81^{n}}{ }^{2 n} C_{1} \frac{10^{2}}{81^{n}}{ }^{2 n} C_{2}-\frac{10^{3}}{81^{n}} 2^{2 n} C_{3}+\ldots+\frac{10^{2 n}}{81^{n}}$ is
a) 2
b) 0
c) $\frac{1}{2}$
d) 1
37. If $\left(1+x+x^{2}\right)^{n}=\sum_{r=0}^{2 n} a_{r} x^{r}$ then, $a_{1}-2 a_{2}+3 a_{3} \ldots-2 n a_{2 n}$ is equal to
a) $n$
b) $-n$
c) 0
d) $2 n$
38. The coefficient of the middle term in the expansion of $(1+x)^{2 n}$, is
а) $\frac{1 \cdot 3 \cdot 5 \ldots(2 n-1)}{n!} 2^{n}$
b) $\frac{1 \cdot 3 \cdot 5 \ldots(2 n-1)}{(n!)^{2}} 2^{n}$
c) $\frac{(2 n)!}{(n!)^{2}} 2^{2 n}$
d) None of these
39. The constant term in the expansion of $(1+x)^{10}\left(1+\frac{1}{x}\right)^{12}$ is
a) ${ }^{22} C_{10}$
b) 0
c) ${ }^{22} C_{11}$
d) None of these
40. If $a_{1}=1$ and $a_{n}=n a_{n-1}$ for all positive integer $n \geq 2$, then $a_{5}$ is equal to
a) 125
b) 120
c) 100
d) 24
41. If $(1+x)^{n}=C_{0}+C_{1} x+C_{2} x^{2}+\ldots+C_{n} x^{n}$, then the value of $C_{0}+2 C_{1}+3 C_{2}+\ldots+(n+1) C_{n}$ will be
a) $(n+2) 2^{n-1}$
b) $(n+1) 2^{n}$
c) $(n+1) 2^{n-1}$
d) $(n+2) 2^{n}$
42. In the expansion of $\left(x^{3}-\frac{1}{x^{2}}\right)^{n}, n \in N$, if the sum of the coefficients of $x^{5}$ and $x^{10}$ is 0 , then $n=$
a) 25
b) 20
c) 15
d) None of these
43. In the expansion of $\left(1+x+x^{2}+x^{3}\right)^{6}$, then coefficient of $x^{14}$ is
a) 130
b) 120
c) 128
d) 125
44. The 14 th term from the end in the expansion of $(\sqrt{x}-\sqrt{y})^{17}$ is
a) ${ }^{17} C_{5} x^{6}(-\sqrt{y})^{5}$
b) ${ }^{17} C_{6}(\sqrt{x})^{11} y^{3}$
c) ${ }^{17} C_{4} x^{13 / 2} y^{2}$
d) None of these
45. The sum of the coefficients in the expansion of $\left(1+2 x+3 x^{2}+\ldots+n x^{n}\right)^{2}$ is
a) $\sum 1$
b) $\sum n$
c) $\sum n^{2}$
d) $\sum n^{3}$
46. If $a_{k}$ is the coefficient of $x^{k}$ in the expansion of $\left(1+x+x^{2}\right)^{n}$ for $k=0,1,2, \ldots ., 2 n$ then
a) $-a_{0}$
b) $3^{n}$
c) $n \cdot 3^{n+1}$
d) $n \cdot 3^{n}$
47. The coefficient of $x^{n}$ in the polynomial $\left(x+{ }^{n} C_{0}\right)\left(x+3{ }^{n} C_{1}\right)\left(x+5{ }^{n} C_{2}\right) \ldots\left[x+(2 n+1)^{n} C_{n}\right]$
a) $n .2^{n}$
b) $n .2^{n+1}$
c) $(n+1) 2^{n}$
d) $n .2^{n}+1$
48. ${ }^{n-2} C_{r}+2^{n-2} C_{r-1}+{ }^{n-2} C_{r-2}$ equals
a) ${ }^{n+1} C_{r}$
b) ${ }^{n} C_{r}$
c) ${ }^{n} C_{r+1}$
d) ${ }^{n-1} C_{r}$
49. For $|x|<1$, the constant term in the expansion of $\frac{1}{(x-1)^{2}(x-2)}$ is
a) 2
b) 1
c) 0
d) $-\frac{1}{2}$
50. Coefficient of $x$ in the expansion of $\left(x^{2}+\frac{a}{x}\right)^{5}$ is
a) $9 a^{2}$
b) $10 a^{3}$
c) $10 a^{2}$
d) $10 a$
51. $\frac{1}{n!}+\frac{1}{2!(n-2)!}+\frac{1}{4!(n-4)!}+\cdots$ is equal to
a) $\frac{2^{n-1}}{n!}$
b) $\frac{2^{n}}{(n+1)!}$
c) $\frac{2^{n}}{n!}$
d) $\frac{2^{n-2}}{(n-1)!}$
52. The greatest coefficient in the expansion of $(1+x)^{10}$, is
a) $\frac{10!}{5!6!}$
b) $\frac{10!}{(5!)^{2}}$
c) $\frac{10!}{5!7!}$
d) None of these
53. In the expansion of $\left(\frac{a}{x}+b x\right)^{12}$,the coefficient of $x^{-10}$ will be
a) $12 a^{11}$
b) $12 b^{11} a$
c) $12 a^{11} b$
d) $12 a^{11} b^{11}$
54. The coefficient of $x^{10}$ in the expansion of $\left(1+x^{2}-x^{3}\right)^{8}$, is
a) 476
b) 496
c) 506
d) 528
55. If the $(r+1)^{\text {th }}$ term in the expansion of $\left\{\sqrt[3]{\frac{a}{\sqrt{b}}}+\sqrt{\frac{b}{\sqrt[3]{a}}}\right\}^{21}$ contains $a$ and $b$ to one and the same power, then the value of $r$, is
a) 9
b) 10
c) 8
d) 6
56. The $(r+1)$ th term in the expansion of $(1-x)^{-4}$ will be
a) $\frac{x^{r}}{r!}$
b) $\frac{(r+1)(r+2)(r+3)}{6} x^{r}$
c) $\frac{(r+2)(r+3)}{2} x^{r}$
d) None of these
57. If $y=\frac{1}{3}+\frac{1 \cdot 3}{3 \cdot 6}+\frac{1 \cdot 3 \cdot 5}{3 \cdot 6 \cdot 9}+\cdots$, then the value of $y^{2}+2 y$ is
a) 2
b) -2
c) 0
d) None of these
58. Let $S(k)=1+3+5+\ldots+(2 k-1)=3+k^{2}$. Then, which of the following is true?
a) $S(1)$ is correct
b) $S(k) \Rightarrow S(k+1)$
c) $S(k) \nRightarrow S(k+1)$
d) Principle of mathematical induction can be used to prove the formula
59. The number of irrational terms in the expansion of $\left(5^{1 / 6}+2^{1 / 8}\right)^{100}$ is
a) 96
b) 97
c) 98
d) 99
60. If the $r$ th term in the expansion of $\left(x / 3-2 / x^{2}\right)^{10}$ contains $x^{4}$, then $r$ is equal to
a) 2
b) 3
c) 4
d) 5
61. When $32^{(32)^{(32)}}$ is divided by 7 , then the remainder is
a) 2
b) 8
c) 4
d) None of these
62. The value of $x$, for which the 6th term in the expansion of $\left\{2^{\log _{2} \sqrt{\left(9^{x-1}+7\right)}}+\frac{1}{2^{(1 / 5) \log _{2}\left(3^{x-1}+1\right)}}\right\}^{7}$ is 84 , is equal to
a) 4
b) 3
c) 2
d) 5
63. If $P(n): 2+4+6+\cdots+(2 n), n \in N$, then
$P(k)=k(k+1)+2$ implies
$P(k+1)=(k+1)(k+2)+2$
is true for all $k \in N$. So, statement $P(n)=n(n+1)+2$ is true for
a) $n \geq 1$
b) $n \geq 2$
c) $n \geq 3$
d) None of these
64. The number of terms in the expansion of $\left(1+2 x+x^{2}\right)^{20}$, when expanded in descending powers of $x$, is
a) 20
b) 21
c) 40
d) 41
65. The binomial coefficients which are in decreasing order are
a) ${ }^{15} C_{5},{ }^{15} C_{6},{ }^{15} C_{7}$
b) ${ }^{15} C_{10},{ }^{15} C_{9},{ }^{15} C_{8}$
c) ${ }^{15} C_{6},{ }^{15} C_{7},{ }^{15} C_{8}$
d) ${ }^{15} C_{7},{ }^{15} C_{6},{ }^{15} C_{5}$
66. $10^{n}+3\left(4^{n+2}\right)+5$ is divisible by $(n \in N)$
a) 7
b) 5
c) 9
d) 17
67. $\frac{{ }^{8} C_{0}}{6}={ }^{8} C_{1}+{ }^{8} C_{2} \cdot 6-{ }^{8} C_{3} \cdot 6^{2}+\cdots+{ }^{8} C_{8} \cdot 6^{7}$ is equal to
a) 0
b) $6^{7}$
c) $6^{8}$
d) $\frac{5^{8}}{6}$
68. If the coefficients of the second, third and fourth terms in the expansion of $(1+x)^{n}$ are in AP, then $n$ is equal to
a) 7
b) 2
c) 6
d) None of these
69. The expansion of $(8-3 x)^{3 / 2}$ in terms of powers of $x$ is valid only if
a) $x>\frac{8}{3}$
b) $|x|<\frac{8}{3}$
c) $x<\frac{3}{8}$
d) $x<\frac{8}{3}$
70. If ${ }^{n} C_{0},{ }^{n} C_{1},{ }^{n} C_{2} \ldots .{ }^{n} C_{n}$ denote the coefficient of the binomial expansion $(1+x)^{n}$, then the value of $C_{1}+3 C_{3}+5 C_{5}+\ldots$ is
a) $n 2^{n-2}$
b) $n 2^{n-1}$
c) $(n+1) 2^{n}$
d) $(n+2) 2^{n-1}$
71. The value of $x$ in the expansion $\left[x+x^{\log _{10} x}\right]^{5}$, if the third term in the expansion is 1000000 , is
a) 10
b) 11
c) 12
d) None of these
72. ${ }^{n} C_{0}-\frac{1}{2}{ }^{n} C_{1}+\frac{1}{3}{ }^{n} C_{2}-\ldots+(-1)^{n} \frac{{ }^{n} C_{n}}{n+1}$ is equal to
a) $n$
b) $\frac{1}{n}$
c) $\frac{1}{n+1}$
d) $\frac{1}{n-1}$
73. The remainder left out when $8^{2 n}-(62)^{2 n+1}$ is divided by 9 , is
a) 0
b) 2
c) 7
d) 8
74. The number of rational terms in the expansion of $\left(\sqrt[3]{4}+\frac{1}{\sqrt[4]{6}}\right)^{20}$, is
a) 3
b) 18
c) 4
d) 16
75. The number of terms in the expansion of $\left(x^{2}+1+\frac{1}{x^{2}}\right)^{n}, n \in N$, is
a) $2 n$
b) $3 n$
c) $2 n+1$
d) $3 n+1$
76. The digit at the unit place in the number $19^{2005}+11^{2005}-9^{2005}$ is
a) 2
b) 1
c) 0
d) 8
77. The coefficient of the middle term in the expansion of $(x+2 y)^{6}$ is
a) ${ }^{6} C_{3}$
b) $8\left({ }^{6} C_{3}\right)$
c) $8\left({ }^{6} C_{5}\right)$
d) ${ }^{6} C_{4}$
78. The coefficient of $x^{-17}$ in the expansion of $\left(x^{4}-\frac{1}{x^{3}}\right)^{15}$ is
a) ${ }^{15} C_{11}$
b) ${ }^{15} C_{12}$
c) $-{ }^{15} C_{11}$
d) $-{ }^{15} C_{3}$
79. If $\frac{(1-3 x)^{1 / 2}+(1-x)^{5 / 3}}{\sqrt{4-x}}$ is approximately equal to $a+b x$ for small values of $x$, then $(a, b)$ is equal to
a) $\left(1, \frac{35}{24}\right)$
b) $\left(1,-\frac{35}{24}\right)$
c) $\left(2, \frac{35}{12}\right)$
d) $\left(2,-\frac{35}{12}\right)$
80. If ${ }^{18} C_{15}+2\left({ }^{18} C_{16}\right)+{ }^{17} C_{16}+1={ }^{n} C_{3}$, then $n$ is equal to
a) 19
b) 20
c) 18
d) 24
81. $49^{n}+16 n-1$ is divisible by
a) 3
b) 19
c) 64
d) 29
82. In the expansion of $(1+x)^{50}$, the sum of the coefficients of odd powers of $x$ is
a) 0
b) $2^{49}$
c) $2^{50}$
d) $2^{51}$
83. The number of terms in the expansion of $(x+y+z)^{10}$, is
a) 11
b) 33
c) 66
d) 1000
84. If $\alpha=\frac{5}{2!3}+\frac{5 \cdot 7}{3!3^{2}}+\frac{5 \cdot 7 \cdot 9}{4!3^{2}}+\ldots \ldots .$. , then $\alpha^{2}+4 \alpha$ equal to
a) 21
b) 23
c) 25
d) 27
85. If $|x|<\frac{1}{2}$, then the coefficient of $x^{r}$ in the expansion of $\frac{1+2 x}{(1-2 x)^{2}}$, is
a) $r 2^{r}$
b) $(2 r-1) 2^{r}$
c) $r 2^{2 r+1}$
d) $(2 r+1) 2^{r}$
86. The coefficient of $x^{n} y^{n}$ in the expansion of $\{(1+x)(1+y)(x+y)\}^{n}$, is
a) $\sum_{r=0}^{n} C_{r}^{2}$
b) $\sum_{r=0}^{n} C_{r+2}^{2}$
c) $\sum_{r=0}^{n} C_{r+3}^{2}$
d) $\sum_{r=0}^{n} C_{r}^{3}$
87. If $\left(1+x+x^{2}\right)^{n}=C_{0}+C_{1} x+C_{2} x^{2}+\cdots$, then the value of $C_{0} C_{1}-C_{1} C_{2}+C_{2} C_{3}-\cdots$, is
a) $3^{n}$
b) $(-1)^{n}$
c) $2^{n}$
d) None of these
88. If $a, b, c$ are in AP, then the sum of the coefficients of $\left\{1+\left(a x^{2}-2 b x+c\right)^{2}\right\}^{1973}$ is
a) -2
b) -1
c) 0
d) 1
89. If the second term in the expansion $\left[\sqrt[13]{a}+\frac{a}{\sqrt{a^{-1}}}\right]^{n}$ is $14 a^{5 / 2}$, then the value of $\frac{n_{C_{3}}}{n_{C_{2}}}$ is
a) 4
b) 3
c) 12
d) 6
90. If $n>1$, then $(1+x)^{n}-n x-1$ is divisible by
a) $2 x$
b) $x^{2}$
c) $x^{3}$
d) $x^{4}$
91. The coefficient of $x^{6} a^{-2}$ in the expansion of $\left(\frac{x^{2}}{a}-\frac{a}{x}\right)^{12}$, is
a) ${ }^{12} C_{6}$
b) $-{ }^{12} C_{5}$
c) 0
d) None of these
92. If $(5+2 \sqrt{6})^{n}=I+f ; n, I \in N$ and $0 \leq f<1$, then $I$ equals
a) $\frac{1}{f}-f$
b) $\frac{1}{1+f}-f$
c) $\frac{1}{1+f}+f$
d) $\frac{1}{1-f}-f$
93. If $n \in N, n>1$, then value of $E=a-{ }^{n} C_{1}(a-1)+{ }^{n} C_{2}(a-2)+\ldots+(-1)^{n}(a-n)^{n} C_{n}$ is
a) $a$
b) 0
c) $a^{2}$
d) $2^{n}$
94. If $a_{r}$ is the coefficient of $x^{r-1}$ in $(1+x)^{n}+(1+x)^{n+1}+\ldots+(1+x)^{n+k}(n<r-1 \leq n+k)$, then $\sum_{r=0}^{n+k+1}(-1)^{r} a_{r}$ is equal to
a) 0
b) $n+k+1$
c) $(n+k+1)$ !
d) ${ }^{n+k+1} C_{r}$
95. The sum of $1+n\left(1-\frac{1}{x}\right)+\frac{n(n+1)}{2!}\left(1-\frac{1}{x}\right)^{2}+\cdots \infty$, will be
a) $x^{n}$
b) $x^{-n}$
c) $\left(1-\frac{1}{x}\right)^{n}$
d) None of these
96. If $T_{0}, T_{1}, T_{2}, \ldots, T_{n}$ represents the terms in the expansion of $(x+a)^{n}$, then $\left(T_{0}-T_{2}+T_{4}-\ldots\right)^{2}+$ $\left(T_{1}-T_{3}+T_{5}-\ldots\right)^{2}$ is equal to
a) $\left(x^{2}+a^{2}\right)$
b) $\left(x^{2}+a^{2}\right)^{n}$
c) $\left(x^{2}+a^{2}\right)^{1 / n}$
d) $\left(x^{2}+a^{2}\right)^{-1 / n}$
97. If the coefficient of $(2 r+1)$ th term and $(r+2)$ th term in the expansion of $(1+x)^{43}$ are equal, then $r$ is equal to
a) 12
b) 14
c) 16
d) 18
98. If $(1+x)^{n}=C_{0}+C_{1} x+C_{2} x^{2}+\ldots C_{n} x^{n}$, then $C_{0}^{2}+C_{1}^{2}+C_{2}^{2}+C_{3}^{2}+\ldots+C_{n}^{2}$ is equal to
a) $\frac{n!}{n!n!}$
b) $\frac{(2 n)!}{n!n!}$
c) $\frac{(2 n)!}{n!}$
d) None of these
99. If $n$ is a positive integer and $C_{k}={ }^{n} C_{k}$, then $\sum_{k=1}^{n} k^{3}\left(\frac{C_{k}}{C_{k-1}}\right)^{2}$ equals
а) $\frac{n(n+1)(n+2)}{12}$
b) $\frac{n(n+1)^{2}(n+2)}{12}$
c) $\frac{n(n+1)(n+2)^{2}}{12}$
d) None of these
100. The value of
$1 \times 2 \times 3 \times 4+2 \times 3 \times 4 \times 5+3 \times 4 \times 5 \times 6+\cdots$
$+n(n+1)(n+2)(n+3)$, is
a) $\frac{1}{5}(n+1)(n+2)(n+3)(n+4)(n+5)$
b) $\frac{1}{5} n(n+1)(n+2)(n+3)(n+4)$
c) $\frac{1}{5} n(n+1)(n+2)(n+3)(n+4)$
d) ${ }^{n+4} C_{5}$
101. The coefficient of $x^{8} y^{6} z^{4}$ in the expansion of $(x+y+z)^{18}$, is not equal to
a) ${ }^{18} C_{14} \times{ }^{14} C_{8}$
b) ${ }^{18} C_{10} \times{ }^{10} C_{6}$
c) ${ }^{18} C_{6} \times{ }^{12} C_{8}$
d) ${ }^{18} C_{6} \times{ }^{14} C_{6}$
102. The coefficient of $x^{4}$ in the expansion of $\left(1+x+x^{2}+x^{3}\right)^{11}$, is
a) 900
b) 909
c) 990
d) 999
103. If the sum of the coefficients in the expansion of $\left(1-3 x+10 x^{2}\right)^{n}$ is $a$ and if the sum of the coefficients in the expansion of $\left(1+x^{2}\right)^{n}$ is $b$, then
a) $a=3 b$
b) $a=b^{3}$
c) $b=a^{3}$
d) None of these
104. For $n \in N, 10^{n-2} \geq 81 n$ is
a) $n>5$
b) $n \geq 5$
c) $n<5$
d) $n>8$
105. The first 3 terms in the expansion of $(1+a x)^{n}(n \neq 0)$ are $1,6 x$, and $16 x^{2}$. Then, the value of $a$ and $n$ are respectively
a) 2 and 9
b) 3 and 2
c) $\frac{2}{3}$ and 9
d) $\frac{3}{2}$ and 6
106. If the binomial expansion of $(a+b x)^{-2}$ is $\frac{1}{4}-3 x+\cdots$, then $(a, b)=$
a) $(2,12)$
b) $(2,8)$
c) $(-2,-12)$
d) None of these
107. In the expansion of $\left(x^{4}-\frac{1}{x^{3}}\right)^{15}$, the coefficient of $x^{39}$, is
a) 1365
b) -1365
c) 455
d) -455
108. For natural numbers $m, n$ if $(1-y)^{m}(1+y)^{n}=1+a_{1} y^{2}+\ldots$ and $a_{1}=a_{2}=10$, then $(m, n)$ is
a) $(35,20)$
b) $(45,35)$
c) $(35,45)$
d) $(20,45)$
109. If $a_{1}, a_{2}, a_{3}, a_{4}$ are the coefficients of any four consecutive terms in the expansion of $(1+x)^{n}$, then $\frac{a_{1}}{a_{1}+a_{2}}+\frac{a_{3}}{a_{3}+a_{4}}$ is equal to
a) $\frac{a_{2}}{a_{2}+a_{3}}$
b) $\frac{1}{2} \frac{a_{2}}{\left(a_{2}+a_{3}\right)}$
c) $\frac{2 a_{2}}{a_{2}+a_{3}}$
d) $\frac{2 a_{3}}{a_{2}+a_{3}}$
110. If the sum of the coefficient in the expansion of $\left(a^{2} x^{2}-6 a x+11\right)^{10}$, where $a$ is constant is 1024 , then the value of $a$ is
a) 5
b) 1
c) 2
d) 3
111. If $x^{2 r}$ occurs in $\left(x+\frac{2}{x^{2}}\right)^{n}$, then $n-2 r$ must be of the form
a) $3 k-1$
b) $3 k$
c) $3 k+1$
d) $3 k+2$
112. $\left(2^{3 n}-1\right)$ will be divisible by $(\forall n \in N)$
a) 25
b) 8
c) 7
d) 3
113. If the sum of the coefficients in the expansion of $\left(\alpha x^{2}-2 x+1\right)^{35}$ is equal to the sum of the coefficient in the expansion of $(x-\alpha y)^{35}$, then $\alpha=$
a) 0
b) 1
c) Any real number
d) None of these
114. If the ninth term in the expansion of $\left\{3^{\log _{3} \sqrt{25^{x-1}+7}}+3^{-1 / 8 \log _{3}\left(5^{x-1}+1\right)}\right\}^{10}$ is equal to 180 and $x>1$, then $x$ equals
a) $\log _{10} 15$
b) $\log _{5} 15$
c) $\log _{e} 15$
d) None of these
115. The coefficient of $x^{53}$ in the following expansion $\sum_{m=0}^{100}{ }^{100} C_{m}(x-3)^{100-m} \cdot 2^{m}$ is
a) ${ }^{100} C_{47}$
b) ${ }^{100} C_{53}$
c) $-{ }^{100} C_{53}$
d) $-{ }^{100} C_{100}$
116. The coefficient of the middle term in the binomial expansion in powers of $x$ of $(1+\alpha x)^{4}$ and of $(1-\alpha x)^{6}$ is the same, if $\alpha$ equals
a) $-\frac{5}{3}$
b) $\frac{10}{3}$
c) $-\frac{3}{10}$
d) $\frac{3}{5}$
117. The term independent of $x$ in the expansion of $\left(\sqrt{\frac{x}{3}}+\frac{3}{2 x^{2}}\right)^{10}$ will be
a) $\frac{3}{2}$
b) $\frac{5}{4}$
c) $\frac{5}{2}$
d) None of these
118. If $\left(1+x-2 x^{2}\right)^{6}=1+a_{1} x+a_{2} x^{2}+\ldots+a_{12} x^{12}$, then the value of $a_{2}+a_{4}+\ldots+a_{12}$

Is
a) 31
b) 32
c) 64
d) 1024
119. If $\left(1+x-3 x^{2}\right)^{10}=1+a_{1} x+a_{2} x^{2}+\ldots+a_{20} x^{20}$, then $a_{2}+a_{4}+a_{6}+\ldots+a_{20}$ is equal to
a) $\frac{3^{10}+1}{2}$
b) $\frac{3^{9}+1}{2}$
c) $\frac{3^{10}-1}{2}$
d) $\frac{3^{9}-1}{2}$
120. If $(1+x)^{2 n}=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{2 n} x^{2 n}$, then $\left(a_{0}-a_{2}+a_{4}-a_{6}+\cdots-a_{2 n}\right)^{2}+\left(a_{1}-a_{3}+a_{5}-a_{7}+\cdots+a_{2 n-1}\right)^{2}$ is equal to
a) $2^{n}$
b) $4^{n}$
c) 0
d) None of these
121. The coefficient of $a^{5} b^{6} c^{7}$ in the expansion of $(b c+c a+a b)^{9}$ is
a) 100
b) 120
c) 720
d) 1260
122. In the polynomial $(x-1)(x-2)(x-3) \ldots(x-100)$. The coefficient of $x^{99}$ is
a) 5050
b) -5050
c) 100
d) 99
123. Let $n$ be an odd integer. If $\sin n \theta=\sum_{r=0}^{n} b_{r} \sin ^{r} \theta$ for every value of $\theta$, then
a) $b_{0}=1, b_{1}=3$
b) $b_{0}=0, b_{1}=n$
c) $b_{0}=-1, b_{1}=n$
d) $b_{0}=0, b_{1}=n^{2}-3 n+3$
124. In the expansion of $\left(x+\sqrt{x^{2}-1}\right)^{6}+\left(x-\sqrt{x^{2}-1}\right)^{6}$, the number of terms, is
a) 7
b) 14
c) 6
d) 4
125. If $n$ is odd, then $C_{0}^{2}-C_{1}^{2}+C_{2}^{2}-C_{3}^{2}+\ldots+(-1)^{n} C_{n}^{2}$ is equal to
a) 0
b) 1
c) $\infty$
d) $\frac{n!}{\left(\frac{n}{2}\right)^{2}!}$
126. If $\left(1-x+x^{2}\right)^{n}=a_{0}+a_{1} x+\ldots . . a_{2 n} x^{2 n}$ then the value of $a_{0}+a_{2}+a_{4}+\ldots .+a_{2 n}$ is
a) $3^{n}+\frac{1}{2}$
b) $3^{n}-\frac{1}{2}$
c) $\frac{3^{n}-1}{2}$
d) $\frac{3^{n}+1}{2}$
127. ${ }^{15} C_{0} \cdot{ }^{5} C_{5}+{ }^{15} C_{1} \cdot{ }^{5} C_{4}+{ }^{15} C_{2} \cdot{ }^{5} C_{3}+{ }^{15} C_{3} \cdot{ }^{5} C_{2}+{ }^{15} C_{4} \cdot{ }^{5} C_{1}$ is equal to
a) $2^{20}-2^{5}$
b) $\frac{20!}{5!15!}-1$
c) $\frac{20!}{5!15!}-1$
d) $\frac{20!}{5!15!}-\frac{15!}{5!10!}$
128. In the expansion of the following expression $1+(1+x)+(1+x)^{2}+\ldots+(1+x)^{n}$, the coefficient of $x^{4}(0 \leq k \leq n)$ is
a) ${ }^{n+1} C_{k+1}$
b) ${ }^{n} C_{k}$
c) ${ }^{n} C_{n-k-1}$
d) None of these
129. In the binomial expansion of $(a-b)^{n}, n \geq 5$, the sum of 5 th and 6 th terms is zero,
then $\frac{a}{b}$ equals
a) $\frac{5}{n-4}$
b) $\frac{6}{n-5}$
c) $\frac{n-5}{6}$
d) $\frac{n-4}{5}$
130. The middle term in the expansion of $\left(1-\frac{1}{x}\right)^{n}(1-x)^{n}$, is
a) ${ }^{2 n} C_{n}$
b) $-{ }^{2 n} C_{n}$
c) $-{ }^{2 n} C_{n-1}$
d) None of these
${ }^{131 .}$ In the expansion of $\left(x^{3}-\frac{1}{x^{2}}\right)^{15}$, the constant term, is
a) ${ }^{15} C_{6}$
b) 0
c) $-{ }^{15} C_{6}$
d) 1
132. The number of terms in the expansion of $(a+b+c)^{10}$ is
a) 11
b) 21
c) 55
d) 66
133. The expansion of $\frac{1}{(4-3 x)^{1 / 2}}$ by Only One Correct Option will be valid, if
a) $x<1$
b) $|x|<1$
c) $-\frac{2}{\sqrt{3}}<x<\frac{2}{\sqrt{3}}$
d) None of these
134. The largest term in the expansion of $(3+2 x)^{50}$, where $x=\frac{1}{5}$ is
a) 5th
b) 3rd
c) 7 th
d) 6th
135. If $(1+a x)^{n}=1+8 x+24 x^{2}+\ldots$, then the values of $a$ and $n$ are
a) 2,4
b) 2,3
c) 3,6
d) 1,2
136. The value of $(0.99)^{15}$ is
a) 0.8432
b) 0.8601
c) 0.8502
d) None of these
137. $\frac{1}{1!(n-1)!}+\frac{1}{3!(n-3)!}+\frac{1}{5!(n-5)!}+\ldots$ is equal to
a) $\frac{2^{n}}{n!}$
b) $\frac{2^{n-1}}{n!}$
c) 0
d) None of these
138. If $x$ is so small that $x^{3}$ and higher powers of $x$ may be neglected, then $\frac{(1+x)^{3 / 2}-\left(1+\frac{1}{2} x\right)^{3}}{(1-x)^{1 / 2}}$ may be approximated as
a) $\frac{x}{2}-\frac{3}{8} x^{2}$
b) $-\frac{3}{8} x^{2}$
c) $3 x+\frac{3}{8} x^{2}$
d) $1-\frac{3}{8} x^{2}$
139. The number of terms in the expansion of $(2 x+3 y-4 z)^{n}$, is
a) $n+1$
b) $n+3$
c) $\frac{(n+1)(n+2)}{2}$
d) None of these
140. If $m, n, r$ are positive integers such that $r<m, n$, then ${ }^{m} C_{r}+{ }^{m} C_{r-1}{ }^{n} C_{1}+{ }^{m} C_{r-2}{ }^{n} C_{2}+\cdots+{ }^{m} C_{1}{ }^{n} C_{r-1}+$ ${ }^{n} C_{r}$ equals
a) $\left({ }^{n} C_{r}\right)^{2}$
b) ${ }^{m+n} C_{r}$
c) ${ }^{m+n} C_{r}+{ }^{m} C_{r}+{ }^{n} C_{r}$
d) None of these
141. If the expansion in power of $x$ of the function
$\frac{1}{(1-a x)(1-b x)}$ is $a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots$, then $a_{n}$ is
a) $\frac{a_{n}-b^{n}}{b-a}$
b) $\frac{a^{n+1}-b^{n+1}}{b-a}$
c) $\frac{b^{n+1}-a^{n+1}}{b-a}$
d) $\frac{b^{n}-a^{n}}{b-a}$

a) 128
b) 156
c) 512
d) 1024
143. If $n$ is even, then the middle term in the expansion of $\left(x^{2}+\frac{1}{x}\right)^{n}$ is $924 x^{6}$, then $n$ is equal to
a) 10
b) 12
c) 14
d) None of these
144. The coefficient of $x^{5}$ in the expansion of $\left(1+x^{2}\right)^{5}(1+x)^{4}$ is
a) 30
b) 60
c) 40
d) None of these
145. The coefficient of $x^{4}$ in the expansion of $\left(1+x+x^{2}+x^{3}\right)^{n}$ is
a) ${ }^{n} C_{4}$
b) ${ }^{n} C_{4}+{ }^{n} C_{2}$
c) ${ }^{n} C_{4}+{ }^{n} C_{2}+{ }^{n} C_{2}$
d) ${ }^{n} C_{4}+{ }^{n} C_{2}+{ }^{n} C_{1} \cdot{ }^{n} C_{2}$
146. If $a, b, c, d$ be four consecutive coefficients in the binomial expansion of $(1+x)^{n}$, then the value of the expression $\left\{\left(\frac{b}{b+c}\right)^{2}-\frac{a c}{(a+b)(c+d)}\right\}($ where $x>0)$ is
a) $<0$
b) $>0$
c) $=0$
d) 2
147. The coefficient of $x^{3}$ in $\left(\sqrt{x^{5}}+\frac{3}{\sqrt{x^{3}}}\right)^{6}$, is
a) 0
b) 120
c) 420
d) 540
148. The coefficient of $x^{-7}$ in the expansion of $\left[a x-\frac{1}{b x^{2}}\right]^{11}$ will be
a) $\frac{462 a^{6}}{b^{5}}$
b) $\frac{462 a^{5}}{b^{6}}$
c) $-\frac{462 a^{5}}{b^{6}}$
d) $-\frac{462 a^{6}}{b^{5}}$
149. The coefficient of $x^{5}$ in the expansion of $(x+3)^{6}$ is
a) 18
b) 6
c) 12
d) 10
150. For $r=0, \ldots, 10$ let $A_{r}, B_{r}$ and $C_{r}$ denotes, respectively, the coefficient of $x^{r}$ in the $(1+x)^{10},(1+x)^{20}$, and $(1+x)^{30}$. Then
$\sum_{r=1}^{10} A_{r}\left(B_{10} B_{r}-C_{10} A_{r}\right)$
is equal to
a) $B_{10}-C_{10}$
b) $A_{10}\left(B_{10}^{2}-C_{10} A_{10}\right)$
c) 0
d) $C_{10}-B_{10}$
151. If $p$ and $q$ be positive, then the coefficients of $x^{p}$ and $x^{q}$ in the expansion of $(1+x)^{p+q}$ will be
a) Equal
b) Equal in magnitude but opposite in sign
c) Reciprocal to each other
d) None of the above
152. If for positive integers $r>1, n>2$, the coefficient of the $(3 r)$ th and $(r+2)$ th powers of $x$ in the expansion of $(1+x)^{2 n}$ are equal, then
a) $n=2 r$
b) $n=3 r$
c) $n=2 r+1$
d) None of these
153. The range of values of the term independent of $x$ in the expansion of $\left(x \sin ^{-1} \alpha+\frac{\cos ^{-1} \alpha}{x}\right)^{10}, \alpha \in[-1,1]$, is
a) $\left[-\frac{{ }^{10} C_{5} \pi^{10}}{2^{5}}, \frac{{ }^{10} C_{5} \pi^{10}}{2^{20}}\right]$
b) $\left[\frac{{ }^{10} C_{5} \pi^{2}}{2^{20}}, \frac{{ }^{10} C_{5} \pi^{2}}{2^{5}}\right]$
c) $[1,2]$
d) $(1,2)$
154. If the coefficient of $r$ th and $(r+1)$ th terms in the expansion of $(3+7 x)^{29}$ are equal, then $r$ equals
a) 15
b) 21
c) 14
d) None of these
155. If the third term in the expansion $\left[x+x^{\log _{10} x}\right]^{5}$ is $10^{6}$, then $x(>1)$ may be
a) 1
b) 10
c) $10^{-5 / 2}$
d) $10^{2}$
156. In the expansion of $(1+x)^{50}$, the sum of the coefficient of add power of $x$ is
a) Zero
b) $2^{49}$
c) $2^{50}$
d) $2^{51}$
157. If the coefficients of $r^{t h}$ and $(r+1)^{t h}$ terms in the expansion of $(3+7 x)^{29}$ are equal, then $r=$
a) 15
b) 21
c) 14
d) None of these
158. In the expansion of $(1+x)^{2 n}(n \in N)$, the coefficients of $(p+1)^{t h}$ and $(p+3)^{t h}$ terms are equal, then
a) $p=n-2$
b) $p=n-1$
c) $p=n+1$
d) $p=2 n-2$
159. Let $(1+x)^{n}=\sum_{r=0}^{n} a_{r} x^{r}$. Then, $\left(1+\frac{a_{1}}{a_{0}}\right)\left(1+\frac{a_{2}}{a_{1}}\right) \ldots\left(1+\frac{a_{n}}{a_{n-1}}\right)$ is equal to
а) $\frac{(n+1)^{n+1}}{n!}$
b) $\frac{(n+1)^{n}}{n!}$
c) $\frac{n^{n-1}}{(n-1)!}$
d) $\frac{(n+1)^{n-1}}{(n-1)!}$
160. If $C_{0}, C_{1}, C_{2}, \ldots, C_{n}$ denote the binomial coefficients in the expansion of $(1+x)^{n}$, then the value of $\sum_{r=0}^{n}(r+1) C_{r}$, is
a) $n 2^{n}$
b) $(n+1) 2^{n-1}$
c) $(n+2) 2^{n-1}$
d) $(n+2) 2^{n-2}$
161. If $\left(2 x^{2}-x-1\right)^{5}=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{10} x^{10}$, then $a_{2}+a_{4}+a_{6}+a_{8}+a_{10}$ is equal to
a) 15
b) 30
c) 16
d) 32
162. If the coefficient of $(r+1)^{\text {th }}$ term in the expansion of $(1+x)^{2 n}$ be equal to that of $(r+3)^{t h}$ term, then
a) $n-r+1=0$
b) $n-r-1=0$
c) $n+r+1=0$
d) None of these
163. The coefficient of $x^{100}$ in the expansion of $\sum_{j=0}^{200}(1+x)^{j}$ is
a) $\binom{200}{100}$
b) $\binom{201}{102}$
c) $\binom{200}{101}$
d) $\binom{201}{100}$
164. The value of $\frac{1}{n!}+\frac{1}{2!(n-2)!}+\frac{1}{4!(n-4)!}+\cdots$, is
a) $\frac{2^{n-2}}{(n-1)!}$
b) $\frac{2^{n-1}}{n!}$
c) $\frac{2^{n}}{n!}$
d) $\frac{2^{n}}{(n-1)!}$
165. The coefficient of $x^{4}$ in the expansion of $\left(\frac{x}{2}-\frac{3}{x^{2}}\right)^{10}$ is
а) $\frac{504}{259}$
b) $\frac{450}{263}$
c) $\frac{405}{256}$
d) None of these
166. If $(1+x)^{n}=C_{0}+C_{1} x+C_{2} x^{2}+\ldots+C_{n} x^{n}$.Then , $C_{0} C_{1}+C_{1} C_{2}+\ldots+C_{n-1} C_{n}$ is equal to
а) $\frac{(2 n)!}{(n-1)!(n+1)!}$
b) $\frac{(2 n-1)!}{(n-1)!(n+1)!}$
c) $\frac{2 n!}{(n+2)!(n+1)!}$
d) None of these
$167.7^{9}+9^{7}$ is divided by
a) 128
b) 24
c) 64
d) 72
168. If $n>(8+3 \sqrt{7})^{10}, n \in N$, then the last value of $n$ is
a) $(8+3 \sqrt{7})^{10}-(8-3 \sqrt{7})^{10}$
b) $(8+3 \sqrt{7})^{10}+(8-3 \sqrt{7})^{10}$
c) $(8+3 \sqrt{7})^{10}-(8-3 \sqrt{7})^{10}+1$
d) $(8+3 \sqrt{7})^{10}-(8-3 \sqrt{7})^{10}-1$
169. The ninth term of the expansion $\left(3 x-\frac{1}{2 x}\right)^{8}$ is
a) $\frac{1}{512 x^{9}}$
b) $\frac{-1}{512 x^{9}}$
c) $\frac{-1}{256 x^{8}}$
d) $\frac{1}{256 x^{8}}$
170. If $x^{2 k}$ occurs in the expansion of $\left(x+\frac{1}{x^{2}}\right)^{n-3}$, then
a) $n-2 k$ is a multiple of 2
b) $n-2 k$ is a multiple of 3
c) $k=0$
d) None of the above
171. The number of terms with integral coefficients in the expansion of $\left(7^{1 / 3}+5^{1 / 2} x\right)^{600}$, is
a) 100
b) 50
c) 101
d) None of these
172. The coefficient of $x^{3} y^{4} z^{5}$ in the expansion of $(x y+y z+x z)^{6}$ is
a) 70
b) 60
c) 50
d) None of these
173. If $\left(1+2 x+x^{2}\right)^{n}=\sum_{r=0}^{2 n} a, x^{r}$, then $a_{r}=$
a) $\left({ }^{n} C_{r}\right)^{2}$
b) ${ }^{n} C_{r} \cdot{ }^{n} C_{r+1}$
c) ${ }^{2 n} C_{r}$
d) ${ }^{2 n} C_{r+1}$
174. ${ }^{20} C_{4}+2 \cdot{ }^{20} C_{3}+{ }^{20} C_{2}-{ }^{22} C_{18}$ is equal to
a) 0
b) 1242
c) 7315
d) 6345
175. If $y=3 x+6 x^{2}+10 x^{3}+\cdots$, then $x=$
a) $\frac{4}{3}-\frac{1 \cdot 4}{3^{2} \cdot 2} y^{2}+\frac{1 \cdot 4 \cdot 7}{3^{2} \cdot 3} y^{3} \ldots$
b) $-\frac{4}{3}+\frac{1 \cdot 4}{3^{2} \cdot 2} y^{2}-\frac{1 \cdot 4 \cdot 7}{3^{2} \cdot 3} y^{3}+\cdots$
c) $\frac{4}{3}+\frac{1 \cdot 4}{3^{2} \cdot 2} y^{2}+\frac{1 \cdot 4 \cdot 7}{3^{2} \cdot 3} y^{3}+\cdots$
d) None of these
176. The expression $\left\{x+\left(x^{2}-1\right)^{1 / 2}\right\}^{5}+\left\{x-\left(x^{2}-1\right)^{1 / 2}\right\}^{5}$ is a polynomial of degree
a) 5
b) 6
c) 7
d) 8
177. The value of $C_{0}^{2}+3 \cdot C_{1}^{2}+5 \cdot C_{2}^{2}+\cdots$ to $(n+1)$ terms, is
a) ${ }^{2 n-1} C_{n-1}$
b) $(2 n+1)^{2 n-1} C_{n}$
c) $2(n+1) \cdot{ }^{2 n-1} C_{n-1}$
d) ${ }^{2 n-1} C_{n}+(2 n+1)^{2 n-1} C_{n-1}$
178. If $n-{ }^{1} C_{r}=\left(k^{2}-3\right)^{n} C_{r+1}$, then $k \in$
a) $(-\infty,-2)$
b) $[2, \infty)$
c) $[-\sqrt{3}, \sqrt{3}]$
d) $(\sqrt{3}, 2]$
179. The total number of terms in the expansion of $(x+y)^{100}+(x-y)^{100}$ after simplification is
a) 51
b) 202
c) 100
d) 50
180. If $(1+x)^{n}=C_{0}+C_{1} x+C_{2} x^{2}+\cdots+C_{n} x^{n}$, thn for $n$ odd, $C_{1}^{2}+C_{3}^{2}+C_{5}^{2}+\cdots+C_{n}^{2}$ is equal to
a) $2^{2 n-2}$
b) $2^{n}$
c) $\frac{(2 n)!}{2(n!)^{2}}$
d) $\frac{(2 n)!}{(n!)^{2}}$
181. $\sum_{k=0}^{10} \quad{ }^{20} C_{k}$ is equal to
a) $2^{19}+\frac{1}{2}{ }^{20} C_{10}$
b) $2^{19}$
c) ${ }^{20} C_{10}$
d) None of these
182. The approximate value of $(7.995)^{1 / 3}$ correct to four decimal places is
a) 1.9995
b) 1.9996
c) 1.9990
d) 1.9991
183. If the binomial coefficients of $2^{\text {nd }}, 3^{\text {rd }}$ and $4^{\text {th }}$ terms in the expansion of $\left\{\sqrt{2^{\log _{10}\left(10-3^{x}\right)}}+\sqrt[5]{2^{(x-2) \log _{10} 3}}\right\}^{m}$ are in A.P and the $6^{\text {th }}$ term is 21 , then the value(s) of $x$, is (are)
a) 1,3
b) 0,2
c) 4
d) -1
184. If ${ }^{n} C_{12}={ }^{n} C_{6}$, then ${ }^{n} C_{2}$ is equal to
a) 72
b) 153
c) 306
d) 2556
185. In the expansion of $\left(x-\frac{1}{x}\right)^{6}$, the coefficient of $x^{0}$ is
a) 20
b) -20
c) 30
d) -30
186. The term independent of $x$ in the expansion of $\left(x^{3}+\frac{2}{x^{2}}\right)^{15}$ is
a) $T_{7}$
b) $T_{8}$
c) $T_{9}$
d) $T_{10}$
187. If the $(r+1)$ th term in the expansion of $\left(\frac{a^{1 / 3}}{b^{1 / 6}}+\frac{b^{1 / 2}}{a^{1 / 6}}\right)^{21}$ has equal exponents of both $a$ and $b$, then value of $r$ is
a) 8
b) 9
c) 10
d) 11
188. The coefficient of $1 / x$ in the expansion of $\left(\frac{1}{x}+1\right)^{n}(1+x)^{n}$ is
a) ${ }^{2 n} C_{n}$
b) ${ }^{2 n} C_{n-1}$
c) ${ }^{2 n} C_{1}$
d) ${ }^{n} C_{n-1}$
189. Let $[x]$ denote the greatest integer less than or equal to $x$. If $x=(\sqrt{3}+1)^{5}$, then $[x]$ is equal to
a) 75
b) 50
c) 76
d) 152
190. The value of $2 C_{0}+\frac{2^{2}}{2} C_{1}+\frac{2^{3}}{3} C_{2}+\frac{2^{4}}{4} C_{3}+\cdots+\frac{2^{11}}{11} C_{10}$, is
a) $\frac{3^{11}-1}{11}$
b) $\frac{2^{11}-1}{11}$
c) $\frac{11^{3}-1}{11}$
d) $\frac{11^{2}-1}{11}$
191. The sum of coefficients of the expansion $\left(\frac{1}{x}+2 x\right)^{n}$ in 6561. The coefficient of term independent of $x$ is
a) $16{ }^{8} C_{4}$
b) ${ }^{8} C_{4}$
c) ${ }^{8} C_{5}$
d) None of these
192. In the expansion of $(1+x)^{30}$, the sum of the coefficients of odd powers of $x$ is
a) $2^{30}$
b) $2^{31}$
c) 0
d) $2^{29}$
193. The 6th term in the expansion of $\left(2 x^{2}-\frac{1}{3 x^{2}}\right)^{10}$ is
a) $\frac{4580}{17}$
b) $-\frac{896}{27}$
c) $\frac{5580}{17}$
d) None of these
194. ${ }^{47} C_{4}+\sum_{r=1}^{5} \quad{ }^{52-r} C_{3}$ is equal to
a) ${ }^{45} C_{6}$
b) ${ }^{52} C_{5}$
c) ${ }^{52} C_{4}$
d) None of these
195. The coefficient of $x^{n}$ in the expansion of $\left(1-2 x+3 x^{2}-4 x^{3}+\cdots\right)^{-n}$, is
a) $\frac{(2 n)!}{n!}$
b) $\frac{(2 n)!}{(n!)^{2}}$
c) $\frac{1}{2} \frac{(2 n)!}{(n!)^{2}}$
d) None of these
196. The term independent of $x$ in the expansion of $(1+x)^{n}(1+1 / x)^{n}$, is
a) $C_{0}^{2}+2 C_{1}^{2}+3 \cdot C_{2}^{2}+\cdots+(n+1) C_{n}^{2}$
b) $\left(C_{0}+C_{1}+\cdots+C_{n}\right)^{2}$
c) $C_{0}^{2}+C_{1}^{2}+\cdots+C_{n}^{2}$
d) None of these
197. If $A$ and $B$ are coefficients of $x^{r}$ and $x^{n-r}$ respectively in the expansion of $(1+x)^{n}$, then
a) $A=B$
b) $A+B=0$
c) $A=r B$
d) $A=n B$
198.

If $x=\frac{\left[\begin{array}{c}729+6(2)(243)+15(4)(81) \\ +20(8)(27)+15(16)(9) \\ +6(32) 3+64\end{array}\right]}{1+4(4)+6(16)+4(64)+256}$, then $\sqrt{x}-\frac{1}{\sqrt{x}}$ isequal to
a) 0.2
b) 4.8
c) 1.02
d) 5.2
199. If the coefficients of $p$ th, $(p+1)$ th and $(p+2)$ th terms in the expansion of $(1+x)^{n}$ are in AP, then
a) $n^{2}-2 n p+4 p^{2}=0$
b) $n^{2}-n(4 p+1)+4 p^{2}-2=0$
c) $n^{2}-n(4 p+1)+4 p^{2}=0$
d) None of the above
200. The sum of the rational terms in the expansion of $\left(\sqrt{2}+3^{1 / 5}\right)^{10}$ is
a) 41
b) 32
c) 18
d) 9
201. Let $T_{n}$ denotes the number of triangles which can be formed using the vertices of a regular polygon of $n$ sides. If $T_{n+1}-T_{n}=21$, then $n$ equals
a) 5
b) 7
c) 6
d) 4
202. Sum of the last 30 coefficients in the expansion of $(1+x)^{59}$, when expanded in ascending powers of $x$ is
a) $2^{59}$
b) $2^{58}$
c) $2^{30}$
d) $2^{29}$
203.

If $|x|<1$, then $1+n\left(\frac{2 x}{1+x}\right)+\frac{n(n+1)}{2!}\left(\frac{2 x}{1+x}\right)^{2}+\ldots$. is equal to
a) $\left(\frac{2 x}{1+x}\right)^{n}$
b) $\left(\frac{1+x}{2 x}\right)^{n}$
c) $\left(\frac{1-x}{1+x}\right)^{n}$
d) $\left(\frac{1+x}{1-x}\right)^{n}$
204. In the expansion of $\left(1+3 x+2 x^{2}\right)^{6}$ the coefficient of $x^{11}$ is
a) 144
b) 288
c) 216
d) 576
205. The term independent of $x$ in the expansion of $(1-x)^{2}\left(x+\frac{1}{x}\right)^{10}$, is
a) ${ }^{11} C_{5}$
b) ${ }^{10} C_{5}$
c) ${ }^{10} C_{4}$
d) None of these
206. If the sum of the coefficient in the expansion of $(x-2 y+3 z)^{n}$ is 128 , then the greatest coefficient in the expansion of $(1+x)^{n}$ is
a) 35
b) 20
c) 10
d) None of these
207. The digit at the unit place in the number $19^{2005}+11^{2005}-9^{2005}$ is
a) 2
b) 1
c) 0
d) 8
208. The sum of the series
$\sum_{r=0}^{n}(-1)^{r n} C_{r}\left(\frac{1}{2^{r}}+\frac{3^{r}}{2^{2 r}}+\frac{7^{r}}{2^{3 r}}+\frac{15^{r}}{2^{4 r}}+\ldots+m\right.$ terms $)$ is
a) $\frac{2^{m n}-1}{2^{m n}\left(2^{n}-1\right)}$
b) $\frac{2^{m n}-1}{2^{n}-1}$
c) $\frac{2^{m n}+1}{2^{n}+1}$
d) None of these
209. $r$ and $n$ are positive integers such that $r>1, n>2$ and coefficients of $(r+2)^{\text {th }}$ term and $(3 r)^{\text {th }}$ term in the expansion of $(1+x)^{2 n}$ are equal, then $n$ equals
a) $3 r$
b) $3 r+1$
c) $2 r$
d) $2 r+1$
210. Assuming to be small that $x^{2}$ and higher powers of $x$ can be neglected, then $\frac{\left(1+\frac{3}{4} x\right)^{-4}(16-3 x)^{1 / 2}}{(8+x)^{2 / 3}}$ is approximately equal to
a) $1+\frac{305}{96} x$
b) $1-\frac{305}{96} x$
c) $1+\frac{96}{305} x$
d) $1-\frac{96}{305} x$
211. The coefficient of $x^{5}$ in $\left(1+x^{2}\right)^{5}(1+x)^{4}$ is
a) 20
b) 30
c) 60
d) 55
212. The number of terms in the expansion of $(1+5 \sqrt{2} x)^{9}+(1-5 \sqrt{2} x)^{9}$, is
a) 5
b) 7
c) 9
d) 10
213. If $x=\frac{1}{3}$, then the greatest term in the expansion of $(1+4 x)^{8}$ is the
a) $3^{\text {rd }}$ term
b) $6^{\text {th }}$ term
c) $5^{\text {th }}$ term
d) $4^{\text {th }}$ term
214. The coefficient of $x^{n}$ in the expansion of $\left(1+2 x+3 x^{2}+\ldots\right)^{1 / 2}$ is
a) -1
b) 0
c) 2
d) 1
215. The coefficient of $\lambda^{n} \mu^{n}$ in the expansion of $[(1+\lambda)(1+\mu)(\lambda+\mu)]^{n}$ is
a) $\sum_{r=0}^{n} C_{r}^{2}$
b) $\sum_{r=0}^{n} C_{r+2}^{2}$
c) $\sum_{r=0}^{n} C_{r+3}^{2}$
d) $\sum_{r=0}^{n} C_{r}^{3}$
216. If $\left(1+x-2 x^{2}\right)^{6}=1+C_{1} x+C_{2} x^{2}+C_{3} x^{3}+\cdots+C_{12} x^{12}$, then the value of $C_{2}+C_{4}+C_{6}+\cdots+C_{12}$, is
a) 30
b) 32
c) 31
d) None of these
217. If in the expansion of $(1+a x)^{n}, n \in N$, the coefficients of $x$ and $x^{2}$ are 8 and 24 respectively, then
a) $a=2, n=4$
b) $a=4, n=2$
c) $a=2, n=6$
d) $a=-2, n=4$
218. The greatest coefficient in the expansion of $(1+x)^{2 n}$ is
a) ${ }^{2 n} C_{n}$
b) ${ }^{2 n} C_{n+1}$
c) ${ }^{2 n} C_{n-1}$
d) ${ }^{2 n} C_{2 n-1}$
219. The coefficient of $x^{4}$ in $\left(\frac{x}{2}-\frac{3}{x^{2}}\right)^{10}$ is
a) $\frac{405}{256}$
b) $\frac{504}{259}$
c) $\frac{450}{263}$
d) None of these
220. If $n$ is an odd natural number and ${ }^{n} C_{0}<{ }^{n} C_{1}<{ }^{n} C_{2}<\cdots<{ }^{n} C_{r}>{ }^{n} C_{r+1}>{ }^{n} C_{r+2}>\cdots>{ }^{n} C_{n}$, then $r=$
a) $\frac{n}{2}$
b) $\frac{n-1}{2}$
c) $\frac{n-2}{2}$
d) Does not exist
221. If $[x]$ denotes the greatest integer less than or equal to $x$, and $F=R-[R]$ where $R=(5 \sqrt{5}+11)^{2 n+1}$, then $R F$ is equal to
a) $4^{2 n+1}$
b) $4^{2 n}$
c) $4^{2 n-1}$
d) None of these
222. If the coefficients of 5th, 6th and 7th terms in the expansion of $(1+x)^{n}$ be in AP, then the value of $n$ is
a) 7 only
b) 14 only
c) 7 or 14
d) None of these
223. Let $R=(2+\sqrt{3})^{2 n}$ and $f=R-[R]$ where $[\cdot]$ denotes the greatest integer function, then $R(1-f)$ is equal
to
a) 1
b) $2^{2 n}$
c) $2^{2 n}-1$
d) ${ }^{2 n} C_{n}$
224. The value of
$\left({ }^{7} C_{0}+{ }^{7} C_{1}\right)+\left({ }^{7} C_{1}+{ }^{7} C_{2}\right)+\cdots+\left({ }^{7} C_{6}+{ }^{7} C_{7}\right)$ is
a) $2^{8}-1$
b) $2^{8}+1$
c) $2^{8}$
d) $2^{8}-2$
225. The value of ${ }^{4 n} C_{0}+{ }^{4 n} C_{4}+{ }^{4 n} C_{8}+\ldots+{ }^{4 n} C_{4 n}$ is
a) $2^{4 n-2}+(-1)^{n} 2^{2 n-1}$
b) $2^{4 n-2}+2^{2 n-1}$
c) $2^{2 n-1}+(-1)^{n} 2^{4 n-2}$
d) None of these
226. If there is a term containing $x^{2 r}$ in $\left(x+\frac{1}{x^{2}}\right)^{n-3}$, then
a) $n-2 r$ is a positive integral multiple of 3
b) $n-2 r$ is even
c) $n-2 r$ is odd
d) None of these
227. Last two digit of the number $19^{9^{4}}$ is
a) 19
b) 29
c) 39
d) 81
228. $1+\frac{1}{3} x+\frac{1 \cdot 4}{3 \cdot 6} x^{2}+\frac{1 \cdot 4 \cdot 7}{3 \cdot 6 \cdot 9} x^{3}+\ldots$ is equal to
a) $x$
b) $(1+x)^{1 / 3}$
c) $(1-x)^{1 / 3}$
d) $(1-x)^{-1 / 3}$
229. What is the sum of the coefficient of $\left(x^{2}-x-1\right)^{99}$ ?
a) 1
b) 0
c) -1
d) None of these
230. If $n$ is even positive integer, then the condition that the greatest term in the expansion of $(1+x)^{n}$ may have the greatest coefficient also, is
a) $\frac{n}{n+2}<x<\frac{n+2}{n}$
b) $\frac{n+1}{n}<x<\frac{n}{n+1}$
c) $\frac{n}{n+4}<x<\frac{n+4}{4}$
d) None of these
231. The value of ${ }^{15} C_{8}+{ }^{15} C_{9}-{ }^{15} C_{6}-{ }^{15} C_{7}$ is
a) -1
b) 0
c) 1
d) None of these
232. If $\left(1-x+x^{2}\right)^{n}=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{2 n} x^{2 n}$, then the $a_{0}+a_{2}+a_{4}+\ldots+a_{2 n}$ is equal to
a) $\frac{3^{n}+1}{2}$
b) $\frac{3^{n}-1}{2}$
c) $\frac{1-3^{n}}{2}$
d) $3^{n}+\frac{1}{2}$
233. If $a_{r}$ is the coefficient of $x^{r}$, in the expansion of $\left(1+x+x^{2}\right)^{n}$, then $a_{1}-2 a_{2}+3 a_{3}-\ldots-2 n a_{2 n}$ is equal to
a) 0
b) $n$
c) $-n$
d) $2 n$
234. If ${ }^{n-1} C_{r}=\left(k^{2}-3\right) .{ }^{n} C_{r+1}$, then $k$ is belongs to
a) $(-\infty,-2]$
b) $[2, \infty)$
c) $[-\sqrt{3}, \sqrt{3}]$
d) $(\sqrt{3}, 2]$
${ }^{235}$. The greatest value of the term independent of $x$, as $\alpha$ varies over $R$, in the expansion of $\left(x \cos \alpha+\frac{\sin \alpha}{x}\right)^{20}$ is
a) ${ }^{20} C_{10}$
b) ${ }^{20} C_{15}$
c) ${ }^{20} C_{19}$
d) None of these
236. If the coefficient of the middle term in the expansion of $(1+x)^{2 n+2}$ is $p$ and the coefficients of middle term in the expansion of $(1+x)^{2 n+1}$ are $q$ and $r$, then
a) $p+q=r$
b) $p+r=q$
c) $p=q+r$
d) $p+q+r=0$
237. If sum of the coefficients of the first, second and third terms of the expansion of $\left(x^{2}+\frac{1}{x}\right)^{m}$ is 46 , then the coefficient of the term that does not contain $x$ is
a) 84
b) 92
c) 98
d) 106
238. If the $r^{\text {th }}(r+1)^{\text {th }}$ and $(r+2)^{\text {th }}$ coefficients of $(1+x)^{n}$ are in A.P., then $n$ is a root of the equation
a) $x^{2}-x(4 r+1)+4 r^{2}-2=0$
b) $x^{2}+x(4 r+1)+4 r^{2}-2=0$
c) $x^{2}+x(4 r+1)+4 r^{2}+2=0$
d) None of these
239. If $|x|<1$, then the coefficient of $x^{6}$ in the expansion of $\left(1+x+x^{2}\right)^{-3}$ is
a) 3
b) 6
c) 9
d) 12
240. $\left(1+\frac{C_{1}}{C_{0}}\right)\left(1+\frac{C_{2}}{C_{1}}\right)\left(1+\frac{C_{3}}{C_{2}}\right) \ldots\left(1+\frac{C_{n}}{C_{n-1}}\right)$ is equal to
а) $\frac{n+1}{n!}$
b) $\frac{(n+1)^{n}}{(n-1)!}$
c) $\frac{(n-1)^{n}}{n!}$
d) $\frac{(n+1)^{n}}{n!}$
241. The coefficient of $x^{20}$ in the expansion of $\left(1+3 x+3 x^{2}+x^{3}\right)^{20}$ is
a) ${ }^{60} C_{40}$
b) ${ }^{30} C_{20}$
c) ${ }^{15} C_{2}$
d) None of these
242. The greatest value of the term independent of $x$ in the expansion of $\left(x \sin \alpha+x^{-1} \cos \alpha\right)^{10}, \alpha \in R$ is
a) $2^{5}$
b) ${ }^{10} C_{5}$
c) $\frac{1}{2^{5}}\left({ }^{10} C_{5}\right)$
d) None of these
243. If $\left(1+2 x+3 x^{2}\right)^{10}=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{20} x^{20}$, then $a_{1}$ equals
a) 10
b) 20
c) 210
d) None of these
244. If the coefficient of $r$ th, $(r+1)$ th and $(r+2)$ th terms in the binomial expansion of $(1+y)^{m}$ are in AP, then $m$ and $r$ satisfy the equation
a) $m^{2}-m(4 r-1)+4 r^{2}+2=0$
b) $m^{2}-m(4 r+1)+4 r^{2}-2=0$
c) $m^{2}-m(4 r+1)+4 r^{2}+2=0$
d) $m^{2}-n(4 r-1)+4 r^{2}-2=0$
245. Coefficient of the term independent of $x$ in the expansion $\left(x+\frac{1}{x^{2}}\right)^{6}$ is equal to
a) 10
b) 15
c) 16
d) None of the above
246. The last term in the binomial expansion of $\left(\sqrt[3]{2}-\frac{1}{\sqrt{2}}\right)^{n}$ is $\left(\frac{1}{3 \cdot \sqrt[3]{9}}\right)^{\log _{3} 8}$. Then, the $5^{\text {th }}$ term from the beginning is
a) ${ }^{10} C_{6}$
b) $2 \times{ }^{10} C_{4}$
c) $\frac{1}{2} \times{ }^{10} C_{4}$
d) None of these
247. Using mathematical induction, then numbers $a_{n}{ }^{\prime} s$ are defined by $a_{0}=1, a_{n+1}=3 n^{2}+n+a_{n},(n \geq 0)$ Then, $a_{n}$ is equal to
a) $n^{3}+n^{2}+1$
b) $n^{3}-n^{2}+1$
c) $n^{3}-n^{2}$
d) $n^{3}+n^{2}$
248.

The coefficient of $x^{-10}$ in $\left(x^{2}-\frac{1}{x^{3}}\right)^{10}$ is
a) -252
b) 210
c) $-(5!)$
d) -120
249. The value of $C_{0}+3 C_{1}+5 C_{2}+7 C_{3} \ldots+(2 n+1) C_{n}$ is equal to
a) $2^{n}$
b) $2^{n}+n \cdot 2^{n-1}$
c) $2^{n} \cdot(n+1)$
d) None of these
250. If $p$ is nearly equal to $q$ and $n>1$, such that $\frac{(n+1) p+(n-1) q}{(n-1) p+(n+1) q}=\left(\frac{p}{q}\right)^{k}$, then the value of $k$, is
a) $n$
b) $\frac{1}{n}$
c) $n+1$
d) $\frac{1}{n+1}$
251. If the sum of the coefficients in the expansion of $\left(a^{2} x^{2}-2 a x+1\right)^{51}$ vanishes, then the value of $a$ is
a) 2
b) -1
c) 1
d) -2
252. $1+\frac{2}{4}+\frac{2 \cdot 5}{4 \cdot 8}+\frac{2 \cdot 5 \cdot 8}{4 \cdot 8 \cdot 12}+\frac{2 \cdot 5 \cdot 8 \cdot 11}{4 \cdot 8 \cdot 12 \cdot 16}+\ldots$ is
a) $4^{-2 / 3}$
b) $\sqrt[3]{16}$
c) $\sqrt[3]{4}$
d) $4^{3 / 2}$
253. The coefficient of $x^{r}(0 \leq r \leq(n-1))$ in the expansion of $(x+3)^{n-1}+(x+3)^{n-2}(x+2)+(x+$ $3 n-3 x+22+\ldots+x+2 n-1$, is
a) ${ }^{n} C_{r}\left(3^{r}-2^{n}\right)$
b) ${ }^{n} C_{r}\left(3^{n-r}-2^{n-r}\right)$
c) ${ }^{n} C_{r}\left(3^{r}+2^{n-r}\right)$
d) None of these
254. Let $C_{1}, C_{2}, C_{3}$ are the usual binomial coefficients. Let $S=C_{1}+2 C_{2}+3 C_{3}+\ldots+n C_{n}$, then $S$ equals
a) $n 2^{n}$
b) $2^{n-1}$
c) $n 2^{n-1}$
d) $2^{n+1}$
255. If the value of $x$ is so small that $x^{2}$ and greater powers can be neglected, then $\frac{\sqrt{1+x}+\sqrt[3]{(1-x)^{2}}}{1+x+\sqrt{1+x}}$ is equal to
a) $1+\frac{5}{6} x$
b) $1-\frac{5}{6} x$
c) $1+\frac{2}{3} x$
d) $1-\frac{2}{3} x$
256. The coefficient of $x^{n}$ in the expansion of $(1+x)(1-x)^{n}$ is
a) $(n-1)$
b) $(-1)^{n}(1-n)$
c) $(-1)^{n-1}(n-1)^{2}$
d) $(-1)^{n-1} n$
257. The middle term in the expansion of $(x-a)^{8}$ is
a) ${ }^{-8} C_{4} x^{4} a^{4}$
b) ${ }^{8} C_{4} x^{4} a^{4}$
c) ${ }^{8} C_{3} x^{5} a^{3}$
d) ${ }^{-8} C_{5} x^{2} a^{5}$
258. If the expansion of $(1+x)^{20}$, the coefficients of $r^{t h}$ and $(r+4)^{t h}$ terms are equal, then the value of $r$, is
a) 7
b) 8
c) 9
d) 10
259. If $\left(1+x-2 x^{2}\right)^{6}=1+a_{1} x+a_{2} x^{2}+\cdots+a_{12} x^{12}$, then $a_{2}+a_{4}+a_{6}+\cdots+a_{12}=$
a) 30
b) 65
c) 31
d) 63
260. The value of $\frac{1}{81^{n}}=\frac{10}{81^{n}}{ }^{2 n} C_{1}+\frac{10^{2}}{81^{n}}{ }^{2 n} C_{2}-\frac{10^{3}}{81^{n}}{ }^{2 n} C_{3}+\cdots+\frac{10^{2 n}}{81^{n}}$, is
a) 2
b) 0
c) $1 / 2$
d) 1
${ }^{261 .}$ The value of $\left(\frac{{ }^{50} C_{0}}{1}+\frac{{ }^{50} C_{2}}{3}+\frac{{ }^{50} C_{4}}{5}+\ldots+\frac{{ }^{50} C_{50}}{51}\right)$ is
a) $\frac{2^{50}}{51}$
b) $\frac{2^{50}-1}{51}$
c) $\frac{2^{50}-1}{50}$
d) $\frac{2^{51}-1}{51}$
262. Matrix $A$ is such that $A^{2}=2 A-I$ where $I$ is the identity matrix, then for $n \geq 2, A^{n}$ is equal to
a) $n A-(n-1) I$
b) $n A-I$
c) $2^{n-1} A-(n-1) I$
d) $2^{n-1} A-I$
263.

If $\sum_{r=0}^{2 n} a_{r}(x-100)^{r}=\sum_{r=0}^{2 n} b_{r}(x-101)^{r}$ and
$a_{k}=\frac{2^{k}}{{ }^{k} c_{n}}$ for all $k \geq n$, then $b_{n}$ equals
a) $2^{n}\left(2^{n+1}-1\right)$
b) $2^{n}\left(2^{n}+1\right)$
c) $2^{n}\left(2^{n}-1\right)$
d) $2^{n+1}\left(2^{n}-1\right)$
264. The coefficient of $x^{r}[0 \leq r \leq(n-1)]$ in the expansion of $(x+3)^{n-1}+(x+3)^{n-2}(x+2)+(x+$ $3 n-3 x+22+\ldots+x+2 n-1$ is
a) ${ }^{n} C_{\mathrm{r}}\left(3^{r}-2^{n}\right)$
b) ${ }^{n} C_{r}\left(3^{n-r}-2^{n-r}\right)$
c) ${ }^{n} C_{r}\left(3^{r}+2^{n-1}\right)$
d) None of these
265. The middle term in the expansion of $\left(x+\frac{1}{x}\right)^{10}$, is
a) ${ }^{10} C_{1} \frac{1}{x}$
b) ${ }^{10} C_{5}$
c) ${ }^{10} C_{6}$
d) ${ }^{10} C_{7} x$
266. The sum of the magnitudes of the coefficients in the expansion of $\left(1-x+x^{2}-x^{3}\right)^{n}$, is
a) 0
b) $2^{n}$
c) $3^{n}$
d) $4^{n}$
267. The coefficient of $x^{7}$ in the expansion of $\left(x-2 x^{2}\right)^{-3}$, is
a) 67485
b) 67548
c) 67584
d) 67845
268. If $n>3$, then
$x y z C_{0}-(x-1)(y-1)(z-1) C_{1}+(x-2)(y-2)(z-2) C_{2}$
$-(x-3)(y-3)(z-3) C_{3}+\cdots+(-1)^{n}(x-n)(y-n)(z-n) C_{n}$ equals
a) $x y z$
b) $n x y z$
c) $-x y z$
d) 0
269. $\frac{C_{1}}{C_{0}}+2 \frac{C_{2}}{C_{1}}+3 \frac{C_{3}}{C_{2}}+\ldots+15 \frac{C_{15}}{C_{14}}$ is equal to
a) 100
b) 120
c) -120
d) None of these
270. The digit at unit's place in the number $17^{1995}+11^{1995}-7^{1995}$, is
a) 0
b) 1
c) 2
d) 3
271. The value of ${ }^{50} C_{4}+\sum_{r=1}^{6} \quad{ }^{56-r} C_{3}$ is
a) ${ }^{56} C_{4}$
b) ${ }^{56} C_{3}$
c) ${ }^{55} C_{3}$
d) ${ }^{55} C_{4}$
272. The term independent of $x$ in the expansion of $\left(x-\frac{1}{x}\right)^{4}\left(x+\frac{1}{x}\right)^{3}$ is
a) -3
b) 0
c) 3
d) 1
273. The coefficients of $x^{2} y^{2}, y z t^{2}$ and $x y z t$ in the expansion of $(x+y+z+t)^{4}$ are in the ratio
a) $4: 2: 1$
b) 1:2:4
c) $2: 4: 1$
d) $1: 4: 2$
274. If $\left(1+2 x+3 x^{2}\right)^{10}=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{20} x^{20}$, then $a_{1}$ equals
a) 10
b) 20
c) 210
d) None of these
275. The coefficient of $x^{5}$ in the expansion of
$\left(1+x^{2}\right)^{5}(1+x)^{4}$ is
a) 30
b) 60
c) 40
d) None of these
276. The sum of the series $\sum_{r=0}^{10}{ }^{20} C_{r}$, is
a) $2^{20}$
b) $2^{19}$
c) $2^{19}+\frac{1}{2}{ }^{20} C_{10}$
d) $2^{19}-\frac{1}{2}{ }^{20} C_{10}$
277. If the last term in the binomial expansion of $\left(2^{1 / 3}-\frac{1}{\sqrt{2}}\right)^{n}$ is $\left(\frac{1}{3^{5 / 3}}\right)^{\log _{3} 8}$, then the 5 th term from the beginning is
a) 210
b) 420
c) 105
d) None of these
278. The coefficient of $x^{-10}$ in $\left(x^{2}-\frac{1}{x^{3}}\right)^{10}$, is
a) -252
b) 210
c) -5 !
d) -120
279. The coefficient of $x^{n}$ in the binomial expansion of $(1-x)^{-2}$, is
a) $\frac{2^{n}}{2!}$
b) $n+1$
c) $n$
d) $2 n$
280. Let $(1+x)^{n}=\sum_{r=0}^{n} C_{r} x^{r}$ and, $\frac{C_{1}}{C_{0}}+2 \frac{C_{2}}{C_{1}}+3 \frac{C_{3}}{C_{2}}+\cdots+n \frac{C_{n}}{C_{n-1}}=\frac{1}{k} n(n+1)$, then the value of $k$, is
a) $1 / 2$
b) 2
c) $1 / 3$
d) 3
281. The coefficient of $x^{m}$ in $(1+x)^{p}+(1+x)^{p+1}+\cdots+(1+x)^{n}, p \leq m \leq n$ is
a) ${ }^{n+1} C_{m+1}$
b) ${ }^{n-1} C_{m-1}$
c) ${ }^{n} C_{m}$
d) ${ }^{n} C_{m+1}$
282. If $(1+x)^{n}={ }^{n} C_{0}+{ }^{n} C_{1} x+{ }^{n} C_{2} x^{2}+\ldots+{ }^{n} C_{n} x^{n}$, then $\frac{{ }^{n} C_{1}}{{ }^{n} C_{0}}+\frac{2^{n} C_{2}}{{ }^{n} C_{1}}+\frac{3^{n} C_{3}}{{ }^{n} C_{2}}+\ldots+\frac{n^{n} C_{n}}{{ }^{n} C_{n-1}}$ is equal to
a) $\frac{n(n-1)}{2}$
b) $\frac{n(n+2)}{2}$
c) $\frac{n(n+1)}{2}$
d) $\frac{(n-1)(n-2)}{2}$
283. If the magnitude of the coefficient of $x^{7}$ in the expansion of $\left(x^{2}+\frac{1}{b x}\right)^{8}$, where $a, b$, are positive numbers, is equal to the magnitude of the coefficient of $x^{-7}$ in the of $\left(a x-\frac{1}{b x^{2}}\right)^{8}$, then $a$, and $b$ are connected by the relation
a) $a b=1$
b) $a b=2$
c) $a^{2} b=1$
d) $a b^{2}=2$
284. If $T_{0}, T_{1}, T_{2}, \ldots, T_{n}$ represent the term in the expansion of $(x+a)^{n}$, then the value of $\left(T_{0}-T_{2}+T_{4}-\right.$ $T 6 \ldots 2+T 1-T 3+T 5+\ldots 2$, is
a) $\left(x^{2}-a^{2}\right)^{n}$
b) $\left(x^{2}+a^{2}\right)^{n}$
c) $\left(a^{2}-x^{2}\right)^{n}$
d) None of these
285. The sum $\sum_{i=0}^{m}\binom{10}{i}\binom{20}{m-i}$, (where, $\binom{\mathrm{p}}{q}=0$ if $\left.p<q\right)$ is maximum, when $m$ is
a) 5
b) 10
c) 15
d) 20
286. Let $(1+x)^{n}=1+a_{1} x+a_{2} x^{2}+\ldots .+a_{n} x^{n}$. If $a_{1}, a_{2}$ and $a_{3}$ are in AP, then the value of $n$ is
a) 4
b) 5
c) 6
d) 7
287. If $(1+x)^{15}=a_{0}+a_{1} x+\ldots+a_{15} x^{15}$, then $\sum_{r=1}^{15} r \frac{a_{r}}{a_{r-1}}$ is equal to
a) 110
b) 115
c) 120
d) 135
288. The coefficient of $x^{5}$ in the expansion of $\left(1+x^{2}\right)^{5}(1+x)^{4}$, is
a) 30
b) 60
c) 40
d) None of these
289. The coefficient of $x^{r}$ in the expansion of $(1-x)^{-2}$ is
a) $r$
b) $r+1$
c) $r+3$
d) $r-1$
290. The expression $\frac{1}{\sqrt[3]{6-3 x}}$ is equal to
a) $6^{1 / 3}\left[1+\frac{x}{6}+\frac{2 x^{2}}{6^{2}}+\ldots\right]$
b) $6^{-1 / 3}\left[1+\frac{x}{6}+\frac{2 x^{2}}{6^{2}}+\ldots\right]$
c) $6^{1 / 3}\left[1-\frac{x}{6}+\frac{2 x^{2}}{6^{2}}-\ldots\right]$
d) $6^{-1 / 3}\left[1-\frac{x}{6}+\frac{2 x^{2}}{6^{2}}-\ldots\right]$
291. If the coefficient of $r^{\text {th }},(r+1)^{\text {th }}$ and $(r+2)^{\text {th }}$ terms in the expansion of $(1+x)^{14}$ are in A.P., then the value of $r$, is
a) 5,9
b) 6,9
c) 7,9
d) None of these
292. The interval in which $x$ must lie so that the numerically greatest term in the expansion of $(1-x)^{21}$ has the numerically greatest coefficient, is
a) $\left[\frac{5}{6}, \frac{6}{5}\right]$
b) $\left(\frac{5}{6}, \frac{6}{5}\right)$
c) $\left(\frac{4}{5}, \frac{5}{4}\right)$
d) $\left[\frac{4}{5}, \frac{5}{4}\right]$
293. If the 6 th term in the expansion of $\left(\frac{1}{x^{8 / 3}}+x^{2} \log _{10} x\right)^{8}$ is 5600 , then value of $x$ is
a) 2
b) $\sqrt{5}$
c) $\sqrt{10}$
d) 10
294. The coefficient of $x^{20}$ in the expansion of $\left(1+x^{2}\right)^{40}\left(x^{2}+2+\frac{1}{x^{2}}\right)^{-5}$, is
a) ${ }^{30} C_{10}$
b) ${ }^{30} C_{25}$
c) 1
d) None of these
295. If $n$ is a positive integer, then $n^{3}+2 n$ is divisible by
a) 2
b) 6
c) 15
d) 3
296. If in the expansion of $(1+x)^{m}(1-x)^{n}$, the coefficient of $x$ and $x^{2}$ are 3 and -6 respectively, then $m$ is
a) 6
b) 9
c) 12
d) 24
297. The coefficient of $x^{4}$ in the expansion of $\left(1+x+x^{2}+x^{3}\right)^{n}$, is
a) ${ }^{n} C_{4}$
b) ${ }^{n} C_{4}+{ }^{n} C_{2}$
c) ${ }^{n} C_{4}+{ }^{n} C_{1}+{ }^{n} C_{4} \times{ }^{n} C_{2}$
d) ${ }^{n} C_{4}+{ }^{n} C_{2}+{ }^{n} C_{1} \times{ }^{n} C_{2}$
298. Sum of the infinite series $1+\frac{1}{3} \cdot \frac{1}{2}+\frac{2}{3} \cdot \frac{5}{6} \cdot \frac{1}{2^{2}}+\frac{2}{3} \cdot \frac{5}{6} \cdot \frac{8}{9} \cdot \frac{1}{2^{3}}+\cdots \infty$ is
a) $2^{1 / 3}$
b) $4^{1 / 3}$
c) $8^{1 / 3}$
d) $2^{1 / 5}$
299. If in the expansion of $(a-2 b)^{n}$.The sum of the 5 th and 6 th term is zero, then the value of $\frac{a}{b}$ is
a) $\frac{n-4}{5}$
b) $\frac{2(n-4)}{5}$
c) $\frac{5}{n-4}$
d) $\frac{5}{2(n-4)}$
300. If in the expansion of $(1+x)^{m}(1-x)^{n}$, the coefficient of $x$ and $x^{2}$ are 3 and -6 respectively, then $m$ is
a) 6
b) 9
c) 12
d) 24
301. If the sum of the coefficient in the expansion of $(x+y)^{n}$ is 1024 , then the value of the greatest coefficient in the expansion is
a) 356
b) 252
c) 210
d) 120
302. The remainder when $5^{99}$ is divided by 13 , is
a) 6
b) 8
c) 9
d) 10
303. The two consecutive terms in the expansion of $(3+2 x)^{74}$ whose coefficient are equal, are
a) 11.12
b) 7,8
c) 30,31
d) None of these
304. If the 4th term in the expansion of $\left(\frac{2}{3} x-\frac{3}{2 x}\right)^{n}$ is independent of $x$, then $n$ is equal to
a) 5
b) 6
c) 9
d) None of these
305. The coefficient of $x^{32}$ in the expansion of $\left(x^{4}-\frac{1}{x^{3}}\right)^{15}$ is
a) ${ }^{-15} C_{3}$
b) ${ }^{15} C_{4}$
c) ${ }^{-15} C_{5}$
d) ${ }^{15} C_{2}$
306. The number of dissimilar terms in the expansion of $(a+b)^{n}$ is $n+1$ therefore no of dissimilar terms of the expansion $(a+b+c)^{12}$ is
a) 13
b) 39
c) 78
d) 91
307. The coefficient of $x^{7}$ in $\left(1+3 x-2 x^{3}\right)^{10}$ is equal to
a) 62640
b) 26240
c) 64620
d) None of these
308. The middel term in the expansion of $\left(x-\frac{1}{x}\right)^{18}$ is
a) ${ }^{18} C_{9}$
b) $-{ }^{18} C_{9}$
c) ${ }^{18} C_{10}$
d) $-{ }^{18} C_{10}$
309. The term independent of $x$ in the expansion of $\left(\frac{2 \sqrt{x}}{5}-\frac{1}{2 x \sqrt{x}}\right)^{11}$ is
a) 5 th term
b) 6th term
c) 11 th term
d) No term
310. If $n$ is an integer greater than 1 , then $a-{ }^{n} C_{1}(a-1)+{ }^{n} C_{2}(a-2)+\ldots+(-1)^{n}(a-n)$ is equal to
a) $a$
b) 0
c) $a^{2}$
d) $2^{n}$
311. The sum of the rational terms in the expansion of $\left(2^{1 / 5}+\sqrt{3}\right)^{20}$, is
a) 71
b) 85
c) 97
d) None of these
312. If $[x]$ denotes the gretest integer less than or equal to $x$, then $\left[(6 \sqrt{6}+14)^{2 n+1}\right]$
a) Is an even integer
b) Is an odd integer
c) Depends on $n$
d) None of these
313. If $n \in N$, then the sum of the coefficients in the expansion of the binomial (5x-4y) , is
a) 1
b) -1
c) $n$
d) 0
314. The coefficient of the term independent of $x$ in the expansion of $\left[\frac{(x+1)}{x^{2 / 3}-x^{1 / 3}+1}-\frac{(x-1)}{x-x^{1 / 2}}\right]^{10}$ is
a) 210
b) 105
c) 70
d) 112
315. $\frac{C_{0}}{1}+\frac{C_{2}}{3}+\frac{C_{4}}{5}+\frac{C_{6}}{7}+\ldots$ is equal to
a) $\frac{2^{n+1}}{n+1}$
b) $\frac{2^{n+1}-1}{n+1}$
c) $\frac{2^{n}}{n+1}$
d) None of these
316. Coefficient of $x^{n}$ in the expansion of $\frac{(1+x)^{n}}{1-x}$
a) $4 n$
b) $2^{n}$
c) $n^{2}$
d) $\frac{n(n+1)}{2}$
317. If $\left(1+x-2 x^{2}\right)^{6}=1+a_{1} x+a_{2} x^{2}+\ldots+a_{12} x^{12}$, then the expression $a_{2}+a_{4}+a_{6}+\ldots+a_{12}$ has the value
a) 32
b) 63
c) 64
d) None of these
318. If $(1+x)^{n}=\sum_{r=0}^{n} a_{r} x^{r}$ and $b_{r}=1+\frac{a_{r}}{a_{r}-1}$ and $\prod_{r=1}^{n} b_{r}=\frac{(101)^{100}}{100!}$, then $n$ is
a) 99
b) 100
c) 101
d) 102
319. Coefficient of $x^{2} y^{3} z^{4}$ in $(a x+b y+c z)^{9}$ is
a) $1060 a^{2} b^{3} c^{4}$
b) $1160 a^{2} b^{3} c^{4}$
c) $1260 a^{2} b^{3} c^{4}$
d) $960 a^{2} b^{3} c^{4}$
320. The constant term in the expansion of $\left(x^{2}-\frac{1}{x}\right)^{9}$ is
a) 80
b) 72
c) 84
d) 82
321. $\sum_{k=1}^{\infty} k\left(1+\frac{1}{n}\right)^{k-1}=$
a) $n(n-1)$
b) $n(n+1)$
c) $n^{2}$
d) $(n+1)^{2}$
322. If the coefficients of three consecutive terms in the expansion of $(1+x)^{n}$ are in the ratio $1: 7: 42$, then the value of $n$ is
a) 60
b) 70
c) 55
d) None of these
323. The number of non-zero terms in the expansion of $(1+3 \sqrt{2} x)^{9}+(1-3 \sqrt{2} x)^{9}$, is
a) 9
b) 0
c) 5
d) 10
324. If the coefficient of 7 th and 13 th term in the expansion of $(1+x)^{n}$ are equal, then $n$ is equal to
a) 10
b) 15
c) 18
d) 20
325. In the expansion of $\left(2 x^{2}-\frac{1}{x}\right)^{12}$, the term independent of $x$ is
a) 8 th
b) 7 th
c) 9 th
d) 10 th
326. If $C_{0}, C_{1}, C_{2}, \ldots, C_{n}$ are coefficients in the binomial expansion of $(1+x)^{n}$, then $C_{0} C_{2}+C_{1} C_{3}+C_{2} C_{4}+\cdots+$ $C_{n-2} C_{n}$ is equal to
a) $\frac{(2 n)!}{(n-2)!(n+2)!}$
b) $\frac{(2 n)!}{((n-2)!)^{2}}$
c) $\frac{(2 n)!}{((n+2)!)^{2}}$
d) None of these
327. For all integers $n \geq 1$, which of the following is divisible by 9 ?
a) $8^{n}+1$
b) $4^{n}-3 n-1$
c) $3^{2 n}+3 n+1$
d) $10^{n}+1$
328. The sum of the series
${ }^{20} C_{0}-{ }^{20} C_{1}+{ }^{20} C_{2}-{ }^{20} C_{3}+\ldots+{ }^{20} C_{10}$ is
a) $-{ }^{20} C_{10}$
b) $\frac{1}{2}{ }^{20} C_{10}$
c) 0
d) ${ }^{20} C_{10}$
329. Let $[x]$ donate the greatest integer less than or equal to $x$. If $x=(\sqrt{3}+1)^{5}$, then $[x]$ is equal to
a) 75
b) 50
c) 76
d) 152
330. The coefficient of $x^{53}$ in the expansion of
$\sum_{m=0}^{100}{ }^{100} C_{m}(x-3)^{100-m} \cdot 2^{m}$
is
a) ${ }^{100} C_{47}$
b) ${ }^{100} C_{53}$
c) ${ }^{-100} C_{53}$
d) ${ }^{-100} C_{100}$
331. If the fourth term in the expansion of $\left(a x+\frac{1}{x}\right)^{n}$ is $\frac{5}{2}$, then
a) $a=1 / 2$ and $\mathrm{n}=6$
b) $a=1 / 3$ and $\mathrm{n}=5$
c) $a=2$ and $\mathrm{n}=3$
d) $a=1 / 4$ and $\mathrm{n}=1$
332. If $(1+x)^{n}=C_{0}+C_{1} x+C_{2} x^{2}+\ldots+C_{n} x^{n}$, then
$0 \leq r<s \leq n{ }^{\sum(r+s) C_{r} C_{s}}$ is equal to
a) $n\left[2^{2 n-1}-{ }^{2 n-1} C_{n-1}\right]$
b) $n\left[2^{2 n-1}+{ }^{2 n-1} C_{n-1}\right]$
c) $2 n\left[2^{2 n-1}-{ }^{2 n-1} C_{n-1}\right]$
d) None of these
333. If the coefficient of $x^{7}$ in the expansion of $\left(a x^{2}+b^{-1} x^{-1}\right)^{11}$ is equal to the coefficient of $x^{-7}$ in $\left(a x-b^{-1} x^{-2}\right)^{11}$, then $a b=$
a) 1
b) 2
c) 3
d) 4
334. The coefficient of $x^{n}$ in the expansion of $\frac{1}{(1-x)(3-x)}$, is
a) $\frac{3^{n+1}-1}{2 \cdot 3^{n+1}}$
b) $\frac{3^{n+1}-1}{3^{n+1}}$
c) $2\left(\frac{3^{n+1}-1}{3^{n+1}}\right)$
d) None of these
335. The greatest term in the expansion of $(1+3 x)^{54}$, where $x=1 / 3$ is
a) $T_{28}$
b) $T_{25}$
c) $T_{26}$
d) $T_{24}$
336. If in the expansion of $\left(\frac{1}{x}+x \tan x\right)^{5}$ the ratio of 4th term to the 2 nd term is $\frac{2}{27} \pi^{4}$, then the value of $x$ can be
a) $-\frac{\pi}{6}$
b) $-\frac{\pi}{3}$
c) $\frac{\pi}{6}$
d) $\frac{\pi}{12}$
337. The remainder when $32^{(32)^{(32)}}$ is divided by 7 , is
a) 1
b) 2
c) 3
d) 4
338. If $A=1000^{1000}$ and $B=(1001)^{999}$, then
a) $A>B$
b) $A=B$
c) $A<B$
d) None of these
339. If the $r$ th term in the expansion of $\left(\frac{x}{3}-\frac{2}{x^{2}}\right)^{10}$ contains $x^{4}$, then $r$ is equal to
a) 3
b) 0
c) -3
d) 5
340. The coefficient of term independent of $x$ in $\left[\sqrt{\left(\frac{x}{3}\right)}+\frac{\sqrt{3}}{x^{2}}\right]^{10}$ is
a) $\frac{5}{3}$
b) $\frac{4}{5}$
c) 6
d) $\frac{1}{2}$
341. The ratio of the coefficient of $x^{15}$ to the term independent of $x$ in $\left(x^{2}+\frac{2}{x}\right)^{15}$, is
a) $1 / 4$
b) $1 / 16$
c) $1 / 32$
d) $1 / 64$
342. The sum ${ }^{40} C_{0}+{ }^{40} C_{1}+{ }^{40} C_{2}+\cdots+{ }^{40} C_{20}$ is equal to
a) $2^{40}+\frac{40!}{(20!)^{2}}$
b) $2^{39}-\frac{1}{2} \times \frac{40!}{(20!)^{2}}$
c) $2^{39}+{ }^{40} C_{20}$
d) None of these
343. The coefficient of $x^{5}$ in the expansion of $\frac{1+x^{2}}{1+x},|x|<1$, is
a) -1
b) 2
c) 0
d) -2
344. The coefficient of $x^{2}$ term in the binomial expansion of $\left(\frac{1}{3} x^{1 / 2}+x^{-1 / 4}\right)^{10}$ is
a) $\frac{70}{243}$
b) $\frac{60}{423}$
c) $\frac{50}{13}$
d) None of these
345. If the expansion of $\left(\frac{3 \sqrt{x}}{7}-\frac{5}{2 x \sqrt{x}}\right)^{13 n}$ contains a term independent of $x$ in 14th term, then $n$ should be
a) 10
b) 5
c) 6
d) 4
346. The interval in which $x$ must lie so that the greatest term in the expansion of $(1+x)^{2 n}$ has the greatest coefficient, is
a) $\left(\frac{n-1}{n}, \frac{n}{n-1}\right)$
b) $\left(\frac{n}{n+1}, \frac{n+1}{n}\right)$
c) $\left(\frac{n}{n+2}, \frac{n+2}{n}\right)$
d) None of these
347. The coefficient of $a^{3} b^{4} c$ in the expansion of $(1+a-b+c)^{9}$ is equal to
a) $\frac{9!}{3!6!}$
b) $\frac{9!}{4!5!}$
c) $\frac{9!}{3!5!}$
d) $\frac{9!}{3!4!}$
348. If $\left(1+x+x^{2}\right)^{n}=\sum_{r=0}^{2 n} a_{r} x^{r}$, then $a_{1}-2 a_{2}+3 a_{3} \ldots-2 n a_{2 n}$ is equal to
a) $n$
b) $-n$
c) 0
d) $2 n$
349. In the expansion of $(1+x)^{30}$, the sum of the coefficient of odd powers of $x$, is
a) $2^{30}$
b) $2^{31}$
c) 0
d) 29
350.

If the fourth term in the expansion of $\left\{\sqrt{x^{\left(\frac{1}{\log x+1}\right)}}+x^{1 / 12}\right\}^{6}$ is equal to 200 and $x>1$, then $x$ is equal to
a) $10^{\sqrt{2}}$
b) 10
c) $10^{4}$
d) None of these
351. The coefficient of $x^{6}$ in $\left\{(1+x)^{6}+(1+x)^{7}+\cdots+(1+x)^{15}\right\}$ is
a) ${ }^{16} C_{9}$
b) ${ }^{16} C_{5}-{ }^{6} C_{5}$
c) ${ }^{16} C_{6}-1$
d) None of these
352. The sum of the series $1+\frac{1}{5}+\frac{1 \cdot 3}{5 \cdot 10}+\frac{1 \cdot 3 \cdot 5}{5 \cdot 10 \cdot 15}+\ldots$ is equal to
a) $\frac{1}{\sqrt{5}}$
b) $\frac{1}{\sqrt{2}}$
c) $\sqrt{3}$
d) $\sqrt{\frac{5}{3}}$
353. If $A=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$ and $I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$, Then which one of the following holds for all $n \geq 1$, by the principle of mathematical induction?
a) $A^{n}=2^{n-1} A+(n-1) I$
b) $A^{n}=n A+(n-1) I$
c) $A^{n}=2^{n-1} A-(n-1) I$
d) $A^{n}=n A-(n-1) I$
354.

The greatest term in the expansion of $\sqrt{3}\left(1+\frac{1}{\sqrt{3}}\right)^{20}$ is
a) $\frac{26840}{9}$
b) $\frac{24840}{9}$
c) $\frac{25840}{9}$
d) None of these
355. If $(1+x)^{n}=\sum_{r=0}^{n} C_{r} x^{r}$, then $\left(1+\frac{C_{1}}{c_{0}}\right)\left(1+\frac{C_{2}}{C_{1}}\right) \ldots\left(1+\frac{c_{n}}{C_{n-1}}\right)$ is equal to
a) $\frac{n^{n-1}}{(n-1)}$ !
b) $\frac{(n+1)^{n-1}}{(n-1)!}$
c) $\frac{(n+1)^{n}}{n!}$
d) $\frac{(n+1)^{n+1}}{n!}$
356. The expression $\left[x+\left(x^{3}-1\right)^{1 / 2}\right]^{5}+\left[x-\left(x^{3}-1\right)^{1 / 2}\right]^{5}$ is a polynomial of degree
a) 5
b) 6
c) 7
d) 8
357. The sum of the coefficients of the polynomial $\left(1+x-3 x^{2}\right)^{2143}$ is
a) -1
b) 1
c) 0
d) None of these
358. If $C_{\mathrm{r}}$ stands for ${ }^{n} C_{r}$, the sum of the given series $\frac{2\left(\frac{n}{2}\right)!\left(\frac{n}{2}\right)!}{n!} \cdot\left[C_{0}^{2}-2 C_{1}^{2}+3 C_{2}^{2}-\ldots+(-1)^{n}(n+1) C_{n}^{2}\right]$, where $n$ is an even positive integer, is
a) 0
b) $(-1)^{n / 2}(n+1)$
c) $(-1)^{n}(n+2)$
d) $(-1)^{n / 2}(n+2)$
359. The value of $(1.002)^{12}$ upto fourth place of decimal is
a) 1.0242
b) 1.0245
c) 1.0004
d) 1.0254

a) $\frac{1}{3}$
b) $\frac{19}{54}$
c) $\frac{17}{54}$
d) $\frac{1}{4}$
361. If $a$ and $d$ are two complex numbers, then the sum to $(n+1)$ terms of the following series $a C_{0}-(a+d) C_{1}+(a+2 d) C_{2}-\ldots+\ldots$ is
a) $\frac{a}{2^{n}}$
b) $n a$
c) 0
d) None of these
362. $2^{3 n}-7 n-1$ is divisible by
a) 64
b) 36
c) 49
d) 25
363. If $n$ is a positive integer, then $5^{2 n+2}-24 n-25$ isdivisible by
a) 574
b) 575
c) 675
d) 576
364. If $a_{n}=\sum_{r=0}^{n} \frac{1}{{ }^{n} C_{r}}$, then $\sum_{r=0}^{n} \frac{r}{{ }^{n} C_{r}}$ equals
a) $(n-1) a_{n}$
b) $n a_{n}$
c) $\frac{1}{2} n a_{n}$
d) None of these

a) 7
b) 5
c) 4
d) 3
366. If the coefficient of $x^{7}$ in $\left(a x^{2}+\frac{1}{b x}\right)^{11}$ equal the coefficient of $x^{-7}$ in $\left(a x-\frac{1}{b x^{2}}\right)^{11}$, then $a$ and $b$ satisfy the relation
a) $a b=1$
b) $\frac{a}{b}=1$
c) $a+b=1$
d) $a-b=1$
367. The middle term in the expansion of $\left(x+\frac{1}{2 x}\right)^{2 n}$ is
а) $\frac{1 \cdot 3 \cdot 5 \ldots(2 n-3)}{n!}$
b) $\frac{1 \cdot 3 \cdot 5 \ldots(2 n-1)}{n!}$
c) $\frac{1 \cdot 3 \cdot 5 \ldots(2 n+1)}{n!}$
d) None of these
368. The coefficient of $x^{5}$ in the expansion of $(1+x)^{21}+(1+x)^{22}+\ldots+(1+x)^{30}$ is
a) ${ }^{51} C_{5}$
b) ${ }^{9} C_{5}$
c) ${ }^{31} C_{6}-{ }^{21} C_{6}$
d) ${ }^{30} C_{5}+{ }^{20} C_{5}$
369. If $(r+1)^{\text {th }}$ term is the first negative term in the expansion of $(1+x)^{7 / 2}$, then the value of $r$, is
a) 5
b) 6
c) 4
d) 7
370. If in expansion of $(1+x)^{21}$, the coefficient of $x^{r}$ and $x^{r+1}$ be equal, then $r$ is equal to
a) 9
b) 10
c) 11
d) 12
${ }^{371}$. The greatest term in the expansion of $\sqrt{3}\left(1+\frac{1}{\sqrt{3}}\right)^{20}$, is
a) $\frac{25840}{9}$
b) $\frac{24840}{9}$
c) $\frac{26840}{9}$
d) None of these
372. The coefficient of $x^{n}$ in the expansion of $\left(1+x+x^{2}+\cdots\right)^{-n}$, is
a) 1
b) $(-1)^{n}$
c) $n$
d) $n+1$
373. The coefficient of $t^{24}$ in the expansion of $\left(1+t^{2}\right)^{12}\left(1+t^{12}\right)\left(1+t^{24}\right)$ is
a) ${ }^{12} C_{6}+2$
b) ${ }^{12} C_{5}$
c) ${ }^{12} C_{6}$
d) ${ }^{12} C_{7}$
374. If the coefficients of $T_{r}, T_{r+1}, T_{r+2}$ terms of $(1+x)^{14}$ are in AP, then the value of $r$ is
a) 6
b) 7
c) 8
d) 9
375. The larger of $99^{50}+100^{50}$ and $101^{50}$ is
a) $99^{50}+100^{50}$
b) Both are equal
c) $101^{50}$
d) None of these
376. The value of the sum of the series
$3 \cdot{ }^{n} C_{0}-8 \cdot{ }^{n} C_{1}+13{ }^{n} C_{2}-18 \cdot{ }^{n} C_{3}+\ldots$ upto $(n+1)$ terms is
a) 0
b) $3^{n}$
c) $5^{n}$
d) None of these
377. The last positive integer $n$ such that $\binom{n-3}{3}+\binom{n-1}{4}>\binom{n}{3}$ is
a) 6
b) 7
c) 8
d) 9
378. If $S$ be the sum of coefficients in the expansion of $(\alpha x+\beta y-\gamma z)^{n}$, where $(\alpha, \beta, \gamma>0)$, then the value of $\lim _{n \rightarrow \infty} \frac{S}{\left\{S^{1 / n}+1\right\}^{n}}$ is
a) $e^{\left(\frac{\alpha \beta}{\gamma}\right)}$
b) $e^{\left(\frac{\alpha+\beta-\gamma}{\alpha+\beta-\gamma+1}\right)}$
c) $\frac{\alpha \beta}{\gamma}$
d) 0
379. If the sum of the numerical coefficients in the binomial expansion of $\left(\frac{1}{x}+2 x\right)^{n}$ is equal to 6561 , then the term independent of $x$, is
380. $\sum_{0 \leq i}^{\text {a) }} \sum_{<j \leq 10}^{8} C_{4}{ }^{10} C_{j}{ }^{j} C_{i}$ is equal to
a) $2^{10}-1$
b) ${ }^{8} C_{4} \times 2^{4}$
b) $2^{10}$
c) ${ }^{6} C_{4} \times 2^{4}$
c) $3^{10}-1$
d) $3^{10}$
d) None of these
381. The coefficient of $x^{2^{m+1}}$ in the expansion of $E=\frac{1}{(1+x)\left(1+x^{2}\right)\left(1+x^{4}\right)\left(1+x^{8}\right) \ldots\left(1+x^{2^{m}}\right)},|x|<1$ is
a) 3
b) 2
c) 1
d) 0
382. If $n \in N$ such that $(7+4 \sqrt{3})^{n}=I+F$, where $I \in N$ and $0<F<1$. Then, the value of $(I+F)(1-F)$ is
a) 0
b) 1
c) $7^{2 n}$
d) $2^{2 n}$
383. The largest coefficient in the expansion of $(1+x)^{24}$ is
a) ${ }^{24} C_{24}$
b) ${ }^{24} C_{13}$
c) ${ }^{24} C_{12}$
d) ${ }^{24} C_{11}$
384. The coefficient of $x^{4}$ in the expansion of $\left(1+x+x^{3}+x^{4}\right)^{10}$, is
a) ${ }^{40} C_{4}$
b) ${ }^{10} C_{4}$
c) 210
d) 310
385. If the third term in the binomial expansion of $(1+x)^{m}$ is $-\frac{1}{8} x^{2}$, then the rational value of $m$, is
a) 2
b) $1 / 2$
c) 3
d) 4
386. If $C_{r}={ }^{n} C_{r}$ and $\left(C_{0}+C_{1}\right)\left(C_{1}+C_{2}\right) \ldots\left(C_{n-1}+C_{n}\right)=k \frac{(n+1)^{n}}{n!}$, then the value of $k$, is
a) $C_{0} C_{1} C_{2} \ldots C_{n}$
b) $C_{1}^{2} C_{2}^{2} \ldots C_{n}^{2}$
c) $C_{1}+C_{2}+\cdots+C_{n}$
d) None of these
387. The coefficient of $x^{53}$ in the expansion
$\sum_{m=0}^{100}{ }^{100} C_{m}(x-3)^{100-m} \cdot 2^{m}$, is
a) ${ }^{100} C_{47}$
b) ${ }^{100} C_{53}$
c) $-{ }^{100} C_{53}$
d) $-{ }^{100} C_{100}$
388. If the ratio of the coefficient of third and fourth term in the expansion of $\left(x-\frac{1}{2 x}\right)^{n}$ is $1: 2$, then the value of $n$ will be
a) 18
b) 16
c) 12
d) -10
389. The coefficient of $x^{n}$ in the expansion of $\left(1+x+x^{2}+\cdots\right)^{-n}$ is
a) 1
b) $(-1)^{n}$
c) $n$
d) $n+1$
390. If in the expansion of $(a-2 b)^{n}$, the sum of 4 th and 5 th term is zero, then the value of $\frac{a}{b}$ is
а) $\frac{n-4}{5}$
b) $\frac{n-3}{2}$
c) $\frac{5}{n-4}$
d) $\frac{5}{2(n-4)}$
391. The coefficient of $x^{5}$ in the expansion of $\left(2-x+3 x^{2}\right)^{6}$, is
a) -4692
b) 4692
c) 2346
d) -5052
392. The number of terms whose values depend on $x$ in the expansion of $\left(x^{2}-2+\frac{1}{x^{2}}\right)^{n}$, is
a) $2 n+1$
b) $2 n$
c) $n$
d) None of these
393. If the coefficients of $x^{7}$ and $x^{8}$ in $(2+x / 3)^{n}$ are equal, then $n$ is equal to
a) 56
b) 55
c) 45
d) 15
394. The term independent of $x$ in $\left\{\sqrt{\frac{x}{3}}+\frac{3}{2 x^{2}}\right\}^{10}$, is
a) $\frac{9}{4}$
b) $\frac{3}{4}$
c) $\frac{5}{4}$
d) $\frac{7}{4}$
395. Coefficient of $x^{-4}$ in $\left(\frac{3}{2}-\frac{3}{x^{2}}\right)^{10}$ is
a) $\frac{405}{226}$
b) $\frac{504}{289}$
c) $\frac{450}{263}$
d) None of these
396. If the coefficients of $(2 r+4)^{\text {th }}$ and $(r-2)^{\text {th }}$ terms in the expansion of $(1+x)^{18}$ are equal, then the value of $r$, is
a) 5
b) 6
c) 7
d) 9
397. The coefficient of $x^{6}$ in the expansion of $\left(1+x+x^{2}\right)^{-3}$, is
a) 6
b) 5
c) 4
d) 3
398. $49^{n}+16 n-1$ is divisible by
a) 3
b) 29
c) 19
d) 64
399. The value of $1^{2} \cdot C_{1}+3^{2} \cdot C_{3}+5^{2} \cdot C_{5}+\ldots$ is
a) $n(n-1)^{n-2}+n \cdot 2^{n-1}$
b) $n(n-1)^{n-2}$
c) $n(n-1) \cdot 2^{n-3}$
d) None of these
400. If the coefficient of $x^{2}$ and $x^{3}$ in the expansion of $(3+a x)^{9}$ be same, then the value of $a$ is
a) $3 / 7$
b) $7 / 3$
c) $7 / 9$
d) $9 / 7$
401. The coefficient of $x$ in the expansion of $(1+x)(1+2 x)(1+3 x) \ldots \ldots(1+100 x)$ is
a) 5050
b) 10100
c) 5151
d) 4950
402. The positive value of $a$ so that the coefficients of $x^{5}$ and $x^{15}$ are equal in the expansion of $\left(x^{2}+\frac{a}{x^{3}}\right)^{10}$
a) $\frac{1}{2 \sqrt{3}}$
b) $\frac{1}{\sqrt{3}}$
c) 1
d) $2 \sqrt{3}$
403. In the expansion of $\left(2-3 x^{3}\right)^{20}$, if the ratio of 10 th term to 11 th term is $45 / 22$, then $x$ is equal to
a) $-\frac{2}{3}$
b) $\frac{-3}{2}$
c) $-\sqrt[3]{\frac{2}{3}}$
d) $-\sqrt[3]{\frac{3}{2}}$

## : ANSWER KEY :

| 1) | b | 2) | b | 3) | d | 4) | c | 189) | d | 190) | a | 191) | a | 192) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5) | a | 6) | a | 7) | a | 8) | c | 193) | b | 194) | c | 195) | b | 196) |
| 9) | b | 10) | c | 11) | b | 12) | a | 197) | a | 198) | b | 199) | b | 200) |
| 13) | c | 14) | c | 15) | c | 16) | b | 201) | b | 202) | b | 203) | d | 204) |
| 17) | b | 18) | d | 19) | c | 20) | d | 205) | a | 206) | a | 207) | b | 208) |
| 21) | c | 22) | a | 23) | a | 24) | c | 209) | c | 210) | b | 211) | c | 212) |
| 25) | a | 26) | d | 27) | b | 28) | b | 213) | b | 214) | d | 215) | d | 216) |
| 29) | c | 30) | c | 31) | c | 32) | b | 217) | a | 218) | a | 219) | a | 220) |
| 33) | b | 34) | c | 35) | d | 36) | d | 221) | a | 222) | c | 223) | a | 224) |
| 37) | b | 38) | a | 39) | a | 40) | b | 225) | a | 226) | a | 227) | a | 228) |
| 41) | a | 42) | c | 43) | b | 44) | c | 229) | c | 230) | a | 231) | b | 232) |
| 45) | d | 46) | d | 47) | c | 48) | b | 233) | c | 234) | d | 235) | d | 236) |
| 49) | d | 50) | b | 51) | a | 52) | b | 237) | a | 238) | a | 239) | a | 240) |
| 53) | c | 54) | a | 55) | a | 56) | b | 241) | a | 242) | c | 243) | b | 244) |
| 57) | a | 58) | b | 59) | b | 60) | b | 245) | b | 246) | a | 247) | b | 248) |
| 61) | c | 62) | c | 63) | d | 64) | b | 249) | c | 250) | b | 251) | c | 252) |
| 65) | d | 66) | c | 67) | d | 68) | a | 253) | b | 254) | c | 255) | b | 256) |
| 69) | d | 70) | a | 71) | a | 72) | c | 257) | b | 258) | c | 259) | c | 260) |
| 73) | b | 74) | a | 75) | c | 76) | b | 261) | a | 262) | a | 263) | a | 264) |
| 77) | b | 78) | c | 79) | b | 80) | b | 265) | b | 266) | d | 267) | c | 268) |
| 81) | c | 82) | b | 83) | c | 84) | b | 269) | b | 270) | b | 271) | a | 272) |
| 85) | d | 86) | d | 87) | d | 88) | d | 273) | b | 274) | $b$ | 275) | b | 276) |
| 89) | a | 90) | b | 91) | c | 92) | d | 277) | a | 278) | b | 279) | b | 280) |
| 93) | b | 94) | a | 95) | a | 96) | b | 281) | a | 282) | c | 283) | a | 284) |
| 97) | b | 98) | b | 99) | b | 100) | b | 285) | c | 286) | d | 287) | c | 288) |
| 101) | c | 102) | c | 103) | b | 104) | b | 289) | b | 290) | b | 291) | a | 292) |
| 105) | c | 106) | a | 107) | d | 108) | c | 293) | d | 294) | b | 295) | d | 296) |
| 109) | c | 110) | d | 111) | b | 112) | c | 297) | d | 298) | b | 299) | b | 300) |
| 113) | b | 114) | b | 115) | c | 116) | c | 301) | b | 302) | b | 303) | c | 304) |
| 117) | b | 118) | a | 119) | c | 120) | b | 305) | b | 306) | d | 307) | a | 308) |
| 121) | d | 122) | b | 123) | b | 124) | d | 309) | d | 310) | b | 311) | d | 312) |
| 125) | a | 126) | d | 127) | d | 128) | a | 313) | a | 314) | a | 315) | c | 316) |
| 129) | d | 130) | a | 131) | c | 132) | d | 317) | d | 318) | b | 319) | c | 320) |
| 133) | d | 134) | c | 135) | $a$ | 136) | b | 321) | c | 322) | c | 323) | c | 324) |
| 137) | b | 138) | b | 139) | c | 140) | b | 325) | c | 326) | a | 327) | $b$ | 328) |
| 141) | c | 142) | c | 143) | b | 144) | b | 329) | d | 330) | c | 331) | a | 332) |
| 145) | d | 146) | b | 147) | d | 148) | b | 333) | a | 334) | a | 335) | $a$ | 336) |
| 149) | a | 150) | d | 151) | a | 152) | c | 337) | d | 338) | a | 339) | a | 340) |
| 153) | a | 154) | b | 155) | b | 156) | b | 341) | c | 342) | d | 343) | d | 344) |
| 157) | b | 158) | b | 159) | b | 160) | c | 345) | d | 346) | b | 347) | d | 348) |
| 161) | a | 162) | b | 163) | d | 164) | b | 349) | d | 350) | b | 351) | a | 352) |
| 165) | c | 166) | a | 167) | c | 168) | d | 353) | d | 354) | c | 355) | c | 356) |
| 169) | d | 170) | b | 171) | c | 172) | b | 357) | a | 358) | d | 359) | a | 360) |
| 173) | c | 174) | a | 175) | d | 176) | c | 361) | c | 362) | c | 363) | d | 364) |
| 177) | c | 178) | d | 179) | a | 180) | c | 365) | d | 366) | a | 367) | b | 368) |
| 181) | a | 182) | b | 183) | b | 184) | b | 369) | a | 370) | b | 371) | a | 372) |
| 185) | b | 186) | d | 187) | b | 188) | b | 373) | a | 374) | d | 375) | c | 376) |


| $377)$ | d | $378)$ | d | $379)$ | b | $380)$ | c | $393)$ | b | $394)$ | c | $395)$ | d | 396) | b |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $381)$ | c | $382)$ | b | $383)$ | c | $384)$ | d | $397)$ | d | $398)$ | d | $399)$ | d | $400)$ | d |
| $385)$ | b | $386)$ | a | $387)$ | c | $388)$ | d | $401)$ | a | $402)$ | a | $403)$ | a |  |  |
| $389)$ | b | $390)$ | b | $391)$ | d | $392)$ | b |  |  |  |  |  |  |  |  |

## : HINTS AND SOLUTIONS :

1 (b)
We have,

$$
\begin{aligned}
& (1+x)^{15}=C_{0}+C_{1} x+C_{2} x^{2}+\ldots+C_{15} x^{15} \\
& \Rightarrow \frac{(1+x)^{15}-1}{x}=C_{1}+C_{2} x+\ldots C_{15} x^{14}
\end{aligned}
$$

On differentiating both sides w.r.t. $x$, we get
$\frac{x \cdot 15(1+x)^{14}-(1+x)^{15}+1}{x^{2}}$

$$
=C_{2}+2 C_{3} x+\ldots+14 C_{15} x^{13}
$$

On putting $x=1$, we get
$C_{2}+2 C_{3}+\ldots+14 C_{15}=15.2^{14}-2^{15}+1$
$=13.2^{14}+1$
2 (b)
It is given that
${ }^{2 n} C_{1},{ }^{2 n} C_{2}$ and ${ }^{2 n} C_{3}$ are A.P.
$\therefore 2 \cdot{ }^{2 n} C_{2}={ }^{2 n} C_{1}+{ }^{2 n} C_{3}$
$2 \cdot \frac{(2 n)!}{(2 n-2)!2!}=\frac{(2 n)!}{(2 n-1)!}+\frac{(2 n)!}{(2 n-3!3!)}$
$\Rightarrow 2 \frac{(2 n)(2 n-1)}{2}$

$$
=2 n+\frac{(2 n)(2 n-1)(2 n-2)}{3!}
$$

$\Rightarrow 6(2 n-1)=6+(2 n-1)(2 n-2)$
$\Rightarrow 12 n-6=6+4 n^{2}-6 n+2$
$\Rightarrow 4 n^{2}-18 n+14=0 \Rightarrow 2 n^{2}-9 n+7=0$
3
(d)
$\frac{1+2 x}{(1-2 x)^{2}}=(1+2 x)(1-2 x)^{-2}$
$=(1+2 x)\left(1+\frac{2}{1!}(2 x)\right.$
$+\frac{2 \cdot 3}{2!}(2 x)^{2}+\ldots+\frac{2 \cdot 3 \ldots r}{(r-1)!}(2 x)^{r-1}$
$\left.+\frac{2 \cdot 3 \cdot 4 \ldots(r+1)(2 x)^{r}}{r!}\right)$
The coefficient of $x^{r}=2 \frac{r!}{(r-1)!} 2^{r-1}+\frac{(r-1)!}{r!} 2^{r}$ $=r 2^{r}+(r+1) 2^{r}=2^{r}(2 r+1)$

4 (c)
Given, $A={ }^{30} C_{0} \cdot{ }^{30} C_{10}-{ }^{30} C_{1} \cdot{ }^{30} C_{11}+{ }^{30} C_{2}$.
${ }^{30} C_{12}+\cdots+{ }^{30} C_{20} \cdot{ }^{30} C_{30}$
$=$ coefficient of $x^{20}$ in $(1+x)^{30}(1-x)^{30}$
$=$ coefficient of $x^{20}$ in $\left(1+x^{2}\right)^{30}$
$=$
coefficient
$x^{20}$ in $\sum_{r=0}^{30}(-1)^{r}{ }^{30} C_{r}\left(x^{2}\right)^{r}$
$=(-1)^{10} \cdot{ }^{30} C_{10}$ \{for coefficient of $x^{20}$, let
$r=10\}$

$$
={ }^{30} C_{10}
$$

5 (a)
We have,

$$
\begin{gathered}
a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+\cdots+a_{2 n} x^{2 n} \\
=\left(1-x+x^{2}\right)^{n}
\end{gathered}
$$

Putting $x=1$ and -1 , we get

$$
\left(a_{0}+a_{2}+a_{4}+\cdots\right)+\left(a_{1}+a_{3}+a_{5}+\cdots\right)
$$

$$
=1 \quad \ldots \text { (i) }
$$

And,

$$
\begin{gather*}
\left(a_{0}+a_{2}+a_{4}+\cdots\right)-\left(a_{1}+a_{3}+a_{5} \ldots\right) \\
=3^{n} \quad \ldots \text { (ii) } \tag{ii}
\end{gather*}
$$

Adding (i) and (ii), we get
$a_{0}+a_{2}+a_{4}+\cdots=\frac{3^{n}+1}{2}$
6 (a)
We know that ,
$(1+x)^{n}=C_{0}+C_{1} x+C_{2} x^{2}+\cdots+C_{n} x^{n}$
On integrating both sides, from 0 to 1 , we get

$$
\begin{aligned}
& {\left[\frac{(1+x)^{n+1}}{n+1}\right]_{0}^{1}=} {\left[C_{0} x+\frac{C_{1} x^{2}}{2}+\frac{C_{2} x^{3}}{3}+\cdots\right.} \\
&\left.+\frac{C_{n} x^{n+1}}{n+1}\right]_{0}^{1} \\
& \Rightarrow \frac{2^{n+1}-1}{n+1}= \\
& C_{0}+\frac{C_{1}}{2}+\frac{C_{2}}{3}+\ldots+\frac{C_{n}}{n+1}
\end{aligned}
$$

(a)
$7^{\text {th }}$ term from the beginning in the expansion of $\left(2^{1 / 3}+\frac{1}{3^{1 / 3}}\right)^{x}$ is given by
$T_{7}={ }^{x} C_{6}\left(2^{1 / 3}\right)^{x-6}\left(\frac{1}{3^{1 / 3}}\right)^{6}$
$7^{\text {th }}$ term from the end in the expansion of
$\left(2^{1 / 3}+\frac{1}{3^{1 / 3}}\right)^{x}$ is the $(x+1-7+1)^{\text {th }}=(x-5)^{\text {th }}$ term from the beginning. Therefore,
$T_{x-5}={ }^{x} C_{x-6}\left(2^{1 / 3}\right)^{6}\left(\frac{1}{3^{1 / 3}}\right)^{x-6}$
We have,
$\frac{T_{7}}{T_{x-5}}=\frac{1}{6}$
$\Rightarrow 6 T_{7}=T_{x-5}$
$\Rightarrow 6{ }^{x} C_{6} 2^{\frac{x-6}{3}} 3^{-2}={ }^{x} C_{x-6} 2^{2} 3^{-\left(\frac{x-6}{3}\right)}$
$\Rightarrow 2^{\frac{x-9}{3}}=3^{-\left(\frac{x-9}{3}\right)}$
$\Rightarrow 6^{\frac{x-9}{3}}=1 \Rightarrow x-9=0 \Rightarrow x=9$
9
(b)
$\because T_{r+1}={ }^{10} C_{r}\left(x \sin ^{-1} \alpha\right)^{10-r}\left(\frac{\cos ^{-1} \alpha}{x}\right)^{r}$
$={ }^{10} C_{r}\left(\sin ^{-1} \alpha\right)^{10-r}\left(\cos ^{-1} \alpha\right)^{r} x^{10-2 r}$
$\therefore$ For the term independent of $x$,
$10-2 r=0 \Rightarrow r=5$
$T_{5+1}={ }^{10} C_{5}\left(\sin ^{-1} \alpha\right)^{5}\left(\cos ^{-1} \alpha\right)^{5}$
$={ }^{10} C_{5}\left(\sin ^{-1} \alpha \cos ^{-1} \alpha\right)^{5}$
Let $f(\alpha)=\sin ^{-1} \alpha \cdot \cos ^{-1} \alpha$
$=\sin ^{-1} \alpha\left(\frac{\pi}{2}-\sin ^{-1} \alpha\right)$
Put $\sin ^{-1} \alpha=t$
$\therefore f(\alpha)=t\left(\frac{\pi}{2}-t\right)$
$=-\left\{t^{2}-\frac{\pi}{2} t\right\}$
$=-\left\{\left(t-\frac{\pi}{4}\right)^{2}-\frac{\pi^{2}}{16}\right\}$
$=\frac{\pi^{2}}{16}-\left(t-\frac{\pi}{4}\right)^{2}$
$\therefore f(a)=\frac{\pi^{2}}{16}-\left(\sin ^{-1} \alpha-\frac{\pi}{4}\right)^{2}$
Maximum value of $f(\alpha)$ is $\frac{\pi^{2}}{16}$, when $\sin ^{-1} \alpha=\frac{\pi}{4}$
Also, $-1 \leq \alpha \leq 1$
$\therefore-\frac{\pi}{2} \leq \sin ^{-1} \alpha \leq \frac{\pi}{2}$
Minimum value $f(\alpha)=\frac{\pi^{2}}{16}-\left(-\frac{\pi}{2}-\frac{\pi}{4}\right)^{2}=-\frac{\pi^{2}}{2}$
$\therefore$ Range is $\left[{ }^{10} C_{5}\left(-\frac{\pi^{2}}{2}\right)^{5},{ }^{10} C_{5}\left(\frac{\pi^{2}}{16}\right)^{5}\right]$
$i e,\left[-\frac{{ }^{10} C_{5} \pi^{10}}{2^{5}}, \frac{{ }^{10} C_{5} \pi^{10}}{2^{20}}\right]$
10 (c)
Let $A=\binom{30}{0}\binom{30}{10}-\binom{30}{1}\binom{30}{11} x$
$+\binom{30}{2}\binom{30}{12}-\ldots+\binom{30}{20}\binom{30}{30}$
or $A={ }^{30} C_{0} \cdot{ }^{30} C_{10}-{ }^{30} C_{1} \cdot{ }^{30} C_{11}$
$+{ }^{30} C_{2} \cdot{ }^{30} C_{12}-\ldots+{ }^{30} C_{20} \cdot{ }^{30} C_{30}$
$=$ coefficient of $x^{20}$ in $(1+x)^{30}(1-x)^{30}$
$=$ coefficient of $x^{20}$ in $\left(1-x^{2}\right)^{30}$
$=$ coefficient of $x^{20}$ in $\sum_{r=0}^{30}(-1)^{r}{ }^{30} C_{r}\left(x^{2}\right)^{r}$
$=(-1)^{10}{ }^{30} C_{10}$ (for coefficient of $x^{20}$, let $r=10$ )
$={ }^{30} C_{10}$
11 (b)
The $r$ th term of $(a+2 n)^{n}$ is
${ }^{n} C_{r-1}(a)^{n-r+1}(2 x)^{r-1}$
$=\frac{n!}{(n-r+1)!(r-1)!} a^{n-r+1}(2 x)^{r-1}$
$=\frac{n(n-1) \ldots(n-r+2)}{(r-1)!} a^{n-r+1}(2 x)^{r-1}$

We have, $\left(1+t^{2}\right)^{12}\left(1+t^{12}\right)\left(1+t^{24}\right)$
$=\left(1+{ }^{12} C_{1} t^{2}\right.$
$\left.+{ }^{12} C_{2} t^{4}+\ldots+{ }^{12} C_{6} t^{12}+\ldots+{ }^{12} C_{12} t^{24}+\ldots\right)(1$
$\left.+t^{12}+t^{24}+t^{36}\right)$
$\therefore$ Coefficient of $t^{24}$ in $\left(1+t^{2}\right)^{12}\left(1+t^{12}\right)\left(1+t^{24}\right)$
$={ }^{12} C_{6}+{ }^{12} C_{12}+1={ }^{12} C_{6}+2$
13 (c)
We have,
$\frac{(1+x)^{2}}{(1-x)^{3}}=\left(x^{2 v}+2 x+1\right)(1-x)^{-3}$
$\Rightarrow \frac{(1+x)^{2}}{(1+x)^{3}}=x^{2}(1-x)^{-3}+2 x(1-x)^{-3}$

$$
+(1-x)^{-3}
$$

$\therefore$ Coeff. of $x^{n}$ in $\frac{(1+x)^{2}}{(1-x)^{3}}$
$=$ Coeff. of $x^{n}$ in
$x^{2}(1-x)^{-3}+$ Coeff. of $x^{n}$ in $2 x(1-x)^{-3}+$
Coeff. of $x^{n}$ in $(1-x)^{-3}$
$=$ Coeff. of $x^{n-2}$ in $(1-x)^{-3}$
+2 . Coeff. of $x^{n-1}$ in $(1-x)^{-3}$

+ Coeff. of $x^{n}$ in $(1-x)^{-3}$
$={ }^{n-2+3-1} C_{3-1}+2 \cdot{ }^{n-1+3-1} C_{3-1}+{ }^{n+3-1} C_{3-1}$
$={ }^{n} C_{2}+2 \cdot{ }^{n+1} C_{2}+{ }^{n+2} C_{2}$
$=\frac{n(n-1)}{2}+2 \frac{(n+1) n}{2}+(n+2) \frac{(n+1)}{2}$
$=\frac{1}{2}\left(n^{2}-n+2^{2}+2 n+n^{2}+3 n+2\right)$

$$
=2 n^{2}+2 n+1
$$

14
(c)

On substituting $x=1$ in $\left(1+x-3 x^{2}\right)^{3148}$, then sum of coefficient
$=(1+1-3)^{3148}=(-1)^{3148}=1$
(c)
$a C_{0}-(a+d) C_{1}+(a+2 d) C_{2}-(a+3 d) C_{3}+\cdots$
$+(-1)^{n}(a+n d) C_{n}$
$=\sum_{r=0}^{n}(a+r d)(-1)^{r}{ }^{n} C_{r}$
$=a \sum_{r=0}^{n}(-1)^{r}{ }^{n} C_{r}-d n \sum_{r=1}^{n-1}{ }^{n-1} C_{r-1}(-1)^{r-1}$
$=a \times 0-d n \times 0=0$
16
(b)

We have,
$18^{3}+7^{3}+3 \cdot 18 \cdot 7 \cdot 25$
$\overline{3^{6}+6 \cdot 243 \cdot 2+15 \cdot 81 \cdot 4+20 \cdot 27 \cdot 8+15 \cdot 9 \cdot}$
$=\frac{18^{3}+7^{3}+3 \cdot 18 \cdot 7}{{ }^{6} C_{0} 3^{6}+{ }^{6} C_{1} 3^{5} \cdot 2^{1}+{ }^{6} C_{2} 3^{4} \cdot 2^{2}+{ }^{6} C_{3} 3^{3} 2^{3} \dashv}$
$=\frac{(18+7)^{3}}{(3+2)^{6}}=\frac{5^{6}}{5^{6}}=1$
(b)

We have,
$\left(1+x^{2}\right)^{5}(1+x)^{4}$
$=\left({ }^{5} C_{0}+{ }^{5} C_{1} x^{2}+{ }^{5} C_{2} x^{4}+\cdots\right)$
$\times\left({ }^{4} C_{0}+{ }^{4} C_{1} x+{ }^{4} C_{2} x^{2}+{ }^{4} C_{3} x^{3}+{ }^{4} C_{4} x^{4}\right)$
$\therefore$ Coefficient of $x^{5}$ in $\left\{\left(1+x^{2}\right)^{5}(1+x)^{4}\right\}$
$={ }^{5} C_{2} \times{ }^{5} C_{1}+{ }^{4} C_{3} \times{ }^{5} C_{1}=60$
18 (d)
$\left({ }^{n} C_{0}\right)^{2}+\left({ }^{n} C_{1}\right)^{2}+\left({ }^{n} C_{2}\right)^{2}+\cdots+\left({ }^{n} C_{5}\right)^{2}$
$=\left({ }^{5} C_{0}\right)^{2}+\left({ }^{5} C_{1}\right)^{2}+\left({ }^{5} C_{2}\right)^{2}+\left({ }^{5} C_{3}\right)^{2}+\left({ }^{5} C_{4}\right)^{2}+$ $\left({ }^{5} C_{5}\right)^{2}$
$=1+25+100+100+25+1=252$
19 (c)
Let

$$
\begin{gather*}
S=(1+x)^{1000}+2 x(1+x)^{999}+3 x^{2}(1+x)^{998} \\
+\cdots+1000 x^{999}(1+x) \\
+1001 x^{1000} \quad \ldots \text { (i) } \tag{i}
\end{gather*}
$$

$\therefore \frac{x}{1+x} S=x(1+x)^{999}+2 x^{2}(1+x)^{998}+\cdots$

$$
+1000 x^{1000}+\frac{1001 x^{1001}}{1+x} \ldots(\text { ii })
$$

Subtracting (ii) from (i), we get

$$
\begin{aligned}
&\left(1-\frac{x}{x+1}\right) S=(1+x)^{1000}+x(1+x)^{999} \\
&+x^{2}(1+x)^{998}+\cdots+x^{1000} \\
& \quad-\frac{1001 x^{1001}}{1+x} \\
& \Rightarrow S=(1+x)^{1001}+x(1+x)^{1000}+x^{2}(1+x)^{999} \\
& \quad+\cdots+x^{1000}(1+x)-1001 x^{1001}
\end{aligned}
$$

$$
\Rightarrow S=(1+x)^{1001} \frac{\left\{1-\left(\frac{x}{1+x}\right)^{1001}\right\}}{\left\{1-\frac{x}{1+x}\right\}}-1001 x^{1001}
$$

$$
\Rightarrow S=(1+x)^{1002}\left\{1-\left(\frac{x}{1+x}\right)^{1001}\right\}-1001 x^{1001}
$$

$$
\Rightarrow S=(1+x)^{1002}-x^{1001}(1+x)-1001 x^{1001}
$$

$\therefore$ Coefficient of $x^{50}$ in $S$ is ${ }^{1002} C_{50}$
20 (d)

$$
\begin{gathered}
\frac{1}{(x-1)^{2}(x-2)}=\frac{1}{-2(1-x)^{2}\left(1-\frac{x}{2}\right)} \\
=-\frac{1}{2}\left[(1-x)^{-2}\left(1-\frac{x}{2}\right)^{-1}\right] \\
=-\frac{1}{2}\left[(1+2 x+\cdots)\left(1+\frac{x}{2}+\cdots\right)\right]
\end{gathered}
$$

$\therefore$ Coefficient of constant term is $-\frac{1}{2}$.
21 (c)
Let $S=1+\frac{2 \cdot 1}{3 \cdot 2}+\frac{2 \cdot 5}{3 \cdot 6}\left(\frac{1}{2}\right)^{2}+\frac{2 \cdot 5 \cdot 8}{3 \cdot 6 \cdot 9}\left(\frac{1}{2}\right)^{3}+\ldots$
$=1+\frac{\frac{2}{3}}{1}\left(\frac{1}{2}\right)+\frac{\left(\frac{2}{3}\right)\left(\frac{5}{3}\right)}{2!}\left(\frac{1}{2}\right)^{2}+\frac{\left(\frac{2}{3}\right)\left(\frac{5}{3}\right)\left(\frac{8}{3}\right)}{3!}\left(\frac{1}{2}\right)^{3}+\ldots$
$=\left(1-\frac{1}{2}\right)^{-2 / 3}=\left(\frac{1}{2}\right)^{-2 / 3}=2^{2 / 3}=4^{1 / 3}$
$\left[\because(1-x)^{-n}=1+n x+\frac{n(n+1)}{2!} x^{2}+\ldots\right]$
22 (a)
$r$ th term in the expansion of $\left(3 x-\frac{2}{x^{2}}\right)^{15}$ is
$T_{r}={ }^{15} C_{r-1}(3 x)^{15-r+1}\left(\frac{-2}{x^{2}}\right)^{r-1}$
$={ }^{15} C_{r-1}(3)^{15-r+1}(-2)^{r-1}(x)^{15-3 r+3}$
For the term independent of $x$, put
$15-3 r+3=0 \Rightarrow r=6$
(a)

We have, $\sum_{r=0}^{n} \sum_{s=0}^{n}(r+s)\left(C_{r}+C_{s}\right)$
$=\sum_{r=0}^{n} \sum_{s=0}^{n}\left(r C_{r}+r C_{s}+s C_{r}+s C_{s}\right)$
$=\sum_{r=0}^{n}\left[\sum_{s=0}^{n} r C_{r}+r \sum_{s=0}^{n} C_{s}+C_{s} \sum_{s=0}^{n} s+\sum_{s=0}^{n} s C_{S}\right]$
$=\sum_{r=0}^{n}\left[(n+1) r \cdot C_{r}+r 2^{n}+\frac{n(n+1)}{2} C_{r}+n\right.$
$\left.\cdot 2^{n-1}\right]$
$=(n+1) n \cdot 2^{n-1}+\left(2^{n}\right) \frac{n(n+1)}{2}+\frac{n(n+1)}{2} 2^{n}$

$$
+n 2^{n-1}(n+1)
$$

$=n(n+1) 2^{n}+n(n+1) 2^{n}$
$=2 n(n+1) 2^{n}$.
Also, $\sum_{\mathrm{r}=0}^{n} \sum_{s=0}^{n}(\mathrm{r}+\mathrm{s})\left(C_{\mathrm{r}}+C_{s}\right)$
$=\sum_{r=0}^{n} 4 r C_{r}+2 \sum_{0 \leq r<s \leq n} \sum(r+s)\left(C_{r}+C_{s}\right)$
$\therefore 2 n(n+1) 2^{n}=4 n \cdot 2^{n-1}$

$$
+2 \sum_{0 \leq r<s \leq n} \sum(r+s)\left(C_{r}+C_{s}\right)
$$

$\Rightarrow \sum_{0 \leq r<s \leq n} \sum(r+s)\left(C_{r}+C_{s}\right)=n^{2} \cdot 2^{n}$
25 (a)
We know,
$(1+x)^{n}=C_{0}+C_{1} x+C_{2} x^{2}+\ldots+C_{r} x^{r}+$
and $\left(1+\frac{1}{x}\right)^{n}=C_{0}+C_{1} \frac{1}{x}+C_{2} \frac{1}{x^{2}}+\ldots+C_{r} \frac{1}{x^{r}}$
$+C_{r+1} \frac{1}{x^{r+1}}+C_{r+2} \frac{1}{x^{r+2}} \ldots C_{n} \frac{1}{x^{n}} \ldots$
On multiplying Eqs. (i) and (ii), equation
coefficient of $x^{r}$ in $\frac{1}{x^{n}}(1+x)^{2 n}$ or the coefficient of $x^{n+r}$ in $(1+x)^{2 n}$, we get the value of required expression which is
${ }^{2 n} C_{n+r}=\frac{(2 n)!}{(n-r)!(n+r)!}$
(b)

In $(x+a)^{100}+(x-a)^{100} n$ is even
$\therefore$ Total number of terms $=\frac{n}{2}+1=\frac{100}{2}+1=51$
28 (b)
Given polynomial is
$(x-1)(x-2)(x-3) \ldots(x-19)(x-20)$
$=x^{20}-(1+2+3+\cdots+19+20) x^{19}$

$$
\begin{gathered}
+(1 \times 2+2 \times 3+\cdots+19 \times 20) x^{18} \\
-\cdots+(1 \times 2 \times 3 \times 4 \times \ldots \times 19 \times 20)
\end{gathered}
$$

$\therefore$ Coefficient of $x^{19}=-(1+2+3+\ldots+19+20)$
$=-\left[\frac{20}{2}(1+20)\right]$
$=-10 \times 21=-210$
29 (c)
We know that,
${ }^{15} C_{0}+{ }^{15} C_{1}+{ }^{15} C_{2}+\cdots+{ }^{15} C_{15}=2^{15}$
$\Rightarrow 2\left({ }^{15} C_{8}+{ }^{15} C_{9}+\cdots+{ }^{15} C_{15}\right) 2^{15}\left[\because{ }^{n} C_{r}\right.$ $\left.={ }^{n} C_{n-r}\right]$
$\Rightarrow{ }^{15} C_{8}+{ }^{15} C_{9}+\cdots+{ }^{15} C_{15}=2^{14}$

30 (c)
The number of terms in the expansion of
$(a+b+c)^{n}$
$=\frac{(n+1)(n+2)}{2}$
31 (c)
We have,
$T_{r+1}={ }^{5} C_{r}\left(y^{2}\right)^{5-r}\left(\frac{c}{y}\right)^{r}={ }^{5} C_{r} y^{10-3 r} c^{r}$
This will contain $y$, if $10-3 r=1 \Rightarrow r=3$
$\therefore$ Coefficient of $y={ }^{5} C_{3} c^{3}=10 c^{3}$
32 (b)
$\because(0.99)^{15}=(1-0.01)^{15}$
$=1-{ }^{15} C_{1}(0.01)+{ }^{15} C_{2}(0.01)^{2}$

$$
-{ }^{15} C_{3}(0.01)^{3}+\ldots
$$

We want to answer correct upto 4 decimal places and as such, we have left further expansion.
$=1-15(0.01)+\frac{15 \cdot 14}{1 \cdot 2}(0.0001)$

$$
-\frac{15 \cdot 14 \cdot 13}{1 \cdot 2 \cdot 3}(0.000001)+\ldots
$$

$=1-0.15+0.0105-0.000455+.$.
$=1.0105-0.150455$
$=0.8601$
33 (b)
By hypothesis, $2^{n}=4096=2^{12} \Rightarrow n=12$
Since, $n$ is even, hence greatest coefficient
$={ }^{n} C_{n / 2}={ }^{12} C_{6}=\frac{12 \cdot 11 \cdot 10 \cdot 9 \cdot 8 \cdot 7}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6}=924$
34 (c)
Given that, ${ }^{n} C_{r-1}={ }^{n} C_{r+1}$
$\Rightarrow \frac{n!}{(n-r+1)(n-r)(n-r-1)!(r-1)!}$
$=\frac{n!}{(n-r-1)!(r+1)(r)(r-1)!}$
$\Rightarrow r^{2}+r=n^{2}-n r+n-n r+r^{2}-r$
$\Rightarrow n^{2}-2 n r-2 r+n=0$
$\Rightarrow(n-2 r)(n+1)=0 \Rightarrow r=\frac{n}{2}$

It is given that
${ }^{n} C_{1} x^{n-1} a^{1}=240$
${ }^{n} C_{2} x{ }^{n-2} a^{2}=720$
${ }^{n} C_{3} x^{n-3} a^{3}=1080$
From (i), (ii) and (iii)
$\frac{\left({ }^{n} C_{2}\right)^{2} x^{2}{ }^{n-4} a^{4}}{{ }^{n} C_{1}{ }^{n} C_{3} x^{2 n-4} a^{4}}=\frac{720 \times 720}{240 \times 1080}$
$\Rightarrow \frac{6 n^{2}(n-1)^{2}}{4 n^{2}(n-1)(n-2)}=2$
$\Rightarrow \frac{3}{2} \frac{(n-1)}{(n-2)}=2$
$\Rightarrow 3 n-3=4 n-8 \Rightarrow n=5$
(d)
$\frac{1}{81^{n}}\left(1-10 \cdot{ }^{2 n} C_{1}+10^{2} \cdot{ }^{2 n} C_{2}-10^{3} \cdot{ }^{2 n} C_{3}+\cdots\right.$

$$
\left.+10^{2 n}\right)
$$

$=\frac{1}{(81)^{n}}(1-10)^{2 n}=1$
37 (b)
We have,
$\left(1+x+x^{2}\right)^{n}=$
$a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots .+a_{2 n} x^{2 n}$
On differentiating both sides, we get
$n(1-1+1)^{n-1}(1+2 x)=a_{1}+2 a_{2} x+3 a_{3} x^{2}$

$$
+\ldots .+2 n a_{2 n} x^{2 n-1}
$$

On putting $x=-1$ we get
$n(1-1+1)^{n-1}(1-2)=a_{1}-2 a_{2}+$
$3 a_{3}-\ldots-2 n a_{2 n}$
$\Rightarrow a_{1}-2 a_{2}+3 a_{3}-\ldots-2 n a_{2 n}=-n$
(a)

Since $(n+1)^{\text {th }}$ term is the middle term in the expansion of $(1+x)^{2 n}$
$\therefore$ Coefficient of the middle term
$={ }^{2}{ }^{n} C_{n}=\frac{(2 n)!}{n!n!}$
$=\frac{(1 \cdot 3 \cdot 5 \ldots(2 n-1)(2 \cdot 4 \cdot 6 \ldots(2 n-2)(2 n))}{n!n!}$
$=\frac{1 \cdot 3 \cdot 5 \ldots(2 n-1) 2^{n} n!}{n!n!}$
$=\frac{1 \cdot 3 \cdot 5 \ldots(2 n-1) 2^{n}}{n!}$

39 (a)
We have,
$(1+x)^{10}\left(1+\frac{1}{x}\right)^{12}=\frac{(1+x)^{22}}{x^{12}}$
$\therefore$ Constant term in $(1+x)^{10}\left(1+\frac{1}{x}\right)^{12}$
$=$ Coefficient of $x^{12}$ in $(1+x)^{22}$
$={ }^{22} C_{12}={ }^{22} C_{10}$
40
(b)

Given, $a_{n}=n a_{n-1}$
For $n=2$
$a_{2}=2 a_{1}=2 \quad\left(\because a_{1}=1\right.$ given $)$
$a_{3}=3 a_{2}=3(2)=6$
$a_{4}=4\left(a_{3}\right)=4(6)=24$
$a_{5}=5\left(a_{4}\right)=5(24)=120$
41 (a)
Since,
$x(1+x)^{n}=x C_{0}+C_{1} x^{2}+C_{2} x^{3}+\ldots+C_{n} x^{n+1}$
On differentiating w.r.t. $x$, we get

$$
\begin{aligned}
(1+x)^{n}+n x & (1+x)^{n-1} \\
& =C_{0}+2 C_{1} x \\
& +3 C_{2} x^{2}+\ldots+(n+1) C_{n} x^{n}
\end{aligned}
$$

Put $x=1$, we get
$C_{0}+2 C_{1}+3 C_{2}+\ldots+(n+1) C_{n}=2^{n}+n 2^{n-1}$
$=2^{n-1}(n+2)$
42 (c)
Let $T_{r+1}$ denote the $(r+1)^{\text {th }}$ term in the
expansion of $\left(x^{3}-\frac{1}{x^{2}}\right)^{n}$. Then,
$T_{r+1}={ }^{n} C_{r} x^{3 n-5 r}(-1)^{r}$
For this term to contain $x^{5}$, we must have
$3 n-5 r=5 \Rightarrow r=\frac{3 n-5}{5}$
$\therefore$ Coefficient of $x^{5}={ }^{n} C_{\frac{3 n-5}{5}}(-1)^{\frac{3 n-5}{5}}$
Similarly,
Coefficient of $x^{10}={ }^{n} C_{\frac{3 n-10}{5}}(-1)^{\frac{3 n-10}{5}}$
Now,
Coefficient of $x^{5}+$ Coefficient of $x^{10}=0$
$\Rightarrow{ }^{n} C_{\frac{3 n-5}{5}}(-1)^{\frac{3 n-5}{5}}+{ }^{n} C_{\frac{3 n-10}{5}}(-1)^{\frac{3 n-10}{5}}=0$
$\Rightarrow{ }^{n} C_{\frac{3 n-5}{5}}={ }^{n} C_{\frac{3 n-10}{5}}$
$\Rightarrow \frac{3 n-5}{5}+\frac{3 n-10}{5}=n$
$\Rightarrow 6 n-15=5 n$
$\Rightarrow n=15$
43
(b)
$\left(1+x+x^{2}+x^{3}\right)^{6}=(1+x)^{6}\left(1+x^{2}\right)^{6}$

$$
\begin{gathered}
=\left({ }^{6} C_{0}+{ }^{6} C_{1} x+{ }^{6} C_{2} x^{2}+{ }^{6} C_{3} x^{3}+{ }^{6} C_{4} x^{4}\right. \\
\left.+{ }^{6} C_{5} x^{5}+{ }^{6} C_{6} x^{6}\right) \times\left({ }^{6} C_{0}\right. \\
+{ }^{6} C_{1} x^{2}+{ }^{6} C_{2} x^{4}+ \\
\left.{ }^{6} C_{3} x^{6}+{ }^{6} C_{4} x^{8}+{ }^{6} C_{5} x^{10}+{ }^{6} C_{6} x^{12}\right)
\end{gathered}
$$

$\therefore$ Coefficient of $x^{14}$ in $\left(1+x+x^{2}+x^{3}\right)^{6}$

$$
\begin{aligned}
& ={ }^{6} C_{2} \cdot{ }^{6} C_{6}+{ }^{6} C_{4} \cdot{ }^{6} C_{5}+{ }^{6} C_{6} \cdot{ }^{6} C_{4} \\
& =15+90+15=120
\end{aligned}
$$

(c)

The $14^{\text {th }}$ term from the end in the expansion of $(\sqrt{x}-\sqrt{y})^{17}$ is the $(18-14+1)^{\text {th }}$ i.e. $5^{\text {th }}$ term from the beginning and is given by
${ }^{17} C_{4}(\sqrt{x})^{13}(-\sqrt{y})^{4}={ }^{17} C_{4} x^{13 / 2} y^{2}$
(d)

Put $x=1$, we get
$(1+2+3+\cdots+n)^{2}=\sum n^{3}$
46 (d)
We have,
$\left(1+x+x^{2}\right)^{n}=a_{0}+a_{1} x+a_{2} x^{3}+\ldots .+a_{2 n} x^{2 n}$
On differentiating both sides, we get
$n\left(1+x+x^{2}\right)^{n-1}(1+2 x)=a_{1}+2 a_{2} x+3 a_{3} x^{2}$

$$
+\ldots+2 n a_{2 n} x^{2 n-1}
$$

Now, on putting $x=1$, we get
$n(3)^{n-1} \cdot(3)=a_{1}+2 a_{2}+3 a_{3}+. .+2 n a_{2 n}$
$\Rightarrow a_{1}+2 a_{2}+3 a_{3}+\ldots+2 n a_{2 n}=n \cdot 3^{n}$
47 (c)
There are total $(n+1)$ factors, let $P(x)=0$
Let $\left(x+{ }^{n} C_{0}\right)\left(x+3{ }^{n} C_{1}\right)\left(x+5{ }^{n} C_{2}\right) \ldots[x+$
$2 n+1 n C n$
$=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}$
Clearly, $a_{n}=1$
and roots of the equation $P(x)=0$ are
$-{ }^{n} C_{0},-3{ }^{n} C_{1}, \ldots$
Sum of roots $=-a_{n-1} / a_{n}$
$=-{ }^{n} C_{0}-3{ }^{n} C_{1}-5{ }^{n} C_{2} \ldots$
$\Rightarrow a_{n-1}=(n+1) 2^{n}$
48 (b)
${ }^{n-2} C_{r}+2 \cdot{ }^{n-2} C_{r-1}+{ }^{n-2} C_{r-2}$
$=\left({ }^{n-2} C_{r}+{ }^{n-2} C_{r-1}\right)+\left({ }^{n-2} C_{r-1}+{ }^{n-2} C_{r-2}\right)$
$={ }^{n-1} C_{r}+{ }^{n-1} C_{r-1}\left(\therefore{ }^{n} C_{r-1}+{ }^{n} C_{r}={ }^{n+1} C_{r}\right)$
$={ }^{n} C_{r}$
49 (d)

$$
\begin{aligned}
& \because \frac{1}{(x-1)^{2}(x-2)}=\frac{1}{-2(1-x)^{2}\left(1-\frac{x}{2}\right)} \\
& =-\frac{1}{2}\left[(1-x)^{-2}\left(1-\frac{x}{2}\right)^{-1}\right] \\
& =-\frac{1}{2}\left[(1+2 x+\ldots)\left(1+\frac{x}{2}+\ldots\right)\right] \\
& \therefore \text { Coefficient of constant term is }-\frac{1}{2}
\end{aligned}
$$

50 (b)
In the expansion of $\left(x^{2}+\frac{a}{x}\right)^{5}$, the general term is
$T_{r+1}={ }^{5} C_{r}\left(x^{2}\right)^{5-r}\left(\frac{a}{x}\right)^{r}={ }^{5} C_{r} \cdot a^{r} \cdot x^{10-3 r}$
For the coefficient of $x$, put

$$
10-3 r=1 \Rightarrow r=3
$$

$\therefore$ Coefficient of $x={ }^{5} C_{3} a^{3}=10 a^{3}$
52 (b)
Coefficient of $x^{r}$ in the expansion of $(1+x)^{10}$ is ${ }^{10} C_{r}$ and it is maximum for $r=\frac{10}{2}=5$
Hence, Greatest coefficient $={ }^{10} C_{5}=\frac{10!}{(5!)^{2}}$
53 (c)
Given expansion is $\left(\frac{a}{x}+b x\right)^{12}$
$\therefore$ General term, $T_{r+1}={ }^{12} C_{r}\left(\frac{a}{x}\right)^{12-r}(b x)^{r}$
$={ }^{12} C_{r}(a)^{12-r} b^{r} x^{-12+2 r}$
For coefficient of $x^{-10}$, put
$-12+2 r=-10$
$\Rightarrow r=1$
Now, the coefficient of $x^{-10}$ is
${ }^{12} C_{1}(a)^{11}(b)^{1}=12 a^{11} b$
55 (a)
We have,
$T_{r+1}={ }^{21} C_{r}\left(\sqrt[3]{\frac{a}{\sqrt{b}}}\right)^{21-r}\left(\sqrt{\frac{b}{\sqrt[3]{a}}}\right)^{r}$
$\Rightarrow T_{r+1}={ }^{21} C_{r} a^{7-\frac{r}{2}} b^{\frac{2}{3} r-\frac{7}{2}}$
Since the powers of $a$ and $b$ are the same
$\therefore 7-\frac{r}{2}=\frac{2}{3} r-\frac{7}{2} \Rightarrow r=9$
56 (b)
$(1-x)^{-4}=1 \cdot x^{0}+4 x^{1}+\frac{4.5}{2} x^{2}+\ldots$
$=\left[\frac{1.2 .3}{6} x^{0}+\frac{2.3 .4}{6} x+\frac{3.4 .5}{6} x^{2}\right.$
$\left.+\frac{4.5 .6}{6} x^{3}+\ldots+\frac{(r+1)(r+2)(r+3)}{6} x^{r}+\ldots\right]$
Therefore, $T_{\mathrm{r}+1}=\frac{(r+1)(r+2)(r+3)}{6} x^{r}$
57 (a)
We have,
$y=\frac{1}{3}+\frac{1 \cdot 3}{3 \cdot 6}+\frac{1 \cdot 3 \cdot 5}{3 \cdot 6 \cdot 9}+\cdots$
$\Rightarrow y+1=1+\frac{1}{3}+\frac{1 \cdot 3}{3 \cdot 6}+\frac{1 \cdot 3 \cdot 5}{3 \cdot 6 \cdot 9}+\cdots$
Comparing the series on RHS with
$1+n x+\frac{n(n-1)}{2!} x^{2}+\cdots$, we get
$n x=\frac{1}{3}$
and, $\frac{n(n-1)}{2} x^{2}=\frac{1}{6}$
Dividing (ii) by square of (i), we get
$\frac{n-1}{2 n}=\frac{9}{6} \Rightarrow n=-\frac{1}{2}$
$\Rightarrow x=-\frac{2}{3} \quad$ [putting $n=-\frac{1}{2}$ in (i)]
$\therefore y+1=(1+x)^{n}$
$\Rightarrow y+1=\left(1-\frac{2}{3}\right)^{-1 / 2}$
$\Rightarrow y+1=\left(\frac{1}{3}\right)^{-1 / 2}$
$\Rightarrow(y+1)^{2}=\left(\frac{1}{3}\right)^{-1} \Rightarrow y^{2}+2 y+1=3$

$$
\Rightarrow y^{2}+2 y=2
$$

58 (b)
$S(k)=1+3+5 \ldots+(2 k-1)=3+k^{2}$
Put $k=1$ in both sides, we get
LHS $=1$ and $\mathrm{RHS}=3+1=4$
$\Rightarrow \quad$ LHS $\neq$ RHS
Put $(k+1)$ in both sides in the place of $k$, we get

$$
\begin{aligned}
\text { LHS } & =1+3+5 \ldots+(2 k-1)+(2 k+1) \\
\text { RHS } & =3+(k+1)^{2}=3+k^{2}+2 k+1
\end{aligned}
$$

Let LHS $=$ RHS
Then, $1+3+5 \ldots .+(2 k-1)+(2 k+1)$

$$
=3+k^{2}+2 k+1
$$

$\Rightarrow 1+3+5+\ldots+(2 k-1)=3+k^{2}$
If $S(k)$ is true, then $S(k+1)$ is also true.
Hence, $S(k) \Rightarrow S(k+1)$
59 (b)
The general term in the expansion of $\left(5^{1 / 6}+\right.$ 218) 100 is given by
$T_{r+1}={ }^{100} C_{r}\left(5^{1 / 6}\right)^{100-r}\left(2^{1 / 8}\right)^{r}$
As 5 and 2 are relatively prime, $T_{r+1}$ will be rational, if
$\frac{100-r}{6}$ and $\frac{r}{8}$ are both integers ie, if $100-r$ is a multiple of 6 and $r$ is a multiple of 8 . As $0 \leq r \leq 100$, multiples of 8 upto 100 and corresponding value of $100-r$ are $r=0,8,16,24, \ldots ., 88,96$
$i e, 100-r=100,92,84,76, \ldots, 12,4$
Out of $100-r$, multiples of 6 are $84,60,36,12$
$\therefore$ There are four rational terms
Hence, number of irrational terms is $101-4=$ 97
60 (b)
We have,
$T_{r}={ }^{10} C_{r-1}\left(\frac{x}{3}\right)^{10-r+1}\left(-\frac{2}{x^{2}}\right)^{r-1}$
$\Rightarrow T_{r}={ }^{10} C_{r-1}\left(\frac{1}{3}\right)^{11-r}(-2)^{r-1} x^{13-3 r}$
For this term to contain $x^{4}$, we must have
$13-2 r=4 \Rightarrow r=3$
61 (c)
We have, $32^{32}=\left(2^{5}\right)^{32}=2^{160}=(3-1)^{160}$
$={ }^{160} C_{0} 3{ }^{160}-{ }^{160} C_{1} \cdot 3^{159}+\ldots-{ }^{160} C_{159} \cdot 3$ $+{ }^{160} C_{160} 3^{\circ}$
$=3 m+1$, where $m \in N$
$32^{(32)^{(32)}}=(32)^{3 m+1}$
$=\left(2^{5}\right)^{3 m+1}=2^{15 m+5}$
$=2^{3(5 m+1)} \cdot 2^{2}=\left(2^{3}\right)^{5 m+1} \cdot 2^{2}$
$=(7+1)^{5 m=1} \times 4$
$=\left\{{ }^{5 m+1} C_{0} 7^{5 m+1}\right.$

$$
\begin{aligned}
& +{ }^{5 m+1} C_{1} 7^{5 m}+\ldots+{ }^{5 m+1} C_{5 m+1} 7 \\
& \left.+{ }^{5 m+1} C_{5 m+1} \cdot 7^{0}\right\} \times 4
\end{aligned}
$$

$=(7 n+1) \times 4$,
where $n={ }^{5 m+1} C_{0} 7^{5 m+1}+\ldots+{ }^{5 m+1} C_{5 m} \cdot 7$
$28 n+4$
Thus, when $32^{(32)^{(32)}}$ is divided by 7 , the remainder is 4
62 (c)
We have,
$\left[2^{\log _{2} \sqrt{9^{x-1}+7}}+\frac{1}{2^{(1 / 5) \log _{2}\left(3^{x-1}+1\right)}}\right]^{7}$
$=\left[\sqrt{9^{x-1}+7}+\frac{1}{\left(3^{x-1}+1\right)^{1 / 5}}\right]^{7}$
$\therefore T_{6}={ }^{7} C_{5}\left(\sqrt{9^{x-1}+7}\right)^{7-5}\left[\frac{1}{\left(3^{x-1}+1\right)^{1 / 5}}\right]^{5}$
$={ }^{7} C_{5}\left(9^{x-1}+7\right) \frac{1}{\left(3^{x-1}+1\right)}$
$\Rightarrow 84={ }^{7} C_{5} \frac{\left(9^{x-1}+7\right)}{\left(3^{x-1}+1\right)}$
$\Rightarrow 9^{x-1}+7=4\left(3^{x-1}+1\right)$
$\Rightarrow \frac{3^{2 x}}{9}+7=4\left(\frac{3^{x}}{3}+1\right)$
$\Rightarrow 3^{2 x}-12\left(3^{x}\right)+27=0$
$\Rightarrow y^{2}-12 y+27=0 \quad$ (put $y=3^{x}$ )
$\Rightarrow(y-3)(y-9)=0$
$\Rightarrow y=3,9 \Rightarrow 3^{x}=3,9 \Rightarrow x=1,2$
63 (d)
Here, $P(1)=2$ and from the equation

$$
P(k)=k(k+1)+2
$$

$\Rightarrow \quad P(1)=4$
So, $P(1)$ is not true
Hence, mathematical induction is not applicable.
(b)

We have,
$\left(1+2 x+x^{2}\right)^{20}=\left\{(1+x)^{2}\right\}^{20}=(1+x)^{40}$

Clearly, $(1+x)^{40}$ contains 41 terms
Hence, $\left(1+2 x+x^{2}\right)^{20}$ contains 41 terms
(d)

The series of binomial coefficient is

$$
{ }^{15} C_{8}
$$

$\underset{\text { decreasing value }}{{ }^{15} C_{0},{ }^{15} C_{1},{ }^{15} C_{2}, \ldots,{ }^{15} C_{7}} \downarrow \underset{\text { decreasing value }}{{ }^{15} C_{9}, \ldots .{ }^{15} C_{9},{ }^{15} C_{15}}$
From the above discussion, we can say that decreasing series is ${ }^{15} C_{7},{ }^{15} C_{6},{ }^{15} C_{5}$.

66 (c)
For $n=1,10^{n}+3 \cdot 4^{n+2}+5$
$=10+3 \cdot 4^{3}+5=207$ This is divisible by 9.
$\therefore$ By induction, the result is divisible by 9 .
67 (d)
$\frac{{ }^{8} C_{0}}{6}-{ }^{8} C_{1}+{ }^{8} C_{2} \cdot 6-{ }^{8} C_{3} \cdot 6^{2}+\cdots+{ }^{8} C_{8} \cdot 6^{7}$
$=\frac{1}{6}\left[{ }^{8} C_{0}-6^{8} C_{1}+6^{2}{ }^{8} C_{2}-6^{3}{ }^{8} C_{3}+\cdots+6^{8}{ }^{8} C_{8}\right]$
$=\frac{1}{6}\left[(1-6)^{8}\right]=\frac{5^{8}}{6}$
(a)

In the expansion of $(1+x)^{n}$, it is given that
${ }^{n} C_{1},{ }^{n} C_{2},{ }^{n} C_{3}$ are in AP
$\Rightarrow 2^{n} C_{2}={ }^{n} C_{1}+{ }^{n} C_{3}$
$\Rightarrow 2 \cdot \frac{n(n-1)}{1 \cdot 2}=\frac{n}{1}+\frac{n(n-1)(n-2)}{1 \cdot 2 \cdot 3}$
$\Rightarrow 6(n-1)=6+(n-2)(n-1)$
$\Rightarrow 6 n-6=6+n^{2}-3 n+2$
$\Rightarrow n^{2}-9 n+14=0$
$\Rightarrow(n-2)(n-7)=0$
$\Rightarrow n=2,7$
But $n=2$ is not acceptable because, when $n=2$, there are only three terms in the expansion of $(1+x)^{2}$
$\therefore n=7$
70 (a)
$(1+x)^{n}={ }^{n} C_{0}+{ }^{n} C_{1} x+{ }^{n} C_{2} x{ }^{2}+\ldots+{ }^{n} C_{n} x{ }^{n}$
...(i)
On differentiating both sides w. r.t. $x$, we get
$n(1+x)^{n-1}={ }^{n} C_{1}+2{ }^{n} C_{2} x+\ldots+n^{n} C_{n} x^{n-1}$
...(ii)
On putting $x=1$ in Eq. (ii), we get
$n(2)^{n-1}={ }^{n} C_{1}+2{ }^{n} C_{2}+\ldots+{ }^{n} C_{n}$
...(iii)
On putting $x=-1$ in Eq. (ii) we get
$0={ }^{n} C_{1}-2{ }^{n} C_{2}+3{ }^{n} C_{3}-\ldots(-1)^{n-1} \cdot{ }^{n} C_{n} \ldots$ (iv)
On adding Eqs. (iii) and (iv), we get
$n 2^{n-1}=2\left({ }^{n} C_{1}+3{ }^{n} C_{3}+..\right)$
$\Rightarrow{ }^{n} C_{1}+3{ }^{n} C_{3}+5^{n} C_{5}+\ldots=\frac{n}{2} \cdot 2^{n-1}=n 2^{n-2}$
71 (a)
Given expression is $\left(x+x^{\log 10^{x}}\right)^{5}$
$\therefore T_{3}={ }^{5} C_{2} \cdot x^{3}\left(x^{\log 10^{x}}\right)^{2}=10^{6}$ (given)
Put $x=10$, then $10^{4} .10^{2}=10^{6}$ is satisfied.
Hence, $x=10$.
72 (c)
Given, ${ }^{n} C_{0}-\frac{1}{2}{ }^{n} C_{1}+\frac{1}{3}{ }^{n} C_{2}-\ldots+(-1)^{n} \frac{{ }^{n} C_{n}}{n+1}$
At $n=1,{ }^{1} C_{0}-\frac{1}{2}{ }^{1} C_{1}=1-\frac{1}{2}=\frac{1}{2}$
At $n=2,{ }^{2} C_{0}-\frac{1}{2}{ }^{2} C_{1}+\frac{1}{3}{ }^{2} C_{2}=1-1+\frac{1}{3}=\frac{1}{3}$
Which is satisfied only in option (c)
73 (b)

$$
\begin{gathered}
8^{2 n}-(62)^{2 n+1}=(1+63)^{n}-(63-1)^{2 n+1} \\
\quad=(1+63)^{n}+(1-63)^{2 n+1} \\
=\left(1+{ }^{n} C_{1} 63+{ }^{n} C_{2}(63)^{2}+\cdots+(63)^{n}\right) \\
+\left(1-{ }^{(2 n+1)} C_{1} 63+{ }^{(2 n+1)} C_{2}(63)^{2}+\cdots\right. \\
\left.\quad+(-1)(63)^{(2 n+1)}\right) \\
=2+63\left[{ }^{n} C_{1}+{ }^{n} C_{2}(63)+\ldots+(63)^{n-1}-(2 n+1) C_{1}\right. \\
\\
\left.\quad+{ }^{(2 n+1)} C_{2}(63)-\ldots-(63)^{(2 n)}\right]
\end{gathered}
$$

$\therefore$ Remainder is 2 .
74 (a)
We have,
$T_{r+1}={ }^{20} C_{r} \times 4^{\frac{20-r}{3}} \times 6^{-\frac{r}{4}}$
$\Rightarrow T_{r+1}={ }^{20} C_{r} 2^{\frac{160-11 r}{12}} 3^{-\frac{r}{4}}, r=0,1,2, \ldots, 20$
This term will be rational if $\frac{160-11 r}{12}$ and $\frac{r}{4}$ are rational numbers
Now, $\frac{r}{4}$ is rational if $r=0,4,8,12,16,20$
Clearly, $\frac{160-11 r}{12}$ is rational for $=8,16$ and 20
Hence, there are only 3 rational terms
75 (c)
We have,

$$
\begin{aligned}
\left(x^{2}+1+\frac{1}{x^{2}}\right)^{n} & =\frac{1}{x^{2 n}}\left(1+x^{2}+x^{4}\right)^{n} \\
& =\frac{1}{t^{n}}\left(1+t+t^{2}\right)^{n}, \text { where } t=x^{2}
\end{aligned}
$$

Clearly, $\left(1+t+t^{2}\right)^{n}$ is a polynomial of degree $2 n$
Hence, there are $(2 n+1)$ terms
76 (b)
$(19)^{2005}+(11)^{2005}-(9)^{2005}$
$=(10+9)^{2005}+(10+1)^{2005}-(9)^{2005}$
$=\left(9^{2005}+{ }^{2005} C_{1}(9)^{2004} \times 10+\ldots ..\right)+\left({ }^{2005} C_{0}+\right.$
${ }^{2005}$ C110+... -92005
$=\left({ }^{2005} C_{1} 9^{2005} \times 10+\right.$ multipale of
$10)+(1+$ multipal of 10$)$
$\therefore$ Unit digit=1
77 (b)

In the expansion of $(x+2 y)^{6}$,
$\left(\frac{6}{2}+1\right)$ th term is the middle term.
$\therefore \quad T_{4}=T_{3+1}={ }^{6} C_{3} x^{6-3}(2 y)^{3}$
$=8\left({ }^{6} C_{3}\right)(x y)^{3}$
$\therefore$ Coefficient of middle term

$$
=8\left({ }^{6} C_{3}\right)
$$

$78 \quad$ (c)
General terms, $T_{r+1}=(1)^{r}{ }^{15} C_{r}\left(x^{4}\right)^{15-r} \cdot\left(\frac{1}{x^{3}}\right)^{r}$

$$
=(-1)^{r 15} C_{r} \cdot x^{60-7 r}
$$

For the coefficient of $x^{-17}$, put $60-7 r=-17$
$\Rightarrow \quad 60+17=7 r \Rightarrow r=11$
Now, coefficient of $x^{-17}=(-1)^{11}{ }^{15} C_{11}=-{ }^{15} C_{11}$
79 (b)
$\frac{(1-3 x)^{1 / 2}+(1-x)^{5 / 3}}{2\left(1-\frac{x}{4}\right)^{1 / 2}}$
$=\frac{\left[\begin{array}{c}{\left[\begin{array}{c}\left.1+\frac{1}{2}(-3 x)+\frac{1}{2}\left(-\frac{1}{2}\right) \frac{1}{2}(-3 x)^{2}+\ldots\right]+ \\ {\left[1+\frac{5}{3}(-x)+\frac{5}{3} \cdot \frac{2}{3} \cdot \frac{1}{2}(-x)^{2}+\ldots\right]}\end{array}\right]} \\ 2\left[1+\frac{1}{2}\left(-\frac{x}{4}\right)+\frac{1}{2}\left(-\frac{1}{2}\right) \frac{1}{2}\left(-\frac{x}{4}\right)^{2}+\ldots\right]\end{array}\right]}{\left[\begin{array}{c} \\ {[10]}\end{array}\right]}$
$=\frac{2\left[1-\frac{19}{12} x-\frac{41}{144} x^{2}-\ldots\right]}{2\left[1-\frac{x}{8}-\frac{1}{128} x^{2}-\ldots\right]}$
$=\left[1-\frac{19}{12} x-\frac{41}{144} x^{2}-\ldots\right]\left[1-\frac{x}{8}-\frac{1}{128} x^{2} \ldots\right]^{-1}$
$=1-\frac{35}{24} x+.$.
On neglecting higher powers of $x$, we get
$a+b x=1-\frac{35}{24} x$
$\Rightarrow a=1, b=-\frac{35}{24}$
80 (b)

$$
\begin{aligned}
& { }^{18} C_{15}+2\left({ }^{18} C_{16}\right)+{ }^{17} C_{16}+1={ }^{n} C_{3} \\
& \Rightarrow{ }^{18} C_{15}+{ }^{18} C_{16}+{ }^{18} C_{16}+{ }^{17} C_{16}+{ }^{17} C_{17}={ }^{n} C_{3} \\
& \Rightarrow \\
& \Rightarrow \\
& \Rightarrow{ }^{19} C_{16}+{ }^{18} C_{16}+{ }^{18} C_{17}={ }^{n} C_{3} \\
& { }^{19} C_{16}+{ }^{19} C_{17}={ }^{n} C_{3} \\
& { }^{20} C_{17}={ }^{n} C_{3} \Rightarrow{ }^{20} C_{3}={ }^{n} C_{3} \Rightarrow n=20
\end{aligned}
$$

81 (c)
We have, $49^{n}+16 n-1=(1+48)^{n}+16 n-1$

$$
\begin{gathered}
=1+{ }^{n} C_{1}(48)+{ }^{n} C_{2}(48)^{2}+\ldots+{ }^{n} C_{n}(48)^{n} \\
\quad+16 n-1 \\
=(48 n+16 n)+{ }^{n} C_{2}(48)^{2} \\
\quad+{ }^{n} C_{3}(48)^{3}+\ldots+{ }^{n} C_{n}(48)^{n} \\
=64 n+8^{2}\left[{ }^{n} C_{2} \cdot 6^{2}+{ }^{n} C_{3} \cdot 6^{3} \cdot 8+{ }^{n} C_{4} \cdot 6^{4}\right. \\
\left.\quad \cdot 8^{2}+\ldots+{ }^{n} C_{n} \cdot 6^{n} \cdot 8^{n-2}\right]
\end{gathered}
$$

Hence, $49^{n}+16 n-1$ is divisible by 64
82 (b)
We have, $(1+x)^{50}=\sum_{r=0}^{50}{ }^{50} C_{r} x^{r}$. (The sum of
coefficients of odd powers of $x$ )
$={ }^{50} C_{1}+{ }^{50} C_{3}+\ldots+{ }^{50} C_{49}$
$=2^{50-1}=2^{49}$
84
(b)

Given, $\alpha=\frac{5}{2!3}+\frac{5 \cdot 7}{3!3^{2}}+\frac{5 \cdot 7 \cdot 9}{4!3^{2}}+\cdots$
On comparing

$$
\begin{align*}
(1+x)^{n}=1+ & \frac{n x}{1!}+\frac{n(n-1)}{2!} x^{2} \\
& +\frac{n(n-1)(n-2)}{3!} x^{3}+\cdots \tag{ii}
\end{align*}
$$

With respect to factorial, we get

$$
\begin{align*}
n(n-1) x^{2} & =\frac{5}{3}  \tag{iii}\\
n(n-1)(n-2) x^{3} & =\frac{5 \cdot 7}{3^{2}} \tag{iv}
\end{align*}
$$

and $n(n-1)(n-2)(n-3) x^{4}=\frac{5 \cdot 7 \cdot 9}{3^{3}} \ldots$ (v) on dividing Eq. (iv) by (iii) and Eq. (v) by Eq. (iv), we get

$$
\begin{equation*}
(n-2) x=\frac{7}{3} \tag{vi}
\end{equation*}
$$

and $(n-3) x=3$
Again, dividing Eq. (vi) by Eq. (vii), we get

$$
\begin{array}{cc} 
& \frac{n-2}{n-3}=\frac{7}{9} \\
\Rightarrow & 9 n-18=7 n-21 \\
\Rightarrow & 2 n=-3 \Rightarrow n=-\frac{3}{2}
\end{array}
$$

On putting the value of $n$ in Eq. (vi), we get $\left(-\frac{3}{2}-2\right) x=\frac{7}{3} \Rightarrow x=-\frac{2}{3}$
$\therefore$ From Eq. (ii),
$\left(1-\frac{2}{3}\right)^{-3 / 2}=1+1+\frac{5}{2!3}+\frac{5 \cdot 7}{3!3^{2}}+\cdots$
$\Rightarrow 3^{3 / 2}-2=\frac{5}{2!3}+\frac{5 \cdot 7}{3!3^{2}}+\ldots$
$\Rightarrow \quad \alpha=3^{3 / 2}-2 \quad$ [from Eq. (i)]
Now, $\alpha^{2}+4 \alpha=\left(3^{3 / 2}-2\right)^{2}+4\left(3^{3 / 2}-2\right)$

$$
\begin{aligned}
& =27+4-4 \cdot 3^{3 / 2}+4 \cdot 3^{3 / 2}-8 \\
& =23
\end{aligned}
$$

85 (d)

$$
\begin{aligned}
& \frac{1+2 x}{(1-2 x)^{2}}=(1+2 x)(1-2 x)^{-2} \\
& =(1+2 x)\left(1+\frac{2}{1!}(2 x)+\frac{2 \cdot 3}{2!}(2 x)^{2}+\cdots\right. \\
& \\
& \quad+\frac{2 \cdot 3 \ldots r}{(r-1)!}(2 x)^{r} \\
& \\
& \left.\quad+\frac{2 \cdot 3 \cdot 4 \ldots(r+1)(2 x)^{r}}{r!}\right)
\end{aligned}
$$

The coefficient of $x^{r}$

$$
\begin{gathered}
=2 \frac{r!}{(r-1)!} 2^{r-1}+\frac{(r+1)!}{r!} 2^{r} \\
\quad=r 2^{r}+(r+1) r^{2} \\
\quad=2^{r}(2 r+1)
\end{gathered}
$$

86 (d)
We have,
$\{(1+x)(1+y)(x+y)\}^{n}$

$$
=(1+x)^{n}(1+y)^{n}(x+y)^{n}
$$

$\therefore$ Coefficient of $x^{n} y^{n}$ in $\{(1+x)(1+y)(x+y)\}^{n}$

$$
=\sum_{r=0}^{n}\left({ }^{n} C_{r}\right)^{3}
$$

87 (d)
We have,
$\left(1+x+x^{2}\right)^{n}=C_{0}+C_{1} x+C_{2} x^{2}+\cdots+C_{2 n} x^{2 n}$
Replacing $x$ by $-\frac{1}{x}$, we get
$\left(1-\frac{1}{x}+\frac{1}{x^{2}}\right)^{n}=C_{0}-C_{1} \frac{1}{x}+C_{2} \frac{1}{x^{2}}+\cdots+C_{2 n} \frac{1}{x^{2 n}}$
Now,
$C_{0} C_{1}-C_{1} C_{2}+C_{2} C_{3}-\cdots$
$=$ Coeff. of $x$ in $\left\{C_{0}+C_{1} x+C_{2} x^{2}+\cdots\right\}\left\{C_{0}-C_{1} \frac{1}{x}\right.$

$$
\left.+C_{2} \frac{1}{x^{2}}-\cdots\right\}
$$

$=$ Coeff. of $x$ in $\left(1+x+x^{2}\right)^{n}\left(1-\frac{1}{x}+\frac{1}{x^{2}}\right)^{n}$
$=$ Coeff. of $x^{2 n+1}$ in $\left(1+x+x^{2}\right)^{n}\left(x^{2}-x+1\right)^{n}$
$=$ Coeff. of $x^{2 n+1}$ in $\left[\left(1+x^{2}\right)^{2}-x^{2}\right]^{2}$
$=$ Coeff. of $x^{2 n+1}$ in $\left[1+x^{2}+x^{4}\right]^{n}=0$
88 (d)
$\because a, b, c$ are in AP
$\Rightarrow 2 b=a+c$
$\Rightarrow a-2 b+c=0$
On putting $x=1$, we get
Required sum $=\left(1+(a-2 b+c)^{2}\right)^{1973}=$
$(1+0)^{1973}=1$
89 (a)
We have, $T_{2}=14 a^{5 / 2}$
$\Rightarrow{ }^{n} C_{1}\left(a^{1 / 13}\right)^{n-1}\left(a^{3 / 2}\right)^{1}=14 a^{5 / 2}$
$\Rightarrow n a^{\frac{n-1}{13}+\frac{3}{2}}=14 a^{5 / 2}$
$\Rightarrow \quad n=14$
$\therefore \frac{{ }^{n} C_{3}}{{ }^{n} C_{2}}=\frac{{ }^{14} C_{3}}{{ }^{14} C_{2}}=4$
90 (b)
For $n>1$, we have

$$
\begin{gathered}
(1+x)^{n}={ }^{n} C_{0}+{ }^{n} C_{1} x+{ }^{n} C_{2} x^{2}+{ }^{n} C_{3} x^{3}+\cdots \\
\quad+{ }^{n} C_{n} x{ }^{n} \\
\Rightarrow(1+x)^{n}=1+{ }^{n} x+\left({ }^{n} C_{2} x^{2}+{ }^{n} C_{3} x^{3}+\cdots\right. \\
\left.\quad+{ }^{n} C_{n} x x^{n}\right)
\end{gathered}
$$

$$
\begin{aligned}
\Rightarrow(1+x)^{n}-1 & -n x \\
& =x^{2}\left({ }^{n} C_{2}+{ }^{n} C_{3} x+{ }^{n} C_{4} x^{2}+\cdots\right. \\
& \left.+{ }^{n} C_{n} x x^{n-2}\right)
\end{aligned}
$$

Clearly, RHS is divisible by $x^{2}$ and $x$. So, LHS is also divisible by $x$ as well as $x^{2}$
91 (c)
Let $T_{r+1}$ be the $(r+1)^{t h}$ terms in the expansion of $\left(\frac{x^{2}}{a}-\frac{a}{x}\right)^{12}$. Then,
$T_{r+1}={ }^{12} C_{r}\left(\frac{x^{2}}{a}\right)^{12-r}\left(-\frac{a}{x}\right)^{r}$

$$
={ }^{12} C_{r} x^{24-3 r}(-1)^{r} a^{2 r-12}
$$

For the coefficient of $x^{6} y^{-2}$, we must have
$24-3 r=6$ and $2 r-12=-2$
These two equations are inconsistent
Hence, there is no term containing $x^{6} a^{-2}$
So, its coefficient is 0
92 (d)
$\because I+f+f^{\prime}=(5+2 \sqrt{6})^{n}+(5-2 \sqrt{6})^{n}$
$=2 k$ (even integer)
$\therefore f+f^{\prime}=1$
Now, $(I+f) f^{\prime}=(5+2 \sqrt{6})^{n}(5-2 \sqrt{6})^{n}=$
$(1)^{n}=1$
$\Rightarrow(I+f)(1-f)=1$
or $I=\frac{1}{(1-f)}-f$
93 (b)
Given equation can be rewritten as
$E=a\left[{ }^{n} C_{0}-{ }^{n} C_{1}+{ }^{n} C_{2}-\ldots+(-1)^{n}{ }^{n} C_{n}\right]$

$$
\begin{aligned}
& +\left[{ }^{n} C_{1}-(2)\left({ }^{n} C_{2}\right)\right. \\
& \left.+(3)\left({ }^{n} C_{3}\right)-\ldots+(-1)^{\mathrm{n}}(n)\left({ }^{n} C_{n}\right)\right]
\end{aligned}
$$

$\Rightarrow E=0+0=0$ (by properties)
94 (a)
Coefficient of $x^{r-1}$ in
$(1+x)^{n}+(1+x)^{n+1}+\ldots+(1+x)^{n+k}$
$={ }^{n} C_{r-1}+{ }^{n+1} C_{r-1}+\ldots+{ }^{n+k} C_{r-1}$
$={ }^{n} C_{r}+{ }^{n} C_{r-1}+{ }^{n+1} C_{r-1}+\ldots+{ }^{n+k} C_{r-1}-{ }^{n} C_{r}$
$={ }^{n+k+1} C_{r}-{ }^{n} C_{r}$
Now, $\sum_{r=0}^{n+k+1}(-1)^{r} a_{r}=\sum_{r=0}^{n+k+1}(-1)^{r}{ }^{n+k-1} C_{r}-$ $\sum_{r=0}^{n+k+1}(-1)^{r}{ }^{n} C_{r}=0$
95 (a)
We have, $(1+x)^{n}=1+n x+\frac{n(n-1)}{2!} x^{2}+\ldots$
If $x$ is replace by $-\left(1-\frac{1}{x}\right)$ and $n$ is $-n$, then expression
becomes $\left[1-\left(1-\frac{1}{x}\right)\right]^{-n}$
$=1+(-n)\left[-\left(1-\frac{1}{x}\right)\right]$

$$
+\frac{(-n)(-n-1)}{2!}\left[-\left(1-\frac{1}{x}\right)\right]^{2}+\ldots
$$

$\Rightarrow x^{n}=1+n\left(1-\frac{1}{x}\right)+\frac{n(n+1)}{2!}\left(1-\frac{1}{x}\right)^{2}+\ldots$
(b)

Given expansion is $(x+a)^{n}$
On replacing $a$ by ai and -ai respectively, we get
$(x+a i)^{n}=\left(T_{0}-T_{2}+T_{4}-\ldots\right)+i\left(T_{1}-T_{3}+\right.$
$T_{5}-\ldots$ ) ...(i)
and $(x-a i)^{n}=\left(T_{0}-T_{2}+T_{4}-\ldots\right)+i\left(T_{1}-T_{3}+\right.$ $T_{5}-\ldots$ ) ...(ii)
On multiplying Eqs. (ii) and (i), we get required result

$$
\begin{aligned}
\left(x^{2}+a^{2}\right)^{n}= & \left(T_{0}-T_{2}+T_{4}-\ldots\right)^{2} \\
& +\left(T_{1}-T_{3}+T_{5}-\ldots\right)^{2}
\end{aligned}
$$

97 (b)
Given coefficient of $(2 x+1)$ th term=coefficient of $(r+2)$ th term
$\Rightarrow{ }^{43} C_{2 r}={ }^{43} C_{r+1}$
$\Rightarrow 2 r+(r+1)=43$ or $2 r=r+1$
$\Rightarrow r=14$ or $r=1$
(b)

We have,
$(1+x)^{n}=C_{0}+C_{1} x+C_{2} x^{2}+\ldots+C_{n} x^{n}$
and $\left(1+\frac{1}{x}\right)^{n}=C_{0}+C_{1} \frac{1}{x}+$
$C_{2}\left(\frac{1}{x}\right)^{2}+\ldots+C_{n}\left(\frac{1}{x}\right)^{n} \ldots$ (ii)
On multiplying Eqs. (i) and (ii) and taking the coefficient of constant terms in right hand side
$=C_{0}^{2}+C_{1}^{2}+C_{2}^{2}+\ldots+C_{n}^{2}$
In right hand side $(1+x)^{n}\left(1+\frac{1}{x}\right)^{n}$ or in
$\frac{1}{x^{n}}(1+x)^{2 n}$ or term containing $x^{n}$ in $(1+x)^{2 n}$.
Clearly the coefficient of $x^{n}$ in $(1+x)^{2 n}$ is equal
to ${ }^{2 n} C_{n}=\frac{(2 n)!}{n!n!}$
99
(b)

We have,
$\frac{C_{k}}{C_{k-1}}=\frac{{ }^{n} C_{k}}{{ }^{n} C_{k-1}}=\frac{n-k+1}{k}$
$\therefore \sum_{k=1}^{n} k^{3}\left(\frac{C_{k}}{C_{k-1}}\right)^{2}$
$=\sum_{k=1}^{n} k^{3} \frac{(n-k+1)^{2}}{k^{2}}=\sum_{k=1}^{n} k(n-k+1)^{2}$
$=(n+1)^{2}\left(\sum_{k=1}^{n} k\right)-2(n+1)\left(\sum_{k=1}^{n} k^{2}\right)$ $+\left(\sum_{k=1}^{n} k^{3}\right)$
$=(n+1)^{2} \frac{n(n+1)}{2}-\frac{2(n+1) n(n+1)(2 n+1)}{6}$

$$
+\left\{\frac{n(n+1)}{2}\right\}^{2}
$$

$=\frac{n(n+1)^{2}}{12}\{6(n+1)-4(2 n+1)+3 n\}$
$=\frac{n(n+1)^{2}(n+2)}{12}$
100 (b)
Let
$S=1 \times 2 \times 3 \times 4+2 \times 3 \times 4 \times 5+3 \times 4 \times 5 \times 6$ $+\cdots+n(n+1)(n+2)(n+3)$
$\Rightarrow S=\sum_{r=1}^{n} r(r+1)(r+2)(r+3)$
$\Rightarrow S=\sum_{r=1}^{n} \frac{(r+3)!}{(r-1)!}$
$\Rightarrow S=4!\sum_{r=1}^{n} \frac{(r+3)!}{(r-1)!4!}$
$\Rightarrow S=4!\sum_{r=1}^{n} \frac{(r+3)!}{(r-1)!4!}$
$\Rightarrow S=4!\sum_{r=1}^{n}{ }^{r+3} C_{4}$
$\Rightarrow S=4!\sum_{r=12}^{n}$ Coefficient of $x^{4}$ in $(1+x)^{r+3}$
$\Rightarrow S=4!\times$ Coefficient of $x^{4}$ in $\sum_{r=1}^{n}(1+x)^{r+3}$
$\Rightarrow S=4!\times$ Coefficient of $x^{4}$ in (1

$$
+x)^{4}\left\{\frac{(1+x)^{n}-1}{(1+x)-1}\right\}
$$

$\Rightarrow S=4!\times$ Coefficient of $x^{5}$ in $\left\{(1+x)^{\mathrm{n}+4}\right.$

$$
\left.-(1+x)^{4}\right\}
$$

$\Rightarrow S=4!\times$ Coefficient of $x^{5}$ in $(1+x)^{n+4}$
$\Rightarrow S=4!\times{ }^{n+4} C_{5}$

$$
\begin{aligned}
& =\frac{1}{5} n(n+1)(n+2)(n+3)(n \\
& +4)
\end{aligned}
$$

101 (c)
We have,
$(x+y+z)^{18}=\sum_{r+s+t+=18} \frac{18!}{r!s!t!} x^{r} y^{s} z^{t}$
$\therefore$ Coefficient of $x^{8} y^{6} z^{4}=\frac{18!}{8!6!4!}=\frac{18!}{10!8!} \times \frac{10!}{6!4!}$
$={ }^{18} C_{10} \times{ }^{10} C_{6}$
Also, Coefficient of $x^{8} y^{6} z^{4}=\frac{18!}{8!6!4!}$

$$
=\frac{18!}{4!14!} \times \frac{14!}{8!6!}
$$

$={ }^{18} C_{14} \times{ }^{14} C_{8}={ }^{18} C_{4} \times{ }^{14} C_{6}$
Again,
Coefficient of $x^{8} y^{6} z^{4}=\frac{18!}{8!6!4!}=\frac{18!}{12!6!} \times \frac{12!}{8!4!}$
$={ }^{18} C_{6} \times{ }^{12} C_{8}$
102 (c)
We have,
$1+x+x^{2}+x^{3}=(1+x)\left(1+x^{2}\right)$
$\therefore\left(1+x+x^{2}+x^{3}\right)^{11}=(1+x)^{11}\left(1+x^{2}\right)^{11}$
$=\left({ }^{11} C_{0}+{ }^{11} C_{1} x+{ }^{11} C_{2} x{ }^{2}+{ }^{11} C_{3} x{ }^{3}+{ }^{11} C_{4} x{ }^{4}\right.$

$$
+\cdots)
$$

$\times\left({ }^{11} C_{0}+{ }^{11} C_{1} x^{2}+{ }^{11} C_{2} x^{4}+\cdots\right)$
$\Rightarrow$ Coefficient of $x^{4}$ in $\left(1+x+x^{2}+x^{3}\right)^{11}$
$=$ Coefficient of $x^{4}$ in
$\left\{\left({ }^{11} C_{0}+{ }^{11} C_{1} x+{ }^{11} C_{2} x{ }^{2}+\cdots\right)\left({ }^{11} C_{0}+{ }^{11} C_{1} x^{2}\right.\right.$

$$
\left.\left.+{ }^{11} C_{2} x^{4}+\cdots\right)\right\}
$$

$={ }^{11} C_{0} \times{ }^{11} C_{2}+{ }^{11} C_{2} \times{ }^{11} C_{1}+{ }^{11} C_{4} \times{ }^{11} C_{0}$ $=990$
103 (b)
We have,
$a=$ Sum of the coefficients in the expansion of
$\left(1-3 x+10 x^{2}\right)^{n}$
$\Rightarrow a=(1-3+10) n=8^{n}=2^{3 n}$
$b=$ Sum of the coefficients in the expansion of
$\left(1+x^{2}\right)^{n}$
$\Rightarrow b=(1+1)^{n}=2^{n}$
Clearly, $a=b^{3}$
104 (b)
Let $P(n): 10^{n-2} \geq 81 n$
For $n=4,10^{2} \geq 81 \times 4$
For $n=5,10^{3} \geq 81 \times 5$
Hence, by mathematical induction for $n \geq 5$, the proposition is true.
105 (c)
Given that, $T_{1}={ }^{n} C_{0}=1$
$T_{2}={ }^{n} C_{1} a x=6 x$
$\Rightarrow \frac{n!}{(n-1!)} a=6 \Rightarrow n a=6$
and $T_{3}={ }^{n} C_{2}(a x)^{2}=6 x^{2}$
$\Rightarrow \frac{n(n-1)}{2} a^{2}=16$
Only option (c) is satisfying Eqs. (ii) and (iii)
106 (a)
It is given that
$(a+b x)^{-2}=\frac{1}{4}-3 x$
$\Rightarrow a^{-2}\left(1+\frac{b}{a} x\right)^{-2}=\frac{1}{4}-3 x$
$\Rightarrow a^{-2}\left(1-\frac{2}{a} b x\right)$
$=\frac{1}{4}-3 x \quad\left[\begin{array}{c}\text { Neglecting } x^{2} \text { and } \\ \text { higher powers of } x\end{array}\right]$
$\Rightarrow a^{-2}=\frac{1}{4}, \frac{-2 b}{a^{3}}=-3$
Now, $a^{-2}=\frac{1}{4} \Rightarrow a^{2}=4 \Rightarrow a=2 \quad[\because a>0]$
Putting $a=2$ in $-\frac{2 b}{a^{3}}=-3$, we get $-\frac{2 b}{8}=-3 \Rightarrow$ $b=12$
107 (d)
We have,
$T_{r+1}={ }^{15} C_{r}\left(x^{4}\right){ }^{15-r}\left(-\frac{1}{x^{3}}\right)^{r}$

$$
={ }^{15} C_{r} x^{60-7 r}(-1)^{r}
$$

If $x^{39}$ occurs in $T_{r+1}$, then
$60-7 r=39 \Rightarrow r=3$
$\therefore$ Coefficient of $x^{39}={ }^{15} C_{3}(-1)^{3}=-455$
108 (c)
$(1-y)^{m}(1+y)^{n}=1+a_{1} y+a_{2} y^{2}+a_{3} y^{3}+\ldots$
On differentiating w. r.t. $y$, we get
$-m(1-y)^{m-1}(1+y)^{n}+(1-y)^{m} n(1+y)^{n-1}$ $=a_{1}+2 a_{2} y+3 a_{3} y^{2}+\ldots$
On putting $y=0$ in Eq. (i), we get
$-m+n=a_{1}=10 \quad\left[\because a_{1}=10\right.$ given $]$
Again on differentiating Eq. (i) w. r. t. $y$, we get
$-m\left[-(m-1)(1-y)^{m-2}(1+y)^{n}\right.$

$$
\left.+(1+y)^{m-1} n(1+y)^{n-1}\right]
$$

$+n\left[-m(1-y)^{m-1}(1+y)^{n-1}+(1-y)^{m}(n\right.$

$$
\left.-1)(1+y)^{n-2}\right]
$$

$$
\begin{equation*}
=2 a_{2}+6 a_{3} y+\ldots \tag{iii}
\end{equation*}
$$

On putting $y=0$ in Eq. (iii), we get
$-m[-(m-1)+n]+n[-m+(n-1)]=2 a_{2}$ $=20$
$\Rightarrow m(m-1)-m n-m n+n(n-1)=20$
$\Rightarrow \quad m^{2}+n^{2}-m-n-2 m n=20$
$\Rightarrow \quad(m-n)^{2}-(m+n)=20$
$\Rightarrow \quad 100-(m+n)=20$
[using Eq. (iii)]
$\Rightarrow \quad m+n=80$
On solving Eqs. (ii) and (iv), we get
$m=35$ and $n=45$
109 (c)
Let $a_{1}, a_{2}, a_{3}, a_{4}$ be respectively the coefficients of $(r+1)$ th, $(r+2)$ th, $(r+3)$ th and $(r+4)$ th terms in the expansion of $(1+x)^{n}$. Then ,
$a_{1}={ }^{n} C_{r}, a_{2}={ }^{n} C_{r+1}, a_{3}={ }^{n} C_{r+2}, a_{4}={ }^{n} C_{r+3}$
Now, $\frac{a_{1}}{a_{1}+a_{2}}+\frac{a_{3}}{a_{3}+a_{4}}=\frac{{ }^{n} C_{r}}{{ }^{n} C_{r}+{ }^{n} C_{r+1}}+\frac{{ }^{n} C_{r+2}}{{ }^{n} C_{r+2}+{ }^{n} C_{r+3}}$
$=\frac{{ }^{n} C_{r}}{{ }^{n+1} C_{r+1}}+\frac{{ }^{n} C_{r+2}}{{ }^{n+1} C_{r+3}}\left(\because{ }^{n} C_{r}+{ }^{n} C_{r+1}\right.$

$$
\left.={ }^{n+1} C_{r+1}\right)
$$

$=\frac{{ }^{n} C_{r}}{\frac{n+1}{r+1}{ }^{n} C_{r}}+\frac{{ }^{n} C_{r+2}}{\frac{n+1}{r+3}{ }^{n} C_{r+2}}\left(\because{ }^{n} C_{r}=\frac{n}{r}{ }^{n-1} C_{r-2}\right)$
$=\frac{r+1}{n+1}+\frac{r+3}{n+1}=\frac{2(r+2)}{n+1}$
$=2 \frac{{ }^{n} C_{r+1}}{{ }^{n+1} C_{r+2}}=2 \frac{{ }^{n} C_{r+1}}{{ }^{n} C_{r+1}+{ }^{n} C_{r+2}}$
$=\frac{2 a_{2}}{a_{2}+a_{3}}$
110 (d)
$\left(a^{2}-6 a+11\right)^{10}=1024$
$\Rightarrow \quad\left(a^{2}-6 a+11\right)^{10}=2^{10}$
$\Rightarrow \quad a^{2}-6 a+11=2$
$\Rightarrow \quad a^{2}-6 a+9=0$
$\Rightarrow \quad(a-3)^{2}=0$
$\Rightarrow \quad a=3$
111 (b)
The general termof $\left(x+\frac{2}{x^{2}}\right)^{n}$ is

$$
\begin{aligned}
T_{R+1} & ={ }^{n} C_{R}(x)^{n-R}\left(\frac{2}{x^{2}}\right)^{R} \\
& ={ }^{n} C_{R} x^{n-3 R} 2^{R}
\end{aligned}
$$

For $x^{2 r}$ occurs, it means

$$
\Rightarrow \quad \begin{aligned}
n-3 R & =2 r \\
\Rightarrow \quad n-2 r & =3 R
\end{aligned}
$$

Hence, $n-2 r$ is of the form $3 k$
112 (c)
$2^{3 n}-1=\left(2^{3}\right)^{n}-1$
$=8^{n}-1=(1+7)^{n}-1$
$=1+{ }^{n} C_{1} 7+{ }^{n} C_{2} 7^{2}+\ldots+{ }^{n} C_{n} 7^{n}-1$
$=7\left[{ }^{n} C_{1}+{ }^{n} C_{2} 7+\ldots+{ }^{n} C_{n} 7{ }^{n-1}\right]$
$\therefore 2^{3 n}-1$ is divisible by 7
113 (b)
We have,
$(\alpha-2+1)^{35}=(1-\alpha)^{35}$
$\Rightarrow(\alpha-1)^{35}=-(\alpha-1)^{35}$
$\Rightarrow 2(\alpha-1)^{35}=0 \Rightarrow \alpha=1$
114 (b)
We have,
$\therefore 3^{\log _{3} \sqrt{25^{x-1}+7}} \quad\left[\because a^{\log _{a} n}=n\right]$
$=\sqrt{25^{x-1}+7}=\sqrt{\left(5^{x-1}\right)+7}=\sqrt{y^{2}+7}$, where $y$ $=5^{x-1}$
and,
$3^{-(1 / 8) \log _{3}\left(5^{x-1}+1\right)}$
$=3^{\log _{3}\left(5^{x-1}+1\right)^{-1 / 8}}=\left(5^{x-1}+1\right)^{-1 / 8}=(y+1)^{-1 / 8}$
$\therefore\left\{3^{\log _{3} \sqrt{25^{x-1}}+7}+3^{-1 / 8 \log _{3}\left(5^{x-1}+1\right)}\right\}^{10}$
$=\left[\sqrt{y^{2}+7}+(y+1)^{-1 / 8}\right]^{10}$
Now,
$T_{9}=180$
$\Rightarrow{ }^{10} C_{8}\left\{\left(\sqrt{y^{2}+7}\right)^{10-8}\left[(y+1)^{-1 / 8}\right\}^{8}=180\right.$
$\Rightarrow{ }^{10} C_{8}\left(y^{2}+7\right)(y+1)^{-1}=180$
$\Rightarrow 45\left(\frac{y^{2}+7}{y+1}\right)=180$
$\Rightarrow y^{2}+7=4 y+4 \Rightarrow y^{2}-4 y+3=0$
$\Rightarrow y=1, y=3$
$\Rightarrow 5^{x-1}=1$ or, $5^{x-1}=3$
$\Rightarrow 5^{x}=5$ or, $5^{x}=15$
$\Rightarrow x=1$ or, $x=\log _{5} 15$
$\Rightarrow x=\log _{5} 15$

$$
[\because x>1]
$$

115 (c)
The given sigma expansion
$\sum_{m=0}^{100}{ }^{100} C_{m}(x-3)^{100-m} \cdot 2^{m}$ can be written as
$[(x-3)+2]^{100}=(x-1)^{100}=(x-1)^{100}$
$\therefore$ Coefficient of $x^{53}$ in
$(1-x)^{100}=(-1)^{53}{ }^{100} C_{53}=-{ }^{100} C_{53}$
116 (c)
The coefficient of $x$ in the middle term of expansion of
$(1+\alpha x)^{4}={ }^{4} C_{2} \alpha^{2}$
The coefficient of $x$ in the middle term of expansion of
$(1-\alpha x)^{6}={ }^{6} C_{3}(-\alpha)^{3}$
Given, ${ }^{4} C_{2} \alpha^{2}={ }^{6} C_{3}(-\alpha)^{3}$
$\Rightarrow \quad 6 \alpha^{2}=-20 \alpha^{3}$
$\Rightarrow \quad \alpha=\frac{-6}{20}=\frac{-3}{10}$
117 (b)
The general term in the expansion of $\left(\sqrt{\frac{x}{3}}+\frac{3}{2 x^{2}}\right)^{10}$ is
$T_{r+1}={ }^{10} C_{r}\left(\frac{x}{3}\right)^{\frac{10-r}{2}}\left(\frac{3}{2 x^{2}}\right)^{r}$
$={ }^{10} C_{r} 3^{\frac{-10+3 r}{2}} \cdot 2^{-r} \cdot x^{\frac{10-5 r}{2}}$
For independent of $x$,
$\frac{10-5 r}{2}=0 \Rightarrow r=2$
$\therefore T_{3}={ }^{10} C_{2} \times\left(\frac{1}{3}\right)^{4}\left(\frac{3}{2}\right)^{2}$
$=\frac{10 \times 9}{2 \times 1} \times \frac{1}{3 \times 3 \times 2 \times 2}=\frac{5}{4}$
118 (a)
Given,
$\left(1+x-2 x^{2}\right)^{6}=1+a_{1} x+a_{2} x^{2}+\ldots+a_{12} x^{12}$
...(i)
On putting $x=1$ in Eq. (i), we get
$(1+1-2)^{6}=1+a_{1}+a_{2}+\cdots+a_{12}$
$\Rightarrow(0)^{6}=1+a_{1}+a_{2}+\ldots+a_{12}$
On putting $x=-1$ in Eq. (i), we get
$(1-1-2)^{6}=1-a_{1}+a_{2}-a_{3}+\cdots+a_{12}$
$\Rightarrow(-2)^{6}=1+a_{1}+a_{2}-a_{3}+\ldots+a_{12} \ldots$ (iii)

On adding Eqs. (ii) and (iii) we get
$(-2)^{6}=2\left(1+a_{2}+a_{4}+\cdots+a_{12}\right)$
$\Rightarrow \frac{64}{2}-1=a_{2}+a_{4}+\cdots+a_{12}$
$\therefore a_{2}+a_{4}+\cdots+a_{12}=31$
119 (c)
Since, $\left(1+x-3 x^{2}\right)^{10}=1+a_{1} x+a_{2} x^{2}+\cdots+$ $a_{20} x^{20}$
On putting $x=-1$, we get

$$
\begin{gathered}
(1-1-3)^{10}=1-a_{1}+a_{2}-\cdots+a_{20} \\
=3^{10} \ldots \text { (i) }
\end{gathered}
$$

Again putting $x=1$, we get
$(1+1-3)^{10}=1+a_{1}+a_{2}-\cdots+a_{20}=1$
On adding Eqs. (i) and (ii), we get
$2\left(1+a_{2}+a_{4}+\cdots+a_{20}\right)=3^{10}+1$
$\Rightarrow a_{2}+a_{4}+\ldots+a_{20}=\frac{3^{10}+1}{2}-1=\frac{3^{10}-1}{2}$
120 (b)
We have,

$$
\begin{gathered}
(1+x)^{2 n}=\left(a_{0}+a_{2} x^{2}+a_{4} x^{4}+\cdots\right)+x\left(a_{1}\right. \\
\left.+a_{3} x^{2}+a_{5} x^{4}+\cdots\right)
\end{gathered}
$$

Replacing $x$ by $i$ and $-i$ respectively and
multiplying, we get

$$
\begin{gathered}
\left(a_{0}-a_{2}+a_{4} \ldots\right)^{2}+\left(a_{1}-a_{3}+a_{5} \ldots\right)^{2} \\
=(1+i)^{2 n}(1-i)^{2 n} \\
\Rightarrow\left(a_{0}-a_{2}+a_{4}-\cdots\right)^{2}+\left(a_{1}-a_{3}+a_{5} \ldots\right)^{2} \\
=2^{2 n}=4^{n}
\end{gathered}
$$

121 (d)
$(b c+c a+a b)^{9}=[b c+a(b+c)]^{9}$
$\therefore$ Coefficient of $a^{5} b^{6} c^{7}$
$=$ coefficient of $a^{5} b^{6} c^{7}$ in ${ }^{9} C_{5}(b c)^{4} a^{5}(b+c)^{5}$
$=$ coefficient of $b^{2} c^{3}$ in ${ }^{9} C_{5}(b+c)^{5}$
$={ }^{9} C_{5} \times{ }^{5} C_{3}=1260$

## 122 (b)

We have, $(x-1)(x-2)(x-3) \ldots(x-100)$
Number of terms $=100$
$\therefore$ Coefficient of $x^{99}$ in $(x-1)(x-2)(x-$
3... $(x-100)$
$=(-1-2-3-\ldots-100)$
$=-(1+2+\ldots+100)$
$=-\frac{100 \times 101}{2}=-5050$
123 (b)
Given, $\sin n \theta=\sum_{r=0}^{n} b_{r} \sin ^{r} \theta$
$\Rightarrow \sin n \theta=b_{0} \sin ^{0} \theta+b_{1} \sin ^{1} \theta+b_{2} \sin ^{2} \theta$

$$
+b_{3} \sin ^{3} \theta+\ldots+b_{n} \sin ^{n} \theta
$$

$\Rightarrow \sin n \theta=b_{0}+b_{1} \sin \theta+b_{2} \sin ^{2} \theta+\ldots+b_{n} \sin ^{n} \theta$ ( $n$ is an odd integer)
$\because \sin n \theta={ }^{n} C_{1} \sin \theta \cos ^{n-1} \theta$

$$
-{ }^{n} C_{3} \sin ^{3} \theta \cos ^{n-3} \theta+\ldots
$$

$$
={ }^{n} C_{1} \sin \theta\left(1-\sin ^{2} \theta\right)^{(n-1) / 2}-
$$

${ }^{n} C_{3} \sin ^{3} \theta\left(1-\sin ^{2} \theta\right)^{(n-3) / 2}+\ldots$
$\therefore b_{0}=0, b_{1}=$ coefficient of $\sin \theta={ }^{n} C_{1}=n$
( $\because n-1, n-3$ are all even integers)

## 124 (d)

We have,

$$
\left.\left.\begin{array}{l}
\left(x+\sqrt{x^{2}-1}\right)^{6}+\left(x-\sqrt{x^{2}-1}\right)^{6} \\
=2\left\{{ }^{6} C_{0} x^{6}+{ }^{6} C_{2} x^{4}\left(\sqrt{x^{2}-1}\right)^{2}\right. \\
\quad+{ }^{6} C_{4} x^{2}\left(\sqrt{x^{2}-1}\right)^{4}
\end{array} \quad+{ }^{6} C_{6}\left(\sqrt{x^{2}-1}\right)^{6}\right\}\right) ~ \begin{gathered}
\\
=2\left\{x^{6}+{ }^{6} C_{2} x^{4}\left(x^{2}-1\right)+{ }^{6} C_{2} x^{2}\left(x^{2}-1\right)^{2}\right. \\
\left.\quad+\left(x^{2}-1\right)^{3}\right\} \\
=\left[\left\{2{ }^{6} C_{2}+1\right\} x^{6}-3\left\{{ }^{6} C_{2}+1\right\} x^{4}+4{ }^{6} C_{2} x^{2}-1\right]
\end{gathered}
$$

Clearly, it contains 4 terms
125 (a)
We know that,

$$
\begin{aligned}
(1+x)^{n} & =C_{0}+C_{1} x+C_{2} x^{2}+\ldots+C_{n} x^{n} \\
(x-1)^{n}= & C_{0} x^{n}-C_{1} x^{n-1} \\
& \quad+C_{2} x^{n-2}-\ldots+(-1)^{n} C_{n}
\end{aligned}
$$

On multiplying both equations and equating the coefficient of $x^{n}$, we get
$C_{0}^{2}-C_{1}^{2}+C_{2}^{2}-\ldots+(-1)^{n} C_{n}^{2}$

$$
={ }^{n} C_{n / 2}(-1)^{n / 2}\left(x^{2}\right)^{n / 2}
$$

Above is possible only when $\frac{n}{2}$ is an integer $i e, n$ is even and in case $n$ is odd, then term $x^{n}$ will not occur
126 (d)
$\left(1-x+x^{2}\right)^{n}=a_{0}+a_{1} x+\ldots+a_{2 n} x^{2 n}$
Putting $x=-1$ and 1
Successively and adding, we get
$a_{0}+a_{2}+a_{4}+\ldots+a_{2 n}=\frac{3^{n}+1}{2}$
127 (d)
Now, coefficient of $x^{15}$ in $(1+x)^{20}$
$=$ coefficient of $x^{15}$ in $(1+x)^{15}(1+x)^{5}$
$\Rightarrow{ }^{20} C_{15}=$ coefficient of $x^{15}$ in $\left({ }^{15} C_{0} x^{15}+\right.$ $15 C 1 x 14+15 C 2 x 13+15 C 3 x 12+15 C 4 \times 11+$ $15 C 5 \times 10$
$\left({ }^{5} C_{0} x{ }^{5}+{ }^{5} C_{1} x{ }^{4}+{ }^{5} C_{2} x{ }^{3}+{ }^{5} C_{3} x^{2}+{ }^{5} C_{4} x\right.$

$$
\left.+{ }^{5} C_{5}\right)
$$

$={ }^{20} C_{15}={ }^{15} C_{0} \cdot{ }^{5} C_{5}+{ }^{15} C_{1} \cdot{ }^{5} C_{4}+{ }^{15} C_{2} \cdot{ }^{5} C_{3}$
$+{ }^{15} C_{3} \cdot{ }^{5} C_{2}+{ }^{15} C_{4} \cdot{ }^{5} C_{1}+{ }^{15} C_{5}$

$$
\cdot{ }^{5} C_{0}
$$

$\Rightarrow{ }^{15} C_{0} \cdot{ }^{5} C_{5}+{ }^{15} C_{1} \cdot{ }^{5} C_{4}+{ }^{15} C_{2} \cdot{ }^{5} C_{3}+{ }^{15} C_{3}$
. ${ }^{5} C_{2}+{ }^{15} C_{4} \cdot{ }^{5} C_{1}$
$={ }^{20} C_{15}-{ }^{15} C_{5} \cdot{ }^{5} C_{0}$
$=\frac{20!}{5!15!}-\frac{15!}{5!10!}$
128 (a)
The given expression is
$1+(1+x)+(1+x)^{2}+\ldots+(1+x)^{n}$ being in GP
Let $S=1+(1+x)+(1+x)^{2}+\ldots+(1+x)^{n}$
$=\frac{(1+x)^{n+1}-1}{(1+x)-1}=x^{-1}\left[(1+x)^{n+1}-1\right]$
$\therefore$ The coefficient of $x^{k}$ in $S$
$=$ The coefficient of $x^{k}$ in $\left[(1+x)^{n+1}-1\right]$
$={ }^{n+1} C_{k+1}$
129 (d)
Since, in a binomial expansion of $(a-b)^{n}, n \geq 5$, then sum of 5 th and 6 th terms is equal to zero.
$\therefore \quad{ }^{n} C_{4} a^{n-4}(-b)^{4}+{ }^{n} C_{5} a^{n-5}(-b)^{5}=0$
$\Rightarrow \frac{n!}{(n-4)!4!} a^{n-4} b^{4}-\frac{n!}{(n-5)!5!} a^{n-5} b^{5}=0$
$\Rightarrow \frac{n!}{(n-5)!4!} a^{n-5} \cdot b^{4}\left(\frac{a}{n-4}-\frac{b}{5}\right)=0$
$\Rightarrow \quad \frac{a}{b}=\frac{n-4}{5}$
130 (a)
We have,

$$
\begin{aligned}
\left(1-\frac{1}{x}\right)^{n}(1-x)^{n} & =(1-x)^{2 n} \frac{(-1)^{n}}{x^{n}} \\
= & \frac{(-1)^{n}(1-x)^{2 n}}{x^{n}}
\end{aligned}
$$

$\therefore$ Middle term in $\left(1-\frac{1}{x}\right)^{n}(1-x)^{n}$
$=\frac{(-1)^{n}}{x^{n}}$ middle term in $(1-x)^{2 n}$
$=\frac{(-1)^{n}}{x^{n}} \times(n+1)^{t h}$ term in $(1-x)^{2 n}$
$=\frac{(-1)^{n}}{x^{n}} \times{ }^{2 n} C_{n}(-x)^{n}={ }^{2 n} C_{n}$
132 (d)
The number of terms in the expansion of
$(a+b+c)^{10}$
$={ }^{12} C_{2}=\frac{11 \cdot 12}{2}=66$
133 (d)
The given expression of $\frac{1}{(4-3 x)^{1 / 2}}$ can be rewritten as
$4^{-1 / 2}\left(1-\frac{3}{4} x\right)^{-1 / 2}$ and it is valid only when
$\left|\frac{3}{4} x\right|<1$
$\Rightarrow-\frac{4}{3}<x<\frac{4}{3}$
134
$\because(3+2 x)^{50}=3^{50}\left(1+\frac{2 x}{3}\right)^{50}$

Here, $T_{r+1}=3^{50{ }^{50}} C_{r}\left(\frac{2 x}{3}\right)^{r}$
and $T_{r}=3^{50}{ }^{50} C_{r-1}\left(\frac{2 x}{3}\right)^{r-1}$
But $x=\frac{1}{5}$
$\therefore \frac{T_{r+1}}{T_{r}} \geq 1 \Rightarrow \frac{{ }^{50} C_{r}}{{ }^{50} C_{r-1}} \frac{2}{3} \cdot \frac{1}{5} \geq 1$
$\Rightarrow 102-2 r \geq 15 r \Rightarrow r \leq 6$
135 (a)
Given that, $(1+a x)^{n}=1+8 x+24 x^{2}+\ldots$
$\Rightarrow 1+\frac{n}{1} a x+\frac{n(n-1)}{1.2} a^{2} x^{2}+\ldots$

$$
=1+8 x+24 x^{2}+\ldots
$$

On comparing the coefficients of $x, x^{2}$, we get
$n a=8, \frac{n(n-1)}{1.2} a^{2}=24$
$\Rightarrow n a(n-1) a=48$
$\Rightarrow 8(8-a)=48$
$\Rightarrow 8-a=6$
$\Rightarrow a=2 \Rightarrow n=4$
136 (b)
$\because(0.99)^{15}=(1-0.01)^{15}$
$=1-{ }^{15} C_{1}(0.01)+{ }^{15} C_{2}(0.01)^{2}$

$$
-{ }^{15} C_{3}(0.01)^{3}+\ldots
$$

We want to answer correct upto 4 decimal places and as such, we have left further expansion.
$=1-15(0.01)+\frac{15 \cdot 14}{1 \cdot 2}(0.0001)$

$$
-\frac{15 \cdot 14 \cdot 13}{1 \cdot 2 \cdot 3}(0.000001)+\ldots
$$

$=1-0.15+0.0105-0.000455+.$.
$=1.0105-0.150455$
$=0.8601$
137 (b)
Given that,
$\frac{1}{1!(n-1)!}+\frac{1}{3!(n-3)!}+\frac{1}{5!(n-5)!}+\ldots$
$=\frac{1}{n!}\left[\frac{n!}{1!(n-1)!}+\frac{n!}{3!(n-3)!}+\frac{n!}{5!(n-5)!}+\cdots\right]$
$=\frac{1}{n!}\left[{ }^{n} C_{1}+{ }^{n} C_{3}+{ }^{n} C_{5}+\ldots\right]$
$=\frac{2^{n-1}}{n!}$
(b)
$\frac{(1+x)^{3 / 2}-\left(1+\frac{1}{2} x\right)^{3}}{(1-x)^{\frac{1}{2}}}$
$=\frac{\left(1+\frac{3}{2} x+\frac{{ }^{\frac{3}{2}} \cdot \frac{1}{2}}{2} x^{2}\right)-\left(1+\frac{3 x}{2}+\frac{3 \cdot 2}{2} \cdot \frac{x^{2}}{4}\right)}{(1-x)^{1 / 2}}$
[neglecting higher powers of $x$ ]
$=-\frac{3 x^{2}}{8}(1-x)^{-1 / 2}$
$=-\frac{3 x^{2}}{8}\left(1+\frac{1}{2} x+\frac{\frac{1}{2} \cdot \frac{3}{2}}{2} \cdot x^{2}\right)=-\frac{3 x^{2}}{8}$
[neglecting higher powers of $x$ ]
139 (c)
Total number of terms in the expansion of
$(2 x+3 y-4 z)^{n}$, is
${ }^{n+3-1} C_{3-1}={ }^{n+2} C_{2}=\frac{(n+2)(n+1)}{2}$
(b)

We have,
$(1+x)^{m}(1+x)^{n}=\left(\sum_{r=0}^{m}{ }^{m} C_{r} x^{r}\right) \cdot\left(\sum_{r=0}^{n}{ }^{n} C_{r} x^{r}\right)$
Equation coefficients of $x^{r}$ on both sides, we get
${ }^{m} C_{r}+{ }^{m} C_{r-1}{ }^{n} C_{1}+{ }^{m} C_{r-2}{ }^{n} C_{2}+\cdots+{ }^{m} C_{1}{ }^{n} C_{r-1}$

$$
+\cdots+{ }^{m} C_{0}{ }^{n} C_{r}={ }^{m+n} C_{r}
$$

141 (c)
$(1-a x)^{-1}(1-b x)^{-1}$
$=\left(a^{0}+a x+a^{2} x^{2}+\ldots\left(b^{0}+b x+b^{2} x^{2}+\ldots.\right)\right.$
Hence, $a_{n}=$ coefficient of $x^{n}$ in $(1-a x)^{-1}(1-$
$b x-1$
$a^{0} b^{n}+a b^{n-1}+\ldots . .+a^{n} b^{0}$
$=a^{0} b^{n}\left(1+\frac{a}{b}+\left(\frac{a}{b}\right)^{2}+\ldots+\left(\frac{a}{b}\right)^{n}\right)$
$=a^{0} b^{n}\left(\frac{\left(\frac{a}{b}\right)^{n+1}-1}{\frac{a}{b}-1}\right)$
$=\frac{a^{n+1}-b^{n+1}}{a-b}=\frac{b^{n+1}-a^{n+1}}{b-a}$
142 (c)
Given, $\left(1+2 x+x^{2}\right)^{5}=\sum_{k=0}^{15} \quad a_{k} x^{k}$
$\Rightarrow(1+x)^{10}=a_{0} x^{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{15} x^{15}$
$\Rightarrow{ }^{10} C_{0}+{ }^{10} C_{1} x+{ }^{10} C_{2} x^{2}+\cdots+{ }^{10} C_{10} x^{10}$
$=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots+a_{15} x^{15}$
On equating the coefficient of constant and even power of $x$, we get

$$
\begin{aligned}
& \quad a_{0}=10 C_{C_{0}}, a_{2}={ }^{10} C_{2}, \\
& \\
& a_{4}={ }^{10} C_{4}, \ldots . . a_{10}={ }^{10} C_{10}, a_{12}=a_{14}=0 \\
& \therefore \\
& \sum_{k=0}^{7} a_{2 k}={ }^{10} C_{0}+{ }^{10} C_{2}+{ }^{10} C_{4}+{ }^{10} C_{6} \\
& +{ }^{10} C_{8}+{ }^{10} C_{10}+0+0 \\
& = \\
& 2^{10-1}=2^{9}=512
\end{aligned}
$$

Since, $n$ is even, therefore $\left(\frac{n}{2}+1\right)$ th term is the middle term.
$\therefore T_{\frac{n}{2}+1}={ }^{n} C_{n / 2}\left(x^{2}\right)^{n / 2}\left(\frac{1}{x}\right)^{n / 2}$
$=924 x^{6}$ (given)
$\Rightarrow x^{n / 2}=x^{6} \Rightarrow n=12$
144 (b)
We have, $\left(1+x^{2}\right)^{5}(1+x)^{4}$
$=\left({ }^{5} C_{0}+{ }^{5} C_{1} x^{2}+{ }^{5} C_{2} x{ }^{4}+\ldots\right)\left({ }^{4} C_{0}+{ }^{4} C_{1} x\right.$

$$
\left.+{ }^{4} C_{2} x^{2}+{ }^{4} C_{3} x^{3}+{ }^{4} C_{4} x^{4}\right)
$$

The coefficient of $x^{5}$ in $\left[\left(1+x^{2}\right)^{5}(1+x)^{4}\right]$
$={ }^{5} C_{2} \cdot{ }^{4} C_{1}+{ }^{4} C_{3} \cdot{ }^{5} C_{1}=10.4+4.5=60$
145 (d)
$\left(1+x+x^{2}+x^{3}\right)^{n}=\left\{(1+x)^{n}\left(1+x^{2}\right)^{n}\right\}$
$=\left(1+{ }^{n} C_{1} x+{ }^{n} C_{2} x^{2}+\ldots+{ }^{n} C_{n} x^{n}\right)\left(1+{ }^{n} C_{1} x^{2}\right.$ $\left.+{ }^{n} C_{2} x^{4}+\ldots+{ }^{n} C_{n} x^{2 n}\right)$
Therefore the coefficient of $x^{4}={ }^{n} C_{2}+$
${ }^{n} C_{2}{ }^{n} C_{1}+{ }^{n} C_{4}$
$={ }^{n} C_{4}+{ }^{n} C_{2}+{ }^{n} C_{1}{ }^{n} C_{2}$
146 (b)
Let $a={ }^{n} C_{r-1}, b={ }^{n} C_{r}, c={ }^{n} C_{r+1}$
and $d={ }^{n} C_{r+2}$
$\therefore a+b={ }^{n+1} C_{r}, b+c={ }^{n+1} C_{r+1}, c+d$

$$
={ }^{n+1} C_{r+2}
$$

$\Rightarrow \frac{a+b}{a}=\frac{{ }^{n+1} C_{r}}{{ }^{n} C_{r-1}}=\frac{n+1}{r} \Rightarrow \frac{a}{a+b}=\frac{r}{n+1}$
and $\frac{b+c}{b}=\frac{{ }^{n+1} C_{r+1}}{{ }^{n} C_{r}}=\frac{n+1}{r+1} \Rightarrow \frac{b}{b+c}=\frac{r+1}{n+1}$
and $\frac{c+d}{c}=\frac{{ }^{n+1} c_{r+2}}{{ }^{n} C_{r+1}}=\frac{n+1}{r+2} \Rightarrow \frac{c}{c+d}=\frac{r+2}{n+1}$
$\therefore \frac{a}{a+b}, \frac{b}{b+c^{c}}, \frac{c}{c+d}$ are in AP
$\because \mathrm{AM}>G M$
$\Rightarrow \frac{b}{b+c}>\sqrt{\frac{a c}{(a+b)(c+d)}}$
or $\left\{\left(\frac{b}{b+c}\right)^{2}-\frac{a c}{(a+b)(c+d)}\right\}>0$
147 (d)
We have,
$T_{r+1}={ }^{6} C_{r}\left(\sqrt{x^{5}}\right)^{6-r}\left(\frac{3}{\sqrt{x^{3}}}\right)^{r}$
$\Rightarrow T_{r+1}={ }^{6} C_{r} x^{15-\frac{5}{2} r-\frac{3}{2} r} 3^{r}={ }^{6} C_{r} x^{15-4 r} 3^{r}$
This will contain $x^{3}$, if $15-4 r=3 \Rightarrow r=3$
$\therefore$ Coefficient of $x^{3}={ }^{6} C_{3} \cdot 3^{3}=540$
148 (b)
General term, $T_{r+1}={ }^{11} C_{r} \frac{a^{11-r}}{b^{r}}(-1)^{r} x^{11-3 r}$
For the coefficient of $x^{-7}$, put

$$
11-3 r=-7 \Rightarrow r=6
$$

$\therefore$ Coefficient of $x^{-7}={ }^{11} C_{6} \frac{a^{5}}{b^{6}}=\frac{462 a^{5}}{b^{6}}$
149 (a)
We have,
Coefficient of $x^{5}$ in $(x+3)^{6}={ }^{6} C_{1} \times 3^{1}=18$

150 (d)
$A_{r}=$ Coefficient of $x^{r}$ in $(1+x)^{10}={ }^{10} C_{r}$
$B_{r}=$ Coefficient of $x^{r}$ in $(1+x)^{20}={ }^{20} C_{r}$
$C_{r}=$ Coefficient of $x^{r}$ in $(1+x)^{30}={ }^{30} C_{r}$
$\therefore \sum_{r=1}^{10} A_{r}\left(B_{10} B_{r}-C_{10} A_{r}\right)$ $=\sum_{r=1}^{10} A_{r} B_{10} B_{r},-\sum_{r=1}^{10} A_{r} C_{10} A_{r}$
$=\sum_{r=1}^{10}{ }^{10} C_{r}{ }^{20} C_{10}{ }^{20} C_{r} \sum_{r=1}^{10}{ }^{10} C_{r}{ }^{30} C_{10}{ }^{10} C_{r} \mathrm{I}$
$\sum_{r=1}^{10}{ }^{10} C_{10-r l}{ }^{20} C_{10}{ }^{20} C_{r}-\sum_{r=1}^{10}{ }^{10} C_{10-r}{ }^{30} C_{10}{ }^{10} C_{r} l$
$={ }^{20} C_{10} \sum_{r=1}^{10}{ }^{10} C_{10-r}{ }^{20} C_{r}$
$-{ }^{30} C_{10} \sum_{r=1}^{10}{ }^{10} C_{10-r}{ }^{10} C_{r}$
$={ }^{20} C_{10}\left({ }^{30} C_{10}-1\right)-{ }^{30} C_{10}\left({ }^{20} C_{10}-1\right)$
$={ }^{20} C_{10}\left({ }^{30} C_{10}-1\right)-{ }^{30} C_{10}\left({ }^{20} C_{10}-1\right)$
$={ }^{30} C_{10}-{ }^{20} C_{10}=C_{10}-B_{10}$
151 (a)
$\because$ Coefficient of $x^{p}$ is ${ }^{p+q} C_{p}$ and coefficient of $x^{q}$ is ${ }^{(p+q)} C_{q}$
$\therefore$ Both the coefficients are equal
152 (c)
In the expansion of $(1+x)^{2 n}$, the general term
$={ }^{2 n} C_{k} x^{k}, 0 \leq k \leq 2 n$
As given for $r>1, n>2,{ }^{2 n} C_{3 r}={ }^{2 n} C_{r+2}$
$\Rightarrow$ Either $3 r=r+2$ or $3 r=2 n-(r+2) \quad(\because$
$n C r=n C n-r$
$\Rightarrow r=1$ or $n=2 r+1$
We take the relation only
$n=2 r+1 \quad(\because r>1)$
153 (a)
The general term in the expansion of $\left(x \sin ^{-1} \alpha+\right.$ $\cos -1 a \times 10$ is given by
$T_{r+1}={ }^{10} C_{r}\left(x \sin ^{-1} \alpha\right)^{10-r}\left(\frac{\cos ^{-1} \alpha}{x}\right)^{r}$
$\Rightarrow T_{r+1}$
$={ }^{10} C_{r}\left(\sin ^{-1} \alpha\right)^{10-r}\left(\cos ^{-1} \alpha\right)^{r} x^{10-2 r}$
This will be independent of $x$, if
$10-2 r=0 \Rightarrow r=5$
Putting $r=5$ in (i), we get
$T_{6}={ }^{10} C_{5}\left(\sin ^{-1} \alpha \cos ^{-1} \alpha\right)^{5}$
$\Rightarrow T_{6}={ }^{10} C_{5}\left\{\sin ^{-1} \alpha\left(\frac{\pi}{2}-\sin ^{-1} \alpha\right)\right\}^{5}$
$\Rightarrow T_{6}={ }^{10} C_{5}\left\{\frac{\pi}{2} \sin ^{-1} \alpha-\left(\sin ^{-1} \alpha\right)^{2}\right\}^{5}$
$\Rightarrow T_{6}={ }^{10} C_{5}\left\{\frac{\pi^{2}}{16}-\left(\frac{\pi}{4}-\sin ^{-1} \alpha\right)^{2}\right\}^{5}$
Now,
$-\frac{\pi}{2} \leq \sin ^{-1} \alpha \leq \frac{\pi}{2}$
$\Rightarrow-\frac{\pi}{2} \leq-\sin ^{-1} \alpha \leq \frac{\pi}{2}$
$\Rightarrow-\frac{\pi}{4} \leq\left(\frac{\pi}{4}-\sin ^{-1} \alpha\right) \leq \frac{3 \pi}{4}$
$\Rightarrow 0 \leq\left(\frac{\pi}{4}-\sin ^{-1} \alpha\right)^{2} \leq \frac{9 \pi^{2}}{16}$
$\Rightarrow-\frac{9 \pi^{2}}{16} \leq-\left(\frac{\pi}{4}-\sin ^{-1} \alpha\right)^{2} \leq 0$
$\Rightarrow-\frac{\pi^{2}}{2} \leq \frac{\pi^{2}}{16}-\left(\frac{\pi}{4}-\sin ^{-1} \alpha\right)^{2} \leq \frac{\pi^{2}}{16}$
$\Rightarrow-{ }^{10} C_{5}\left(\frac{\pi^{2}}{2}\right)^{5} \leq{ }^{10} C_{5}\left\{\frac{\pi^{2}}{16}-\left(\frac{\pi}{4}-\sin ^{-1} \alpha\right)^{2}\right\}^{5}$

$$
\leq{ }^{10} C_{5}\left(\frac{\pi^{2}}{16}\right)^{5}
$$

$\Rightarrow-\frac{{ }^{10} C_{5} \pi^{10}}{2^{5}} \leq T_{6} \leq{ }^{10} C_{5} \frac{\pi^{10}}{2^{20}}$
154 (b)
In the expansion of $(3+7 x)^{29}$

$$
\begin{aligned}
T_{r+1} & ={ }^{29} C_{r} \cdot 3^{29-r} \cdot(7 x)^{r} \\
& =\left({ }^{29} C_{r} \times 3^{29-r} \times 7^{r}\right) x^{r}
\end{aligned}
$$

Let $a_{r}=$ coefficient of $(r+1)$ th term

$$
={ }^{29} C_{r} \times 3^{29-r} \times 7^{r}
$$

and $a_{r-1}=$ coefficient of $r$ th term

$$
={ }^{29} C_{r-1} \times 3^{30-r} \times 7^{r-1}
$$

According to question $a_{r}=a_{r-1}$
$\Rightarrow{ }^{29} C_{r} \times 3^{29-r} \times 7^{r}={ }^{29} C_{r-1} \times 3^{30-r} \times 7^{r-1}$
$\Rightarrow \frac{{ }^{29} C_{r}}{{ }^{29} C_{r-1}}=\frac{3}{7} \Rightarrow \frac{30-r}{r}=\frac{3}{7}$
$\Rightarrow 210-7 r=3 r \Rightarrow r=21$
156 (b)
In the expansion of $(1+x)^{50}$ the sum of the coefficient of odd powers
$=C_{1}+C_{3}+C_{5}+\ldots=2^{50-1}=2^{49}$
157 (b)
It is given that the coefficients of $r^{\text {th }}$ and $(r+1)^{\text {th }}$ term in the expansion of $(3+7 x)^{29}$ are equal
$\therefore{ }^{29} C_{r-1} \times 3^{30-r} \times 7^{r-1}={ }^{29} C_{r} \times 3^{29-r} \times 7^{r}$
$\Rightarrow{ }^{29} C_{r-1} \times 3={ }^{29} C_{r} \times 7$
$\Rightarrow \frac{3}{30-r}=\frac{7}{r} \Rightarrow r=21$
(b)

We have,
${ }^{2 n} C_{p}={ }^{2 n} C_{p+2} \Rightarrow p+p+2=2 n \Rightarrow p=n-1$
159 (b)
We have

$$
(1+x)^{n}=\sum_{r=0}^{n} a_{r} x^{r} \Rightarrow a_{r}={ }^{n} C_{r}
$$

Now,
$\left(1+\frac{a_{1}}{a_{0}}\right)\left(1+\frac{a_{2}}{a_{1}}\right) \ldots\left(1+\frac{a_{n}}{a_{n-1}}\right)$
$=\prod_{r=1}^{n}\left(1+\frac{a_{r}}{a_{r-1}}\right)$
$=\prod_{r=1}^{n}\left(\frac{a_{r-1}+a_{r}}{a_{r-1}}\right)$
$=\prod_{r=1}^{n}\left(\frac{{ }^{n} C_{r}+{ }^{n} C_{r-1}}{{ }^{n} C_{r-1}}\right)$
$=\prod_{r=1}^{n} \frac{{ }^{n+1} C_{r}}{{ }^{n} C_{r-1}}$
$=\prod_{r=1}^{n} \frac{n+1}{r} \quad\left[\because{ }^{n+1} C_{r}=\frac{n+1}{r}{ }^{n} C_{r-1}\right]$
$=(n+1)^{n}\left(\frac{1}{1} \times \frac{1}{2} \times \frac{1}{3} \times \ldots \times \frac{1}{n}\right)=\frac{(n+1)^{n}}{n!}$
161 (a)
$\left(2 x^{2}-x-1\right)^{5}=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{10} x^{10}$
On putting $x=0$, we get

$$
-1=a_{0}
$$

On putting $x=1$, we get

$$
\begin{equation*}
0=a_{0}+a_{1}+a_{2}+\ldots+a_{10} \tag{i}
\end{equation*}
$$

On putting $x=-1$, we get
$(2+1-1)^{5}=a_{0}-a_{1}+a_{2}-\ldots+a_{10}$
On adding Eqs. (i) and (ii), we get

$$
0+(2)^{5}=2\left(a_{0}+a_{2}+\cdots+a_{10}\right)
$$

$\Rightarrow 16-1=a_{2}+\cdots+a_{10}$
$\Rightarrow a_{2}+a_{3}+\ldots+a_{10}=15$
162 (b)
We have,

$$
{ }^{2 n} C_{r}={ }^{2 n} C_{r+2} \Rightarrow r+r+2=2 n \Rightarrow n=r+1
$$

163 (d)
$\therefore$ coefficient of $x^{100}$ in the expansion of
$\sum_{j=0}^{200}(1+x)^{j}$ will be $\sum_{j=0}^{200} \quad j_{C_{100}}$

$$
\begin{aligned}
& =\left[{ }^{100} C_{100}+{ }^{101} C_{100}+{ }^{102} C_{100}+\cdots+{ }^{200} C_{100}\right] \\
& {\left[\because{ }^{n} C_{n}+{ }^{n+1} C_{n}+{ }^{n+2} C_{n}+\cdots+{ }^{2 n-1} C_{n}\right.} \\
& \left.\quad={ }^{2 n} C_{n+1}\right] \\
& \quad=\binom{201}{100}
\end{aligned}
$$

(b)

We have,
$\frac{1}{n!}+\frac{1}{2!(n-2)!}+\frac{1}{4!(n-4)!}+\cdots$
$=\frac{1}{n!}\left\{\frac{n!}{n!}+\frac{n!}{2!(n-2)!}+\frac{n!}{4^{\prime}!(n-4)!}+\cdots\right\}$
$=\frac{1}{n!}\left\{{ }^{n} C_{0}+{ }^{n} C_{2}+{ }^{n} C_{4}+\cdots\right\}=\frac{2^{n-1}}{n!}$
165 (c)
General term $T_{r+1}={ }^{10} C_{r}\left(\frac{x}{2}\right)^{10-r}\left(-\frac{3}{x^{2}}\right)^{r}$
$={ }^{10} C_{r} \cdot \frac{x^{10-3 r} \cdot(-1)^{r} \cdot 3^{r}}{2^{10-r}}$
For the coefficient of $x^{4}$ put
$10-3 r=4$
$\Rightarrow \quad r=2$
Hence, coefficient of $x^{4}$ is
${ }^{10} C_{2} \cdot \frac{3^{2}}{2^{8}}=\frac{405}{256}$
166 (a)
Given, $(1+x)^{n}=C_{0}+C_{1} x+C_{2} x^{2}+\cdots+C_{n} x^{n}$
Also, $(x+1)^{n}=C_{n}+C_{n-1} x+C_{n-2} x^{2}+\cdots+$
$C_{0} x^{n}$
On multiplying both equations and comparing
coefficient of $x^{n-1}$ on both sides, we get
$C_{0} C_{2}+C_{1} C_{2}+C_{2} C_{3}+\cdots+C_{n-1} C_{n}={ }^{2 n} C_{n-1}$
$=\frac{(2 n)!}{(n-1)!(n+1)!}$
167 (c)
Now, $7^{9}=(8-1)^{9}=-1(1-8)^{9}$
$=-1+{ }^{9} C_{1} 8-{ }^{9} C_{2} 8^{2}+\ldots+{ }^{9} C_{9} 8{ }^{9}$ and
$9^{7}=(1+8)^{7}$
$=1+{ }^{7} C_{1} 8+{ }^{7} C_{2} 8^{2}+{ }^{7} C_{3} 8^{3}+\ldots+{ }^{7} C_{7} 8^{7}$
$\therefore 7^{9}+9^{7}=8\left({ }^{9} C_{1}+{ }^{7} C_{1}\right)+8^{2}\left({ }^{7} C_{2}-{ }^{9} C_{2}\right)+\cdots$

$$
\begin{aligned}
& =8(9+7)+8^{2}(21-36)+\cdots \\
& =64 \times 2+64(-15)+\cdots
\end{aligned}
$$

Hence, it is divisible by 64
168 (d)
Let $f=(8-3 \sqrt{7})^{10}$, here $0<f<1$
$\therefore(8+3 \sqrt{7})^{10}+(8-3 \sqrt{7})^{10}$ is an integer hence, this is the value of $n$
169 (d)
We have, $\left(3 x-\frac{1}{2 x}\right)^{8}$
$\therefore$ Ninth term $T_{9}=8_{c_{8}}(3 x)^{8-8}\left(\frac{-1}{2 x}\right)^{8}$
$=\frac{1}{256 x^{8}}$
170

## (b)

The general term in the expansion of $\left(x+\frac{1}{x^{2}}\right)^{n-3}$ is given by
$T_{r+1}={ }^{n-3} C_{r}(x)^{n-3-r}\left(\frac{1}{x^{2}}\right)^{r}$
$={ }^{n-3} C_{r} x^{n-3-3 r}$
As $x^{2 k}$ occurs in the expansion of $\left(x+\frac{1}{x^{2}}\right)^{n-3}$, we must have $n-3-3 r=2 k$ for some non-negative integer $r$
$\Rightarrow 3(1+r)=n-2 k$
$\Rightarrow n-2 k$ is a multiple of 3
171 (c)
Let $T_{r+1}$ denote the $(r+1)^{\text {th }}$ term in the
expansion of $\left(7^{1 / 3}+5^{1 / 2} x\right)^{600}$. Then,
$T_{r+1}={ }^{600} C_{r}\left(7^{1}\right)^{600-r}\left(5^{1 / 3} x\right)^{r}$

$$
={ }^{600} C_{r} 7^{200-\frac{r}{3}} \times 5^{\frac{r}{2}} \times x^{r}
$$

Here, $0 \leq r \leq 600$
For $200-\frac{r}{3}$ and $\frac{r}{2}$ to be integers, we must have $\frac{r}{3}$ and $\frac{r}{2}$ as integers, and $0 \leq r \leq 600$
$\Rightarrow r$ is multiple of 2 and 3 both and $0 \leq r \leq 600$
$\Rightarrow r$ is a multiple of 6 and $0 \leq r \leq 600$
$\Rightarrow r=0,6,12, \ldots, 600$
Hence, there are 101 terms with integral coefficients
172 (b)
We have,
$(x y+y z+z x)^{6}=\sum_{r+s+t=6} \frac{6!}{r!s!t!}(x y)^{r}(y z)^{s}(z x)^{t}$
$=\sum_{r+s+t=6} \frac{6!}{r!s!t!} x^{r+t} y^{r+s} z^{s+t}$
If the general term in the above expansion contains $x^{3} y^{4} z^{5}$, then
$r+t=3, r+s=4$ and $s+t=5$
Also, $r+s+t=6$
On solving these equations, we get
$r=1, s=3, t=2$
$\therefore$ Coefficient of $x^{3} y^{4} z^{5}=\frac{6!}{1!3!2!}=60$
173 (c)
We have,
$\left(1+2 x+x^{2}\right)^{n}=\sum_{r=0}^{2 n} a_{r} x^{r}$
$\Rightarrow\left\{(1+x)^{2}\right\}^{n}=\sum_{r=0}^{2 n} a_{r} x^{r}$
$\Rightarrow(1+x)^{2 n}=\sum_{r=0}^{2 n} a_{r} x^{r}$
$\Rightarrow \sum_{r=0}^{2 n}{ }^{2 n} C_{r} x^{r}=\sum_{r=0}^{2 n} a_{r} x^{r} \Rightarrow a_{r}={ }^{2 n} C_{r}$
174 (a)

Given, ${ }^{20} C_{4}+{ }^{20} C_{3}+{ }^{20} C_{3}+{ }^{20} C_{2}-{ }^{22} C_{18}$
$={ }^{21} C_{4}+{ }^{20} C_{3}+{ }^{20} C_{2}-{ }^{22} C_{18}$
$={ }^{22} C_{4}-{ }^{22} C_{18}={ }^{22} C_{18}-{ }^{22} C_{18}=0$
175 (d)
We have,
$y=3 x+6 x^{2}+10 x^{3}+\cdots$
$\Rightarrow 1+y=\left(1+3 x+6 x^{2}+10 x^{3}+\cdots\right)$
$\Rightarrow 1+y=(1-x)^{-3}$
$\Rightarrow(1-x)=(1+y)^{-1 / 3}$
$\Rightarrow x=1-(1+y)^{-1 / 3}$
$\Rightarrow x=\frac{1}{3} y-\frac{1 \cdot 4}{3^{2} \cdot 2} y^{2}+\frac{1 \cdot 4 \cdot 7 \cdot}{3^{3} 3!} y^{3} \ldots$
176 (c)
We know that,
$(x+a)^{n}+(x-a)^{n}=2\left[{ }^{n} C_{0} x^{n}+\right.$
$\left.{ }^{n} C_{2} x{ }^{n-2} a^{2}+\ldots.\right]$
Here, $n=5, x=x$ and $a=\left(x^{3}-1\right)^{1 / 2}$
$\therefore\left[x+\left(x^{3}-1\right)^{1 / 2}\right]^{5}\left[x-\left(x^{3}-1\right)^{1 / 2}\right]^{5}$
$=2\left[{ }^{5} C_{0} x^{5}+{ }^{5} C_{2} x^{3}\left(x^{3}-1\right)+{ }^{5} C_{4} x\left(x^{3}-1\right)^{2}\right]$
$=2\left[x^{5}+10 x^{3}\left(x^{3}-1\right)+5 x\left(x^{3}-1\right)^{2}\right]$
$\therefore$ Given expression is a polynomial of degree 7 .
177 (c)
We have,
$C_{0}^{2}+3 \cdot C_{1}^{2}+5 \cdot C_{2}^{2}+\cdots+(2 n+1) C_{n}^{2}$
$=\left\{C_{0}^{2}+C_{1}^{2}+C_{2}^{2}+\cdots+C_{n}^{2}\right\}$
$+\left\{2 C_{1}^{2}+4 \cdot C_{2}^{2}+6 \cdot C_{3}^{2}+\cdots+2 n C_{n}^{2}\right\}$
We have,

$$
\begin{aligned}
(1+x)^{2 n}= & (1+x)^{n}(1+x)^{n} \\
\Rightarrow(1+x)^{2 n}= & \left(C_{0}+C_{1} x+C_{2} x^{2}+\cdots+C_{n} x^{n}\right) \\
& \times\left(C_{0} x^{n}+C_{1} x^{n-1}+\cdots+C_{n-1} x\right. \\
& \left.+C_{n}\right)
\end{aligned}
$$

On equating the coefficient of $x^{n}$ on both sides, we get

$$
\begin{equation*}
{ }^{2 n} C_{n}=C_{0}^{2}+C_{1}^{2}+C_{2}^{2}+\cdots C_{n}^{2} \tag{ii}
\end{equation*}
$$

Also,

$$
\begin{aligned}
& n(1+x)^{n-1}(1+x)^{n} \\
& \quad=\left(C_{1}+2 C_{2} x+3 C_{3} x^{2}+\cdots\right. \\
& \left.\quad+n C_{n} x^{n-1}\right) \\
& \times\left(C_{0} x^{n}+C_{1} x^{n-1}+C_{2} x^{n-2}+\cdots+C_{n}\right)
\end{aligned}
$$

On equating the coefficient of $x^{n-1}$ on both sides, we get
$n \cdot{ }^{2 n-1} C_{n-1}=\left(C_{1}^{2}+2 C_{2}^{2}+3 C_{3}^{2}+\cdots+n C_{n}^{2}\right)$
$\Rightarrow 2 n \cdot{ }^{2 n-1} C_{n-1}$

$$
\begin{aligned}
& =2 C_{1}^{2}+4 C_{2}^{2}+6 C_{3}^{2}+\cdots \\
& ++2 n C_{n}^{2} \ldots \text { (iii) }
\end{aligned}
$$

From (i),(ii) and (iii), we obtain
$C_{0}^{2}+3 \cdot C_{1}^{2}+5 C_{2}^{2}+\cdots+(2 n+1) C_{n}^{2}$
$=\frac{2 n}{n}{ }^{2 n-1} C_{n-1}+2 n \cdot{ }^{2 n-1} C_{n-1}$
$=2(n+1)^{2 n-1} C_{n-1}$

178 (d)
Here ${ }^{n-1} C_{r}=\left(k^{2}-3\right){ }^{n} C_{r+1}$
$\Rightarrow{ }^{n-1} C_{r}=\left(k^{2}-3\right) \frac{n}{r+1}{ }^{n-1} C_{r}$
$\Rightarrow k^{2}-3=\frac{r+1}{n}$
$\left[\right.$ since, $n-1 \geq r \Rightarrow \frac{r+1}{n} \leq 1$ and $\left.n, r \geq 0\right]$
$\Rightarrow 0<k^{2}-3 \leq 1 \Longrightarrow 3<k^{2} \leq 4$
$\Rightarrow k \in[-2,-\sqrt{3}) \cup(\sqrt{3}, 2]$
179 (a)
Let $f(x)=(x+y)^{100}+(x-y)^{100}$
Here, $n=100$, which is even.
$\therefore$ Total number of terms

$$
\begin{aligned}
& =\frac{n+2}{2}=\frac{100+2}{2} \\
& =51
\end{aligned}
$$

180 (c)
We know that
$C_{0}^{2}+C_{1}^{2}+C_{2}^{2}+C_{3}^{2}+\cdots+C_{n}^{2}=\frac{(2 n)!}{n!n!} \ldots$ (i)
and, $C_{0}^{2}-C_{1}^{2}+C_{2}^{2}-C_{3}^{2}+\cdots-C_{n}^{2}=0$, when $n$ is odd ...(ii)
subtracting (ii) from (i), we get
$2\left(C_{1}^{2}+C_{3}^{2}+C_{5}^{2}+\cdots+C_{n}^{2}\right)=\frac{(2 n)!}{(n!)^{2}}$
$\Rightarrow C_{1}^{2}+C_{3}^{2}+C_{5}^{2}+\cdots+C_{n}^{2}=\frac{(2 n)!}{2(n!)^{2}}$
181 (a)
$\sum_{k=0}^{10}{ }^{20} C_{k}={ }^{20} C_{0}+{ }^{20} C_{1}+{ }^{20} C_{2}+\cdots+{ }^{20} C_{10}$
On putting $x=1$ and $n=20$ in $(1+x)^{n}$

$$
={ }^{n} C_{0}+{ }^{n} C_{1} x+{ }^{n} C_{2} x^{2}+\cdots+{ }^{n} C_{n} x^{n}
$$

We get

$$
\begin{gathered}
2^{20}=2\left({ }^{20} C_{0}+{ }^{20} C_{1}+{ }^{20} C_{2}+\cdots+{ }^{20} C_{9}\right) \\
\\
\quad+{ }^{20} C_{10} \\
\Rightarrow 2^{19}=\left({ }^{20} C_{0}+{ }^{20} C_{1}+{ }^{20} C_{2}+\cdots+{ }^{20} C_{9}\right) \\
\\
\quad+\frac{1}{2}{ }^{20} C_{10} \\
\Rightarrow 2^{19}={ }^{20} C_{0}+{ }^{20} C_{1}+{ }^{20} C_{2}+\cdots+{ }^{20} C_{10} \\
\\
\quad-\frac{1}{2}{ }^{20} C_{10}
\end{gathered}
$$

182 (b)
$(7.995)^{1 / 3}=(8-0.005)^{1 / 3}$
$=(8)^{1 / 3}\left[1-\frac{0.005}{8}\right]^{1 / 3}$
$=2\left[1-\frac{1}{3} \times \frac{0.005}{8}+\frac{\frac{1}{3}\left(\frac{1}{3}-1\right)}{2 \cdot 1}\left(\frac{0.005}{8}\right)^{2}+\ldots\right]$
$=2\left[1-\frac{0.005}{24}-\frac{\frac{1}{3} \times \frac{1}{3}}{1} \times \frac{(0.005)^{2}}{64}+\ldots\right]$
$=2(1-0.000208)$ (neglecting other terms)
$=2 \times 0.999792$
$=1.9996$
183 (b)
It is given that ${ }^{m} C_{1},{ }^{m} C_{2}$ and ${ }^{m} C_{3}$ are in A.P.
$\therefore 2{ }^{m} C_{2}={ }^{m} C_{1}+{ }^{m} C_{3}$
$\Rightarrow m^{2}-9 m+14=0$
$\Rightarrow m=2,7$
For $m=2$, there are only three terms. Therefore, $m=7$.
Now,
$\Rightarrow 21={ }^{7} C_{5}\left\{\sqrt{2^{\log _{10}\left(10-3^{x}\right)}}\right\}^{7-5}\left\{\sqrt[5]{2^{(x-2) \log _{10} 3}}\right\}^{5}$
$\Rightarrow 21=21 \cdot 2^{\log _{10}\left(10-3^{x}\right)} \cdot 2^{(x-2) \log _{10} 3}$
$\Rightarrow 1-2^{\log _{10}\left(10-3^{x}\right)+(x-2) \log _{10} 3}$
$\Rightarrow 2^{0}=2^{\log _{10}\left[\left(10-3^{x}\right) \cdot 3^{x-2}\right]}$
$\Rightarrow\left(10-3^{x}\right) 3^{x-2}=1$
$\Rightarrow 3^{2 x-2}-10.3^{x-2}+1=0$
$\Rightarrow 3^{2 x}-10.3^{x}+9=0$
$\Rightarrow\left(3^{x}-1\right)\left(3^{x}-9\right)=0$
$\Rightarrow 3^{x}=1,3^{x}=9 \Rightarrow x=0,2$
184 (b)
Given, ${ }^{n} C_{12}={ }^{n} C_{6}$
or ${ }^{n} C_{n-12}={ }^{n} C_{6}$
$\Rightarrow n-12=6 \Rightarrow n=18$
$\therefore{ }^{n} C_{2}={ }^{18} C_{2}=153$
185 (b)
Let $(r+1)$ th term be the coefficient of $x^{0}$ in the expansion of
$\left(x-\frac{1}{x}\right)^{6}$.
$\therefore T_{r+1}={ }^{6} C_{r} x^{6-r}\left(-\frac{1}{x}\right)^{r}$
$=(-1)^{r}{ }^{6} C_{r} x^{6-2 r}$
Since, this term is a constant term.
$\therefore 6-2 r=0 \Rightarrow r=3$
$\therefore T_{4}=(-1)^{3}{ }^{6} C_{3}=-20$
186 (d)
General term, $T_{r+1}={ }^{15} C_{r}\left(x^{3}\right)^{15-r}\left(\frac{2}{x^{2}}\right)^{r}$

$$
={ }^{15} C_{r} x^{45-5 r}(2)^{r}
$$

For term independent of $x$, put $45-5 r=0 \Longrightarrow$ $r=9$
$\therefore$ Independent term $=T_{9+1}=T_{10}$
187 (b)
We have, $T_{r+1}={ }^{21} C_{r}\left(\frac{a^{1 / 3}}{b^{1 / 6}}\right)^{21-r}\left(\frac{b^{1 / 2}}{a^{1 / 6}}\right)^{r}$
$={ }^{21} C_{r} \frac{a^{7-(r / 3)}}{b^{7 / 2-r / 6}} \cdot \frac{b^{r / 2}}{a^{r / 6}}$
$={ }^{21} C_{r} a^{7-(r / 2)} b^{2 r / 3-7 / 2}$
Since, exponents of $a$ and $b$ in the ( $r+1$ )th term are equal

$$
\begin{aligned}
& \therefore 7-\frac{r}{2}=\frac{2 r}{3}-\frac{7}{2} \\
& \Rightarrow \frac{21}{2}=\frac{7}{6} r \Rightarrow r=9
\end{aligned}
$$

188 (b)

$$
\begin{aligned}
& \left(\frac{1}{x}+1\right)^{n}(1+x)^{n}=\frac{1}{x^{n}}(1+x)^{2 n} \\
& \quad=\frac{1}{x^{n}}\left(1+{ }^{2 n} C_{1} x+{ }^{2 n} C_{2} x^{2}+\cdots\right. \\
& \left.\quad+{ }^{2 n} C_{n-1} x^{n-1}+\cdots+{ }^{2 n} C_{2 n} x^{2 n}\right)
\end{aligned}
$$

The coefficient of $\frac{1}{x}$ is ${ }^{2 n} C_{n-1}$.
189 (d)

$$
\begin{aligned}
& x=(\sqrt{3}+1)^{5}=(\sqrt{3})^{5}+{ }^{5} C_{1}(\sqrt{3})^{4}+{ }^{5} C_{2}(\sqrt{3})^{3} \\
& +{ }^{5} C_{3}(\sqrt{3})^{2}+{ }^{5} C_{4}\left(\sqrt{3)}+{ }^{5} C_{5}\right. \\
& =9 \sqrt{3}+45+30 \sqrt{3}+30+5 \sqrt{3}+1 \\
& =76+44 \sqrt{3} \\
& \therefore[x]=\left[(\sqrt{3}+1)^{5}\right]=[76+44 \sqrt{3}] \\
& =[76]+[44 \times 1.732] \\
& =76+[76.2] \\
& =76+76=152
\end{aligned}
$$

190 (a)
We have,
$2 C_{0}+\frac{2^{2}}{2} C_{1}+\frac{2^{3}}{2} C_{2}+\cdots+\frac{2^{11}}{11} C_{10}$
$=\sum_{r=0}^{10}{ }^{10} C_{r} \frac{2^{r+1}}{r+1}$
$=\frac{1}{11} \sum_{r=0}^{10} \frac{11}{r+1}{ }^{10} C_{r} 2^{r+1}$
$=\frac{1}{11} \sum_{r=0}^{10}{ }^{11} C_{r+1} \cdot 2^{r+1}$
$=\frac{1}{11}\left({ }^{11} C_{1} 2^{1}+\cdots+{ }^{11} C_{11} \cdot 2^{11}\right)$
$=\frac{1}{11}\left({ }^{11} C_{0} \cdot 2^{0}+{ }^{11} C_{1} 2^{1}+\cdots+{ }^{11} C_{11} \cdot 2^{11}\right.$ $\left.-{ }^{11} C_{0} \cdot 2^{0}\right)$
$=\frac{1}{11}\left[(1+2)^{11}-1\right]=\frac{3^{11}-1}{11}$

191 (a)
Sum of coefficients of the expansion $\left(\frac{1}{x}+2 x\right)^{n}$

$$
=6561
$$

$\therefore(1+2)^{n}=3^{8} \Rightarrow 3^{n}=3^{8} \Rightarrow n=8$
Now, $T_{r+1}={ }^{8} C_{r} 2^{8-r} x^{-8+2 r}$
Since, this term is independent of $x$, then

$$
-8+2 r=0 \Rightarrow r=4
$$

$\therefore$ Coefficient of independent term, $T_{5}={ }^{8} C_{4} \cdot 2^{4}=$ $16 \cdot{ }^{8} C_{4}$
192 (d)
Sum of coefficient of odd powers of $x$ in $(1+x)^{30}$ $=C_{1}+C_{3}+\ldots+C_{29}=2^{30-1}=2^{29}$
193 (b)
6th term in the expansion of $\left(2 x^{2}-\frac{1}{3 x^{2}}\right)^{10}$ is
$T_{6}={ }^{10} C_{5}\left(2 x^{2}\right)^{5}\left(-\frac{1}{3 x^{2}}\right)^{5}$
$=-\frac{10!}{5!5!} \times 32 \times \frac{1}{243}$
$=-\frac{896}{27}$
194 (c)
${ }^{47} C_{4} \sum_{r=1}^{5}{ }^{52-r} C_{3}$
$={ }^{51} C_{3}+{ }^{50} C_{3}+{ }^{49} C_{3}+{ }^{48} C_{3}+{ }^{47} C_{3}+{ }^{47} C_{4}$
$={ }^{51} C_{3}+{ }^{50} C_{3}+{ }^{49} C_{3}+{ }^{48} C_{3}+{ }^{48} C_{4}$
$={ }^{51} C_{3}+{ }^{50} C_{3}+{ }^{49} C_{3}+{ }^{49} C_{4}$
$={ }^{51} C_{3}+{ }^{50} C_{3}+{ }^{50} C_{4}$
$={ }^{51} C_{3}+{ }^{51} C_{4}+{ }^{52} C_{4}$
195 (b)
We have,
$\left(1-2 x+3 x^{2}-4 x^{3}+\cdots\right)^{-n}=\left\{(1+x)^{-2}\right\}^{-n}$

$$
=(1+x)^{2 n}
$$

$\therefore$ Coefficient of $x^{n}$ in $\left(1-2 x+3 x^{2}-4 x^{3}\right.$

$$
+\cdots)^{-n}
$$

$=$ Coefficient of $x^{n}$ in $(1+x)^{2 n}={ }^{2 n} C_{n}=\frac{(2 n)!}{(n!)^{2}}$
196 (c)
We have,
$(1+x)^{n}\left(1+\frac{1}{x}\right)^{n}$
$=\left(C_{0}+C_{1} x+\cdots+C_{n} x^{n}\right)\left\{C_{0}+\frac{C_{1}}{x}+\frac{C_{2}}{x^{2}}+\cdots\right.$

$$
\left.+\frac{C_{n}}{x^{n}}\right\}
$$

$\therefore$ Term independent of $x=C_{0}^{2}+C_{1}^{2}+C_{2}^{2}+\cdots+$ $C_{n}^{2}$
197 (a)
We have,
$A=$ Coeff. of $x^{r}$ in the expansion of $(1+x)^{n}{ }^{n} C_{r}$
$B=$ Coeff. of $x^{n-r}$ in the expansion of
$(1+x)^{n}={ }^{n} C_{n-r}$
$\because{ }^{n} C_{r}={ }^{n} C_{n-r} \quad \therefore A=B$
198 (b)
We have,
$x=\frac{\left[\begin{array}{c}729+6(2)(243)+15(4)(81) \\ +20(8)(27)+15(16)(9)+6(32)(3)+64\end{array}\right]}{1+4(4) 6(16)+4(64)+256}$
$=\frac{\left[\begin{array}{c}{ }^{6} C_{0}(3)^{6}+{ }^{6} C_{1} 3^{5} 2+{ }^{6} C_{2} 3^{4} 2^{2} \\ +{ }^{6} C_{3} 3^{3} 2^{3}+{ }^{6} C_{4} 3^{2} 2^{4}+{ }^{6} C_{5} 32^{5}+{ }^{6} C_{6} 2^{6}\end{array}\right]}{{ }^{4} C_{0}+{ }^{4} C_{1} 4+{ }^{4} C_{2} 4^{2}+{ }^{4} C_{3} 4^{3}+{ }^{4} C_{4} 4^{4}}$
$\Rightarrow x=\frac{(3+2)^{6}}{(1+4)^{4}}=\frac{5^{6}}{5^{4}}$
$\Rightarrow x=5^{2}$
$\therefore \sqrt{x}-\frac{1}{\sqrt{x}}=5-\frac{1}{5}=4.8$
199 (b)
Coefficient of $p$ th, $(p+1)$ th and $(p+2)$ th terms in the expansion $(1+x)^{n}$ are ${ }^{n} C_{p-1},{ }^{n} C_{p},{ }^{n} C_{p+1}$ respectively
Since, these are in AP
$\therefore 2{ }^{n} C_{p}={ }^{n} C_{p-1}+{ }^{n} C_{p+1}$
$\Rightarrow 2 \frac{n!}{(n-p)!p!}$
$=\frac{n!}{(n-p+1)!(p-1)!}$
$+\frac{n!}{(n-p-1)!(p+1)!}$
$\Rightarrow \frac{2}{(n-p)!p!}=\frac{p}{(n-p+1)(n-p)!p!}$
$+\frac{n-p}{(n-p)!(p+1) p!}$
$\Rightarrow \frac{2}{1}=\frac{p}{(n-p+1)}+\frac{n-p}{p+1}$
$\Rightarrow n^{2}-n(4 p+1)+4 p^{2}-2=0$
200 (a)
$\left(2^{1 / 2}+3^{1 / 5}\right)^{10}={ }^{10} C_{0} 2^{5}+{ }^{10} C_{1} 2^{9 / 2}$.
$3^{1 / 5}+$ $\qquad$ $+{ }^{10} C_{10} \cdot 3^{2}$
Thus, sum of rational terms of above expansion $=2^{5}+3^{2}=41$
201 (b)
According to given condition, $T_{n}={ }^{n} C_{3}$
and $T_{n+1}-T_{n}=21$
$\Rightarrow{ }^{n+1} C_{3}-{ }^{n} C_{3}=21$
$\Rightarrow \frac{1}{6}(n+1)(n)(n-1)-\frac{1}{6} n(n-1)(n-2)=21$
$\Rightarrow \frac{n(n-1)}{6}[(n+1)-(n-2)]=21$
$\Rightarrow \frac{n(n-1) \cdot 3}{6}=21$
$\Rightarrow n(n-1)=42$
$\Rightarrow n=7$
202 (b)
Since, total number of terms $=59+1=60$
$\therefore$ Required sum $=\frac{2^{59}}{2}=2^{58}$
203 (d)
Since, $(1-x)^{-n}=1+\frac{n}{1!} x+\frac{n(n+1)}{2!} x^{2}+\cdots$
On putting $x=\frac{2 x}{1+x}$ on both sides, we get

$$
\begin{aligned}
\left(1-\frac{2 x}{1+x}\right)^{-n} & =1+\frac{n}{1!}\left(\frac{2 x}{1+x}\right) \\
& +\frac{n(n+1)}{2!}\left(\frac{2 x}{1+x}\right)^{2}+\cdots \\
\Rightarrow 1+\frac{n}{1!}\left(\frac{2 x}{1+x}\right) & +\frac{n(n+1)}{2!}\left(\frac{2 x}{1+x}\right)^{2}+\ldots \\
& =\left(\frac{1-x}{1+x}\right)^{-n}=\left(\frac{1+x}{1-x}\right)^{n}
\end{aligned}
$$

204 (d)
General term in the expansion of
$\left(1+3 x+2 x^{2}\right)^{6}$

$$
\begin{equation*}
=\sum \frac{6!}{r_{1}!r_{2}!r_{3}!}(1)^{r_{1}}(3 x)^{r_{2}}\left(2 x^{2}\right)^{r_{3}} \tag{i}
\end{equation*}
$$

Where $r_{1}+r_{2}+r_{3}=6$
For coefficient of $x^{11}$, we have

$$
\begin{equation*}
r_{2}+2 r_{3}=11 \tag{ii}
\end{equation*}
$$

Now, from Eqs, (i) and (ii), we get

$$
r_{1}=r_{3}-5
$$

For $\quad r_{3}=5, r_{1}=0$
And $r_{2}=1$
$\therefore$ Coefficient of $x^{11}=\frac{6!}{0!1!5!}(1)^{0}(3)^{1}(2)^{5}$
$=6 \times 3 \times 2^{5}=18 \times 32=576$
205 (a)
We have,

$$
\begin{aligned}
& (1-x)^{2}\left(x+\frac{1}{x}\right)^{10} \\
& =\left(1-2 x+x^{2}\right) \sum_{r=0}^{10}{ }^{10} C_{r} x^{10-2 r} \\
& =\sum_{r=0}^{10}{ }^{10} C_{r} x^{10-2 r}-2 \sum_{r=0}^{10}{ }^{10} C_{r} x^{11-2 x} \\
& \quad+\sum_{r=0}^{10}{ }^{10} C_{r} x^{12-2 x}
\end{aligned}
$$

Hence, the term independent of $x$ is

$$
\begin{gathered}
{ }^{10} C_{5}-2 \times 0+{ }^{10} C_{6}={ }^{10} C_{5}+{ }^{10} C_{6}={ }^{11} C_{6} \\
={ }^{11} C_{5}
\end{gathered}
$$

206 (a)
Sum of the coefficients in the expansion of $(x-2 y+3 z)^{n}$ is $(1-2+3)^{n}=2^{n}$
(Put $x=y=z=1$ )
$\therefore 2^{n}=128$
$\Rightarrow n=7$
Therefore, the greatest coefficient in the expansion of $(1+x)^{7}$ is ${ }^{7} C_{3}$ or ${ }^{7} C_{4}$ because both are equal to 35
207 (b)

$$
\begin{aligned}
& 19^{2005}+11^{2005}-9^{2005} \\
& =(10+9)^{2005}+(10+1)^{2005}-(9)^{2005} \\
& =\left(9^{2005}+{ }^{2005} C_{1}(9)^{2004} \times 10+\ldots\right) \\
& \quad+\left({ }^{2005} C_{0}+{ }^{2005} C_{1} 10+\ldots\right) \\
& \quad-(9)^{2005}
\end{aligned}
$$

$\therefore$ Unit digit $=1$
208 (a)
$\sum_{r=0}^{n}(-1)^{r}{ }^{n} C_{\mathrm{r}}\left(\frac{1}{2^{r}}+\frac{3^{r}}{2^{2 r}}+\frac{7^{r}}{2^{3 r}}+\ldots\right.$ upto $m$ terms $)$
$=\sum_{r=0}^{n}(-1)^{r n} C_{r} \cdot \frac{1}{2^{r}}$
$+\sum_{r=0}^{n}(-1)^{r} \cdot{ }^{n} C_{r} \frac{3^{r}}{2^{2 r}}$
$+\sum_{r=0}^{n}(-1)^{r}{ }^{n} C_{r} \frac{7^{r}}{2^{3 r}}+\ldots$
$=\left(1-\frac{1}{2}\right)^{n}+\left(1-\frac{3}{4}\right)^{n}$
$+\left(1-\frac{7}{8}\right)^{n}+\ldots$ upto $m$ terms
$=\frac{1}{2^{n}}+\frac{1}{2^{2 n}}+\frac{1}{2^{3 n}}+\cdots$ upto m terms
$=\frac{\frac{1}{2^{n}}\left(1-\left(\frac{1}{2^{n}}\right)^{m}\right)}{\left(1-\frac{1}{2^{n}}\right)}$
$=\frac{2^{m n}-1}{2^{m n}\left(2^{n}-1\right)}$
209 (c)
We have,
Coeff. of $(r+2)^{\text {th }}$ term in $(1+x)^{2 n}=$
Coeff. of (3r) ${ }^{\text {th }}$ term
$\Rightarrow{ }^{2 n} C_{r+1}={ }^{2 n} C_{3 r-1}$
$\Rightarrow r+1+3 r-1=2 n \Rightarrow 4 r=2 n \Rightarrow n=2 r$
210 (b)
$\frac{\left(1+\frac{3}{4} x\right)^{-4}(16)^{1 / 2}\left(1-\frac{3}{16} x\right)^{1 / 2}}{(8)^{2 / 3}\left(1+\frac{x}{8}\right)^{2 / 3}}$
$=\left(1+\frac{3 x}{4}\right)^{-4}\left(1-\frac{3 x}{16}\right)^{\frac{1}{2}}\left(1+\frac{x}{8}\right)^{-\frac{2}{3}}$
$=\left(1+(-4) \frac{3}{4} x\right)\left(1-\left(\frac{1}{2}\right) \frac{3 x}{16}\right)\left(1+\left(-\frac{2}{3}\right) \frac{x}{8}\right)$
$=(1-3 x)\left(1-\frac{3}{32} x\right)\left(1-\frac{x}{12}\right)$
$=1-\frac{305}{96} x$ (On neglecting $x^{2}$ and higher powers of $x$ )
211 (c)
We have,
$\left(1+x^{2}\right)^{5}(1+x)^{4}$

$$
\begin{aligned}
& =\left({ }^{5} C_{0}+{ }^{5} C_{1} x^{2}+{ }^{5} C_{2} x^{4}\right. \\
& \left.+{ }^{5} C_{3} x^{6}+\cdots\right) \times\left({ }^{4} C_{0}+{ }^{4} C_{1} x\right. \\
& +{ }^{4} C_{2} x^{2}+{ }^{4} C_{3} x^{3}+{ }^{4} C_{4} x^{4}
\end{aligned}
$$

$\therefore$ Coefficient of $x^{5}={ }^{5} C_{1} \times{ }^{4} C_{3}+{ }^{5} C_{2} \times{ }^{4} C_{1}$

$$
=20+40=60
$$

212 (a)
We have,
$(1+5 \sqrt{2} x)^{9}+(1-5 \sqrt{2} x)^{9}$
$=2\left\{{ }^{9} C_{0}+{ }^{9} C_{2}(5 \sqrt{2} x)^{2}+\cdots+{ }^{9} C_{8}(5 \sqrt{2} x)^{8}\right\}$
Clearly, it has 5 terms
214 (d)

$$
\begin{aligned}
& \left(1+2 x+3 x^{2}+\ldots\right)^{1 / 2}=\left[(1-x)^{-2}\right]^{1 / 2} \\
& \quad=(1-x)^{-1} \\
& \quad=1+x+x^{2}+\cdots+x^{n}+\cdots \infty
\end{aligned}
$$

$\therefore$ The coefficient of $x^{n}=1$
215 (d)
Coefficient of $\lambda^{n} \mu^{n}$ in $(1+\lambda)^{n}(1+\mu)^{n}(\lambda+\mu)^{n}$
$=$ coefficient of $\lambda^{n} \mu^{n}$ in
$\sum_{r=0}^{n}{ }^{n} C_{r} \lambda^{r} \sum_{s=0}^{n}{ }^{n} C_{s} \mu^{s} \sum_{t=0}^{n}{ }^{n} C_{t} \lambda^{n-t} \mu^{t}$
$=\left({ }^{n} C_{0}\right)^{3}+\left({ }^{n} C_{1}\right)^{3}+\left({ }^{n} C_{2}\right)^{3}+\ldots=\sum_{r=0}^{n}\left({ }^{n} C_{r}\right)^{3}$
216 (c)
We have,
$\left(1+x-2 x^{2}\right)^{6}$

$$
\begin{aligned}
& =1+C_{1} x+C_{2} x^{2}+C_{3} x^{3}+C_{4} x^{4} \\
& +9 \ldots+C_{12} x^{12}
\end{aligned}
$$

Putting $x=1,-1$, we get
$0=1+C_{1}+C_{2}+C_{3}+C_{4}+\cdots+C_{12}$
$64=1-C_{1}+C_{2}-C_{3}+C_{4}-\cdots+C_{12}$
Adding (i) and (ii), we get
$64=2\left(1+C_{2}+C_{4}+\cdots+C_{12}\right)$
$\Rightarrow C_{2}+C_{4}+\cdots+C_{12}=31$
217 (a)
We have,
Coeff. Of $x$ in $(1+a x)^{n}=8$ and, Coeff. Of $x^{2}$ in $(1+a x)^{n}=24$
$\Rightarrow{ }^{n} C_{1} a=8$ and ${ }^{n} C_{2} a^{2}=24$
$\Rightarrow n a=8$ and $n(n-1) a^{2}=48$
$\Rightarrow 64-8 a=48 \Rightarrow a=2$
$\therefore n a=8 \Rightarrow n=4$
218 (a)
Since, $(1+x)^{2 n}={ }^{2 n} C_{0}+{ }^{2 n} C_{0}+{ }^{2 n} C_{1} x+$ ${ }^{2 n} C_{2}$ x

$$
+\ldots .+{ }^{2 n} C_{n} x^{n}+\ldots{ }^{2 n} C_{2 n} x^{2 n}
$$

Total number of terms in the expansion $=2 n+1$ $\therefore(n+1)$ th term is middle term. This term has greatest coefficient.
Hence, required greatest coefficient $={ }^{2 n} C_{n}$
219 (a)
The general term in $\left(\frac{x}{2}-\frac{3}{x^{2}}\right)^{10}$ is
$T_{r+1}=(-1)^{r 10} C_{r}\left(\frac{x}{2}\right)^{10-r}\left(\frac{3}{x^{2}}\right)^{r}$
$=(-1)^{r}{ }^{10} C_{r} \cdot \frac{3^{r}}{2^{10-r}} \cdot x^{10-3 r}$
For coefficient of $x^{4}$, we have to take $10-3 r=4$
$\Rightarrow 3 r=6 \Rightarrow r=2$
$\therefore$ Coefficient of $x^{4}$ in $\left(\frac{x}{2}-\frac{3}{x^{2}}\right)^{10}$
$=(-1)^{2} \cdot{ }^{10} C_{2} \cdot \frac{3^{2}}{2^{8}}=\frac{9 \times 45}{256}=\frac{405}{256}$
220 (b)
Clearly, ${ }^{n} C_{r}$ is the greatest and $n$ is odd
$\therefore r=\frac{n+1}{2}$ or, $\frac{n-1}{2}$

## 221 (a)

We have, $R=[R]+F$
Let $G=(5 \sqrt{5}-11)^{2 n+1}$. Then, $0<G<1$ as
$0<5 \sqrt{5}-11<1$
Now,

$$
\begin{aligned}
& R-G=(5 \sqrt{5}+11)^{2 n+1}-(5 \sqrt{5}-11)^{2 n+1} \\
& \Rightarrow R-G=2\left\{{ }^{2 n+1} C_{1}(5 \sqrt{5})^{2 n}(11)^{1}\right. \\
& \\
& \quad+{ }^{2 n+1} C_{3}(5 \sqrt{5})^{2 n-2}(11)^{3}+\cdots \\
& \\
& \left.+{ }^{2 n+1} C_{2 n+1}(11)^{2 n+1}\right\}
\end{aligned}
$$

$\Rightarrow R-G=$ an even integer
$\Rightarrow[R]+F-G=$ an even integer
$\Rightarrow F-G$ is an integer
$\Rightarrow F-G=0$
$\Rightarrow F=G$
$\Rightarrow R F=R G=(5 \sqrt{5}+11)^{2 n+1}(5 \sqrt{5}-11)^{2 n+1}$
$=4^{2 n+1}$
222 (c)
Coefficients of $T_{5}={ }^{n} C_{4}, T_{6}={ }^{n} C_{5}$ and $T_{7}={ }^{n} C_{6}$ According to the given condition,
$2{ }^{n} C_{5}={ }^{n} C_{4}+{ }^{n} C_{6}$
$\Rightarrow 2\left[\frac{n!}{(n-5)!5!}\right]=\left[\frac{n!}{(n-4)!4!}+\frac{n!}{(n-6)!6!}\right]$
$\Rightarrow 2\left[\frac{6}{(n-5)}\right]=\left[\frac{5.6}{(n-4)(n-5)}+1\right]$
$\Rightarrow \frac{12}{(n-5)}=\frac{30+n^{2}-9 n+20}{(n-4)(n-5)}$
$\Rightarrow n^{2}-21 n+98=0$
$\Rightarrow(n-7)(n-14)=0$
$\Rightarrow n=7$ or 14
223 (a)
Given that, $R=(2+\sqrt{3})^{2 n}$ and $f=R-[R]$
As $0<2-\sqrt{3}<1$, we get $0<F=(2-\sqrt{3})^{2 n}<$ 1
We have, $R+F=(2+\sqrt{3})^{2 n}+(2-\sqrt{3})^{2 n}$
$=2\left[{ }^{2 n} C_{0} 2^{2 n}+{ }^{2 n} C_{2} 2^{2 n-2}(\sqrt{3})^{2}\right.$
$\left.+{ }^{2 n} C_{4}\left(2^{2 n-4}\right)(\sqrt{3})^{4}+\ldots+{ }^{2 n} C_{2 n}(\sqrt{3})^{2 n}\right]$
$\Rightarrow R+F$ is an even integer
$\Rightarrow[R]+f+F$ is an even integer
$\Rightarrow f+F$ is an integer
But, $0 \leq f<1$ and $0<F<1$
$\Rightarrow 0<f+F<2$
But the only integer between 0 and 2 is 1 . Thus, $f+F=1 \Rightarrow 1-f=F$
Now, $R(1-f)=R F=(2+\sqrt{3})^{2 n}(2-\sqrt{3})^{2 n}$ $=(4-3)^{2 n}=1^{2 n}=1$
224
(d)
$\left({ }^{7} C_{0}+{ }^{7} C_{1}\right)+\left({ }^{7} C_{1}+{ }^{7} C_{2}\right)+\cdots+\left({ }^{7} C_{6}+{ }^{7} C_{7}\right)$
$={ }^{8} C_{1}+{ }^{8} C_{2}+\cdots+{ }^{8} C_{7}+\left({ }^{8} C_{0}+{ }^{8} C_{8}\right)$

$$
-\left({ }^{8} C_{0}+{ }^{8} C_{8}\right)
$$

$=2^{8}-2$
225 (a)
We have,
${ }^{4 n} C_{0}+{ }^{4 n} C_{2} x{ }^{2}+{ }^{4 n} C_{4} x^{4}+\ldots+{ }^{4 n} C_{4 n} x{ }^{4 n}$
$=\frac{1}{2}\left[(1+x)^{4 n}+(1-x)^{4 n}\right]$
On putting $x=1$ and $x=i$, we get
${ }^{4 n} C_{0}+{ }^{4 n} C_{2}+\ldots+{ }^{4 n} C_{4 n}=\frac{1}{2}\left[2^{4 n}\right]$
and ${ }^{4 n} C_{0}+{ }^{4 n} C_{2}+\ldots+{ }^{4 n} C_{4 n}=\frac{1}{2}\left[(1+i)^{4 n}+\right.$
1-i4n
On adding Eqs. (i) and (ii), we get
$2\left[{ }^{4 n} C_{0}+{ }^{4 n} C_{4}+\ldots+{ }^{4 n} C_{4 n}\right]$

$$
\begin{aligned}
& =2^{4 n-1}+\frac{1}{2}\left[(1+i)^{4 n}\right. \\
& \left.+(1-i)^{4 n}\right]
\end{aligned}
$$

Now, $(1+i)^{4 n}+(1-i)^{4 n}$
$=\left[\sqrt{2}\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)\right]^{4 n}$

$$
+\left[\sqrt{2}\left(\cos \frac{\pi}{4}-i \sin \frac{\pi}{4}\right)\right]^{4 n}
$$

$=2^{2 n}(\cos n \pi+i \sin n \pi)+2^{2 n}(\cos n \pi-i \sin n \pi)$
$=2^{2 n+1} \cos n \pi=2^{2 n+1}(-1)^{n}$
$\therefore 2\left[{ }^{4 n} C_{0}+{ }^{4 n} C_{4}+\ldots+{ }^{4 n} C_{4 n}\right]$
$=2^{4 n-1}+\frac{1}{2} 2^{2 n+1}(-1)^{n}$
$\Rightarrow{ }^{4 n} C_{0}+{ }^{4 n} C_{4}+\ldots+{ }^{4 n} C_{4 n}$

$$
=2^{4 n-1}+(-1)^{n} 2^{2 n-1}
$$

226 (a)
Suppose $(s+1)^{\text {th }}$ term contains $x^{2 r}$
We have,
$T_{s+1}={ }^{n-3} C_{S} x^{n-3-s}\left(\frac{1}{x^{2}}\right)^{s}={ }^{n-3} C_{S} x^{n-3-3 s}$
This will contain $x^{2 r}$, if
$n-3-3 s=2 r$
$\Rightarrow s=\frac{n-3-2 r}{3}$
$\Rightarrow s=\frac{n-2 r}{3}-1$
$\Rightarrow s+1=\frac{n-2 r}{3}$
$\Rightarrow n-2 r=3(s+1)$
$\Rightarrow n-2 r$ is a positive integral multiple of 3
(d)

Let $1+\frac{1}{3} x+\frac{1 \cdot 4}{3 \cdot 6} x^{2}+\frac{1 \cdot 4 \cdot 7}{3 \cdot 6 \cdot 9} x^{3}+\ldots=(1+y)^{n}$
$=1+n y+\frac{n(n-1)}{2!} y^{2}+\ldots$
On comparing the terms, we get
$n y=\frac{1}{3} x, \frac{n(n-1)}{2!} y^{2}=\frac{1 \cdot 4}{3 \cdot 6} x^{2}$
On solving, we get
$n=-\frac{1}{3}, \quad y=-x$
$\therefore$ Required expansion is $(1-x)^{-1 / 3}$
229 (c)
On putting $x=1$, we get the sum of coefficient of $\left(x^{2}-x-1\right)^{99}$

$$
=(1-1-1)^{99}=(-1)^{99}=-1
$$

231 (b)
${ }^{15} C_{8}+{ }^{15} C_{9}-{ }^{15} C_{6}-{ }^{15} C_{7}$
$={ }^{15} C_{8}+{ }^{15} C_{9}-{ }^{15} C_{9}-{ }^{15} C_{8}$
$=0$
232 (a)
$\left(1-x+x^{2}\right)^{n}=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{2 n} x^{2 n}$
On putting $x=1$, we get
$(1-1+1)^{n}=a_{0}+a_{1}+a_{2}+\ldots+a_{2 n}$
$\Rightarrow 1=a_{0}+a_{1}+a_{2}+\ldots+a_{2 n} \ldots$ (i)
Again, putting $x=-1$, we get
$3^{n}=a_{0}-a_{1}+a_{2}-\ldots+a_{2 n} \ldots$ (ii)
On adding Eqs. (i) and (ii), we get
$\frac{3^{2}+1}{2}=a_{0}+a_{2}+a_{4}+\ldots+a_{2 n}$

233 (c)
Let us take
$a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{2 n} x^{2 n}=\left(1+x+x^{2}\right)^{n}$
On differentiating both sides w.r.t. $x$, we get
$a_{1}+2 a_{2} x+\ldots+2 n a_{2 n} x^{2 n-1}$

$$
=n\left(1+x+x^{2}\right)^{n-1}(2 x+1)
$$

Put $x=-1$
$\Rightarrow a_{1}-2 a_{2}+3 a_{3}-\ldots-2 n a_{2 n}=-n$
234
$\because\left(k^{2}-3\right)=\frac{{ }^{n-1} C_{r}}{{ }^{n-1} C_{r+1}}=\frac{{ }^{n-1} C_{r}}{\left(\frac{n}{r+1}\right)^{n-1} C_{r}}=\left(\frac{r+1}{n}\right)$
$\because 0 \leq r \leq n-1$
$\Rightarrow 1 \leq r+1 \leq n$
$\Rightarrow \frac{1}{n} \leq \frac{r+1}{n} \leq 1$
$\Rightarrow \frac{1}{n} \leq k^{2}-3 \leq 1$ [from Eq. (i)]
$\Rightarrow 3+\frac{1}{n} \leq k^{2} \leq 4$
When $n \rightarrow \infty, 3 \leq k^{2} \leq 4$
or $k \in[-2,-\sqrt{3}] \cup(\sqrt{3}, 2]$
235
(d)

The general term in the expansion of $(x \cos \alpha+$ $\sin \alpha x 20$ is $20 C r x \cos \alpha 20-r \sin \alpha x r=$
20Crx20-2r( $\cos \alpha) 20-r(\sin \alpha) r$
For this term to be independent of $x$, we get
$20-2 r=0 \Rightarrow r=10$
Let $\beta=$ Term independent of $x$
$={ }^{20} C_{10}(\cos \alpha)^{10}(\sin \alpha)^{10}$
$={ }^{20} \mathrm{C}_{10}(\cos \alpha \sin \alpha)^{10}$
$={ }^{20} \mathrm{C}_{10}\left(\frac{\sin 2 a}{2}\right)^{10}$
Thus, the greatest possible value of $\beta$ is
${ }^{20} C_{10}\left(\frac{1}{2}\right)^{10}$
236 (c)
Since $(n+2)^{\text {th }}$ term is the middle term in the expansion of $(1+x)^{2 n+2}$. Therefore,
$p={ }^{2 n+2} C_{n+1}$
Since $(n+1)^{\text {th }}$ and $(n+2)^{\text {th }}$ terms are two
middle terms in the expansion of $(1+x)^{2 n+1}$.
Therefore,
$q={ }^{2 n+1} C_{n}$ and $r={ }^{2 n+1} C_{n+1}$
But, ${ }^{2 n+1} C_{n}+{ }^{2 n+1} C_{n+1}={ }^{2 n+2} C_{n+1}$
$\Rightarrow q+r=p$
237 (a)
Given
${ }^{m} C_{0}+{ }^{m} C_{1}+{ }^{m} C_{2}=46$
$\Rightarrow 2 m+m(m-1)=90$
$\Rightarrow m^{2}+m-90=0 \Rightarrow m=9$ as $m>0$

Now, $(r+1)$ th term of $\left(x^{2}+\frac{1}{x}\right)^{m}$ is
${ }^{m} C_{r}\left(x^{2}\right)^{m-r}\left(\frac{1}{x}\right)^{r}={ }^{m} C_{r} x^{2 m-3 r}$
For this to be independent of $x$ put
$2 m-3 r=0 \Rightarrow r=6$
$\therefore$ Coefficient of the term independent of $x$ is ${ }^{9} C_{6}=84$
238 (a)
Since ${ }^{n} C_{r-1},{ }^{n} C_{r}$ and ${ }^{n} C_{r+1}$ are in A.P.
$\therefore 2{ }^{n} C_{r}={ }^{n} C_{r-1}+{ }^{n} C_{r+1}$
$\Rightarrow 2 \frac{n!}{(n-r)!r!}$

$$
\begin{aligned}
& =\frac{n!}{(n-r+1)!(r-1)!} \\
& +\frac{n!}{(n-r-1)!(r+1)!}
\end{aligned}
$$

$\Rightarrow n^{2}-n(4 r+1)+4 r^{2}-2=0$
$\Rightarrow n$ is a root of the equation $x^{2}-x(4 r+1) \pm$ $4 r^{2}-2=0$
239 (a)

$$
\begin{aligned}
&\left(1+x+x^{2}\right)^{-3}=\left[\frac{1}{\left(1+x+x^{2}\right)}\right]^{3} \\
&=\left[\frac{1-x}{1-x^{3}}\right]^{3} \\
&=(1-x)^{3}\left(1-x^{3}\right)^{-3} \\
&=\left(1-x^{3}-3 x^{2}+3 x\right)\left(1+3 x^{3}+6 x^{6}+\cdots\right)
\end{aligned}
$$

$\therefore$ Coefficient of $x^{6}$ in $\left(1+x+x^{2}\right)^{-3}$

$$
=6-3=3
$$

240 (d)
$\left(1+\frac{C_{1}}{C_{0}}\right)\left(1+\frac{C_{2}}{C_{1}}\right)\left(1+\frac{C_{3}}{C_{2}}\right) \ldots\left(1+\frac{C_{n}}{C_{n-1}}\right)$
$=\left(1+\frac{n}{1}\right)\left(1+\frac{n(n-1)}{2 n}\right) \ldots\left(1+\frac{1}{n}\right)$
$=\left(\frac{1+n}{1}\right)\left(\frac{1+n}{2}\right) \ldots\left(\frac{1+n}{n}\right)=\frac{(1+n)^{n}}{n!}$
241 (a)
$\left(1+3 x+3 x^{2}+x^{3}\right)^{20}=(1+x)^{60}$
$\therefore$ Coefficent of $x^{20}$ in $(1+x)^{60}$ is ${ }^{60} C_{20}$ or ${ }^{60} C_{40}$.
242 (c)
The general term in the expansion of $(x \sin \alpha+$ $x-1 \cos \alpha) 10$ is
$T_{r+1}={ }^{10} C_{r}(x \sin \alpha)^{10-r}\left(x^{-1} \cos \alpha\right)^{r}$
$={ }^{10} C_{r}(\sin \alpha)^{10-r}(\cos \alpha)^{r} x^{10-2 r}$
For the term independent of $x$, put
$10-2 r=0 \Rightarrow r=5$
$\therefore$ Coefficient of term independent of $x$, is
${ }^{10} C_{5}(\sin \alpha)^{5}(\cos \alpha)^{5}={ }^{10} C_{5}\left(\frac{1}{2^{5}}\right)(\sin 2 \alpha)^{5}$
$\leq \frac{1}{2^{5}}\left({ }^{10} C_{5}\right)[\because \sin (2 \alpha) \leq 1]$

243 (b)
The general term in the expansion of $(1+2 x+$ $3 \times 210$ is
$\frac{10!}{r!s!t!} 1^{r}(2 x)^{s}\left(3 x^{2}\right)^{t}$, where $r+s+t=10$
$=\frac{10!}{r!s!t!} 2^{s} \times 3^{t} \times x^{s+2 t}$
We have to find $a_{1}$ i.e. the coefficient of $x$
For the coefficient of $x^{1}$, we must have
$s+2 t=1$
But, $r+s+t=10$
$\therefore s=1-2 t$ and $r=9+t$, where $0 \leq r, s, t \leq 10$
Now, $t=0 \Rightarrow s=1, r=9$
For other values of $t$, we get negative values of $s$. So, there is only one term containing $x$ and its coefficient is
$\frac{10!}{9!1!0!} \times 2^{1} \times 3^{0}=20$
Hence, $a_{1}=20$
ALITER we have,
$\left(1+2 x+3 x^{2}\right)^{10}$
$={ }^{10} C_{0}+{ }^{10} C_{1}\left(2 x+3 x^{2}\right)+{ }^{10} C_{2}\left(2 x+3 x^{2}\right)^{2}$

$$
+\cdots+{ }^{10} C_{0}\left(2 x+3 x^{2}\right)^{10}
$$

$\therefore a_{1}=$ Coeff. of $x=20$
(b)

Since, the coefficient of given terms are
${ }^{m} C_{r-1},{ }^{m} C_{r},{ }^{m} C_{r+1}$ respectively and they are in AP.
$\therefore \quad{ }^{m} C_{r-1}+{ }^{m} C_{r+1}=2{ }^{m} C_{r}$
$\Rightarrow \frac{m!}{(r-1)!(m-r+1)!}+\frac{m!}{(r+1)!(m-r-1)!}$
$=2 \frac{m!}{r!(m-r)!}$
$\Rightarrow \frac{1}{(m-r+1)(m-r)}+\frac{1}{(r+1) r}=\frac{2}{r!(m-r)}$
$\Rightarrow \frac{r(r+1)+(m-r+1)(m-r)}{r(r+1)(m-r+1)(m-r)}=\frac{2}{r(m-r)}$
$\Rightarrow r^{2}+r+m^{2}+r^{2}-2 m r+m-r$
$=2\left(m r-r^{2}+r+m-r+1\right)$
$\Rightarrow 4 r^{2}-4 m r-m-2+m^{2}=0$
$\Rightarrow m^{2}-m(4 r+1)+4 r^{2}-2=0$
(b)

General term, $T_{r+1}={ }^{6} C_{r} x^{6-r}\left(\frac{1}{x^{2}}\right)^{r}$
$\Rightarrow T_{r+1}={ }^{6} C_{r} x^{6-3 r}$
For term independent of $x$, put

$$
6-3 r=0
$$

$\Rightarrow r=2$
$\therefore$ Coefficient of independent term $={ }^{6} C_{2}=15$
246 (a)
We have,
$T_{n+1}=\left(\frac{1}{3 \times \sqrt[3]{9}}\right)^{\log _{3} 8}$
$\Rightarrow{ }^{n} C_{n}(\sqrt[3]{2})^{0}\left(-\frac{1}{\sqrt{2}}\right)^{n}=\left(\frac{1}{3 \times \sqrt[3]{9}}\right)^{\log _{3} 8}$
$\Rightarrow\left(-\frac{1}{\sqrt{2}}\right)^{n}=\left(\frac{1}{3^{5 / 3}}\right)^{\log _{3} 8}$
$\Rightarrow(-1)^{n} 2^{-n / 2}=\left(3^{-5 / 3}\right)^{\log _{3} 2^{3}}$
$\Rightarrow(-1)^{n} 2^{-n / 2}=\left(3^{\log _{3}^{2-5}}\right)$
$\Rightarrow(-1)^{n} 2^{-n / 2}=2^{-5} \Rightarrow \frac{n}{2}=5 \Rightarrow n=10$
247 (b)
Given, $a_{0}=1, a_{n+1}=3 n^{2}+n+a_{n}$
$\Rightarrow a_{1}=3(0)+0+a_{0}=1$
$\Rightarrow a_{2}=3(1)^{2}+1+a_{1}=3+1+1=5$
From option (b),
Let $P(n)=n^{3}-n^{2}+1$
$\therefore \quad P(0)=0-0+1=1=a_{0}$
$P(1)=1^{3}-1^{2}+1=1=a_{1}$
and $P(2)=(2)^{3}-(2)^{2}+1=5=a_{2}$
248 (b)
General term , $T_{r+1}={ }^{10} C_{r}\left(x^{2}\right)^{10-r}\left(-\frac{1}{x^{3}}\right)^{r}$

$$
={ }^{10} C_{r} x^{20-5 r}(-1)^{r}
$$

Since, this term condition $x^{-10}$
$\therefore \quad 20-5 r=-10 \Rightarrow r=6$
$\therefore$ Coefficient of $x^{-10}={ }^{10} C_{6}(-1)^{6}=210$
251 (c)
The sum of the coefficients of the polynomial $\left(a^{2} x^{2}-2 a x+1\right)^{51}$ is obtained by putting $x=1$ Therefore, by given condition $\left(a^{2}-2 a+1\right)^{51}=$ 0
$\Rightarrow a=1$
252 (b)
Let $S=1+\frac{2}{4}+\frac{2 \cdot 5}{4 \cdot 8}+\frac{2 \cdot 5 \cdot 8}{4 \cdot 8 \cdot 12}+\cdots$
On comparing with
$(1+x)^{n}=1+n x+\frac{n(n-1)}{2!} x^{2}+\cdots$
we get $n x=\frac{2}{4}$
and $\frac{n(n-1)}{2!} x^{2}=\frac{2 \cdot 5}{4 \cdot 8}$
From Eqs, (i) and (ii)

$$
\begin{gathered}
\frac{\frac{n(n-1)}{2!} x^{2}}{x^{2} x^{2}}=\frac{\frac{2 \cdot 5}{4 \cdot 8}}{\frac{2 \cdot 2}{4 \cdot 4}} \\
\Rightarrow \frac{n-1}{n}=\frac{5}{2} \Rightarrow n=-\frac{2}{3}
\end{gathered}
$$

On putting the value of $n$ in Eq. (i) we get $-\frac{2}{3} x=\frac{2}{4} \Rightarrow x=-\frac{3}{4}$
$\therefore S=(1+x)^{n}=\left(1-\frac{3}{4}\right)^{-2 / 3}=\left(\frac{1}{4}\right)^{-2 / 3}=\sqrt[3]{16}$
253 (b)
We have,
$(x+3)^{n-1}+(x+3)^{n-2}(x+2)+\cdots+(x+2)^{n-1}$
$=\frac{(x+3)^{n}-(x+2)^{n}}{(x+3)-(x+2)}=(x+3)^{n}-(x+2)^{n}$
$\therefore$ Coefficient of $x^{r}$ in the given expression
$=$ Coeff. of $x^{r}$ in $\left\{(x+3)^{n}-(x+2)^{n}\right\}$
$={ }^{n} C_{r} 3^{n-r}-{ }^{n} C_{r} 2^{n-r}={ }^{n} C_{r}\left(3^{n-r}-2^{n-r}\right)$
254 (c)
Let $S=C_{1}+2 C_{2}+3 C_{3}+\cdots+n C_{n}=\sum_{r=1}^{n} r$. ${ }^{n} C_{r}$
$=\sum_{r=1}^{n} r \cdot \frac{n}{r}{ }^{n-1} C_{r-1} \quad\left[\because{ }^{n} C_{r}=\frac{n}{r}{ }^{n-1} C_{r-1}\right]$
$=n \sum_{r=1}^{n}{ }^{n-1} C_{r-1}$
$=n\left[{ }^{n-1} C_{0}+{ }^{n-1} C_{1}+{ }^{n-1} C_{2}+\cdots+{ }^{n-1} C_{n-1}\right]$
$=n 2^{n-1}$
(b)

Given expression $\frac{\sqrt{1+x}+\sqrt[3]{(1-x)^{2}}}{1+x+\sqrt{1+x}}$ can be rewritten as
$\frac{(1+x)^{1 / 2}+(1-x)^{2 / 3}}{1+x+(1+x)^{1 / 2}}$
$=\frac{\left[1+\frac{1}{2} x-\frac{1}{8} x^{2}+\ldots\right]+\left[1-\frac{2}{3} x-\frac{1}{9} x^{2}-\ldots\right]}{1+x+\left[1+\frac{1}{2} x-\frac{1}{8} x^{2}+\ldots\right]}$
$=\frac{2-\frac{1}{6} x-\frac{17}{72} x^{2}+\ldots}{2+\frac{3}{2} x-\frac{1}{8} x^{2}+\ldots}=\frac{\left[1-\frac{1}{12} x-\frac{17}{144} x^{2}+\ldots\right]}{\left[1+\frac{3}{4} x-\frac{1}{16} x^{2}+\ldots\right]}$
$=\left[1-\frac{1}{12} x-\frac{17}{144} x^{2}+\ldots\right]\left[1+\frac{3}{4} x\right.$
$\left.-\frac{1}{16} x^{2}+\ldots\right]^{-1}$
$=1-\frac{5}{6} x+\ldots$
$=1-\frac{5}{6} x$ (On neglecting the higher powers of $x$ )
(b)

The coefficient of $x^{n}$ in the expansion of
$(1+x)(1-x)^{n}$
$=$ coefficient of $x^{n}$ in $(1-x)^{n}$

+ The coefficient of $x^{n-1}$ in (1
$-x)^{n}$
$=(-1)^{n} \frac{n!}{n!0!}+(-1)^{n-1} \frac{n!}{1!(n-1)!}$
$=(-1)^{n}(1-n)$
257 (b)
Middle term of $(x-a)^{8}$ is
$T_{5}={ }^{8} C_{4} x{ }^{4}(-a)^{4}={ }^{8} C_{4} x^{4} a^{4}$

We have,
Coeff. of $r^{\text {th }}$ term in $(1+x)^{20}=$ Coeff. of $(r+4)^{t h}$ term in $(1+x)^{20}$
$\Rightarrow{ }^{20} C_{r-1}={ }^{20} C_{r+3}$
$\Rightarrow(r-1)+(r+3)=20 \Rightarrow 2 r+2=20 \Rightarrow r=9$
259 (c)
Putting $x=1$ and $x=-1$ in the given expansion and adding, we get

$$
\begin{aligned}
2\left[1+a_{2}+a_{4}\right. & \left.+\cdots+a_{12}\right]=(-2)^{6} \\
& \Rightarrow a_{2}+a_{4}+\cdots+a_{12}=31
\end{aligned}
$$

260 (d)
We have,

$$
\begin{aligned}
& \frac{1}{81^{n}}-\frac{10}{81^{n}}{ }^{2 n} C_{1}+\frac{10^{2}}{81^{n}}{ }^{2 n} C_{2}-\frac{10^{3}}{81^{n}}{ }^{2 n} C_{3}+\cdots \\
& \quad+\frac{10^{2 n}}{81^{n}} \\
& =\frac{1}{81^{n}}\left\{{ }^{2 n} C_{0}-{ }^{2 n} C_{1} 10^{1}+{ }^{2 n} C_{2} 10^{2}-{ }^{2 n} C_{3} 10^{3}\right. \\
& \left.\quad+\cdots+{ }^{2 n} C_{2 n} 10^{2 n}\right\} \\
& =\frac{1}{81^{n}}(1-10)^{2 n}=\frac{(-9)^{2 n}}{81^{n}}=\frac{81^{n}}{81^{n}}=1
\end{aligned}
$$

261 (a)

$$
\begin{aligned}
& \left(\frac{{ }^{50} C_{0}}{1}+\frac{{ }^{50} C_{2}}{3}+\frac{{ }^{50} C_{4}}{5}+\cdots+\frac{{ }^{50} C_{50}}{51}\right) \\
& =\frac{1}{1}+\frac{50 \times 49}{3 \times 2!\times}+\frac{50 \times 49 \times 48 \times 47}{5 \times 4!}+\cdots \\
& =\frac{1}{51}\left(51+\frac{51 \times 50 \times 49}{3!}\right. \\
& \left.\quad+\frac{51 \times 50 \times 49 \times 48 \times 47}{5!}+\cdots\right) \\
& =\frac{1}{51}\left({ }^{51} C_{1}+{ }^{51} C_{3}+{ }^{51} C_{5}+\cdots\right)=\frac{1}{51} \cdot 2^{51-1} \\
& =\frac{2^{50}}{51}
\end{aligned}
$$

262 (a)
As we have $A^{2}=2 A-I$
$\Rightarrow A^{2} A=(2 A-I) A=2 A^{2}-I A$
$\Rightarrow A^{3}=2(2 A-I)-I A=3 A-2 I$
Similarly, $A^{4}=4 A-3 I$

$$
\begin{aligned}
& A^{5}=5 A-A I \\
& A^{n}=5 A-4 I
\end{aligned}
$$

... ... ... ... ... ...
... ... ... ... ... ...
$A^{n}=n A-(n-1) I$
263 (a)
We have,
$\sum_{r=0}^{2 n} a_{r}(x-100)^{r}=\sum_{r=0}^{2 n} b_{r}(x-101)^{r}$
$\Rightarrow \sum_{r=0}^{2 n} b_{r} t^{r}=\sum_{r=0}^{2 n} a_{r}(1+t)^{r}$, where $t=x-101$
On equating the coefficients of $t^{n}$ on both sides, we get

$$
\begin{aligned}
& b_{n}=a_{n}{ }^{n} C_{n}+a_{n+1}{ }^{n+1} C_{n}+a_{n+2}{ }^{n+2} C_{n}+\cdots \\
& \quad+a_{2 n}{ }^{2 n} C_{n} \\
& \Rightarrow b_{n}=\sum_{r=n}^{2 n} a_{r}{ }^{r} C_{n}
\end{aligned}
$$

$$
=\sum_{r=n}^{2 n} 2^{r}
$$

$$
=2^{n} \sum_{r=n}^{2 n} 2^{r-n}=2^{n}\left(2^{n+1}-1\right)
$$

264 (b)
We have,

$$
\left.\begin{array}{rl}
(x+3)^{n-1}+ & (x+3)^{n-2}(x+2) \\
& +(x+3)^{n-3}(x+2)^{2}+\ldots+(x \\
& +2)^{n-1}
\end{array}\right) \begin{aligned}
&\left.=\frac{(x+3)^{n}-(x+2)^{n}}{(x+3)-( }\right)=(x+2)(x+3)^{n}-(x+2)^{n} \\
&\left(\begin{array}{rl}
\because \frac{x^{n}-a^{n}}{x-a}= & x^{n-1}+x^{n-2} a^{1} \\
& \left.+x^{n-3} a^{2}+\ldots+a^{n-1}\right)
\end{array}\right.
\end{aligned}
$$

Therefore, the coefficient of $x^{r}$ in the given expression
$=$ coefficient of $x^{r}$ in $\left[(x+3)^{n}-(x+2)^{n}\right]$
$={ }^{n} C_{r} 3^{n-r}-{ }^{n} C_{r} 2^{n-r}$
$={ }^{n} C_{r}\left(3^{n-r}-2^{n-r}\right)$
266 (d)
The sum of the magnitudes of the coefficients is obtained by replacing $x$ by -1 in $\left(1-x+x^{2}-\right.$ $x 3 n$
Hence, required sum $=(1+1+1+1)^{n}=4^{n}$
267 (c)
Let $x^{7}$ occur in $(r+1)^{\text {th }}$ term
Now,
$T_{r+1}$
$=\frac{x^{-3}(-3)(-3-1)(-3-2) \ldots(-3-r+1)}{r!}\left(-\frac{2}{}\right.$.
$\Rightarrow T_{r+1}=\frac{3 \cdot 4 \cdot 5 \ldots(r+2)}{r!} 2^{r} x^{r-3}$
This will contain $x^{7}$, if
$\therefore r-3=7 \Rightarrow r=10$
$\therefore$ Coefficient of $x^{7}=\frac{3 \cdot 4 \cdot 5 \ldots(10+2)}{10!} \cdot 2^{10}$

$$
=66 \times 2^{10}=67584
$$

268 (d)
The given expansion

$$
\begin{aligned}
& =\sum_{r=0}^{n}(x-r)(y-r)(z-r)(-1)^{r} C_{r} \\
& =\sum_{r=0}^{n}(-1)^{r} x y z C_{r} \sum_{r=0}^{n}(-1)^{r} r(x+y+z) C_{r} \\
& +\sum_{r=0}^{n}(-1)^{r} r^{2}(x y+y z+z x) C_{r} \\
& \quad-\sum_{r=0}^{n}(-1)^{r} x y z r^{3} C_{r} \\
& =x y z \sum_{r=0}^{n}(-1)^{r} C_{r}-(x+y+z) \sum_{r=0}^{n}(-1)^{r} r C_{r} \\
& +(x y+y z+z x) \sum_{r=0}^{n}(-1)^{r} r^{2} C_{r} \\
& \\
& -x y z \sum_{r=0}^{n}(-1)^{r} r^{3} C_{r}
\end{aligned}
$$

$=x y z \times 0-(x+y+z) \times 0+(x y+y z+z x) \times 0$

$$
-x y z \times 0=0
$$

269 (b)
We know that,
$\frac{C_{1}}{C_{0}}+2 \frac{C_{2}}{C_{1}}+3 \frac{C_{3}}{C_{2}}+\ldots+n \frac{C_{n}}{C_{n-1}}=\frac{n(n+1)}{2}$
On putting $n=15$, then $\frac{15 \times(15+1)}{2}=15 \times 8=120$

We have,
$17^{1995}+11^{1995}-7^{1995}$
$=(7+10)^{1995}+(1+10)^{1995}-7^{1995}$
$=\left\{7^{1995}+{ }^{1995} C_{1} 7^{1994} \cdot 10^{1}+{ }^{1995} C_{2} \cdot 7^{1993} 10^{2}\right.$
$\left.+\cdots+{ }^{1995} C_{1995} \cdot 10^{1995}\right\}$
$+\left\{{ }^{1995} C_{0}+{ }^{1995} C_{1} 10^{1}\right.$
$+{ }^{1995} C_{2} 10^{2}+\cdots$
$\left.+{ }^{1995} C_{1995} 10^{1995}\right\}-7^{1995}$
$=\left\{{ }^{1995} C_{1} 7^{1994} \cdot 10^{1}+\cdots+10^{1995}\right\}$
$+\left\{{ }^{1995} C_{1} 10^{1}+\cdots\right.$
$\left.+{ }^{1995} C_{1995} 10^{1995}\right\}+1$
$=($ a multiple of 10$)+1$
Thus, the unit's digit is 1
271 (a)

$$
\begin{gathered}
{ }^{50} C_{4}+{ }^{55} C_{3}+{ }^{54} C_{3}+{ }^{53} C_{3}+{ }^{52} C_{3}+{ }^{51} C_{3} \\
+{ }^{50} C_{3} \\
={ }^{51} C_{4}+{ }^{51} C_{3}+{ }^{52} C_{3}+{ }^{53} C_{3}+{ }^{54} C_{3}+{ }^{55} C_{3} \\
{\left[\because{ }^{n} C_{r}+{ }^{n} C_{r-1}={ }^{n+1} C_{r}\right]} \\
={ }^{52} C_{4}+{ }^{52} C_{3}+{ }^{53} C_{3}+{ }^{54} C_{3}+{ }^{55} C_{3} \\
={ }^{53} C_{4}+{ }^{53} C_{3}+{ }^{54} C_{3}+{ }^{55} C_{3} \\
={ }^{54} C_{4}+{ }^{54} C_{3}+{ }^{55} C_{3}={ }^{55} C_{4}+{ }^{55} C_{3}={ }^{56} C_{4}
\end{gathered}
$$

272 (b
$\left(x-\frac{1}{x}\right)^{4}\left(x+\frac{1}{x}\right)^{3}$

$$
\begin{gathered}
=\left({ }^{4} C_{0} x^{4}-{ }^{4} C_{1} x^{2}+{ }^{4} C_{2}-{ }^{4} C_{3} \frac{1}{x^{2}}+{ }^{4} C_{4} \frac{1}{x^{4}}\right) \\
\times\left({ }^{3} C_{0} x{ }^{3}+{ }^{3} C_{1} x+{ }^{3} C_{2} \frac{1}{x}+{ }^{3} C_{3} \frac{1}{x^{3}}\right)
\end{gathered}
$$

Clearly, there is no term from $x$ on RHS, therefore the term independent of $x$ on LHS is zero.
273 (b)
Coefficient of $x^{2} y^{2}$ in $(x+y+z+t)^{4}=\frac{4!}{2!2!}=6$
and
coefficient of $y z t^{2}$ in $(x+y+z+t)^{4}$
$=\frac{4!}{1!1!1!2!}=12$
Also, coefficients of $x y z t$ in
$(x+y+z+t)^{4}=\frac{4!}{1!1!1!1!}=24$
$\therefore$ Required ratio is $6: 12: 24=1: 2: 4$
274 (b)
The general term in the expansion of
$\left(1+2 x+3 x^{2}\right)^{10}$
is $\sum \frac{10!}{r!s!t!} 1^{r}(2 x)^{5}\left(3 x^{2}\right)^{t}$
$=\frac{10!}{r!s!t!} 2^{s} \times 3^{t} \times x^{s+2 t}$
Where $r+s+t=10$
We have to find $a_{1} i e$, coefficient of $x$
For the coefficient of $x^{1}$, we must have

$$
s+2 t=1
$$

But $\quad r+s+t=10$
$\therefore s=1-2 t$ and $r=9+t$
Where $0 \leq r, s, t \leq 10$
Now, $t=0 \Longrightarrow s=1, r=9$
For other, values of $t$, we get negative value $s$. So, there is only one term containing $x$ and its coefficient is

$$
\frac{10!}{9!1!0!} 2^{1} \times 3^{0}=20
$$

Hence, $a_{1}=20$
Alternate On differentiating given equation w. r. t. $x$, we get
$10\left(1+2 x+3 x^{2}\right)^{9}=a_{1}+2 a_{2} x+\ldots+20 a_{20} x^{19}$
Put $x=0$, we get
$20=a_{1}$
275 (b)
$\left(1+x^{2}\right)^{5}(1+x)^{4}$
$=\left({ }^{5} C_{0}+{ }^{5} C_{1} x{ }^{2}+{ }^{5} C_{2} x^{4}+\cdots\right)\left({ }^{4} C_{0}+{ }^{4} C_{1} x\right.$

$$
+{ }^{4} C_{2} x^{2}+{ }^{4} C_{3} x^{3}+{ }^{4} C_{4} x^{4}
$$

The coefficient of $x^{5}$ in $\left.\left[1+x^{2}\right)^{5}(1+x)^{4}\right]$

$$
\begin{aligned}
& ={ }^{5} C_{2} \cdot{ }^{4} C_{1}+{ }^{5} C_{1} \cdot{ }^{4} C_{3} \\
& =10 \cdot 4+4 \cdot 5=60
\end{aligned}
$$

276 (c)
We have,

$$
\begin{gathered}
{ }^{20} C_{0}+{ }^{20} C_{1}+{ }^{20} C_{2}+{ }^{20} C_{3}+\cdots+{ }^{20} C_{10}+{ }^{20} C_{11} \\
+\cdots+{ }^{20} C_{20}=2^{20} \\
\Rightarrow\left\{{ }^{20} C_{0}+{ }^{20} C_{20}\right\}+\left\{{ }^{20} C_{1}+{ }^{20} C_{19}\right\}+\cdots \\
+\left\{{ }^{20} C_{9}+{ }^{20} C_{11}\right\}+{ }^{20} C_{10}=2^{20} \\
\Rightarrow 2\left\{{ }^{20} C_{0}+{ }^{20} C_{1}+{ }^{20} C_{2}+\cdots+{ }^{20} C_{9}\right\}+{ }^{20} C_{10} \\
=2^{20}
\end{gathered} \begin{gathered}
\Rightarrow 2\left\{{ }^{20} C_{0}+{ }^{20} C_{1}+\cdots+{ }^{20} C_{10}\right\}=2^{20}+{ }^{20} C_{10} \\
\Rightarrow{ }^{20} C_{0}+{ }^{20} C_{1}+\cdots+{ }^{20} C_{10}=2^{19}+\frac{1}{2}{ }^{20} C_{10}
\end{gathered}
$$

277 (a)
Last term of $\left(2^{1 / 3}-\frac{1}{\sqrt{2}}\right)^{n}$ is
$T_{n+1}={ }^{n} C_{n}\left(2^{1 / 3}\right)^{n-n}\left(-\frac{1}{\sqrt{2}}\right)^{n}$
$={ }^{n} C_{n}(-1)^{n} \frac{1}{2^{n / 2}}=\frac{(-1)^{n}}{2^{n / 2}}$
Also, we have
$\left(\frac{1}{3^{5 / 3}}\right)^{\log _{3} 8}=3^{-(5 / 3) \log _{3} 2^{3}}=2^{-5}$
Thus, $\frac{(-1)^{n}}{2^{n / 2}}=2^{-5} \Rightarrow \frac{(-1)^{n}}{2^{n / 2}}=\frac{(-1)^{10}}{2^{5}}$
$\Rightarrow \frac{n}{2}=5 \Rightarrow n=10$
Now, $T_{5}=T_{4+1}={ }^{10} C_{4}\left(2^{1 / 3}\right)^{10-4}\left(-\frac{1}{\sqrt{2}}\right)^{4}$
$=\frac{10!}{4!6!}\left(2^{1 / 3}\right)^{6}(-1)^{4}\left(2^{-1 / 2}\right)^{4}$
$=210(2)^{2}(1)\left(2^{-2}\right)=210$

## (b)

Let $T_{r+1}$ be the $(r+1)^{\text {th }}$ term in the expansion of
$\left(x^{2}-\frac{1}{x^{3}}\right)^{10}$. Then, $T_{r+1}={ }^{10} C_{r} x^{20-5 r}(-1)^{r}$
This will contain $x^{-10}$, if $20-5 r=-10 \Rightarrow r=6$
$\therefore$ Coefficient of $x^{-10}={ }^{10} C_{6}(-1)^{6}={ }^{10} C_{6}=210$
280 (b)
$\frac{C_{1}}{C_{0}}+2 \cdot \frac{C_{2}}{C_{1}}+3 \cdot \frac{C_{3}}{C_{2}}+\cdots+n \cdot \frac{C_{n}}{C_{n-1}}=\frac{1}{k} n(n+1)$
$\Rightarrow \sum_{r=1}^{n} r \cdot \frac{{ }^{n} C_{r}}{{ }^{n} C_{r-1}}=\frac{1}{k} n(n+1)$
$\Rightarrow \sum_{r=1}^{n}(n-r+1)=\frac{1}{k} n(n+1)$
$\Rightarrow n+(n-1)+(n-2)+\cdots+1 .=\frac{1}{k} n(n+1)$
$\Rightarrow \frac{n(n+1)}{2}=\frac{1}{k} n(n+1)$
$\Rightarrow k=2$
281 (a)
We have,
$(1+x)^{p}+(1+x)^{p+1}+\cdots+(1+x)^{n}$
$=\frac{(1+x)^{p}\left\{(1+x)^{n-p+1}-1\right\}}{(1+x)-1}$

$$
=\frac{1}{x}\left\{(1+x)^{n+1}-(1+x)^{p}\right\}
$$

$\therefore$ Coefficient of $x^{m}$

$$
=\text { Coefficient of } x^{m+1} \text { in }(1
$$

$$
+x)^{n+1}
$$

$={ }^{n+1} C_{m+1}$
282 (c)
Given that,
$(1+x)^{n}={ }^{n} C_{0}+{ }^{n} C_{1} x+{ }^{n} C_{2} x^{2}+\ldots+{ }^{n} C_{\mathrm{n}} x^{n}$
Let $S_{n}=\frac{{ }^{n} C_{1}}{{ }^{n} C_{0}}+\frac{2^{n} C_{2}}{{ }^{n} C_{1}}+\frac{3^{n} C_{3}}{{ }^{n} C_{2}}+\ldots+\frac{n^{n} C_{n}}{{ }^{n} C_{n-1}}$
Put $n=1,2,3, \ldots$, then
$S_{1}=\frac{{ }^{1} C_{1}}{{ }^{1} C_{0}}=1$,
$S_{2}=\frac{{ }^{2} C_{1}}{{ }^{2} C_{0}}+2 \frac{{ }^{2} C_{2}}{{ }^{2} C_{1}}$
$=\frac{2}{1}+2 \cdot \frac{1}{2}=2+1=3$
By taking option, (put $n=1,2, \ldots$ ) (a) and (b)
does not hold condition, but option (c) satisfies.
(a)

Let the term containing $x^{7}$ in the expansion of

$$
\begin{aligned}
& \left(a x^{2}+\frac{1}{b x}\right)^{8} \text { is } T_{r+1} \\
\therefore \quad T_{r+1} & ={ }^{8} C_{r}\left(a x^{2}\right)^{8-r}\left(\frac{1}{b x}\right)^{r} \\
& ={ }^{8} C_{r} \frac{a^{8-r}}{b^{r}} x^{16-3 r}
\end{aligned}
$$

Since, this term contains $x^{7}$.
$\therefore \quad 16-3 r=7$
$\Rightarrow \quad r=3$
$\therefore$ Coefficient of $x^{7}$ in the expansion of $\left(a x^{2}\right.$

$$
\begin{aligned}
& \left.+\frac{1}{b x}\right)^{8} \\
& ={ }^{8} C_{3} \cdot \frac{a^{5}}{b^{3}}
\end{aligned}
$$

Also, the term containing $x^{-7}$ in the expansion of $\left.-\frac{1}{b x^{2}}\right)^{8}$ is $T_{R+1}$

$$
\begin{aligned}
T_{R+1} & ={ }^{8} C_{R}(a x)^{8-R}\left(-\frac{1}{b x^{2}}\right)^{R} \\
& =(-1)^{R}{ }^{8} C_{R} \frac{a^{8-R}}{b^{R}} x^{8-3 R}
\end{aligned}
$$

Since, this term contains $x^{-7}$
$\therefore \quad 8-3 R=-7$
$\Rightarrow \quad R=5$
$\therefore$ Coefficient of $x^{-7}$ in the expansion of $(a x$

$$
\begin{aligned}
& \left.-\frac{1}{b x^{2}}\right)^{8} \\
= & (-1)^{5}{ }^{8} C_{5} \cdot \frac{a^{3}}{b^{5}}
\end{aligned}
$$

According to the given condition,

$$
\begin{aligned}
\left|{ }^{8} C_{3} \cdot \frac{a^{5}}{b^{3}}\right| & =\left|{ }^{8} C_{5} \cdot \frac{a^{3}}{b^{5}}\right| \\
\Rightarrow \quad a^{2} b^{2} & =1 \Rightarrow a b=1
\end{aligned}
$$

## (b)

We have,
$(x+a)^{n}=T_{0}+T_{1}+T_{2}+\cdots+T_{n}$
Replacing $a$ by ai and - ai respectively in (i), we get

$$
\begin{array}{r}
(a+a i)^{n}=\left(T_{0}-T_{2}+T_{4}-T_{6}+\cdots\right) \\
+i\left(T_{1}-T_{3}+T_{5}-\cdots\right) \tag{ii}
\end{array}
$$

And,

$$
\begin{align*}
(x-i a)^{n}= & \left(T_{0}-T_{2}+T_{4}-T_{6}+\cdots\right) \\
& -i\left(T_{1}-T_{3}+T_{5}-\cdots\right) . \tag{iii}
\end{align*}
$$

Multiplying (ii) and (iii), we get

$$
\begin{gathered}
(x+a i)^{n}(x-i a)^{n}=\left(T_{0}-T_{2}+T_{4}-T_{6}-\cdots\right)^{2} \\
+\left(T_{1}-T_{3}+T_{5}-\cdots\right)^{2} \\
\Rightarrow\left(x^{2}+a^{2}\right)^{n}=\left(T_{0}-T_{2}+T_{4}-T_{6} \cdots\right)^{2} \\
\quad+\left(T_{1}-T_{3}+T_{5}-\cdots\right)^{2}
\end{gathered}
$$

285 (c)
$\because \sum_{i=0}^{m}\binom{10}{i}\binom{20}{m-i}=\sum_{i=0}^{m}{ }^{10} C_{i} \cdot{ }^{20} C_{m-1}$
$=$ Coefficient of $x^{m}$ in the expansion of $(1+$
x) $10(1+x) 20$
$={ }^{30} C_{m}$
It is maximum, when
$m=\frac{30}{2}=15$
286 (d)

$$
\begin{aligned}
& a_{1}={ }^{n} C_{1}, a_{2}={ }^{n} C_{2} \\
& a_{3}={ }^{n} C_{3}
\end{aligned}
$$

$\because a_{1}, a_{2}$ and $a_{3}$ are in AP
$\Rightarrow \quad 2 a_{2}=a_{1}+a_{3}$
$\Rightarrow 2 \cdot{ }^{n} C_{2}={ }^{n} C_{1}+{ }^{n} C_{3}$
$\Rightarrow 2 \cdot \frac{n(n-1)}{2!}=n+\frac{n(n-1)(n-2)}{3!}$
$\Rightarrow n^{2}-9 n+14=0$
$\Rightarrow(n-2)(n-7)=0$
$\Rightarrow n=7 \quad(\because n=2$ is not Possible $)$
287 (c)

$$
\begin{gathered}
(1+x)^{15}=a_{0}+a_{1} x+a_{2} x^{2}+\ldots .+a_{15} x^{15} \\
\Rightarrow{ }^{15} C_{0}+{ }^{15} C_{1} x+{ }^{15} C_{2} x^{2}+\ldots .+{ }^{15} C_{15} x^{15} \\
=a_{0}+a_{1} x+a_{2} x^{2}+\ldots .+a_{15} x^{15}
\end{gathered}
$$

Equating the coefficient of various powers of $x$,
we get

$$
\begin{aligned}
& a_{0}={ }^{15} C_{0}, a_{1}={ }^{15} C_{1}, a_{2}={ }^{15} C_{2}, \ldots . . a_{15}={ }^{15} C_{15} \\
& \begin{array}{l}
\therefore \sum_{r=1}^{15} r \\
r
\end{array} \frac{a_{r}}{a_{r-1}}=\sum_{r=1}^{15} r \frac{{ }^{15} C_{r}}{{ }^{15} C_{r-1}} \\
& \quad=\sum_{r=1}^{15} r \frac{\frac{15!}{r!(15-r)!}}{\frac{15}{(r-1)(15-r+1)!}} \\
& \quad=\sum_{r=1}^{15} \frac{r(r-1)!(15-r+1)!}{r!(15-r)!} \\
& \quad=\sum_{r=1}^{15} 15-r+1 \\
& \quad=15+14+13+\ldots .+2+1 \\
& \quad=\frac{15(15+1)}{2}=120
\end{aligned}
$$

288

## (b)

Coefficient of $x^{5}$ in $\left(1+x^{2}\right)^{5}(1+x)^{4}$
$=$ Coefficient of $x^{5}$ in $\left({ }^{5} C_{0}+{ }^{5} C_{1} x^{2}+{ }^{5} C_{2} x^{4}+\right.$
... $1+x 4$
$={ }^{5} C_{1} \times$ Coefficient of $x^{3}$ in $(1+x)^{4}+{ }^{5} C_{2}$
$\times$ Coefficient of $x$ in $(1+x)^{4}$
$={ }^{5} C_{1} \times{ }^{4} C_{3}+{ }^{5} C_{2} \times{ }^{4} C_{1}=20+40=60$
289 (b)
Since, $(1-x)^{-2}=1+2 x+3 x^{2}+\ldots .+(r+1) x^{r}$
$\therefore$ Coefficient of $x^{r}$ in $(1-x)^{-2}$ is $(r+1)$.
290
$\frac{1}{(6-3 x)^{1 / 3}}=(6-3 x)^{-1 / 3}=6^{-1 / 3}\left[1-\frac{x}{2}\right]^{-1 / 3}$
$=6^{-1 / 3}\left[1+\left(-\frac{1}{3}\right)\left(-\frac{x}{2}\right)\right.$

$$
\left.+\frac{\left(-\frac{1}{3}\right)\left(-\frac{4}{3}\right)}{2.1}\left(-\frac{x}{2}\right)^{2}+\ldots\right]
$$

$=6^{-1 / 3}\left[1+\frac{x}{6}+\frac{2 x^{2}}{6^{2}}+\ldots\right]$
291 (a)
The coefficient of $(r+1)^{t h}$ term in the expansion of $(1+x)^{14}$ is ${ }^{14} C_{r}$
It is given that
${ }^{14} C_{r-1},{ }^{14} C_{r},{ }^{14} C_{r+1}$ are in A.P.
$\Rightarrow 2^{14} C_{r}={ }^{14} C_{r-1}+{ }^{14} C_{r+1}$
$\Rightarrow 2=\frac{{ }^{14} C_{r-1}}{{ }^{14} C_{r}}+\frac{{ }^{14} C_{r+1}}{{ }^{14} C_{r}}$
$\Rightarrow 2-\frac{r}{15-r}+\frac{14-r}{r+1}$
$\Rightarrow 2(15-r)(r+1)=r^{2}+r+210-29 r+r^{2}$
$\Rightarrow 4 r^{2}-56 r+180=0$
$\Rightarrow r^{2}-14 r+45=0 \Rightarrow r=5,9$

292 (b)
If $n$ id odd, then numerically the greatest coefficient in the expansion of $(1-x)^{n}$ is ${ }^{n} C_{\frac{n-1}{2}}$ or, ${ }^{n} C_{\frac{n+1}{2}}$
Therefore, in case of $(1-x)^{21}$ the numerically greatest coefficient is ${ }^{21} C_{10}$ or, ${ }^{21} C_{11}$
Numerically greatest term
$={ }^{21} C_{11} x{ }^{11}$ or, ${ }^{21} C_{10} x^{10}$
$\therefore{ }^{21} C_{11} x{ }^{11}>{ }^{21} C_{12} x x^{12}$ and ${ }^{21} C_{10} x^{10}>{ }^{21} C_{9} x^{9}$
$\Rightarrow \frac{21!}{10!11!}>\frac{21!}{9!12!} x$ and $\frac{21!}{11!10!} x>\frac{21!}{9!12!}$
$\Rightarrow \frac{6}{5}>x$ and $x<\frac{5}{6} \Rightarrow x \in(5 / 6,6 / 5)$
(d)

Note that for $\log _{10} x$ to be defined, $x>0$


We have, $T_{6}=T_{5+1}={ }^{8} C_{5}\left(\frac{1}{x^{8 / 3}}\right)^{8-5}\left(x^{2} \log _{10} x\right)^{5}$
$\Rightarrow 5600=\frac{8!}{5!3!}\left(\frac{1}{x^{8}}\right) x^{10}\left(\log _{10} x\right)^{5}$
$\Rightarrow 5600=56 x^{2}\left(\log _{10} x\right)^{5}$
$\Rightarrow 100=x^{2}\left(\log _{10} x\right)^{5}$
$\Rightarrow \frac{100}{x^{2}}=\left(\log _{10} x\right)^{5}$
Let $y=\frac{100}{x^{2}}$
$\therefore y=\left(\log _{10} x\right)^{5}$
From the figure it is clear that curves intersect in just one point.
This point is $(10,1)$
Therefore, $x=10$
294 (b)
We have,

$$
\begin{aligned}
& \begin{aligned}
&\left(1+x^{2}\right)^{40}\left(x^{2}+2+\frac{1}{x^{2}}\right)^{-5} \\
&=\left(1+x^{2}\right)^{40}\left(x^{2}+1\right)^{-10} x^{10} \\
& \Rightarrow\left(1+x^{2}\right)^{40}\left(x^{2}+2+\frac{1}{x^{2}}\right)^{-5}=\left(1+x^{2}\right)^{30} x^{10}
\end{aligned}
\end{aligned}
$$

$\therefore$ Coeff of $x^{20}$ in the expansion of $\left(1+x^{2}\right)^{40}\left(x^{2}\right.$

$$
\left.+2+\frac{1}{x^{2}}\right)^{-5}
$$

$=$ Coefficient of $x^{20}$ in $\left(1+x^{2}\right)^{30} \cdot x^{10}$
$=$ Coefficient of $x^{10}$ in $\left(1+x^{2}\right)^{30}={ }^{30} C_{5}={ }^{30} C_{25}$

295 (d)
Let $P(n)=n^{3}+2 n$
$\Rightarrow P(1)=1+2=3$
$\Rightarrow P(2)=8+4=12$
$\Rightarrow P(3)=27+6=33$
Here, we see that all these number are divisible by 3
296 (c)
$(1+x)^{m}(1-x)^{n}$
$=\left(1+m x+\frac{m(m-1) x^{2}}{2!}+\ldots\right)$
$\left(1-n x+\frac{n(n-1)}{2!} x^{2}-\ldots\right)$
$=1+(m-n) x$

$$
+\left[\frac{n^{2}-n}{2}-m n+\frac{\left(m^{2}-m\right)}{2}\right] x^{2} \ldots
$$

Given, $m-n=3 \Rightarrow n=m-3$
and $\frac{n^{2}-n}{2}-m n+\frac{m^{2}-m}{2}=-6$
$\Rightarrow \frac{(m-3)(m-4)}{2}-m(m-3)+\frac{m^{2}-m}{2}=-6$
$\Rightarrow m^{2}-7 m+12-2 m^{2}+6 m+m^{2}-m+12$

$$
=0
$$

$\Rightarrow-2 m+24=0 \Rightarrow m=12$
297 (d)
We have,
$\left(1+x+x^{2}+x^{3}\right)^{n}$
$=(1+x)^{n}\left(1+x^{2}\right)^{n}$
$=\left(C_{0}+C_{1} x+C_{2} x^{2}+\cdots+C_{n} x^{n}\right)\left(C_{0}+C_{1} x^{2}\right.$

$$
\left.+\cdots+C_{n} x^{2 n}\right)
$$

$\therefore$ Coefficient of $x^{4}=C_{0} C_{2}+C_{2} C_{1}+C_{4} C_{0}$

$$
={ }^{n} C_{2}+{ }^{n} C_{2} \cdot{ }^{n} C_{1}+{ }^{n} C_{4}
$$

298 (b)
Let, $S=1+\frac{1}{3} \cdot \frac{1}{2}+\frac{2}{3} \cdot \frac{5}{6} \cdot \frac{1}{2^{2}}+\frac{2}{3} \cdot \frac{5}{6} \cdot \frac{8}{9} \cdot \frac{1}{2^{3}}+\ldots \ldots \infty$ and we know that

$$
\begin{aligned}
(1+x)^{n}=1 & +n x+\frac{n(n-1)}{2!} x^{2} \\
& +\frac{(n(n-1)(n-2)}{3!} x^{2}+\cdots \infty
\end{aligned}
$$

On comparing these two, we get

$$
\begin{equation*}
n x=\frac{2}{3} \cdot \frac{1}{2} \tag{i}
\end{equation*}
$$

and $\frac{n(n-1)}{2 \cdot 1} x^{2}=\frac{2}{3} \cdot \frac{5}{6} \cdot \frac{1}{2^{2}}$
from Eqs. (i) and (ii),
$\Rightarrow \quad \frac{\frac{n(n-1)}{2 \cdot 1}}{n^{2}}=\frac{\frac{2}{3} \times \frac{5}{6} \times \frac{1}{4}}{\frac{2}{3} \times \frac{1}{2} \times \frac{2}{3} \times \frac{1}{2}}$
$\Rightarrow \quad \frac{n-1}{2 n}=\frac{5}{4}$
$\Rightarrow \quad 5 n=2 n-2$

$$
\Rightarrow \quad n=-\frac{2}{3}
$$

On putting value of $n$ in Eq. (i), we get

$$
x=-\frac{1}{2}
$$

$\therefore$ Sum of series $=\left(1-\frac{1}{2}\right)^{-\frac{2}{3}}=(4)^{1 / 3}$
299 (b)
Here, $T_{5}+T_{6}=0$

$$
\begin{aligned}
& \Rightarrow{ }^{n} C_{4} a^{n-4}(-2 b)^{4}+{ }^{n} C_{5} a^{n-5}(-2 b)^{5}=0 \\
& \Rightarrow 16 \cdot{ }^{n} C_{4} a^{n-4} b^{4}=322^{n} C_{5} a^{n-5} b^{5} \\
& \Rightarrow \frac{{ }^{n} C_{5}}{{ }^{n} C_{4}} \cdot \frac{a^{n-5} b^{5}}{a^{n-4} b^{4}}=\frac{1}{2} \\
& \Rightarrow \quad \frac{b}{a}=\frac{1}{2} \cdot \frac{{ }^{n} C_{4}}{{ }^{n} C_{5}} \\
& \Rightarrow \quad \\
& \Rightarrow \quad \frac{a}{b}=\frac{2 \cdot \frac{n!}{5!(n!-5)!}}{\frac{n!}{4!(n-4)!}} \\
& \quad=\frac{4!(n-4)!}{5!(n-5)!} \times 2=\frac{2(n-4)}{5}
\end{aligned}
$$

(c)

Given , $(1+x)^{m}(1-x)^{n}$
$=\left(1+m x+m \frac{(m-1)}{2!} x^{2}+\cdots\right)$

$$
\left(1-n x+\frac{n(n-1)}{2!} x^{2}-\cdots\right)
$$

$=1+(m-n) x+\left[\frac{n^{2}-n}{2}-m n+\frac{m^{2}-m}{2}\right] x^{2}$

$$
+\cdots
$$

Also, given $m-n=3 \Rightarrow n=m-3$
and $\quad \frac{\mathrm{n}^{2}-\mathrm{n}}{2}-m n+\frac{m^{2}-m}{2}=-6$

$$
\begin{gathered}
\Rightarrow \quad \frac{(m-3)(m-4)}{2}-m(m-3)+\frac{m^{2}-m}{2} \\
\Rightarrow m^{2}-7 m+12-2 m^{2}+6 m+m^{2}-m+12 \\
\Rightarrow \quad=0 \\
\Rightarrow \quad-2 m+24=0 \Rightarrow m=12
\end{gathered}
$$

301 (b)
Given sum of the coefficient $=1024$
ie, $\quad 2^{n}=1024=2^{10}$
$\Rightarrow n=10$
Since, $n$ is even, so greatest coefficient
$={ }^{n} C_{n / 2}={ }^{10} C_{5}=252$
302 (b)
We have,
$5^{99}=5^{3} \times 5^{96}$
$=(13 \times 9+8)\left\{1+{ }^{24} C_{1}(13 \times 48)+\cdots\right.$ $\left.+{ }^{24} C_{24}(13 \times 48){ }^{24}\right\}$
$=(13 \times 9+8)+(13 \times 9+8)\left\{{ }^{24} C_{1}(13 \times 48)\right.$

$$
\left.+\cdots+{ }^{24} C_{24}(13 \times 48)^{24}\right\}
$$

$=8+13 \times$ An integer
Hence, remainder $=8$
303 (c)
General term of $(3+2 x)^{74}$ is

$$
T_{r+1}={ }^{74} C_{r}(3)^{74-r} 2^{r} x^{r}
$$

Let two consecutive terms are $T_{r+1}$ th and $T_{r+2}$ th terms
According to the given condition,
Coefficient of $T_{r+1}=$ Coefficient of $T_{r+2}$
$\Rightarrow{ }^{74} C_{r} 3{ }^{74-r} 2^{r}={ }^{74} C_{r+1} 3{ }^{74-(r+1)} 2^{r+1}$
$\Rightarrow \frac{{ }^{74} C_{r+1}}{{ }^{74} C_{r}}=\frac{3}{2} \Rightarrow \frac{74-r}{r+1}=\frac{3}{2}$
$\Rightarrow 148-2 r=3 r+3 \Rightarrow r=29$
Hence, two consecutive terms are 30 and 31.
304 (b)
Given expansion is $\left(\frac{2}{3} x-\frac{3}{2 x}\right)^{n}$
$\therefore T_{4}={ }^{n} C_{3}\left(\frac{2}{3} x\right)^{n-3}\left(-\frac{3}{2 x}\right)^{3}$
$={ }^{n} C_{3}\left(\frac{2}{3}\right)^{n-6} x^{n-6}(-1)^{3}$
Since, it is independent of $x$
$\therefore n-6=0 \Rightarrow n=6$
305 (b)
General term, $T_{r+1}={ }^{15} C_{r}\left(x^{4}\right)^{15-r}\left(-\frac{1}{x^{3}}\right)^{r}$
$={ }^{15} C_{r} x^{60-7 r}(-1)^{r}$
For the coefficient of $x^{3 r}$ put

$$
60-7 r=32 \Rightarrow r=4
$$

Now, coefficient of $x^{32}$ in $\left(x^{4}-\frac{1}{x^{3}}\right)^{15}=$ ${ }^{15} C_{4}(-1)^{4}={ }^{15} C_{4}$
306 (d)
The number of terms in $(a+b+c)^{12}$
$={ }^{12+2} C_{2}={ }^{14} C_{2}=91$
307 (a)
Coefficient of $x^{7}$ in $\left(1+3 x-2 x^{3}\right)^{10}$
$=\sum \frac{10!}{n_{1}!n_{2}!n_{3}!}(1)^{n_{1}}(3)^{n_{2}}(-2)^{n_{3}}$
Where, $n_{1}+n_{2}+n_{3}=10, n_{2}+3 n_{3}=7$
Different possibilities are as follows
$n_{1} \quad n_{2} \quad n_{3}$
$3 \quad 7 \quad 0$
$5 \quad 4 \quad 1$
712
$\therefore$ Coefficient of $x^{7}=\frac{10!}{3!7!}(1)^{3}(3)^{7}(-2)^{0}$
$+\frac{10!}{5!4!1!}(1)^{5}(3)^{4}(-2)^{1}$

$$
+\frac{10!}{7!1!2!}(1)^{7}(3)^{1}(-2)^{2}
$$

$=62640$
308 (b)
The general term in the expansion of $\left(x-\frac{1}{x}\right)^{18}$ is

$$
T_{r+1}={ }^{18} C_{r}(x)^{18-r}\left(-\frac{1}{x}\right)^{r}
$$

Here, $n=18$
$\therefore$ the middle term is $T_{9+1}$, where $r=9$

$$
\begin{aligned}
\therefore \quad T_{9+1} & ={ }^{18} C_{9}(-1)^{9} x^{18-2 r} \\
& =-{ }^{18} C_{9} x^{18-18}=-{ }^{18} C_{9}
\end{aligned}
$$

(d)

General term
$T_{r+1}=(-1)^{r}{ }^{11} C_{r}\left(\frac{2 \sqrt{x}}{5}\right)^{11-r}\left(\frac{1}{2 x^{3 / 2}}\right)^{r}$
$=\frac{2^{11-2 r}}{5^{11-r}}(-1)^{r}{ }^{11} C_{r} x^{\frac{11-r}{2}-\frac{3 r}{2}}$
For term independent of $x$, put $\frac{11-r}{2}-\frac{3 r}{2}=0$
$\Rightarrow \frac{11-4 r}{2}=0 \Rightarrow r=\frac{11}{4} \notin N$
$\therefore$ There is no term which is independent of $x$.
310 (b)
$a\left[C_{0}-C_{1}+C_{2}-C_{3}+\cdots(-1)^{n} \cdot C_{n}\right]$
$+\left[C_{1}-2 C_{2}+3 C_{3}-\cdots+(-1)^{n-1} n C_{n}\right]$
$=a 0+0=0$
312 (a)
Let $(6 \sqrt{6}+14)^{2 n+1}=I+F$, where $I \in N$ and $0<F<1$
Also, let $G=(6 \sqrt{6}-14)^{2 n+1}$. Then, $0<G<1$ Clearly,
$I+F-G$ is an even integer
$\Rightarrow F=G$
$\Rightarrow I$ is an even integer
313 (a)
The sum of the coefficients is obtained by putting $x=y=1$ in $(5 x-4 y)^{n}$. So, required sum $=1$
314 (a)
Now, $\left[\frac{(x+1)}{x^{2 / 3}-x^{1 / 3}+1}-\frac{(x-1)}{x-x^{1 / 2}}\right]^{10}$
$=\left[\frac{\left(x^{1 / 3}\right)^{3}+1^{3}}{x^{2 / 3}-x^{1 / 3}+1}-\frac{\left((\sqrt{x})^{2}-1\right)}{\sqrt{x}(\sqrt{x}-1)}\right]^{10}$
$=\left[x^{1 / 3}+1-\left(x^{-1 / 2}+1\right]^{10}\right.$
$=\left[x^{1 / 3}+x^{-1 / 2}\right]^{10}$
$\therefore T_{r+1}={ }^{10} C_{r}(x)^{\frac{10-r}{3}}\left(-x^{-1 / 2}\right)^{r}$
$={ }^{10} C_{r}(-1)^{r} x^{\frac{20-5 r}{6}}$
For the term independent of $x$
Put $\frac{20-5 r}{6}=0$
$\Rightarrow r=4$
$\therefore$ Required coefficient $={ }^{10} C_{4}=210$
315 (c)
Putting the values of $C_{0}, C_{2}, C_{4} \ldots$, we get
$1+\frac{n(n-1)}{3 \cdot 2!}+\frac{n(n-1)(n-2)(n-3)}{5 \cdot 4!}+\cdots$
$=\frac{1}{n+1}\left[(n+1)+\frac{(n+1) n(n-1)}{3!}\right.$

$$
\left.+\frac{(n+1) n(n-1)(n-2)(n-3)}{5!}+\cdots\right]
$$

Put $n+1=N$
$=\frac{1}{N}\left[N+\frac{N(N-1)(N-2)}{3!}\right]$
$+\frac{N(N-1)(N-2)(N-3)(N-4)}{5!}+\cdots$
$=\frac{1}{N}\left[{ }^{N} C_{1}+{ }^{N} C_{3}+{ }^{N} C_{5}+\cdots\right]$
$=\frac{1}{N}\left[2^{N-1}\right]=\frac{2^{n}}{n+1}[\because N=n+1]$
316 (b)
We have,
$\frac{(1+x)^{n}}{1-x}=(1+x)^{n}(1-x)^{-1}$
$\Rightarrow \frac{(1+x)^{n}}{1-x}=\left({ }^{n} C_{0} x^{n}+{ }^{n} C_{1} x x^{n-1}+\cdots+{ }^{n} C_{n-1} x\right.$ $\left.+{ }^{n} C_{n} x^{0}\right) \times\left(1+x+x^{2}+x^{3}+\cdots\right.$ $\left.+x^{n}+\cdots\right)$
$\therefore$ Coefficient of $x^{n}$ in $\frac{(1+x)^{n}}{1-x}$
$={ }^{n} C_{0}+{ }^{n} C_{1}+{ }^{n} C_{2}+\cdots+{ }^{n} C_{n}=2^{n}$
317 (d)
Given that, $\left(1+x-2 x^{2}\right)^{6}=1+a_{1} x+$
$a_{2} x^{2}+\ldots+a_{12} x^{12}$
On putting $x=1$ and $x=-1$ and adding the results, we get
$64=2\left(1+a_{2}+a_{4}+\ldots+a_{12}\right)$
$\therefore a_{2}+a_{4}+a_{6}+\ldots+a_{12}=31$
318 (b)
$\because(1+x)^{n}=\sum_{r=0}^{n}{ }^{n} C_{r} x^{r}=\sum_{r=0}^{n} a_{r} x^{r} \quad$ (given)
$\therefore a_{r}={ }^{n} C_{r}$
Also, $b_{r}=1+\frac{a_{r}}{a_{r}-1}=1+\frac{{ }^{n} C_{r}}{{ }^{n} C_{r-1}}=\frac{{ }^{n+1} C_{r}}{{ }^{n} C_{r-1}}$
$b_{r}=\left(\frac{n+1}{r}\right)$
$\because \prod_{r=1}^{n} b_{r}=\prod_{r=1}^{n}\left(\frac{n+1}{r}\right)=\frac{(n+1)^{n}}{n!}$
$=\frac{(101)^{100}}{100!}$ (given)
$\therefore n=100$
319 (c)
Coefficient of $x^{2} y^{3} z^{4}=\frac{9!}{2!3!4!} a^{2} b^{3} c^{4}$

$$
=1260 a^{2} b^{3} c^{4}
$$

320 (c)
$T_{r+1}={ }^{9} C_{r}\left(x^{2}\right)^{9-r}\left(-\frac{1}{x}\right)^{r}$
$={ }^{9} C_{r} x^{18-2 r-r}(-1)^{r}$
For term independent of $x$, put $18-2 r-r=$ $0 \Rightarrow r=0$
$\therefore$ Constant term, $T_{7}={ }^{9} C_{6}(-1)^{6}=84$
321 (c)
We have,
$\sum_{k=1}^{\infty} k\left(1+\frac{1}{n}\right)^{k-1}$
$=\sum_{k=1}^{\infty} k x^{k-1}$, where $x=1+\frac{1}{n}$
$=1+2 x+3 x^{2}+4 x^{3}+\cdots$ to $\infty$
$=(1-x)^{-2}=\left(-\frac{1}{n}\right)^{-2}=n^{2}$
322 (c)
Let $(r+1)$ th, $(r+2)$ th and $(r+3)$ th be three consecutive terms.
Then, ${ }^{n} C_{r}:{ }^{n} C_{r+1}:{ }^{n} C_{r+2}=1: 7: 42$
Now, $\frac{{ }^{n} C_{r}}{{ }^{n} C_{r+1}}=\frac{1}{7} \Rightarrow \frac{r+1}{n-r}=\frac{1}{7} \Rightarrow n-8 r=7$
and $\frac{{ }^{n} C_{r+1}}{{ }^{n} C_{r+2}}=\frac{7}{42}$
$\Rightarrow \frac{r+2}{n-r-1}=\frac{1}{6}$
$\Rightarrow n-7 r=13$
On solving Eqs. (i) and (ii), we get $n=55$
323 (c)
We have,
$(1+3 \sqrt{2} x)^{9}+(1-3 \sqrt{2} x)^{9}$
$=2\left\{{ }^{9} C_{0}+{ }^{9} C_{2}(3 \sqrt{2} x)^{2}+\cdots+{ }^{9} C_{8}(3 \sqrt{2} x)^{8}\right\}$
Clearly, there are 5 terms in the above expansion
324 (c)
Given that, ${ }^{n} C_{6}={ }^{n} C_{12} \Rightarrow{ }^{n} C_{n-6}={ }^{n} C_{12}$
$\Rightarrow n-6=12 \Rightarrow n=18$
(c)

The general term in the expansion of $\left(2 x^{2}\right.$

$$
\left.-\frac{1}{x}\right)^{12} \text { is }
$$

$T_{r+1}=(-1)^{r 12} C_{r} \cdot 2^{12-r} \cdot x^{24-3 r}$
The term independent of $x$, put $24-3 r=0$
$\Rightarrow \quad r=8$
$\therefore$ In the expansion of $\left(2 x^{2}\right.$
$\left.-\frac{1}{x}\right)^{12}$, the term independent of $x$ is 9 th term.
327 (b)
$\because 4^{n}=(1+3)^{n}$
$=1+3 n+\frac{n(n-1)}{2!} 3^{2}+\cdots$
$\Rightarrow 4^{n}-3 n-1=3^{2}\left[\frac{n(n-1)}{2!}+..\right]$
It is clear from above that $4^{n}-3 n-1$ is divisible by 9 .
328 (b)
On putting $x=-1$ in
$(1+x))^{20}={ }^{20} C_{0}+{ }^{20} C_{1} x+\ldots+{ }^{20} C_{10} x^{10}+\cdots$

$$
+{ }^{20} C_{10} x^{10}
$$

we get
$0={ }^{20} C_{0}-{ }^{20} C_{1}+\cdots-{ }^{20} C_{9}+{ }^{20} C_{10}-{ }^{20} C_{11}$ $+\cdots+{ }^{20} C_{20}$
$\Rightarrow 0={ }^{20} C_{0}-{ }^{20} C_{1}+\cdots-{ }^{20} C_{9}+{ }^{20} C_{10}-{ }^{20} C_{9}$ $+\cdots+{ }^{20} C_{0}$
$\Rightarrow 0=2\left({ }^{20} C_{0}-{ }^{20} C_{1}+\cdots-{ }^{20} C_{9}\right)+{ }^{20} C_{10}$
$\Rightarrow{ }^{20} C_{10}=2\left({ }^{20} C_{0}-{ }^{20} C_{1}+\cdots+{ }^{20} C_{10}\right)$
$\Rightarrow{ }^{20} C_{0}-{ }^{20} C_{1}+\ldots+{ }^{20} C_{10}=\frac{1}{2}{ }^{20} C_{10}$
329 (d)
Now, $(\sqrt{3}+1)^{5}=(\sqrt{3})^{5}+{ }^{5} C_{1}(\sqrt{3})^{4}+$
${ }^{5} C_{2}(\sqrt{3})^{3}$

$$
\therefore\left[(\sqrt{3}+1)^{5}\right]=[76+44 \sqrt{3}]
$$

330 (c)
The given sigma expansion
$\sum_{m=0}^{100}{ }^{100} C_{m}(x-3)^{100-m} \cdot 2^{m}$ can be rewritten as
$[(x-3)+2]^{100}=(x-1)^{100}=(1-x)^{100}$
$\therefore x^{53}$ will occur in $T_{54}$
$\Rightarrow T_{54}={ }^{100} C_{53}(-x)^{53}$
$\therefore$ Required coefficient is $-{ }^{100} C_{53}$.
331 (a)
$T_{4}={ }^{n} C_{3}(a x)^{n-3}\left(\frac{1}{x}\right)^{3}=\frac{5}{2} \quad$ [given]
$\Rightarrow{ }^{n} C_{3} a^{n-3} x^{n-6}=\frac{5}{2}$
$\Rightarrow n-6=0 \quad[\because$ RHS is independent of $x]$
$\Rightarrow n=6$
On putting $n=6$ in Eq. (i), we get
${ }^{6} C_{3} a^{3}=\frac{5}{2} \Rightarrow a^{3}=\frac{1}{8} \Rightarrow a=\frac{1}{2}$
332 (a)
We have,

$$
\begin{aligned}
& +{ }^{5} C_{3}(\sqrt{3})^{2}+{ }^{5} C_{4}(\sqrt{3})+{ }^{5} C_{5} \\
& =9 \sqrt{3}+45+30 \sqrt{3}+30+5 \sqrt{3}+1 \\
& =76+44 \sqrt{3} \\
& =[76]+[44 \times 1.732] \\
& =76+76=152
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
\sum_{r=0}^{n} \sum_{s=0}^{n}(r+s) C_{r} C_{s}= & \sum_{r=0}^{n} 2 r C_{r}^{2} \\
& +2 \sum_{0 \leq r<s \leq n}^{n} \sum(r+s) C_{r} C_{s}
\end{aligned} \\
& \begin{aligned}
\Rightarrow & \sum_{r=0}^{n} \sum_{s=0}^{n}(r+s) C_{r} C_{s}=2 \sum_{r=0}^{n} r \cdot C_{r}^{2} \\
& +2 \sum_{0 \leq r<s \leq n} \sum^{0}(r+s) C_{r} C_{s}
\end{aligned} \\
& \begin{aligned}
\Rightarrow & n \cdot 2^{2 n}=2 \cdot\left(\frac{n}{2}{ }^{2 n} C_{n}\right) \\
& +2 \sum_{0 \leq r<s \leq n} \sum(r+s) C_{r} C_{s} \\
\Rightarrow & \sum_{0 \leq r<s \leq n} \sum^{2 n}(r+s) C_{r} C_{s}=\frac{1}{2}\left[n \cdot 2^{2 n}-n \cdot{ }^{2 n} C_{n}\right] \\
= & \frac{n}{2}\left[2^{2 n}-\frac{2 n}{n}{ }^{2 n-1} C_{n-1}\right] \\
= & n\left[2^{2 n-1}-{ }^{2 n-1} C_{n-1}\right]
\end{aligned}
\end{aligned}
$$

333 (a)
Suppose $x^{7}$ occurs in $(r+1)^{\text {th }}$ term in the
expansion of $\left(a x^{2}+\frac{1}{b x}\right)^{11}$
We have,

$$
\begin{aligned}
& T_{r+1}={ }^{11} C_{r}\left(a x^{2}\right)^{11-r}\left(\frac{1}{b x}\right)^{r} \\
& \quad={ }^{11} C_{r} a^{11-r} b^{-r} x^{22-3 r}
\end{aligned}
$$

This will contain $x^{7}$, if
$22-3 r=7 \Rightarrow r=5$
$\therefore$ Coefficient of $x^{7}$ in $\left(a x^{2}+b^{-1} x^{-1}\right)^{11}$

$$
={ }^{11} C_{5} a^{6} b^{-5}
$$

Let $x^{-7}$ occur in $(s+1)^{\text {th }}$ term of the expansion
of $\left(a x-\frac{1}{b x^{2}}\right)^{11}$
We have,
$T_{s+1}={ }^{11} C_{s}(a x)^{11-s}\left(-\frac{1}{b x^{2}}\right)^{s}$
$\Rightarrow T_{s+1}={ }^{11} C_{s} a^{11-s} b^{-s}(-1)^{s} x^{11-3 s}$
This is contain $x^{-7}$, if
$11-3 s=-7 \Rightarrow s=6$
$\therefore$ Coefficient of $x^{-7}$ in $\left(a x-b^{-1} x^{-2}\right)^{11}$

$$
={ }^{11} C_{6} a^{5} b^{-6}
$$

It is given that
${ }^{11} C_{6} a^{5} b^{-6}={ }^{11} C_{5} a^{6} b^{-5} \Rightarrow a b=1$
334 (a)
We have,
$\frac{1}{(1-x)(3-x)}=\frac{1}{2}\left(\frac{1}{1-x}-\frac{1}{3-x}\right)$
$\Rightarrow \frac{1}{(1-x)(3-x)}=\frac{1}{2}\left\{(1-x)^{-1}-(3-x)^{-1}\right\}$
$\Rightarrow \frac{1}{(1-x)(3-x)}=\frac{1}{2}\left\{(1-x)^{-1}-\frac{1}{3}\left(1-\frac{x}{3}\right)^{-1}\right\}$
$\therefore$ Coefficient $x^{n}=\frac{1}{2}\left\{1-\frac{1}{3} \cdot \frac{1}{3^{n}}\right\}=\frac{1}{2} \frac{\left(3^{n+1}-1\right)}{3^{n+1}}$
335 (a)
For greatest term in $(x+a)^{a}$ is

$$
\begin{aligned}
& \frac{n-r+1}{r}\left|\frac{a}{x}\right| \geq 1 \\
& \Rightarrow \frac{54-r+1}{r}\left|\frac{3 x}{1}\right| \geq 1 \\
& \Rightarrow 55-r \geq r \Rightarrow r=27 \quad\left[\because x=\frac{1}{3}\right]
\end{aligned}
$$

$\therefore$ Greatest term in the expansion of $(1+3 x)^{54}$ is $T_{28}$. 336 (b)

We have,
$T_{4}={ }^{5} C_{3}\left(\frac{1}{x}\right)^{5-3}\left(x \tan x^{3}\right)=10 x \tan ^{3} x$
and $T_{2}={ }^{5} C_{2}\left(\frac{1}{x}\right)^{5-1}(x \tan x)=\frac{5 \tan x}{x^{3}}$
Given $\frac{T_{4}}{T_{2}}=\frac{2}{27} \pi^{4} \Rightarrow 2 x^{4} \tan ^{2} x=\frac{2}{27} \pi^{4}$
$\Rightarrow x^{2} \tan x= \pm \frac{1}{3 \sqrt{3}} \pi^{2}$
It is possible (from among the answers) when $x= \pm \frac{\pi}{3}$
337 (d)
We have,
$32^{32}=\left(2^{5}\right)^{32}=2^{160}=(3-1)^{160}$
$\Rightarrow 32^{32}={ }^{160} C_{0} 3^{160}-{ }^{160} C_{1} \cdot 3^{159}+\cdots$
$-{ }^{160} C_{159} \cdot 3+{ }^{160} C_{160} 3^{0}$
$\Rightarrow 32^{32}=\left({ }^{160} C_{0} \cdot 3^{160}-{ }^{160} C_{1} \cdot 3^{159}+\cdots\right.$
$\left.-{ }^{160} C_{159} \cdot 3\right)+1$
$\Rightarrow 32^{32}=3 m+1$, where $m \in N$
$\therefore 32^{(32)^{(32)}}=(32)^{3 m+1}=\left(2^{5}\right)^{3 m+1}=2^{15 m+5}$ $=2^{3(5 m+1)} \cdot 2^{2}$
$\Rightarrow 32^{(32)^{(32)}}=\left(2^{3}\right)^{5 m+1} \cdot 2^{2}=(7+1)^{5 m+1} \times 4$
$\Rightarrow 32^{(32)^{(32)}}=\left\{{ }^{5 m+1} C_{0} 7^{5 m+1}+{ }^{5 m+1} C_{1} 7^{5 m}+\cdots\right.$
$\left.+{ }^{5 m+1} C_{5 m} 7^{1}+{ }^{5 m+1} C_{5 m+1} \cdot 7^{0}\right\}$
$\times 4$
$\Rightarrow 32^{(32)^{(32)}}=(7 n+1) \times 4$,
where $n={ }^{5 m+1} C_{0} 7^{5 m+1}+\cdots+{ }^{5 m+1} C_{5 m} 7$
$\Rightarrow 32^{(32)^{(32)}}=28 n+4$
Thus, when $32^{(32)^{(32)}}$ is divided by 7 , the remainder is 4
338 (a)
Since, $\left(1+\frac{1}{n}\right)^{n}<3$ for $\forall n \in N$
Now, $\frac{(1001)^{999}}{(1000)^{1000}}=\frac{1}{1001} \cdot\left(\frac{1001}{1000}\right)^{1000}$
$=\frac{1}{1001}\left(1+\frac{1}{1000}\right)^{1000}<\frac{1}{1001} \cdot 3<1$
$(1001)^{999}<(1000)^{1000}$
$\therefore B<A$
339 (a)

$$
\begin{aligned}
\therefore T_{r} & =10_{C_{r-1}}\left(\frac{x}{3}\right)^{11-r}\left(\frac{-2}{x^{2}}\right)^{r-1} \\
& =10_{C_{r-1}}(x)^{13-3 r}(3)^{-11+r}(-1)^{r-1}(2)^{r-1}
\end{aligned}
$$

For $x^{4}$, we put $13-3 r=4 \Rightarrow r=3$
340 (a)
Given, $\left[\sqrt{\frac{x}{3}}+\frac{\sqrt{3}}{x^{2}}\right]^{10}$
General term, $T_{r+1}={ }^{10} C_{r}\left(\frac{x}{3}\right)^{\frac{1}{2}(10-r)}\left(\frac{\sqrt{3}}{x^{2}}\right)^{r}$
$\Rightarrow T_{r+1}={ }^{10} C_{r}\left(\frac{1}{3}\right)^{\frac{10-r}{2}}(\sqrt{3})^{r} x^{\frac{1}{2}(10-r)-2 r}$
For term independent of $x$ put

$$
\begin{aligned}
& \quad \frac{1}{2}(10-r)-2 r=0 \\
& \Rightarrow \quad r=2 \\
& \therefore T_{2+1}=T_{3}={ }^{10} C_{2}\left(\frac{1}{3}\right)^{\frac{8}{2}}(\sqrt{3})^{2} \\
& \Rightarrow=45 \times \frac{1 \times 3}{81}=\frac{5}{3}
\end{aligned}
$$

341 (c)
We have,
$T_{r+1}={ }^{15} C_{r}\left(x^{2}\right)^{15-r}\left(\frac{2}{x}\right)^{r}={ }^{15} C_{r} x^{30-3 r} \cdot 2^{r}$
If $T_{r+1}$ contains $x^{15}$, then
$30-3 r=15 \Rightarrow r=5$
$\therefore$ Coefficient of $x^{15}={ }^{15} C_{5}\left(2^{5}\right)$
If $T_{r+1}$ does not contain $x$, then
$30-3 r=0 \Rightarrow r=10$
$\therefore$ Coefficient of $x^{0}={ }^{15} C_{10}\left(2^{10}\right)$
Hence, required ratio $=\frac{{ }^{15} C_{5}\left(2^{5}\right)}{{ }^{15} C_{10}\left(2^{10}\right)}=\frac{1}{32}$
342 (d)
We have,

$$
\left.\begin{array}{l}
{ }^{40} C_{0}+{ }^{40} C_{1}+{ }^{40} C_{2}+\cdots+{ }^{40} C_{20} \\
=\frac{1}{2}\left[2 \cdot{ }^{40} C_{0}+2 \cdot{ }^{40} C_{1}+2 \cdot{ }^{40} C_{2}+\cdots+2\right. \\
\left.\quad .{ }^{40} C_{20}\right] \\
=\frac{1}{2}\left[\left({ }^{40} C_{0}+{ }^{40} C_{40}\right)+\left({ }^{40} C_{1}+{ }^{40} C_{0=39}\right)+\cdots\right. \\
\left.\quad \quad+\left({ }^{40} C_{19}+{ }^{40} C_{21}\right)+2{ }^{40} C_{20}\right]
\end{array}\right] \begin{gathered}
=\frac{1}{2}\left[\left\{{ }^{40} C_{0}+{ }^{40} C_{1}+{ }^{40} C_{2}+\cdots+{ }^{40} C_{19}+{ }^{40} C_{20}\right.\right. \\
\left.\left.\quad \quad+{ }^{40} C_{21}\right\}+{ }^{40} C_{20}\right] \\
= \\
\frac{1}{2}\left[2^{40}+\frac{40!}{(20!)^{2}}\right]=2^{39}+\frac{1}{2} \frac{40!}{(20!)^{2}}
\end{gathered}
$$

We have,
$\frac{1+x^{2}}{1+x}=\left(1+x^{2}\right)(1+x)^{-1}$
$=\left(1+x^{2}\right)\left(1-x+x^{2}-x^{3}+x^{4}-x^{5}+\cdots\right)$
$\therefore$ Coefficient of $x^{5}$ in $\left(\frac{1+x^{2}}{1+x}\right)=-1-1=-2$
344 (a)
Genaral term $T_{r+1}={ }^{10} C_{r}\left(\frac{1}{3} x^{1 / 2}\right)^{10-r}\left(x^{-1 / 4}\right)^{r}$

$$
={ }^{10} C_{r} \frac{1}{3^{10-r}} x^{5-3 r / 4}
$$

For the coefficient of $x^{2}$ put

$$
\begin{aligned}
& \\
\Rightarrow \quad & r-\frac{3 r}{4}
\end{aligned}=2
$$

$\therefore$ Coefficient of $x^{2}={ }^{10} C_{4} \frac{1}{3^{10-4}}=\frac{70}{243}$
345
(d)

The 14th term in the expansion of $\left(\frac{3 \sqrt{x}}{7}\right.$

$$
\begin{gathered}
\left.-\frac{5}{2 x \sqrt{x}}\right)^{13 n} \text { is } \\
T_{14}={ }^{13 n} C_{13}\left(\frac{3}{7} x^{1 / 2}\right)^{13 n-13}(-1)^{13}\left(\frac{5}{2} x^{-3 / 2}\right)^{13} \\
={ }^{13 n} C_{13}\left(\frac{3}{7}\right)^{13 n-13}(-1)^{13}\left(\frac{5}{2}\right)^{13} x^{\frac{13 n-13}{2}-\frac{39}{2}}
\end{gathered}
$$

For this term to be independent of $x$, we put

$$
13 n-52=0
$$

$\Rightarrow \quad n=4$
346 (b)
Here, the greatest coefficient is ${ }^{2 n} C_{n}$
$\therefore{ }^{2 n} C_{n} x{ }^{n}>{ }^{2 n} C_{n+1} x x^{n-1} \Rightarrow x>\frac{n}{n+1}$
and ${ }^{2 n} C_{n} x^{n}>{ }^{2 n} C_{n-1} x^{n-1} \Rightarrow x<\frac{n+1}{n}$
$\therefore x$ must lie in the interval $\left(\frac{n}{n+1}, \frac{n+1}{n}\right)$
347 (d)
$(1+a-b+c)^{9}$

$$
=\sum \frac{9!}{x_{1}!x_{2}!x_{3}!x_{4}!}
$$

$\cdot(1)^{x_{1}}(a)^{x_{2}}(-b)^{x_{3}}(c)^{x_{4}}$
$\Rightarrow$ Coefficient of $a^{3} b^{4} c=\frac{9!}{1!3!4!1!}=\frac{9!}{3!4!}$
348
(b)

We have, $\left(1+x+x^{2}\right)^{n}=a_{0}+a_{1} x+a_{2} x^{2}+$ $a_{3} x^{3}+\ldots+a_{2 n} x^{2 n}$
On differentiating both sides, we get
$n\left(1+x+x^{2}\right)^{n-1}(1+2 x)$

$$
\begin{aligned}
& =a_{1}+2 a_{2} x \\
& +3 a_{3} x^{2}+\ldots+2 n a_{2 n} x^{2 n-1}
\end{aligned}
$$

On putting $x=-1$, we get

$$
\begin{aligned}
& n(1-1+1)^{n-1}(1-2) \\
& \quad=a_{1}-2 a_{2}+3 a_{3}-\ldots-2 n a_{2 n} \\
& \Rightarrow a_{1}-2 a_{2}+3 a_{3}-\ldots-2 n a_{2 n}=-n
\end{aligned}
$$

350 (b)
We have,
$T_{4}=200$
$\Rightarrow{ }^{6} C_{3}\left\{\sqrt{x^{\frac{1}{\log x+1}}}\right\}^{3}\left(x^{\frac{1}{12}}\right)^{3}=200$
$\Rightarrow 20 x^{\frac{3}{2(\log x+1)}+\frac{1}{4}}=200$
$\Rightarrow x^{\frac{3}{2(\log x+1)}+\frac{1}{4}}=10$
$\Rightarrow \frac{3}{2(\log x+1)}+\frac{1}{4}=\log _{x} 10$
$\Rightarrow \frac{3}{2(y+1)}+\frac{1}{4}=\frac{1}{y}$, where $y=\log _{10} x$
$\Rightarrow \frac{6+y+1}{4(y+1)}=\frac{1}{y}$
$\Rightarrow 7 y+y^{2}=4 y+4$
$\Rightarrow y^{2}+3 y-4=0$
$\Rightarrow(y+4)(y-1)=0$
$\Rightarrow y=-4, y=1$
$\Rightarrow \log _{10} x=-4$ or, $\log _{10} x=1$
$\Rightarrow x=10^{-4}$ or, $x=10^{1} \Rightarrow x=10 \quad[\because x>1]$
351 (a)
We have,
$\left\{(1+x)^{6}+(1+x)^{7}+\cdots+(1+x)^{15}\right\}$
$=(1+x)^{6}\left\{\frac{1-(1+x)^{10}}{1-(1+x)}\right\}$
$=(1+x)^{6}\left\{\frac{1-(1+x)^{10}}{-x}\right\}$
$=\frac{1}{x}\left\{(1+x)^{16}-(1+x)^{6}\right\}$
$\therefore$ Coefficient of $x^{6}$ in $\left\{(1+x)^{6}+(1+x)^{7}+\cdots\right.$

$$
\left.+(1+x)^{15}\right\}
$$

$=$ Coeff. of $x^{7}$ in $\left\{(1+x)^{16}-(1+x)^{6}\right\}={ }^{16} C_{7}$

$$
={ }^{16} C_{9}
$$

(d)

Let $S=1+\frac{1}{5}+\frac{1 \cdot 3}{5 \cdot 10}+\frac{1 \cdot 3 \cdot 5}{5 \cdot 10 \cdot 15}+\ldots$
On comparing with
$(1+x)^{n}=1+\frac{n x}{1!}+\frac{n(n-1)}{2!} x^{2}$
$+\frac{n(n-1)(n-2)}{3!} x^{3}+\cdots$, we get
$\Rightarrow n x=\frac{1}{5}$ and $\frac{n(n-1) x^{2}}{2!}=\frac{1 \cdot 3}{5 \cdot 10}$
$\Rightarrow \quad n=-\frac{1}{2}$
and $\quad x=-\frac{2}{5}$
$\therefore \operatorname{sum}=\left(1-\frac{2}{5}\right)^{-1 / 2}=\left(\frac{3}{5}\right)^{-1 / 2}=\sqrt{\frac{5}{3}}$
353 (d)
$A^{2}=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right]$
$A^{3}=\left[\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 3 & 1\end{array}\right]$
... ... ... ... ... ...
$A^{n}=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$ Can be verified by induction. Now, taking option
(b) $\left[\begin{array}{ll}1 & 0 \\ n & 1\end{array}\right]=\left[\begin{array}{ll}n & 0 \\ n & n\end{array}\right]+\left[\begin{array}{cc}n-1 & 0 \\ 0 & n-1\end{array}\right]$
$\Rightarrow\left[\begin{array}{ll}1 & 0 \\ n & 1\end{array}\right] \neq\left[\begin{array}{cc}2 n-1 & 0 \\ 1 & 2 n-1\end{array}\right]$
(d) $n A-(n-1) I=\left[\begin{array}{ll}n & 0 \\ n & n\end{array}\right]-\left[\begin{array}{cc}n-1 & 0 \\ 1 & n-1\end{array}\right]$
$=\left[\begin{array}{ll}1 & 0 \\ n & 1\end{array}\right]=A^{n}$
354 (c)
$T_{r+1}=\sqrt{3} \cdot{ }^{20} C_{r}\left(\frac{1}{\sqrt{3}}\right)^{r}$
and $T_{r}=\sqrt{3} \cdot{ }^{20} C_{r-1}\left(\frac{1}{\sqrt{3}}\right)^{r-1}$
Now, $\frac{T_{r+1}}{T_{r}}=\frac{20-r+1}{r}\left(\frac{1}{\sqrt{3}}\right)$
Since, $T_{r+1} \geq T_{r} \Rightarrow 20-r+1 \geq \sqrt{3} r$
$\Rightarrow r \leq \frac{21}{\sqrt{3}+1}=\frac{21}{2 \cdot 73} \Rightarrow r \leq 7.692$
$\Rightarrow r=7$
$\therefore$ The greatest term is

$$
T_{3}=\sqrt{3} \cdot{ }^{20} C_{7}\left(\frac{1}{\sqrt{3}}\right)^{7}=\frac{25840}{9}
$$

355 (c)
We have, $\left(1+\frac{C_{1}}{C_{0}}\right)\left(1+\frac{C_{2}}{C_{1}}\right) \ldots\left(1+\frac{C_{n}}{C_{n-1}}\right)$
$=\left(1+\frac{n}{1}\right)\left(1+\frac{\frac{n(n-1)}{2!}}{n}\right) \ldots\left(1+\frac{1}{n}\right)$
$=\frac{(1+n)}{1} \cdot \frac{(1+n)}{2} \cdot \frac{(1+n)}{3} \ldots \frac{(1+n)}{n}=\frac{(n+1)^{n}}{n!}$
356 (c)
Given expression
$=2\left[{ }^{5} C_{0} x^{5}+{ }^{5} C_{2} x{ }^{3}\left(x^{3}-1\right)+{ }^{5} C_{4} x\left(x^{3}-1\right)^{2}\right]$
$=2\left[x^{5}+10 x^{3}\left(x^{3}-1\right)+5 x\left(x^{3}-1\right)^{2}\right]$
$=5 x^{7}+10 x^{6}+x^{5}-10 x^{4}-10 x^{3}+5 x$,
Which is a polynomial of degree 7
357 (a)
The sum of the coefficients is obtained by putting $x=1$ in $\left(1+x-3 x^{2}\right)^{2143}$
$\therefore$ required sum $=(1+1-3)^{2143}=-1$

We have, $C_{0}^{2}-2 C_{1}^{2}+3 C_{2}^{2}-\ldots+(-1)^{n}(n+1) C_{n}^{2}$ $=\left[C_{0}^{2}-C_{1}^{2}+C_{2}^{2}-\ldots+(-1)^{n} C_{n}^{2}\right]$

$$
\begin{aligned}
& \quad-\left[C_{1}^{2}-2 C_{2}^{2}\right. \\
& =(-1)^{n / 2} \frac{n!}{\left(\frac{n}{2}\right)!\left(\frac{n}{2}\right)!} \cdot-(-1)^{n / 2-1} \cdot \frac{1}{2} n \frac{n!}{\left(\frac{n}{2}\right)!\left(\frac{n}{2}\right)!} \\
& =(-1)^{n / 2} \cdot \frac{n!}{\left(\frac{n}{2}\right)!\left(\frac{n}{2}\right)!} \cdot\left(1+\frac{n}{2}\right)
\end{aligned}
$$

Therefore, the value of the given expression is
$\frac{2\left(\frac{n}{2}\right)!\left(\frac{n}{2}\right)!}{n!} \times(-1)^{n / 2} \cdot \frac{(n)!}{\left(\frac{n}{2}\right)!\left(\frac{n}{2}\right)!}\left(1+\frac{n}{2}\right)$

$$
=(-1)^{n / 2}(2+n)
$$

359 (a)
We have, (1.002) ${ }^{12}$ or it can be rewritten as
$(1+0.002)^{12}$
$\Rightarrow$
$(1.002)^{12}=1+{ }^{12} C_{1}(0.002)+{ }^{12} C_{2}(0.002)^{2}+$ ${ }^{12} C_{3}(0.002)^{3}+\ldots$
We want the answer upto 4 decimal places and as such, we have left further expansion.
$\therefore(1.002)^{12}=1+12(0.002)+\frac{12 \cdot 11}{1 \cdot 2}(0.002)^{2}$
$+\frac{12 \cdot 11 \cdot 10}{1 \cdot 2 \cdot 3}(0.002)^{3}+\ldots$
$=1+0.024+2.64 \times 10^{-4}+1.76 \times 10^{-6}+.$.
$=1.0242$
360 (c)
The general term in the expansion of $\left(\frac{3}{2} x^{2}-\right.$
13x9is
$T_{r+1}={ }^{9} C_{r}\left(\frac{3}{2} x^{2}\right)^{9-r}\left(-\frac{1}{3 x}\right)^{r}$
$={ }^{9} C_{r}\left(\frac{3}{2}\right)^{9-r}\left(-\frac{1}{3}\right)^{r} x^{18-3 r}$
Now, the coefficients of the terms $x^{0}, x^{-1}$ and $x^{-3}$ in $\left(\frac{3}{2} x^{2}-\frac{1}{3 x}\right)^{9}$ is
For $x^{0}, 18-3 r=0 \Rightarrow r=6$
For $x^{-1}$, there exists no integer value of $r$
For $x^{-3}, 18-3 r=-3 \Rightarrow r=7$
Now, the coefficient of the term independent of $x$ in the expansion of $\left(1+x+2 x^{3}\right)\left(\frac{3}{2} x^{2}-\frac{1}{3 x}\right)^{9}$

$$
\begin{aligned}
& =1 \cdot{ }^{9} C_{6}(-1)^{6}\left(\frac{3}{2}\right)^{9-6}\left(\frac{1}{3}\right)^{6}+0 \\
& \\
& \quad+2 \cdot{ }^{9} C_{7}(-1)^{7}\left(\frac{3}{2}\right)^{9-7}\left(\frac{1}{3}\right)^{7} \\
& =\frac{9.8 .7}{1.2 .3} \cdot \frac{3^{3}}{2^{3}} \cdot \frac{1}{3^{6}}+2 \cdot \frac{9.8}{1.2}(-1) \frac{3^{2}}{2^{2}} \cdot \frac{1}{3^{7}}
\end{aligned}
$$

$=\frac{7}{18}-\frac{2}{27}=\frac{17}{54}$
361 (c)
We can write,
$a C_{0}-(a+d) C_{1}+(a+2 d) C_{2}-\ldots$ upto $(n+1)$
terms
$=a\left(C_{0}-C_{1}+C_{2}-\ldots\right)+d\left(-C_{1}+2 C_{2}-3 C_{3}+\ldots\right)$ ...(i)
We know,
$(1-x)^{n}=C_{0}-C_{1} x+C_{2} x^{2}-\ldots+(-1)^{n} C_{n} x^{n}$
...(ii)
On differentiating Eq. (ii) w.r.t. $x$, we get
$-n(1-x)^{n-1}=-C_{1}+2 C_{2} x-\ldots(-1)^{n} C_{n} n x^{n-1}$

> ...(iii)

On putting $x=1$ in Eqs. (ii) and (iii), we get
$C_{0}-C_{1}+C_{2}-\ldots+(-1)^{n} C_{n}=0 \ldots$ (iv)
and $-C_{1}+2 C_{2}-\ldots+(-1)^{n} n C_{n}=0 \ldots$ (v)
From Eq. (i),
$a C_{0}-(a+d) C_{1}+(a+2 d) C_{2}-\ldots$ upto $(n+1)$
terms
$=a \cdot 0+d \cdot 0=0$ [from Eqs. (iv) and (v)]
362 (c)
Let $P(n)=2^{3 n}-7 n-1$
$\therefore \quad P(1)=0, P(2)=49$
$P(1)$ and $P(2)$ are divisible by 49.
Let $P(k) \equiv 2^{3 k}-7 k-1=49 I$
$\therefore P(k+1) \equiv 2^{3 k+3}-7 k-8$

$$
\begin{aligned}
& =8(49 I+7 k+1)-7 k-8 \\
& =49(8 I)+49 k=49 I_{1}
\end{aligned}
$$

## Alternate

$$
\begin{gathered}
P(n)=(1+7)^{n}-7 n-1 \\
=1+7 n+7^{2} \frac{n(n-1)}{2!}+\cdots-7 n-1 \\
=7^{2}\left(\frac{n(n-1)}{2!}+\cdots\right)
\end{gathered}
$$

363 (d)
Let $P(n)=5^{2 n+2}-24 n-25$
For

$$
n=1
$$

$$
\begin{aligned}
& P(1)=5^{4}-24-25=576 \\
& P(2)=5^{6}-24(2)-25=15552
\end{aligned}
$$

$$
=576 \times 27
$$

Here, we see that $P(n)$ is divisible by 576
364 (c)
Let $b=\sum_{r=0}^{n} \frac{r}{{ }^{n} C_{r}}=\sum_{r=0}^{n} \frac{n-(n-r)}{{ }^{n} C_{r}}$
$=n \sum_{r=0}^{n} \frac{1}{{ }^{n} C_{r}}-\sum_{r=0}^{n} \frac{n-r}{{ }^{n} C_{r}}$
$=n a_{n}-\sum_{r=0}^{n} \frac{n-r}{{ }^{n} C_{n-r}}\left(\because{ }^{n} C_{r}={ }^{n} C_{n-1}\right)$
$=n a_{n}-b$
$\Rightarrow 2 b=n a_{n} \Rightarrow b=\frac{n}{2} a_{n}$
365 (d)
We have,

$$
\begin{gathered}
\frac{1}{\sqrt{4 x+1}}\left\{\left(1+\frac{\sqrt{4 x+1}}{2}\right)^{2}-\left(1-\frac{\sqrt{4 x+1}}{2}\right)^{2}\right\} \\
=\frac{1}{2^{7} \sqrt{4 x+1}}\left[2 \left\{{ }^{7} C_{1} \sqrt{4 x+1}+{ }^{7} C_{3}(\sqrt{4 x+1})^{3}\right.\right. \\
+{ }^{7} C_{5}(\sqrt{4 x+1})^{5} \\
\left.\left.+{ }^{7} C_{7}(\sqrt{4 x+1})^{7}\right\}\right] \\
=\frac{1}{2^{6}}\left\{{ }^{7} C_{1}+{ }^{7} C_{3}(4 x+1)+{ }^{7} C_{5}(4 x+1)^{2}\right. \\
\left.+{ }^{7} C_{7}(4 x+1)^{3}\right\}
\end{gathered}
$$

Clearly, it is a polynomial of degree 3
366 (a)
In the expansion of $\left(a x^{2}+\frac{1}{b x}\right)^{11}$,
$T_{r+1}={ }^{11} C_{r}\left(a x^{2}\right)^{11-r}\left(\frac{1}{b x}\right)^{r}$
$={ }^{11} C_{r} \frac{a^{11-r}}{b^{r}} \cdot x^{22-3 r}$
For coefficient of $x^{7}$, put $22-3 r=7$
$\Rightarrow r=5$
$\therefore \quad T_{6}={ }^{11} C_{5} \frac{a^{6}}{b^{5}} \cdot x^{7}$
$\therefore$ Coefficient of $x^{7}$ in the expansion of
$\left(a x^{2}+\frac{1}{b x}\right)^{11}$ is
$11_{C_{5}} \frac{a^{6}}{b^{5}}$
Similarly, coefficient of $x^{-7}$ in the expansion of $\left(a x+\frac{1}{b x}\right)^{11}$ is
${ }^{11} C_{5} \frac{a^{5}}{b^{6}}$
Now, $\quad{ }^{11} C_{5} \frac{a^{6}}{b^{5}}={ }^{11} C_{6} \frac{a^{5}}{b^{6}}$
$\Rightarrow a b=1$
367 (b)
Given expansion is $\left(x+\frac{1}{2 x}\right)^{2 n}$
$\therefore$ Middle term $={ }^{2 n} C_{n}(x)^{n}\left(\frac{1}{2 x}\right)^{n}$
$=\frac{2 n!}{n!n!2^{n}}=\frac{1 \cdot 3 \cdot 5 \ldots(2 n-1)}{n!}$
368 (c)
$(1+x)^{21}+(1+x)^{22}+\ldots+(1+x)^{30}$
$=(1+x)^{21}\left[1+(1+x)^{1}+\ldots+(1+x)^{9}\right]$
$=(1+x)^{21}\left[\frac{(1+x)^{10}-1}{(1+x)-1}\right]$
$=\frac{1}{x}\left[(1+x)^{31}-(1+x)^{21}\right]$
$\therefore$ Coefficient of $x^{5}$ in the given expression
$=$ Coefficient of $x^{5}$ in $\frac{1}{x}\left[(1+x)^{31}-(1+x)^{21}\right]$
$=$ Coefficient of $x^{6}$ in $\left[(1+x)^{31}-(1+x)^{21}\right]$
$={ }^{31} C_{6}-{ }^{21} C_{6}$
369 (a)
We have,
$T_{r+1}=\frac{\frac{7}{2}\left(\frac{7}{2}-1\right)\left(\frac{7}{2}-2\right) \ldots\left(\frac{7}{2}-r+1\right) x^{r}}{r!}$
This will be the first negative term if
$\frac{7}{2}-r+1<0 \Rightarrow r>\frac{9}{2}$
Hence, $r=5$
370 (b)
According to question, coefficient of
$x^{r}=$ coefficient of $x^{r+1}$
$\Rightarrow{ }^{21} C_{r}={ }^{21} C_{r+1}$
But ${ }^{21} C_{r}={ }^{21} C_{21-r}$
On comparing Eqs. (i) and (ii), we get
$r+1=21-r \Rightarrow r=\frac{21-1}{2}=10$
371 (a)
Let $(r+1)^{\text {th }}$ term be the greatest term
We have,
$T_{r+1}=\sqrt{3} \cdot{ }^{20} C_{r}\left(\frac{1}{\sqrt{3}}\right)^{r}$ and $T_{r}$

$$
=\sqrt{3}{ }^{20} C_{r-1}\left(\frac{1}{\sqrt{3}}\right)^{r-1}
$$

$\therefore \frac{T_{r+1}}{T_{r}}=\frac{20-r+1}{r}\left(\frac{1}{\sqrt{3}}\right)$
$\therefore T_{r+1} \geq T_{r}$
$\Rightarrow 20-r+1 \geq \sqrt{3} r$
$\Rightarrow 21 \geq r(\sqrt{3}+1)$
$\Rightarrow r \leq \frac{21}{\sqrt{3}+1} \Rightarrow r \leq 7.686 \Rightarrow r=7$
Hence, greatest term $T_{8}=\sqrt{3}{ }^{20} C_{7}\left(\frac{1}{\sqrt{3}}\right)^{7}=\frac{25840}{9}$ 372 (b)

We have,
$\left(1+x+x^{2}+\cdots\right)^{-n}=\left[(1-x)^{-1}\right]^{-n}=(1-x)^{n}$
$\therefore$ Coefficient of $x^{n}=(-1)^{n}{ }^{n} C_{n}=(-1)^{n}$
373 (a)
We have, $\left(1+t^{2}\right)^{12}\left(1+t^{12}\right)\left(1+t^{24}\right)$
$=1+{ }^{12} C_{1} t^{2}+{ }^{12} C_{2} t^{4}+$
$\left.{ }^{12} C_{3} t^{6}+\ldots+{ }^{12} C_{6} t^{12}+\ldots\right)\left(1+t^{12}+t^{24}+t^{36}\right)$
$\therefore$ Coefficient of $t^{24}$ in $\left(1+t^{2}\right)^{12}\left(1+t^{12}\right)(1+$ $t 24={ }^{12} C 6+2$
(d)
$T_{r}={ }^{14} C_{r-1} x^{r-1} ; T_{r+1}={ }^{14} C_{r} x{ }^{r} ; T_{r+2}$ $={ }^{14} C_{r+1} x{ }^{r+1}$
Since, these terms are in AP

$$
\begin{aligned}
& \therefore 2 T_{r+1}=T_{r}+T_{r+2} \\
& \Rightarrow 2^{14} C_{r}={ }^{14} C_{r-1}+{ }^{14} C_{r+1} \ldots(\mathrm{i}) \\
& \Rightarrow 2 \cdot \frac{14!}{r!(14-r)!}=\frac{14!}{(r-1)!(15-r)!} \\
& +\frac{14!}{(r+1)!(13-r)!} \\
& \Rightarrow \frac{2}{r \cdot(r-1)!(14-r) \cdot(13-r)!} \\
& =\frac{1}{(r-1)!\cdot(15-r) \cdot(14-r) \cdot(13-r)!} \\
& +\frac{1}{(r+1) r(r-1)!(13-r)!} \\
& \Rightarrow \frac{2}{r(14-r)}=\frac{1}{(15-r)(14-r)}+\frac{1}{(r+1) r} \\
& \Rightarrow \frac{1}{r(14-r)}=\frac{1}{(15-r)(14-r)} \\
& +\frac{1}{(r+1) r}-\frac{1}{r(14-r)} \\
& \Rightarrow \frac{(15-r)-r}{r(15-r)(14-r)}=\frac{(14-r)-(r+1)}{(r+1) r(14-r)} \\
& \Rightarrow(15-r)-r=(13-2 r)(15-r) \\
& \Rightarrow 15 r+15-2 r^{2}-2 r \\
& \Rightarrow 4 r^{2}-56 r+180=0 \\
& \Rightarrow r^{2}-14 r+45=0 \\
& \Rightarrow(r-5)(r-9)=0 \Rightarrow r=5,9
\end{aligned}
$$

But 5 is not given.
Hence, $r=9$
(c)

We have, $(101)^{50}=(100+1)^{50}$
$=(100)^{50}+{ }^{50} C_{1}(100)^{49}+{ }^{50} C_{2}(100)^{48}+$ ... ....(i)
and $(99)^{50}=(100-1)^{50}$
$=(100)^{50}-{ }^{50} C_{1}(100)^{49}+{ }^{50} C_{2}(100)^{48}+$
... ...(ii)
On subtracting Eq. (ii) from Eq. (i), we get
$(101)^{50}-(99)^{50}$

$$
\begin{aligned}
& =2\left\{{ }^{50} C_{1}(100)^{49}+{ }^{50} C_{3}(100)^{47}\right. \\
& \quad+\cdots\} \\
& =2 \times{ }^{50} C_{1}(100)^{49}+\left\{2 \times{ }^{50} C_{3}(100)^{47}\right. \\
& \quad+\cdots\} \\
& =\left(100(100)^{49}+\text { a positive number }\right) \\
& >(100)^{50}
\end{aligned}
$$

$\therefore(101)^{50}>(100)^{50}+(99)^{50}$
376 (a)
The general term of the given series is
$T_{r}=(-1)^{r}(3+5 r)^{n} C_{r}$
$\therefore$ Sum $\sum_{r=0}^{n}(1)^{r}(3+5 r)^{n} C_{r}$
$=3_{r=0}^{n}(-1)^{r n} C_{r}+5 \sum_{r=0}^{n}(1)^{r} r^{n} C_{r}$
$=3\left(C_{0}-C_{1}+C_{2}-C_{3}+C_{4}-\ldots+(-1)^{n} \cdot C_{n}\right)$
$+5\left(-C_{1}+2 C_{2}-3 C_{3}+4 C_{4}-\cdots+(-1)^{n} \cdot n \cdot C_{n}\right)$
$\Rightarrow S=0+0=0$
378 (d)
$S=(\alpha \cdot 1+\beta \cdot 1+\gamma \cdot 1)^{n}=(\alpha+\beta-\gamma)^{n}$
$\therefore \lim _{n \rightarrow \infty} \frac{s}{\left\{S^{1 / n}+1\right\}^{n}}=\lim _{n \rightarrow \infty}\left(\frac{\alpha+\beta-\gamma}{\alpha+\beta-\gamma+1}\right)^{n}=0$
$(\because \alpha+\beta-\gamma+1>\alpha+\beta-\gamma)$
379 (b)
It is given that the sum of the numerical coefficients in the binomial expansion of
$\left(\frac{1}{x}+2 x\right)^{n}$ is 6561
$\therefore(1+2)^{n}=6561 \quad[$ Putting $x=1]$
$\Rightarrow 3^{n}=3^{8} \Rightarrow n=8$
The general term in the expansion of $\left(\frac{1}{x}+2 x\right)^{n}$ is given by
$T_{r+1}={ }^{n} C_{r}\left(\frac{1}{x}\right)^{n-r}(2 x)^{r}={ }^{n} C_{r} 2^{r} x^{-n+2 r}$ $={ }^{8} C_{r} 2^{r} x^{2 r-8}$
This will be independent of $x$ id $r=4$
Hence, the constant term $={ }^{8} C_{4} 2^{4}$
381 (c)
Multiplying the numerator and denominator by
$1-x$, we have $E=\frac{1-x}{(1-x)(1+x)\left(1+x^{2}\right)\left(1+x^{4}\right) \ldots\left(1+x^{2^{m}}\right)}$
$=\frac{1-x}{\left(1-x^{2}\right)\left(1+x^{2}\right)\left(1+x^{4}\right) \ldots\left(1-x^{2^{m}}\right)}$
$=\frac{1-x}{\left(1-x^{4}\right)\left(1+x^{4}\right) \ldots\left(1-x^{2^{m}}\right)}$
$=\frac{1-x}{\left(1-x^{2^{m+1}}\right)}=(1-x)\left(1-x^{2^{m+1}}\right)^{-1}$
$=(1-x)\left(1+x^{2^{m+1}}+x^{2^{m+2}}+\ldots\right)$
$\therefore$ Coefficient of $x^{2^{m+1}}$ is 1
382 (b)
Let $G=(7-4 \sqrt{3})^{n}$. Then,
$0<G<1$ as $0<7-4 \sqrt{3}<1$
Now,
$I+F+G=(7+4 \sqrt{3})^{n}+(7-4 \sqrt{3})^{n}$
$\Rightarrow I+F+G=2\left({ }^{n} C_{0} 7^{n}+{ }^{n} C_{2} 7^{n-2}(4 \sqrt{3})^{2}\right.$ $+\cdots$ )
$\Rightarrow I+F+G=$ an integer
$\Rightarrow F+G=1$
$\Rightarrow G=1-F$

$$
\begin{aligned}
\therefore(I+F)(1-F) & =(I+F) G \\
= & (7+4 \sqrt{3})^{n}(7-4 \sqrt{3})^{n}=1
\end{aligned}
$$

383 (c)
Since, number of terms in the expansion of $(1+x)^{24}$ is 25 .
Therefore, the middle term is 13th term.
$\therefore$ Required greatest coefficient $={ }^{24} C_{12}$.
384 (d)
We have,

$$
\begin{aligned}
& \left(1+x+x^{3}+x^{4}\right)^{10} \\
& =(1+x)^{10}\left(1+x^{3}\right)^{10} \\
& =\left({ }^{10} C_{0}+{ }^{10} C_{1} x+{ }^{10} C_{2} x^{2}+{ }^{10} C_{3} x^{3}+{ }^{10} C_{4} x^{4}\right. \\
& \left.\quad+\cdots+{ }^{10} C_{10} x^{10}\right) \times\left({ }^{10} C_{0}\right. \\
& \quad+{ }^{10} C_{1} x^{3}+{ }^{10} C_{2} x^{6}+\cdots \\
& \left.\quad+{ }^{10} C_{10} x^{30}\right)
\end{aligned}
$$

$\therefore$ Coefficient of $x^{4}={ }^{10} C_{0} \times{ }^{10} C_{4}+{ }^{10} C_{1} \times{ }^{10} C_{1}$

$$
=310
$$

## 385 (b)

We have,
$(1+x)^{m}=1+m x+\frac{m(m-1)}{2!} x^{2}+\cdots$
It is given that the third term is $-\frac{1}{8} x^{2}$
$\therefore \frac{m(m-1)}{2} x^{2}=-\frac{1}{8} x^{2}$
$\Rightarrow 4 m^{2}-4 m=-1 \Rightarrow(2 m-1)^{2}=0 \Rightarrow m=\frac{1}{2}$
386 (a)
We have,

$$
\begin{aligned}
& \left(C_{0}+C_{1}\right)\left(C_{1}+C_{2}\right)\left(C_{2}+C_{3}\right) \ldots\left(C_{n-1}+C_{n}\right) \\
& \begin{aligned}
=C_{1} C_{2} \ldots C_{n-1} C_{n}\left(1+\frac{C_{0}}{C_{1}}\right)\left(1+\frac{C_{1}}{C_{2}}\right)\left(1+\frac{C_{2}}{C_{3}}\right) \ldots(1
\end{aligned} \\
& \left.\quad+\frac{C_{n-1}}{C_{n}}\right) \\
& =C_{1} C_{2} \ldots C_{n-1} C_{n}\left(1+\frac{C_{0}}{C_{1}}\right)\left(1+\frac{2}{n-1}\right)(1 \\
& \left.\quad+\frac{3}{n-2}\right) \ldots\left(1+\frac{n}{1}\right)
\end{aligned} \begin{aligned}
& =C_{1} C_{2} \ldots C_{n-1} C_{n} \frac{(n+1)^{n}}{n!} \\
& \therefore k=C_{1} C_{2} C_{3} \ldots C_{n-1} C_{n}=C_{0} C_{1} C_{2} \ldots C_{n-1} C_{n}
\end{aligned}
$$

We have,

$$
\begin{gathered}
\sum_{m=0}^{100}{ }^{100} C_{m}(x-3)^{100-2} 2^{m}=[(x-3)+2]^{100} \\
=(1-x)^{100}
\end{gathered}
$$

$\therefore$ Coefficient of $x^{53}={ }^{100} C_{53}(-1)^{53}=-{ }^{100} C_{53}$

388 (d)
Given expansion is $\left(x-\frac{1}{2 x}\right)^{n}$
$\therefore T_{3}={ }^{n} C_{2}(x)^{n-2}\left(-\frac{1}{2 x}\right)^{2}$
and $T_{4}={ }^{n} C_{3}(x)^{n-3}\left(-\frac{1}{2 x}\right)^{3}$
But according to the given condition,
$\frac{T_{3}}{T_{4}}=-\frac{n(n-1) \times 3 \times 2 \times 1 \times 8}{n(n-1)(n-2) \times 2 \times 1 \times 4 \times}=\frac{1}{2}$ (given)
$\Rightarrow-n+2=12 \Rightarrow n=-10$
389
(b)

We have, $\left(1+x+x^{2}+\ldots\right)^{-n}=\left(\frac{1}{1-x}\right)^{-n}=$ $(1-x)^{n}$
$\therefore$ The coefficient of $x^{n}$ is $(-1)^{n}$
390 (b)
Here, $T_{4}={ }^{n} C_{3}(a)^{n-3}(-2 b)^{3}$
and $T_{5}={ }^{n} C_{4}(a)^{n-4}(-2 b)^{4}$
Given, $T_{4}+T_{5}=0$
$\Rightarrow{ }^{n} C_{3}(a)^{n-3}(-2 b)^{3}+{ }^{n} C_{4}(a)^{n-4}(-2 b)^{4}=0$
$\Rightarrow(a)^{n-4}(-2 b)^{3}\left[a^{n} C_{3}+{ }^{n} C_{4}(-2 b)\right]=0$
$\Rightarrow \frac{a}{b}=\frac{2^{n} C_{4}}{{ }^{n} C_{3}}$
$=\frac{2 . n(n-1)(n-2)(n-3)}{4.3 .2 .1} \times \frac{3.2 .1}{n(n-1)(n-2)}$
$=\frac{n-3}{2}$
391 (d)
The general term in the expansion of (2-x+ $3 \times 26$ is given by
$\frac{6!}{r!s!t!} 2^{r}(-x)^{s}\left(3 x^{2}\right)^{t}$, where $r+s+t=6$
$=\frac{6!}{r!s!t!} 2^{r} \times(-1)^{s} \times 3^{t} \times x^{s+2 t}$, where $r+s+t$ $=6$
For the coefficient of $x^{5}$, we must have $s+2 t=5$
But, $r+s+t=6$
$\therefore s=5-2 t$ and $r=1+t$, where $0 \leq r, s, t \leq 6$
Now,
$t=0 \Rightarrow r=1, s=5$
$t=1 \Rightarrow r=2, s=3$
$t=2 \Rightarrow r=3, s=1$
Thus, there are three terms containing $x^{5}$ and hence
Coefficient of $x^{5}$

$$
\begin{aligned}
& =\frac{6!}{1!5!0!} \times 2^{1} \times(-1)^{5} \times 3 \\
& \begin{aligned}
\frac{6!}{2!3!} \times 1!
\end{aligned} 2^{2} \times(-1)^{3} \times 3^{1}+\frac{6!}{3!1!2!} \times 2^{3} \\
& \\
& \quad \times(-1)^{1} \times 3^{2}
\end{aligned}
$$

$=-12-720-4320=-5052$
392 (b)
We have,
$\left(x^{2}-2+\frac{1}{x^{2}}\right)^{n}=\left(x-\frac{1}{x}\right)^{2 n}$
$\therefore T_{r+1}={ }^{2 n} C_{r} x^{2 n-r}\left(-\frac{1}{x}\right)^{r}={ }^{2 n} C_{r} x^{2 n-2 r}(-1)^{r}$
This term will be independent of $x$ if $2 n-2 r=$ 0 i. e. $r=n$
$\therefore$ Number of terms dependent on $x=(2 n+1)-$ $1=2 n$
393 (b)
We have,
Coeff. of $x^{7}=$ Coeff. of $x^{8}$
$\Rightarrow{ }^{n} C_{7} \times 2^{n-7} \times\left(\frac{1}{3}\right)^{7}={ }^{n} C_{8} \times 2^{n-8} \times\left(\frac{1}{3}\right)^{8}$
$\Rightarrow 6\left({ }^{n} C_{7}\right)={ }^{n} C_{8} \Rightarrow 48=n-7 \Rightarrow n=55$
394 (c)
We have,
$\therefore T_{r+1}={ }^{10} C_{r}\left(\sqrt{\frac{x}{3}}\right)^{10-r}\left(\frac{3}{2 x^{2}}\right)^{r}$
$\Rightarrow T_{r+1}={ }^{10} C_{r}\left(\frac{1}{3}\right)^{5-\frac{r}{2}}\left(\frac{3}{2}\right)^{r} x^{5-\frac{5 r}{2}}$
For this term to be independent of $x$, we must have
$5-\frac{5 r}{2}=0 \Rightarrow r=2$, which is an integer
Hence, third term is independent of $x$
Also, $T_{3}={ }^{10} C_{2}\left(\frac{1}{3}\right)^{4}\left(\frac{3}{2}\right)^{2}=45 \times \frac{1}{81} \times \frac{9}{4}=\frac{5}{4}$
395 (d)
Suppose $x^{-4}$ occurs in $(r+1)^{\text {th }}$ term We have,

$$
\begin{aligned}
& T_{r+1}={ }^{10} C_{r}\left(\frac{3}{2}\right)^{10-r}\left(\frac{-3}{x^{2}}\right)^{r} \\
&={ }^{10} C_{r}\left(\frac{3}{2}\right)^{10-r}(-3)^{r} x^{-2 r}
\end{aligned}
$$

This will contain $x^{4}$, if $-2 r=-4 \Rightarrow r=2$
$\therefore$ Coefficient of $x^{-4}={ }^{10} C_{2}\left(\frac{3}{2}\right)^{10-2}(-3)^{2}$

$$
=\frac{3^{12} \times 5}{2^{8}}
$$

(b)

By hypothesis, we have
${ }^{18} C_{2 r+3}={ }^{18} C_{r-3} \Rightarrow 2 r+3=r-3 \Rightarrow r=6$
398 (d)
$49^{n}+16 n-1=(1+48)^{n}+16 n n-1$
$=1+n_{C_{1}}(48)+n_{C_{2}}(48)^{2}+\ldots .+n_{C_{n}}(48)^{n}+$ $16 n-1$
$=$
$(48 n+16 n)+n_{C_{2}}(48)^{2}+$
$n_{C_{3}}(48)^{3}+\ldots+n_{C_{n}}(48)^{n}$
$64 n+8^{2}\left(n_{C_{2}} \cdot 6^{2}+n_{C_{3}} \cdot 6^{3} \cdot 8+n_{C_{4}} \cdot 6^{4}\right.$.
$\left.8^{2}+\ldots \ldots+n_{C_{n}} \cdot 6^{n} \cdot 8^{n-2}\right)$
Hence, $49^{n}+16 n-1$ is divisible by 64
Alternate Let $P(n)=49^{n}+16 n-1$
For $n=1$
$P(1)=49+16-1=64$
399 (d)
We have
$\sum_{r=1}^{n} r^{2} \cdot{ }^{n} C_{r}=n(n-1) 2^{n-2}+n \cdot 2^{n-1}$
and $\sum_{r=1}^{n}(-1)^{r-1} r^{2}{ }^{n} C_{r}=0$
On adding Eqs. (i) and (ii), we get
$2\left[1^{2} C_{1}+3^{2} C_{3}+5^{2} C_{5}+\cdots\right]$

$$
=n(n-1) 2^{n-2}+n \cdot 2^{n-1}
$$

$\Rightarrow 1^{2} C_{1}+3^{2} C_{3}+5^{2} C_{5}+\ldots$

$$
=n(n-1) 2^{n-3}+n \cdot 2^{n-2}
$$

400 (d)
Since, $(3+a x)^{9}={ }^{9} C_{0} 3^{9}+{ }^{9} C_{1} 3^{8}(a x)+$ ${ }^{9} C_{2} 3^{7}(a x)^{2}+{ }^{9} C_{3} 3^{6}(a x)^{3}+\cdots$
Since, coefficient of $x^{2}=$ coefficient of $x^{3}$
$\Rightarrow \quad{ }^{9} C_{2} 3^{7} a^{2}={ }^{9} C_{3} 3^{6} a^{3}$
$\Rightarrow \quad \frac{{ }^{9} C_{2}}{{ }^{9} C_{3}} \cdot 3=a$
$\Rightarrow \frac{\frac{9 \times 8}{2 \times 1}}{\frac{9 \times 8 \times 7}{3 \times 2}} \times 3=a$
$\Rightarrow \quad a=\frac{9}{7}$
401 (a)
The coefficient of $x$ in the expansion of
$(1+x)(1+2 x)(1+3 x) \ldots(1+100 x)$
$=1+2+3+\ldots .+100$
$\frac{100(100+1)}{2}=50 \times 101=5050$
402 (a)
Suppose $x^{5}$ occurs in $(r+1)^{\text {th }}$ term of the
expansion of $\left(x^{2}+\frac{a}{x^{3}}\right)^{10}$
We have,
$T_{r+1}={ }^{10} C_{r}\left(x^{2}\right)^{10-r}\left(\frac{a}{x^{3}}\right)^{r}={ }^{10} C_{r} x^{20-5 r} a^{r}$
$\therefore 20-5 r=5 \Rightarrow r=3$
$\therefore$ Coefficient of $x^{5}={ }^{10} C_{3} a^{3}$
Similarly, Coefficient of $x^{15}={ }^{10} C_{1} a^{1}$
Now,
Coeff. of $x^{5}=$ Coeff. of $x^{15}$
$\Rightarrow{ }^{10} C_{3} a{ }^{3}={ }^{10} C_{1} a$
$\Rightarrow 120 a^{3}=10 a \Rightarrow a^{2}=\frac{1}{12} \Rightarrow a=\frac{1}{2 \sqrt{3}}$
403 (a)
$\because 10$ th term in the expansion of $\left(2-3 x^{3}\right)^{20}$ is ${ }^{20} C_{9} 2^{9}(-1)^{9}(2)^{11}(3)^{9} x^{27}$ and 11 th term is ${ }^{20} C_{10} 2^{10} 3{ }^{10} x^{30}$
$\therefore \quad \frac{{ }^{20} C_{9}(-1)^{9}(2)^{11}(3)^{9} x^{27}}{{ }^{20} C_{10} \cdot 2^{10} \cdot 3^{10} \cdot x^{30}}=\frac{45}{22}$
$\Rightarrow \quad-\frac{10}{11} \cdot \frac{2}{3 x^{3}}=\frac{45}{22}$
$\Rightarrow x^{3}=-\frac{8}{27} \Rightarrow x=-\frac{2}{3}$

