

8.BINOMIAL THEOREM

Single Correct Answer Type

1. If
$$(1 + x)^{15} = C_0 + C_1 x + C_2 x^2 + ... + C_{15} x^{15}$$
, then $C_2 + 2C_3 + 3C_4 + ... + 14C_{15}$ is equal to
a) 142^{14} b) $1322^{14} + 1$ c) $1324^4 - 1$ d) None of these
2. If the coefficients of second, third and fourth terms in the expansion of $(1 + x)^{2n}$ are in AP , then
a) $2n^2 + 9n + 7 = 0$ b) $2n^2 - 9n + 7 = 0$ c) $2n^2 - 9n - 7 = 0$ d) None of these
3. If $|x| < \frac{1}{2}$, then the coefficient of x^r in the expansion of $(\frac{112}{1-2xp^2})$ is
a) n^{2r} b) $(2r - 1)2^r$ c) $r2^{2r+1}$ d) $(2r + 1)2^r$
4. $\binom{30}{(10)} \binom{30}{(10)} - \binom{30}{(11)} \binom{30}{(11)} + ... \binom{30}{(20)} \binom{30}{(30)}$ is equal to
a) $\frac{3^{n} + 1}{2}$ b) $\frac{3^n - 1}{2}$ c) $\frac{3^{n-1} + 1}{2}$ d) $\frac{3^{n-1} - 1}{2}$
5. If $(1 - x + x^2)^n = a_0 + a_1x + a_2x^2 + ... + a_{2n}x^{2n}$, then $a_0 + a_2 + a_4 + ... + a_{2n}$ is equal to
a) $\frac{3^{n} + 1}{2}$ b) $\frac{3^n - 1}{2}$ c) $\frac{3^{n-1} + 1}{2}$ d) $\frac{3^{n-1} - 1}{2}$
6. If $C_0, C_1, C_2, ..., C_n$ denote the binomial coefficient in the expansion of $(1 + x)^n$, then
 $C_0 \frac{C_1}{2} + \frac{C_3}{3} + ... + \frac{C_n}{n+1}$ is equal to
a) $\frac{2^{n+1} - 1}{n+1}$ b) $\frac{2^n - 1}{n}$ c) $\frac{2^{n-1} - 1}{n-1}$ d) $\frac{2^{n+1} - 1}{n+2}$
7. If the ratio of the 7th term from the beginning to the seventh term from the end in the expansion of
 $(\sqrt{2} + \frac{1}{\sqrt{3}})^x i \frac{1}{6}$ then x , is
a) 9 b) $(6, 15 c) 12, 9$ d) None of these
8. If in the expansion of $(x^3 - \frac{1}{x^2})^n$, $n \in N$, sum of the coefficients of x^5 and x^{10} is zero, then $n =$
a) 5 b) 10 c) 15 d) 20
9. The range of the values of the term independent of x in the expansion of $(x \sin^{-1} a + \frac{\cos^{-1} a}{x})^{10}$, $\alpha \in [-1,1]$
is
a) $\left[\frac{1^{10}C_5 \cdot \pi^5}{2^{2s}}, -\frac{10C_5 \pi^{40}}{2^{20}}\right]$ b) $\left[-\frac{1^{10}C_5 \cdot \pi^5}{2^{2s}}, \frac{10C_5 \pi^{4}}{2^{20}}\right]$
c) $\left[\frac{1^{10}C_5 \cdot \pi^5}{2^{2s}}, -\frac{10C_5 \pi^{40}}{2^{20}}\right]$ d) $\left[-\frac{1^{10}C_5 \cdot \pi^5}{2^{2s}}, \frac{10C_5 \pi^3}{2^{20}}\right]$
c) $\left[\frac{1^{10}C_5 \cdot \pi^5}{2^{2s}}, -\frac{10C_5 \pi^{40}}{2^{20}}\right]$ d) $\left[-\frac{1^{10}C_5 \cdot \pi^5}{2^{2s}}, \frac{10C_5 \pi^3}{2^{2s}}\right]$

	a) $\frac{a}{2^n}$	b) <i>n a</i>	c) 0	d) None of these
16.	The value of $\frac{1}{3^6+6\cdot 243\cdot 2+15\cdot}$	18 ³ +7 ³ +3·18·7·25 181·4+20·27·8+15·9·16+6·3·32+64	, is	
	a) 10	b) 1	c) 2	d) 20
17.	2	e expansion of $(1 + x^2)^5 (1$	2	,
	a) 30	b) 60	c) 40	d) None of these
10	If $n = 5$, then	5) 00		uj none or these
10.		$\begin{pmatrix} 2 \\ 1 \end{pmatrix}$		
		$(2)^{2} + + ({}^{n}C_{5})^{2}$ is equal t		
4.0	a) 250	b) 254	c) 245	d) 252
19.	The coefficient of x^{30} in t	he expression $(1 + x)^{1000}$ +		
		5 50	c) $^{1002}C_{50}$	d) $^{1000}C_{51}$
20.	For $ x < 1$, the constant 1	term in the expansion of		
	$\frac{1}{(x-1)^2(x-2)}$ is			
	a) 2	b) 1	c) 0	. 1
	u) 2	5) 1		d) $-\frac{1}{2}$
21.	$(2.1, 2.1, 2.5(1)^2, 2.5.8)$	$(1)^{3}$		2
	$1 + \frac{2 \cdot 1}{3 \cdot 2} + \frac{2 \cdot 5}{3 \cdot 6} \left(\frac{1}{2}\right)^2 + \frac{2 \cdot 5 \cdot 8}{3 \cdot 6 \cdot 9} \cdot \left(\frac{1}{2}\right)^2$	$\frac{1}{2}$ + is equal to		
	÷) =	b) 3 ^{1/4}	c) 4 ^{1/3}	d) 3 ^{1/3}
22.		$2)^{15}$		
	If in the expansion of $\int 3x$	$\left(x-\frac{2}{x^2}\right)^{15}$ rth term is independent	endent of x , then value of r	IS
	a) 6	b) 10	c) 9	d) 12
23.	If $(1 + x)^n = C_0 + C_1 x +$	$C_2 x^2 + \ldots + C_n x^n$, then the v	alue of $\sum_{0 \le r < s \le n} \sum (r+s)(a)$	$C_r + C_s$) is
	a) $n^2 \cdot 2^n$	b) <i>n</i> . 2 ^{<i>n</i>}	c) $n^2 \cdot 2^{2n}$	d) None of these
24.	If $C_0, C_1, C_2, \dots, C_n$ denote	the binomial coefficient in t	the expansion of $(1 + x)^n$, t	hen the value of
		$(2 b)C_2 + \dots + (a + n b)C_n$, is		
			c) $(2 a + nb)2^{n-1}$	d) $(2 a + nb)2^n$
25.	$C_0C_r + C_1C_{r+1} + C_2C_{r+2} +$	$\cdots + C_{n-r}C_n$ is equal to		
	a) $\frac{(2n)!}{(n-r)!(n+r)!}$			
	b) $\frac{n!}{r! (n+r)!}$			
	c) $\frac{n!}{(n-r)!}$			
	d) None of these			
26.	If the coefficients of x^2 and	d x^3 in the expansion of (3)	$(+ax)^9$ are the same, then	the value of <i>a</i> , is
	a) $-\frac{7}{9}$		c) $\frac{7}{9}$	d) $\frac{9}{7}$
	$a_{1} - \frac{1}{9}$	$\frac{1}{7}$	$\frac{c}{9}$	$\frac{a}{7}$
27.	The total number of term	s in the expansion of $(x + a)$	$(x^{100} + (x - a)^{100})$ after sim	plification will be
	a) 202	b) 51	c) 50	d) None of these
28.	Coefficient of x^{19} in the p	olynomial $(x-1)(x-2)$	$\dots (x - 20)$ is equal to	
	a) 210	b) -210	c) 20!	d) None of these
29.	The sum of the last eight	coefficient in the expansion	of $(1 + x)^{15}$ is	
	a) 2 ¹⁶	b) 2 ¹⁵	c) 2 ¹⁴	d) None of these
30.	,	he expansion of $(a + b + c)$	ⁿ will be	-
-	a) <i>n</i> + 1			
	b) $n + 3$			
	-			
	c) $\frac{(n+1)(n+2)}{2}$			
	d) None of these			
31.	The coefficient of v in the	expansion of $(y^2 + c/y)^5$	is	

31. The coefficient of *y* in the expansion of $(y^2 + c/y)^5$, is

22	a) 29 c The velue of $(0,00)^{15}$ is	b) 10 <i>c</i>	c) 10 <i>c</i> ³	d) 20 <i>c</i> ²
32.	The value of (0.99) ¹⁵ is a) 0.8432	b) 0.8601	c) 0.8502	d) None of these
33.	•	is in the expansion of $(x + y)$,	
	a) 1024	b) 924	c) 824	d) 724
34.	If in the expansion of $(1 +$	$(x)^n$, the coefficient of <i>r</i> th a		
	a) 2 <i>n</i>	b) $\frac{2n+1}{2}$	c) $\frac{n}{2}$	d) $\frac{2n-1}{2}$
35.	If the second, third and fo the value of <i>n</i> is	urth term in the expansion	of $(x + a)^n$ are 240,720 and	d 1080 respectively, then
	a) 15	b) 20	c) 10	d) 5
36.	The value of $\frac{1}{81^n} - \frac{10}{81^n} 2^n C_1$	$_{1} \frac{10^{2}}{81^{n}} {}^{2n}C_{2} - \frac{10^{3}}{81^{n}} 2 {}^{2n}C_{3} + \dots$	$+\frac{10^{2n}}{81^n}$ is	
	a) 2	b) 0	c) $\frac{1}{2}$	d) 1
37.	If $(1 + x + x^2)^n = \sum_{r=0}^{2n} a^r$	rx^r	2	
	then, $a_1 - 2a_2 + 3a_3 \dots -$	$2na_{2n}$ is equal to		
	a) n	b) <i>-n</i>	c) 0	d) 2 <i>n</i>
38.		dle term in the expansion o $1 \cdot 2 \cdot 5 = (2n - 1)$		d) None of these
	a) $\frac{1 \cdot 3 \cdot 5 \dots (2n-1)}{n!} 2^n$	b) $\frac{1 \cdot 3 \cdot 5 \dots (2n-1)}{(n !)^2} 2^n$	c) $\frac{(2 n)!}{(n!)^2} 2^{2n}$	d) None of these
39.	The constant term in the	expansion of $(1+x)^{10} (1+x)^{10} (1+x)^{$	$\left(-\frac{1}{x}\right)^{12}$ is	
	a) $^{22}C_{10}$	b) 0	c) $^{22}C_{11}$	d) None of these
40.		for all positive integer $n \ge$ b) 120		d) 24
41.	a) 125 If $(1 + x)^n = C_0 + C_1 x + c_2 x$	$C_2 x^2 + \ldots + C_n x^n$, then the value	c) 100 alue of $C_0 + 2C_1 + 3C_2 + \dots$	d) 24 + ($n + 1$) C_n will be
	a) $(n+2)2^{n-1}$			
	b) $(n+1)2^n$			
	c) $(n+1)2^{n-1}$			
42	d) $(n+2)2^n$	$1 \rangle^n$		0
42.	In the expansion of $(x^3 -$	$\left(\frac{1}{x^2}\right)^n$, $n \in N$, if the sum of the		
42	a) 25 $f(1 + e)$	b) 20 $(1 + x^2)$ then coefficies	c) 15	d) None of these
43.	a) 130	$(x + x^2 + x^3)^6$, then coefficiently (b) 120	c) 128	d) 125
44.	•	nd in the expansion of (\sqrt{x})		.,
		b) ${}^{17}C_6(\sqrt{x})^{11}y^3$		d) None of these
45.		ts in the expansion of $(1 + 2)$		
	a) $\sum 1$			d) $\sum n^3$
46.	If a_k is the coefficient of x	k^{k} in the expansion of $(1 + z)$	$(x + x^2)^n$ for $k = 0, 1, 2,, 2$	2n then
	a) $-a_0$	b) 3 ⁿ	c) $n \cdot 3^{n+1}$	d) $n \cdot 3^n$
47.		e polynomial $(x + {}^{n}C_{0})(x - x)$		
40	a) $n. 2^n$ n-2C + 2n-2C + n-2C	b) $n. 2^{n+1}$	c) $(n+1)2^n$	d) $n. 2^n + 1$
40.	$^{n-2}C_r + 2^{n-2}C_{r-1} + {^{n-2}C_{r-2}}$ a) $^{n+1}C_r$		c) ${}^{n}C_{r+1}$	d) $^{n-1}C_r$
49.		term in the expansion of $\frac{1}{(x-x)}$, <u>.</u>	, -,
	a) 2	b) 1	$(x-2)^{-1)^2}(x-2)^{-1}$. 1
	· , -	,	- , -	d) $-\frac{1}{2}$

50.	Coefficient of <i>x</i> in the exp	bansion of $\left(x^2 + \frac{a}{x}\right)^5$ is		
51.	a) 9 <i>a</i> ² 1 1 1 1	b) 10 <i>a</i> ³	c) 10 <i>a</i> ²	d) 10 <i>a</i>
-	$\frac{1}{n!} + \frac{1}{2!(n-2)!} + \frac{1}{4!(n-2)!} + \frac{1}{2!(n-2)!} + \frac{1}{2!(n-$	(-4)! + is equal to		
	a) $\frac{2^{n-1}}{n!}$	b) $\frac{2^n}{(n+1)!}$	c) $\frac{2^n}{n!}$	d) $\frac{2^{n-2}}{(n-1)!}$
52.	The greatest coefficient i	n the expansion of $(1 + x)^1$	^{.0} , is	(n 1).
	a) $\frac{10!}{5!6!}$	b) $\frac{10!}{(5!)^2}$	c) $\frac{10!}{5!7!}$	d) None of these
53.	0.0.	$(5!)^{12}$ bx) ¹² , the coefficient of x^{-1}	5.7.	
	a) $12a^{11}$	b) $12b^{11}a$	c) $12a^{11}b$	d) $12a^{11}b^{11}$
54.	2	the expansion of $(1 + x^2 - x^2)$	<i>J</i>	uj 12 <i>u b</i>
	a) 476	b) 496	c) 506	d) 528
55.	If the $(r + 1)^{\text{th}}$ term in the	the expansion of $\left\{ \sqrt[3]{\frac{a}{\sqrt{b}}} + \sqrt{\frac{b}{\sqrt{b}}} \right\}$	$\left(\frac{1}{a}\right)^{21}$ contains <i>a</i> and <i>b</i> to one	e and the same power, then
	the value of r , is			
56.	a) 9 The $(r + 1)$ th term in the	b) 10 e expansion of $(1 - x)^{-4}$ wi	c) 8 ill be	d) 6
	a) $\frac{x^r}{r!}$		b) $\frac{(r+1)(r+2)(r+3)}{6}$	x^r
	c) $\frac{r!}{(r+2)(r+3)}x^r$		6 d) None of these	
	4		-	
57.	5 56 507	then the value of $y^2 + 2y$		
58	a) 2 Let $S(k) = 1 + 3 + 5 + 5$	b) -2 .+(2k - 1) = 3 + k ² . Then	c) 0 which of the following is t	d) None of these
50.	a) $S(1)$ is correct	$(2k - 1) = 5 + k \cdot 1101$, which of the following is t	iuc.
	b) $S(k) \Rightarrow S(k+1)$			
	c) $S(k) \neq S(k+1)$	· .] · .] ·		
59.	· ·	cical induction can be used to terms in the expansion of	-	
	a) 96	b) 97	c) 98	d) 99
60.		ansion of $(x/3 - 2/x^2)^{10}$ c		
61	a) 2	b) 3	c) 4	d) 5
01.	When $32^{(32)}$ is divided a) 2	d by 7, then the remainder	is	
	b) 8			
	c) 4			
()	d) None of these			. 7
62.	The value of <i>x</i> , for which	the 6th term in the expansi	ion of $\left\{2^{\log_2\sqrt{(9^{x-1}+7)}} + \frac{1}{2^{(1/2)}}\right\}$	$\frac{1}{(5)\log_2(3^{\chi-1}+1)}$ ⁷ is 84, is equal
	to a) 4	b) 3	c) 2	d) 5
63.	If $P(n): 2 + 4 + 6 + \dots +$,		uj 5
	P(k) = k(k+1) + 2imp			
	P(k+1) = (k+1)(k+1)			
	is true for all $k \in N$. So, s a) $n \ge 1$	tatement $P(n) = n(n + 1)$ b) $n \ge 2$	+ 2 is true for c) $n \ge 3$	d) None of these
64.	-	the expansion of $(1 + 2x + x)$,	2
	a) 20	b) 21	c) 40	d) 41

65.		which are in decreasing or b) ${}^{15}C_{10}$, ${}^{15}C_{9}$, ${}^{15}C_{8}$		d) ¹⁵ C ₇ , ¹⁵ C ₆ , ¹⁵ C ₅
66.	$10^n + 3(4^{n+2}) + 5$ is divi			() (), (), ()
	a) 7	b) 5	c) 9	d) 17
67.		$C_3 \cdot 6^2 + \dots + {}^8C_8 \cdot 6^7$ is eq	ual to	-2
	a) 0	b) 6 ⁷	c) 6 ⁸	d) $\frac{5^8}{6}$
68.	If the coefficients of the se	econd, third and fourth ter	ms in the expansion of $(1 +$	$(x)^n$ are in AP, then <i>n</i> is
	equal to			
	a) 7 b) 2			
	c) 6			
	d) None of these			
69.		$)^{3/2}$ in terms of powers of :	x is valid only if	
	a) $x > \frac{8}{2}$	b) $ x < \frac{8}{3}$	c) $x < \frac{3}{8}$	d) $x < \frac{8}{3}$
70	5	3	binomial expansion $(1 + x)$	5
70.	$C_1 + 3C_3 + 5C_5 + \dots$ is			<i>y</i> ; then the value of
	a) $n2^{n-2}$	b) $n2^{n-1}$	c) $(n+1)2^n$	d) $(n+2)2^{n-1}$
71.	The value of <i>x</i> in the expansion	$msion \ [x + x^{\log_{10} x}]^5, \text{ if the}$	third term in the expansion	n is 1000000, is
=0	a) 10	b) 11	c) 12	d) None of these
72.	${}^{n}C_{0} - \frac{1}{2} {}^{n}C_{1} + \frac{1}{3} {}^{n}C_{2} - \dots$	$+(-1)^n \frac{nc_n}{n+1}$ is equal to		
	a) <i>n</i>	п	c) $\frac{1}{n+1}$	d) $\frac{1}{n-1}$
73.		hen $8^{2n} - (62)^{2n+1}$ is divid		
74	a) 0	b) 2	c) 7	d) 8
74.		erms in the expansion of $\begin{pmatrix}3\\3\end{pmatrix}$		
75	a) 3	b) 18	c) 4	d) 16
75.	The number of terms in the	he expansion of $(x^2 + 1 + \frac{1}{2})$	$\left(\frac{1}{x^2}\right)$, $n \in N$, is	
	a) 2 <i>n</i>	b) 3 <i>n</i>	c) $2n + 1$	d) 3 <i>n</i> + 1
76.		e in the number $19^{2005} + 12$		0 (٢
77	a) 2 The coefficient of the mid	b) 1 dle term in the expansion of	c) 0 of $(r + 2v)^6$ is	d) 8
//.	a) ${}^{6}C_{3}$	b) 8(${}^{6}C_{3}$)	c) $8({}^{6}C_{5})$	d) ⁶ C ₄
78.	The coefficient of x^{-17} in	, , , , , , , , , , , , , , , , , , , ,	-) - (-3)	- <u>-</u>
	$\left(x^4 - \frac{1}{r^3}\right)^{15}$ is			
	a) ${}^{15}C_{11}$	b) ¹⁵ C ₁₂	c) $- {}^{15}C_{11}$	d) $-^{15}C_3$
79.			t for small values of <i>x</i> , then	(a, b) is equal to
	0-	0=	05	2-
	a) $\left(1,\frac{35}{24}\right)$		c) $\left(2, \frac{35}{12}\right)$	d) $\left(2, -\frac{35}{12}\right)$
80.		$C_{16} + 1 = {}^{n}C_{3}$, then <i>n</i> is eq		1) 24
Q 1	a) 19 $49^{n} + 16n - 1$ is divisible	b) 20	c) 18	d) 24
01.	a) 3	b) 19	c) 64	d) 29
82.	,	$x)^{50}$, the sum of the coeffici	,	,
	a) 0	b) 2 ⁴⁹	c) 2 ⁵⁰	d) 2 ⁵¹

83.	The number of terms in th	the expansion of $(x + y + z)$) ¹⁰ , is	
	a) 11	b) 33	c) 66	d) 1000
84.	If $\alpha = \frac{5}{2!3} + \frac{5 \cdot 7}{3!3^2} + \frac{5 \cdot 7}{4!3^2}$	$\frac{1}{2}$ +, then α^2 + 4 α e	equal to	
	a) 21	b) 23	c) 25	d) 27
85.	If $ x < \frac{1}{2}$, then the coeffic	cient of x^r in the expansion	h of $\frac{1+2x}{(1-2x)^2}$, is	
	a) <i>r</i> 2 ^{<i>r</i>}	b) $(2r - 1)2^r$	c) $r2^{2r+1}$	d) $(2r + 1)2^r$
86.	The coefficient of $x^n y^n$ in $((1 + y)(1 + y))^n$	=		
	$\{(1+x)(1+y)(x+y)\}^n$		$\frac{n}{2}$	$\frac{n}{2}$
	7=0	7=0	c) $\sum_{r=0}^{n} C_{r+3}^{2}$	1=0
87.		$f_1x + C_2x^2 + \cdots$, then the value of $f_1x + C_2x^2$	alue of $C_0 C_1 - C_1 C_2 + C_2 C_3$	
88	a) 3^n If a h c are in AP then th	b) $(-1)^n$	c) 2^n $f\{1 + (ax^2 - 2bx + c)^2\}^{197}$	d) None of these
00.	a) -2	b) -1	c) 0	d) 1
89.		-	$14a^{5/2}$, then the value of $\frac{n}{n}$	2
	a) 4	b) 3	c) 12	^c ² d) 6
90.	If $n > 1$, then $(1 + x)^n - x^n$,	-)	-) -
	a) 2 <i>x</i>	b) <i>x</i> ²	c) x^{3}	d) <i>x</i> ⁴
91.	The coefficient of $x^6 a^{-2}$ i	n the expansion of $\left(\frac{x^2}{a} - \frac{a}{x}\right)$	\int_{1}^{12} , is	
	a) ¹² C ₆	b) $-{}^{12}C_5$	c) 0	d) None of these
92.	If $(5 + 2\sqrt{6})^n = I + f; n, l$	$f \in N$ and $0 \le f < 1$, then f	<i>I</i> equals	
	1	. 1	1	J) 1
	a) $\frac{1}{f} - f$	b) $\frac{1}{1+f} - f$	c) $\frac{1}{1+f} + f$	a) $\frac{1-f}{1-f}$
93.	J	± ,)	c) $\frac{1}{1+f} + f$ ${}^{n}C_{2}(a-2) + \dots + (-1)^{n}(a$	±)
93.	J	± ,)	c) $\frac{1+f}{1+f} + f$ ${}^{n}C_{2}(a-2) + \dots + (-1)^{n}(a$	±)
93.	If $n \in N$, $n > 1$, then value a) a b) 0	± ,)	1 1)	±)
93.	If $n \in N, n > 1$, then value a) a b) 0 c) a^2	± ,)	1 1)	±)
	If $n \in N, n > 1$, then value a) a b) 0 c) a^{2} d) 2^{n}	$e ext{ of } E = a - {}^{n}C_{1}(a-1) +$	${}^{n}C_{2}(a-2)+\ldots+(-1)^{n}(a$	$(-n)^n C_n$ is
	If $n \in N, n > 1$, then value a) a b) 0 c) a^{2} d) 2^{n} If a_{r} is the coefficient of x	e of $E = a - {}^{n}C_{1}(a - 1) +$ ${}^{r-1}$ in $(1 + x)^{n} + (1 + x)^{n}$	1 1)	$(-n)^n C_n$ is
	If $n \in N, n > 1$, then value a) a b) 0 c) a^{2} d) 2^{n}	e of $E = a - {}^{n}C_{1}(a - 1) +$ ${}^{r-1}$ in $(1 + x)^{n} + (1 + x)^{n}$	${}^{n}C_{2}(a-2)+\ldots+(-1)^{n}(a$	$(-n)^n C_n$ is
	If $n \in N, n > 1$, then value a) a b) 0 c) a^{2} d) 2^{n} If a_{r} is the coefficient of x $\sum_{r=0}^{n+k+1}(-1)^{r}a_{r}$ is equal t a) 0 b) $n + k + 1$	e of $E = a - {}^{n}C_{1}(a - 1) +$ ${}^{r-1}$ in $(1 + x)^{n} + (1 + x)^{n}$	${}^{n}C_{2}(a-2)+\ldots+(-1)^{n}(a$	$(-n)^n C_n$ is
	If $n \in N, n > 1$, then value a) a b) 0 c) a^2 d) 2^n If a_r is the coefficient of x $\sum_{r=0}^{n+k+1}(-1)^r a_r$ is equal t a) 0 b) $n + k + 1$ c) $(n + k + 1)!$	e of $E = a - {}^{n}C_{1}(a - 1) +$ ${}^{r-1}$ in $(1 + x)^{n} + (1 + x)^{n}$	${}^{n}C_{2}(a-2)+\ldots+(-1)^{n}(a$	$(-n)^n C_n$ is
94.	If $n \in N, n > 1$, then value a) a b) 0 c) a^{2} d) 2^{n} If a_{r} is the coefficient of x $\sum_{r=0}^{n+k+1}(-1)^{r}a_{r}$ is equal t a) 0 b) $n + k + 1$ c) $(n + k + 1)!$ d) $n+k+1C_{r}$	$e \text{ of } E = a - {}^{n}C_{1}(a - 1) + $ ${}^{r-1} \text{ in } (1 + x)^{n} + (1 + x)^{n}$ o	${}^{n}C_{2}(a-2) + \dots + (-1)^{n}(a$	$(-n)^n C_n$ is
	If $n \in N, n > 1$, then value a) a b) 0 c) a^{2} d) 2^{n} If a_{r} is the coefficient of x $\sum_{r=0}^{n+k+1}(-1)^{r}a_{r}$ is equal t a) 0 b) $n + k + 1$ c) $(n + k + 1)!$ d) $n+k+1C_{r}$	e of $E = a - {}^{n}C_{1}(a - 1) +$ ${}^{r-1}$ in $(1 + x)^{n} + (1 + x)^{n}$	${}^{n}C_{2}(a-2)++(-1)^{n}(a$ ++1++(1+x)^{n+k} (n < r	$(-n)^n C_n$ is $(-1 \le n+k)$, then
94.	If $n \in N, n > 1$, then value a) a b) 0 c) a^{2} d) 2^{n} If a_{r} is the coefficient of x $\sum_{r=0}^{n+k+1}(-1)^{r}a_{r}$ is equal t a) 0 b) $n + k + 1$ c) $(n + k + 1)!$ d) $n+k+1C_{r}$	$e \text{ of } E = a - {}^{n}C_{1}(a - 1) + $ ${}^{r-1} \text{ in } (1 + x)^{n} + (1 + x)^{n}$ o	${}^{n}C_{2}(a-2) + \dots + (-1)^{n}(a$	$(-n)^n C_n$ is
94. 95.	If $n \in N, n > 1$, then value a) a b) 0 c) a^2 d) 2^n If a_r is the coefficient of x $\sum_{r=0}^{n+k+1}(-1)^r a_r$ is equal t a) 0 b) $n + k + 1$ c) $(n + k + 1)!$ d) $n+k+1C_r$ The sum of $1 + n\left(1 - \frac{1}{x}\right)$ a) x^n If $T_0, T_1, T_2, \dots, T_n$ represent	$e \text{ of } E = a - {}^{n}C_{1}(a - 1) + $ $r^{-1} \text{ in } (1 + x)^{n} + (1 + x)^{n}$ $+ \frac{n(n+1)}{2!} \left(1 - \frac{1}{x}\right)^{2} + \dots \infty, v$ b) x^{-n} hts the terms in the expanse	${}^{n}C_{2}(a-2)++(-1)^{n}(a$ ++1++(1+x)^{n+k} (n < r	$(n-1)^n C_n$ is $(n-1)^n (n-1)^{n-1} \leq n+k$, then d) None of these
94. 95.	If $n \in N, n > 1$, then value a) a b) 0 c) a^{2} d) 2^{n} If a_{r} is the coefficient of x $\sum_{r=0}^{n+k+1}(-1)^{r}a_{r}$ is equal t a) 0 b) $n + k + 1$ c) $(n + k + 1)!$ d) $n+k+1C_{r}$ The sum of $1 + n(1 - \frac{1}{x})$ a) x^{n} If $T_{0}, T_{1}, T_{2},, T_{n}$ represent $(T_{1} - T_{3} + T_{5})^{2}$ is equal t	$e \text{ of } E = a - {}^{n}C_{1}(a - 1) + $ $r^{-1} \text{ in } (1 + x)^{n} + (1 + x)^{n}$ $+ \frac{n(n+1)}{2!} \left(1 - \frac{1}{x}\right)^{2} + \dots \infty, v$ b) x^{-n} hts the terms in the expanse	${}^{n}C_{2}(a-2) + \dots + (-1)^{n}(a$ ${}^{+1} + \dots + (1+x)^{n+k} (n < r$ will be c) $\left(1 - \frac{1}{x}\right)^{n}$ sion of $(x + a)^{n}$, then $(T_{0} - a)^{n}$	$(n-1)^n C_n$ is $(n-1)^n (n-1)^{n-1} \leq n+k$, then d) None of these
94. 95.	If $n \in N, n > 1$, then value a) a b) 0 c) a^{2} d) 2^{n} If a_{r} is the coefficient of x $\sum_{r=0}^{n+k+1}(-1)^{r}a_{r}$ is equal t a) 0 b) $n + k + 1$ c) $(n + k + 1)!$ d) $n+k+1C_{r}$ The sum of $1 + n\left(1 - \frac{1}{x}\right)^{n+k+1}C_{r}$ The sum of $1 + n\left(1 - \frac{1}{x}\right)^{n+k+1}C_{r}$ a) x^{n} If $T_{0}, T_{1}, T_{2},, T_{n}$ represent $(T_{1} - T_{3} + T_{5})^{2}$ is equal ($x^{2} + a^{2}$)	$e \text{ of } E = a - {}^{n}C_{1}(a - 1) + $ $r^{-1} \text{ in } (1 + x)^{n} + (1 + x)^{n}$ $+ \frac{n(n+1)}{2!} \left(1 - \frac{1}{x}\right)^{2} + \dots \infty, v$ b) x^{-n} hts the terms in the expanse	${}^{n}C_{2}(a-2)++(-1)^{n}(a)$ ${}^{k+1}++(1+x)^{n+k} (n < r)$ will be c) $\left(1-\frac{1}{x}\right)^{n}$ sion of $(x+a)^{n}$, then $(T_{0}-b) (x^{2}+a^{2})^{n}$	$(n-1)^n C_n$ is $(n-1)^n (n-1)^{n-1} \leq n+k$, then d) None of these
94. 95. 96.	If $n \in N, n > 1$, then value a) a b) 0 c) a^{2} d) 2^{n} If a_{r} is the coefficient of x $\sum_{r=0}^{n+k+1}(-1)^{r}a_{r}$ is equal t a) 0 b) $n + k + 1$ c) $(n + k + 1)!$ d) $^{n+k+1}C_{r}$ The sum of $1 + n\left(1 - \frac{1}{x}\right)^{n+k+1}C_{r}$ If $T_{0}, T_{1}, T_{2},, T_{n}$ represent $(T_{1} - T_{3} + T_{5})^{2}$ is eq a) $(x^{2} + a^{2})$ c) $(x^{2} + a^{2})^{1/n}$	$e \text{ of } E = a - {}^{n}C_{1}(a - 1) + $ $r^{-1} \text{ in } (1 + x)^{n} + (1 + x)^{n}$ $+ \frac{n(n+1)}{2!} \left(1 - \frac{1}{x}\right)^{2} + \dots \infty, v$ b) x^{-n} hts the terms in the expansional to	${}^{n}C_{2}(a-2) + \dots + (-1)^{n}(a$ ${}^{+1} + \dots + (1+x)^{n+k} (n < r$ will be c) $\left(1 - \frac{1}{x}\right)^{n}$ sion of $(x + a)^{n}$, then $(T_{0} - a)^{n}$	$(1) - n r^{n} C_{n} is$ $(1) - 1 \le n + k$, then $(2) - 1 \le n + k$, then $(3) None of these$ $(7) - 1 \le n + k$, then $(7) - 1$
94. 95. 96.	If $n \in N, n > 1$, then value a) a b) 0 c) a^{2} d) 2^{n} If a_{r} is the coefficient of x $\sum_{r=0}^{n+k+1}(-1)^{r}a_{r}$ is equal t a) 0 b) $n + k + 1$ c) $(n + k + 1)!$ d) $^{n+k+1}C_{r}$ The sum of $1 + n\left(1 - \frac{1}{x}\right)^{n+k+1}C_{r}$ If $T_{0}, T_{1}, T_{2},, T_{n}$ represent $(T_{1} - T_{3} + T_{5})^{2}$ is eq a) $(x^{2} + a^{2})$ c) $(x^{2} + a^{2})^{1/n}$	$e \text{ of } E = a - {}^{n}C_{1}(a-1) + $ $r^{-1} \text{ in } (1+x)^{n} + (1+x)^{n}$ $+ \frac{n(n+1)}{2!} \left(1 - \frac{1}{x}\right)^{2} + \dots \infty, v$ b) x^{-n} hts the terms in the expansual to 1) th term and $(r + 2)$ th te	${}^{n}C_{2}(a-2)++(-1)^{n}(a)$ ${}^{+1}++(1+x)^{n+k} (n < r)$ will be c) $\left(1-\frac{1}{x}\right)^{n}$ sion of $(x+a)^{n}$, then $(T_{0}-b) (x^{2}+a^{2})^{n}$ d) $(x^{2}+a^{2})^{-1/n}$	$(1) - n r^{n} C_{n} is$ $(1) - 1 \le n + k$, then $(2) - 1 \le n + k$, then $(3) None of these$ $(7) - 1 \le n + k$, then $(7) - 1$
94. 95. 96. 97.	If $n \in N, n > 1$, then value a) a b) 0 c) a^2 d) 2^n If a_r is the coefficient of x $\sum_{r=0}^{n+k+1}(-1)^r a_r$ is equal t a) 0 b) $n + k + 1$ c) $(n + k + 1)!$ d) $n+k+1C_r$ The sum of $1 + n\left(1 - \frac{1}{x}\right)^r$ a) x^n If $T_0, T_1, T_2, \dots, T_n$ represent $(T_1 - T_3 + T_5 - \dots)^2$ is equal a) $(x^2 + a^2)$ c) $(x^2 + a^2)^{1/n}$ If the coefficient of $(2r + a^2)^2$ a) 12	$e \text{ of } E = a - {}^{n}C_{1}(a-1) + $ $r^{-1} \text{ in } (1+x)^{n} + (1+x)^{n}$ $+ \frac{n(n+1)}{2!} \left(1 - \frac{1}{x}\right)^{2} + \dots \infty, v$ b) x^{-n} hts the terms in the expansual to 1) th term and $(r + 2)$ th te to b) 14	${}^{n}C_{2}(a-2)++(-1)^{n}(a)$ ${}^{+1}++(1+x)^{n+k} (n < r)$ will be c) $\left(1-\frac{1}{x}\right)^{n}$ sion of $(x+a)^{n}$, then $(T_{0}-b) (x^{2}+a^{2})^{n}$ d) $(x^{2}+a^{2})^{-1/n}$	$(-n)^{n}C_{n} \text{ is}$ $(-1 \le n+k), \text{ then}$

a) $\frac{n!}{n!n!}$	b) $\frac{(2n)!}{n! n!}$	c) $\frac{(2n)!}{n!}$	d) None of these
99. If <i>n</i> is a positive integer	r and $C_k = {}^n C_k$, then $\sum_{k=1}^n k$	$a^3 \left(\frac{C_k}{C_{k-1}}\right)^2$ equals	
a) $\frac{n(n+1)(n+2)}{12}$	b) $\frac{n(n+1)^2(n+2)}{12}$		d) None of these
100. The value of $1 \times 2 \times 2 \times 4 + 2 \times 2$. 4 × 5 + 2 × 4 × 5 × 6 +		
$1 \times 2 \times 3 \times 4 + $	$(4 \times 5 + 3 \times 4 \times 5 \times 6 + \cdots)$ 3) is		
a) $\frac{1}{5}(n+1)(n+2)(n+2)(n+1)(n+2)(n+1)(n+2)(n+1)(n+1)(n+1)(n+1)(n+1)(n+1)(n+1)(n+1$	(n+4)(n+5)		
b) $\frac{1}{5}n(n+1)(n+2)(n+1)(n+2)(n+1)(n+2)(n+1)(n+1)(n+2)(n+1)(n+1)(n+1)(n+1)(n+1)(n+1)(n+1)(n+1$			
c) $\frac{1}{5}n(n+1)(n+2)(n+2)(n+2)(n+2)(n+2)(n+2)(n+2)(n+2$	(n+3)(n+4)		
101. The coefficient of x^8y^6	z^4 in the expansion of $(x +$	$(y + z)^{18}$, is not equal to	
	b) ${}^{18}C_{10} \times {}^{10}C_6$		d) ${}^{18}C_6 \times {}^{14}C_6$
102. The coefficient of x^4 in	the expansion of $(1 + x + x)$	$(x^2 + x^3)^{11}$, is	
a) 900	b) 909	c) 990	d) 999
		$(-3x + 10x^2)^n$ is <i>a</i> and if	the sum of the coefficients in
the expansion of $(1 + 2)$			
a) $a = 3 b$	b) $a = b^3$	c) $b = a^3$	d) None of these
104. For $n \in N$, $10^{n-2} \ge 81^{n}$			J) > 0
a) $n > 5$	b) $n \ge 5$,	d) $n > 8$
respectively	(n) = (n)	\neq 0) are 1, 0x, and 10x . If	hen, the value of <i>a</i> and <i>n</i> are
a) 2 and 9	b) 3 and 2	c) $\frac{2}{3}$ and 9	d) $\frac{3}{2}$ and 6
106. If the binomial expansi	for of $(a + bx)^{-2}$ is $\frac{1}{4} - 3x$	$+\cdots$, then $(a,b) =$	
a) (2, 12)	b) (2,8)	c) (-2, -12)	d) None of these
^{107.} In the expansion of (x^4)	$\left(1 - \frac{1}{x^3}\right)^{15}$, the coefficient of x	2 ³⁹ , is	
a) 1365	,	c) 455	d) -455
108. For natural numbers <i>n</i> then (<i>m</i> , <i>n</i>)is	$x, n \text{ if } (1 - y)^m (1 + y)^n = 1$	$+ a_1 y^2 + \dots a_1 = a_2 =$	10,
a) (35,20)	b) (45,35)	c) (35,45)	d) (20,45)
109. If a_1, a_2, a_3, a_4 are the a_1, a		ecutive terms in the expans	sion of $(1+x)^n$, then
$\frac{a_1}{a_1+a_2} + \frac{a_3}{a_3+a_4}$ is equal t	0		
a_2	b) $\frac{1}{2} \frac{a_2}{(a_2 + a_3)}$	$a_2 = \frac{2a_2}{2}$	$\frac{2a_3}{2}$
2 5	(2 3)		
	cient in the expansion of (a^2)	$x^2 - 6ax + 11)^{10}$, where a	is constant is 1024, then the
value of <i>a</i> is			
a) 5	b) 1	c) 2	d) 3
a) 5 111. If x^{2r} occurs in $\left(x + \frac{2}{x}\right)$,		
a) $3k - 1$	b) 3 <i>k</i>	c) 3 <i>k</i> + 1	d) 3 <i>k</i> + 2
112. $(2^{3n} - 1)$ will be divisi			
a) 25	b) 8	c) 7	d) 3
		$x^2 - 2x + 1)^{33}$ is equal to	the sum of the coefficient in
the expansion of $(x - a)$		c) Any real number	d) None of these
a) 0	b) 1		uj none or mese

^{114.} If the ninth term in the expansion of $\left\{3^{\log_3 \sqrt{25^{x-1}+7}} + 3^{-1/8 \log_3(5^{x-1}+1)}\right\}^{10}$ is equal to 180 and x > 1, then x equals b) $\log_{5} 15$ c) $\log_{e} 15$ d) None of these a) log₁₀ 15 115. The coefficient of x^{53} in the following expansion $\sum_{m=0}^{100} {}^{100}C_m(x-3)^{100-m} \cdot 2^m$ is b) ¹⁰⁰C₅₃ c) $- {}^{100}C_{53}$ d) $- {}^{100}C_{100}$ a) ${}^{100}C_{47}$ 116. The coefficient of the middle term in the binomial expansion in powers of x of $(1 + \alpha x)^4$ and of $(1 - \alpha x)^6$ is the same, if α equals b) $\frac{10}{2}$ a) $-\frac{5}{2}$ c) $-\frac{3}{10}$ d) $\frac{3}{5}$ 117. The term independent of *x* in the expansion of $\left(\sqrt{\frac{x}{3}} + \frac{3}{2x^2}\right)^{10}$ will be a) $\frac{3}{2}$ b) $\frac{5}{4}$ c) $\frac{5}{2}$ d) None of these 118. If $(1 + x - 2x^2)^6 = 1 + a_1x + a_2x^2 + \ldots + a_{12}x^{12}$, then the value of $a_2 + a_4 + \ldots + a_{12}x^{12}$ Is a) 31 b) 32 c) 64 d) 1024 119. If $(1 + x - 3x^2)^{10} = 1 + a_1x + a_2x^2 + \dots + a_{20}x^{20}$, then $a_2 + a_4 + a_6 + \dots + a_{20}$ is equal to a) $\frac{3^{10} + 1}{2}$ b) $\frac{3^9 + 1}{2}$ c) $\frac{3^{10} - 1}{2}$ d) $\frac{3^9 - 1}{2}$ d) $\frac{3^9 - 1}{2}$ 120. If $(1 + x)^{2n} = a_0 + a_1 x + a_2 x^2 + \dots + a_{2n} x^{2n}$, then $(a_0 - a_2 + a_4 - a_6 + \dots - a_{2n})^2 + (a_1 - a_3 + a_5 - a_7 + \dots + a_{2n-1})^2$ is equal to a) 2ⁿ b) 4ⁿ d) None of these 121. The coefficient of $a^5b^6c^7$ in the expansion of $(bc + ca + ab)^9$ is a) 100 b) 120 c) 720 d) 1260 122. In the polynomial $(x - 1)(x - 2)(x - 3) \dots (x - 100)$. The coefficient of x^{99} is a) 5050 b) -5050 c) 100 d) 99 123. Let *n* be an odd integer. If $\sin n\theta = \sum_{r=0}^{n} b_r \sin^r \theta$ for every value of θ , then a) $b_0 = 1, b_1 = 3$ b) $b_0 = 0, b_1 = n$ d) $b_0 = 0, b_1 = n^2 - 3n + 3$ c) $b_0 = -1, b_1 = n$ ^{124.} In the expansion of $(x + \sqrt{x^2 - 1})^6 + (x - \sqrt{x^2 - 1})^6$, the number of terms, is d) 4 b) 14 125. If *n* is odd, then $C_0^2 - C_1^2 + C_2^2 - C_3^2 + \ldots + (-1)^n C_n^2$ is equal to a) 0 d) $\frac{n!}{\left(\frac{n}{2}\right)^2 !}$ c) ∞ 126. If $(1 - x + x^2)^n = a_0 + a_1 x + \dots + a_{2n} x^{2n}$ then the value of $a_0 + a_2 + a_4 + \dots + a_{2n}$ is a) $3^{n} + \frac{1}{2}$ b) $3^{n} - \frac{1}{2}$ c) $\frac{3^{n} - 1}{2}$ 127. ${}^{15}C_{0} \cdot {}^{5}C_{5} + {}^{15}C_{1} \cdot {}^{5}C_{4} + {}^{15}C_{2} \cdot {}^{5}C_{3} + {}^{15}C_{3} \cdot {}^{5}C_{2} + {}^{15}C_{4} \cdot {}^{5}C_{1}$ is equal to d) $\frac{3^n + 1}{2}$ b) $\frac{20!}{5!15!} - 1$ c) $\frac{20!}{5!15!} - 1$ d) $\frac{20!}{5!15!} - 1$ a) $2^{20} - 2^5$ 128. In the expansion of the following expression $1 + (1 + x) + (1 + x)^2 + ... + (1 + x)^n$, the coefficient of $x^4 (0 \le k \le n)$ is a) $^{n+1}C_{k+1}$ b) ${}^{n}C_{k}$ c) ${}^{n}C_{n-k-1}$ d) None of these

129. In the binomial expansion of $(a - b)^n$, $n \ge 5$, the sum of 5th and 6th terms is zero,

then $\frac{a}{b}$ equals a) $\frac{5}{n-4}$ b) $\frac{6}{n-5}$ c) $\frac{n-5}{6}$ d) $\frac{n-4}{5}$ 130. The middle term in the expansion of $\left(1-\frac{1}{x}\right)^n (1-x)^n$, is b) $- {}^{2n}C_n$ a) ${}^{2n}C_n$ c) $- {}^{2n}C_{n-1}$ d) None of these 131. In the expansion of $\left(x^3 - \frac{1}{x^2}\right)^{15}$, the constant term, is c) $-{}^{15}C_6$ a) ¹⁵C₆ d) 1 132. The number of terms in the expansion of $(a + b + c)^{10}$ is b) 21 d) 66 a) 11 c) 55 133. The expansion of $\frac{1}{(4-3x)^{1/2}}$ by Only One Correct Option will be valid, if a) *x* < 1 b) |x| < 1c) $-\frac{2}{\sqrt{3}} < x < \frac{2}{\sqrt{3}}$ d) None of these 134. The largest term in the expansion of $(3 + 2x)^{50}$, where $x = \frac{1}{5}$ is a) 5th b) 3rd d) 6th 135. If $(1 + ax)^n = 1 + 8x + 24x^2 + ...$, then the values of *a* and *n* are c) 3,6 a) 2, 4 b) 2, 3 d) 1, 2 136. The value of $(0.99)^{15}$ is c) 0.8502 d) None of these a) 0.8432 b) 0.8601 137. $\frac{1}{1!(n-1)!} + \frac{1}{3!(n-3)!} + \frac{1}{5!(n-5)!} + \dots$ is equal to a) $\frac{2^n}{1!}$ b) $\frac{2^{n-1}}{1!}$ a) $\frac{2^{n}}{2}$ b) $\frac{2^{n-1}}{n!}$ d) None of these c) 0 138. If x is so small that x^3 and higher powers of x may be neglected, then $\frac{(1+x)^{3/2} - \left(1 + \frac{1}{2}x\right)^3}{(1-x)^{1/2}}$ may be approximated as a) $\frac{x}{2} - \frac{3}{8}x^2$ b) $-\frac{3}{9}x^{2}$ c) $3x + \frac{3}{8}x^2$ d) $1 - \frac{3}{8}x^2$ 139. The number of terms in the expansion of $(2x + 3y - 4z)^n$, is c) $\frac{(n+1)(n+2)}{2}$ d) None of these b) *n* + 3 a) *n* + 1 140. If *m*, *n*, *r* are positive integers such that r < m, *n*, then ${}^{m}C_{r} + {}^{m}C_{r-1} {}^{n}C_{1} + {}^{m}C_{r-2} {}^{n}C_{2} + \dots + {}^{m}C_{1} {}^{n}C_{r-1} + \dots + {}^{m}C_{1} {}^{n}C_{r-1} + \dots + {}^{m}C_{n-1} {}^{n}C_{n-1} + \dots + {}^{m}C_{n-1} + \dots + {}^{m$ ⁿC_r equals c) ${}^{m+n}C_r + {}^{m}C_r + {}^{n}C_r$ d) None of these a) $({}^{n}C_{r})^{2}$ b) $^{m+n}C_r$ 141. If the expansion in power of *x* of the function $\frac{1}{(1-ax)(1-bx)} \text{ is } a_0 + a_1x + a_2x^2 + a_3x^3 + \dots, \text{ then } a_n \text{ is}$ a) $\frac{a_n - b^n}{b-a}$ b) $\frac{a^{n+1} - b^{n+1}}{b-a}$ c) $\frac{b^{n+1} - a^{n+1}}{b-a}$ d) $\frac{b^n - a^n}{b-a}$ 142. If $(1+2x+x^2)^5 = \sum_{k=0}^{15} a_k x^k$, then $\sum_{k=0}^{7} = a_{2k}$ is equal to b) 156 d) 1024 c) 512 ^{143.} If *n* is even, then the middle term in the expansion of $\left(x^2 + \frac{1}{x}\right)^n$ is 924*x*⁶, then *n* is equal to b) 12 d) None of these 144. The coefficient of x^5 in the expansion of $(1 + x^2)^5(1 + x)^4$ is

- a) 30
- b) 60
- c) 40
- d) None of these

145. The coefficient of x^4 in the expansion of $(1 + x + x^2 + x^3)^n$ is

- a) ${}^{n}C_{4}$
- b) ${}^{n}C_{4} + {}^{n}C_{2}$
- c) ${}^{n}C_{4} + {}^{n}C_{2} + {}^{n}C_{2}$
- d) ${}^{n}C_{4} + {}^{n}C_{2} + {}^{n}C_{1} \cdot {}^{n}C_{2}$

146. If a, b, c, d be four consecutive coefficients in the binomial expansion of $(1 + x)^n$, then the value of the $((h)^2)$ ac)

expression
$$\left\{ \begin{pmatrix} b \\ b+c \end{pmatrix} - \frac{dc}{(a+b)(c+d)} \right\}$$
 (where $x > 0$) is
a) < 0 b) > 0 c) $= 0$ d) 2
147. The coefficient of x^3 in $\left(\sqrt{x^5} + \frac{3}{\sqrt{x^3}} \right)^6$, is

^{148.} The coefficient of x^{-7} in the expansion of $\left[ax - \frac{1}{bx^2}\right]^{11}$ will be

a)
$$\frac{462a^3}{b^5}$$
 b) $\frac{462a^3}{b^6}$ c) $-\frac{462a^3}{b^6}$ d) $-\frac{462a^3}{b^5}$

149. The coefficient of x^5 in the expansion of $(x + 3)^6$ is

a) 18 b) 6 d) 10 c) 12 150. For r = 0, ...,10 let A_r , B_r and C_r denotes, respectively, the coefficient of x^r in the $(1 + x)^{10}$, $(1 + x)^{20}$, and $(1 + x)^{30}$. Then

$$\sum_{r=1}^{10} A_r (B_{10}B_r - C_{10}A_r)$$

is equal to
a) $B_{10} - C_{10}$

b)
$$A_{10}(B_{10}^2 - C_{10}A_{10})$$

151. If p and q be positive, then the coefficients of
$$x^p$$
 and x^q in the expansion of $(1 + x)^{p+q}$ will be

a) Equal

a) n = 2r

c) 0

b) Equal in magnitude but opposite in sign

b) n = 3r

- c) Reciprocal to each other
- d) None of the above

152. If for positive integers r > 1, n > 2, the coefficient of the (3r)th and (r + 2)th powers of x in the expansion of $(1 + x)^{2n}$ are equal, then

c) n = 2r + 1

^{153.} The range of values of the term independent of x in the expansion of $\left(x \sin^{-1} \alpha + \frac{\cos^{-1} \alpha}{x}\right)^{10}$, $\alpha \in [-1,1]$, is

a)
$$\left[-\frac{{}^{10}C_5 \pi^{10}}{2^5}, \frac{{}^{10}C_5 \pi^{10}}{2^{20}}\right]$$
 b) $\left[\frac{{}^{10}C_5 \pi^2}{2^{20}}, \frac{{}^{10}C_5 \pi^2}{2^5}\right]$ c) [1,2] d) (1,2)

154. If the coefficient of *r*th and (r + 1)th terms in the expansion of $(3 + 7x)^{29}$ are equal, then *r* equals d) None of these b) 21 a) 15 c) 14 155. If the third term in the expansion $[x + x^{\log_{10} x}]^5$ is 10⁶, then x (> 1) may be

b) 10 d) 10^2 c) $10^{-5/2}$ a) 1 156. In the expansion of $(1 + x)^{50}$, the sum of the coefficient of add power of x is

- c) 2⁵⁰ a) Zero b) 2⁴⁹ d) 2^{51}
- 157. If the coefficients of r^{th} and $(r + 1)^{th}$ terms in the expansion of $(3 + 7x)^{29}$ are equal, then r =a) 15 b) 21 c) 14 d) None of these
- 158. In the expansion of $(1 + x)^{2n}$ $(n \in N)$, the coefficients of $(p + 1)^{th}$ and $(p + 3)^{th}$ terms are equal, then

100 6

d) None of these

a) $p = n - 2$ 159. Let $(1 + x)^n = \sum_{r=0}^n a_r x^r$	<i>y</i> 1	c) $p = n + 1$	d) $p = 2 n - 2$
$(1 + \frac{a_1}{a_0}) \left(1 + \frac{a_2}{a_1}\right) \dots \left($			
0 1	b) $\frac{(n+1)^n}{n!}$	c) $\frac{n^{n-1}}{(n-1)!}$	d) $\frac{(n+1)^{n-1}}{(n-1)!}$
160. If $C_0, C_1, C_2,, C_n$ denote $\sum_{r=0}^{n} (r+1)C_r$, is		()	()
a) $n 2^n$		c) $(n+2)2^{n-1}$	
161. If $(2x^2 - x - 1)^5 = a_0 + a_1$ a) 15	b) 30	c) 16	d) 32
162. If the coefficient of $(r + $	1) th term in the expansion		at of $(r+3)^{th}$ term, then
	b) $n - r - 1 = 0$		
163. The coefficient of x^{100} in $\sum_{j=0}^{200} (1+x)^j$ is	n the expansion of		
a) $\binom{200}{100}$	b) $\binom{201}{102}$	c) $\binom{200}{101}$	d) $\binom{201}{100}$
164. The value of $\frac{1}{n!} + \frac{1}{2!(n-2)}$	102	(101)	(100)
a) $\frac{2^{n-2}}{(n-1)!}$	b) $\frac{2^{n-1}}{n!}$	c) $\frac{2^n}{n!}$	d) $\frac{2^n}{(n-1)!}$
165. The coefficient of x^4 in t	he expansion of $\left(\frac{x}{2} - \frac{3}{x^2}\right)^{10}$	is	
a) <u>504</u> 259	b) $\frac{450}{263}$	c) $\frac{405}{256}$	d) None of these
166. If $(1 + x)^n = C_0 + C_1 x + C_1 x$	$-C_2 x^2 + \ldots + C_n x^n$. Then, $C_0 C_0$	$C_1 + C_1 C_2 + \ldots + C_{n-1} C_n$ is e	qual to
a) $\frac{(2n)!}{(n-1)!(n+1)!}$	b) $\frac{(2n-1)!}{(n-1)!(n+1)!}$	c) $\frac{2n!}{(n+2)!(n+1)!}$	d) None of these
167. $7^9 + 9^7$ is divided by			
a) 128	b) 24	c) 64	d) 72
^{168.} If $n > (8 + 3\sqrt{7})^{10}$, $n \in$	N, then the last value of n is	;	
a) $(8+3\sqrt{7})^{10} - (8-3)^{10$	$(\sqrt{7})^{10}$	b) $(8+3\sqrt{7})^{10} + (8-3)^{10$	$(\sqrt{7})^{10}$
c) $(8+3\sqrt{7})^{10} - (8-3)^{10$		d) $(8+3\sqrt{7})^{10} - (8-3)^{10$	$\sqrt{7})^{10} - 1$
169. The ninth term of the ex		4	
a) $\frac{1}{512x^9}$		c) $\frac{-1}{256x^8}$	d) $\frac{1}{256x^8}$
170. If x^{2k} occurs in the expansion	nsion of $\left(x + \frac{1}{x^2}\right)^{n-3}$, then		
a) $n - 2k$ is a multiple of	f 2	b) $n - 2k$ is a multiple of	f 3
c) $k = 0$		d) None of the above	
^{171.} The number of terms wi	th integral coefficients in th	ne expansion of $(7^{1/3} + 5^{1/3})$	$(x^{2}x)^{600}$, is
a) 100	b) 50	c) 101	d) None of these
172. The coefficient of x^3y^4z			
a) 70	b) 60	c) 50	d) None of these
173. If $(1 + 2x + x^2)^n = \sum_{r=1}^{2} x^{2r}$ a) $({}^nC_r)^2$	b) ${}^{n}C_{r} \cdot {}^{n}C_{r+1}$	c) $2nC_r$	d) ${}^{2n}C_{r+1}$
$174. \ {}^{20}C_4 + 2 \cdot {}^{20}C_3 + {}^{20}C_2$	<i>y i i i i</i>	cj c _r	$u_j u_{r+1}$
a) 0	b) 1242	c) 7315	d) 6345
175. If $y = 3x + 6x^2 + 10x$	$^{3} + \cdots$, then $x =$		

a) $\frac{4}{2} - \frac{1 \cdot 4}{2^2 \cdot 2} y^2 + \frac{1 \cdot 4 \cdot 7}{3^2 \cdot 3} y^3 \dots$ b) $-\frac{4}{3} + \frac{1 \cdot 4}{3^2 \cdot 2} y^2 - \frac{1 \cdot 4 \cdot 7}{3^2 \cdot 3} y^3 + \cdots$ c) $\frac{4}{3} + \frac{1 \cdot 4}{3^2 \cdot 2}y^2 + \frac{1 \cdot 4 \cdot 7}{3^2 \cdot 3}y^3 + \cdots$ d) None of these 176. The expression $\{x + (x^2 - 1)^{1/2}\}^5 + \{x - (x^2 - 1)^{1/2}\}^5$ is a polynomial of degree d) 8 a) 5 b) 6 c) f177. The value of $C_0^2 + 3 \cdot C_1^2 + 5 \cdot C_2^2 + \cdots$ to (n + 1) terms, is a) ${}^{2n-1}C_{n-1}$ b) $(2n+1)^{2n-1}C_n$ c) $2(n+1) \cdot {}^{2n-1}C_{n-1}$ d) ${}^{2n-1}C_n + (2n+1) \, {}^{2n-1}C_{n-1}$ 178. If $n - {}^{1}C_{r} = (k^{2} - 3) {}^{n}C_{r+1}$, then $k \in$ a) $(-\infty, -2)$ b) $[2, \infty)$ c) $[-\sqrt{3}, \sqrt{3}]$ d) $(\sqrt{3}, 2]$ 179. The total number of terms in the expansion of $(x + y)^{100} + (x - y)^{100}$ after simplification is b) 202 a) 51 c) 100 180. If $(1 + x)^n = C_0 + C_1 x + C_2 x^2 + \dots + C_n x^n$, then for n odd, $C_1^2 + C_3^2 + C_5^2 + \dots + C_n^2$ is equal to c) $\frac{(2 n)!}{2 (n!)^2}$ d) $\frac{(2n)!}{(n!)^2}$ a) 2^{2n-2} b) 2ⁿ 181. $\sum_{k=0}^{10} {}^{20}C_k$ is equal to a) $2^{19} + \frac{1}{2} {}^{20}C_{10}$ b) 2^{19} d) None of these c) ${}^{20}C_{10}$ 182. The approximate value of $(7.995)^{1/3}$ correct to four decimal places is c) 1.9990 d) 1.9991 a) 1.9995 b) 1.9996 183. If the binomial coefficients of 2^{nd} , 3^{rd} and 4^{th} terms in the expansion of $\left\{\sqrt{2^{\log_{10}(10-3^x)}} + \sqrt[5]{2^{(x-2)\log_{10}3}}\right\}^m$ are in A.P and the 6th term is 21, then the value(s) of x, is (are) a) 1.3 d) −1 c) 4 b) 0, 2 184. If ${}^{n}C_{12} = {}^{n}C_{6}$, then ${}^{n}C_{2}$ is equal to c) 306 d) 2556 In the expansion of $\left(x-\frac{1}{x}\right)^6$, the coefficient of x^0 is 185. b) -20 c) 30 d) -30 186. The term independent of *x* in the expansion of $\left(x^{3} + \frac{2}{x^{2}}\right)^{15}$ is a) T_7 b) T_8 c) T_9 d) T_{10} 187. If the (r + 1)th term in the expansion of $\left(\frac{a^{1/3}}{b^{1/6}} + \frac{b^{1/2}}{a^{1/6}}\right)^{21}$ has equal exponents of both a and b, then value of ra) *T*₇ b) *T*₈ is b) 9 a) 0 b) 9 c) 10 The coefficient of 1/x in the expansion of $\left(\frac{1}{x}+1\right)^n (1+x)^n$ is a) 8 d) 11 188. a) ${}^{2n}C_n$ b) ${}^{2n}C_{n-1}$ c) ${}^{2n}C_1$ d) ${}^{n}C_{n-1}$ ^{189.} Let [x] denote the greatest integer less than or equal to x. If $x = (\sqrt{3} + 1)^5$, then [x] is equal to a) 75 b) 50 d) 152 c) 76 190. The value of 2 $C_0 + \frac{2^2}{2}C_1 + \frac{2^3}{3}C_2 + \frac{2^4}{4}C_3 + \dots + \frac{2^{11}}{11}C_{10}$, is b) $\frac{2^{11}-1}{11}$ a) $\frac{3^{11}-1}{11}$ c) $\frac{11^3 - 1}{11}$ d) $\frac{11^2 - 1}{11}$

^{191.} The sum of coefficients of the expansion $\left(\frac{1}{x} + 2x\right)^n$ in 6561. The coefficient of term independent of x is a) 16 ${}^{8}C_{4}$ b) ⁸C₄ c) ${}^{8}C_{5}$ d) None of these 192. In the expansion of $(1 + x)^{30}$, the sum of the coefficients of odd powers of x is d) 2²⁹ a) 2³⁰ b) 2^{31} c) 0 193. The 6th term in the expansion of $\left(2x^2 - \frac{1}{3x^2}\right)^{10}$ is b) $-\frac{896}{27}$ c) $\frac{5580}{17}$ d) None of these a) $\frac{4580}{17}$ 194. ${}^{47}C_4 + \sum_{r=1}^5 {}^{52-r}C_3$ is equal to b) ⁵²C₅ a) ⁴⁵C₆ c) ${}^{52}C_4$ d) None of these 195. The coefficient of x^n in the expansion of $(1 - 2x + 3x^2 - 4x^3 + \cdots)^{-n}$, is b) $\frac{(2 n)!}{(n!)^2}$ c) $\frac{1}{2} \frac{(2 n)!}{(n!)^2}$ a) $\frac{(2n)!}{m!}$ d) None of these 196. The term independent of x in the expansion of $(1 + x)^n (1 + 1/x)^n$, is a) $C_0^2 + 2 C_1^2 + 3 \cdot C_2^2 + \dots + (n+1)C_n^2$ b) $(C_0 + C_1 + \dots + C_n)^2$ c) $C_0^2 + C_1^2 + \dots + C_n^2$ d) None of these 197. If *A* and *B* are coefficients of x^r and x^{n-r} respectively in the expansion of $(1 + x)^n$, then c) A = r Ba) A = Bb) A + B = 0d) A = nB729 + 6(2)(243) + 15(4)(81)198. If $x = \frac{\begin{vmatrix} 1 & 2 & 0 \\ +20(8)(27) + 15(16)(9) \\ +6(32)3 + 64 \end{vmatrix}}{1 + 4(4) + 6(16) + 4(64) + 256}$, then $\sqrt{x} - \frac{1}{\sqrt{x}}$ is equal to c) 1.02 d) 5.2 a) 0.2 199. If the coefficients of *p*th, (p + 1)th and (p + 2)th terms in the expansion of $(1 + x)^n$ are in AP, then a) $n^2 - 2np + 4p^2 = 0$ b) $n^2 - n(4p + 1) + 4p^2 - 2 = 0$ c) $n^2 - n(4p + 1) + 4p^2 = 0$ d) None of the above 200. The sum of the rational terms in the expansion of $(\sqrt{2} + 3^{1/5})^{10}$ is a) 41 b) 32 d) 9 c) 18 201. Let T_n denotes the number of triangles which can be formed using the vertices of a regular polygon of nsides. If $T_{n+1} - T_n = 21$, then *n* equals b) 7 c) 6 d) 4 202. Sum of the last 30 coefficients in the expansion of $(1 + x)^{59}$, when expanded in ascending powers of x is a) 2⁵⁹ b) 2⁵⁸ c) 2³⁰ d) 2^{29} If |x| < 1, then $1 + n\left(\frac{2x}{1+x}\right) + \frac{n(n+1)}{2!}\left(\frac{2x}{1+x}\right)^2 + \dots$ is equal to a) $\left(\frac{2x}{1+x}\right)^n$ b) $\left(\frac{1+x}{2x}\right)^n$ c) $\left(\frac{1-x}{1+x}\right)^n$ 203. d) $\left(\frac{1+x}{1-x}\right)^n$ 204. In the expansion of $(1 + 3x + 2x^2)^6$ the coefficient of x^{11} is c) 216 b) 288 a) 144 d) 576 ^{205.} The term independent of x in the expansion of $(1-x)^2 \left(x+\frac{1}{x}\right)^{10}$, is b) ${}^{10}C_5$ a) ${}^{11}C_{5}$ c) ${}^{10}C_4$ d) None of these 206. If the sum of the coefficient in the expansion of $(x - 2y + 3z)^n$ is 128, then the greatest coefficient in the expansion of $(1 + x)^n$ is d) None of these a) 35 b) 20 c) 10

207. The digit at the unit place in the number $19^{2005} + 11^{2005} - 9^{2005}$ is

a) 2 b) 1 c) 0 d) 8 208. The sum of the series $\sum_{r=0}^{n} (-1)^{r} {}^{n}C_{r} \left(\frac{1}{2^{r}} + \frac{3^{r}}{2^{2r}} + \frac{7^{r}}{2^{3r}} + \frac{15^{r}}{2^{4r}} + \dots + m \text{ terms}\right) \text{ is}$ a) $\frac{2^{mn} - 1}{2^{mn}(2^{n} - 1)}$ b) $\frac{2^{mn} - 1}{2^{n} - 1}$ c) $\frac{2^{mn} + 1}{2^{n} + 1}$ d) None of these 209. r and n are positive integers such that r > 1, n > 2 and coefficients of $(r + 2)^{\text{th}}$ term and $(3r)^{\text{th}}$ term in the expansion of $(1 + x)^{2n}$ are equal, then n equals

a) 3r b) 3r + 1c) 2r d) 2r + 1210. Assuming to be small that x^2 and higher powers of x can be neglected, then $\frac{\left(1+\frac{3}{4}x\right)^{-4}(16-3x)^{1/2}}{(9+x)^{2/3}}$ is approximately equal to a) $1 + \frac{303}{96}x$ b) $1 - \frac{305}{96}x$ c) $1 + \frac{96}{305}x$ 211. The coefficient of x^5 in $(1 + x^2)^5(1 + x)^4$ is a) 20 d) $1 - \frac{96}{305}x$ b) 30 a) 20 d) 55 212. The number of terms in the expansion of $(1 + 5\sqrt{2}x)^9 + (1 - 5\sqrt{2}x)^9$, is b) 7 a) 5 d) 10 ^{213.} If $x = \frac{1}{3}$, then the greatest term in the expansion of $(1 + 4x)^8$ is the b) 6th term a) 3rd term c) 5th term d) 4th term 214. The coefficient of x^n in the expansion of $(1 + 2x + 3x^2 + ...)^{1/2}$ is a) –1 b) 0 d) 1 215. The coefficient of $\lambda^n \mu^n$ in the expansion of $[(1 + \lambda)(1 + \mu)(\lambda + \mu)]^n$ is a) $\sum_{r=0}^{n} C_{r}^{2}$ b) $\sum_{r=0}^{n} C_{r+2}^{2}$ c) $\sum_{r=0}^{n} C_{r+3}^{2}$ d) $\sum_{r=0}^{n} C_{r}^{3}$ 216. If $(1 + x - 2x^{2})^{6} = 1 + C_{1}x + C_{2}x^{2} + C_{3}x^{3} + \dots + C_{12}x^{12}$, then the value of $C_{2} + C_{4} + C_{6} + \dots + C_{12}$, is b) 32 d) None of these a) 30 c) 31 217. If in the expansion of $(1 + ax)^n$, $n \in N$, the coefficients of x and x^2 are 8 and 24 respectively, then c) a = 2, n = 6b) a = 4, n = 2d) a = -2, n = 4a) a = 2, n = 4218. The greatest coefficient in the expansion of $(1 + x)^{2n}$ is c) ${}^{2n}C_{n-1}$ a) ${}^{2n}C_n$ b) ${}^{2n}C_{n+1}$ d) ${}^{2n}C_{2n-1}$ ^{219.} The coefficient of x^4 in $\left(\frac{x}{2} - \frac{3}{x^2}\right)^{10}$ is c) $\frac{450}{263}$ d) None of these a) $\frac{405}{256}$ b) $\frac{504}{259}$ 220. If *n* is an odd natural number and ${}^{n}C_{0} < {}^{n}C_{1} < {}^{n}C_{2} < \cdots < {}^{n}C_{r} > {}^{n}C_{r+1} > {}^{n}C_{r+2} > \cdots > {}^{n}C_{n}$, then r =a) $\frac{n}{2}$ b) $\frac{n-1}{2}$ c) $\frac{n-2}{2}$ d) Does not exist ^{221.} If [*x*] denotes the greatest integer less than or equal to *x*, and F = R - [R] where $R = (5\sqrt{5} + 11)^{2n+1}$, then *R F* is equal to c) 4^{2n-1} a) 4^{2n+1} b) 4²ⁿ d) None of these 222. If the coefficients of 5th, 6th and 7th terms in the expansion of $(1 + x)^n$ be in AP, then the value of *n* is a) 7 only b) 14 only c) 7 or 14 d) None of these 223. Let $R = (2 + \sqrt{3})^{2n}$ and f = R - [R] where [·] denotes the greatest integer function, then R(1 - f) is equal

to b) 2²ⁿ c) $2^{2n} - 1$ d) ${}^{2n}C_n$ a) 1 224. The value of $({}^{7}C_{0} + {}^{7}C_{1}) + ({}^{7}C_{1} + {}^{7}C_{2}) + \dots + ({}^{7}C_{6} + {}^{7}C_{7})$ is a) 2⁸ – 1 b) $2^8 + 1$ c) 2⁸ d) $2^8 - 2$ 225. The value of ${}^{4n}C_0 + {}^{4n}C_4 + {}^{4n}C_8 + \ldots + {}^{4n}C_{4n}$ is a) $2^{4n-2} + (-1)^n 2^{2n-1}$ b) $2^{4n-2} + 2^{2n-1}$ c) $2^{2n-1} + (-1)^n 2^{4n-2}$ d) None of these ^{226.} If there is a term containing x^{2r} in $\left(x + \frac{1}{x^2}\right)^{n-3}$, then a) n - 2r is a positive integral multiple of 3 b) n - 2r is even c) *n* − 2*r* is odd d) None of these 227. Last two digit of the number 19^{9^4} is c) 39 d) 81 228. $1 + \frac{1}{3}x + \frac{1\cdot 4}{3\cdot 6}x^2 + \frac{1\cdot 4\cdot 7}{3\cdot 6\cdot 9}x^3 + \dots$ is equal to b) $(1 + x)^{1/3}$ c) $(1 - x)^{1/3}$ 229. What is the sum of the coefficient of $(x^2 - x - 1)^{99}$? a) 1 d) $(1-x)^{-1/3}$ d) None of these c) -1 230. If *n* is even positive integer, then the condition that the greatest term in the expansion of $(1 + x)^n$ may have the greatest coefficient also, is a) $\frac{n}{n+2} < x < \frac{n+2}{n}$ b) $\frac{n+1}{n} < x < \frac{n}{n+1}$ c) $\frac{n}{n+4} < x < \frac{n+4}{4}$ d) None of these 231. The value of ${}^{15}C_8 + {}^{15}C_9 - {}^{15}C_6 - {}^{15}C_7$ is c) 1 d) None of these a) –1 232. If $(1 - x + x^2)^n = a_0 + a_1x + a_2x^2 + \ldots + a_{2n}x^{2n}$, then the $a_0 + a_2 + a_4 + \ldots + a_{2n}$ is equal to a) $\frac{3^n + 1}{2}$ b) $\frac{3^n - 1}{2}$ c) $\frac{1-3^n}{2}$ d) $3^n + \frac{1}{2}$ 233. If a_r is the coefficient of x^r , in the expansion of $(1 + x + x^2)^n$, then $a_1 - 2a_2 + 3a_3 - \ldots - 2n a_{2n}$ is equal to b) n c) –*n* d) 2n a) 0 234. If ${}^{n-1}C_r = (k^2 - 3)$. ${}^nC_{r+1}$, then *k* is belongs to c) $[-\sqrt{3}, \sqrt{3}]$ b) [2,∞) a) $(-\infty, -2]$ d) $(\sqrt{3}, 2]$ ^{235.} The greatest value of the term independent of x, as α varies over R, in the expansion of $\left(x \cos \alpha + \frac{\sin \alpha}{x}\right)^{20}$ a) ${}^{20}C_{10}$ b) ${}^{20}C_{15}$ c) ${}^{20}C_{19}$ d) None of these 236. If the coefficient of the middle term in the expansion of $(1 + x)^{2n+2}$ is p and the coefficients of middle term in the expansion of $(1 + x)^{2n+1}$ are *q* and *r*, then a) p + q = rc) p = q + rb) p + r = qd) p + q + r = 0^{237.} If sum of the coefficients of the first, second and third terms of the expansion of $\left(x^2 + \frac{1}{x}\right)^m$ is 46, then the coefficient of the term that does not contain *x* is a) 84

- b) 92
- c) 98

d) 106 238. If the r^{th} $(r + 1)^{\text{th}}$ and $(r + 2)^{\text{th}}$ coefficients of $(1 + x)^n$ are in A.P., then *n* is a root of the equation a) $x^2 - x(4r + 1) + 4r^2 - 2 = 0$ b) $x^{2} + x(4r + 1) + 4r^{2} - 2 = 0$ c) $x^{2} + x(4r + 1) + 4r^{2} + 2 = 0$ d) None of these 239. If |x| < 1, then the coefficient of x^6 in the expansion of $(1 + x + x^2)^{-3}$ is c) 9 d) 12 ^{240.} $\left(1 + \frac{C_1}{C_0}\right) \left(1 + \frac{C_2}{C_1}\right) \left(1 + \frac{C_3}{C_2}\right) \dots \left(1 + \frac{C_n}{C_{n-1}}\right)$ is equal to b) $\frac{(n+1)^n}{(n-1)!}$ c) $\frac{(n-1)^n}{m!}$ d) $\frac{(n+1)^n}{n!}$ a) $\frac{n+1}{n!}$ 241. The coefficient of x^{20} in the expansion of $(1 + 3x + 3x^2 + x^3)^{20}$ is b) ³⁰C₂₀ a) ${}^{60}C_{40}$ c) ${}^{15}C_2$ d) None of these 242. The greatest value of the term independent of x in the expansion of $(x \sin \alpha + x^{-1} \cos \alpha)^{10}$, $\alpha \in R$ is d) None of these c) $\frac{1}{2^5} ({}^{10}C_5)$ b) ¹⁰C₅ a) 2⁵ 243. If $(1 + 2x + 3x^2)^{10} = a_0 + a_1 x + a_2 x^2 + \dots + a_{20} x^{20}$, then a_1 equals c) 210 a) 10 d) None of these 244. If the coefficient of rth, (r + 1)th and (r + 2) th terms in the binomial expansion of $(1 + y)^m$ are in AP, then m and r satisfy the equation a) $m^2 - m(4r - 1) + 4r^2 + 2 = 0$ b) $m^2 - m(4r + 1) + 4r^2 - 2 = 0$ d) $m^2 - n(4r - 1) + 4r^2 - 2 = 0$ c) $m^2 - m(4r + 1) + 4r^2 + 2 = 0$ 245. Coefficient of the term independent of *x* in the expansion $\left(x+\frac{1}{x^2}\right)^6$ is equal to a) 10 b) 15 d) None of the above ^{246.} The last term in the binomial expansion of $\left(\sqrt[3]{2} - \frac{1}{\sqrt{2}}\right)^n$ is $\left(\frac{1}{3\sqrt[3]{49}}\right)^{\log_3 8}$. Then, the 5th term from the beginning is d) None of these c) $\frac{1}{2} \times {}^{10}C_4$ a) ${}^{10}C_6$ b) $2 \times {}^{10}C_4$ 247. Using mathematical induction, then numbers a_n 's are defined by $a_0 = 1$, $a_{n+1} = 3n^2 + n + a_n$, $(n \ge 0)$ Then, a_n is equal to a) $n^3 + n^2 + 1$ d) $n^3 + n^2$ b) $n^3 - n^2 + 1$ c) $n^3 - n^2$ 248. The coefficient of x^{-10} in $\left(x^2 - \frac{1}{x^3}\right)^{10}$ is d) -120 a) -252 c) -(5!)249. The value of C_0 + 3 C_1 + 5 C_2 + 7 C_3 ... + (2 n + 1) C_n is equal to b) $2^n + n \cdot 2^{n-1}$ d) None of these a) 2ⁿ c) $2^n \cdot (n+1)$ 250. If *p* is nearly equal to *q* and *n* > 1, such that $\frac{(n+1)p+(n-1)q}{(n-1)p+(n+1)q} = \left(\frac{p}{q}\right)^k$, then the value of *k*, is b) <u>1</u> d) $\frac{1}{n+1}$ c) *n* + 1 a) n 251. If the sum of the coefficients in the expansion of $(a^2x^2 - 2ax + 1)^{51}$ vanishes, then the value of *a* is d) −2 a) 2 c) 1 ^{252.} $1 + \frac{2}{4} + \frac{2 \cdot 5}{4 \cdot 8} + \frac{2 \cdot 5 \cdot 8}{4 \cdot 8 \cdot 12} + \frac{2 \cdot 5 \cdot 8 \cdot 11}{4 \cdot 8 \cdot 12 \cdot 16} + \dots$ is a) $4^{-2/3}$ d) $4^{3/2}$ c) $\sqrt[3]{4}$

		$(\ldots, \infty)^{n-1}$	λ^{n-2} () λ^{n-2} ()
253. The coefficient of x^r (0 \leq $3n-3x+22++x+2n-$, ,, _	sion of $(x + 3)^n + (x + 3)^n$	(x+2) + (x+2)
	b) ${}^{n}C_{r}(3^{n-r}-2^{n-r})$	c) ${}^{n}C_{n}(3^{r}+2^{n-r})$	d) None of these
254. Let C_1 , C_2 , C_3 are the usu			
a) $n2^{n}$	b) 2^{n-1}	c) $n2^{n-1}$	d) 2^{n+1}
255. If the value of r is so sm	all that u ² and guarter name	ers can be neglected, then $\frac{\sqrt{2}}{2}$	$\frac{1}{1+x} + \sqrt[3]{(1-x)^2}$ is equal to
a) $1 + \frac{5}{6}x$	b) $1 - \frac{5}{6}x$	c) $1 + \frac{2}{2}x$	d) $1 - \frac{2}{2}x$
6 256. The coefficient of x^n in t	0	5	3
a) $(n-1)$		c) $(-1)^{n-1}(n-1)^2$	d) $(-1)^{n-1}n$
257. The middle term in the			
a) $^{-8}C_{4}x^{4}a^{4}$		c) ${}^{8}C_{3}x^{5}a^{3}$	d) $^{-8}C_5 x^2 a^5$
258. If the expansion of $(1 +$	$(x)^{20}$, the coefficients of r^{th}	and $(r + 4)^{th}$ terms are eq	ual, then the value of <i>r</i> , is
a) 7	b) 8	c) 9	d) 10
259. If $(1 + x - 2x^2)^6 = 1 + $	$a_1 x + a_2 x^2 + \dots + a_{12} x^{12}$	a_{1} , then $a_{2} + a_{4} + a_{6} + \dots + a_{6}$	$a_{12} =$
a) 30	b) 65	c) 31	d) 63
260. The value of $\frac{1}{81^n} = \frac{10}{81^n} 2^n$	${}^{n}C_{1} + \frac{10^{2}}{24n} {}^{2n}C_{2} - \frac{10^{3}}{24n} {}^{2n}C_{3} +$	$-\dots+\frac{10^{2n}}{24^n}$, is	
) 1 / 2	d) 1
261. $({}^{50}C_0 {}^{50})$	$C_2 = {}^{50}C_4 = {}^{50}C_{50}$	-) -/ -	-) -
a) 2 261. The value of $\left(\frac{{}^{50}C_0}{1} + \frac{{}^{50}C_0}{3}\right)$	$\frac{1}{3} + \frac{1}{5} + \dots + \frac{30}{51}$ is		
			$12^{51} - 1$
a) $\frac{2^{50}}{51}$	b) $\frac{2^{50}-1}{51}$	c) $$	d) $\frac{2^{51}-1}{51}$
262. Matrix <i>A</i> is such that A^2	= 2A - I where <i>I</i> is the ide	entity matrix, then for $n \ge 2$, A^n is equal to
a) $n A - (n - 1)I$	b) <i>n A – I</i>	c) $2^{n-1}A - (n-1)I$	d) $2^{n-1}A - I$
$263. \int_{1}^{2n} \sum_{n=1}^{2n} (100)^{n} \sum_{n=1}^{2} \sum_{n=1}^{2n} (100)^{n} \sum_{n=1}^{2n} \sum_{n=1}$	n		
If $\sum_{r=0}^{\infty} a_r (x-100)^r = \sum_{r=0}^{\infty} a_r (x-100)^r$	$b_r(x - 101)^r$ and		
$a_k = \frac{2^k}{k_{C_m}}$ for all $k \ge n$, the	=0		
3 _n			
	b) $2^n(2^n+1)$	c) $2^n(2^n-1)$, , ,
264. The coefficient of $x^r [0 \le 1]$		sion of $(x + 3)^{n-1} + (x + 3)^{n-1}$	$)^{n-2}(x+2) + (x+1)^{n-2}(x+2) + (x+1)^{n-2}(x+1$
3n - 3x + 22 + + x + 2n -	<i>1</i> is		
a) ${}^{n}C_{r}(3^{r}-2^{n})$ b) ${}^{n}C_{r}(3^{n-r}-2^{n-r})$			
c) ${}^{n}C_{r}(3^{r}+2^{n-1})$			
d) None of these			
	(
^{265.} The middle term in the	expansion of $\left(x + \frac{1}{x}\right)$, is		
a) ${}^{10}C_1 \frac{1}{r}$	b) ¹⁰ C ₅	c) ${}^{10}C_6$	d) ${}^{10}C_7x$
266. The sum of the magnitude		$x = \frac{1}{x^2}$	x^{3}) <i>n</i> is
a) 0	b) 2^n	c) 3^n	d) 4^n
267. The coefficient of x^7 in t	,	,	uj i
a) 67485	b) 67548	c) 67584	d) 67845
268. If <i>n</i> > 3, then	,	,	,
	$(z-1)C_1 + (x-2)(y-2)$	$(z-2)C_2$	
-(x-3)(y-3)(z-3)	$C_3 + \dots + (-1)^n (x - n)(y - 1)^n (x - n)(y - 1)^n (x $	$(z-n)C_n$ equals	
a) <i>xyz</i>	b) <i>nxyz</i>	c) - <i>xyz</i>	d) 0
$269.\frac{c_1}{c_0} + 2\frac{c_2}{c_1} + 3\frac{c_3}{c_2} + \dots + 15$	$\frac{C_{15}}{C_{14}}$ is equal to		
a) 100	b) 120	c) -120	d) None of these
2	,	-	2

a) 0 b) 1 c) 2 d) 3 271. The value of ${}^{5D}C_{4} + \sum_{r=1}^{n} {}^{5n-r}C_{5}$ is a) ${}^{5e}C_{5}$ c) ${}^{5c}C_{3}$ d) ${}^{5c}C_{4}$ 272. The term independent of x in the expansion of $\left(x - \frac{1}{x}\right)^{6} \left(x + \frac{1}{x}\right)^{3}$ is a) ${}^{-3}$ b) 0 c) 3 d) 1 273. The coefficients of $x^{2}y^{2}$, yzt ² and xyzt in the expansion of $(x + y + z + t)^{4}$ are in the ratio a) ${}^{4.2:1}$ b) ${}^{1:2:4}$ c) ${}^{2:4:1}$ d) ${}^{1:4:2}$ 274. If $(1 + 2x + 3x^{2})^{10} = a_{0} + a_{r}x + a_{2}x^{2} + + a_{20}x^{20}$, then a_{1} equals a) 1 d) b) 20 c) 210 d) None of these 275. The coefficient of x^{5} in the expansion of $(1 + x^{2})^{5}(1 + x)^{4}$ is a) 20 b) 60 c) 40 d) None of these 276. The sum of the series $\sum_{n=0}^{n=0} {}^{2n}C_{r, 1}$ is a) 2^{20} b) 2^{19} c) $2^{19} + \frac{1}{2} {}^{20}C_{10}$ d) $2^{19} - \frac{1}{2} {}^{20}C_{10}$ 277. If the last term in the binomial expansion of $(2^{1/3} - \frac{1}{\sqrt{2}})^{n}$ is $(\frac{1}{3x^{1/3}})^{10s_{1}a}$, then the 5th term from the beginning is a) 2^{20} b) 2^{19} c) 105 d) None of these 278. The coefficient of x^{-10} in $\left(x^{2} - \frac{1}{x^{2}}\right)^{10}$, is a) -252 b) 210 c) -51 d) -120 279. The coefficient of x^{n} in the binomial expansion of $(1 - x)^{-2}$, is a) $\frac{2}{21}$ b) $n + 1$ c) n d) $2n$ 280. Let $(1 + x)^{n} = \sum_{n=0}^{m} C_{r} x^{n} and \frac{C_{12}}{C_{2}} + 2\frac{C_{12}}{C_{2}} + 3\frac{C_{2}}{C_{2}} + + n\frac{C_{n-1}}{C_{n-1}}} = \frac{1}{n}(n(n+1)$, then the value of k , is a) $1/2$ b) 2 c) $1/3$ d) 3 281. The coefficient of x^{m} in $(1 + x)^{p} + (1 + x)^{px4} + + (1 + x)^{n}, p \leq m \leq n$ is a) $\frac{n^{n}(n+1)}{2}$ c) $\frac{n(n+1)}{2}$ c) $\frac{n(n+1)}{2}$ d) $\frac{(n-1)(n-2)}{2}$ 283. If the magnitude of the coefficient of x^{7} in the expansion of $\left(x^{2} + \frac{1}{2x}\right)^{n}$, where $a, b, are positive numbers, is equal to the magnitude of the coefficient of x^{-7} in the of \left(ax - \frac{1}{bx^{2}}\right\right)^{n}, then a, and b are connected by the relationa) a^{1} = 1 b) a^{1} = 2284. If C_{n},$	270. The digit at unit's place	in the number $17^{1995} + 11^{1}$	$^{995} - 7^{1995}$, is	
271. The value of ${}^{50}C_4 + \sum_{k=1}^{6} {}^{56-r}C_3$ is a) ${}^{56}C_4$ b) ${}^{56}C_5$ c) ${}^{55}C_5$ d) ${}^{55}C_5$ 272. The term independent of x in the expansion of $(x - \frac{1}{2})^4 (x + \frac{1}{x})^3$ is a) -3 b) 0 c) 3 d) 1 273. The coefficients of x^2y^2 , yzt^2 and $xyzt$ in the expansion of $(x + y + z + t)^4$ are in the ratio a) $4\cdot 2:1$ b) 1: 2: 4 c) 2: 4(1) d) 1: 4: 2 274. If $(1 + 2x + 3x^2)^{10} = a_0 + a_1x + a_2x^2 + + a_{20}x^{20}$, then a_1 equals a) 10 b) 20 c) 2:10 d) None of these 275. The coefficient of x^5 in the expansion of $(1 + x^2)^5(1 + x)^4$ is a) 30 b) 60 c) 40 d) None of these 276. The sum of the series $\sum_{k=0}^{10} {}^{20}C_{r}$, is a) 2^{20} b) 2^{10} c) $2^{19} + \frac{1}{2} {}^{20}C_{10}$ d) $2^{19} - \frac{1}{2} {}^{2a}C_{10}$ 277. If the last term in the binomial expansion of $(2^{1/3} - \frac{1}{\sqrt{2}})^n$ is $(\frac{1}{5^{57}})^{\log_3 8}$, then the 5th term from the beginning is a) 210 b) 420 c) 105 d) None of these 278. The coefficient of x^{n} in the binomial expansion of $(1 - x)^{-2}$, is a) -252 b) 210 c) $-5!$ d) -120 279. The coefficient of x^{n} in the binomial expansion of $(1 - x)^{-2}$, is a) -252 b) 2^{10} c) $1/3$ d) -120 279. The coefficient of x^n in $(1 + x^2)^2 + (1 + x)^{n+1} + \cdots + (1 + x)^n$, $p \le m \le n$ is a) $1/2$ b) 2 c) $1/3$ d) 3 281. The coefficient of x^m in $(1 + x^2)^2 + (1 + x)^{n+1} + \cdots + (1 + x)^n$, $p \le m \le n$ is a) $\frac{1}{2}$ b) $\frac{n(n-1)}{2}$ 283. If the magnitude of the coefficient of x^7 in the expansion of $\left(x^2 + \frac{1}{bx}\right)^n$, where a, b, a re positive numbers, is equal to the magnitude of the coefficient of x^{-7} in the of $\left(ax - \frac{1}{bx^2}\right\right)^n$, then $a,$ and b are connected by the relation a) $ab = 1$ b) $ab = 2$ c) $a^2b = 1$ d) $ab^2 = 2$ 284. If $10, T_0, T_2, \dots, T_n$ represent the term in the expansion of $(x + a)^n$, then the value of $(T_0 - T_2 + T_4 - T_6 (x^2 + T_2 - T_3 + T_5 - T_2 + T_4 - T_6 (x^2 - T_2)^n$ d) None of these				d) 3
a) ${}^{56}C_4$ b) ${}^{56}C_5$ c) ${}^{55}C_3$ d) ${}^{55}C_4$ 272. The term independent of x in the expansion of $(x - \frac{1}{2})^6 (x + \frac{1}{2})^3$ is a) -3 b) 0 c) 3 d) 1 273. The coefficients of x^2y^2 , yzt^2 and $xyzt$ in the expansion of $(x + y + z + t)^4$ are in the ratio a) $4\cdot 2:1$ b) $1:2:4$ c) $2:4:1$ d) $1:4:2$ 274. If $(1 + 2x + 3x^2)^{10} = a_0 + a_1x + a_2x^2 + + a_{20}x^{20}$, then a_1 equals a) 10 b) 20 c) 210 d) None of these 275. The coefficient of x^5 in the expansion of $(1 + x^2)^5(1 + x)^4$ is a) 30 b) 60 c) 40 d) None of these 276. The sum of the series $\sum_{1=0}^{10} {}^{30}C_{r}$, is a) 2^{20} b) 2^{19} c) $2^{19} + \frac{1}{2} {}^{20}C_{10}$ d) $2^{19} - \frac{1}{2} {}^{20}C_{10}$ 277. If the last term in the binomial expansion of $(2^{1/3} - \frac{1}{\sqrt{2}})^n$ is $(\frac{1}{3}C_{10})^{106y.8}$, then the 5th term from the beginning is a) 210 b) 420 c) 105 d) None of these 278. The coefficient of x^{-10} in $(x^2 - \frac{1}{x_3})^{10}$, is a) -252 b) 210 c) -51 d) -120 279. The coefficient of x^{-10} in $(x^2 - \frac{1}{x_3})^{10}$, is a) -252 b) 210 c) -51 d) -120 279. The coefficient of x^{-10} in $(x^2 - \frac{1}{x_3})^{10}$, is a) $\frac{3}{21}$ b) $n + 1$ c) n d) $2n$ 280. Let $(1 + x)^n = \sum_{n=0}^n C_n x^n$ and $\frac{C_0}{C_1} + \frac{2}{C_2} + 3\frac{C_2}{C_3} + 3\frac{C_3}{C_2} + \dots + \frac{n}{a_{C_n-1}}} \frac{1}{n}(n + 1)$, then the value of k, is a) $1/2$ b) 2 c) $1/3$ d) 3 281. The coefficient of x^m in $(1 + x)^{p+1} + \dots + (1 + x)^n$, $p \le m \le n$ is a) $n^{+1}C_{m+1}$ b) $n^{-1}C_{m-1}$ c) n_{C_m} d) n_{C_m+1} 282. If $(1 + x)^n = n_{C_0} + n_{C_1}x + n_{C_2}x^2 + \dots + n_{C_n}x^n$, then $\frac{n_{C_1}}{n_{C_2}} + \frac{a_{C_2}}{n_{C_1}} + \frac{a_{C_2}}{n_{C_2}} + \dots + \frac{n_{C_{n-1}}}{n_{C_{n-1}}}}$ is equal to a) $\frac{n(n-1)}{2}$ 283. If the magnitude of the coefficient of x^7 in the expansion of $\left(x^2 + \frac{1}{bx}\right)^8$, where a, b, a re positive numbers, is equal to the magnitude of the coefficient of x^{-7} in the of $\left(ax - \frac{1}{bx^2}\right\right)^9$, then		$56-rC_3$ is	-	-
$ \begin{pmatrix} x - \frac{1}{x} \end{pmatrix}^4 (x + \frac{1}{x})^3 \text{ is } \\ a) -3 \qquad b) 0 \qquad c) 3 \qquad d) 1 \\ 273. The coefficients of x^2y^2, yzt^2 and xyzt in the expansion of (x + y + z + t)^4 are in the ratio a) 4:2:1 \qquad b) 1:2:4 \qquad c) 2:4:1 \qquad d) 1:4:2 \\ 274. If (1 + 2x + 3x^2)^{10} = a_0 + a_1x + a_2x^2 + \ldots + a_{20}x^{20}, then a_equals \\ a) 10 \qquad b) 20 \qquad c) 210 \qquad d) None of these 275. The coefficient of x5 in the expansion of (1 + x^2)^5(1 + x)^4 is a) 30 \qquad b) 60 \qquad c) 40 \qquad d) None of these 275. The coefficient of x5 in the expansion of (2^{1/3} - \frac{1}{2})^2 = \frac{1}{2} 2^{0}C_{10} \qquad d) None of these 276. The sum of the series \sum_{n=0}^{10} {}^{20}C_r, is a) 2^{20} \qquad b) 2^{19} \qquad c) 2^{19} + \frac{1}{2} {}^{20}C_{10} \qquad d) 2^{19} - \frac{1}{2} {}^{20}C_{10} \\ 277. If the last term in the binomial expansion of (2^{1/3} - \frac{1}{20})^n is (\frac{1}{3^{5/3}})^{10^{5/3}}, then the 5th term from the beginning is a) 210 \qquad b) 420 \qquad c) 105 \qquad d) None of these 278. The coefficient of x^{-10} in (x^2 - \frac{1}{x^2})^{10}, is a) -252 \qquad b) 210 \qquad c) -5! \qquad d) -120279. The coefficient of x^{-10} in (x^2 - \frac{1}{x^2})^{10}, is a) -252 \qquad b) 210 \qquad c) -5! \qquad d) -120279. The coefficient of x^n in the binomial expansion of (1 - x)^{-2}, is a) \frac{2^n}{2t} \qquad b) n + 1 \qquad c) n \qquad d) 2n280. Let (1 + x)^n = \sum_{n=0}^n c_r x^r and \frac{c_{16}}{c_2} + 2\frac{c_{13}}{c_2} + 3\frac{c_{13}}{c_2} + \cdots + n\frac{c_{n-1}}{c_{n-1}}} = \frac{1}{2}n(n+1), then the value of k, is a) 1/2 \qquad b) 2 \qquad c) 1/3 \qquad d) 3281. The coefficient of x^m in (1 + x)^p + (1 + x)^{n+1} + \cdots + (1 + x)^n, p \le m \le n is a) n^n C_{n+1}282. If (1 + x)^n = nC_0 + nC_1x + nC_2x^2 + \ldots + nC_nx^n, then \frac{nc_2}{nc_2} + \frac{n^nc_2}{nc_2} + \ldots + \frac{n^nc_{n-1}}{nc_{n-1}} is equal to a) \frac{n(n-1)}{2}d) \frac{(n-1)(n-2)}{2}283. If the magnitude of the coefficient of x^7 in the expansion of (x^2 + \frac{1}{nx})^8, where a, b, are positive numbers, is equal to the magnitude of the coefficient of x^{-7} in the of x - \frac{1}{bx^2}, then a, and b are connected by the relation a) ab = 1 \qquad b) ab = 2$		b) ⁵⁶ C ₃	c) ${}^{55}C_3$	d) ⁵⁵ C ₄
a) -3 (b) b) c) c) 3 d) 1 273. The coefficients of x^2y^2 , yzt^2 and $xyzt$ in the expansion of $(x + y + z + t)^4$ are in the ratio a) 4:2:1 b) 1:2:4 c) 2:4:1 d) 1:4:2 274. If $(1 + 2x + 3x^2)^{10} = a_0 + a_1x + a_2x^2 + + a_{20}x^{20}$, then a_1 equals a) 10 b) 20 c) 210 d) None of these 275. The coefficient of x^5 in the expansion of $(1 + x^2)^5(1 + x)^4$ is a) 30 b) 60 c) 40 d) None of these 276. The sum of the series $\sum_{1^{10}0}^{10} a^{20}c_r$, is a) 2^{20} b) 2^{19} c) $2^{19} + \frac{1}{2} {}^{20}C_{10}$ d) $2^{19} - \frac{1}{2} {}^{20}C_{10}$ 277. If the last term in the binomial expansion of $(2^{1/3} - \frac{1}{\sqrt{2}})^n$ is $(\frac{1}{3^{5/3}})^{10g_3}$, then the 5th term from the beginning is a) 210 b) 420 c) 105 d) None of these 278. The coefficient of x^{-10} in $(x^2 - \frac{1}{x^3})^{10}$, is a) -252 b) 210 c) -51 d) -120 279. The coefficient of x^{n} in the binomial expansion of $(1 - x)^{-2}$, is a) $\frac{2^n}{2!}$ b) $n + 1$ c) n d) $2n$ 280. Let $(1 + x)^n = \sum_{r=0}^n c_r x^r$ and, $\frac{c_5}{c_6} + 2\frac{c_2}{c_4} + 3\frac{c_5}{c_2} + \cdots + n\frac{c_{n-1}}{c_{n-1}} = \frac{1}{k}n(n + 1)$, then the value of k , is a) $1/2$ b) 2 c) 13 d) 3 281. The coefficient of x^m in $(1 + x)^p + (1 + x)^{p+1} + \cdots + (1 + x)^n, p \le m \le n$ is a) $n^{n+1}C_{m+1}$ b) $n^{-1}C_{m-1}$ c) $n^m C_m$ and d) $n^m C_{m+1}$ 282. If $(1 + x)^n = n^n C_0 + n^n C_1 x + n^n C_2 x^2 + \ldots + n^n C_n x^n$, then $\frac{x_{c_1}}{x_{c_0}} + \frac{3^n c_2}{n_{c_1}} + \frac{n^n c_n}{n_{c_{n-1}}}}$ is equal to a) $\frac{n(n-1)(n-2)}{2}$ 283. If the magnitude of the coefficient of x^7 in the expansion of $(x^2 + \frac{1}{hx})^3$, where $a, b,$ are positive numbers, is equal to the magnitude of the coefficient of x^{-7} in the of $\left(ax - \frac{1}{hx^2}\right\right)^3$, then $a,$ and b are connected by the relation a) $ab = 1$ b) $ab = 2$ c) $a^2b = 1$ d) $ab^2 = 2$ 284. If $T_0, T_1, T_2, \dots, T_n$ represent the term in the expansion of $(x + a)^n$, then the value of $(T_0 - T_2 + T_4 - T^{n} C_0 - T^2 + T^2 - T^2 + T^2 + T^2 + T^2 + T^2 + T$	272. The term independent o	f x in the expansion of		
a) -3 (b) b) c) c) 3 d) 1 273. The coefficients of x^2y^2 , yzt^2 and $xyzt$ in the expansion of $(x + y + z + t)^4$ are in the ratio a) 4:2:1 b) 1:2:4 c) 2:4:1 d) 1:4:2 274. If $(1 + 2x + 3x^2)^{10} = a_0 + a_1x + a_2x^2 + + a_{20}x^{20}$, then a_1 equals a) 10 b) 20 c) 210 d) None of these 275. The coefficient of x^5 in the expansion of $(1 + x^2)^5(1 + x)^4$ is a) 30 b) 60 c) 40 d) None of these 276. The sum of the series $\sum_{1^{10}0}^{10} a^{20}c_r$, is a) 2^{20} b) 2^{19} c) $2^{19} + \frac{1}{2} {}^{20}C_{10}$ d) $2^{19} - \frac{1}{2} {}^{20}C_{10}$ 277. If the last term in the binomial expansion of $(2^{1/3} - \frac{1}{\sqrt{2}})^n$ is $(\frac{1}{3^{5/3}})^{10g_3}$, then the 5th term from the beginning is a) 210 b) 420 c) 105 d) None of these 278. The coefficient of x^{-10} in $(x^2 - \frac{1}{x^3})^{10}$, is a) -252 b) 210 c) -51 d) -120 279. The coefficient of x^{-10} in $(x^2 - \frac{1}{x^3})^{10}$, is a) -252 b) 210 c) -51 d) -120 279. The coefficient of x^n in the binomial expansion of $(1 - x)^{-2}$, is a) $\frac{2^n}{21}$ b) $n + 1$ c) n d) $2n$ 280. Let $(1 + x)^n = \sum_{n=0}^n C_r x^r$ and $\frac{c_5}{c_6} + 2\frac{c_2}{c_4} + 3\frac{c_5}{c_2} + \dots + n\frac{c_n}{c_n-1}} = \frac{1}{k}n(n+1)$, then the value of k, is a) $1/2$ b) 2 c) $1/3$ d) 3 281. The coefficient of x^m in $(1 + x)^p + (1 + x)^{p+1} + \dots + (1 + x)^n, p \le m \le n$ is a) $n^{+1}C_{m+1}$ b) $n^{-1}C_{m-1}$ c) $n^{-1}C_m + \frac{a^nc_m}{nc_6} + \frac{a^nc_2}{nc_1} + \frac{a^nc_m}{nc_6} + \frac{n^nc_m}{nc_{m+1}}$ is equal to a) $\frac{n(n-1)}{2}$ b) $\frac{n(n+2)}{2}$ c) $\frac{n(n+1)}{2}$ d) $(n-1)(n-2)$ 283. If the magnitude of the coefficient of x^7 in the expansion of $(x^2 + \frac{1}{bx})^s$, where $a, b,$ are positive numbers, is equal to the magnitude of the coefficient of x^{-7} in the of $(ax - \frac{1}{bx^2})^s$, then $a,$ and b are connected by the relation a) $ab = 1$ b) $ab = 2$ c) $a^2b = 1$ d) $ab^2 = 2$ 284. If $T_0, T_1, T_2, \dots, T_n$ represent the term in the expansion of $(x + a)^n$, then the value of $(T_0 - T_2 + T_4 - T^{-2}C_0, $	$\left(r - \frac{1}{2}\right)^4 \left(r + \frac{1}{2}\right)^3$ is			
273. The coefficients of x^2y^2 , yzt^2 and $xyzt$ in the expansion of $(x + y + z + t)^4$ are in the ratio a) 4: 2: 1 b) 1: 2: 4 c) 2: 4: 1 d) 1: 4: 2 274. If $(1 + 2x + 3x^2)^{10} = a_0 + a_1x + a_2x^{21} + + a_{20}x^{20}$, then a_1 equals a) 1 b) 2 c) 2: 4 c) 2: 5 c) 2: 10 c) d) None of these 275. The coefficient of x^5 in the expansion of $(1 + x^2)^5(1 + x)^4$ is a) 3 c) b) 60 c) 40 d) None of these 276. The sum of the series $\sum_{p=0}^{10} \frac{2^{20}C_{r}}{15}$ a) 2^{20} b) 2^{19} c) $2^{19} + \frac{1}{2} \frac{2^{20}C_{10}}{10}$ d) $2^{19} - \frac{1}{2} \frac{2^{20}C_{10}}{10}$ 277. If the last term in the binomial expansion of $(2^{1/3} - \frac{1}{\sqrt{2}})^n$ is $(\frac{1}{3^{17/3}})^{\log_3 8}$, then the 5th term from the beginning is a) 210 b) 420 c) 105 d) None of these 278. The coefficient of x^{-10} in $(x^2 - \frac{1}{x_3})^{10}$, is a) -252 b) 210 c) -51 d) -120 279. The coefficient of x^{-10} in $(x^2 - \frac{1}{x_3})^{10}$, is a) -252 b) 20 c) $1/3$ d) 2n 270. Let $(1 + x)^n = \sum_{r=0}^n C_r x^r$ and $\frac{c_1}{c_2} + \frac{2c_2}{c_2} + 3 \frac{c_3}{c_2} + \cdots + n \frac{c_n}{c_{n-1}} = \frac{1}{n}n(n + 1)$, then the value of k , is a) $1/2$ b) 2 c) $1/3$ d) 3 281. The coefficient of x^m in $(1 + x)^p + (1 + x)^{p+1} + \cdots + (1 + x)^n$, $p \le m \le n$ is a) $n^{n+1}C_{m+1}$ b) $n^{-1}C_{m-1}$ c) nC_m d) d 283. If the magnitude of the coefficient of x^7 in the expansion of $\left(x^2 + \frac{1}{bx}\right)^8$, where $a, b,$ are positive numbers, is equal to the magnitude of the coefficient of x^{-7} in the of $\left(ax - \frac{1}{bx^2}\right)^9$, then $a,$ and b are connected by the relation a) $ab = 1$ b) $ab = 2$ c) $a^2b = 1$ d) $ab^2 = 2$ 284. If $T_0, T_1, T_2, \dots, T_n$ represent the term in the expansion of $(x + a)^n$, then the value of $(T_0 - T_2 + T_4 - T^{6G_2 + 2T_1 - T/3 + T/5 + 2,$ is a) $(x^2 - a^2)^n$ b) $(x^2 + a^2)^n$ c) $(a^2 - x^2)^n$ d) None of these		h) ()	-) 2	1 (ل
$\begin{array}{llllllllllllllllllllllllllllllllllll$,	,	2	
274. If $(1 + 2x + 3x^2)^{10} = a_0 + a_1x + a_2x^2 + + a_{20}x^{20}$, then a_1 equals a) 10 b) 20 c) 210 d) None of these 275. The coefficient of x^5 in the expansion of $(1 + x^2)^5(1 + x)^4$ is a) 30 b) 60 c) 40 d) None of these 276. The sum of the series $\sum_{1=0}^{10} {}^{20}C_r$, is a) 2^{20} b) 2^{19} c) $2^{19} + \frac{1}{2} {}^{20}C_{10}$ d) $2^{19} - \frac{1}{2} {}^{20}C_{10}$ 277. If the last term in the binomial expansion of $(2^{1/3} - \frac{1}{\sqrt{2}})^n$ is $(\frac{1}{3^{3/5}})^{\log_3 \theta}$, then the 5th term from the beginning is a) 210 b) 420 c) 105 d) None of these 278. The coefficient of x^{-10} in $(x^2 - \frac{1}{x_3})^{10}$, is a) -252 b) 210 c) -51 d) -120 279. The coefficient of x^n in the binomial expansion of $(1 - x)^{-7}$, is a) $\frac{2^n}{2!}$ b) $n + 1$ c) n d) 2 n 280. Let $(1 + x)^n = \sum_{n=0}^n C_r x^n$ and $\frac{C_3}{C_3} + 2\frac{C_2}{C_4} + 3\frac{C_3}{C_2} + \dots + n\frac{C_{n-1}}{C_{n-1}} = \frac{1}{k}n(n + 1)$, then the value of k , is a) $1/2$ b) 2 281. The coefficient of x^m in $(1 + x)^p + (1 + x)^{p+1} + \dots + (1 + x)^n, p \le m \le n$ is a) $n^{n+1}C_{m+1}$ b) $n^{-1}C_{m-1}$ c) nC_m a) $n^{m}(n + 2)$ c) $\frac{n(n + 1)}{2}$ d) $\frac{n(n - 1)}{2}$ 283. If the magnitude of the coefficient of x^7 in the expansion of $\left(x^2 + \frac{1}{bx}\right)^8$, where a, b, a re positive numbers, is equal to the magnitude of the coefficient of x^{-7} in the of $\left(ax - \frac{1}{bx^2}\right)^8$, then $a,$ and b are connected by the relation a) $ab = 1$ b) $ab = 2$ c) $a^2b = 1$ d) $ab^2 = 2$ 284. If $f_0, T_1, T_2, \dots, T_n$ represent the term in the expansion of $(x + a)^n$, then the value of $(T_0 - T_2 + T_4 - T(6n, 2+T)^{-7}T^2 + T^2 + T^$				
a) 10 b) 20 c) 210 d) None of these 275. The coefficient of x^5 in the expansion of $(1 + x^2)^5(1 + x)^4$ is a) 30 b) 60 c) 40 d) None of these 276. The sum of the series $\sum_{1=0}^{10} {}^{20}C_r$, is a) 2^{20} b) 2^{19} c) $2^{19} + \frac{1}{2} {}^{20}C_{10}$ d) $2^{19} - \frac{1}{2} {}^{20}C_{10}$ 277. If the last term in the binomial expansion of $(2^{1/3} - \frac{1}{\sqrt{2}})^n$ is $(\frac{1}{3^{1/3}})^{\log_3 8}$, then the 5th term from the beginning is a) 210 b) 420 c) 105 d) None of these 278. The coefficient of x^{-10} in $(x^2 - \frac{1}{x^3})^{10}$ is a) -252 b) 210 c) -51 d) -120 279. The coefficient of x^{-10} in $(x^2 - \frac{1}{x^3})^{10}$ is a) -252 b) 210 c) -51 d) -120 279. The coefficient of x^n in the binomial expansion of $(1 - x)^{-2}$, is a) $\frac{2^n}{2!}$ b) $n + 1$ c) n d) $2n$ 280. Let $(1 + x)^n = \sum_{n=0}^n C_r x^r$ and, $\frac{c_0}{c_1} + 2\frac{c_2}{c_1} + 3\frac{c_2}{c_2} + \cdots + n\frac{c_{n-1}}{c_{n-1}} = \frac{1}{k}n(n+1)$, then the value of k , is a) $1/2$ b) 2 c) $1/3$ d) 3 281. The coefficient of x^m in $(1 + x)^p + (1 + x)^{p+1} + \cdots + (1 + x)^n$, $p \le m \le n$ is a) $n^{n+1}C_{m+1}$ b) $n^{-1}C_{m-1}$ c) nC_m d) nC_{m+1} 282. If $(1 + x)^n = nC_0 + nC_1x + nC_2x^2 + \ldots + nC_nx^n$, then $\frac{nc_1}{nc_0} + \frac{2^nc_2}{nc_1} + \frac{3^nc_3}{nc_2} + \ldots + \frac{n^nc_m}{nc_{n-1}}$ is equal to a) $\frac{n(n-1)}{2}$ b) $\frac{n(n+2)}{2}$ c) $\frac{(n+1)}{2}$ c) $\frac{n(n+1)}{2}$ d) $\frac{(n-1)(n-2)}{2}$ 283. If the magnitude of the coefficient of x^7 in the expansion of $(x^2 + \frac{1}{bx})^8$, where $a, b,$ are positive numbers, is equal to the magnitude of the coefficient of x^{-7} in the of $\left(ax - \frac{1}{bx^2}\right)^8$, then a , and b are connected by the relation a) $ab = 1$ b) $ab = 2$ c) $a^2b = 1$ d) $ab^2 = 2$ 284. If T_0 , T_1 , T_2 , \ldots , T_n represent the term in the expansion of $(x + a)^n$, then the value of $(T_0 - T_2 + T_4 - T_6 - T_6 - T_2 + T_2 - T_2 +$	2	,	-	uj 1.4.2
275. The coefficient of x^5 in the expansion of $(1 + x^2)^5(1 + x)^4$ is a) 30 b) 60 c) 40 d) None of these 276. The sum of the series $\sum_{l=0}^{10} {}^{20}C_r$, is a) 2^{20} b) 2^{19} c) $2^{19} + \frac{1}{2} {}^{20}C_{10}$ d) $2^{19} - \frac{1}{2} {}^{20}C_{10}$ 277. If the last term in the binomial expansion of $(2^{1/3} - \frac{1}{\sqrt{2}})^n$ is $(\frac{1}{3^{5/3}})^{\log_3 8}$, then the 5th term from the beginning is a) 210 b) 420 c) 105 d) None of these 278. The coefficient of x^{-10} in $(x^2 - \frac{1}{x^3})^{10}$, is a) -252 b) 210 c) $-5!$ d) -120 279. The coefficient of x^n in the binomial expansion of $(1 - x)^{-2}$, is a) $\frac{2^n}{2!}$ b) $n + 1$ c) n d) $2n$ 280. Let $(1 + x)^n = \sum_{n=0}^n C_r x^r$ and $\frac{C_1}{C_0} + 2\frac{C_2}{C_1} + 3\frac{C_3}{C_2} + \cdots + n\frac{C_n}{C_{n-1}}} = \frac{1}{k}n(n + 1)$, then the value of k , is a) $1/2$ b) 2 c) $1/3$ d) 3 281. The coefficient of x^m in $(1 + x)^p + (1 + x)^{p+1} + \cdots + (1 + x)^n$, $p \le m \le n$ is a) $n^{n+1}C_{m+1}$ b) $n^{-1}C_{m-1}$ c) n^C_m d) n^C_{m+1} 282. If $(1 + x)^n = n^C_0 + n^C_1 x + n^C_2 x^2 + \ldots + n^C_n x^n$, then $\frac{n^C_0}{n_C_0} + \frac{2^n C_2}{n_C_2} + \ldots + \frac{n^n C_n}{n_{C_{n-1}}}}$ is equal to a) $\frac{n(n-1)}{2}$ b) $\frac{n(n+2)}{2}$ c) $\frac{n(n+1)}{2}$ d) $\frac{(n-1)(n-2)}{2}$ 283. If the magnitude of the coefficient of x^7 in the expansion of $\left(x^2 + \frac{1}{bx}\right)^8$, where $a, b,$ are positive numbers, is equal to the magnitude of the coefficient of x^{-7} in the of $\left(ax - \frac{1}{bx^2}\right^8$, then $a,$ and b are connected by the relation a) $ab = 1$ b) $ab = 2$ c) $a^2b = 1$ d) $ab^2 = 2$ 284. If $T_0, T_1, T_2, \ldots, T_n$ represent the term in the expansion of $(x + a)^n$, then the value of $(T_0 - T_2 + T_4 - T^{C_0.2+T_1-T_2+T_2+T_2-T$				d) None of these
$\begin{array}{l} (1+x^2)^5(1+x)^4 \text{ is} \\ a) 30 & b) 60 & c) 40 & d) \text{ None of these} \\ 276. The sum of the series \sum_{r=0}^{10} {}^{20}C_r, isa) 2^{20} & b) 2^{19} & c) 2^{19} + \frac{1}{2} {}^{20}C_{10} & d) 2^{19} - \frac{1}{2} {}^{20}C_{10} \\ 277. \text{ If the last term in the binomial expansion of } \left(2^{1/3} - \frac{1}{\sqrt{2}}\right)^n \text{ is } \left(\frac{1}{3^{5/3}}\right)^{1084}, then the 5th term from the beginning isa) 210 & b) 420 & c) 105 & d) \text{ None of these} \\ 278. The coefficient of x^{-10} \ln \left(x^2 - \frac{1}{x^3}\right)^{10}, isa) -252 & b) 210 & c) -5! & d) -120 \\ 279. The coefficient of x^n in the binomial expansion of (1-x)^{-2}, isa) \frac{2^n}{2!} & b) n+1 & c) n & d) 2n \\ 280. Let (1+x)^n = \sum_{r=0}^{n} C_r x^r \text{ and } \frac{C_1}{C_0} + 2\frac{C_2}{C_1} + 3\frac{C_3}{C_2} + \cdots + n\frac{C_{n-1}}{C_{n-1}} = \frac{1}{k}n(n+1), then the value of k, isa) 1/2 & b) 2 & c) 1/3 & d) 3 \\ 281. The coefficient of x^m \text{ in } (1+x)^p + (1+x)^{p+1} + \cdots + (1+x)^n p \leq m \leq n \text{ is} \\ a) n^{n+1}C_{m+1} & b) n^{-1}C_{m-1} & c) n^C_m & d) n^C_{m+1} \\ 282. If (1+x)^n = n^C_0 + n^C_1 x + n^C_2 x^2 + \ldots + n^C_n x^n, then \frac{n^C_{n-1}}{n_{C_0}} + \frac{2^n C_2}{n_{C_1}} + \frac{n^n C_n}{n_{C_{n-1}}} \text{ is equal to} \\ a) \frac{n(n-1)}{2} \\ b) \frac{n(n+2)}{2} \\ c) \frac{n(n+1)}{2} \\ d) \frac{(n-1)(n-2)}{2} \\ 283. \text{ If the magnitude of the coefficient of x^7 in the expansion of \left(x^2 + \frac{1}{bx}\right)^8, where a, b, a are positive numbers, is equal to the magnitude of the coefficient of x^{-7} in the of \left(ax - \frac{1}{bx^2}\right)^8, then a, and b are connected by the relationa) ab = 1 b) ab = 2 c) a^2b = 1 d) ab^2 = 2284. If T_0, T_1, T_2, \dots, T_n represent the term in the expansion of (x + a^n), then the value of (T_0 - T_2 + T_4 - T^{-2} $	-	5	0) 210	uj None or these
a) 30 b) 60 c) 40 d) None of these 276. The sum of the series $\sum_{n=0}^{10} {}^{20}C_r$, is a) 2^{20} b) 2^{19} c) $2^{19} + \frac{1}{2} {}^{20}C_{10}$ d) $2^{19} - \frac{1}{2} {}^{20}C_{10}$ 277. If the last term in the binomial expansion of $(2^{1/3} - \frac{1}{\sqrt{2}})^n$ is $(\frac{1}{3^{5/3}})^{\log_3 8}$, then the 5th term from the beginning is a) 210 b) 420 c) 105 d) None of these 278. The coefficient of x^{-10} in $(x^2 - \frac{1}{x^3})^{10}$, is a) -252 b) 210 c) $-5!$ d) -120 279. The coefficient of x^n in the binomial expansion of $(1 - x)^{-2}$, is a) $\frac{2^n}{2!}$ b) $n + 1$ c) n d) $2n$ 280. Let $(1 + x)^n = \sum_{n=0}^n C_r x^r$ and $\frac{c_1}{c_0} + 2\frac{c_2}{c_1} + 3\frac{c_3}{c_2} + \dots + n\frac{c_n}{c_{n-1}} = \frac{1}{k}n(n + 1)$, then the value of k , is a) $1/2$ b) 2 c) $1/3$ d) 3 281. The coefficient of x^m in $(1 + x)^p + (1 + x)^{p+1} + \dots + (1 + x)^n, p \le m is$ a) $n^{+1}C_{m+1}$ b) $n^{-1}C_{m-1}$ c) nC_m d) n^3 282. If $(1 + x)^n = {}^nC_0 + {}^nC_1x + {}^nC_2x^2 + \dots + {}^nC_nx^n$, then $\frac{n^2}{nc_0} + \frac{2^nc_2}{nc_2} + \dots + \frac{n^nc_n}{nc_{n-1}}$ is equal to a) $\frac{n(n-1)}{2}$ b) $\frac{n(n+1)}{2}$ c) $\frac{n(n+1)}{2}$ c) $\frac{n(n+1)}{2}$ d) $(n-1)(n-2)$ 283. If the magnitude of the coefficient of x^7 in the expansion of $(x^2 + \frac{1}{bx})^8$, where $a, b,$ are positive numbers, is equal to the magnitude of the coefficient of x^{-7} in the of $(ax - \frac{1}{bx^2})^8$, then $a,$ and b are connected by the relation a) $ab = 1$ b) $ab = 2$ c) $a^2b = 1$ d) $ab^2 = 2$ 284. If $t_0, \tau_1, \tau_2, \dots, \tau_n$ represent the term in the expansion of $(x + a)^n$, then the value of $(T_0 - T_2 + T_4 - T^2(T_3 - T^3/T_3 - T^2)T_3 - T^3/T_3 - T^3/T$		ne expansion of		
276. The sum of the series $\sum_{r=0}^{10} \frac{2^{50}C_r}{r}$ is a) 2^{20} b) 2^{19} c) $2^{19} + \frac{1}{2} 2^{0}C_{10}$ d) $2^{19} - \frac{1}{2} 2^{0}C_{10}$ 277. If the last term in the binomial expansion of $(2^{1/3} - \frac{1}{\sqrt{2}})^n$ is $(\frac{1}{3^{5/5}})^{\log_5 8}$, then the 5th term from the beginning is a) 210 b) 420 c) 105 d) None of these 278. The coefficient of x^{-10} in $(x^2 - \frac{1}{x^3})^{10}$, is a) -252 b) 210 c) -51 d) -120 279. The coefficient of x^n in the binomial expansion of $(1 - x)^{-2}$, is a) $\frac{2^n}{2!}$ b) $n + 1$ c) n d) $2n$ 280. Let $(1 + x)^n = \sum_{r=0}^{n} C_r x^r$ and $\frac{c_1}{c_0} + 2\frac{c_2}{c_1} + 3\frac{c_3}{c_2} + \cdots + n\frac{c_{n-1}}{c_{n-1}} = \frac{1}{k}n(n+1)$, then the value of k , is a) $1/2$ b) 2 c) $1/3$ d) 3 281. The coefficient of x^m in $(1 + x)^p + (1 + x)^{p+1} + \cdots + (1 + x)^n, p \le m \le n$ is a) $n^{n+1}C_{m+1}$ b) $n^{-1}C_{m-1}$ c) nC_m d) $2n$ 282. If $(1 + x)^n = nC_0 + nC_1x + nC_2x^2 + \ldots + nC_nx^n$, then $\frac{nc_0}{nc_0} + \frac{2^nc_2}{nc_1} + \frac{3^nc_3}{nc_2} + \ldots + \frac{n^nc_n}{nc_{n-1}}$ is equal to a) $\frac{n(n-1)}{2}$ b) $\frac{n(n+2)}{2}$ c) $\frac{n(n+1)}{2}$ d) $(\frac{n-1)(n-2)}{2}$ 283. If the magnitude of the coefficient of x^7 in the expansion of $(x^2 + \frac{1}{bx})^9$, where a, b, a re positive numbers, is equal to the magnitude of the coefficient of x^{-7} in the of $\left(ax - \frac{1}{bx^2}\right)^8$, then $a,$ and b are connected by the relation a) $ab = 1$ b) $ab = 2$ c) $a^2b = 1$ d) $ab^2 = 2$ 284. If $T_0, T_1, T_2, \dots, T_n$ represent the term in the expansion of $(x + a)^n$, then the value of $(T_0 - T_2 + T_4 - T^{n}T^{n}T^{n}T^{n}T^{n}T^{n}T^{n}T^{n}$		b) 60	c) 40	d) None of these
a) 2^{20} b) 2^{19} c) $2^{19} + \frac{1}{2} {}^{20}C_{10}$ d) $2^{19} - \frac{1}{2} {}^{20}C_{10}$ 277. If the last term in the binomial expansion of $\left(2^{1/3} - \frac{1}{\sqrt{2}}\right)^n$ is $\left(\frac{1}{3^{5/3}}\right)^{\log_5 8}$, then the 5th term from the beginning is a) 210 b) 420 c) 105 d) None of these 278. The coefficient of x^{-10} in $\left(x^2 - \frac{1}{x^3}\right)^{10}$, is a) -252 b) 210 c) $-5!$ d) -120 279. The coefficient of x^n in the binomial expansion of $(1 - x)^{-2}$, is a) $\frac{2^n}{2!}$ b) $n + 1$ c) n d) $2n$ 280. Let $(1 + x)^n = \sum_{r=0}^n C_r x^r$ and, $\frac{c_1}{c_0} + 2\frac{c_2}{c_1} + 3\frac{c_3}{c_2} + \dots + n\frac{c_n}{c_{n-1}} = \frac{1}{k}n(n+1)$, then the value of k , is a) $1/2$ b) 2 c) $1/3$ d) 3 281. The coefficient of x^m in $(1 + x)^p + (1 + x)^{p+1} + \dots + (1 + x)^n, p \le m \le n$ is a) $n^{n+1}C_{m+1}$ b) $n^{-1}C_{m-1}$ c) nC_m d) ${}^nC_{m+1}$ 282. If $(1 + x)^n = {}^nC_0 + {}^nC_1x + {}^nC_2x^2 + \dots + {}^nC_nx^n$, then $\frac{nc_1}{nc_0} + \frac{2^nc_2}{nc_1} + \frac{3^nc_2}{nc_2} + \dots + \frac{n^nc_n}{nc_{n-1}}}$ is equal to a) $\frac{n(n-1)}{2}$ 283. If the magnitude of the coefficient of x^7 in the expansion of $\left(x^2 + \frac{1}{bx}\right)^6$, where a, b, a re positive numbers, is equal to the magnitude of the coefficient of x^{-7} in the of $\left(ax - \frac{1}{bx^2}\right)^8$, then $a,$ and b are connected by the relation a) $ab = 1$ b) $ab = 2$ c) $a^2b = 1$ d) $ab^2 = 2$ 284. If $T_0, T_1, T_2, \dots, T_n$ represent the term in the expansion of $(x + a)^n$, then the value of $(T_0 - T_2 + T_4 - T^{n}C^n - T^2 + T^2 - T^2 + T^2 - T^2 + $	-	,	0) 10	
277. If the last term in the binomial expansion of $(2^{1/3} - \frac{1}{\sqrt{2}})^n \operatorname{is} (\frac{1}{3^{2/3}})^{\log_3 8}$, then the 5th term from the beginning is a) 210 b) 420 c) 105 d) None of these 278. The coefficient of x^{-10} in $(x^2 - \frac{1}{x^3})^{10}$, is a) -252 b) 210 c) $-5!$ d) -120 279. The coefficient of x^n in the binomial expansion of $(1 - x)^{-2}$, is a) $\frac{2^n}{2!}$ b) $n + 1$ c) n d) $2n$ 280. Let $(1 + x)^n = \sum_{r=0}^n C_r x^r$ and $\frac{C_1}{C_2} + 2\frac{C_2}{C_1} + 3\frac{C_3}{C_2} + \dots + n\frac{C_n}{C_{n-1}} = \frac{1}{k}n(n+1)$, then the value of k , is a) $1/2$ b) 2 c) $1/3$ d) 3 281. The coefficient of x^m in $(1 + x)^p + (1 + x)^{p+1} + \dots + (1 + x)^n, p \le m \le n$ is a) $n^{n+1}C_{m+1}$ b) $n^{-1}C_{m-1}$ c) nC_m d) nC_{m+1} 282. If $(1 + x)^n = nC_0 + nC_1x + nC_2x^2 + \dots + nC_nx^n$, then $\frac{nC_1}{nC_0} + \frac{2^nC_2}{nC_1} + \frac{3^nC_3}{nC_2} + \dots + \frac{n^nC_n}{nC_{n-1}}$ is equal to a) $\frac{n(n-1)}{2}$ b) $\frac{n(n+2)}{2}$ c) $\frac{n(n+1)}{2}$ d) $\frac{(n-1)(n-2)}{2}$ 283. If the magnitude of the coefficient of x^7 in the expansion of $(x^2 + \frac{1}{bx})^8$, where $a, b,$ are positive numbers, is equal to the magnitude of the coefficient of x^{-7} in the of $(ax - \frac{1}{bx^2})^8$, then $a,$ and b are connected by the relation a) $ab = 1$ b) $ab = 2$ c) $a^2b = 1$ d) $ab^2 = 2$ 284. If $t_0, t_1, t_2, \dots, t_n$ represent the term in the expansion of $(x + a)^n$, then the value of $(T_0 - T_2 + T_4 - T_2B_2 + T_1 - T_3B_1 + T_2B_1 + T_2B_1 + T_2B_1$ b) $(x^2 - a^2)^n$ b) $(x^2 + a^2)^n$ c) $(a^2 - x^2)^n$ d) None of these			1 20 -	N = 10 1 20 -
beginning is a) 210 b) 420 c) 105 d) None of these 278. The coefficient of x^{-10} in $\left(x^2 - \frac{1}{x^2}\right)^{10}$, is a) -252 b) 210 c) -5! d) -120 279. The coefficient of x^n in the binomial expansion of $(1 - x)^{-2}$, is a) $\frac{2^n}{2!}$ b) $n + 1$ c) n d) 2 n 280. Let $(1 + x)^n = \sum_{r=0}^n C_r x^r$ and $\frac{c_1}{c_0} + 2\frac{c_2}{c_1} + 3\frac{c_3}{c_2} + \dots + n\frac{c_n}{c_{n-1}} = \frac{1}{k}n(n+1)$, then the value of k , is a) 1/2 b) 2 c) 1/3 d) 3 281. The coefficient of x^m in $(1 + x)^p + (1 + x)^{p+1} + \dots + (1 + x)^n, p \le m \le n$ is a) $n^{+1}C_{m+1}$ b) $n^{-1}C_{m-1}$ c) n^{C_m} d) $n^{C_{m+1}}$ 282. If $(1 + x)^n = nC_0 + nC_1x + nC_2x^2 + \dots + nC_nx^n$, then $\frac{nc_1}{nc_0} + \frac{2nc_2}{nc_1} + \frac{3nc_3}{nc_2} + \dots + \frac{nnc_n}{nc_{n-1}}$ is equal to a) $\frac{n(n-1)}{2}$ b) $\frac{n(n+2)}{2}$ c) $\frac{n(n+1)}{2}$ d) $\frac{(n-1)(n-2)}{2}$ 283. If the magnitude of the coefficient of x^7 in the expansion of $\left(x^2 + \frac{1}{bx}\right)^8$, where a, b , are positive numbers, is equal to the magnitude of the coefficient of x^{-7} in the of $\left(ax - \frac{1}{bx^2}\right)^8$, then a , and b are connected by the relation a) $ab = 1$ b) $ab = 2$ c) $a^2b = 1$ d) $ab^2 = 2$ 284. If $T_0, T_1, T_2, \dots, T_n$ represent the term in the expansion of $(x + a)^n$, then the value of $(T_0 - T_2 + T_4 - T_6x^2 + T_1 - T_3 + T_2 + \dots - T_6$.	a) 2^{20}	b) 2 ¹⁹	c) $2^{19} + \frac{1}{2} 2^{10}C_{10}$	d) $2^{19} - \frac{1}{2} 2^{10}C_{10}$
beginning is a) 210 b) 420 c) 105 d) None of these 278. The coefficient of x^{-10} in $\left(x^2 - \frac{1}{x^2}\right)^{10}$, is a) -252 b) 210 c) -5! d) -120 279. The coefficient of x^n in the binomial expansion of $(1 - x)^{-2}$, is a) $\frac{2^n}{2!}$ b) $n + 1$ c) n d) 2 n 280. Let $(1 + x)^n = \sum_{r=0}^n C_r x^r$ and $\frac{c_1}{c_0} + 2\frac{c_2}{c_1} + 3\frac{c_3}{c_2} + \dots + n\frac{c_n}{c_{n-1}} = \frac{1}{k}n(n+1)$, then the value of k , is a) 1/2 b) 2 c) 1/3 d) 3 281. The coefficient of x^m in $(1 + x)^p + (1 + x)^{p+1} + \dots + (1 + x)^n, p \le m \le n$ is a) $n^{+1}C_{m+1}$ b) $n^{-1}C_{m-1}$ c) $n^{C}C_m$ d) $n^{C}C_{m+1}$ 282. If $(1 + x)^n = nC_0 + nC_1x + nC_2x^2 + \dots + nC_nx^n$, then $\frac{nc_1}{nc_0} + \frac{2nc_2}{nc_1} + \frac{3nc_3}{nc_2} + \dots + \frac{nnc_n}{nc_{n-1}}$ is equal to a) $\frac{n(n-1)}{2}$ b) $\frac{n(n+2)}{2}$ c) $\frac{n(n+1)}{2}$ d) $\frac{(n-1)(n-2)}{2}$ 283. If the magnitude of the coefficient of x^7 in the expansion of $\left(x^2 + \frac{1}{bx}\right)^8$, where a, b , are positive numbers, is equal to the magnitude of the coefficient of x^{-7} in the of $\left(ax - \frac{1}{bx^2}\right)^8$, then $a,$ and b are connected by the relation a) $ab = 1$ b) $ab = 2$ c) $a^2b = 1$ d) $ab^2 = 2$ 284. If $T_0, T_1, T_2, \dots, T_n$ represent the term in the expansion of $(x + a)^n$, then the value of $(T_0 - T_2 + T_4 - T_{C0}x^2 + T_1 - T_2^3 + T_2^2 + T_{2} - T_{2}^3 + T_{2}^2 + T_{2} - T_{2}^3 + T_{2}^2 + T_{2}^2 - T_{2}^3 + T_{2}^2 + T_{2}^3 + T_{2}$	277. If the last term in the bit	nomial expansion of $\left(2^{1/3}\right)$	$\left(\frac{1}{1}\right)^n$ is $\left(\frac{1}{1}\right)^{\log_3 8}$ then the	o 5th term from the
a) 210 b) 420 c) 105 d) None of these 278. The coefficient of x^{-10} in $\left(x^2 - \frac{1}{x^3}\right)^{10}$, is a) -252 b) 210 c) -51 d) -120 279. The coefficient of x^n in the binomial expansion of $(1 - x)^{-2}$, is a) $\frac{2^n}{2!}$ b) $n + 1$ c) n d) $2n$ 280. Let $(1 + x)^n = \sum_{r=0}^n C_r x^r$ and, $\frac{c_1}{c_0} + 2\frac{c_2}{c_1} + 3\frac{c_3}{c_2} + \cdots + n\frac{c_{n-1}}{c_{n-1}} = \frac{1}{k}n(n+1)$, then the value of k , is a) $1/2$ b) 2 c) $1/3$ d) 3 281. The coefficient of x^m in $(1 + x)^p + (1 + x)^{p+1} + \cdots + (1 + x)^n$, $p \le m \le n$ is a) $^{n+1}C_{m+1}$ b) $^{n-1}C_{m-1}$ c) $^{n}C_m$ d) $^nC_{m+1}$ 282. If $(1 + x)^n = ^nC_0 + ^nC_1x + ^nC_2x^2 + \ldots + ^nC_nx^n$, then $\frac{nc_1}{nc_0} + \frac{2^nc_2}{nc_1} + \frac{3^nc_3}{nc_2} + \ldots + \frac{n^nc_n}{nc_{n-1}}$ is equal to a) $\frac{n(n-1)}{2}$ b) $\frac{n(n+1)}{2}$ c) $\frac{n(n+1)}{2}$ d) $\frac{(n-1)(n-2)}{2}$ 283. If the magnitude of the coefficient of x^7 in the expansion of $\left(x^2 + \frac{1}{bx}\right)^8$, where $a, b,$ are positive numbers, is equal to the magnitude of the coefficient of x^{-7} in the of $\left(ax - \frac{1}{bx^2}\right)^8$, then $a,$ and b are connected by the relation a) $ab = 1$ b) $ab = 2$ c) $a^2b = 1$ d) $ab^2 = 2$ 284. If $T_0, T_1, T_2, \dots, T_n$ represent the term in the expansion of $(x + a)^n$, then the value of $(T_0 - T_2 + T_4 - T624717 - T3 + T5 +2$, is a) $(x^2 - a^2)^n$ b) $(x^2 + a^2)^n$ c) $(a^2 - x^2)^n$ d) None of these			$\sqrt{2}$) is $\binom{3^{5/3}}{3^{5/3}}$, then the	
278. The coefficient of x^{-10} in $\left(x^2 - \frac{1}{x^3}\right)^{10}$, is a) -252 b) 210 c) -5! d) -120 279. The coefficient of x^n in the binomial expansion of $(1 - x)^{-2}$, is a) $\frac{2^n}{2!}$ b) $n + 1$ c) n d) $2n$ 280. Let $(1 + x)^n = \sum_{r=0}^n C_r x^r$ and $\frac{c_1}{c_0} + 2\frac{c_2}{c_1} + 3\frac{c_3}{c_2} + \dots + n\frac{c_n}{c_{n-1}} = \frac{1}{k}n(n+1)$, then the value of k , is a) $1/2$ b) 2 c) $1/3$ d) 3 281. The coefficient of x^m in $(1 + x)^p + (1 + x)^{p+1} + \dots + (1 + x)^n, p \le m \le n$ is a) $^{n+1}C_{m+1}$ b) $^{n-1}C_{m-1}$ c) nC_m d) $^nC_{m+1}$ 282. If $(1 + x)^n = ^nC_0 + ^nC_1x + ^nC_2x^2 + \dots + ^nC_nx^n$, then $\frac{nc_1}{nc_0} + \frac{2^nc_2}{nc_1} + \frac{3^nc_3}{nc_2} + \dots + \frac{n^nc_n}{nc_{n-1}}$ is equal to a) $\frac{n(n-1)}{2}$ b) $\frac{n(n+2)}{2}$ c) $\frac{n(n+1)}{2}$ d) $\frac{(n-1)(n-2)}{2}$ 283. If the magnitude of the coefficient of x^7 in the expansion of $\left(x^2 + \frac{1}{bx}\right)^8$, where a, b, a are positive numbers, is equal to the magnitude of the coefficient of x^{-7} in the of $\left(ax - \frac{1}{bx^2}\right)^8$, then $a,$ and b are connected by the relation a) $ab = 1$ b) $ab = 2$ c) $a^2b = 1$ d) $ab^2 = 2$ 284. If $T_0, T_1, T_2, \dots, T_n$ represent the term in the expansion of $(x + a)^n$, then the value of $(T_0 - T_2 + T_4 - T62FTI - T3+T5+2$ is a) $(x^2 - a^2)^n$ b) $(x^2 + a^2)^n$ c) $(a^2 - x^2)^n$ d) None of these	0 0	h) 420	a) 10 Г	d) None of these
a) -252 b) 210 c) $-5!$ d) -120 279. The coefficient of x^n in the binomial expansion of $(1 - x)^{-2}$, is a) $\frac{2^n}{2!}$ b) $n + 1$ c) n d) $2n$ 280. Let $(1 + x)^n = \sum_{r=0}^n C_r x^r$ and $\frac{c_1}{c_0} + 2\frac{c_2}{c_1} + 3\frac{c_3}{c_2} + \dots + n\frac{c_n}{c_{n-1}} = \frac{1}{k}n(n + 1)$, then the value of k , is a) $1/2$ b) 2 c) $1/3$ d) 3 281. The coefficient of x^m in $(1 + x)^p + (1 + x)^{p+1} + \dots + (1 + x)^n, p \le m \le n$ is a) $^{n+1}C_{m+1}$ b) $^{n-1}C_{m-1}$ c) nC_m d) $^nC_{m+1}$ 282. If $(1 + x)^n = {}^nC_0 + {}^nC_1x + {}^nC_2x^2 + \dots + {}^nC_nx^n$, then $\frac{nc_1}{nc_0} + \frac{2^nc_2}{nc_1} + \frac{3^nc_3}{nc_2} + \dots + \frac{n^nc_n}{nc_{n-1}}$ is equal to a) $\frac{n(n-1)}{2}$ b) $\frac{n(n+2)}{2}$ c) $\frac{n(n+1)}{2}$ d) $\frac{(n-1)(n-2)}{2}$ 283. If the magnitude of the coefficient of x^7 in the expansion of $\left(x^2 + \frac{1}{bx}\right)^8$, where a, b, a are positive numbers, is equal to the magnitude of the coefficient of x^{-7} in the of $\left(ax - \frac{1}{bx^2}\right)^8$, then $a,$ and b are connected by the relation a) $ab = 1$ b) $ab = 2$ c) $a^2b = 1$ d) $ab^2 = 2$ 284. If $T_0.T_1.T_2,T_n$ represent the term in the expansion of $(x + a)^n$, then the value of $(T_0 - T_2 + T_4 - T_02 + T_1 - T_3 + T_5 + 2$ is a) $(x^2 - a^2)^n$ b) $(x^2 + a^2)^n$ c) $(a^2 - x^2)^n$ d) None of these	-	-	cj 105	a) None of these
279. The coefficient of x^n in the binomial expansion of $(1 - x)^{-2}$, is a) $\frac{2^n}{2!}$ b) $n + 1$ c) n d) $2n$ 280. Let $(1 + x)^n = \sum_{r=0}^n C_r x^r$ and, $\frac{C_0}{C_0} + 2\frac{C_2}{C_1} + 3\frac{C_3}{C_2} + \dots + n\frac{C_n}{C_{n-1}} = \frac{1}{k}n(n+1)$, then the value of k , is a) $1/2$ b) 2 c) $1/3$ d) 3 281. The coefficient of x^m in $(1 + x)^p + (1 + x)^{p+1} + \dots + (1 + x)^n, p \le m \le n$ is a) ${}^{n+1}C_{m+1}$ b) ${}^{n-1}C_{m-1}$ c) nC_m d) ${}^nC_{m+1}$ 282. If $(1 + x)^n = {}^nC_0 + {}^nC_1x + {}^nC_2x^2 + \dots + {}^nC_nx^n$, then $\frac{n_{C_1}}{n_{C_0}} + \frac{2^nC_2}{n_{C_1}} + \frac{3^nC_3}{n_{C_2}} + \dots + \frac{n^nC_n}{n_{C_{n-1}}}$ is equal to a) $\frac{n(n-1)}{2}$ b) $\frac{n(n+2)}{2}$ c) $\frac{n(n+1)}{2}$ d) $\frac{(n-1)(n-2)}{2}$ 283. If the magnitude of the coefficient of x^7 in the expansion of $\left(x^2 + \frac{1}{bx}\right)^8$, where $a, b,$ are positive numbers, is equal to the magnitude of the coefficient of x^{-7} in the of $\left(ax - \frac{1}{bx^2}\right)^8$, then a , and b are connected by the relation a) $ab = 1$ b) $ab = 2$ c) $a^2b = 1$ d) $ab^2 = 2$ 284. If $T_0, T_1, T_2, \dots, T_n$ represent the term in the expansion of $(x + a)^n$, then the value of $(T_0 - T_2 + T_4 - T_62 + T_1 - T_3 + T_5 +2$, is a) $(x^2 - a^2)^n$ b) $(x^2 + a^2)^n$ c) $(a^2 - x^2)^n$ d) None of these	^{270.} The coefficient of x^{-10} in	$n\left(x^{2}-\frac{1}{x^{3}}\right)$, is		
a) $\frac{2^n}{2!}$ b) $n + 1$ c) n d) $2n$ 280. Let $(1 + x)^n = \sum_{r=0}^n C_r x^r$ and $\frac{c_1}{c_0} + 2\frac{c_2}{c_1} + 3\frac{c_3}{c_2} + \dots + n\frac{c_n}{c_{n-1}} = \frac{1}{k}n(n+1)$, then the value of k , is a) $1/2$ b) 2 c) $1/3$ d) 3 281. The coefficient of x^m in $(1 + x)^p + (1 + x)^{p+1} + \dots + (1 + x)^n, p \le m \le n$ is a) ${}^{n+1}C_{m+1}$ b) ${}^{n-1}C_{m-1}$ c) nC_m d) ${}^nC_{m+1}$ 282. If $(1 + x)^n = {}^nC_0 + {}^nC_1x + {}^nC_2x^2 + \dots + {}^nC_nx^n$, then $\frac{nc_1}{nc_0} + \frac{2^nc_2}{nc_1} + \frac{3^nc_3}{nc_2} + \dots + \frac{n^nc_n}{nc_{n-1}}$ is equal to a) $\frac{n(n-1)}{2}$ b) $\frac{n(n+2)}{2}$ c) $\frac{n(n+1)}{2}$ d) $\frac{(n-1)(n-2)}{2}$ 283. If the magnitude of the coefficient of x^7 in the expansion of $\left(x^2 + \frac{1}{bx}\right)^8$, where a, b, a repositive numbers, is equal to the magnitude of the coefficient of x^{-7} in the of $\left(ax - \frac{1}{bx^2}\right)^8$, then a , and b are connected by the relation a) $ab = 1$ b) $ab = 2$ c) $a^2b = 1$ d) $ab^2 = 2$ 284. If $T_0, T_1, T_2, \dots, T_n$ represent the term in the expansion of $(x + a)^n$, then the value of $(T_0 - T_2 + T_4 - T_62 + T1 - T3 + T5 +2$ is a) $(x^2 - a^2)^n$ b) $(x^2 + a^2)^n$ c) $(a^2 - x^2)^n$ d) None of these	a) —252	b) 210	c) -5!	d) –120
280. Let $(1 + x)^n = \sum_{r=0}^n C_r x^r$ and, $\frac{c_1}{c_0} + 2\frac{c_2}{c_1} + 3\frac{c_3}{c_2} + \dots + n\frac{c_n}{c_{n-1}} = \frac{1}{k}n(n+1)$, then the value of k , is a) $1/2$ b) 2 c) $1/3$ d) 3 281. The coefficient of x^m in $(1 + x)^p + (1 + x)^{p+1} + \dots + (1 + x)^n$, $p \le m \le n$ is a) ${}^{n+1}C_{m+1}$ b) ${}^{n-1}C_{m-1}$ c) nC_m d) ${}^nC_{m+1}$ 282. If $(1 + x)^n = {}^nC_0 + {}^nC_1x + {}^nC_2x^2 + \dots + {}^nC_nx^n$, then $\frac{n_{c_1}}{n_{c_0}} + \frac{2{}^nC_2}{n_{c_1}} + \frac{3{}^nC_3}{n_{c_2}} + \dots + \frac{n{}^nC_n}{n_{c_{n-1}}}$ is equal to a) $\frac{n(n-1)}{2}$ b) $\frac{n(n+2)}{2}$ c) $\frac{n(n+1)}{2}$ d) $\frac{(n-1)(n-2)}{2}$ 283. If the magnitude of the coefficient of x^7 in the expansion of $\left(x^2 + \frac{1}{bx}\right)^8$, where $a, b,$ are positive numbers, is equal to the magnitude of the coefficient of x^{-7} in the of $\left(ax - \frac{1}{bx^2}\right)^8$, then a , and b are connected by the relation a) $ab = 1$ b) $ab = 2$ c) $a^2b = 1$ d) $ab^2 = 2$ 284. If $T_0, T_1, T_2, \dots, T_n$ represent the term in the expansion of $(x + a)^n$, then the value of $(T_0 - T_2 + T_4 - T_62 + T_1 - T_3 + T_5 +2, is a) (x^2 - a^2)^n b) (x^2 + a^2)^n c) (a^2 - x^2)^n d) None of these$	279. The coefficient of x^n in t	he binomial expansion of (2	$(1-x)^{-2}$, is	
280. Let $(1 + x)^n = \sum_{r=0}^n C_r x^r$ and, $\frac{c_1}{c_0} + 2\frac{c_2}{c_1} + 3\frac{c_3}{c_2} + \dots + n\frac{c_n}{c_{n-1}} = \frac{1}{k}n(n+1)$, then the value of k , is a) $1/2$ b) 2 c) $1/3$ d) 3 281. The coefficient of x^m in $(1 + x)^p + (1 + x)^{p+1} + \dots + (1 + x)^n$, $p \le m \le n$ is a) ${}^{n+1}C_{m+1}$ b) ${}^{n-1}C_{m-1}$ c) nC_m d) ${}^nC_{m+1}$ 282. If $(1 + x)^n = {}^nC_0 + {}^nC_1x + {}^nC_2x^2 + \dots + {}^nC_nx^n$, then $\frac{n_{c_1}}{n_{c_0}} + \frac{2{}^nC_2}{n_{c_1}} + \frac{3{}^nC_3}{n_{c_2}} + \dots + \frac{n{}^nC_n}{n_{c_{n-1}}}$ is equal to a) $\frac{n(n-1)}{2}$ b) $\frac{n(n+2)}{2}$ c) $\frac{n(n+1)}{2}$ d) $\frac{(n-1)(n-2)}{2}$ 283. If the magnitude of the coefficient of x^7 in the expansion of $\left(x^2 + \frac{1}{bx}\right)^8$, where $a, b,$ are positive numbers, is equal to the magnitude of the coefficient of x^{-7} in the of $\left(ax - \frac{1}{bx^2}\right)^8$, then a , and b are connected by the relation a) $ab = 1$ b) $ab = 2$ c) $a^2b = 1$ d) $ab^2 = 2$ 284. If $T_0, T_1, T_2, \dots, T_n$ represent the term in the expansion of $(x + a)^n$, then the value of $(T_0 - T_2 + T_4 - T_62 + T_1 - T_3 + T_5 +2, is a) (x^2 - a^2)^n b) (x^2 + a^2)^n c) (a^2 - x^2)^n d) None of these$	2^{n}	b) $n + 1$	c) n	d) 2n
a) $1/2$ b) 2 c) $1/3$ d) 3 281. The coefficient of x^m in $(1 + x)^p + (1 + x)^{p+1} + \dots + (1 + x)^n$, $p \le m \le n$ is a) ${}^{n+1}C_{m+1}$ b) ${}^{n-1}C_{m-1}$ c) nC_m d) ${}^nC_{m+1}$ 282. If $(1 + x)^n = {}^nC_0 + {}^nC_1x + {}^nC_2x^2 + \dots + {}^nC_nx^n$, then $\frac{n_{c_1}}{n_{c_0}} + \frac{2{}^nC_2}{n_{c_1}} + \frac{3{}^nC_3}{n_{c_2}} + \dots + \frac{n{}^nC_n}{n_{c_{n-1}}}$ is equal to a) $\frac{n(n-1)}{2}$ b) $\frac{n(n+2)}{2}$ c) $\frac{n(n+1)}{2}$ d) $\frac{(n-1)(n-2)}{2}$ 283. If the magnitude of the coefficient of x^7 in the expansion of $\left(x^2 + \frac{1}{bx}\right)^8$, where a, b, a re positive numbers, is equal to the magnitude of the coefficient of x^{-7} in the of $\left(ax - \frac{1}{bx^2}\right)^8$, then a , and b are connected by the relation a) $ab = 1$ b) $ab = 2$ c) $a^2b = 1$ d) $ab^2 = 2$ 284. If $T_0, T_1, T_2, \dots, T_n$ represent the term in the expansion of $(x + a)^n$, then the value of $(T_0 - T_2 + T_4 - T_62 + T_1 - T_3 + T_5 +, 2$ is a) $(x^2 - a^2)^n$ b) $(x^2 + a^2)^n$ c) $(a^2 - x^2)^n$ d) None of these	2:		, ,	2
a) $1/2$ b) 2 c) $1/3$ d) 3 281. The coefficient of x^m in $(1 + x)^p + (1 + x)^{p+1} + \dots + (1 + x)^n$, $p \le m \le n$ is a) ${}^{n+1}C_{m+1}$ b) ${}^{n-1}C_{m-1}$ c) nC_m d) ${}^nC_{m+1}$ 282. If $(1 + x)^n = {}^nC_0 + {}^nC_1x + {}^nC_2x^2 + \dots + {}^nC_nx^n$, then $\frac{n_{c_1}}{n_{c_0}} + \frac{2{}^nC_2}{n_{c_1}} + \frac{3{}^nC_3}{n_{c_2}} + \dots + \frac{n{}^nC_n}{n_{c_{n-1}}}$ is equal to a) $\frac{n(n-1)}{2}$ b) $\frac{n(n+2)}{2}$ c) $\frac{n(n+1)}{2}$ d) $\frac{(n-1)(n-2)}{2}$ 283. If the magnitude of the coefficient of x^7 in the expansion of $\left(x^2 + \frac{1}{bx}\right)^8$, where a, b, a re positive numbers, is equal to the magnitude of the coefficient of x^{-7} in the of $\left(ax - \frac{1}{bx^2}\right)^8$, then a , and b are connected by the relation a) $ab = 1$ b) $ab = 2$ c) $a^2b = 1$ d) $ab^2 = 2$ 284. If $T_0, T_1, T_2, \dots, T_n$ represent the term in the expansion of $(x + a)^n$, then the value of $(T_0 - T_2 + T_4 - T_62 + T_1 - T_3 + T_5 +, 2$ is a) $(x^2 - a^2)^n$ b) $(x^2 + a^2)^n$ c) $(a^2 - x^2)^n$ d) None of these	280. Let $(1+x)^n = \sum_{r=0}^n C_r$	α^r and, $\frac{c_1}{c_0} + 2\frac{c_2}{c_1} + 3\frac{c_3}{c_2} + \cdots$	$+n\frac{c_n}{c_{n-1}} = \frac{1}{k}n(n+1)$, then	the value of <i>k</i> , is
281. The coefficient of x^m in $(1 + x)^p + (1 + x)^{p+1} + \dots + (1 + x)^n$, $p \le m \le n$ is a) ${}^{n+1}C_{m+1}$ b) ${}^{n-1}C_{m-1}$ c) nC_m d) ${}^nC_{m+1}$ 282. If $(1 + x)^n = {}^nC_0 + {}^nC_1x + {}^nC_2x^2 + \dots + {}^nC_nx^n$, then ${}^{\frac{n}{n}C_0} + {}^{\frac{2^nC_2}{n}} + {}^{\frac{3^nC_3}{n}}_{-2} + \dots + {}^{\frac{n^nC_n}{n}}_{-n-1}$ is equal to a) ${}^{\frac{n(n-1)}{2}}$ b) ${}^{\frac{n(n+2)}{2}}$ c) ${}^{\frac{n(n+1)}{2}}$ d) ${}^{\frac{(n-1)(n-2)}{2}}$ 283. If the magnitude of the coefficient of x^7 in the expansion of $\left(x^2 + {}^{\frac{1}{b}x}\right)^8$, where a, b, a re positive numbers, is equal to the magnitude of the coefficient of x^{-7} in the of $\left(ax - {}^{\frac{1}{bx^2}}\right)^8$, then a , and b are connected by the relation a) $ab = 1$ b) $ab = 2$ c) $a^2b = 1$ d) $ab^2 = 2$ 284. If $T_0, T_1, T_2, \dots, T_n$ represent the term in the expansion of $(x + a)^n$, then the value of $(T_0 - T_2 + T_4 - T_62 + T_1 - T_3 + T_5 +2$, is a) $(x^2 - a^2)^n$ b) $(x^2 + a^2)^n$ c) $(a^2 - x^2)^n$ d) None of these				
a) ${}^{n+1}C_{m+1}$ b) ${}^{n-1}C_{m-1}$ c) ${}^{n}C_{m}$ d) ${}^{n}C_{m+1}$ 282. If $(1 + x)^{n} = {}^{n}C_{0} + {}^{n}C_{1}x + {}^{n}C_{2}x^{2} + + {}^{n}C_{n}x^{n}$, then $\frac{{}^{n}C_{1}}{{}^{n}C_{0}} + \frac{{}^{2}{}^{n}C_{2}}{{}^{n}C_{1}} + \frac{{}^{n}C_{n}}{{}^{n}C_{2}} + + \frac{{}^{n}C_{n}}{{}^{n}C_{n-1}}}$ is equal to a) $\frac{n(n-1)}{2}$ b) $\frac{n(n+2)}{2}$ c) $\frac{n(n+1)}{2}$ d) $\frac{(n-1)(n-2)}{2}$ 283. If the magnitude of the coefficient of x^{7} in the expansion of $\left(x^{2} + \frac{1}{bx}\right)^{8}$, where a, b, a are positive numbers, is equal to the magnitude of the coefficient of x^{-7} in the of $\left(ax - \frac{1}{bx^{2}}\right)^{8}$, then $a,$ and b are connected by the relation a) $ab = 1$ b) $ab = 2$ c) $a^{2}b = 1$ d) $ab^{2} = 2$ 284. If $T_{0}, T_{1}, T_{2},, T_{n}$ represent the term in the expansion of $(x + a)^{n}$, then the value of $(T_{0} - T_{2} + T_{4} - T_{6}2 + T_{1} - T_{3} + T_{5} +2$ is a) $(x^{2} - a^{2})^{n}$ b) $(x^{2} + a^{2})^{n}$ c) $(a^{2} - x^{2})^{n}$ d) None of these	281. The coefficient of x^m in	$(1+x)^p + (1+x)^{p+1} + \cdots$	$+(1+x)^n, p \le m \le n$ is	-
282. If $(1 + x)^n = {}^nC_0 + {}^nC_1x + {}^nC_2x^2 + \ldots + {}^nC_nx^n$, then $\frac{{}^nC_1}{n_{C_0}} + \frac{2{}^nC_2}{n_{C_1}} + \frac{3{}^nC_3}{n_{C_2}} + \ldots + \frac{n{}^nC_n}{n_{C_{n-1}}}$ is equal to a) $\frac{n(n-1)}{2}$ b) $\frac{n(n+2)}{2}$ c) $\frac{n(n+1)}{2}$ d) $\frac{(n-1)(n-2)}{2}$ 283. If the magnitude of the coefficient of x^7 in the expansion of $\left(x^2 + \frac{1}{bx}\right)^8$, where a, b, a re positive numbers, is equal to the magnitude of the coefficient of x^{-7} in the of $\left(ax - \frac{1}{bx^2}\right)^8$, then $a,$ and b are connected by the relation a) $ab = 1$ b) $ab = 2$ c) $a^2b = 1$ d) $ab^2 = 2$ 284. If $T_0, T_1, T_2, \ldots, T_n$ represent the term in the expansion of $(x + a)^n$, then the value of $(T_0 - T_2 + T_4 - T62 + T1 - T3 + T5 +2$, is a) $(x^2 - a^2)^n$ b) $(x^2 + a^2)^n$ c) $(a^2 - x^2)^n$ d) None of these	a) $^{n+1}C_{m+1}$	b) $n^{-1}C_{m-1}$	c) ${}^{n}C_{m}$	d) ${}^{n}C_{m+1}$
a) $\frac{n(n-1)}{2}$ b) $\frac{n(n+2)}{2}$ c) $\frac{n(n+1)}{2}$ d) $\frac{(n-1)(n-2)}{2}$ 283. If the magnitude of the coefficient of x^7 in the expansion of $\left(x^2 + \frac{1}{bx}\right)^8$, where a, b, a repositive numbers, is equal to the magnitude of the coefficient of x^{-7} in the of $\left(ax - \frac{1}{bx^2}\right)^8$, then a , and b are connected by the relation a) $ab = 1$ b) $ab = 2$ c) $a^2b = 1$ d) $ab^2 = 2$ 284. If $T_0, T_1, T_2,, T_n$ represent the term in the expansion of $(x + a)^n$, then the value of $(T_0 - T_2 + T_4 - T_62 + T_1 - T_3 + T_5 +2$, is a) $(x^2 - a^2)^n$ b) $(x^2 + a^2)^n$ c) $(a^2 - x^2)^n$ d) None of these	282. If $(1+x)^n = {}^nC_0 + {}^nC_0$	$x + {}^{n}C_{2}x^{2} + \ldots + {}^{n}C_{n}x^{n}$, th	$nen \frac{{}^{n}C_{1}}{-} + \frac{2 {}^{n}C_{2}}{-} + \frac{3 {}^{n}C_{3}}{-} + \dots +$	$-\frac{n^n C_n}{n}$ is equal to
b) $\frac{n(n+2)}{2}$ c) $\frac{n(n+1)}{2}$ d) $\frac{(n-1)(n-2)}{2}$ 283. If the magnitude of the coefficient of x^7 in the expansion of $\left(x^2 + \frac{1}{bx}\right)^8$, where a, b, are positive numbers, is equal to the magnitude of the coefficient of x^{-7} in the of $\left(ax - \frac{1}{bx^2}\right)^8$, then a , and b are connected by the relation a) $ab = 1$ b) $ab = 2$ c) $a^2b = 1$ d) $ab^2 = 2$ 284. If $T_0, T_1, T_2,, T_n$ represent the term in the expansion of $(x + a)^n$, then the value of $(T_0 - T_2 + T_4 - T62 + T1 - T3 + T5 +2$, is a) $(x^2 - a^2)^n$ b) $(x^2 + a^2)^n$ c) $(a^2 - x^2)^n$ d) None of these	<i>i i i i</i>		n_{C_0} n_{C_1} n_{C_2}	$n_{C_{n-1}}$
c) $\frac{n(n+1)}{2}$ d) $\frac{(n-1)(n-2)}{2}$ 283. If the magnitude of the coefficient of x^7 in the expansion of $\left(x^2 + \frac{1}{bx}\right)^8$, where a, b, a re positive numbers, is equal to the magnitude of the coefficient of x^{-7} in the of $\left(ax - \frac{1}{bx^2}\right)^8$, then a , and b are connected by the relation a) $ab = 1$ b) $ab = 2$ c) $a^2b = 1$ d) $ab^2 = 2$ 284. If $T_0, T_1, T_2,, T_n$ represent the term in the expansion of $(x + a)^n$, then the value of $(T_0 - T_2 + T_4 - T_62 + T_1 - T_3 + T_5 +2$, is a) $(x^2 - a^2)^n$ b) $(x^2 + a^2)^n$ c) $(a^2 - x^2)^n$ d) None of these	a) $\frac{n(n-1)}{2}$			
c) $\frac{n(n+1)}{2}$ d) $\frac{(n-1)(n-2)}{2}$ 283. If the magnitude of the coefficient of x^7 in the expansion of $\left(x^2 + \frac{1}{bx}\right)^8$, where a, b, a re positive numbers, is equal to the magnitude of the coefficient of x^{-7} in the of $\left(ax - \frac{1}{bx^2}\right)^8$, then a , and b are connected by the relation a) $ab = 1$ b) $ab = 2$ c) $a^2b = 1$ d) $ab^2 = 2$ 284. If $T_0, T_1, T_2,, T_n$ represent the term in the expansion of $(x + a)^n$, then the value of $(T_0 - T_2 + T_4 - T_62 + T_1 - T_3 + T_5 +2$, is a) $(x^2 - a^2)^n$ b) $(x^2 + a^2)^n$ c) $(a^2 - x^2)^n$ d) None of these	n(n+2)			
d) $\frac{(n-1)(n-2)}{2}$ 283. If the magnitude of the coefficient of x^7 in the expansion of $\left(x^2 + \frac{1}{bx}\right)^8$, where a, b, are positive numbers, is equal to the magnitude of the coefficient of x^{-7} in the of $\left(ax - \frac{1}{bx^2}\right)^8$, then a , and b are connected by the relation a) $ab = 1$ b) $ab = 2$ c) $a^2b = 1$ d) $ab^2 = 2$ 284. If $T_0, T_1, T_2,, T_n$ represent the term in the expansion of $(x + a)^n$, then the value of $(T_0 - T_2 + T_4 - T_62 + T_1 - T_3 + T_5 +2$, is a) $(x^2 - a^2)^n$ b) $(x^2 + a^2)^n$ c) $(a^2 - x^2)^n$ d) None of these	b) <u>2</u>			
d) $\frac{(n-1)(n-2)}{2}$ 283. If the magnitude of the coefficient of x^7 in the expansion of $\left(x^2 + \frac{1}{bx}\right)^8$, where a, b, are positive numbers, is equal to the magnitude of the coefficient of x^{-7} in the of $\left(ax - \frac{1}{bx^2}\right)^8$, then a , and b are connected by the relation a) $ab = 1$ b) $ab = 2$ c) $a^2b = 1$ d) $ab^2 = 2$ 284. If $T_0, T_1, T_2,, T_n$ represent the term in the expansion of $(x + a)^n$, then the value of $(T_0 - T_2 + T_4 - T_62 + T_1 - T_3 + T_5 +2$, is a) $(x^2 - a^2)^n$ b) $(x^2 + a^2)^n$ c) $(a^2 - x^2)^n$ d) None of these	$\sum \frac{n(n+1)}{n(n+1)}$			
283. If the magnitude of the coefficient of x^7 in the expansion of $\left(x^2 + \frac{1}{bx}\right)^8$, where a, b, a repositive numbers, is equal to the magnitude of the coefficient of x^{-7} in the of $\left(ax - \frac{1}{bx^2}\right)^8$, then a , and b are connected by the relation a) $ab = 1$ b) $ab = 2$ c) $a^2b = 1$ d) $ab^2 = 2$ 284. If $T_0, T_1, T_2,, T_n$ represent the term in the expansion of $(x + a)^n$, then the value of $(T_0 - T_2 + T_4 - T62 + T1 - T3 + T5 +2$, is a) $(x^2 - a^2)^n$ b) $(x^2 + a^2)^n$ c) $(a^2 - x^2)^n$ d) None of these	Z			
283. If the magnitude of the coefficient of x^7 in the expansion of $\left(x^2 + \frac{1}{bx}\right)^8$, where a, b, a repositive numbers, is equal to the magnitude of the coefficient of x^{-7} in the of $\left(ax - \frac{1}{bx^2}\right)^8$, then a , and b are connected by the relation a) $ab = 1$ b) $ab = 2$ c) $a^2b = 1$ d) $ab^2 = 2$ 284. If $T_0, T_1, T_2,, T_n$ represent the term in the expansion of $(x + a)^n$, then the value of $(T_0 - T_2 + T_4 - T62 + T1 - T3 + T5 +2$, is a) $(x^2 - a^2)^n$ b) $(x^2 + a^2)^n$ c) $(a^2 - x^2)^n$ d) None of these	d) $\frac{(n-1)(n-2)}{2}$			
$\left(x^2 + \frac{1}{bx}\right)^8$, where a, b , are positive numbers, is equal to the magnitude of the coefficient of x^{-7} in the of $\left(ax - \frac{1}{bx^2}\right)^8$, then a , and b are connected by the relation a) $ab = 1$ b) $ab = 2$ c) $a^2b = 1$ d) $ab^2 = 2$ 284. If $T_0, T_1, T_2,, T_n$ represent the term in the expansion of $(x + a)^n$, then the value of $(T_0 - T_2 + T_4 - T62 + T1 - T3 + T5 +2$, is a) $(x^2 - a^2)^n$ b) $(x^2 + a^2)^n$ c) $(a^2 - x^2)^n$ d) None of these	Z	coefficient of x^7 in the experi	nsion of	
coefficient of x^{-7} in the of $\left(ax - \frac{1}{bx^2}\right)^8$, then a , and b are connected by the relation a) $ab = 1$ b) $ab = 2$ c) $a^2b = 1$ d) $ab^2 = 2$ 284. If $T_0, T_1, T_2,, T_n$ represent the term in the expansion of $(x + a)^n$, then the value of $(T_0 - T_2 + T_4 - T62 + T1 - T3 + T5 +2$, is a) $(x^2 - a^2)^n$ b) $(x^2 + a^2)^n$ c) $(a^2 - x^2)^n$ d) None of these	0			
a) $ab = 1$ b) $ab = 2$ c) $a^{2}b = 1$ d) $ab^{2} = 2$ 284. If $T_{0}, T_{1}, T_{2},, T_{n}$ represent the term in the expansion of $(x + a)^{n}$, then the value of $(T_{0} - T_{2} + T_{4} - T62 + T1 - T3 + T5 +2$, is a) $(x^{2} - a^{2})^{n}$ b) $(x^{2} + a^{2})^{n}$ c) $(a^{2} - x^{2})^{n}$ d) None of these				
284. If $T_0, T_1, T_2,, T_n$ represent the term in the expansion of $(x + a)^n$, then the value of $(T_0 - T_2 + T_4 - T62 + T1 - T3 + T5 +2$, is a) $(x^2 - a^2)^n$ b) $(x^2 + a^2)^n$ c) $(a^2 - x^2)^n$ d) None of these	coefficient of x^{-7} in the	of $\left(ax - \frac{1}{bx^2}\right)^6$, then <i>a</i> , and	<i>b</i> are connected by the rel	ation
<i>T62+T1–T3+T5+2,</i> is a) $(x^2 - a^2)^n$ b) $(x^2 + a^2)^n$ c) $(a^2 - x^2)^n$ d) None of these	5	,	,	,
a) $(x^2 - a^2)^n$ b) $(x^2 + a^2)^n$ c) $(a^2 - x^2)^n$ d) None of these			on of $(x + a)^n$, then the value	ue of $(T_0 - T_2 + T_4 - T_4)$
			c) $(a^2 - x^2)^n$	d) None of these
$\Delta_{l=0}$ ($i / (m - i)$, (more, (q)) on $p < q$) is maximum, when m is	285. The sum Σ_{m}^{m} (10) (20)) (where $\binom{p}{1} = 0$ if $n < \infty$	(a) is maximum when m i	
	$\Delta_{i=0}$ (i) (m -	-ij' ((a,b,c) , (q) (a,b) (q)	· / / · · · · · · · · · · · · ·	-

a) 5	b) 10	c) 15	d) 20
286. Let $(1+x)^n = 1 + a_1 x$	$x + a_2 x^2 + \dots + a_n x^n$. If a_1, a_2	$_2$ and a_3 are in AP, then the	value of <i>n</i> is
a) 4	b) 5	c) 6	d) 7
287. If $(1+x)^{15} = a_0 + a_1 x$	$x + \dots + a_{15} x^{15}$, then $\sum_{r=1}^{15} r$	$\frac{a_r}{1}$ is equal to	
			d) 12E
a) 110	b) 115	c) 120	d) 135
288. The coefficient of x^5 in			
a) 30	b) 60	c) 40	d) None of these
289. The coefficient of x^r in			
a) <i>r</i>	b) <i>r</i> + 1	c) <i>r</i> + 3	d) <i>r</i> − 1
290. The expression $\frac{1}{\sqrt[3]{6-3x}}$ i	s equal to		
V 8 5x			
a) $6^{1/3} \left[1 + \frac{x}{6} + \frac{2x^2}{6^2} + . \right]$			
L	1		
b) $6^{-1/3} \left[1 + \frac{x}{6} + \frac{2x^2}{6^2} + \frac{x}{6} \right]$			
$1 + \frac{1}{6} + \frac{1}{6^2} + \frac{1}{6^2}$	·…]		
$x = \frac{1}{2} \left[\frac{x}{2} + \frac{2x^2}{2} \right]$]		
c) $6^{1/3} \left[1 - \frac{x}{6} + \frac{2x^2}{6^2} \right]$			
L	1		
d) $6^{-1/3} \left[1 - \frac{x}{6} + \frac{2x^2}{6^2} - \frac{x^2}{6} \right]$			
]		
291. If the coefficient of r^{th} ,	$(r+1)^{\text{tri}}$ and $(r+2)^{\text{tri}}$ term	ns in the expansion of $(1 +$	$(x)^{14}$ are in A.P., then the
value of <i>r</i> , is			
a) 5,9	b) 6,9	c) 7,9	d) None of these
292. The interval in which <i>x</i>	must lie so that the numer	ically greatest term in the e	xpansion of $(1 - x)^{21}$ has the
numerically greatest co	pefficient, is		
a) $\left[\frac{5}{6}, \frac{6}{5}\right]$	b) $\left(\frac{5}{6}, \frac{6}{5}\right)$	$(4 \ 5)$	d) $\left[\frac{4}{5}, \frac{5}{4}\right]$
[0 5]	$(0 \ J)$	(J T)	
^{293.} If the 6th term in the ex	xpansion of $\left(\frac{1}{x^2} + x^2 \log_{10} x\right)$	$(x)^{8}$ is 5600, then value of x	cis
		·	
a) 2	b) √5	c) $\sqrt{10}$	d) 10
^{294.} The coefficient of x^{20} in	the expansion of $(1 + x^2)^4$	$40\left(x^2+2+\frac{1}{2}\right)^{-5}$, is	
a) ${}^{30}C_{10}$	b) ${}^{30}C_{25}$	c) 1	d) None of these
y 10) 25	,	uj None of these
295. If n is a positive integer			
a) 2	b) 6	c) 15	d) 3
296. If in the expansion of (
a) 6	b) 9	c) 12	d) 24
297. The coefficient of x^4 in	the expansion of $(1 + x + x)$	$(x^2 + x^3)^n$, is	
a) ${}^{n}C_{4}$			
b) ${}^{n}C_{4} + {}^{n}C_{2}$			
c) ${}^{n}C_{4} + {}^{n}C_{1} + {}^{n}C_{4} \times$	${}^{n}C_{2}$		
d) ${}^{n}C_{4} + {}^{n}C_{2} + {}^{n}C_{1} \times$	${}^{n}C_{2}$		
298. Sum of the infinite seri	es		
112512	2 5 8 1		
$1 + \frac{1}{3} \cdot \frac{1}{2} + \frac{2}{3} \cdot \frac{5}{6} \cdot \frac{1}{2^2} + \frac{2}{3} \cdot \frac{5}{6} \cdot \frac{1}{2^2} + \frac{2}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} + \frac{1}{3} \frac{1}{3$	$\frac{1}{3} \cdot \frac{1}{6} \cdot \frac{1}{9} \cdot \frac{1}{2^3} + \cdots \infty$ is		
a) 2 ^{1/3}	b) $4^{1/3}$	c) $8^{1/3}$	d) 2 ^{1/5}
299. If in the expansion of ($(a - 2b)^n$. The sum of the 5t	h and 6th term is zero, ther	the
~			
value of $\frac{a}{b}$ is			
n-4	b) $2(n-4)$	د) ⁵	d) <u>5</u>
a) $\frac{n-4}{5}$	b) $\frac{2(n-4)}{5}$	c) $\frac{5}{n-4}$	$d)\frac{5}{2(n-4)}$

300. If in the expansion of $(1 + x)^m (1 - x)^n$, the coefficient of x and x^2 are 3 and -6 respectively, then m is

	h) ()	-) 12	10.24
a) 6	b) 9 b) $f(x)$	c) 12 n^{n} is 1024 then the value	d) 24
301. If the sum of the coefficie	ent in the expansion of $(x +$	y) is 1024, then the value	e of the greatest coefficient
in the expansion is	b) 252	c) 210	d) 120
a) 356 302. The remainder when 5 ⁹⁹	,	CJ 210	u) 120
a) 6	b) 8	c) 9	d) 10
303. The two consecutive term	2	2	2
a) 11.12	b) 7,8	c) 30,31	d) None of these
,			,
^{304.} If the 4th term in the exp			
a) 5	b) 6	c) 9	d) None of these
305. The coefficient of x^{32} in	b) 6 the expansion of $\left(x^4 - \frac{1}{x^3}\right)$	is	
a) $^{-15}C_3$	b) ¹⁵ C ₄	c) $^{-15}C_5$	d) $^{15}C_2$
306. The number of dissimila expansion $(a + b + c)^{12}$		$(a+b)^n$ is $n+1$ therefore i	no of dissimilar terms of the
a) 13	b) 39	c) 78	d) 91
307. The coefficient of x^7 in ($(1 + 3x - 2x^3)^{10}$ is equal to		
a) 62640	b) 26240	c) 64620	d) None of these
308. The middel term in the e	xpansion of $\left(x - \frac{1}{x}\right)^{18}$ is		
a) ¹⁸ C ₉	b) $-^{18}C_9$	c) ${}^{18}C_{10}$	d) $-{}^{18}C_{10}$
309. The term independent of	f x in the expansion of	, 10	, 10
$\left(\frac{2\sqrt{x}}{5}-\frac{1}{2x\sqrt{x}}\right)^{11}$ is			
a) 5th term	b) 6th term	c) 11th term	d) No term
310. If n is an integer greater	than 1, then		
$a - {}^{n}C_{1}(a-1) + {}^{n}C_{2}(a-1)$	$(a-2)++(-1)^n(a-n)$ is	equal to	
a) <i>a</i>	b) 0	c) <i>a</i> ²	d) 2 ⁿ
^{311.} The sum of the rational t	erms in the expansion of (2	$2^{1/5} + \sqrt{3}^{20}$, is	
a) 71	b) 85	c) 97	d) None of these
312. If $[x]$ denotes the gretest	integer less than or equal t	r_{0} r then $\left[\left(6\sqrt{6} + 14\right)^{2n+1}\right]$	
a) Is an even integer	b) Is an odd integer	c) Depends on n	d) None of these
313. If $n \in N$, then the sum of	, .	,	-
a) 1	b) -1	c) n	d) 0
314. The coefficient of the ter		,	
		r	
$\left[\frac{(x+1)}{x^{2/3} - x^{1/3} + 1} - \frac{(x-1)^{3/3}}{x - x^{3/3}}\right]$	$\frac{1}{1/2}$ is		
a) 210	b) 105	c) 70	d) 112
$315. C_0 C_2 C_4 C_6$	5,105		u) 112
$315. \frac{C_0}{1} + \frac{C_2}{3} + \frac{C_4}{5} + \frac{C_6}{7} + \dots \text{ is}$	equal to		
a) $\frac{2^{n+1}}{n+1}$	$2^{n+1}-1$	c) $\frac{2^n}{n+1}$	d) None of these
$a \int \frac{1}{n+1}$	n+1	$\frac{n+1}{n+1}$	
316. Coefficient of x^n in the end	xpansion of $\frac{(1+x)^n}{1-x}$		m(n+1)
a) 4n	b) 2 ^{<i>n</i>}	c) <i>n</i> ²	d) $\frac{n(n+1)}{2}$
317. If $(1 + x - 2x^2)^6 = 1 + a$		en the expression $a_2 + a_4$ -	$a_6 + \ldots + a_{12}$ has the value
a) 32	b) 63	c) 64	d) None of these
318. If $(1+x)^n = \sum_{r=0}^n a_r x^r$	and $b_r = 1 + \frac{a_r}{r}$ and $\prod_{r=1}^n$	$b_r = \frac{(101)^{100}}{100}$, then <i>n</i> is	
	a_r-1	100!	

a) 99 b) 100 c) 101 d) 102 319. Coefficient of $x^2y^3z^4$ in $(ax + by + cz)^9$ is a) $1060a^2b^3c^4$ b) $1160a^2b^3c^4$ c) $1260a^2b^3c^4$ d) 960 $a^2b^3c^4$ 320. The constant term in the expansion of $\left(x^2-\frac{1}{x}\right)^9$ is a) 80 321. $\sum_{n=1}^{\infty} k \left(1 + \frac{1}{n}\right)^{k-1} =$ b) 72 c) 84 d) 82 c) *n*² a) n(n-1)b) n(n + 1)d) $(n+1)^2$ 322. If the coefficients of three consecutive terms in the expansion of $(1 + x)^n$ are in the ratio 1: 7: 42, then the value of *n* is a) 60 b) 70 c) 55 d) None of these 323. The number of non-zero terms in the expansion of $(1 + 3\sqrt{2}x)^9 + (1 - 3\sqrt{2}x)^9$, is b) 0 324. If the coefficient of 7th and 13th term in the expansion of $(1 + x)^n$ are equal, then *n* is equal to a) 10 b) 15 c) 18 d) 20 325. In the expansion of $\left(2x^2 - \frac{1}{x}\right)^{12}$, the term independent of x is a) 8th c) 9th d) 10th b) 7th 326. If $C_0, C_1, C_2, \dots, C_n$ are coefficients in the binomial expansion of $(1 + x)^n$, then $C_0C_2 + C_1C_3 + C_2C_4 + \dots + C_nC_n$ $C_{n-2}C_n$ is equal to a) $\frac{(2 n)!}{(n-2)!(n+2)!}$ b) $\frac{(2 n)!}{((n-2)!)^2}$ c) $\frac{(2 n)!}{((n+2)!)^2}$ d) None of these 327. For all integers $n \ge 1$, which of the following is divisible by 9? b) $4^n - 3n - 1$ c) $3^{2n} + 3n + 1$ a) $8^n + 1$ d) $10^n + 1$ 328. The sum of the series ${}^{20}C_0 - {}^{20}C_1 + {}^{20}C_2 - {}^{20}C_3 + \ldots + {}^{20}C_{10}$ is b) $\frac{1}{2} {}^{20}C_{10}$ c) 0 a) $- {}^{20}C_{10}$ d) ${}^{20}C_{10}$ 329. Let [x] donate the greatest integer less than or equal to x. If $x = (\sqrt{3} + 1)^5$, then [x] is equal to b) 50 c) 76 d) 152 a) 75 330. The coefficient of x^{53} in the expansion of $\sum^{100} {}^{100}C_m (x-3)^{100-m} \cdot 2^m$ a) ¹⁰⁰C₄₇ c) $^{-100}C_{53}$ b) ¹⁰⁰C₅₃ d) $^{-100}C_{100}$ If the fourth term in the expansion of $\left(ax + \frac{1}{x}\right)^n$ is $\frac{5}{2}$, then 331. c) a = 2 and n = 3 d) a = 1/4 and n = 1a) a = 1/2 and n = 6 b) a = 1/3 and n = 5332. If $(1 + x)^n = C_0 + C_1 x + C_2 x^2 + \dots + C_n x^n$, then $0 \le r < s \le n$ $\sum (r+s)C_rC_s$ is equal to a) $n[2^{2n-1}-2^{2n-1}C_{n-1}]$ b) $n[2^{2n-1}+2n-1}C_{n-1}]$ c) $2n[2^{2n-1}-2^{2n-1}C_{n-1}]$ d) None of these 333. If the coefficient of x^7 in the expansion of $(ax^2 + b^{-1}x^{-1})^{11}$ is equal to the coefficient of x^{-7} in $(ax - b^{-1}x^{-2})^{11}$, then ab =

a) 1	b) 2	c) 3	d) 4
334. The coefficient of x^n in	the expansion of $\frac{1}{(1-x)(3-x)^2}$	is	
a) $\frac{3^{n+1}-1}{2\cdot 3^{n+1}}$	b) $\frac{3^{n+1}-1}{3^{n+1}}$	c) $2\left(\frac{3^{n+1}-1}{3^{n+1}}\right)$	d) None of these
335. The greatest term in th	the expansion of $(1 + 3x)^{54}$, where $(1 + 3x)^{54}$	where $x = 1/3$ is	
a) <i>T</i> ₂₈	b) T ₂₅	c) <i>T</i> ₂₆	d) <i>T</i> ₂₄
$^{336.}$ If in the expansion of ($\left(\frac{1}{x} + x \tan x\right)^{3}$ the ratio of 4th	term to the 2nd term is $\frac{2}{27}$	π^4 , then the value of <i>x</i> can be
a) $-\frac{\pi}{6}$	b) $-\frac{\pi}{3}$	c) $\frac{\pi}{6}$	d) $\frac{\pi}{12}$
337. The remainder when 3			
a) 1 338. If $A = 1000^{1000}$ and B	b) 2 $- (1001)^{999}$ then	c) 3	d) 4
a) $A > B$	$=(1001)^{10}$, then		
b) $A = B$			
c) $A < B$			
d) None of these			
339. If the r th term in the ϵ	expansion of $\left(\frac{x}{3} - \frac{2}{x^2}\right)^{10}$ cor	ntains x^4 , then r is equal to	
a) 3	b) 0	c) -3	d) 5
340. The coefficient of term	independent of <i>x</i> in		
$\left[\sqrt{\left(\frac{x}{3}\right)} + \frac{\sqrt{3}}{x^2}\right]^{10}$ is			
a) $\frac{5}{2}$	b) $\frac{4}{5}$	c) 6	d) $\frac{1}{2}$
5	5	$(2, 2)^{15}$	<u>L</u>
	ient of x^{15} to the term indep		
a) $1/4$	b) $1/16$	c) 1/32	d) 1/64
$342.$ The sum $32_0 + 32_1$ 40!	$+ {}^{40}C_2 + \dots + {}^{40}C_{20}$ is equation $1 40!$		d) None of these
a) $2^{40} + \frac{40!}{(20!)^2}$	b) $2^{39} - \frac{1}{2} \times \frac{40!}{(20!)^2}$	c) $2^{39} + {}^{40}C_{20}$	
^{343.} The coefficient of x^5 ir	the expansion of $\frac{1+x^2}{1+x}$, $ x < \frac{1+x^2}{1+x}$	< 1, is	
a) —1	b) 2	c) 0	d) -2
,			,
	erm in the binomial expansio	on of $\left(\frac{1}{3}x^{1/2} + x^{-1/4}\right)$ is	
a) $\frac{70}{243}$	b) $\frac{60}{423}$	c) $\frac{50}{13}$	d) None of these
345. (3	423		
If the expansion of $\left(\frac{3}{4}\right)$	$\left(\frac{\sqrt{x}}{7} - \frac{5}{2x\sqrt{x}}\right)^{13n}$ contains a te	erm independent of <i>x</i> in 14t	h
term, then <i>n</i> should be a) 10	b) 5	c) 6	d) 4
2	x must lie so that the greates	,	,
coefficient, is			
a) $\left(\frac{n-1}{n}, \frac{n}{n-1}\right)$			
b) $\left(\frac{n}{n+1}, \frac{n+1}{n}\right)$			
c) $\left(\frac{n+1}{n+2}, \frac{n+2}{n}\right)$			
d) None of these			

347. The coefficient of a^3b^4c	in the expansion of $(1 \pm a)$	$-h \pm c)^9$ is equal to	
	01	01	
a) $\frac{9!}{3! 6!}$	b) $\frac{9!}{4!5!}$	c) $\frac{9!}{3!5!}$	d) $\frac{9!}{3! 4!}$
348. If $(1 + x + x^2)^n = \sum_{r=0}^{2n} x^{r-1}$	$a_r x^r$, then $a_1 - 2a_2 + 3a_3$	– $2na_{2n}$ is equal to	
a) <i>n</i>	b) <i>-n</i>	c) 0	d) 2 <i>n</i>
349. In the expansion of $(1 +$		ient of odd powers of <i>x</i> , is	
a) 2 ³⁰	b) 2 ³¹	c) 0	d) 29
350.	$\left(\boxed{\frac{1}{1}} \right)$	1/12)6	
If the fourth term in the	expansion of $\left\{ \sqrt{x^{\left(\frac{1}{\log x + 1}\right)}} + \right\}$	$x^{1/12}$ is equal to 200 and	x > 1, then x is equal to
a) $10^{\sqrt{2}}$	b) 10	c) 10 ⁴	d) None of these
351. The coefficient of x^6 in {	,	-) -	
a) ${}^{16}C_9$	b) ${}^{16}C_5 - {}^{6}C_5$		d) None of these
352. The sum of the series 1			
The sum of the series 1	5 5·10 5·10·15		–
a) $\frac{1}{\sqrt{5}}$	b) $\frac{1}{\sqrt{2}}$	c) √3	d) $\sqrt{\frac{5}{3}}$
$\sqrt[4]{\sqrt{5}}$	$\sqrt{2}$	0) 10	[⊥]) √3
^{353.} If $A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ and $I = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$	[0]. Then which one of th	e following holds for all $n \ge 1$	> 1, by the principle of
	—		, ., ., prpro or
mathematical induction a) $A^n = 2^{n-1}A + (n-1)$		b) $A^n = nA + (n-1)I$	
c) $A^n = 2^{n-1}A - (n-1)$		d) $A^n = nA - (n - 1)I$	
		$0 \qquad \qquad$	
The greatest term in the	expansion of $\sqrt{3}\left(1+\frac{1}{\sqrt{3}}\right)^2$	is	
a) $\frac{26840}{9}$	b) $\frac{24840}{9}$	25840	d) None of these
a) <u>9</u>	b) <u> </u>	c) <u> </u>	,
355. If $(1+x)^n = \sum_{r=0}^n C_r x^r$,	0 1	<i>h</i> 1	
a) $\frac{n^{n-1}}{1}!$	b) $\frac{(n+1)^{n-1}}{(n-1)!}$	c) $\frac{(n+1)^n}{(n+1)^n}$	d) $\frac{(n+1)^{n+1}}{n!}$
			16
356. The expression $[x + (x^3)]$	$(-1)^{1/2}$ $\left[x - (x^3 - 1)^1\right]^3$	$^{/2}$] is a polynomial of degree	ee
a) 5	b) 6	c) 7	d) 8
357. The sum of the coefficient			
a) -1	b) 1	c) 0	d) None of these
358. If C_r stands for nC_r , the	sum of the given series $\frac{2(\overline{2})}{2}$	$\frac{(1-2)!}{n!} \cdot [C_0^2 - 2C_1^2 + 3C_2^2$	$(1, +(-1)^n (n+1)C_n^2]$, where
<i>n</i> is an even positive inte		<i>It</i> :	
a) 0		b) $(-1)^{n/2}(n+1)$	
c) $(-1)^n (n+2)$		d) $(-1)^{n/2}(n+2)$	
359. The value of (1.002) ¹² u	pto fourth place of decimal	is	
a) 1.0242	b) 1.0245	c) 1.0004	d) 1.0254
^{360.} The coefficient of the ter	rm independent of x in the c	expansion of $(1 + x + 2x^3)$	$\left(\frac{3}{2}x^2 - \frac{1}{3x}\right)^9$ is
a) $\frac{1}{2}$	b) $\frac{19}{54}$	c) $\frac{17}{54}$	d) $\frac{1}{4}$
3 361. If <i>a</i> and <i>d</i> are two comp	54	54	4
$aC_0 - (a+d)C_1 + (a$			Swing Series
a		c) 0	d) None of these
a) $\frac{u}{2^n}$	b) <i>na</i>) -	,
362. $2^{3n} - 7n - 1$ is divisible	-		N 97
a) 64	b) 36	c) 49	d) 25
363. If <i>n</i> is a positive integer,	then $5^{2n+2} - 24n - 25$ isd	ivisible by	

a) 574	b) 575	c) 675	d) 576
364. If $a_n = \sum_{r=0}^n \frac{1}{n_{C_r}}$, then $\sum_{r=0}^n \frac{1}{n_{C_r}}$	$\sum_{r=0}^{n} \frac{r}{n_{Cr}}$ equals		
a) $(n-1)a_n$	-1	c) $\frac{1}{2}na_n$	d) None of these
365. The expression $\frac{1}{\sqrt{4x+1}} \bigg\{ \bigg\}$	$\left(1 + \frac{\sqrt{4x+1}}{2}\right)^7 - \left(1 - \frac{\sqrt{4x+1}}{2}\right)^7$	$\left. \right\}$ is a polynomial in x of de	gree
a) 7	b) 5	c) 4	d) 3
366. If the coefficient of x^7 is	$\left(ax^2 + \frac{1}{hx}\right)^{11}$ equal the co	Deficient of x^{-7} in $\left(ax - \frac{1}{b}\right)$	$\frac{1}{1}$
then <i>a</i> and <i>b</i> satisfy the		\ D.	x ²)
a) $ab = 1$	а	c) $a + b = 1$	d) $a - b = 1$
2	D	5	2
367. The middle term in the	expansion of $\left(x + \frac{1}{2x}\right)$ is		
a) $\frac{1 \cdot 3 \cdot 5 \dots (2n-3)}{n!}$			
b) $\frac{1\cdot 3\cdot 5\dots(2n-1)}{n!}$			
c) $\frac{1 \cdot 3 \cdot 5 \dots (2n+1)}{n!}$			
d) None of these			
368. The coefficient of x^5 in	the expansion of $(1 + x)^{21}$ b) 9C_5	+ $(1 + x)^{22}$ + + $(1 + x)^{30}$ c) ${}^{31}C_6 - {}^{21}C_6$	is $30C + 20C$
a) ${}^{51}C_5$ 369. If $(r + 1)^{th}$ term is the	, ,		
a) 5	b) 6	c) 4	d) 7
370. If in expansion of $(1 + 1)$,	-)	-)
a) 9	b) 10	c) 11	d) 12
^{371.} The greatest term in th	-		
			d) None of these
a) $\frac{25840}{9}$	b) $\frac{24840}{9}$	c) $\frac{20010}{9}$	d) None of these
372. The coefficient of x^n in	the expansion of $(1 + x + x)$	$(2^{2} + \cdots)^{-n}$, is	
a) 1	b) $(-1)^n$		d) <i>n</i> + 1
373. The coefficient of t^{24} in		1.0	10
a) ${}^{12}C_6$ +2	b) ${}^{12}C_5$	c) ${}^{12}C_6$	d) ${}^{12}C_7$
374. If the coefficients of T_r ,			
a) 6 375. The larger of 99 ⁵⁰ + 10	b) 7 (101^{50} is	c) 8	d) 9
a) $99^{50} + 100^{50}$		c) 101 ⁵⁰	d) None of these
376. The value of the sum of		0 101	
	${}^{n}C_{2} - 18 \cdot {}^{n}C_{3} + \dots$ upto (<i>n</i>	(+1) terms is	
a) 0	b) 3 ⁿ	c) 5^n	d) None of these
^{377.} The last positive intege	r <i>n</i> such that $\binom{n-3}{3} + \binom{n-3}{2}$	$\binom{n}{4} > \binom{n}{3}$ is	
a) 6	b) 7	c) 8	d) 9
378. If <i>S</i> be the sum of coeffi	cients in the expansion of ($(\alpha x + \beta y - \gamma z)^n$, where (α, β)	$\beta, \gamma > 0$), then the value of
$\lim_{n\to\infty}\frac{S}{\{S^{1/n}+1\}^n}$ is			
a) $e^{\left(\frac{\alpha\beta}{\gamma}\right)}$	b) $e^{\left(\frac{\alpha+\beta-\gamma}{\alpha+\beta-\gamma+1}\right)}$	c) $\frac{\alpha\beta}{\gamma}$	d) 0
^{379.} If the sum of the numer			n is equal to 6561 then the
term independent of r		(x + 2x)	

term independent of *x*, is

Page | 24

a) ⁸ C ₄	b) ${}^{8}C_{4} \times 2^{4}$	c) ${}^{6}C_{4} \times 2^{4}$	d) None of these								
380. $\sum_{i=1}^{3} \sum_{j=1}^{10} C_j^{j} C_i$ is equal to											
$\overline{0 \le i} < \overline{j \le 10}$ a) $2^{10} - 1$		c) 3 ¹⁰ – 1	d) 3 ¹⁰								
381. The coefficient of $x^{2^{m+1}}$		1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	x < 1 is								
a) 3	b) 2	c) 1	d) 0								
382. If $n \in N$ such that $(7 +$,	5	2								
a) 0	b) 1	c) 7 ²ⁿ	d) 2^{2n}								
383. The largest coefficient i			d) ²⁴ C ₁₁								
<i>y</i> 21	a) ${}^{24}C_{24}$ b) ${}^{24}C_{13}$ c) ${}^{24}C_{12}$										
384. The coefficient of x^4 in the expansion of $(1 + x + x^3 + x^4)^{10}$, is a) ${}^{40}C_4$ b) ${}^{10}C_4$ c) 210 d) 310											
385. If the third term in the l	· ·	,	•								
a) 2	b) 1/2	c) 3	d) 4								
	^{386.} If $C_r = {}^n C_r$ and $(C_0 + C_1)(C_1 + C_2) \dots (C_{n-1} + C_n) = k \frac{(n+1)^n}{n!}$, then the value of <i>k</i> , is a) $C_0 C_1 C_2 \dots C_n$ b) $C_1^2 C_2^2 \dots C_n^2$ c) $C_1 + C_2 + \dots + C_n$ d) None of these										
$387.$ The coefficient of x^{53} in		$c_1 c_1 + c_2 + \dots + c_n$	u) None of these								
100											
$\sum_{n=1}^{n} {}^{100}C_m (x-3)^{100-n}$	$n \cdot 2^m$, is										
m=0	b) ¹⁰⁰ C ₅₃	c) $-\frac{100}{C_{53}}$	d) $- {}^{100}C_{100}$								
^{388.} If the ratio of the coeffic											
<i>n</i> will be			(2x) is 1.2, then the value of $(2x)$								
a) 18	b) 16	c) 12	d) -10								
389. The coefficient of x^n in	,	5									
a) 1	b) $(-1)^n$	c) <i>n</i>	d) $n + 1$								
390. If in the expansion of (a			5								
a) $\frac{n-4}{5}$	b) $\frac{n-3}{2}$	c) $\frac{5}{n-4}$	d) $\frac{5}{2(n-4)}$								
5 391. The coefficient of x^5 in	Z		(n-4)								
a) -4692	b) 4692	c) 2346	d) —5052								
^{392.} The number of terms w		,									
a) $2n + 1$	b) 2n	c) n	x^2), x^3 d) None of these								
393. If the coefficients of x^7	,	2	uj None of these								
a) 56	b) 55	c) 45	d) 15								
394. The term independent	of x in $\left\{ \sqrt{\frac{x}{3}} + \frac{3}{2x^2} \right\}^{10}$, is										
a) $\frac{9}{4}$	b) $\frac{3}{4}$	c) $\frac{5}{4}$	d) $\frac{7}{4}$								
4	1	$\frac{c}{4}$	4								
^{395.} Coefficient of x^{-4} in $\left(\frac{3}{2}\right)$	$\left(-\frac{3}{x^2}\right)^{10}$ is										
a) $\frac{405}{226}$	b) $\frac{504}{289}$	c) $\frac{450}{263}$	d) None of these								
396. If the coefficients of (2	207)18 are equal then the value								
of r , is	$(1 + j)$ and $(1 - 2)^2$ terms	1 in the expansion of $(1 + \lambda)$	j are equal, then the value								
a) 5	b) 6	c) 7	d) 9								
397. The coefficient of x^6 in	the expansion of $(1 + x + x)$	²) ⁻³ , is									
a) 6	b) 5	c) 4	d) 3								

398. $49^n + 16n - 1$ is divisible by b) 29 c) 19 d) 64 a) 3 399. The value of $1^2 \cdot C_1 + 3^2 \cdot C_3 + 5^2 \cdot C_5 + ...$ is a) $n(n-1)^{n-2} + n \cdot 2^{n-1}$ b) $n(n-1)^{n-2}$ c) $n(n-1) \cdot 2^{n-3}$ d) None of these 400. If the coefficient of x^2 and x^3 in the expansion of $(3 + ax)^9$ be same, then the value of *a* is a) 3/7 b) 7/3 c) 7/9 d) 9/7 401. The coefficient of x in the expansion of $(1 + x)(1 + 2x)(1 + 3x) \dots \dots (1 + 100x)$ is b) 10100 a) 5050 c) 5151 d) 4950 ^{402.} The positive value of *a* so that the coefficients of x^5 and x^{15} are equal in the expansion of $\left(x^2 + \frac{a}{x^3}\right)^{10}$ b) $\frac{1}{\sqrt{3}}$ a) $\frac{1}{2\sqrt{3}}$ c) 1 d) $2\sqrt{3}$ 403. In the expansion of $(2 - 3x^3)^{20}$, if the ratio of 10th term to 11th term is 45/22, then x is equal to c) $-\sqrt[3]{\frac{2}{3}}$ d) $-\frac{3}{2}\frac{3}{2}$ a) $-\frac{2}{3}$ b) $\frac{-3}{2}$

8.BINOMIAL THEOREM

						: ANS	W <u>ER</u> H	KEY					
1)	b	2)	b	3)	d	4)	c 189)		190)	a	191) a	a 192)	(
5)	а	6)	а	7)	а	8)	c 193)		194)	с	195) I	-	
9)	b	10)	С	11)	b	12)	a 197)		198)	b	-	o 200)	
13)	С	14)	С	15)	С	16)	b 201)		202)	b	203)	-	
17)	b	18)	d	19)	С	20)	d 205)		206)	а		o 208)	
21)	с	22)	а	23)	а	24)	c 209)		210)	b	211)		
25)	а	26)	d	27)	b	28)	b 213)		214)	d	215)	-	,
29)	С	30)	С	31)	С	32)	b 217)	а	218)	а	219) a		Ì
33)	b	34)	С	35)	d	36)	d 221)	а	222)	с	223) a		,
37)	b	38)	а	39)	а	40)	b 225)	а	226)	а	227) a	a 228)	
41)	а	42)	С	43)	b	44)	c 229)	С	230)	а	231) I	-	
45)	d	46)	d	47)	С	48)	b 233)	С	234)	d	235)	d 236)	
49)	d	50)	b	51)	а	52)	b 237)	а	238)	а	239) a		(
53)	С	54)	а	55)	а	56)	b 241)		242)	с		244)	ا
57)	а	58)	b	59)	b	60)	b 245)	b	246)	а	247) I	-	l
61)	с	62)	С	63)	d	64)	b 249)	С	250)	b	251)		ا
65)	d	66)	С	67)	d	68)	a 253)	b	254)	с	255) I	2	۱
, 69)	d	70)	а	71)	а	72)	c 257)		258)	с	259)	0.00	(
73)	b	74)	а	, 75)	С	, 76)	b 261)		262)	a	263) a		İ
77)	b	, 78)	С	79)	b	80)	b 265)	b	266)	d	267)		
, 81)	С	82)	b	83)	С	84)	b 269)		270)	b	271) a		۱
85)	d	86)	d	87)	d	88)	d 273)		274)	b	-	o 276)	
89)	а	90)	b	91)	С	92)	d 277)		278)	b		o 280)	l
93)	b	94)	а	95)	а	96)	b 281)	а	282)	с	283) a		۱
97)	b	98)	b	99)	b	100)	b 285)	С	286)	d	287)		I
101)	c	102)	c	103)	b	104)	b 289)		290)	b	291) a		ا
105)	С	106)	а	107)	d	108)	c 293)	d	294)	b	295)	-	(
109)	С	110)	d	111)	b	112)	c 297)		298)	b	299) I	-	
113)	b	114)	b	115)	c	116)	c 301)		302)	b	303)		Ì
117)	b	118)	a	119)	c	120)	b 305)		306)	d	307) a		l
121)	d	122)	b	123)	b	124)	d 309)		310)	b	311)	-	
125)	a	126)	d	127)	d	128)	a 313)		314)	a	315)		l
129)	d	130)	a	131)	c	132)	d 317)		318)	b	319)	-	
133)	d	134)	c	135)	a	136)	b 321)		322)	c	323)		
137)	b	138)	b	139)	c	140)	b 325)		326)	a	327) I	-	1
141)	c	142)	c	143)	b	144)	b 329)		330)	c	331) a		
145)	d	146)	b	147)	d	148)	b 333)		334)	a	335) a		
149)	a	150)	d	151)	a	152)	c 337)		338)	a	339) a	-	
153)	a	150) 154)	b	151)	b	152)	b 341)		342)	d	343) (-	:
157)	b	151)	b	159)	b	160)	c 345)		346)	b	347)	-	1
161)	a	162)	b	163)	d	164)	b 349)		350)	b	351) a		,
165)	a C	162)	a	163) 167)	u C	164)	d 353)		350) 354)	c	355) (-	,
163) 169)	d	100) 170)	a b	107)	с с	100)	b 357)		354) 358)	c d	359) a		,
109) 173)	u C	170) 174)	a	171)	d	172)	c 361)		362)	u C	363) (-	
173) 177)	c	174)	a d	173) 179)	u a	170)	c 365)		366)	с а	367) I	-	
177) 181)	с а	178)	u b	179)	a b	180)	b 369)		300) 370)	a b	307) i 371) i		י
181) 185)	a b	182)	d	187)	b	184)	b 373)		370) 374)	d	371) a 375) a	-	i
1001	U	100)	u	1073	U	100)	0 3/3]	a	574J	u	5755 1	. 5705	

377)	d	378)	d	379)	b	380) c	393)	b	394)	С	395)	d	396)	b
381)	С	382)	b	383)	С	384) d	397)	d	398)	d	399)	d	400)	d
385)	b	386)	а	387)	С	388) d	401)	а	402)	a	403)	а		
389)	b	390)	b	391)	d	392) b	1							
							I							

: HINTS AND SOLUTIONS :

5

6

1 **(b)**

We have, $(1 + x)^{15} = C_0 + C_1 x + C_2 x^2 + ... + C_{15} x^{15}$ $\Rightarrow \frac{(1 + x)^{15} - 1}{x} = C_1 + C_2 x + ... + C_{15} x^{14}$ On differentiating both sides w.r.t. *x*, we get $\frac{x \cdot 15(1 + x)^{14} - (1 + x)^{15} + 1}{x^2}$ $= C_2 + 2C_3 x + ... + 14C_{15} x^{13}$ On putting x = 1, we get $C_2 + 2C_3 + ... + 14C_{15} = 15 \cdot 2^{14} - 2^{15} + 1$ $= 13 \cdot 2^{14} + 1$

2 **(b)**

It is given that ${}^{2n}C_1, {}^{2n}C_2 \text{ and } {}^{2n}C_3 \text{ are A.P.}$ $\therefore 2 \cdot {}^{2n}C_2 = {}^{2n}C_1 + {}^{2n}C_3$ $2 \cdot \frac{(2n)!}{(2n-2)!2!} = \frac{(2n)!}{(2n-1)!} + \frac{(2n)!}{(2n-3!3!)}$ $\Rightarrow 2\frac{(2n)(2n-1)}{2}$ $= 2n + \frac{(2n)(2n-1)(2n-2)}{3!}$ $\Rightarrow 6(2n-1) = 6 + (2n-1)(2n-2)$ $\Rightarrow 12n-6 = 6 + 4n^2 - 6n + 2$ $\Rightarrow 4n^2 - 18n + 14 = 0 \Rightarrow 2n^2 - 9n + 7 = 0$ (d) $\frac{1+2x}{(1-2x)^2} = (1+2x)(1-2x)^{-2}$ $= (1+2x)\left(1+\frac{2}{11}(2x)\right)$

$$+\frac{2\cdot 3}{2!}(2x)^{2}+\ldots+\frac{2\cdot 3\ldots r}{(r-1)!}(2x)^{r-1} +\frac{2\cdot 3\cdot 4\ldots (r+1)(2x)^{r}}{r!}$$

The coefficient of $x^r = 2 \frac{r!}{(r-1)!} 2^{r-1} + \frac{(r-1)!}{r!} 2^r$ = $r2^r + (r+1)2^r = 2^r(2r+1)$

4 **(c)**

3

Given,
$$A = {}^{30}C_0 \cdot {}^{30}C_{10} - {}^{30}C_1 \cdot {}^{30}C_{11} + {}^{30}C_2 \cdot {}^{30}C_{12} + \dots + {}^{30}C_{20} \cdot {}^{30}C_{30}$$

= coefficient of x^{20} in $(1 + x)^{30}(1 - x)^{30}$
= coefficient of x^{20} in $(1 + x^2)^{30}$
= coefficient of x^{20} in $(1 + x^2)^{30}$
= coefficient of x^{20} in $(1 - x)^{30}$
= $(-1)^{r} {}^{30}C_r(x^2)^r$
= $(-1)^{10} \cdot {}^{30}C_{10}$ {for coefficient of x^{20} , let $r = 10$ }

$$= {}^{30}C_{10}$$

(a)

We have, $a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + \dots + a_{2n} x^{2n}$ $= (1 - x + x^2)^n$ Putting x = 1 and -1, we get $(a_0 + a_2 + a_4 + \dots) + (a_1 + a_3 + a_5 + \dots)$ $= 1 \dots (i)$ And, $(a_0 + a_2 + a_4 + \dots) - (a_1 + a_3 + a_5 \dots)$ $= 3^n \dots (ii)$ Adding (i) and (ii), we get $a_0 + a_2 + a_4 + \dots = \frac{3^n + 1}{2}$ (a) We know that ,

 $(1 + x)^n = C_0 + C_1 x + C_2 x^2 + \dots + C_n x^n$ On integrating both sides, from 0 to 1, we get

$$\left[\frac{(1+x)^{n+1}}{n+1}\right]_{0}^{1} = \left[C_{0}x + \frac{C_{1}x^{2}}{2} + \frac{C_{2}x^{3}}{3} + \cdots + \frac{C_{n}x^{n+1}}{n+1}\right]_{0}^{1}$$
$$\Rightarrow \frac{2^{n+1}-1}{n+1} = C_{0} + \frac{C_{1}}{2} + \frac{C_{2}}{3} + \dots + \frac{C_{n}}{n+1}$$

(a)

7

7th term from the beginning in the expansion of $\left(2^{1/3} + \frac{1}{3^{1/3}}\right)^x$ is given by $T_7 = {}^x C_6 \left(2^{1/3}\right)^{x-6} \left(\frac{1}{3^{1/3}}\right)^6$ 7th term from the end in the expansion of $\left(2^{1/3} + \frac{1}{3^{1/3}}\right)^x$ is the $(x + 1 - 7 + 1)^{\text{th}} = (x - 5)^{\text{th}}$

term from the beginning. Therefore,

$$T_{x-5} = {}^{x}C_{x-6} \left(2^{1/3}\right)^{6} \left(\frac{1}{3^{1/3}}\right)^{x-6}$$
We have

$$\frac{T_7}{T_{x-5}} = \frac{1}{6}$$

$$\Rightarrow 6 T_7 = T_{x-5}$$

$$\Rightarrow 6 {}^xC_6 2^{\frac{x-6}{3}} 3^{-2} = {}^xC_{x-6} 2^2 3^{-(\frac{x-6}{3})}$$

$$\Rightarrow 2^{\frac{x-9}{3}} = 3^{-(\frac{x-9}{3})}$$

$$\Rightarrow 6^{\frac{x-9}{3}} = 1 \Rightarrow x - 9 = 0 \Rightarrow x = 9$$

(b)

$$\because T_{r+1} = {}^{10}C_r (x \sin^{-1} \alpha)^{10-r} \left(\frac{\cos^{-1} \alpha}{x}\right)^{10-r}$$

$$= {}^{10}C_r(\sin^{-1}\alpha)^{10-r}(\cos^{-1}\alpha)^r x^{10-2r}$$

$$\therefore For the term independent of x,
10 - 2r = 0 \Rightarrow r = 5
T_{5+1} = {}^{10}C_5(\sin^{-1}\alpha)^5(\cos^{-1}\alpha)^5$$

$$= {}^{10}C_5(\sin^{-1}\alpha\cos^{-1}\alpha)^5$$
Let $f(\alpha) = \sin^{-1}\alpha.\cos^{-1}\alpha$

$$= \sin^{-1}\alpha\left(\frac{\pi}{2} - \sin^{-1}\alpha\right)$$
Put $\sin^{-1}\alpha = t$

$$\therefore f(\alpha) = t\left(\frac{\pi}{2} - t\right)$$

$$= -\left\{t^2 - \frac{\pi}{2}t\right\}$$

$$= -\left\{(t - \frac{\pi}{4})^2 - \frac{\pi^2}{16}\right\}$$
Maximum value of $f(\alpha)$ is $\frac{\pi^2}{16}$, when $\sin^{-1}\alpha = \frac{\pi}{4}$
Also, $-1 \le \alpha \le 1$

$$\therefore -\frac{\pi}{2} \le \sin^{-1}\alpha \le \frac{\pi}{2}$$
Minimum value $f(\alpha) = \frac{\pi^2}{16} - \left(-\frac{\pi}{2} - \frac{\pi}{4}\right)^2 = -\frac{\pi^2}{2}$

$$\therefore \text{ Range is } \left[{}^{10}C_5\left(-\frac{\pi^2}{2}\right)^5, {}^{10}C_5\left(\frac{\pi^2}{16}\right)^5 \right]$$
 $ie_r \left[-\frac{{}^{10}C_5\pi^{10}}{2^5}, \frac{{}^{10}C_5\pi^{10}}{2^{20}} \right]$
10 (c)
Let $A = {}^{(30)}\left(\frac{30}{10}\right) - {}^{(30)}\left(\frac{30}{30}\right)$
 $or A = {}^{30}C_0.{}^{30}C_{10} - {}^{30}C_{11}$
 $+ {}^{30}C_2.{}^{30}C_{12} - ... + {}^{30}C_{20.{}^{30}C_{30}}$
 $= coefficient of x^{20} in (1 - x^2)^{30}$
 $= coefficient of x^{20} in (2 - 1)^{r} {}^{30}C_r(x^2)^r$
 $= (-1)^{10} {}^{30}C_{10} (for coefficient of x^{20}, let r = 10)$
 $= {}^{30}C_{10}$
11 (b)
The rth term of $(a + 2n)^n$ is ${}^{n}C_{r-1}(a)^{n-r+1}(2x)^{r-1}$
 $= \frac{n(n-r+1)!(r-1)!}{(r-1)!}a^{n-r+1}(2x)^{r-1}$

We have,
$$(1 + t^2)^{12}(1 + t^{12})(1 + t^{24})$$

= $(1 + {}^{12}C_1t^2$
+ ${}^{12}C_2t^4$ + ... + ${}^{12}C_6t^{12}$ + ... + ${}^{12}C_{12}t^{24}$ + ...) $(1$
+ $t^{12} + t^{24} + t^{36})$
: Coefficient of t^{24} in $(1 + t^2)^{12}(1 + t^{12})(1 + t^{24})$
= ${}^{12}C_6 + {}^{12}C_{12} + 1 = {}^{12}C_6 + 2$
13 (c)
We have,
 $\frac{(1 + x)^2}{(1 - x)^3} = (x^{2v} + 2x + 1)(1 - x)^{-3}$
 $\Rightarrow \frac{(1 + x)^2}{(1 + x)^3} = x^2(1 - x)^{-3} + 2x(1 - x)^{-3}$
 $+ (1 - x)^{-3}$
: Coeff. of x^n in $\frac{(1 + x)^2}{(1 - x)^3}$
= Coeff. of x^n in $(1 - x)^{-3}$
= Coeff. of x^n in $(1 - x)^{-3}$
= Coeff. of x^{n-2} in $(1 - x)^{-3}$
 $+ 2$. Coeff. of x^{n-1} in $(1 - x)^{-3}$
 $+ 2$. Coeff. of x^{n-1} in $(1 - x)^{-3}$
 $= n^{-2+3-1}C_{3-1} + 2 \cdot n^{-1+3-1}C_{3-1} + n^{+3-1}C_{3-1}$
 $= n^{-2+3-1}C_{3-1} + 2 \cdot n^{-1+3-1}C_{3-1} + n^{+3-1}C_{3-1}$
 $= n^{-2}C_2 + 2 \cdot n^{+1}C_2 + n^{+2}C_2$
 $= \frac{n(n-1)}{2} + 2 \frac{(n+1)n}{2} + (n+2)\frac{(n+1)}{2}$
 $= \frac{1}{2}(n^2 - n + 2^2 + 2n + n^2 + 3n + 2)$
 $= 2n^2 + 2n + 1$
14 (c)
On substituting $x = 1$ in $(1 + x - 3x^2)^{3148}$, then
sum of coefficient
 $= (1 + 1 - 3)^{3148} = (-1)^{3148} = 1$
15 (c)
 $aC_0 - (a + d)C_1 + (a + 2d)C_2 - (a + 3d)C_3 + \cdots + (-1)^n(a + nd)C_n$
 $= \sum_{r=0}^n (a + rd)(-1)^r nC_r$
 $= a \sum_{r=0}^n (-1)^r nC_r - dn \sum_{r=1}^{n-1} n^{-1}C_{r-1}(-1)^{r-1}$
 $= a \times 0 - dn \times 0 = 0$
16 (b)
We have,
 $\frac{18^3 + 7^3 + 3 \cdot 18 \cdot 7 \cdot 25}{3^6 + 6 \cdot 24^3 \cdot 2 + 15 \cdot 81 \cdot 4 + 20 \cdot 27 \cdot 8 + 15 \cdot 9 \cdot 1} = \frac{18^3 + 7^3 + 3 \cdot 18 \cdot 7}{(3 + 2)^6} = \frac{5^6}{5^6} = 1$
17 (b)

$$\begin{aligned} \text{(c)} \\ \text{Let } S &= 1 + \frac{2 \cdot 1}{3 \cdot 2} + \frac{2 \cdot 5}{3 \cdot 6} \left(\frac{1}{2}\right)^2 + \frac{2 \cdot 5 \cdot 8}{3 \cdot 6 \cdot 9} \left(\frac{1}{2}\right)^3 + \dots \\ &= 1 + \frac{\frac{2}{3}}{1} \left(\frac{1}{2}\right) + \frac{\left(\frac{2}{3}\right) \left(\frac{5}{3}\right)}{2!} \left(\frac{1}{2}\right)^2 + \frac{\left(\frac{2}{3}\right) \left(\frac{5}{3}\right) \left(\frac{8}{3}\right)}{3!} \left(\frac{1}{2}\right)^3 + \dots \\ &= \left(1 - \frac{1}{2}\right)^{-2/3} = \left(\frac{1}{2}\right)^{-2/3} = 2^{2/3} = 4^{1/3} \end{aligned}$$

 $\frac{1}{(x-1)^2(x-2)} = \frac{1}{-2(1-x)^2\left(1-\frac{x}{2}\right)}$ $= -\frac{1}{2} \left[(1-x)^{-2} \left(1-\frac{x}{2}\right)^{-1} \right]$ $= -\frac{1}{2} \left[(1+2x+\cdots) \left(1+\frac{x}{2}+\cdots\right) \right]$ $\therefore \text{ Coefficient of constant term is } -\frac{1}{2}.$

: Coefficient of x^{50} in S is ${}^{1002}C_{50}$

 $\therefore \frac{1+x}{1+x} S = x(1+x)^{999} + 2x^{2}(1+x)^{990} + \dots$ $+ 1000 x^{1000} + \frac{1001 x^{1001}}{1+x} \dots (ii)$ Subtracting (ii) from (i), we get $\left(1 - \frac{x}{x+1}\right) S = (1+x)^{1000} + x(1+x)^{999} + x^{2}(1+x)^{999} + x^{2}(1+x)^{998} + \dots + x^{1000} - \frac{1001 x^{1001}}{1+x}$ $\Rightarrow S = (1+x)^{1001} + x (1+x)^{1000} + x^{2}(1+x)^{999} + \dots + x^{1000}(1+x) - 1001 x^{1001}$ $\Rightarrow S = (1+x)^{1001} \frac{\left\{1 - \left(\frac{x}{1+x}\right)^{1001}\right\}}{\left\{1 - \frac{x}{1+x}\right\}} - 1001 x^{1001}$ $\Rightarrow S = (1+x)^{1002} \left\{1 - \left(\frac{x}{1+x}\right)^{1001}\right\} - 1001 x^{1001}$ $\Rightarrow S = (1+x)^{1002} \left\{1 - \left(\frac{x}{1+x}\right)^{1001}\right\} - 1001 x^{1001}$

 $({}^{n}C_{0})^{2} + ({}^{n}C_{1})^{2} + ({}^{n}C_{2})^{2} + \dots + ({}^{n}C_{5})^{2}$ $= ({}^{5}C_{0})^{2} + ({}^{5}C_{1})^{2} + ({}^{5}C_{2})^{2} + ({}^{5}C_{3})^{2} + ({}^{5}C_{4})^{2} + ({}^{5}C_{5})^{2}$ = 1 + 25 + 100 + 100 + 25 + 1 = 252 $19 \quad \text{(c)}$ Let $S = (1 + x)^{1000} + 2 x (1 + x)^{999} + 3 x^{2} (1 + x)^{998}$ $+ \dots + 1000 x^{999} (1 + x)$ $+ 1001 x^{1000} \dots \text{(i)}$ $\therefore \frac{x}{1 + x} S = x (1 + x)^{999} + 2 x^{2} (1 + x)^{998} + \dots$

20 (d)

21

We have,

$$(1 + x^{2})^{5}(1 + x)^{4}$$

$$= ({}^{5}C_{0} + {}^{5}C_{1}x^{2} + {}^{5}C_{2}x^{4} + \cdots)$$

$$\times ({}^{4}C_{0} + {}^{4}C_{1}x + {}^{4}C_{2}x^{2} + {}^{4}C_{3}x^{3} + {}^{4}C_{4}x^{4})$$

$$\therefore \text{ Coefficient of } x^{5} \text{ in } \{(1 + x^{2})^{5}(1 + x)^{4}\}$$

$$= {}^{5}C_{2} \times {}^{5}C_{1} + {}^{4}C_{3} \times {}^{5}C_{1} = 60$$
(d)
(n + 2)^{2} - (n + 2)^{2} - (n + 2)^{2}

$$\begin{bmatrix} : (1-x)^{-n} = 1 + nx + \frac{n(n+1)}{2!}x^{2} + \dots \end{bmatrix}$$
22 (a)
rth term in the expansion of $\left(3x - \frac{2}{x^{2}}\right)^{15}$ is
 $T_{r} = {}^{15}C_{r-1}(3x)^{15-r+1}\left(\frac{-2}{x^{2}}\right)^{r-1}$
 $= {}^{15}C_{r-1}(3)^{15-r+1}(-2)^{r-1}(x)^{15-3r+3}$
For the term independent of x , put
 $15 - 3r + 3 = 0 \Rightarrow r = 6$
23 (a)
We have, $\sum_{r=0}^{n} \sum_{s=0}^{n} (r + rC_{s} + sC_{r} + sC_{s})$
 $= \sum_{r=0}^{n} \left[\sum_{s=0}^{n} rC_{r} + r\sum_{s=0}^{n} C_{s} + C_{s}\sum_{s=0}^{n} s + \sum_{s=0}^{n} sC_{s}\right]$
 $= \sum_{r=0}^{n} \left[\sum_{s=0}^{n} rC_{r} + r\sum_{s=0}^{n} C_{s} + C_{s}\sum_{s=0}^{n} s + \sum_{s=0}^{n} sC_{s}\right]$
 $= \sum_{r=0}^{n} \left[(n+1)r \cdot C_{r} + r2^{n} + \frac{n(n+1)}{2}C_{r} + n \cdot 2^{n-1}\right]$
 $= (n+1)n \cdot 2^{n-1} + (2^{n})\frac{n(n+1)}{2} + \frac{n(n+1)}{2}2^{n} + n(n+1)2^{n} + n(n+1)2^{n}$
 $= 2n(n+1)2^{n} \dots (i)$
Also, $\sum_{r=0}^{n} \sum_{s=0}^{n} (r + s)(C_{r} + C_{s})$
 $= \sum_{r=0}^{n} 4rC_{r} + 2\sum_{0 \le r < s \le n} \sum_{s=0}^{n} (r + s)(C_{r} + C_{s})$
 $\Rightarrow \sum_{0 \le r < s \le n} \sum_{r=0}^{n} (r + s)(C_{r} + C_{s}) = n^{2} \cdot 2^{n}$

25 **(a)**

We know,

$$(1+x)^n = C_0 + C_1 x + C_2 x^2 + \ldots + C_r x^r + \ldots \ldots(i)$$

and $\left(1 + \frac{1}{x}\right)^n = C_0 + C_1 \frac{1}{x} + C_2 \frac{1}{x^2} + \ldots + C_r \frac{1}{x^r}$
 $+ C_{r+1} \frac{1}{x^{r+1}} + C_{r+2} \frac{1}{x^{r+2}} \dots C_n \frac{1}{x^n} \ldots(ii)$
On multiplying Eqs. (i) and (ii), equation
coefficient of x^r in $\frac{1}{x^n} (1+x)^{2n}$ or the coefficient
of x^{n+r} in $(1+x)^{2n}$, we get the value of required
expression which is

$${}^{2n}\mathcal{C}_{n+r} = \frac{(2n)!}{(n-r)!(n+r)!}$$

27 **(b)**

In
$$(x + a)^{100} + (x - a)^{100} n$$
 is even

 $\therefore \text{ Total number of terms} = \frac{n}{2} + 1 = \frac{100}{2} + 1 = 51$ 28 **(b)** Given polynomial is $(x - 1)(x - 2)(x - 3) \dots (x - 19)(x - 20)$ $= x^{20} - (1 + 2 + 3 + \dots + 19 + 20)x^{19}$ $+ (1 \times 2 + 2 \times 3 + \dots + 19 \times 20)x^{18}$ $- \dots + (1 \times 2 \times 3 \times 4 \times \dots \times 19 \times 20)$ $\therefore \text{ Coefficient of } x^{19} = -(1 + 2 + 3 + \dots + 19 + 20)$ $= -\left[\frac{20}{2}(1 + 20)\right]$ $= -10 \times 21 = -210$ 29 **(c)** We know that,

 ${}^{15}C_0 + {}^{15}C_1 + {}^{15}C_2 + \dots + {}^{15}C_{15} = 2^{15}$ $\Rightarrow 2({}^{15}C_8 + {}^{15}C_9 + \dots + {}^{15}C_{15})2^{15} [\because {}^nC_r$ $= {}^nC_{n-r}]$ $\Rightarrow {}^{15}C_8 + {}^{15}C_9 + \dots + {}^{15}C_{15} = 2^{14}$

30 (c)

The number of terms in the expansion of $(a + b + c)^n$ $= \frac{(n+1)(n+2)}{2}$

31 **(c)**

We have,

$$T_{r+1} = {}^{5}C_{r}(y^{2})^{5-r} \left(\frac{c}{y}\right)^{r} = {}^{5}C_{r}y^{10-3r} c^{r}$$

This will contain *y*, if $10 - 3r = 1 \Rightarrow r = 3$ \therefore Coefficient of $y = {}^{5}C_{3} c^{3} = 10 c^{3}$

32 **(b)**

$$(0.99)^{15} = (1 - 0.01)^{15}$$

= 1 - ${}^{15}C_1(0.01) + {}^{15}C_2(0.01)^2$
- ${}^{15}C_3(0.01)^3 + ...$

We want to answer correct upto 4 decimal places and as such, we have left further expansion.

$$= 1 - 15(0.01) + \frac{15 \cdot 14}{1 \cdot 2} (0.0001) \\ - \frac{15 \cdot 14 \cdot 13}{1 \cdot 2 \cdot 3} (0.000001) + ... \\ = 1 - 0.15 + 0.0105 - 0.000455 + ... \\ = 1.0105 - 0.150455 \\ = 0.8601$$

33 **(b)**

By hypothesis, $2^n = 4096 = 2^{12} \Rightarrow n = 12$ Since, *n* is even, hence greatest coefficient

$$= {}^{n}C_{n/2} = {}^{12}C_{6} = \frac{12 \cdot 11 \cdot 10 \cdot 9 \cdot 8 \cdot 7}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6} = 924$$

Given that,
$${}^{n}C_{r-1} = {}^{n}C_{r+1}$$

 $\Rightarrow \frac{n!}{(n-r+1)(n-r)(n-r-1)!(r-1)!}$

 $=\frac{n!}{(n-r-1)!(r+1)(r)(r-1)!}$ $\Rightarrow r^2 + r = n^2 - nr + n - nr + r^2 - r$ $\Rightarrow n^2 - 2nr - 2r + n = 0$ $\Rightarrow (n-2r)(n+1) = 0 \Rightarrow r = \frac{n}{2}$ 35 (d) It is given that ${}^{n}C_{1} x^{n-1} a^{1} = 240$... (i) ${}^{n}C_{2} x^{n-2} a^{2} = 720$... (ii) ${}^{n}C_{3} x^{n-3} a^{3} = 1080 \dots$ (iii) From (i), (ii) and (iii) $\frac{\binom{n}{C_2}^2 x^{2n-4} a^4}{\binom{n}{C_1} \binom{n}{C_3} x^{2n-4} a^4} = \frac{720 \times 720}{240 \times 1080}$ $\Rightarrow \frac{6 n^2 (n-1)^2}{4 n^2 (n-1)(n-2)} = 2$ $\Rightarrow \frac{3(n-1)}{2(n-2)} = 2$ $\Rightarrow 3n - 3 = 4n - 8 \Rightarrow n = 5$ 36 (d) $\frac{1}{81^n} (1 - 10 \cdot {}^{2n}C_1 + 10^2 \cdot {}^{2n}C_2 - 10^3 \cdot {}^{2n}C_3 + \cdots$ $+10^{2n}$) $=\frac{1}{(81)^n}(1-10)^{2n}=1$ 37 **(b)** We have, $(1 + x + x^2)^n =$ $a_0 + a_1x + a_2x^2 + a_3x^3 + \dots + a_{2n}x^{2n}$ On differentiating both sides, we get $n(1-1+1)^{n-1}(1+2x) = a_1 + 2a_2x + 3a_3x^2$ $+...+2na_{2n}x^{2n-1}$ On putting x = -1 we get $n(1-1+1)^{n-1}(1-2) = a_1 - 2a_2 + a_1 - 2a_2 + a_2 + a_2 - a_2 + a_2 + a_2 - a_2 + a_2 - a_2$ $3a_3 - \dots - 2na_{2n}$ $\Rightarrow a_1 - 2a_2 + 3a_3 - \dots - 2na_{2n} = -n$ 38 (a) Since $(n + 1)^{\text{th}}$ term is the middle term in the expansion of $(1 + x)^{2n}$: Coefficient of the middle term $= {}^{2n}C_n = \frac{(2n)!}{n!n!}$ $= \frac{(1 \cdot 3 \cdot 5 \dots (2n-1)(2 \cdot 4 \cdot 6 \dots (2n-2)(2n)))}{n!n!}$ = $\frac{1 \cdot 3 \cdot 5 \dots (2n-1)2^n n!}{n!n!}$ $=\frac{1\cdot 3\cdot 5\dots (2n-1)2^n}{n!}$

39 (a) We have, $(1+x)^{10}\left(1+\frac{1}{x}\right)^{12} = \frac{(1+x)^{22}}{x^{12}}$ $\therefore \text{ Constant term in } (1+x)^{10} \left(1+\frac{1}{x}\right)^{12}$ = Coefficient of x^{12} in $(1 + x)^{22}$ $= {}^{22}C_{12} = {}^{22}C_{10}$ 40 **(b)** Given, $a_n = na_{n-1}$ For n = 2 $a_2 = 2a_1 = 2$ (: $a_1 = 1$ given) $a_3 = 3a_2 = 3(2) = 6$ $a_4 = 4(a_3) = 4(6) = 24$ $a_5 = 5(a_4) = 5(24) = 120$ 41 (a) Since. $x(1+x)^n = xC_0 + C_1x^2 + C_2x^3 + \dots + C_nx^{n+1}$ On differentiating w.r.t. *x*, we get $(1+x)^n + nx(1+x)^{n-1}$ $= C_0 + 2C_1 x$ $+ 3C_2x^2 + \ldots + (n+1)C_nx^n$ Put x = 1, we get $C_0 + 2C_1 + 3C_2 + \ldots + (n+1)C_n = 2^n + n2^{n-1}$ $=2^{n-1}(n+2)$ 42 (c) Let T_{r+1} denote the $(r+1)^{th}$ term in the expansion of $\left(x^3 - \frac{1}{x^2}\right)^n$. Then, $T_{r+1} = {}^{n}C_{r} x^{3n-5r} (-1)^{r}$ For this term to contain x^5 , we must have $3n - 5r = 5 \Rightarrow r = \frac{3n - 5}{5}$ $\therefore \text{ Coefficient of } x^5 = {}^n C_{\frac{3n-5}{5}}(-1)^{\frac{3n-5}{5}}$ Similarly, Coefficient of $x^{10} = {}^{n}C_{\frac{3n-10}{5}}(-1)^{\frac{3n-10}{5}}$ Now, Coefficient of x^5 + Coefficient of $x^{10} = 0$ $\Rightarrow {}^{n}\mathcal{C}_{\underline{3n-5}}(-1)^{\frac{3n-5}{5}} + {}^{n}\mathcal{C}_{\underline{3n-10}}(-1)^{\frac{3n-10}{5}} = 0$ $\Rightarrow {}^{n}C_{\frac{3n-5}{5}} = {}^{n}C_{\frac{3n-10}{5}}$ $\Rightarrow \frac{3n-5}{5} + \frac{3n-10}{5} = n$ $\Rightarrow 6n - 15 = 5n$ $\Rightarrow n = 15$ 43 **(b)** $(1 + x + x^{2} + x^{3})^{6} = (1 + x)^{6}(1 + x^{2})^{6}$

 $= ({}^{6}C_{0} + {}^{6}C_{1}x + {}^{6}C_{2}x^{2} + {}^{6}C_{3}x^{3} + {}^{6}C_{4}x^{4}$ $+ {}^{6}C_{5}x^{5} + {}^{6}C_{6}x^{6}) \times ({}^{6}C_{0})$ $+ {}^{6}C_{1}x^{2} + {}^{6}C_{2}x^{4} +$ ${}^{6}C_{3}x^{6} + {}^{6}C_{4}x^{8} + {}^{6}C_{5}x^{10} + {}^{6}C_{6}x^{12})$: Coefficient of x^{14} in $(1 + x + x^2 + x^3)^6$ $= {}^{6}C_{2} \cdot {}^{6}C_{6} + {}^{6}C_{4} \cdot {}^{6}C_{5} + {}^{6}C_{6} \cdot {}^{6}C_{4}$ = 15 + 90 + 15 = 12044 (c) The 14th term from the end in the expansion of $(\sqrt{x} - \sqrt{y})^{17}$ is the $(18 - 14 + 1)^{\text{th}}$ i.e. 5th term from the beginning and is given by ${}^{17}C_4(\sqrt{x})^{13}(-\sqrt{y})^4 = {}^{17}C_4 x^{13/2} y^2$ 45 (d) Put x = 1, we get $(1+2+3+\dots+n)^2 = \sum n^3$ 46 (d) We have, $(1 + x + x^2)^n = a_0 + a_1 x + a_2 x^3 + \dots + a_{2n} x^{2n}$ On differentiating both sides, we get $n(1 + x + x^2)^{n-1}(1 + 2x) = a_1 + 2a_2x + 3a_3x^2$ $+...+2na_{2n}x^{2n-1}$ Now, on putting x = 1, we get $n(3)^{n-1} \cdot (3) = a_1 + 2a_2 + 3a_3 + \dots + 2na_{2n}$ $\Rightarrow a_1 + 2a_2 + 3a_3 + \dots + 2na_{2n} = n \cdot 3^n$ 47 (c) There are total (n + 1) factors, let P(x) = 0Let $(x + {}^{n}C_{0})(x + 3 {}^{n}C_{1})(x + 5 {}^{n}C_{2}) \dots [x +$ 2n+1 nCn $= a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$ Clearly, $a_n = 1$ and roots of the equation P(x) = 0 are $-{}^{n}C_{0}, -3{}^{n}C_{1}, \dots$ Sum of roots = $-a_{n-1}/a_n$ $= -{}^{n}C_{0} - 3{}^{n}C_{1} - 5{}^{n}C_{2} \dots$ $\Rightarrow a_{n-1} = (n+1)2^n$ 48 **(b)** $^{n-2}C_r + 2 \cdot {}^{n-2}C_{r-1} + {}^{n-2}C_{r-2}$ $= ({}^{n-2}C_r + {}^{n-2}C_{r-1}) + ({}^{n-2}C_{r-1} + {}^{n-2}C_{r-2})$ $= {}^{n-1}C_r + {}^{n-1}C_{r-1} (:: {}^{n}C_{r-1} + {}^{n}C_r = {}^{n+1}C_r)$ $= {}^{n}C_{r}$ 49 (d) $: \frac{1}{(x-1)^2(x-2)} = \frac{1}{-2(1-x)^2(1-\frac{x}{2})}$ $=-\frac{1}{2}\left[(1-x)^{-2}\left(1-\frac{x}{2}\right)^{-1}\right]$ $=-\frac{1}{2}\left[(1+2x+...)\left(1+\frac{x}{2}+...\right)\right]$ \therefore Coefficient of constant term is $-\frac{1}{2}$

50 **(b)** In the expansion of $\left(x^2 + \frac{a}{x}\right)^5$, the general term is $T_{r+1} = {}^{5}C_{r}(x^{2})^{5-r} \left(\frac{a}{x}\right)^{r} = {}^{5}C_{r} \cdot a^{r} \cdot x^{10-3r}$ For the coefficient of *x*, put $10 - 3r = 1 \implies r = 3$: Coefficient of $x = {}^{5}C_{3}a^{3} = 10a^{3}$ 52 (b) Coefficient of x^r in the expansion of $(1 + x)^{10}$ is ${}^{10}C_r$ and it is maximum for $r = \frac{10}{2} = 5$ Hence, Greatest coefficient = ${}^{10}C_5 = \frac{10!}{(5!)^2}$ 53 (c) Given expansion is $\left(\frac{a}{x} + bx\right)^{12}$: General term, $T_{r+1} = {}^{12}C_r \left(\frac{a}{r}\right)^{12-r} (bx)^r$ $= {}^{12}C_r(a)^{12-r}b^rx^{-12+2r}$ For coefficient of x^{-10} , put -12 + 2r = -10 $\Rightarrow r = 1$ Now, the coefficient of x^{-10} is ${}^{12}C_1(a){}^{11}(b){}^1 = 12a{}^{11}b$ 55 (a) We have, $T_{r+1} = {}^{21}C_r \left(\sqrt[3]{\frac{a}{\sqrt{b}}} \right)^{21-r} \left(\sqrt{\frac{b}{\sqrt[3]{a}}} \right)^{r}$ $\Rightarrow T_{r+1} = {}^{21}C_r a^{7-\frac{r}{2}} b^{\frac{2}{3}r-\frac{7}{2}}$ Since the powers of *a* and *b* are the same $\therefore 7 - \frac{r}{2} = \frac{2}{2}r - \frac{7}{2} \Rightarrow r = 9$ 56 **(b)** $(1-x)^{-4} = 1 \cdot x^0 + 4x^1 + \frac{4.5}{2}x^2 + \dots$ $=\left[\frac{1.2.3}{6}x^{0}+\frac{2.3.4}{6}x+\frac{3.4.5}{6}x^{2}\right]$ $+\frac{4.5.6}{6}x^3+\ldots+\frac{(r+1)(r+2)(r+3)}{6}x^r+\ldots$ Therefore, $T_{r+1} = \frac{(r+1)(r+2)(r+3)}{\epsilon} x^r$ 57 (a) We have, $y = \frac{1}{3} + \frac{1 \cdot 3}{3 \cdot 6} + \frac{1 \cdot 3 \cdot 5}{3 \cdot 6 \cdot 9} + \cdots$ $\Rightarrow y + 1 = 1 + \frac{1}{2} + \frac{1 \cdot 3}{3 \cdot 6} + \frac{1 \cdot 3 \cdot 5}{3 \cdot 6 \cdot 9} + \cdots$ Comparing the series on RHS with $1 + nx + \frac{n(n-1)}{2!}x^2 + \cdots$, we get $n x = \frac{1}{2}$... (i)

and, $\frac{n(n-1)}{2}x^2 = \frac{1}{6}$... (ii) Dividing (ii) by square of (i), we get $\frac{n-1}{2n} = \frac{9}{6} \Rightarrow n = -\frac{1}{2}$ $\Rightarrow x = -\frac{2}{3}$ [putting $n = -\frac{1}{2}$ in (i)] $\therefore y + 1 = (1 + x)^n$ $\Rightarrow y+1 = \left(1-\frac{2}{3}\right)^{-1/2}$ $\Rightarrow y+1 = \left(\frac{1}{2}\right)^{-1/2}$ $\Rightarrow (y+1)^2 = \left(\frac{1}{3}\right)^{-1} \Rightarrow y^2 + 2y + 1 = 3$ $\Rightarrow v^2 + 2v = 2$ b) $S(k) = 1 + 3 + 5...+(2k - 1) = 3 + k^{2}$ Put k = 1 in both sides, we get LHS = 1 and RHS = 3 + 1 = 4 \Rightarrow LHS \neq RHS LHS = $1 + 3 + 5 \dots + (2k - 1) + (2k + 1)$ $RHS = 3 + (k + 1)^2 = 3 + k^2 + 2k + 1$ Let LHS = RHS

Put (k + 1) in both sides in the place of k, we get Then, $1 + 3 + 5 \dots + (2k - 1) + (2k + 1)$ $= 3 + k^2 + 2k + 1$ \Rightarrow 1 + 3 + 5 +...+(2k - 1) = 3 + k² If S(k) is true, then S(k + 1) is also true. Hence, $S(k) \Rightarrow S(k+1)$

59 (b)

The general term in the expansion of $(5^{1/6} +$ 218)100 is given by

$$T_{r+1} = {}^{100}C_r (5^{1/6})^{100-r} (2^{1/8})^r$$
As 5 and 2 are relatively prime, T_{r+1} will be
rational, if
$$\frac{100-r}{6} and \frac{r}{8}$$
 are both integers *ie*, if $100 - r$ is a
multiple of 6 and *r* is a multiple of 8. As
 $0 \le r \le 100$, multiples of 8 upto 100 and
corresponding value of $100 - r$ are
 $r = 0, 8, 16, 24, \dots, 88, 96$
ie, $100 - r = 100, 92, 84, 76, \dots, 12, 4$
Out of $100 - r$, multiples of 6 are 84, 60, 36, 12
 \therefore There are four rational terms
Hence, number of irrational terms is $101 - 4 = 97$
(b)

We have,

60

$$T_r = {}^{10}C_{r-1} \left(\frac{x}{3}\right)^{10-r+1} \left(-\frac{2}{x^2}\right)^{r-1}$$

 $\Rightarrow T_r = {}^{10}C_{r-1}\left(\frac{1}{2}\right)^{11-r} (-2)^{r-1} x^{13-3r}$ For this term to contain x^4 , we must have $13 - 2r = 4 \Rightarrow r = 3$ 61 (c) We have, $32^{32} = (2^5)^{32} = 2^{160} = (3-1)^{160}$ $= {}^{160}C_0 3^{160} - {}^{160}C_1 \cdot 3^{159} + \ldots - {}^{160}C_{159} \cdot 3$ $+ {}^{160}C_{160}3^{\circ}$ = 3m + 1, where $m \in N$ $32^{(32)^{(32)}} = (32)^{3m+1}$ $= (2^5)^{3m+1} = 2^{15m+5}$ $= 2^{3(5m+1)} \cdot 2^2 = (2^3)^{5m+1} \cdot 2^2$ $= (7+1)^{5m=1} \times 4$ $= \{ {}^{5m+1}C_0 7^{5m+1} \}$ + ${}^{5m+1}C_17^{5m}$ + ... + ${}^{5m+1}C_{5m+1}7$ $+ {}^{5m+1}C_{5m+1}.7^{0} \times 4$ $= (7n + 1) \times 4$ where $n = {}^{5m+1}C_0 7^{5m+1} + \ldots + {}^{5m+1}C_{5m} \cdot 7$ 28n + 4Thus, when $32^{(32)^{(32)}}$ is divided by 7, the remainder is 4 62 (c) We have, $\left[2^{\log_2\sqrt{9^{x-1}+7}} + \frac{1}{2^{(1/5)\log_2(3^{x-1}+1)}}\right]'$ $= \left[\sqrt{9^{x-1}+7} + \frac{1}{(3^{x-1}+1)^{1/5}}\right]'$ $\therefore T_6 = {}^7C_5 \left(\sqrt{9^{x-1}+7} \right)^{7-5} \left[\frac{1}{(3^{x-1}+1)^{1/5}} \right]^5$ $= {}^{7}C_{5}(9^{x-1}+7)\frac{1}{(3^{x-1}+1)}$ $\Rightarrow 84 = {}^{7}C_{5}\frac{(9^{x-1}+7)}{(3^{x-1}+1)}$ $\Rightarrow 9^{x-1} + 7 = 4(3^{x-1} + 1)$ $\Rightarrow \frac{3^{2x}}{9} + 7 = 4\left(\frac{3^x}{3} + 1\right)$ $\Rightarrow 3^{2x} - 12(3^x) + 27 = 0$ $\Rightarrow y^2 - 12y + 27 = 0 \text{ (put } y = 3^x \text{)}$ $\Rightarrow (y-3)(y-9) = 0$ \Rightarrow y = 3,9 \Rightarrow 3^x = 3,9 \Rightarrow x = 1,2 63 (d) Here, P(1) = 2 and from the equation P(k) = k(k+1) + 2 $\implies P(1) = 4$ So, P(1) is not true Hence, mathematical induction is not applicable. 64 **(b)** We have, $(1 + 2x + x^2)^{20} = \{(1 + x)^2\}^{20} = (1 + x)^{40}$

Clearly, $(1 + x)^{40}$ contains 41 terms Hence, $(1 + 2x + x^2)^{20}$ contains 41 terms (d) The series of binomial coefficient is $^{15}C_{8}$ From the above discussion, we can say that decreasing series is ${}^{15}C_7$, ${}^{15}C_6$, ${}^{15}C_5$. 66 (c) For $n = 1, 10^n + 3 \cdot 4^{n+2} + 5$ $= 10 + 3 \cdot 4^3 + 5 = 207$ This is divisible by 9. \therefore By induction, the result is divisible by 9. (d) $\frac{{}^{8}C_{0}}{6} - {}^{8}C_{1} + {}^{8}C_{2} \cdot 6 - {}^{8}C_{3} \cdot 6^{2} + \dots + {}^{8}C_{8} \cdot 6^{7}$ $=\frac{1}{6}\left[{}^{8}C_{0}-6{}^{8}C_{1}+6{}^{2}{}^{8}C_{2}-6{}^{3}{}^{8}C_{3}+\dots+6{}^{8}{}^{8}C_{8}\right]$ $=\frac{1}{6}[(1-6)^8]=\frac{5^8}{6}$

68 (a)

67

65

In the expansion of $(1 + x)^n$, it is given that ${}^{n}C_{1}$, ${}^{n}C_{2}$, ${}^{n}C_{3}$ are in AP $\Rightarrow 2^n C_2 = {}^n C_1 + {}^n C_3$ $\Rightarrow 2 \cdot \frac{n(n-1)}{1 \cdot 2} = \frac{n}{1} + \frac{n(n-1)(n-2)}{1 \cdot 2 \cdot 3}$ $\Rightarrow 6(n-1) = 6 + (n-2)(n-1)$ $\Rightarrow 6n-6 = 6 + n^2 - 3n + 2$ $\Rightarrow n^2 - 9n + 14 = 0$ $\Rightarrow (n-2)(n-7) = 0$ $\Rightarrow n = 2,7$ But n = 2 is not acceptable because, when n = 2, there are only three terms in the expansion of $(1+x)^2$ $\therefore n = 7$ 70 **(a)** $(1+x)^n = {}^nC_0 + {}^nC_1x + {}^nC_2x^2 + \ldots + {}^nC_nx^n$...(i) On differentiating both sides w. r. t. x, we get $n(1+x)^{n-1} = {}^{n}C_{1} + 2 {}^{n}C_{2}x + \ldots + n {}^{n}C_{n}x^{n-1}$...(ii) On putting x = 1 in Eq. (ii), we get $n(2)^{n-1} = {}^{n}C_{1} + 2 {}^{n}C_{2} + \ldots + n {}^{n}C_{n}$...(iii) On putting x = -1 in Eq. (ii) we get $0 = {}^{n}C_{1} - 2 {}^{n}C_{2} + 3 {}^{n}C_{3} - \dots (-1)^{n-1} \cdot {}^{n}C_{n} \dots (iv)$ On adding Eqs. (iii) and (iv), we get $n2^{n-1} = 2({}^{n}C_{1} + 3 {}^{n}C_{3} + ...)$

 $\implies {}^{n}C_{1} + 3 {}^{n}C_{3} + 5 {}^{n}C_{5} + \ldots = \frac{n}{2} \cdot 2^{n-1} = n2^{n-2}$ 71 (a) Given expression is $(x + x^{\log 10^x})^5$ $\therefore T_3 = {}^5C_2 \cdot x^3 (x^{\log 10^x})^2 = 10^6$ (given) Put x = 10, then 10^4 . $10^2 = 10^6$ is satisfied. Hence, x = 10. 72 (c) Given, ${}^{n}C_{0} - \frac{1}{2} {}^{n}C_{1} + \frac{1}{3} {}^{n}C_{2} - \ldots + (-1)^{n} \frac{{}^{n}C_{n}}{n+1}$ At n = 1, ${}^{1}C_{0} - \frac{1}{2} {}^{1}C_{1} = 1 - \frac{1}{2} = \frac{1}{2}$ At n = 2, ${}^{2}C_{0} - \frac{1}{2}{}^{2}C_{1} + \frac{1}{3}{}^{2}C_{2} = 1 - 1 + \frac{1}{3} = \frac{1}{3}$ Which is satisfied only in option (c) 73 **(b)** $8^{2n} - (62)^{2n+1} = (1+63)^n - (63-1)^{2n+1}$ $= (1+63)^n + (1-63)^{2n+1}$ $= (1 + {}^{n}C_{1}63 + {}^{n}C_{2}(63)^{2} + \dots + (63)^{n})$ $+(1 - (2n+1)) C_1 63 + (2n+1) C_2 (63)^2 + \cdots$ $+(-1)(63)^{(2n+1)}$ $= 2 + 63[{}^{n}C_{1} + {}^{n}C_{2}(63) + \dots + (63)^{n-1} {}_{-}^{(2n+1)}C_{1}$ $+^{(2n+1)}C_{2}(63)-...-(63)^{(2n)}$ \therefore Remainder is 2. 74 (a) We have. $T_{r+1} = {}^{20}C_r \times 4^{\frac{20-r}{3}} \times 6^{-\frac{r}{4}}$ $\Rightarrow T_{r+1} = {}^{20}C_r 2^{\frac{160-11r}{12}} 3^{-\frac{r}{4}}, r = 0, 1, 2, \dots, 20$ This term will be rational if $\frac{160-11r}{12}$ and $\frac{r}{4}$ are rational numbers Now, $\frac{r}{4}$ is rational if r = 0,4,8,12,16,20Clearly, $\frac{160-11r}{12}$ is rational for = 8,16 and 20 Hence, there are only 3 rational terms 75 (c) We have, $\left(x^{2}+1+\frac{1}{r^{2}}\right)^{n}=\frac{1}{r^{2n}}(1+x^{2}+x^{4})^{n}$ $=\frac{1}{t^n}(1+t+t^2)^n$, where $t = x^2$ Clearly, $(1 + t + t^2)^n$ is a polynomial of degree $2n \mid 81$ Hence, there are (2n + 1) terms 76 **(b)** $(19)^{2005} + (11)^{2005} - (9)^{2005}$ $= (10+9)^{2005} + (10+1)^{2005} - (9)^{2005}$ $= (9^{2005} + {}^{2005}C_1(9)^{2004} \times 10 +) + ({}^{2005}C_0 +)$ ²⁰⁰⁵C110+...-92005 $= (^{2005}C_19^{2005} \times 10 + \text{multipale of})$ 10)+(1+multipal of 10)∴ Unit digit=1 77 **(b)**

 $\left(\frac{6}{2}+1\right)$ th term is the middle term. $T_4 = T_{3+1} = {}^6C_3 x^{6-3} (2y)^3$ *.*. $8({}^{6}C_{3})(xy)^{3}$ = ∴ Coefficient of middle term $= 8({}^{6}C_{3})$ 78 (c) General terms, $T_{r+1} = (1)^{r-15} C_r (x^4)^{15-r} \cdot \left(\frac{1}{x^3}\right)^r$ $= (-1)^{r} {}^{15}C_r \cdot x^{60-7r}$ For the coefficient of x^{-17} , put 60 - 7r = -17 $60 + 17 = 7r \Longrightarrow r = 11$ \Rightarrow Now, coefficient of $x^{-17} = (-1)^{11^{15}} C_{11} = -{}^{15}C_{11}$ 79 **(b)** $\frac{(1-3x)^{1/2} + (1-x)^{5/3}}{2\left(1-\frac{x}{4}\right)^{1/2}}$ $\left[\left[1 + \frac{1}{2}(-3x) + \frac{1}{2}\left(-\frac{1}{2}\right) \frac{1}{2}(-3x)^2 + \dots \right] + \right]$ $=\frac{\begin{bmatrix}1&2&2&2&2\\&\left[1+\frac{5}{3}(-x)+\frac{5}{3}\cdot\frac{2}{3}\cdot\frac{1}{2}(-x)^{2}+\dots\right]\end{bmatrix}}{2\left[1+\frac{1}{2}\left(-\frac{x}{4}\right)+\frac{1}{2}\left(-\frac{1}{2}\right)\frac{1}{2}\left(-\frac{x}{4}\right)^{2}+\dots\right]}$ $=\frac{2\left[1-\frac{19}{12}x-\frac{41}{144}x^2-\dots\right]}{2\left[1-\frac{x}{2}-\frac{1}{120}x^2-\dots\right]}$ $= \left[1 - \frac{19}{12}x - \frac{41}{144}x^2 - \dots\right] \left[1 - \frac{x}{8} - \frac{1}{128}x^2 \dots\right]^{-1}$ $=1-\frac{35}{24}x+...$ On neglecting higher powers of *x*, we get $a + bx = 1 - \frac{35}{24}x$ $\Rightarrow a = 1, b = -\frac{35}{24}$ 80 **(b)** ${}^{18}C_{15} + 2({}^{18}C_{16}) + {}^{17}C_{16} + 1 = {}^{n}C_{3}$ $\Rightarrow {}^{18}C_{15} + {}^{18}C_{16} + {}^{18}C_{16} + {}^{17}C_{16} + {}^{17}C_{17} = {}^{n}C_{3}$ $\Rightarrow {}^{19}C_{16} + {}^{18}C_{16} + {}^{18}C_{17} = {}^{n}C_{3}$ $\Rightarrow {}^{19}C_{16} + {}^{19}C_{17} = {}^{n}C_{3}$ $\Rightarrow {}^{20}C_{17} = {}^{n}C_{3} \Rightarrow {}^{20}C_{3} = {}^{n}C_{3} \Rightarrow n = 20$ (c) We have, $49^n + 16n - 1 = (1 + 48)^n + 16n - 1$ $= 1 + {}^{n}C_{1}(48) + {}^{n}C_{2}(48)^{2} + \ldots + {}^{n}C_{n}(48)^{n}$ +16n - 1 $= (48n + 16n) + {}^{n}C_{2}(48)^{2}$ $+ {}^{n}C_{3}(48)^{3} + \ldots + {}^{n}C_{n}(48)^{n}$ $= 64n + 8^{2} [{}^{n}C_{2} \cdot 6^{2} + {}^{n}C_{3} \cdot 6^{3} \cdot 8 + {}^{n}C_{4} \cdot 6^{4}$ $\cdot 8^{2} + \ldots + {}^{n}C_{n} \cdot 6^{n} \cdot 8^{n-2}$]

In the expansion of $(x + 2y)^6$,

Hence, $49^n + 16n - 1$ is divisible by 64 (b) We have, $(1 + x)^{50} = \sum_{r=0}^{50} {}^{50}C_r x^r$. (The sum of

82

coefficients of odd powers of x)
=
$${}^{50}C_1 + {}^{50}C_3 + ... + {}^{50}C_{49}$$

= $2^{50-1} = 2^{49}$
84 (b)
Given, $\alpha = \frac{5}{2!3} + \frac{5 \cdot 7}{3!3^2} + \frac{5 \cdot 7 \cdot 9}{4!3^2} + ...$...(i)
On comparing
 $(1 + x)^n = 1 + \frac{nx}{11} + \frac{n(n-1)}{2!}x^2$
 $+ \frac{n(n-1)(n-2)}{3!}x^3 + ...$
...(ii)
With respect to factorial, we get
 $n(n-1)(n-2)x^3 = \frac{5 \cdot 7}{32}$...(iv)
and $n(n-1)(n-2)(n-3)x^4 = \frac{5 \cdot 7 \cdot 9}{33}$..(v)
on dividing Eq. (iv) by (iii) and Eq. (v) by Eq. (iv),
we get
 $(n-2)x = \frac{7}{3}$...(vi)
and $(n-3)x = 3$...(vii)
Again, dividing Eq. (vi) by Eq. (vi), we get
 $\frac{n-2}{n-3} = \frac{7}{9}$
 $\Rightarrow 9n - 18 = 7n - 21$
 $\Rightarrow 2n = -3 \Rightarrow n = -\frac{3}{2}$
On putting the value of n in Eq. (vi), we get
 $\left(-\frac{3}{2} - 2\right)x = \frac{7}{3} \Rightarrow x = -\frac{2}{3}$
 \therefore From Eq. (ii),
 $\left(1 - \frac{2}{3}\right)^{-3/2} = 1 + 1 + \frac{5}{2!3} + \frac{5 \cdot 7}{3!3^2} + ...$
 $\Rightarrow \alpha = 3^{3/2} - 2$ [from Eq. (i)]
Now, $\alpha^2 + 4\alpha = (3^{3/2} - 2)^2 + 4(3^{3/2} - 2)$
 $= 27 + 4 - 4 \cdot 3^{3/2} + 4 \cdot 3^{3/2} - 8$
 $= 23$
85 (d)
 $\frac{1 + 2x}{(1 - 2x)^2} = (1 + 2x)(1 - 2x)^{-2}$
 $= (1 + 2x)\left(1 + \frac{2}{1!}(2x) + \frac{2 \cdot 3}{2!}(2x)^2 + ...$
 $+ \frac{2 \cdot 3 ...r}{(r-1)!}(2x)^r$
 $+ \frac{2 \cdot 3 \cdot 4 ...(r+1)(2x)^r}{r!}\right)$

L

The coefficient of x^r $=2\frac{r!}{(r-1)!}2^{r-1}+\frac{(r+1)!}{r!}2^{r}$ $= r2^r + (r+1)r^2$ $= 2^{r}(2r+1)$ (d) We have, ${(1+x)(1+y)(x+y)}^n$ $= (1+x)^n (1+y)^n (x+y)^n$ $\therefore \text{ Coefficient of } x^n y^n \text{ in } \{(1+x)(1+y)(x+y)\}^n$ $=\sum_{r=1}^{n}({}^{n}C_{r})^{3}$ (d) We have, $(1 + x + x^2)^n = C_0 + C_1 x + C_2 x^2 + \dots + C_{2n} x^{2n}$ Replacing *x* by $-\frac{1}{x}$, we get $\left(1 - \frac{1}{x} + \frac{1}{x^2}\right)^n = C_0 - C_1 \frac{1}{x} + C_2 \frac{1}{x^2} + \dots + C_{2n} \frac{1}{x^{2n}}$ Now. $C_0 C_1 - C_1 C_2 + C_2 C_3 - \cdots$ = Coeff. of x in { $C_0 + C_1 x + C_2 x^2 + \cdots$ } $\left\{ C_0 - C_1 \frac{1}{r} \right\}$ $+C_2\frac{1}{r^2}-\cdots$ = Coeff. of x in $(1 + x + x^2)^n \left(1 - \frac{1}{x} + \frac{1}{x^2}\right)^n$ = Coeff. of x^{2n+1} in $(1 + x + x^2)^n (x^2 - x + 1)^n$ = Coeff. of x^{2n+1} in $[(1 + x^2)^2 - x^2]^2$ = Coeff. of x^{2n+1} in $[1 + x^2 + x^4]^n = 0$ (d) \therefore a, b, c are in AP $\Rightarrow 2b = a + c$ $\Rightarrow a - 2b + c = 0$ On putting x = 1, we get Required sum = $(1 + (a - 2b + c)^2)^{1973}$ = $(1+0)^{1973} = 1$ (a) We have , $T_2 = 14a^{5/2}$ $\Rightarrow {}^{n}C_{1}(a^{1/13})^{n-1}(a^{3/2})^{1} = 14a^{5/2}$ $\Rightarrow na^{\frac{n-1}{13}+\frac{3}{2}} = 14a^{5/2}$ n = 14 $\therefore \frac{{}^{n}C_{3}}{{}^{n}C_{2}} = \frac{{}^{14}C_{3}}{{}^{14}C_{2}} = 4$ (b) For n > 1, we have $(1+x)^n = {}^nC_0 + {}^nC_1x + {}^nC_2x^2 + {}^nC_3x^3 + \cdots$ $+ {}^{n}C_{n} x^{n}$ $\Rightarrow (1+x)^{n} = 1 + nx + ({}^{n}C_{2} x^{2} + {}^{n}C_{3} x^{3} + \cdots$

 $+ {}^{n}C_{n} x^{n}$

$$\Rightarrow (1+x)^{n} - 1 - nx$$

= $x^{2} ({}^{n}C_{2} + {}^{n}C_{3}x + {}^{n}C_{4}x^{2} + \cdots$
+ ${}^{n}C_{n}x^{n-2})$

Clearly, RHS is divisible by x^2 and x. So, LHS is also divisible by x as well as x^2

91 (c)

Let T_{r+1} be the $(r + 1)^{th}$ terms in the expansion of $\left(\frac{x^2}{a} - \frac{a}{x}\right)^{12}$. Then, $T_{r+1} = {}^{12}C_r \left(\frac{x^2}{a}\right)^{12-r} \left(-\frac{a}{x}\right)^r$ $= {}^{12}C_r x^{24-3r} (-1)^r a^{2r-12}$ For the coefficient of $x^6 y^{-2}$, we must have 24 - 3r = 6 and 2r - 12 = -2These two equations are inconsistent Hence, there is no term containing $x^6 a^{-2}$

So, its coefficient is 0

92 (d)

 $: I + f + f' = (5 + 2\sqrt{6})^n + (5 - 2\sqrt{6})^n$ = 2k(even integer) $\therefore f + f' = 1$ Now, $(I + f)f' = (5 + 2\sqrt{6})^n (5 - 2\sqrt{6})^n =$ $(1)^n = 1$ $\Rightarrow (I+f)(1-f) = 1$ or $I = \frac{1}{(1-f)} - f$

93 (b)

Given equation can be rewritten as

$$E = a[{}^{n}C_{0} - {}^{n}C_{1} + {}^{n}C_{2} - ... + (-1)^{n} {}^{n}C_{n}] + [{}^{n}C_{1} - (2)({}^{n}C_{2}) + (3)({}^{n}C_{3}) - ... + (-1)^{n}(n) ({}^{n}C_{n})]$$

$$\Rightarrow E = 0 + 0 = 0 \text{ (by properties)}$$

94 (a)

Coefficient of
$$x^{r-1}$$
 in
 $(1 + x)^n + (1 + x)^{n+1} + \dots + (1 + x)^{n+k}$
 $= {}^n C_{r-1} + {}^{n+1} C_{r-1} + \dots + {}^{n+k} C_{r-1}$
 $= {}^n C_r + {}^n C_{r-1} + {}^{n+1} C_{r-1} + \dots + {}^{n+k} C_{r-1} - {}^n C_r$
 $= {}^{n+k+1} C_r - {}^n C_r$
Now, $\sum_{r=0}^{n+k+1} (-1)^r a_r = \sum_{r=0}^{n+k+1} (-1)^r {}^{n+k-1} C_r - \sum_{r=0}^{n+k+1} (-1)^r {}^n C_r = 0$

95 (a)

We have, $(1 + x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + ...$ If *x* is replace by $-\left(1-\frac{1}{x}\right)$ and *n* is -n, then expression becomes $\left[1 - \left(1 - \frac{1}{r}\right)\right]^{-n}$ $= 1 + (-n) \left[- \left(1 - \frac{1}{r} \right) \right]$ $+\frac{(-n)(-n-1)}{2!}\left[-\left(1-\frac{1}{r}\right)\right]^2+...$

$$\Rightarrow x^{n} = 1 + n\left(1 - \frac{1}{x}\right) + \frac{n(n+1)}{2!}\left(1 - \frac{1}{x}\right)^{2} + \dots$$

96 **(b)**

Given expansion is $(x + a)^n$ On replacing *a* by *ai* and – *ai* respectively, we get $(x + ai)^n = (T_0 - T_2 + T_4 - ...) + i(T_1 - T_3 + i)^n$ $T_5 - ...$) ...(i) and $(x - ai)^n = (T_0 - T_2 + T_4 - ...) + i(T_1 - T_3 + i)^n$ $T_5 - ...$) ...(ii) On multiplying Eqs. (ii) and (i), we get required result $(x^2 + a^2)^n = (T_0 - T_2 + T_4 - \dots)^2$ $+(T_1 - T_2 + T_5 - \dots)^2$ 97 **(b)** Given coefficient of (2x + 1)th term=coefficient of (r + 2)th term $\Rightarrow {}^{43}C_{2r} = {}^{43}C_{r+1}$ $\Rightarrow 2r + (r+1) = 43 \text{ or } 2r = r+1$ $\Rightarrow r = 14 \text{ or } r = 1$ 98 (b) We have. $(1+x)^n = C_0 + C_1 x + C_2 x^2 + \dots + C_n x^n$...(i) and $\left(1 + \frac{1}{x}\right)^n = C_0 + C_1 \frac{1}{x} + C_1 \frac{1}{x}$ $C_2\left(\frac{1}{r}\right)^2 + \ldots + C_n\left(\frac{1}{r}\right)^n \ldots$ (ii) On multiplying Eqs. (i) and (ii) and taking the coefficient of constant terms in right hand side $= C_0^2 + C_1^2 + C_2^2 + \ldots + C_n^2$ In right hand side $(1 + x)^n \left(1 + \frac{1}{x}\right)^n$ or in

 $\frac{1}{x^n}(1+x)^{2n}$ or term containing x^n in $(1+x)^{2n}$. Clearly the coefficient of x^n in $(1 + x)^{2n}$ is equal to ${}^{2n}C_n = \frac{(2n)!}{n!n!}$

99 **(b)**

We have,

$$\frac{C_k}{C_{k-1}} = \frac{{}^n C_k}{{}^n C_{k-1}} = \frac{n-k+1}{k}$$

$$\therefore \sum_{k=1}^n k^3 \left(\frac{C_k}{C_{k-1}}\right)^2$$

$$= \sum_{k=1}^n k^3 \frac{(n-k+1)^2}{k^2} = \sum_{k=1}^n k(n-k+1)^2$$

$$= (n+1)^2 \left(\sum_{k=1}^n k\right) - 2(n+1) \left(\sum_{k=1}^n k^2\right)$$

$$+ \left(\sum_{k=1}^n k^3\right)$$

$$= (n + 1)^{2} \frac{n(n + 1)}{2} - \frac{2(n + 1)n(n + 1)(2n + 1)}{6}$$

$$+ \left\{\frac{n(n + 1)}{2}\right\}^{2}$$

$$= \frac{n(n + 1)^{2}}{12} \{6(n + 1) - 4(2n + 1) + 3n\}$$

$$= \frac{n(n + 1)^{2}(n + 2)}{12}$$
100 **(b)**
Let
 $S = 1 \times 2 \times 3 \times 4 + 2 \times 3 \times 4 \times 5 + 3 \times 4 \times 5 \times 6$
 $+ \cdots + n(n + 1)(n + 2)(n + 3)$
 $\Rightarrow S = \sum_{r=1}^{n} r(r + 1)(r + 2)(r + 3)$
 $\Rightarrow S = \sum_{r=1}^{n} \frac{(r + 3)!}{(r - 1)!}$
 $\Rightarrow S = 4! \sum_{r=1}^{n} \frac{(r + 3)!}{(r - 1)! 4!}$
 $\Rightarrow S = 4! \sum_{r=1}^{n} r^{+3}C_{4}$
 $\Rightarrow S = 4! \sum_{r=12}^{n} Coefficient of x^{4} in (1 + x)^{r+3}$
 $\Rightarrow S = 4! \times Coefficient of x^{4} in (1 + x)^{r+3}$
 $\Rightarrow S = 4! \times Coefficient of x^{5} in (1 + x)^{n+4}$
 $-(1 + x)^{4} \left\{\frac{(1 + x)^{n} - 1}{(1 + x) - 1}\right\}$
 $\Rightarrow S = 4! \times Coefficient of x^{5} in (1 + x)^{n+4}$
 $\Rightarrow S = 4! \times Coefficient of x^{5} in (1 + x)^{n+4}$
 $\Rightarrow S = 4! \times Coefficient of x^{5} in (1 + x)^{n+4}$
 $+ (1 + x)^{4} \left\{\frac{18!}{n! (1 + x) - 1}\right\}$
 $\Rightarrow S = 4! \times Coefficient of x^{5} in (1 + x)^{n+4}$
 $\Rightarrow S = 4! \times Coefficient of x^{5} in (1 + x)^{n+4}$
 $\Rightarrow S = 4! \times Coefficient of x^{6} in (1 + x)^{n+4}$
 $\Rightarrow S = 4! \times Coefficient of x^{6} in (1 + x)^{n+4}$
 $\Rightarrow S = 4! \times Coefficient of x^{6} in (1 + x)^{n+4}$
 $\Rightarrow S = 4! \times Coefficient of x^{6} in (1 + x)^{n+4}$
 $\Rightarrow S = 4! \times Coefficient of x^{6} in (1 + x)^{n+4}$
 $\Rightarrow S = 4! \times Coefficient of x^{6} in (1 + x)^{n+4}$
 $\Rightarrow S = 4! \times Coefficient of x^{6} in (1 + x)^{n+4}$
 $\Rightarrow S = 4! \times Coefficient of x^{6} in (1 + x)^{n+4}$
 $\Rightarrow S = 4! \times Coefficient of x^{6} in (1 + x)^{n+4}$
 $\Rightarrow S = 4! \times Coefficient of x^{6} in (1 + x)^{n+4}$
 $\Rightarrow S = 4! \times Coefficient of x^{6} in (1 + x)^{n+4}$
 $\Rightarrow S = 4! \times n^{10} C_{6}$
Also, Coefficient of x^{8}y^{6}z^{4} = \frac{18!}{8! 6!}

 $= {}^{18}C_{14} \times {}^{14}C_8 = {}^{18}C_4 \times {}^{14}C_6$ Again, Coefficient of $x^8 y^6 z^4 = \frac{18!}{8! \, 6! \, 4!} = \frac{18!}{12! \, 6!} \times \frac{12!}{8! \, 4!}$ $= {}^{18}C_6 \times {}^{12}C_8$ 102 (c) We have, $1 + x + x^{2} + x^{3} = (1 + x)(1 + x^{2})$ $\therefore (1 + x + x^2 + x^3)^{11} = (1 + x)^{11} (1 + x^2)^{11}$ $= ({}^{11}C_0 + {}^{11}C_1 x + {}^{11}C_2 x^2 + {}^{11}C_3 x^3 + {}^{11}C_4 x^4$ +…) × $({}^{11}C_0 + {}^{11}C_1 x^2 + {}^{11}C_2 x^4 + \cdots)$ \Rightarrow Coefficient of x^4 in $(1 + x + x^2 + x^3)^{11}$ = Coefficient of x^4 in { $({}^{11}C_0 + {}^{11}C_1 x + {}^{11}C_2 x^2 + \cdots)({}^{11}C_0 + {}^{11}C_1 x^2$ $+ {}^{11}C_2 x^4 + \cdots) \}$ $= {}^{11}C_0 \times {}^{11}C_2 + {}^{11}C_2 \times {}^{11}C_1 + {}^{11}C_4 \times {}^{11}C_0$ = 990103 (b) We have, a = Sum of the coefficients in the expansion of $(1 - 3x + 10x^2)^n$ $\Rightarrow a = (1 - 3 + 10)n = 8^n = 2^{3n}$ b = Sum of the coefficients in the expansion of $(1+x^2)^n$ $\Rightarrow b = (1+1)^n = 2^n$ Clearly, $a = b^3$ 104 **(b)** Let $P(n): 10^{n-2} \ge 81n$ For n = 4, $10^2 \ge 81 \times 4$ For $n = 5, 10^3 \ge 81 \times 5$ Hence, by mathematical induction for $n \ge 5$, the proposition is true. 105 (c) Given that, $T_1 = {}^n C_0 = 1$...(i) $T_2 = {}^n C_1 a x = 6 x$ $\Rightarrow \frac{n!}{(n-1!)} a = 6 \Rightarrow na = 6 \dots (ii)$ and $T_3 = {}^n C_2(ax)^2 = 6x^2$ $\Rightarrow \frac{n(n-1)}{2}a^2 = 16$...(iii) Only option (c) is satisfying Eqs. (ii) and (iii) 106 (a) It is given that $(a+bx)^{-2} = \frac{1}{4} - 3x$ $\Rightarrow a^{-2} \left(1 + \frac{b}{a}x\right)^{-2} = \frac{1}{4} - 3x$ $\Rightarrow a^{-2} \left(1 - \frac{2}{a} b x \right)$ $= \frac{1}{4} - 3 x \qquad \begin{bmatrix} \text{Neglecting } x^2 \text{ and} \\ \text{higher powers of } x \end{bmatrix}$

 $\Rightarrow a^{-2} = \frac{1}{4}, \frac{-2b}{a^3} = -3$ Now, $a^{-2} = \frac{1}{4} \Rightarrow a^2 = 4 \Rightarrow a = 2$ [: a > 0] Putting a = 2 in $-\frac{2b}{a^3} = -3$, we get $-\frac{2b}{8} = -3 \Rightarrow$ *b* = 12 107 (d) We have, $T_{r+1} = {}^{15}C_r(x^4)^{15-r} \left(-\frac{1}{x^3}\right)'$ $= {}^{15}C_r \, x^{60-7r} \, (-1)^r$ If x^{39} occurs in T_{r+1} , then $60 - 7r = 39 \Rightarrow r = 3$: Coefficient of $x^{39} = {}^{15}C_3(-1)^3 = -455$ 108 (c) $(1-y)^m(1+y)^n = 1 + a_1y + a_2y^2 + a_3y^3 + \dots$ On differentiating w.r.t.y, we get $-m(1-y)^{m-1}(1+y)^n + (1-y)^m n(1+y)^{n-1}$ $= a_1 + 2a_2y + 3a_3y^2 + \dots$...(i) On putting y = 0 in Eq. (i), we get $-m + n = a_1 = 10$ [: $a_1 = 10$ given] ...(ii) Again on differentiating Eq. (i) w. r. t. y, we get $-m[-(m-1)(1-y)^{m-2}(1+y)^n$ $+(1+y)^{m-1}n(1+y)^{n-1}$] $+n[-m(1-y)^{m-1}(1+y)^{n-1}+(1-y)^m(n)]$ $(-1)(1+y)^{n-2}$ $= 2a_2 + 6a_3y + \dots$...(iii) On putting y = 0 in Eq. (iii), we get $-m[-(m-1)+n] + n[-m+(n-1)] = 2a_2$ = 20 $\Rightarrow m(m-1) - mn - mn + n(n-1) = 20$ $m^2 + n^2 - m - n - 2mn = 20$ \Rightarrow $(m-n)^2 - (m+n) = 20$ \Rightarrow 100 - (m + n) = 20 \Rightarrow [using Eq. (iii)] |114 (b) m + n = 80 ...(iv) \Rightarrow On solving Eqs. (ii) and (iv), we get m = 35 and n = 45109 (c) Let a_1, a_2, a_3, a_4 be respectively the coefficients of (r + 1)th, (r + 2)th, (r + 3)th and (r + 4)th terms in the expansion of $(1 + x)^n$. Then, $a_{1} = {}^{n}C_{r}, a_{2} = {}^{n}C_{r+1}, a_{3} = {}^{n}C_{r+2}, a_{4} = {}^{n}C_{r+3}$ Now, $\frac{a_{1}}{a_{1}+a_{2}} + \frac{a_{3}}{a_{3}+a_{4}} = \frac{{}^{n}C_{r}}{{}^{n}C_{r}+{}^{n}C_{r+1}} + \frac{{}^{n}C_{r+2}}{{}^{n}C_{r+2}+{}^{n}C_{r+3}}$ $= \frac{{}^{n}C_{r}}{{}^{n+1}C_{r+1}} + \frac{{}^{n}C_{r+2}}{{}^{n+1}C_{r+3}} \quad (\because {}^{n}C_{r} + {}^{n}C_{r+1})$ $= \frac{{}^{n}C_{r}}{\frac{n+1}{2} {}^{n}C_{r}} + \frac{{}^{n}C_{r+2}}{\frac{n+1}{2} {}^{n}C_{r+2}} \quad \left(: {}^{n}C_{r} = \frac{n}{r} {}^{n-1}C_{r-2}\right)$

 $=\frac{r+1}{n+1} + \frac{r+3}{n+1} = \frac{2(r+2)}{n+1}$ $= 2 \frac{{}^{n+1} {}^{n}C_{r+1}}{{}^{n+1}C_{r+2}} = 2 \frac{{}^{n}C_{r+1}}{{}^{n}C_{r+1} + {}^{n}C_{r+2}}$ $=\frac{2a_2}{a_2+a_3}$ 110 (d) $(a^2 - 6a + 11)^{10} = 1024$ \Rightarrow $(a^2 - 6a + 11)^{10} = 2^{10}$ $a^2 - 6a + 11 = 2$ \Rightarrow $a^2 - 6a + 9 = 0$ \Rightarrow $(a-3)^2 = 0$ \Rightarrow a = 3 \Rightarrow 111 (b) The general term of $\left(x + \frac{2}{r^2}\right)^n$ is $T_{R+1} = {}^{n}C_{R}(x)^{n-R} \left(\frac{2}{x^{2}}\right)^{R}$ $= {}^{n}C_{P}x^{n-3R}2^{R}$ For x^{2r} occurs, it means n - 3R = 2r \Rightarrow n-2r=3RHence, n - 2r is of the form 3k112 (c) $2^{3n} - 1 = (2^3)^n - 1$ $= 8^{n} - 1 = (1 + 7)^{n} - 1$ $= 1 + {}^{n}C_{1}7 + {}^{n}C_{2}7^{2} + ... + {}^{n}C_{n}7^{n} - 1$ $= 7[{}^{n}C_{1} + {}^{n}C_{2}7 + ... + {}^{n}C_{n}7^{n-1}]$ $\therefore 2^{3n} - 1$ is divisible by 7 113 **(b)** We have, $(\alpha - 2 + 1)^{35} = (1 - \alpha)^{35}$ $\Rightarrow (\alpha - 1)^{35} = -(\alpha - 1)^{35}$ $\Rightarrow 2(\alpha - 1)^{35} = 0 \Rightarrow \alpha = 1$ We have, $:: 3^{\log_3 \sqrt{25^{x-1}+7}}$ $\left[\because a^{\log_a n} = n\right]$ $=\sqrt{25^{x-1}+7}=\sqrt{(5^{x-1})+7}=\sqrt{y^2+7}$, where y $= 5^{x-1}$ and, $3 - (1/8) \log_3(5^{\chi - 1} + 1)$ $= 3^{\log_3(5^{x-1}+1)^{-1/8}} = (5^{x-1}+1)^{-1/8} = (y+1)^{-1/8}$ $\therefore \left\{ 3^{\log_3 \sqrt{25^{x-1}}+7} + 3^{-1/8 \log_3 (5^{x-1}+1)} \right\}^{10}$ $= \left[\sqrt{y^2 + 7} + (y + 1)^{-1/8} \right]^{10}$ Now, $T_{9} = 180$ $\Rightarrow {}^{10}C_8 \left\{ \left(\sqrt{y^2 + 7} \right)^{10-8} \left[(y+1)^{-1/8} \right]^8 = 180$

$$\Rightarrow {}^{10}C_8(y^2 + 7)(y + 1)^{-1} = 180$$

$$\Rightarrow 45\left(\frac{y^2 + 7}{y + 1}\right) = 180$$

$$\Rightarrow y^2 + 7 = 4y + 4 \Rightarrow y^2 - 4y + 3 = 0$$

$$\Rightarrow y = 1, y = 3$$

$$\Rightarrow 5^{x-1} = 1 \text{ or, } 5^{x-1} = 3$$

$$\Rightarrow 5^x = 5 \text{ or, } 5^x = 15$$

$$\Rightarrow x = 1 \text{ or, } x = \log_5 15$$

$$\Rightarrow x = \log_5 15 \qquad [\because x > 1]$$

115 (c)

The given sigma expansion $\sum_{m=0}^{100} {}^{100}C_m (x-3)^{100-m} \cdot 2^m \text{ can be written as } [(x-3)+2]^{100} = (x-1)^{100} = (x-1)^{100}$ $\therefore \text{ Coefficient of } x^{53} \text{ in}$ $(1-x)^{100} = (-1)^{53} {}^{100}C_{53} = -{}^{100}C_{53}$

116 (c)

The coefficient of *x* in the middle term of expansion of $(1 + \alpha x)^4 = {}^4C_2\alpha^2$ The coefficient of *x* in the middle term of expansion of $(1 - \alpha x)^6 = {}^6C_3(-\alpha)^3$ Given, ${}^4C_2\alpha^2 = {}^6C_3(-\alpha)^3$ $\Rightarrow 6\alpha^2 = -20\alpha^3$ $\Rightarrow \alpha = \frac{-6}{20} = \frac{-3}{10}$

117 **(b)**

The general term in the expansion of $\left(\sqrt{\frac{x}{3}} + \frac{3}{2x^2}\right)^2$

10 - r

is

$$T_{r+1} = {}^{10}C_r \left(\frac{x}{3}\right)^{-\frac{1}{2}} \left(\frac{3}{2x^2}\right)^{\frac{1}{2}}$$

$$= {}^{10}C_r 3^{\frac{-10+3r}{2}} . 2^{-r} . x^{\frac{10-5r}{2}}$$
For independent of x ,

$$\frac{10-5r}{2} = 0 \Rightarrow r = 2$$

$$\therefore T_3 = {}^{10}C_2 \times \left(\frac{1}{3}\right)^4 \left(\frac{3}{2}\right)^2$$

$$= \frac{10 \times 9}{2 \times 1} \times \frac{1}{3 \times 3 \times 2 \times 2} = \frac{5}{4}$$
118 (a)
Given ,
 $(1 + x - 2x^2)^6 = 1 + a_1x + a_2x^2 + ... + a_{12}x^{12}$
...(i)
On putting $x = 1$ in Eq. (i), we get
 $(1 + 1 - 2)^6 = 1 + a_1 + a_2 + ... + a_{12}$

$$\Rightarrow (0)^6 = 1 + a_1 + a_2 + ... + a_{12}(ii)$$
On putting $x = -1$ in Eq. (i), we get
 $(1 - 1 - 2)^6 = 1 - a_1 + a_2 - a_3 + ... + a_{12}$

 $\Rightarrow (-2)^6 = 1 + a_1 + a_2 - a_3 + \dots + a_{12} \dots (iii)$

On adding Eqs. (ii) and (iii) we get $(-2)^6 = 2(1 + a_2 + a_4 + \dots + a_{12})$ $\Rightarrow \frac{64}{2} - 1 = a_2 + a_4 + \dots + a_{12}$ $\therefore a_2 + a_4 + \dots + a_{12} = 31$ 119 (c) Since, $(1 + x - 3x^2)^{10} = 1 + a_1x + a_2x^2 + \dots + a_$ $a_{20}x^{20}$ On putting x = -1, we get $(1 - 1 - 3)^{10} = 1 - a_1 + a_2 - \dots + a_{20}$ $= 3^{10} \dots (i)$ Again putting x = 1, we get $(1+1-3)^{10} = 1 + a_1 + a_2 - \dots + a_{20} = 1$... (ii) On adding Eqs. (i) and (ii), we get $2(1 + a_2 + a_4 + \dots + a_{20}) = 3^{10} + 1$ $\Rightarrow a_2 + a_4 + \ldots + a_{20} = \frac{3^{10} + 1}{2} - 1 = \frac{3^{10} - 1}{2}$ 120 (b) We have, $(1+x)^{2n} = (a_0 + a_2 x^2 + a_4 x^4 + \dots) + x(a_1)$ $+ a_3 x^2 + a_5 x^4 + \cdots$ Replacing *x* by *i* and -i respectively and multiplying, we get $(a_0 - a_2 + a_4 \dots)^2 + (a_1 - a_3 + a_5 \dots)^2$ $= (1+i)^{2n}(1-i)^{2n}$ $\Rightarrow (a_0 - a_2 + a_4 - \dots)^2 + (a_1 - a_3 + a_5 \dots)^2$ $= 2^{2n} = 4^n$ 121 (d) $(bc + ca + ab)^9 = [bc + a(b + c)]^9$: Coefficient of $a^5b^6c^7$ = coefficient of $a^5b^6c^7$ in ${}^9C_5(bc)^4a^5(b+c)^5$ =coefficient of $b^2 c^3$ in ${}^9C_5(b+c)^5$ $= {}^{9}C_{5} \times {}^{5}C_{3} = 1260$ 122 (b) We have, $(x - 1)(x - 2)(x - 3) \dots (x - 100)$ Number of terms = 1003...(x-100) $= (-1 - 2 - 3 - \dots - 100)$ $= -(1 + 2 + \ldots + 100)$ $=-\frac{100 \times 101}{2} = -5050$ 123 (b) Given, $\sin n\theta = \sum_{r=0}^{n} b_r \sin^r \theta$ $\Rightarrow \sin n\theta = b_0 \sin^0 \theta + b_1 \sin^1 \theta + b_2 \sin^2 \theta$ $+ b_3 \sin^3 \theta + \ldots + b_n \sin^n \theta$ $\Rightarrow \sin n\theta = b_0 + b_1 \sin \theta + b_2 \sin^2 \theta + \dots + b_n \sin^n \theta$ (*n* is an odd integer) $: \sin n\theta = {}^{n}C_{1}\sin\theta\cos^{n-1}\theta$ $- {}^{n}C_{3}\sin^{3}\theta\cos^{n-3}\theta+\ldots$

$$= {}^{n}C_{1}\sin\theta(1-\sin^{2}\theta)^{(n-1)/2} -$$

 ${}^{n}C_{3}\sin^{3}\theta(1-\sin^{2}\theta)^{(n-3)/2} + ...$
 $\therefore b_{0} = 0, b_{1} = \text{coefficient of } \sin\theta = {}^{n}C_{1} = n$
 $(\because n-1, n-3 \text{ are all even integers})$

124 **(d)**

We have,

$$(x + \sqrt{x^2 - 1})^6 + (x - \sqrt{x^2 - 1})^6 = 2 \left\{ {}^6C_0 x^6 + {}^6C_2 x^4 (\sqrt{x^2 - 1})^2 + {}^6C_4 x^2 (\sqrt{x^2 - 1})^4 + {}^6C_6 (\sqrt{x^2 - 1})^6 \right\} = 2 \{x^6 + {}^6C_2 x^4 (x^2 - 1) + {}^6C_2 x^2 (x^2 - 1)^2 + (x^2 - 1)^3 \} = [\{2 {}^6C_2 + 1\}x^6 - 3\{ {}^6C_2 + 1\}x^4 + 4 {}^6C_2 x^2 - 1]] Clearly, it contains 4 terms$$

125 (a)

We know that,

$$(1+x)^{n} = C_{0} + C_{1}x + C_{2}x^{2} + \dots + C_{n}x^{n}$$

(x - 1)ⁿ = C_{0}x^{n} - C_{1}x^{n-1} + C_{2}x^{n-2} - \dots + (-1)^{n}C_{n}
On multiplying both equations and equation

On multiplying both equations and equating the coefficient of x^n , we get $C_0^2 - C_1^2 + C_2^2 - \ldots + (-1)^n C_n^2$

$$= {}^{n}C_{n/2}(-1)^{n/2}(x^{2})^{n/2}$$

Above is possible only when $\frac{n}{2}$ is an integer *ie*, *n* is even and in case *n* is odd, then term x^n will not occur

126 (d)

 $(1 - x + x^2)^n = a_0 + a_1 x + ... + a_{2n} x^{2n}$ Putting x = -1 and 1 Successively and adding, we get $a_0 + a_2 + a_4 + ... + a_{2n} = \frac{3^n + 1}{2}$

127 (d)

Now, coefficient of x^{15} in $(1 + x)^{20}$ = coefficient of x^{15} in $(1 + x)^{15}(1 + x)^5$ $\Rightarrow {}^{20}C_{15} = \text{coefficient of } x^{15}$ in $({}^{15}C_0x^{15} + 15C1x14 + 15C2x13 + 15C3x12 + 15C4x11 + 15C5x10})$ $({}^{5}C_0x^5 + {}^{5}C_1x^4 + {}^{5}C_2x^3 + {}^{5}C_3x^2 + {}^{5}C_4x + {}^{5}C_5)$ = ${}^{20}C_{15} = {}^{15}C_0 \cdot {}^{5}C_5 + {}^{15}C_1 \cdot {}^{5}C_4 + {}^{15}C_2 \cdot {}^{5}C_3 + {}^{15}C_3 \cdot {}^{5}C_2 + {}^{15}C_4 \cdot {}^{5}C_1 + {}^{15}C_5 + {}^{5}C_0$ $\Rightarrow {}^{15}C_0 \cdot {}^{5}C_5 + {}^{15}C_1 \cdot {}^{5}C_4 + {}^{15}C_2 \cdot {}^{5}C_3 + {}^{15}C_3 + {}^{5}C_2 + {}^{15}C_4 \cdot {}^{5}C_1 + {}^{20}C_3 + {}^{15}C_3 + {}^{5}C_2 + {}^{15}C_4 \cdot {}^{5}C_1 + {}^{15}C_3 + {}^{5}C_3 + {}^{15}C_3 + {}^{5}C_2 + {}^{15}C_4 \cdot {}^{5}C_1 + {}^{20}C_3 + {}^{15}C_3 \cdot {}^{5}C_2 + {}^{15}C_4 \cdot {}^{5}C_1 + {}^{20}C_3 + {}^{15}C_3 + {}^{5}C_3

 $=\frac{20!}{5!15!}-\frac{15!}{5!10!}$ 128 (a) The given expression is $1 + (1 + x) + (1 + x)^2 + ... + (1 + x)^n$ being in GP Let $S = 1 + (1 + x) + (1 + x)^2 + \dots + (1 + x)^n$ $=\frac{(1+x)^{n+1}-1}{(1+x)-1}=x^{-1}[(1+x)^{n+1}-1]$ \therefore The coefficient of x^k in S = The coefficient of x^k in $[(1 + x)^{n+1} - 1]$ $= {}^{n+1}C_{k+1}$ 129 (d) Since, in a binomial expansion of $(a - b)^n$, $n \ge 5$, then sum of 5th and 6th terms is equal to zero. ${}^{n}C_{4}a^{n-4}(-b)^{4} + {}^{n}C_{5}a^{n-5}(-b)^{5} = 0$ $\Rightarrow \frac{n!}{(n-4)! \, 4!} a^{n-4} b^4 - \frac{n!}{(n-5)! \, 5!} a^{n-5} b^5 = 0$ $\Rightarrow \frac{n!}{(n-5)! 4!} a^{n-5} \cdot b^4 \left(\frac{a}{n-4} - \frac{b}{5}\right) = 0$ $\Rightarrow \frac{a}{b} = \frac{n-4}{5}$ 130 (a) We have, $\left(1 - \frac{1}{x}\right)^n (1 - x)^n = (1 - x)^{2n} \frac{(-1)^n}{x^n}$ $=\frac{(-1)^n(1-x)^{2n}}{n}$ \therefore Middle term in $\left(1-\frac{1}{x}\right)^n (1-x)^n$ $=\frac{(-1)^n}{x^n}$ middle term in $(1-x)^{2n}$ $= \frac{(-1)^n}{x^n} \times (n+1)^{th} \text{ term in } (1-x)^{2n}$ $=\frac{(-1)^n}{x^n} \times {}^{2n}C_n(-x)^n = {}^{2n}C_n$ 132 (d) The number of terms in the expansion of $(a + b + c)^{10}$ $= {}^{12}C_2 = \frac{11 \cdot 12}{2} = 66$ 133 (d) The given expression of $\frac{1}{(4-3x)^{1/2}}$ can be rewritten $4^{-1/2}\left(1-\frac{3}{4}x\right)^{-1/2}$ and it is valid only when $\left|\frac{3}{4}x\right| < 1$ $\Rightarrow -\frac{4}{3} < x < \frac{4}{3}$ 134 (c) $(3+2x)^{50} = 3^{50} \left(1+\frac{2x}{2}\right)^{50}$

Here,
$$T_{r+1} = 3^{50} \, {}^{50}C_r \left(\frac{2x}{3}\right)^r$$

and $T_r = 3^{50} \, {}^{50}C_{r-1} \left(\frac{2x}{3}\right)^{r-1}$
But $x = \frac{1}{5}$
 $\therefore \frac{T_{r+1}}{T_r} \ge 1 \Rightarrow \frac{{}^{50}C_r}{{}^{50}C_{r-1}} \frac{2}{3} \cdot \frac{1}{5} \ge 1$
 $\Rightarrow 102 - 2r \ge 15r \Rightarrow r \le 6$
5 (a)

13

Given that, $(1 + ax)^n = 1 + 8x + 24x^2 + ...$ $\Rightarrow 1 + \frac{n}{1}ax + \frac{n(n-1)}{1.2}a^2x^2 + \dots$ $= 1 + 8x + 24x^2 + \dots$ On comparing the coefficients of x, x^2 , we get $na = 8, \frac{n(n-1)}{1.2}a^2 = 24$

 \Rightarrow na(n-1)a = 48 $\Rightarrow 8(8-a) = 48$ $\Rightarrow 8 - a = 6$ $\Rightarrow a = 2 \Rightarrow n = 4$

136 (b)

 $(0.99)^{15} = (1 - 0.01)^{15}$ $= 1 - {}^{15}C_1(0.01) + {}^{15}C_2(0.01)^2$ $- {}^{15}C_3(0.01)^3 + ...$

We want to answer correct upto 4 decimal places and as such, we have left further expansion.

$$= 1 - 15(0.01) + \frac{15 \cdot 14}{1 \cdot 2} (0.0001) \\ - \frac{15 \cdot 14 \cdot 13}{1 \cdot 2 \cdot 3} (0.000001) + ... \\ = 1 - 0.15 + 0.0105 - 0.000455 + ... \\ = 1.0105 - 0.150455 \\ = 0.8601$$

137 (b)

Given that,

$$\frac{1}{1!(n-1)!} + \frac{1}{3!(n-3)!} + \frac{1}{5!(n-5)!} + \dots$$

$$= \frac{1}{n!} \left[\frac{n!}{1!(n-1)!} + \frac{n!}{3!(n-3)!} + \frac{n!}{5!(n-5)!} + \dots \right]$$

$$= \frac{1}{n!} \left[{}^{n}C_{1} + {}^{n}C_{3} + {}^{n}C_{5} + \dots \right]$$

$$= \frac{2^{n-1}}{n!}$$

138 (b)

$$\frac{(1+x)^{3/2} - \left(1 + \frac{1}{2}x\right)^3}{(1-x)^{\frac{1}{2}}}$$

= $\frac{\left(1 + \frac{3}{2}x + \frac{\frac{3}{2} \cdot \frac{1}{2}}{2}x^2\right) - \left(1 + \frac{3x}{2} + \frac{3 \cdot 2}{2} \cdot \frac{x^2}{4}\right)}{(1-x)^{1/2}}$
[neglecting higher powers of x]

$$= -\frac{3x^{2}}{8}(1-x)^{-1/2}$$

$$= -\frac{3x^{2}}{8}\left(1+\frac{1}{2}x+\frac{\frac{1}{2}\cdot\frac{3}{2}}{2}\cdot x^{2}\right) = -\frac{3x^{2}}{8}$$
[neglecting higher powers of x]
139 (c)
Total number of terms in the expansion of
 $(2x+3y-4z)^{n}$, is
 $n^{+3-1}C_{3-1} = n^{+2}C_{2} = \frac{(n+2)(n+1)}{2}$
140 (b)
We have,
 $(1+x)^{m}(1+x)^{n} = \left(\sum_{r=0}^{m} {}^{m}C_{r}x^{r}\right) \cdot \left(\sum_{r=0}^{n} {}^{n}C_{r}x^{r}\right)$
Equation coefficients of x^{r} on both sides, we get
 ${}^{m}C_{r} + {}^{m}C_{r-1} {}^{n}C_{1} + {}^{m}C_{r-2} {}^{n}C_{2} + \dots + {}^{m}C_{1} {}^{n}C_{r-1} + \dots + {}^{m}C_{0} {}^{n}C_{r} = {}^{m+n}C_{r}$
141 (c)
 $(1-ax)^{-1}(1-bx)^{-1} = (a^{0}+ax+a^{2}x^{2}+...(b^{0}+bx+b^{2}x^{2}+...))$
Hence, a_{n} =coefficient of x^{n} in $(1-ax)^{-1}(1-bx)^{-1}($

143 **(b)**

Since, *n* is even, therefore $\left(\frac{n}{2} + 1\right)$ th term is the middle term.

$$\therefore T_{\frac{n}{2}+1} = {}^{n}C_{n/2}(x^{2})^{n/2} \left(\frac{1}{x}\right)^{n/2}$$

$$= 924x^{6} \text{ (given)}$$

$$\Rightarrow x^{n/2} = x^{6} \Rightarrow n = 12$$
144 **(b)**
We have, $(1 + x^{2})^{5}(1 + x)^{4}$

$$= (^{5}C_{0} + ^{5}C_{1}x^{2} + ^{5}C_{2}x^{4} + ...)(^{4}C_{0} + ^{4}C_{1}x + ^{4}C_{2}x^{2} + ^{4}C_{3}x^{3} + ^{4}C_{4}x^{4})$$
The coefficient of $x^{5} \ln [(1 + x^{2})^{5}(1 + x)^{4}]$

$$= ^{5}C_{2} \cdot ^{4}C_{1} + ^{4}C_{3} \cdot ^{5}C_{1} = 10.4 + 4.5 = 60$$
145 **(d)**
(1 + $x + x^{2} + x^{3})^{n} = \{(1 + x)^{n}(1 + x^{2})^{n}\}$

$$= (1 + ^{n}C_{1}x + ^{n}C_{2}x^{2} + ... + ^{n}C_{n}x^{n})(1 + ^{n}C_{1}x^{2} + ^{n}C_{2}x^{4} + ... + ^{n}C_{n}x^{2n})$$
Therefore the coefficient of $x^{4} = ^{n}C_{2} + ^{n}C_{2} + ^{n}C_{2} + ^{n}C_{2}x^{4} + ... + ^{n}C_{n}x^{2n}$)
Therefore the coefficient of $x^{4} = ^{n}C_{2} + ^{n}C_{2} + ^{n}C_{1} + nC_{2}$
146 **(b)**
Let $a = ^{n}C_{r-1}, b = ^{n}C_{r}, c = ^{n}C_{r+1}$
and $d = ^{n}C_{r+2}$

$$\therefore a + b = ^{n+1}C_{r}, b + c = ^{n+1}C_{r+1}, c + d$$

$$= ^{n+1}C_{r+2}$$

$$\Rightarrow \frac{a + b}{a} = \frac{^{n+1}C_{r+1}}{^{n}C_{r-1}} = \frac{n+1}{r} \Rightarrow \frac{a}{a + b} = \frac{r}{n+1}$$
and $\frac{b + c}{c} = \frac{^{n+1}C_{r+2}}{^{n}C_{r+1}} = \frac{n+1}{r+2} \Rightarrow \frac{c}{c+d} = \frac{r+2}{n+1}$

$$\therefore \frac{a}{a+b}, \frac{b}{b+c'}, \frac{c}{c+d} \text{ are in AP}$$

$$\therefore AM > GM$$

$$\Rightarrow \frac{b}{b+c} > \sqrt{\frac{ac}{(a+b)(c+d)}}$$
or $\{(\frac{b}{b+c})^{2} - \frac{ac}{(a+b)(c+d)}\} > 0$
147 **(d)**
We have,
 $T_{r+1} = ^{6}C_{r}(\sqrt{x^{5}})^{6-r}(\frac{3}{\sqrt{x^{3}}})^{r}$

$$\Rightarrow T_{r+1} = ^{6}C_{r}(\sqrt{x^{5}})^{6-r}(\frac{3}{\sqrt{x^{3}}})^{r}$$
This will contain x^{3} , if $15 - 4r = 3 \Rightarrow r = 3$

$$\therefore Coefficient of x^{-7} , put
11 - $3r = -7 \Rightarrow r = 6$

$$\therefore Coefficient of x^{-7} , put
11 - $3r = -7 \Rightarrow r = 6$

$$\therefore Coefficient of x^{-7} , put
11 - $3r = -7 \Rightarrow r = 6$

$$\therefore Coefficient of x^{-7} , put
14 - $3^{1} = \frac{6}{b^{6}} - \frac{462a^{5}}{b^{6}}$
149 **(a)**
We have,
Coefficient of x^{-5} in $(x + 3)^{6} = ^{6}C_{1} \times 3^{1} = 18$$$$$$$$$

150 (d) $A_r = \text{Coefficient of } x^r \text{ in } (1+x)^{10} = {}^{10}C_r$ B_r = Coefficient of x^r in $(1 + x)^{20} = {}^{20}C_r$ C_r = Coefficient of x^r in $(1 + x)^{30} = {}^{30}C_r$ $\therefore \sum^{10} A_r (B_{10} B_r - C_{10} A_r)$ $=\sum_{r=1}^{10} A_r B_{10} B_{r,r} - \sum_{r=1}^{10} A_r C_{10} A_r$ $=\sum_{r=1}^{10} {}^{10}C_r {}^{20}C_{10} {}^{20}C_r \sum_{r=1}^{10} {}^{10}C_r {}^{30}C_{10} {}^{10}C_r l$ $\sum_{i=1}^{10} {}^{10}C_{10-rl} {}^{20}C_{10} {}^{20}C_r - \sum_{i=1}^{10} {}^{10}C_{10-r} {}^{30}C_{10} {}^{10}C_r l$ $= {}^{20}C_{10}\sum_{r}^{10} {}^{10}C_{10-r} {}^{20}C_{r}$ $- {}^{30}C_{10} \sum_{r=1}^{10} {}^{10}C_{10-r} {}^{10}C_r$ $= {}^{20}C_{10}({}^{30}C_{10} - 1) - {}^{30}C_{10}({}^{20}C_{10} - 1)$ $= {}^{20}C_{10}(\,{}^{30}C_{10}-1)-\,\,{}^{30}C_{10}(\,{}^{20}C_{10}-1)$ $= {}^{30}C_{10} - {}^{20}C_{10} = C_{10} - B_{10}$ 151 (a) : Coefficient of x^p is $p+qC_p$ and coefficient of x^q is $^{(p+q)}C_{q}$: Both the coefficients are equal 152 (c) In the expansion of $(1 + x)^{2n}$, the general term $= {}^{2n}C_k x^k, 0 \leq k \leq 2n$ As given for r > 1, n > 2, ${}^{2n}C_{3r} = {}^{2n}C_{r+2}$ $\Rightarrow \text{Either } 3r = r + 2 \text{ or } 3r = 2n - (r + 2) \quad (\because$ nCr = nCn - r \Rightarrow r = 1 or n = 2r + 1We take the relation only $n = 2r + 1 \quad (\because r > 1)$ 153 (a) The general term in the expansion of $(x \sin^{-1} \alpha +$ $\cos -1\alpha x 10$ is given by $T_{r+1} = {}^{10}C_r (x \sin^{-1} \alpha)^{10-r} \left(\frac{\cos^{-1} \alpha}{x}\right)^r$ $\Rightarrow T_{r+1}$ $= {}^{10}C_r(\sin^{-1}\alpha)^{10-r}(\cos^{-1}\alpha)^r x^{10-2r}$... (i) This will be independent of *x*, if $10 - 2r = 0 \Rightarrow r = 5$

Putting r = 5 in (i), we get

Page **| 44**

$$\begin{aligned} T_{6} &= {}^{10}C_{5}\left\{\sin^{-1}\alpha\cos^{-1}\alpha\right\}^{5} \\ \Rightarrow T_{6} &= {}^{10}C_{5}\left\{\frac{\pi}{2}\sin^{-1}\alpha - (\sin^{-1}\alpha)^{2}\right\}^{5} \\ \Rightarrow T_{6} &= {}^{10}C_{5}\left\{\frac{\pi}{2}\sin^{-1}\alpha - (\sin^{-1}\alpha)^{2}\right\}^{5} \\ \text{Now,} \\ &-\frac{\pi}{2} \leq \sin^{-1}\alpha \leq \frac{\pi}{2} \\ \Rightarrow -\frac{\pi}{2} \leq -\sin^{-1}\alpha \leq \frac{\pi}{2} \\ \Rightarrow -\frac{\pi}{4} \leq \left(\frac{\pi}{4} - \sin^{-1}\alpha\right) \leq \frac{3\pi}{4} \\ \Rightarrow 0 \leq \left(\frac{\pi}{4} - \sin^{-1}\alpha\right)^{2} \leq \frac{9\pi^{2}}{16} \\ \Rightarrow -\frac{9\pi^{2}}{16} \leq -\left(\frac{\pi}{4} - \sin^{-1}\alpha\right)^{2} \leq 0 \\ \Rightarrow -\frac{\pi^{2}}{2} \leq \frac{\pi^{2}}{16} - \left(\frac{\pi}{4} - \sin^{-1}\alpha\right)^{2} \leq \frac{\pi^{2}}{16} \\ \Rightarrow -\frac{10}{25} \leq \frac{\pi^{2}}{16} - \left(\frac{\pi}{4} - \sin^{-1}\alpha\right)^{2} \leq \frac{\pi^{2}}{16} \\ \Rightarrow -\frac{10}{25} \leq \frac{\pi^{2}}{16} - \left(\frac{\pi}{4} - \sin^{-1}\alpha\right)^{2} \leq \frac{\pi^{2}}{16} \\ \Rightarrow -\frac{10}{25} \leq \frac{\pi^{2}}{16} \leq 10C_{5}\left\{\frac{\pi^{2}}{16} - \left(\frac{\pi}{4} - \sin^{-1}\alpha\right)^{2}\right\}^{5} \\ \leq {}^{10}C_{5}\left(\frac{\pi^{2}}{16}\right)^{5} \\ \Rightarrow -\frac{10}{25} \leq T_{6} \leq {}^{10}C_{5}\frac{\pi^{10}}{220} \\ 154 \text{ (b)} \\ \text{In the expansion of } (3 + 7x)^{29} \\ T_{r+1} = {}^{29}C_{r} \times 3^{29-r} \times 7r)x^{r} \\ \text{Let } a_{r} = \text{ coefficient of } rth term \\ = {}^{29}C_{r} \times 3^{29-r} \times 7r^{r} \\ \text{and } a_{r-1} = \text{coefficient of } rth term \\ = {}^{29}C_{r-1} \times 3^{30-r} \times 7^{r-1} \\ \Rightarrow {}^{29}C_{r-1} = \frac{3}{7} \Rightarrow \frac{30-r}{r} = \frac{3}{7} \\ \Rightarrow 210 - 7r = 3r \Rightarrow r = 21 \\ 156 \text{ (b)} \\ \text{In the expansion of } (1 + x)^{50} \text{ the sum of the coefficient of } dr^{th} \text{ and } (r + 1)^{th} term \\ \text{the min the expansion of } (3 + 7x)^{29} are equal \\ \therefore {}^{29}C_{r-1} \times 3^{30-r} \times 7^{r-1} = {}^{29}C_{r} \times 3^{29-r} \times 7^{r} \\ \Rightarrow {}^{3}\frac{30-r}{3} - r = \frac{7}{r} \Rightarrow r = 21 \\ \end{cases}$$

158 **(b)**

We have, ${}^{2n}C_p = {}^{2n}C_{p+2} \Rightarrow p+p+2 = 2n \Rightarrow p = n-1$ 159 **(b)** We have $(1+x)^n = \sum_{r=0}^n a_r \, x^r \Rightarrow a_r = {}^n C_r$ Now, $\left(1 + \frac{a_1}{a_0}\right) \left(1 + \frac{a_2}{a_1}\right) \dots \left(1 + \frac{a_n}{a_{n-1}}\right)$ $= \prod \left(1 + \frac{a_r}{a_{r-1}} \right)$ $\int \left(\frac{a_{r-1}+a_r}{a_{r-1}}\right)$ $\left(\frac{{}^{n}C_{r}+{}^{n}C_{r-1}}{{}^{n}C_{r-1}}\right)$ $= \prod_{r=1}^{n} \frac{n+1}{n} C_{r-1}$ $\prod_{r=1}^{n} \frac{n+1}{r} \qquad \left[\because {}^{n+1}C_r = \frac{n+1}{r} {}^nC_{r-1} \right]$ $= (n+1)^{n} \left(\frac{1}{1} \times \frac{1}{2} \times \frac{1}{3} \times \dots \times \frac{1}{n}\right) = \frac{(n+1)^{n}}{n!}$ 161 (a) $(2x^2 - x - 1)^5 = a_0 + a_1x + a_2x^2 + \dots + a_{10}x^{10}$ On putting x = 0, we get $-1 = a_0$ On putting x = 1, we get $0 = a_0 + a_1 + a_2 + \ldots + a_{10} \quad \ldots$ (i) On putting x = -1, we get $(2+1-1)^5 = a_0 - a_1 + a_2 - \dots + a_{10}$...(ii) On adding Eqs. (i) and (ii), we get $0 + (2)^5 = 2(a_0 + a_2 + \dots + a_{10})$ \Rightarrow 16 - 1 = a_2 + ··· + a_{10} $\Rightarrow a_2 + a_3 + \ldots + a_{10} = 15$ 162 **(b)** We have. ${}^{2n}C_r = {}^{2n}C_{r+2} \Rightarrow r+r+2 = 2n \Rightarrow n = r+1$ 163 (d) \therefore coefficient of x^{100} in the expansion of $\sum_{j=0}^{200} (1+x)^j$ will be $\sum_{j=0}^{200} j_{C_{100}}$ $= \begin{bmatrix} {}^{100}C_{100} + {}^{101}C_{100} + {}^{102}C_{100} + \dots + {}^{200}C_{100} \end{bmatrix}$ $[:: {}^{n}C_{n} + {}^{n+1}C_{n} + {}^{n+2}C_{n} + \dots + {}^{2n-1}C_{n}$ $= {}^{2n}C_{n+1}$] $=\binom{201}{100}$ 164 **(b)** We have,

$$\frac{1}{n!} + \frac{1}{2!(n-2)!} + \frac{1}{4!(n-4)!} + \cdots$$

$$= \frac{1}{n!} \left\{ \frac{n!}{n!} + \frac{n!}{2!(n-2)!} + \frac{n!}{4'!(n-4)!} + \cdots \right\}$$

$$= \frac{1}{n!} \left\{ {}^{n}C_{0} + {}^{n}C_{2} + {}^{n}C_{4} + \cdots \right\} = \frac{2^{n-1}}{n!}$$
165 (c)
General term $T_{r+1} = {}^{10}C_{r} \left(\frac{x}{2} \right)^{10-r} \left(-\frac{3}{x^{2}} \right)^{r}$

$$= {}^{10}C_{r} \cdot \frac{x^{10-3r} \cdot (-1)^{r} \cdot 3^{r}}{2!^{0-r}}$$
For the coefficient of x^{4} put
10 $- 3r = 4$
 $\Rightarrow r = 2$
Hence, coefficient of x^{4} is
 ${}^{10}C_{2} \cdot \frac{3^{2}}{2^{8}} = \frac{405}{256}$
166 (a)
Given, $(1 + x)^{n} = C_{0} + C_{1}x + C_{2}x^{2} + \cdots + C_{n}x^{n}$
Also, $(x + 1)^{n} = C_{n} + C_{n-1}x + C_{n-2}x^{2} + \cdots + C_{0}x^{n}$
On multiplying both equations and comparing
coefficient of x^{n-1} on both sides, we get
 $C_{0}C_{2} + C_{1}C_{2} + C_{2}C_{3} + \cdots + C_{n-1}C_{n} = {}^{2n}C_{n-1}$
 $= \frac{(2n)!}{(n-1)!(n+1)!}$
167 (c)
Now, $7^{9} = (8 - 1)^{9} = -1(1 - 8)^{9}$
 $= 1 + {}^{9}C_{1}8 - {}^{9}C_{2}8^{2} + \dots + {}^{9}C_{9}8^{9}$ and
 $9^{7} = (1 + 8)^{7}$
 $= 1 + {}^{9}C_{1}8 - {}^{7}C_{2}8^{2} + {}^{7}C_{3}8^{3} + \dots + {}^{7}C_{7}8^{7}$
 $\therefore 7^{9} + 9^{7} = 8({}^{9}C_{1} + {}^{7}C_{1}) + 8{}^{2}({}^{7}C_{2} - {}^{9}C_{2}) + \cdots$
 $= 8(9 + 7) + 8{}^{2}(21 - 36) + \cdots$
 $= 64 \times 2 + 64(-15) + \cdots$
Hence, it is divisible by 64
168 (d)
Let $f = (8 - 3\sqrt{7})^{10}$, here $0 < f < 1$
 $\therefore (8 + 3\sqrt{7})^{10} + (8 - 3\sqrt{7})^{10}$ is an integer hence, this is the value of n
169 (d)
We have, $\left(3x - \frac{1}{2x}\right)^{8}$
 \therefore Ninth term $T_{9} = 8_{c_{8}}(3x)^{8-8} \left(\frac{-1}{2x}\right)^{8}$
 $= \frac{1}{256x^{8}}$
170 (b)
The general term in the expansion of $\left(x + \frac{1}{x^{2}}\right)^{n-3}$
is given by

 $T_{r+1} = {}^{n-3}C_r(x)^{n-3-r} \left(\frac{1}{x^2}\right)'$ $= {}^{n-3}C_r x^{n-3-3r}$ As x^{2k} occurs in the expansion of $\left(x + \frac{1}{x^2}\right)^{n-3}$, we must have n - 3 - 3r = 2k for some non-negative integer r \Rightarrow 3(1+r) = n - 2k \Rightarrow n - 2k is a multiple of 3 171 (c) Let T_{r+1} denote the (r + 1)th term in the expansion of $(7^{1/3} + 5^{1/2}x)^{600}$. Then, $T_{r+1} = {}^{600}C_r (7^1)^{600-r} (5^{1/3}x)^r$ $= {}^{600}C_r 7^{200-\frac{r}{3}} \times 5^{\frac{r}{2}} \times x^r$ Here, $0 \le r \le 600$ For $200 - \frac{r}{3}$ and $\frac{r}{2}$ to be integers, we must have $\frac{r}{3}$ and $\frac{r}{2}$ as integers, and $0 \le r \le 600$ \Rightarrow *r* is multiple of 2 and 3 both and 0 \leq *r* \leq 600 \Rightarrow *r* is a multiple of 6 and 0 \leq *r* \leq 600 $\Rightarrow r = 0,6,12,...,600$ Hence, there are 101 terms with integral coefficients 172 (b) We have, $(xy + yz + zx)^{6} = \sum_{r+s+t=6}^{6!} \frac{6!}{r! \, s! \, t!} (xy)^{r} (yz)^{s} (zx)^{t}$ $=\sum_{\substack{r+s+t=\epsilon}}\frac{6!}{r!\,s!\,t!}x^{r+t}y^{r+s}z^{s+t}$ If the general term in the above expansion contains $x^3y^4z^5$, then r + t = 3, r + s = 4 and s + t = 5Also, r + s + t = 6On solving these equations, we get r = 1, s = 3, t = 2 $\therefore \text{ Coefficient of } x^3 y^4 z^5 = \frac{6!}{11212!} = 60$ 173 (c) We have, $(1+2x+x^2)^n = \sum^{2n} a_r x^r$ $\Rightarrow \{(1+x)^2\}^n = \sum_{r=1}^{2n} a_r x^r$ $\Rightarrow (1+x)^{2n} = \sum^{2n} a_r x^r$ $\Rightarrow \sum_{n=1}^{2n} {2n \choose r} x^r = \sum_{n=1}^{2n} a_r x^r \Rightarrow a_r = {2n \choose r}$ 174 (a)

Given, ${}^{20}C_4 + {}^{20}C_3 + {}^{20}C_3 + {}^{20}C_2 - {}^{22}C_{18}$ $= {}^{21}C_4 + {}^{20}C_3 + {}^{20}C_2 - {}^{22}C_{18}$ $= {}^{22}C_4 - {}^{22}C_{18} = {}^{22}C_{18} - {}^{22}C_{18} = 0$ 175 (d) We have, $y = 3 x + 6 x^2 + 10 x^3 + \cdots$ $\Rightarrow 1 + y = (1 + 3x + 6x^2 + 10x^3 + \cdots)$ $\Rightarrow 1 + y = (1 - x)^{-3}$ $\Rightarrow (1-x) = (1+y)^{-1/3}$ $\Rightarrow x = 1 - (1 + v)^{-1/3}$ $\Rightarrow x = \frac{1}{3} y - \frac{1 \cdot 4}{3^2 \cdot 2} y^2 + \frac{1 \cdot 4 \cdot 7 \cdot 7}{3^3 \cdot 3} y^3 \dots$ 176 (c) We know that, $(x+a)^n + (x-a)^n = 2[{}^nC_0x^n +$ ${}^{n}C_{2}x^{n-2}a^{2} + \dots$ Here, n = 5, x = x and $a = (x^3 - 1)^{1/2}$ $\therefore [x + (x^3 - 1)^{1/2}]^5 [x - (x^3 - 1)^{1/2}]^5$ $= 2\left[{}^{5}C_{0}x^{5} + {}^{5}C_{2}x^{3}(x^{3}-1) + {}^{5}C_{4}x(x^{3}-1)^{2} \right]$ $= 2[x^{5} + 10x^{3}(x^{3} - 1) + 5x(x^{3} - 1)^{2}]$ \therefore Given expression is a polynomial of degree 7. 177 (c) We have, $C_0^2 + 3 \cdot C_1^2 + 5 \cdot C_2^2 + \dots + (2n+1)C_n^2$ $= \{C_0^2 + C_1^2 + C_2^2 + \dots + C_n^2\}$ $+\{2 C_1^2 + 4 \cdot C_2^2 + 6 \cdot C_3^2 + \dots + 2 n C_n^2\}$... (i) We have. $(1+x)^{2n} = (1+x)^n (1+x)^n$ $\Rightarrow (1+x)^{2n} = (C_0 + C_1 x + C_2 x^2 + \dots + C_n x^n)$ $\times (C_0 x^n + C_1 x^{n-1} + \dots + C_{n-1} x)$ $+C_n$) On equating the coefficient of x^n on both sides, we get ${}^{2n}C_n = C_0^2 + C_1^2 + C_2^2 + \cdots + C_n^2$... (ii) Also. $n(1+x)^{n-1}(1+x)^n$ $= (C_1 + 2 C_2 x + 3 C_3 x^2 + \cdots)$ $+ n C_n x^{n-1}$) $\times (C_0 x^n + C_1 x^{n-1} + C_2 x^{n-2} + \dots + C_n)$ On equating the coefficient of x^{n-1} on both sides, we get $n \cdot {}^{2n-1}C_{n-1} = (C_1^2 + 2 C_2^2 + 3 C_3^2 + \dots + n C_n^2)$ $\Rightarrow 2n \cdot 2n^{-1}C_{n-1}$ $= 2 C_1^2 + 4 C_2^2 + 6 C_3^2 + \cdots$ $+ +2 n C_n^2 \dots$ (iii) From (i),(ii) and (iii), we obtain $C_0^2 + 3 \cdot C_1^2 + 5 C_2^2 + \dots + (2n+1)C_n^2$ $=\frac{2n}{n}^{2n-1}C_{n-1}+2n\cdot ^{2n-1}C_{n-1}$ $= 2(n+1)^{2n-1}C_{n-1}$

178 (d) Here ${}^{n-1}C_r = (k^2 - 3) {}^nC_{r+1}$ $\Rightarrow {}^{n-1}C_r = (k^2 - 3)\frac{n}{r+1} {}^{n-1}C_r$ $\Rightarrow k^2 - 3 = \frac{r+1}{r}$ $\left[\operatorname{since}, n-1 \ge r \Longrightarrow \frac{r+1}{n} \le 1 \text{ and } n, r \ge 0\right]$ $\Rightarrow 0 < k^2 - 3 \le 1 \Rightarrow 3 < k^2 \le 4$ $\Rightarrow k \in [-2, -\sqrt{3}] \cup (\sqrt{3}, 2]$ 179 (a) Let $f(x) = (x + y)^{100} + (x - y)^{100}$ Here, n = 100, which is even. : Total number of terms $=\frac{n+2}{2}=\frac{100+2}{2}$ 180 (c) We know that $C_0^2 + C_1^2 + C_2^2 + C_3^2 + \dots + C_n^2 = \frac{(2n)!}{n!n!} \dots$ (i) and, $C_0^2 - C_1^2 + C_2^2 - C_3^2 + \dots - C_n^2 = 0$, when *n* is odd ...(ii) subtracting (ii) from (i), we get $2(C_1^2 + C_3^2 + C_5^2 + \dots + C_n^2) = \frac{(2n)!}{(n!)^2}$ $\Rightarrow C_1^2 + C_3^2 + C_5^2 + \dots + C_n^2 = \frac{(2n)!}{2(n!)^2}$ 181 (a) <u>ان</u> ${}^{20}C_k = {}^{20}C_0 + {}^{20}C_1 + {}^{20}C_2 + \dots + {}^{20}C_{10}$ On putting x = 1 and n = 20 in $(1 + x)^n$ $= {}^{n}C_{0} + {}^{n}C_{1}x + {}^{n}C_{2}x^{2} + \dots + {}^{n}C_{n}x^{n}$ We get $2^{20} = 2({}^{20}C_0 + {}^{20}C_1 + {}^{20}C_2 + \dots + {}^{20}C_9)$ $+ {}^{20}C_{10}$ $\Rightarrow 2^{19} = ({}^{20}C_0 + {}^{20}C_1 + {}^{20}C_2 + \dots + {}^{20}C_9)$ $+\frac{1}{2} {}^{20}C_{10}$ $\implies 2^{19} = {}^{20}C_0 + {}^{20}C_1 + {}^{20}C_2 + \dots + {}^{20}C_{10}$ $-\frac{1}{2} {}^{20}C_{10}$ $\implies {}^{20}C_0 + {}^{20}C_1 + \ldots + {}^{20}C_{10} = 2^{19} + \frac{1}{2} {}^{20}C_{10}$ 182 **(b)** $(7.995)^{1/3} = (8 - 0.005)^{1/3}$ $= (8)^{1/3} \left[1 - \frac{0.005}{9} \right]^{1/3}$ $= 2 \left| 1 - \frac{1}{3} \times \frac{0.005}{8} + \frac{\frac{1}{3} \left(\frac{1}{3} - 1\right)}{2 \cdot 1} \left(\frac{0.005}{8}\right)^2 + \dots \right|$

 $= 2 \left| 1 - \frac{0.005}{24} - \frac{\frac{1}{3} \times \frac{1}{3}}{1} \times \frac{(0.005)^2}{64} + \dots \right|$ = 2(1 - 0.000208) (neglecting other terms) $= 2 \times 0.999792$ = 1.9996183 **(b)** It is given that ${}^{m}C_{1}$, ${}^{m}C_{2}$ and ${}^{m}C_{3}$ are in A.P. $\therefore 2 \ ^{m}C_{2} = \ ^{m}C_{1} + \ ^{m}C_{3}$ $\Rightarrow m^2 - 9 m + 14 = 0$ $\Rightarrow m = 2.7$ For m = 2, there are only three terms. Therefore, m = 7.Now, $\Rightarrow 21 = {}^{7}C_{5} \left\{ \sqrt{2^{\log_{10}(10-3^{x})}} \right\}^{7-5} \left\{ \sqrt[5]{2^{(x-2)\log_{10}3}} \right\}^{5}$ $\Rightarrow 21 = 21 \cdot 2^{\log_{10}(10-3^{\chi})} \cdot 2^{(\chi-2)\log_{10}3}$ $\Rightarrow 1 - 2^{\log_{10}(10-3^x) + (x-2)\log_{10}3^x}$ $\Rightarrow 2^0 = 2^{\log_{10}[(10-3^x)\cdot 3^{x-2}]}$ $\Rightarrow (10 - 3^x) 3^{x-2} = 1$ $\Rightarrow 3^{2x-2} - 10.3^{x-2} + 1 = 0$ $\Rightarrow 3^{2x} - 10.3^{x} + 9 = 0$ $\Rightarrow (3^x - 1)(3^x - 9) = 0$ $\Rightarrow 3^x = 1, 3^x = 9 \Rightarrow x = 0, 2$ 184 **(b)** Given, ${}^{n}C_{12} = {}^{n}C_{6}$ or ${}^{n}C_{n-12} = {}^{n}C_{6}$ $\Rightarrow n - 12 = 6 \Rightarrow n = 18$ $\therefore {}^{n}C_{2} = {}^{18}C_{2} = 153$ 185 **(b)** Let (r + 1)th term be the coefficient of x^0 in the expansion of $\left(x-\frac{1}{r}\right)^6$. $\therefore T_{r+1} = {}^{6}C_{r}x^{6-r}\left(-\frac{1}{r}\right)^{r}$ $= (-1)^{r} {}^{6}C_{r} x^{6-2r}$ Since, this term is a constant term. $\therefore 6 - 2r = 0 \implies r = 3$ $\therefore T_4 = (-1)^{3} {}^{6}C_3 = -20$ 186 (d) General term, $T_{r+1} = {}^{15}C_r (x^3)^{15-r} \left(\frac{2}{x^2}\right)^r$ $= {}^{15}C_r x^{45-5r} (2)^r$ For term independent of *x*, put $45 - 5r = 0 \implies$ r = 9: Independent term = $T_{9+1} = T_{10}$ 187 (b) We have, $T_{r+1} = {}^{21}C_r \left(\frac{a^{1/3}}{b^{1/6}}\right)^{21-r} \left(\frac{b^{1/2}}{a^{1/6}}\right)^r$

 $= {}^{21}C_r \frac{a^{7-(r/3)}}{b^{7/2-r/6}} \cdot \frac{b^{r/2}}{a^{r/6}}$ $= {}^{21}C_r a^{7-(r/2)} b^{2r/3-7/2}$ Since, exponents of *a* and *b* in the (r + 1)th term are equal $\therefore 7 - \frac{r}{2} = \frac{2r}{2} - \frac{7}{2}$ $\Rightarrow \frac{21}{2} = \frac{7}{6}r \Rightarrow r = 9$ 188 (b) $\left(\frac{1}{x}+1\right)^n (1+x)^n = \frac{1}{x^n}(1+x)^{2n}$ $= \frac{1}{r^n} (1 + {}^{2n}C_1 x + {}^{2n}C_2 x^2 + \cdots$ + ${}^{2n}C_{n-1}x^{n-1} + \dots + {}^{2n}C_{2n}x^{2n}$) The coefficient of $\frac{1}{r}$ is ${}^{2n}C_{n-1}$. 189 (d) $x = (\sqrt{3} + 1)^5 = (\sqrt{3})^5 + {}^5C_1(\sqrt{3})^4 + {}^5C_2(\sqrt{3})^3$ $+{}^{5}C_{3}(\sqrt{3})^{2} + {}^{5}C_{4}(\sqrt{3}) + {}^{5}C_{5}$ $=9\sqrt{3}+45+30\sqrt{3}+30+5\sqrt{3}+1$ $= 76 + 44\sqrt{3}$ \therefore $[x] = [(\sqrt{3} + 1)^{5}] = [76 + 44\sqrt{3}]$ $= [76] + [44 \times 1.732]$ = 76 + [76.2]= 76 + 76 = 152190 (a) We have. $2 C_0 + \frac{2^2}{2} C_1 + \frac{2^3}{2} C_2 + \dots + \frac{2^{11}}{11} C_{10}$ $=\sum^{10} {}^{10}C_r \frac{2^{r+1}}{r+1}$ $=\frac{1}{11}\sum_{r=1}^{10}\frac{11}{r+1} \,{}^{10}C_r \,\,2^{r+1}$ $=\frac{1}{11}\sum^{10} {}^{11}C_{r+1} \cdot 2^{r+1}$ $=\frac{1}{11}({}^{11}C_1 2^1 + \dots + {}^{11}C_{11} \cdot 2^{11})$ $=\frac{1}{11}({}^{11}C_0 \cdot 2^0 + {}^{11}C_1 2^1 + \dots + {}^{11}C_{11} \cdot 2^{11}$ $- {}^{11}C_0 \cdot 2^0)$ $=\frac{1}{11}[(1+2)^{11}-1]=\frac{3^{11}-1}{11}$

191 (a) Sum of coefficients of the expansion $\left(\frac{1}{x} + 2x\right)^n$ = 65611 $\therefore (1+2)^n = 3^8 \implies 3^n = 3^8 \implies n = 8$ Now, $T_{r+1} = {}^{8}C_{r}2^{8-r}x^{-8+2r}$ Since, this term is independent of *x*, then $-8 + 2r = 0 \implies r = 4$ \therefore Coefficient of independent term, $T_5=\ ^8C_4\cdot 2^4=$ $16 \cdot {}^{8}C_{4}$ 192 (d) Sum of coefficient of odd powers of x in $(1 + x)^{30}$ $= C_1 + C_3 + \ldots + C_{29} = 2^{30-1} = 2^{29}$ 193 (b) 6th term in the expansion of $\left(2x^2 - \frac{1}{3x^2}\right)^{10}$ is $T_6 = {}^{10}C_5(2x^2)^5 \left(-\frac{1}{3x^2}\right)^5$ 1 $= -\frac{10!}{5!\,5!} \times 32 \times \frac{1}{243}$ $=-\frac{896}{27}$ 194 **(c)** $^{47}C_4\sum^{5}$ $^{52-r}C_3$ $= {}^{51}C_3 + {}^{50}C_3 + {}^{49}C_3 + {}^{48}C_3 + {}^{47}C_3 + {}^{47}C_4$ $= {}^{51}C_3 + {}^{50}C_3 + {}^{49}C_3 + {}^{48}C_3 + {}^{48}C_4$ $= {}^{51}C_3 + {}^{50}C_3 + {}^{49}C_3 + {}^{49}C_4$ $= {}^{51}C_3 + {}^{50}C_3 + {}^{50}C_4$ $= {}^{51}C_3 + {}^{51}C_4 + {}^{52}C_4$ 195 (b) We have, $(1-2x+3x^2-4x^3+\cdots)^{-n} = \{(1+x)^{-2}\}^{-n}$ $=(1+x)^{2n}$ \therefore Coefficient of x^n in $(1 - 2x + 3x^2 - 4x^3)$ 2 + ...)-n = Coefficient of x^n in $(1 + x)^{2n} = {}^{2n}C_n = \frac{(2n)!}{(n!)^2}$ 196 (c) We have, 2 $(1+x)^n \left(1+\frac{1}{x}\right)^n$ $= (C_0 + C_1 x + \dots + C_n x^n) \Big\{ C_0 + \frac{C_1}{x} + \frac{C_2}{x^2} + \dots \Big\}$ $+\frac{L_n}{r^n}$: Term independent of $x = C_0^2 + C_1^2 + C_2^2 + \dots +$ C_n^2 197 (a) We have, $A = \text{Coeff. of } x^r \text{ in the expansion of } (1 + x)^n {}^n C_r$

$$B = \text{Coeff. of } x^{n-r} \text{ in the expansion of } (1 + x)^n = {}^nC_{n-r} \\ : {}^nC_r = {}^nC_{n-r} & \therefore A = B \\ \text{98 (b)} \\ \text{We have,} \\ x = \frac{\left[\frac{729 + 6(2)(243) + 15(4)(81)}{1 + 4(4)6(16) + 4(64) + 256} + \frac{1}{(6-3)^3 2^3 + 6-3^{32} 2^4 + 6$$

⇒ n = 7
202 (b)
Since, total number of terms = 59 + 1 = 60
∴ Required sum =
$$\frac{2^{59}}{2} = 2^{58}$$

203 (d)
Since, $(1 - x)^{-n} = 1 + \frac{n}{1!}x + \frac{n(n+1)}{2!}x^2 + \cdots$
On putting $x = \frac{2x}{1+x}$ on both sides, we get
 $\left(1 - \frac{2x}{1+x}\right)^{-n} = 1 + \frac{n}{1!}\left(\frac{2x}{1+x}\right)$
 $+ \frac{n(n+1)}{2!}\left(\frac{2x}{1+x}\right)^2 + \cdots$
 $\Rightarrow 1 + \frac{n}{1!}\left(\frac{2x}{1+x}\right) + \frac{n(n+1)}{2!}\left(\frac{2x}{1+x}\right)^2 + \cdots$
 $= \left(\frac{1-x}{1+x}\right)^{-n} = \left(\frac{1+x}{1-x}\right)^n$

General term in the expansion of $(1+3x+2x^2)^6$

 $=\sum \frac{6!}{r_1!r_2!r_2!} (1)^{r_1} (3x)^{r_2} (2x^2)^{r_3}$

Where $r_1 + r_2 + r_3 = 6$ (i) For coefficient of x^{11} , we have $r_2 + 2r_3 = 11$...(ii) Now, from Eqs, (i) and (ii), we get $r_1 = r_3 - 5$ For $r_3 = 5, r_1 = 0$ And $r_2 = 1$: Coefficient of $x^{11} = \frac{6!}{0! 1! 5!} (1)^0 (3)^1 (2)^5$ $= 6 \times 3 \times 2^5 = 18 \times 32 = 576$ 205 (a) We have, $(1-x)^2 \left(x+\frac{1}{r}\right)^{10}$

$$= (1 - 2x + x^2) \sum_{r=0}^{10} {}^{10}C_r x^{10-2r}$$
$$= \sum_{r=0}^{10} {}^{10}C_r x^{10-2r} - 2 \sum_{r=0}^{10} {}^{10}C_r x^{11-2x}$$
$$+ \sum_{r=0}^{10} {}^{10}C_r x^{12-2x}$$
Hence the term independent of *x* is

Hence, the term independent of x is ${}^{10}C_5 - 2 \times 0 + {}^{10}C_6 = {}^{10}C_5 + {}^{10}C_6 = {}^{11}C_6$ $= {}^{11}C_{r}$

206 (a)

Sum of the coefficients in the expansion of $(x - 2y + 3z)^n$ is $(1 - 2 + 3)^n = 2^n$

(Put x = y = z = 1) $\therefore 2^n = 128$ $\Rightarrow n = 7$ Therefore, the greatest coefficient in the expansion of $(1 + x)^7$ is 7C_3 or 7C_4 because both are equal to 35 207 (b) $19^{2005} + 11^{2005} - 9^{2005}$ $= (10+9)^{2005} + (10+1)^{2005} - (9)^{2005}$ $= (9^{2005} + {}^{2005}C_1(9)^{2004} \times 10 + \dots)$ + $(^{2005}C_0 + ^{2005}C_110 + ...)$ $-(9)^{2005}$ $= (^{2005}C_19^{2004} \times 10 + \text{ multiple of } 10) + (1)$ + multiple of 10) \therefore Unit digit = 1 208 (a) $\sum_{r=0}^{\infty} (-1)^{r} {}^{n}C_{r}\left(\frac{1}{2^{r}} + \frac{3^{r}}{2^{2r}} + \frac{7^{r}}{2^{3r}} + \dots \text{ upto } m \text{ terms}\right)$ $=\sum_{r}(-1)^{r} {}^{n}C_{r} \cdot \frac{1}{2^{r}}$ $+\sum_{r=2}^{n}(-1)^{r}\cdot {}^{n}C_{r}\frac{3^{r}}{2^{2r}}$ $+\sum_{r=1}^{n}(-1)^{r} {}^{n}C_{r}\frac{7^{r}}{2^{3r}}+\dots$ $= \left(1 - \frac{1}{2}\right)^n + \left(1 - \frac{3}{4}\right)^n$ $+\left(1-\frac{7}{8}\right)^n+\ldots$ upto *m* terms $=\frac{1}{2^n}+\frac{1}{2^{2n}}+\frac{1}{2^{3n}}+\cdots$ upto m terms $=\frac{\frac{1}{2^n}\left(1-\left(\frac{1}{2^n}\right)^m\right)}{\left(1-\frac{1}{2^n}\right)}$ $=\frac{2^{mn}-1}{2^{mn}(2^n-1)}$ 209 (c) We have, Coeff. of $(r + 2)^{th}$ term in $(1 + x)^{2n} =$ Coeff. of (3r)th term $\Rightarrow {}^{2n}C_{r+1} = {}^{2n}C_{3r-1}$ $\Rightarrow r + 1 + 3r - 1 = 2n \Rightarrow 4r = 2n \Rightarrow n = 2r$ 210 (b) $\frac{\left(1+\frac{3}{4}x\right)^{-4} (16)^{1/2} \left(1-\frac{3}{16}x\right)^{1/2}}{(8)^{2/3} \left(1+\frac{x}{8}\right)^{2/3}}$

$$= \left(1 + \frac{3x}{4}\right)^{-4} \left(1 - \frac{3x}{16}\right)^{\frac{1}{2}} \left(1 + \frac{x}{8}\right)^{-\frac{2}{3}}$$

$$= \left(1 + (-4)\frac{3}{4}x\right) \left(1 - \left(\frac{1}{2}\right)\frac{3x}{16}\right) \left(1 + \left(-\frac{2}{3}\right)\frac{x}{8}\right)$$

$$= (1 - 3x) \left(1 - \frac{3}{32}x\right) \left(1 - \frac{x}{12}\right)$$

$$= 1 - \frac{305}{96}x \text{ (On neglecting x2 and higher powers of x)}$$
211 (c)
We have,
 $(1 + x^{2})^{5}(1 + x)^{4}$
 $= \left({}^{5}C_{0} + {}^{5}C_{1}x^{2} + {}^{5}C_{2}x^{4} + {}^{5}C_{3}x^{6} + \cdots\right) \times \left({}^{4}C_{0} + {}^{4}C_{1}x + {}^{4}C_{2}x^{2} + {}^{4}C_{3}x^{3} + {}^{4}C_{4}x^{4} + {}^{5}C_{3}x^{6} + \cdots\right) \times \left({}^{4}C_{0} + {}^{4}C_{1}x + {}^{4}C_{2}x^{2} + {}^{4}C_{3}x^{3} + {}^{4}C_{4}x^{4} + {}^{5}C_{3}x^{6} + \cdots\right) \times \left({}^{4}C_{0} + {}^{4}C_{1}x + {}^{4}C_{2}x^{2} + {}^{4}C_{3}x^{3} + {}^{4}C_{4}x^{4} + {}^{5}C_{3}x^{6} + \cdots\right) \times \left({}^{4}C_{0} + {}^{4}C_{1}x + {}^{4}C_{2}x^{2} + {}^{4}C_{3}x^{3} + {}^{4}C_{4}x^{4} + {}^{5}C_{3}x^{6} + {}^{5}C_{2}x^{6} + {}^{5}C_{2}x^{7} + {}^{5}C_{2}x^{6} + {}^{5}C_{2}x^{7} + {}^{5}C_{2}x^{6} + {}^{5}C_{2}x^{7} + {}^{5}C_{2}$

We have, Coeff. Of x in $(1 + ax)^n = 8$ and, Coeff. Of x^2 in $(1+ax)^n = 24$

 $\Rightarrow {}^{n}C_{1}a = 8 \text{ and } {}^{n}C_{2}a^{2} = 24$ \Rightarrow na = 8 and $n(n-1)a^2 = 48$ $\Rightarrow 64 - 8a = 48 \Rightarrow a = 2$ \therefore $na = 8 \Rightarrow n = 4$ 218 (a) Since, $(1 + x)^{2n} = {}^{2n}C_0 + {}^{2n}C_0 + {}^{2n}C_1x +$ ${}^{2n}C_{2}x^{2}$ $+...+{}^{2n}C_nx^n+...{}^{2n}C_{2n}x^{2n}$ Total number of terms in the expansion = 2n + 1 \therefore (*n* + 1)th term is middle term. This term has greatest coefficient. Hence, required greatest coefficient = ${}^{2n}C_n$ 219 (a) The general term in $\left(\frac{x}{2} - \frac{3}{x^2}\right)^{10}$ is $T_{r+1} = (-1)^{r \ 10} C_r \left(\frac{x}{2}\right)^{10-r} \left(\frac{3}{x^2}\right)^r$ $= (-1)^{r \ 10} C_r \cdot \frac{3^r}{2^{10-r}} \cdot x^{10-3r}$ For coefficient of x^4 , we have to take 10 - 3r = 4 $\Rightarrow 3r = 6 \Rightarrow r = 2$ $\therefore \text{ Coefficient of } x^4 \text{ in } \left(\frac{x}{2} - \frac{3}{x^2}\right)^{10}$ $= (-1)^2 \cdot {}^{10}C_2 \cdot \frac{3^2}{2^8} = \frac{9 \times 45}{256} = \frac{405}{256}$ 220 (b) Clearly, ${}^{n}C_{r}$ is the greatest and *n* is odd $\therefore r = \frac{n+1}{2} \text{ or, } \frac{n-1}{2}$ 221 (a) We have, R = [R] + FLet $G = (5\sqrt{5} - 11)^{2n+1}$. Then, 0 < G < 1 as $0 < 5\sqrt{5} - 11 < 1$ Now, $R - G = \left(5\sqrt{5} + 11\right)^{2n+1} - \left(5\sqrt{5} - 11\right)^{2n+1}$ $\Rightarrow R - G = 2\{ {}^{2n+1}C_1 (5\sqrt{5})^{2n} (11)^1$ + ${}^{2n+1}C_3(5\sqrt{5})^{2n-2}(11)^3 + \cdots$ + ${}^{2n+1}C_{2n+1}(11)^{2n+1}$ } \Rightarrow *R* – *G* = an even integer \Rightarrow [*R*] + *F* - *G* = an even integer \Rightarrow *F* – *G* is an integer $\Rightarrow F - G = 0$ $\Rightarrow F = G$ $\Rightarrow RF = RG = (5\sqrt{5} + 11)^{2n+1} (5\sqrt{5} - 11)^{2n+1}$ $= 4^{2 n+1}$ 222 (c) Coefficients of $T_5 = {}^{n}C_4$, $T_6 = {}^{n}C_5$ and $T_7 = {}^{n}C_6$

According to the given condition, $2^{n}C_{5} = {}^{n}C_{4} + {}^{n}C_{6}$

$$\Rightarrow 2 \left[\frac{n!}{(n-5)!5!} \right] = \left[\frac{n!}{(n-4)!4!} + \frac{n!}{(n-6)!6!} \right]$$

$$\Rightarrow 2 \left[\frac{6}{(n-5)} \right] = \left[\frac{5.6}{(n-4)(n-5)} + 1 \right]$$

$$\Rightarrow \frac{12}{(n-5)} = \frac{30 + n^2 - 9n + 20}{(n-4)(n-5)} + 1 \right]$$

$$\Rightarrow \frac{12}{(n-5)} = \frac{30 + n^2 - 9n + 20}{(n-4)(n-5)}$$

$$\Rightarrow n^2 - 21n + 98 = 0$$

$$\Rightarrow (n-7)(n-14) = 0$$

$$\Rightarrow n = 7 \text{ or } 14$$
223 (a)
Given that, $R = (2 + \sqrt{3})^{2n}$ and $f = R - [R]$

$$As 0 < 2 - \sqrt{3} < 1, we get $0 < F = (2 - \sqrt{3})^{2n} < 1$

$$We have, $R + F = (2 + \sqrt{3})^{2n} + (2 - \sqrt{3})^{2n}$

$$= 2 \left[\frac{2nC_0 2^{2n} + \frac{2n}{C_2 2^{2n-2}} (\sqrt{3})^2 + \frac{2nC_4 (2^{2n-4}) (\sqrt{3})^4 + \ldots + \frac{2n}{C_{2n}} (\sqrt{3})^{2n} \right]$$

$$\Rightarrow R + F \text{ is an even integer}$$

$$\Rightarrow IR + F i \text{ is an even integer}$$

$$\Rightarrow IR + F \text{ is an integer}$$

$$But, $0 \le f < 1 \text{ and } 0 < F < 1$

$$\Rightarrow 0 < f + F < 2$$

$$But the only integer between 0 and 2 \text{ is } 1. Thus, f + F = 1 \Rightarrow 1 - f = F$$

$$Now, R(1 - f) = RF = (2 + \sqrt{3})^{2n} (2 - \sqrt{3})^{2n}$$

$$= (4 - 3)^{2n} = 1^{2n} = 1$$

$$224 (d)$$

$$(^7C_0 + ^7C_1) + (^7C_1 + ^7C_2) + \cdots + (^7C_6 + ^7C_7)$$

$$= ^8C_1 + ^8C_2 + \cdots + ^8C_7 + (^8C_0 + ^8C_8)$$

$$- (^8C_0 + ^8C_8)$$

$$= 2^8 - 2$$

$$225 (a)$$

$$We have, \frac{4nC_0 + ^{4n}C_2 + \ldots + ^{4n}C_{4n} = \frac{1}{2} [(1 + i)^{4n} + \frac{1}{-i4n} \dots (i)$$

$$\text{ on putting } x = 1 \text{ and } x = i, we get$$

$$\frac{4nC_0 + ^{4n}C_2 + \ldots + ^{4n}C_{4n} = \frac{1}{2} [(1 + i)^{4n} + \frac{1}{-i4n} \dots (i)$$

$$\text{ on adding Eqs. (i) and (ii), we get$$

$$2 [^{4n}C_0 + ^{4n}C_4 + \ldots + ^{4n}C_{4n}]$$

$$= \left[\sqrt{2} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right] \right]^{4n}$$

$$+ \left[\sqrt{2} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right] \right]^{4n}$$$$$$$$

 $= 2^{2n} (\cos n\pi + i \sin n\pi) + 2^{2n} (\cos n\pi - i \sin n\pi)$ $= 2^{2n+1} \cos n\pi = 2^{2n+1} (-1)^n$ $\stackrel{\cdot}{\sim} 2\left[{}^{4n}C_0 + {}^{4n}C_4 + \dots + {}^{4n}C_{4n} \right] \\ = 2^{4n-1} + \frac{1}{2}2^{2n+1}(-1)^n$ $\Rightarrow {}^{4n}C_0 + {}^{4n}C_4 + \dots + {}^{4n}C_{4n} \\ = 2^{4n-1} + (-1)^n 2^{2n-1}$ 226 (a) Suppose (s + 1)th term contains x^{2r} We have, $T_{s+1} = {}^{n-3}C_s x^{n-3-s} \left(\frac{1}{x^2}\right)^s = {}^{n-3}C_s x^{n-3-3s}$ This will contain x^{2r} , if n - 3 - 3s = 2r $\Rightarrow s = \frac{n-3-2r}{3}$ $\Rightarrow s = \frac{n-2r}{3} - 1$ $\Rightarrow s+1 = \frac{n-2r}{3}$ \Rightarrow n - 2r = 3(s + 1) \Rightarrow *n* - 2 *r* is a positive integral multiple of 3 228 (d) Let $1 + \frac{1}{3}x + \frac{1 \cdot 4}{3 \cdot 6}x^2 + \frac{1 \cdot 4 \cdot 7}{3 \cdot 6 \cdot 9}x^3 + \dots = (1 + y)^n$ $= 1 + ny + \frac{n(n-1)}{2!}y^2 + ...$ On comparing the terms, we get $ny = \frac{1}{3}x, \frac{n(n-1)}{2!}y^2 = \frac{1\cdot 4}{3\cdot 6}x^2$ On solving, we get $n = -\frac{1}{3}, \quad y = -x$: Required expansion is $(1 - x)^{-1/3}$ 229 (c) On putting x = 1, we get the sum of coefficient of $(x^2 - x - 1)^{99}$ $=(1-1-1)^{99}=(-1)^{99}=-1$ 231 **(b)** ${}^{15}C_8 + {}^{15}C_9 - {}^{15}C_6 - {}^{15}C_7$ $= {}^{15}C_8 + {}^{15}C_9 - {}^{15}C_9 - {}^{15}C_8$ = 0232 (a) $(1 - x + x^2)^n = a_0 + a_1 x + a_2 x^2 + \ldots + a_{2n} x^{2n}$ On putting x = 1, we get $(1-1+1)^n = a_0 + a_1 + a_2 + \ldots + a_{2n}$ $\Rightarrow 1 = a_0 + a_1 + a_2 + \dots + a_{2n} \dots (i)$ Again, putting x = -1, we get $3^n = a_0 - a_1 + a_2 - \ldots + a_{2n} \ldots$ (ii) On adding Eqs. (i) and (ii), we get $\frac{3^2+1}{2} = a_0 + a_2 + a_4 + \dots + a_{2n}$

233 (c) Let us take $a_0 + a_1 x + a_2 x^2 + \ldots + a_{2n} x^{2n} = (1 + x + x^2)^n$ On differentiating both sides w.r.t. x, we get $a_1 + 2a_2x + \ldots + 2na_{2n}x^{2n-1}$ $= n(1 + x + x^2)^{n-1}(2x + 1)$ Put x = -1 $\Rightarrow a_1 - 2a_2 + 3a_3 - \dots - 2na_{2n} = -n$ 234 (d) $:: (k^2 - 3) = \frac{n^{-1}C_r}{n^{-1}C_{r+1}} = \frac{n^{-1}C_r}{(\frac{n}{2})^{n-1}C_r} = \left(\frac{r+1}{n}\right) \dots (i)$ $: 0 \le r \le n-1$ $\Rightarrow 1 \leq r + 1 \leq n$ $\Rightarrow \frac{1}{n} \le \frac{r+1}{n} \le 1$ $\Rightarrow \frac{1}{n} \le k^2 - 3 \le 1$ [from Eq. (i)] $\Rightarrow 3 + \frac{1}{m} \le k^2 \le 4$ When $n \to \infty$, $3 \le k^2 \le 4$ or $k \in [-2, -\sqrt{3}] \cup (\sqrt{3}, 2]$ 235 (d)

The general term in the expansion of $(x\cos\alpha +$ $\sin \alpha x 20$ is $20Crx\cos \alpha 20 - r\sin \alpha x r =$ $20Crx20-2r(\cos\alpha)20-r(\sin\alpha)r$

For this term to be independent of *x*, we get $20 - 2r = 0 \Rightarrow r = 10$ Let β =Term independent of *x* $= {}^{20}C_{10}(\cos \alpha)^{10}(\sin \alpha)^{10}$ $= {}^{20}C_{10}(\cos \alpha \sin \alpha)^{10}$ $= {}^{20}C_{10} \left(\frac{\sin 2a}{2}\right)^{10}$ Thus, the greatest possible value of β is

$${}^{20}C_{10}\left(\frac{1}{2}\right)^{1}$$

236 (c)

Since $(n + 2)^{th}$ term is the middle term in the expansion of $(1 + x)^{2n+2}$. Therefore, $p = {}^{2n+2}C_{n+1}$ Since $(n + 1)^{th}$ and $(n + 2)^{th}$ terms are two middle terms in the expansion of $(1 + x)^{2n+1}$. Therefore, $q = {}^{2n+1}C_n$ and $r = {}^{2n+1}C_{n+1}$ But, ${}^{2n+1}C_n + {}^{2n+1}C_{n+1} = {}^{2n+2}C_{n+1}$ $\Rightarrow q + r = p$ 237 (a) Given ${}^{m}C_{0} + {}^{m}C_{1} + {}^{m}C_{2} = 46$

$$\Rightarrow 2m + m(m-1) = 90$$

 $\Rightarrow m^2 + m - 90 = 0 \Rightarrow m = 9 \text{ as } m > 0$

Now, (r+1)th term of $\left(x^2 + \frac{1}{r}\right)^m$ is ${}^{m}C_{r}(x^{2})^{m-r}\left(\frac{1}{r}\right)^{r} = {}^{m}C_{r}x^{2m-3r}$ For this to be independent of *x* put $2m - 3r = 0 \Rightarrow r = 6$ \therefore Coefficient of the term independent of x is ${}^{9}C_{6} = 84$ 238 (a) Since ${}^{n}C_{r-1}$, ${}^{n}C_{r}$ and ${}^{n}C_{r+1}$ are in A. P. $\therefore 2^{n}C_{r} = {}^{n}C_{r-1} + {}^{n}C_{r+1}$ $\Rightarrow 2 \frac{n!}{(n-r)!r!}$ $=\frac{n!}{(n-r+1)!(r-1)!}$ $+\frac{n!}{(n-r-1)!(r+1)!}$ $\Rightarrow n^2 - n(4r + 1) + 4r^2 - 2 = 0$ \Rightarrow *n* is a root of the equation $x^2 - x(4r + 1) \pm \frac{1}{2}$ $4r^2 - 2 = 0$ 239 (a) $(1 + x + x^2)^{-3} = \left[\frac{1}{(1 + x + x^2)}\right]^{5}$ $=\left[\frac{1-x}{1-x^{3}}\right]^{3}$ $=(1-x)^3(1-x^3)^{-3}$ $= (1 - x^3 - 3x^2 + 3x)(1 + 3x^3 + 6x^6 + \cdots)$: Coefficient of x^6 in $(1 + x + x^2)^{-3}$ = 6 - 3 = 3240 (d) $\left(1+\frac{C_1}{C_1}\right)\left(1+\frac{C_2}{C_1}\right)\left(1+\frac{C_3}{C_2}\right)\dots\left(1+\frac{C_n}{C_{n-1}}\right)$ $=\left(1+\frac{n}{1}\right)\left(1+\frac{n(n-1)}{2n}\right)...\left(1+\frac{1}{n}\right)$ $= \left(\frac{1+n}{1}\right) \left(\frac{1+n}{2}\right) \dots \left(\frac{1+n}{n}\right) = \frac{(1+n)^n}{n!}$ 241 (a) $(1 + 3x + 3x^2 + x^3)^{20} = (1 + x)^{60}$: Coefficient of x^{20} in $(1 + x)^{60}$ is ${}^{60}C_{20}$ or ${}^{60}C_{40}$. 242 (c) The general term in the expansion of $(x \sin \alpha +$ $x-1\cos\alpha$)10 is $T_{r+1} = {}^{10}C_r (x \sin \alpha)^{10-r} (x^{-1} \cos \alpha)^r$ $= {}^{10}C_r(\sin \alpha)^{10-r}(\cos \alpha)^r x^{10-2r}$ For the term independent of *x*, put $10 - 2r = 0 \Rightarrow r = 5$: Coefficient of term independent of x, is ${}^{10}C_5(\sin\alpha)^5(\cos\alpha)^5 = {}^{10}C_5\left(\frac{1}{25}\right)(\sin 2\alpha)^5$ $\leq \frac{1}{25} ({}^{10}C_5) \ [\because \sin(2\alpha) \leq 1]$

243 (b) The general term in the expansion of (1 + 2x +*3x210* is $\frac{10!}{r! s! t!} 1^r (2x)^s (3x^2)^t$, where r + s + t = 10 $=\frac{10!}{r! s! t!} 2^s \times 3^t \times x^{s+2t}$ We have to find a_1 i.e. the coefficient of xFor the coefficient of x^1 , we must have s + 2t = 1But, r + s + t = 10 \therefore s = 1 - 2t and r = 9 + t, where $0 \le r$, $s, t \le 10$ Now, $t = 0 \Rightarrow s = 1, r = 9$ For other values of *t*, we get negative values of *s*. So, there is only one term containing *x* and its coefficient is $\frac{10!}{9!\,1!\,0!} \times 2^1 \times 3^0 = 20$ Hence, $a_1 = 20$ ALITER we have, $(1+2x+3x^2)^{10}$ $= {}^{10}C_0 + {}^{10}C_1(2x+3x^2) + {}^{10}C_2(2x+3x^2)^2$ $+ \cdots + {}^{10}C_0(2x + 3x^2)^{10}$ $\therefore a_1 = \text{Coeff. of } x = 20$ 244 **(b)** Since, the coefficient of given terms are ${}^{m}C_{r-1}$, ${}^{m}C_{r}$, ${}^{m}C_{r+1}$ respectively and they are in AP. $=2\frac{m!}{r!(m-r)!}$ $\Rightarrow \frac{1}{(m-r+1)(m-r)} + \frac{1}{(r+1)r} = \frac{2}{r!(m-r)}$ $\Rightarrow \frac{r(r+1) + (m-r+1)(m-r)}{r(r+1)(m-r+1)(m-r)} = \frac{2}{r(m-r)}$ \Rightarrow $r^2 + r + m^2 + r^2 - 2mr + m - r$ $= 2(mr - r^2 + r + m - r + 1)$ $\Rightarrow 4r^2 - 4mr - m - 2 + m^2 = 0$ $\Rightarrow m^2 - m(4r + 1) + 4r^2 - 2 = 0$ 245 (b) General term, $T_{r+1} = {}^{6}C_{r}x^{6-r}\left(\frac{1}{r^{2}}\right)^{r}$ $\Rightarrow T_{r+1} = {}^{6}C_{r}x^{6-3r}$ For term independent of *x*, put 6 - 3r = 0 $\Rightarrow r = 2$ \therefore Coefficient of independent term = ${}^{6}C_{2} = 15$ 246 (a) We have,

 $T_{n+1} = \left(\frac{1}{3 \times \sqrt[3]{\alpha}}\right)^{\log_3 8}$ $\Rightarrow {}^{n}\mathcal{C}_{n}\left(\sqrt[3]{2}\right)^{0}\left(-\frac{1}{\sqrt{2}}\right)^{n} = \left(\frac{1}{3\times\sqrt[3]{9}}\right)^{\log_{3}8}$ $\Rightarrow \left(-\frac{1}{\sqrt{2}}\right)^n = \left(\frac{1}{2^{5/3}}\right)^{\log_3 8}$ $\Rightarrow (-1)^n 2^{-n/2} = (3^{-5/3})^{\log_3 2^3}$ $\Rightarrow (-1)^n 2^{-n/2} = (3^{\log_3^{2^{-5}}})$ $\Rightarrow (-1)^n 2^{-n/2} = 2^{-5} \Rightarrow \frac{n}{2} = 5 \Rightarrow n = 10$ 247 (b) Given, $a_0 = 1$, $a_{n+1} = 3n^2 + n + a_n$ $\Rightarrow a_1 = 3(0) + 0 + a_0 = 1$ $\Rightarrow a_2 = 3(1)^2 + 1 + a_1 = 3 + 1 + 1 = 5$ From option (b), Let $P(n) = n^3 - n^2 + 1$ $\therefore P(0) = 0 - 0 + 1 = 1 = a_0$ $P(1) = 1^3 - 1^2 + 1 = 1 = a_1$ and $P(2) = (2)^3 - (2)^2 + 1 = 5 = a_2$ 248 (b) General term, $T_{r+1} = {}^{10}C_r(x^2)^{10-r} \left(-\frac{1}{x^3}\right)^r$ $= {}^{10}C_r x^{20-5r} (-1)^r$ Since, this term condition x^{-10} $20 - 5r = -10 \Longrightarrow r = 6$ *.*.. : Coefficient of $x^{-10} = {}^{10}C_6(-1)^6 = 210$ 251 (c) The sum of the coefficients of the polynomial $(a^2x^2 - 2ax + 1)^{51}$ is obtained by putting x = 1Therefore, by given condition $(a^2 - 2a + 1)^{51} =$ 0 $\Rightarrow a = 1$ 252 (b) Let $S = 1 + \frac{2}{4} + \frac{2 \cdot 5}{4 \cdot 8} + \frac{2 \cdot 5 \cdot 8}{4 \cdot 8 \cdot 12} + \cdots$ On comparing with $(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \cdots$ we get $nx = \frac{2}{4}$(i) and $\frac{n(n-1)}{2!}x^2 = \frac{2 \cdot 5}{4 \cdot 8}$... (ii) From Eqs, (i) and (ii) $\frac{\frac{n(n-1)}{2!}x^2}{x^2x^2} = \frac{\frac{2\cdot 5}{4\cdot 8}}{\frac{2\cdot 2}{4\cdot 4}}$ $\Rightarrow \frac{n-1}{n} = \frac{5}{2} \Rightarrow n = -\frac{2}{3}$ On putting the value of *n* in Eq. (i) we get $-\frac{2}{3}x = \frac{2}{4} \Longrightarrow x = -\frac{3}{4}$

$$\therefore S = (1+x)^n = \left(1 - \frac{3}{4}\right)^{-2/3} = \left(\frac{1}{4}\right)^{-2/3} = \sqrt[3]{16}$$

253

253 **(b)**
We have,

$$(x+3)^{n-1} + (x+3)^{n-2}(x+2) + \dots + (x+2)^{n-1}$$

 $= \frac{(x+3)^n - (x+2)^n}{(x+3) - (x+2)^n} = (x+3)^n - (x+2)^n$
 \therefore Coefficient of x^r in the given expression
 $= \text{Coeff. of } x^r \text{ in } \{(x+3)^n - (x+2)^n\}$
 $= {}^n C_r 3^{n-r} - {}^n C_r 2^{n-r} = {}^n C_r (3^{n-r} - 2^{n-r})$
254 **(c)**
Let $S = C_1 + 2C_2 + 3C_3 + \dots + nC_n = \sum_{r=1}^n r \cdot {}^n C_r$
 $= \sum_{r=1}^n r \cdot \frac{n}{r} {}^{n-1}C_{r-1} [\because {}^n C_r = \frac{n}{r} {}^{n-1}C_{r-1}]$
 $= n \sum_{r=1}^n {}^{n-1}C_{r-1}$
 $= n [{}^{n-1}C_0 + {}^{n-1}C_1 + {}^{n-1}C_2 + \dots + {}^{n-1}C_{n-1}]$
 $= n2^{n-1}$

Given expression $\frac{\sqrt{1+x}+\sqrt[3]{(1-x)^2}}{1+x+\sqrt{1+x}}$ can be rewritten as $\frac{(1+x)^{1/2} + (1-x)^{2/3}}{1+x+(1+x)^{1/2}}$

$$= \frac{\left[1 + \frac{1}{2}x - \frac{1}{8}x^{2} + \dots\right] + \left[1 - \frac{2}{3}x - \frac{1}{9}x^{2} - \dots\right]}{1 + x + \left[1 + \frac{1}{2}x - \frac{1}{8}x^{2} + \dots\right]}$$

$$= \frac{2 - \frac{1}{6}x - \frac{17}{72}x^{2} + \dots}{2 + \frac{3}{2}x - \frac{1}{8}x^{2} + \dots} = \frac{\left[1 - \frac{1}{12}x - \frac{17}{144}x^{2} + \dots\right]}{\left[1 + \frac{3}{4}x - \frac{1}{16}x^{2} + \dots\right]}$$

$$= \left[1 - \frac{1}{12}x - \frac{17}{144}x^{2} + \dots\right] \left[1 + \frac{3}{4}x - \frac{1}{16}x^{2} + \dots\right]^{-1}$$

$$= 1 - \frac{5}{6}x + \dots$$

$$= 1 - \frac{5}{6}x$$
 (On neglecting the higher powers of *x*)

256 (b)

The coefficient of x^n in the expansion of $(1+x)(1-x)^n$ = coefficient of x^n in $(1 - x)^n$ + The coefficient of x^{n-1} in (1 $(-x)^n$ $= (-1)^n \frac{n!}{n! \, 0!} + (-1)^{n-1} \frac{n!}{1! \, (n-1)!}$ $=(-1)^{n}(1-n)$ 257 **(b)** Middle term of $(x - a)^8$ is $T_5 = {}^8C_4 x^4 (-a)^4 = {}^8C_4 x^4 a^4$ 258 (c)

We have, Coeff. of r^{th} term in $(1 + x)^{20}$ = Coeff. of $(r + 4)^{th}$ term in $(1 + x)^{20}$ $\Rightarrow {}^{20}C_{r-1} = {}^{20}C_{r+3}$ $\Rightarrow (r-1) + (r+3) = 20 \Rightarrow 2r+2 = 20 \Rightarrow r = 9$ 259 (c) Putting x = 1 and x = -1 in the given expansion and adding, we get $2[1 + a_2 + a_4 + \dots + a_{12}] = (-2)^6$ $\Rightarrow a_2 + a_4 + \dots + a_{12} = 31$ 260 (d) We have, $\frac{1}{81^n} - \frac{10}{81^n} \, {}^{2n}C_1 + \frac{10^2}{81^n} \, {}^{2n}C_2 - \frac{10^3}{81^n} \, {}^{2n}C_3 + \cdots$ $+\frac{10^{2n}}{81^n}$ $= \frac{1}{81^n} \{ {}^{2n}C_0 - {}^{2n}C_1 \, 10^1 + {}^{2n}C_2 \, 10^2 - {}^{2n}C_3 \, 10^3 \}$ $+ \dots + {}^{2n}C_{2n}10^{2n}$ $=\frac{1}{81^n}(1-10)^{2n}=\frac{(-9)^{2n}}{81^n}=\frac{81^n}{81^n}=1$ 261 (a) $\left(\frac{{}^{50}C_0}{1} + \frac{{}^{50}C_2}{3} + \frac{{}^{50}C_4}{5} + \dots + \frac{{}^{50}C_{50}}{51}\right)$ $= \frac{1}{1} + \frac{50 \times 49}{3 \times 2! \times} + \frac{50 \times 49 \times 48 \times 47}{5 \times 4!} + \cdots$ $= \frac{1}{51} \left(51 + \frac{51 \times 50 \times 49}{3!} \right)$ $+\frac{51\times50\times49\times48\times47}{5!}+\cdots\Big)$ $=\frac{1}{51}({}^{51}C_1 + {}^{51}C_3 + {}^{51}C_5 + \cdots) = \frac{1}{51} \cdot 2^{51-1}$ $=\frac{2^{50}}{5^{1}}$ 262 (a) As we have $A^2 = 2A - I$ $\Rightarrow A^2A = (2A - I)A = 2A^2 - IA$ $\Rightarrow A^3 = 2(2A - I) - IA = 3A - 2I$ Similarly, $A^4 = 4A - 3I$ $A^{5} = 5A - AI$ $A^n = 5A - 4I$ $A^n = nA - (n-1)I$ 263 (a) We have, $\sum_{r=1}^{2n} a_r (x - 100)^r = \sum_{r=1}^{2n} b_r (x - 101)^r$

$$\Rightarrow \sum_{r=0}^{2n} b_r t^r = \sum_{r=0}^{2n} a_r (1+t)^r, \text{ where } t = x - 101$$

On equating the coefficients of t^n on both sides, we get

$$b_n = a_n {}^n C_n + a_{n+1} {}^{n+1} C_n + a_{n+2} {}^{n+2} C_n + \dots + a_{2n} {}^{2n} C_n$$

$$\Rightarrow b_n = \sum_{r=n}^{2n} a_r {}^r C_n$$

$$= \sum_{r=n}^{2n} 2^r$$

$$= 2^n \sum_{r=n}^{2n} 2^{r-n} = 2^n (2^{n+1} - 1)$$

264 **(b)** We have

$$(x + 3)^{n-1} + (x + 3)^{n-2}(x + 2) + (x + 3)^{n-3}(x + 2)^{2} + \dots + (x + 2)^{n-1}$$
$$= \frac{(x + 3)^{n} - (x + 2)^{n}}{(x + 3) - (x + 2)} = (x + 3)^{n} - (x + 2)^{n}$$
$$\left(\because \frac{x^{n} - a^{n}}{x - a} = x^{n-1} + x^{n-2}a^{1} + x^{n-3}a^{2} + \dots + a^{n-1} \right)$$

Therefore, the coefficient of x^r in the given expression

=coefficient of x^r in $[(x + 3)^n - (x + 2)^n]$ = ${}^nC_r 3^{n-r} - {}^nC_r 2^{n-r}$ = ${}^nC_r (3^{n-r} - 2^{n-r})$

266 **(d)**

The sum of the magnitudes of the coefficients is obtained by replacing x by -1 in $(1 - x + x^2 - x3n)$

Hence, required sum = $(1 + 1 + 1 + 1)^n = 4^n$

267 **(c)**

Let x^7 occur in (r + 1)th term Now,

$$= \frac{x^{-3}(-3)(-3-1)(-3-2)\dots(-3-r+1)}{r!} \left(-\frac{2}{r!}\right)^{272}$$

$$\Rightarrow T_{r+1} = \frac{3 \cdot 4 \cdot 5 \dots (r+2)}{r!} 2^r x^{r-3}$$
This will contain x^7 , if
 $\therefore r - 3 = 7 \Rightarrow r = 10$
 \therefore Coefficient of $x^7 = \frac{3 \cdot 4 \cdot 5 \dots (10+2)}{10!} \cdot 2^{10}$
 $= 66 \times 2^{10} = 67584$
268 (d)

The given expansion

$$=\sum_{r=0}^{n} (x-r)(y-r)(z-r)(-1)^{r} C_{r}$$

$$=\sum_{r=0}^{n} (-1)^{r} xyz C_{r} \sum_{r=0}^{n} (-1)^{r} r(x+y+z)C_{r}$$

$$+\sum_{r=0}^{n} (-1)^{r} r^{2} (xy+yz+zx)C_{r}$$

$$-\sum_{r=0}^{n} (-1)^{r} xyz r^{3} C_{r}$$

$$=xyz \sum_{r=0}^{n} (-1)^{r} C_{r} - (x+y+z) \sum_{r=0}^{n} (-1)^{r} r C_{r}$$

$$+(xy+yz+zx) \sum_{r=0}^{n} (-1)^{r} r^{2} C_{r}$$

$$-xyz \sum_{r=0}^{n} (-1)^{r} r^{3} C_{r}$$

$$=xyz \times 0 - (x+y+z) \times 0 + (xy+yz+zx) \times 0$$

$$-xyz \times 0 = 0$$
269 (b)
We know that,

$$\frac{C_{1}}{C_{0}} + 2\frac{C_{2}}{C_{1}} + 3\frac{C_{3}}{C_{2}} + \dots + n\frac{C_{n}}{C_{n-1}} = \frac{n(n+1)}{2}$$
On putting $n = 15$, then $\frac{15 \times (15+1)}{2} = 15 \times 8 = 120$
270 (b)
We have,

$$17^{1995} + 11^{1995} - 7^{1995}$$

$$= (7+10)^{1995} + (1+10)^{1995} - 7^{1995}$$

$$= \{7^{1995} + 19^{95}C_{1}7^{1994} \cdot 10^{1} + 1^{1995}C_{2} \cdot 7^{1993}10^{2}$$

$$+ \frac{1^{995}C_{1}10^{1} + \dots}{1^{1995}C_{1}10^{1} + \dots}$$

$$+ 1^{995}C_{1995}10^{1995}\} - 7^{1995}$$

$$= \{1^{995}C_{1}7^{1994} \cdot 10^{1} + \dots + 10^{1995}\} + 1$$

$$= (a multiple of 10) + 1$$
Thus, the unit's digit is 1
271 (a)

$${}^{50}C_{4} + {}^{55}C_{3} + {}^{54}C_{3} + {}^{53}C_{3} + {}^{52}C_{3} + {}^{51}C_{3}$$

$$= {}^{51}C_{4} + {}^{52}C_{3} + {}^{54}C_{3} + {}^{55}C_{3}$$

$$= {}^{54}C_{4} + {}^{54}C_{3} + {}^{55}C_{3} = {}^{55}C_{4} + {}^{55}C_{3}$$

$$= {}^{54}C_{4} + {}^{54}C_{3} + {}^{55}C_{3} = {}^{55}C_{4} + {}^{55}C_{3} = {}^{56}C_{4}$$
272 (b)

 $\left(x-\frac{1}{x}\right)^4 \left(x+\frac{1}{x}\right)^3$

n

$$= \left({}^{4}C_{0}x^{4} - {}^{4}C_{1}x^{2} + {}^{4}C_{2} - {}^{4}C_{3}\frac{1}{x^{2}} + {}^{4}C_{4}\frac{1}{x^{4}} \right) \\ \times \left({}^{3}C_{0}x^{3} + {}^{3}C_{1}x + {}^{3}C_{2}\frac{1}{x} + {}^{3}C_{3}\frac{1}{x^{3}} \right)$$

Clearly, there is no term from x on RHS, therefore the term independent of x on LHS is zero.

273 **(b)**

Coefficient of x^2y^2 in $(x + y + z + t)^4 = \frac{4!}{2!2!} = 6$ and coefficient of yzt^2 in $(x + y + z + t)^4$ $=\frac{4!}{1!\,1!\,1!\,2!}=12$ Also, coefficients of *xyzt* in $(x + y + z + t)^4 = \frac{4!}{1! \, 1! \, 1!} = 24$ \therefore Required ratio is 6: 12: 24 = 1: 2: 4 274 (b) The general term in the expansion of $(1+2x+3x^2)^{10}$ is $\sum_{r \le 10!} \frac{10!}{r! \le t!} 1^r (2x)^5 (3x^2)^t$ $=\frac{10!}{r! s! t!} 2^s \times 3^t \times x^{s+2t}$ Where r + s + t = 10We have to find a_1ie , coefficient of x For the coefficient of x^1 , we must have s + 2t = 1But r + s + t = 10 \therefore *s* = 1 – 2*t* and *r* = 9 + *t* Where $0 \le r, s, t \le 10$ Now, $t = 0 \implies s = 1, r = 9$ For other, values of *t*, we get negative value *s*. So, there is only one term containing *x* and its coefficient is $\frac{10!}{9!\,1!\,0!}2^1 \times 3^0 = 20$ Hence, $a_1 = 20$ Alternate On differentiating given equation w. r. t. x, we get $10(1+2x+3x^2)^9 = a_1 + 2a_2 x + \ldots + 20a_{20}x^{19}$ Put x = 0, we get $20 = a_1$ 275 **(b)** $(1+x^2)^5(1+x)^4$ $= ({}^{5}C_{0} + {}^{5}C_{1}x^{2} + {}^{5}C_{2}x^{4} + \cdots)({}^{4}C_{0} + {}^{4}C_{1}x$ $+ {}^{4}C_{2}x^{2} + {}^{4}C_{3}x^{3} + {}^{4}C_{4}x^{4}$ The coefficient of x^5 in $[1 + x^2)^5(1 + x)^4$] $= {}^{5}C_{2} \cdot {}^{4}C_{1} + {}^{5}C_{1} \cdot {}^{4}C_{3}$ $= 10 \cdot 4 + 4 \cdot 5 = 60$ 276 (c) We have,

 ${}^{20}C_0 + {}^{20}C_1 + {}^{20}C_2 + {}^{20}C_3 + \dots + {}^{20}C_{10} + {}^{20}C_{11}$ $+ \cdots + {}^{20}C_{20} = 2^{20}$ $\Rightarrow \{ {}^{20}C_0 + {}^{20}C_{20} \} + \{ {}^{20}C_1 + {}^{20}C_{19} \} + \cdots$ $+ \{ {}^{20}C_9 + {}^{20}C_{11} \} + {}^{20}C_{10} = 2^{20}$ $\Rightarrow 2\{ {}^{20}C_0 + {}^{20}C_1 + {}^{20}C_2 + \dots + {}^{20}C_9 \} + {}^{20}C_{10}$ $\Rightarrow 2\{ {}^{20}C_0 + {}^{20}C_1 + \dots + {}^{20}C_{10} \} = 2^{20} + {}^{20}C_{10} \}$ $\Rightarrow {}^{20}C_0 + {}^{20}C_1 + \dots + {}^{20}C_{10} = 2^{19} + \frac{1}{2} {}^{20}C_{10}$ 277 (a) Last term of $\left(2^{1/3} - \frac{1}{\sqrt{2}}\right)^n$ is $T_{n+1} = {}^{n}C_{n} \left(2^{1/3}\right)^{n-n} \left(-\frac{1}{\sqrt{2}}\right)^{n}$ $= {}^{n}C_{n}(-1)^{n}\frac{1}{2^{n/2}} = \frac{(-1)^{n}}{2^{n/2}}$ Also, we have $\left(\frac{1}{25/3}\right)^{\log_3 8} = 3^{-(5/3)\log_3 2^3} = 2^{-5}$ Thus, $\frac{(-1)^n}{2^{n/2}} = 2^{-5} \Rightarrow \frac{(-1)^n}{2^{n/2}} = \frac{(-1)^{10}}{2^5}$ $\Rightarrow \frac{n}{2} = 5 \Rightarrow n = 10$ Now, $T_5 = T_{4+1} = {}^{10}C_4(2^{1/3})^{10-4} \left(-\frac{1}{\sqrt{2}}\right)^4$ $=\frac{10!}{4!6!}(2^{1/3})^6(-1)^4(2^{-1/2})^4$ $= 210(2)^{2}(1)(2^{-2}) = 210$ 278 (b) Let T_{r+1} be the $(r + 1)^{th}$ term in the expansion of $\left(x^2 - \frac{1}{r^3}\right)^{10}$. Then, $T_{r+1} = {}^{10}C_r x^{20-5r} (-1)^r$ This will contain x^{-10} , if $20 - 5r = -10 \Rightarrow r = 6$: Coefficient of $x^{-10} = {}^{10}C_6(-1)^6 = {}^{10}C_6 = 210$ 280 **(b**) $\frac{C_1}{C_0} + 2 \cdot \frac{C_2}{C_1} + 3 \cdot \frac{C_3}{C_2} + \dots + n \cdot \frac{C_n}{C_{n-1}} = \frac{1}{k} n(n+1)$ $\Rightarrow \sum_{r=1}^{n} r \cdot \frac{{}^{n}C_{r}}{{}^{n}C_{r-1}} = \frac{1}{k} n(n+1)$ $\Rightarrow \sum (n-r+1) = \frac{1}{k}n(n+1)$ $\Rightarrow n + (n - 1) + (n - 2) + \dots + 1 = \frac{1}{k}n(n + 1)$ $\Rightarrow \frac{n(n+1)}{2} = \frac{1}{k} n(n+1)$ $\Rightarrow k = 2$ 281 (a) We have. $(1+x)^p + (1+x)^{p+1} + \dots + (1+x)^n$

$$= \frac{(1+x)^{p}\{(1+x)^{n-p+1}-1\}}{(1+x)-1}$$

= $\frac{1}{x}\{(1+x)^{n+1}-(1+x)^{p}\}$
 \therefore Coefficient of x^{m}
= Coefficient of x^{m+1} in $(1 + x)^{n+1}$

$$= {}^{n+1}C_{m+1}$$

282 (c)

Given that,

$$(1+x)^{n} = {}^{n}C_{0} + {}^{n}C_{1}x + {}^{n}C_{2}x^{2} + \dots + {}^{n}C_{n}x^{n}$$

Let $S_{n} = \frac{{}^{n}C_{1}}{{}^{n}C_{0}} + \frac{{}^{2}{}^{n}C_{2}}{{}^{n}C_{1}} + \frac{{}^{3}{}^{n}C_{3}}{{}^{n}C_{2}} + \dots + \frac{{}^{n}{}^{n}C_{n}}{{}^{n}C_{n-1}}$
Put $n = 1,2,3, \dots$, then
 $S_{1} = \frac{{}^{1}C_{1}}{{}^{1}C_{0}} = 1,$
 $S_{2} = \frac{{}^{2}C_{1}}{{}^{2}C_{0}} + 2\frac{{}^{2}C_{2}}{{}^{2}C_{1}}$
 $= \frac{2}{1} + 2 \cdot \frac{1}{2} = 2 + 1 = 3$
Put taking action (put $n = 1, 2$) (a) and (b)

By taking option, (put n = 1, 2, ...) (a) and (b) does not hold condition, but option (c) satisfies.

283 (a)

Let the term containing x^7 in the expansion of

$$\left(ax^{2} + \frac{1}{bx}\right)^{8} \text{ is } T_{r+1}.$$

$$\therefore \qquad T_{r+1} = {}^{8}C_{r}(ax^{2})^{8-r}\left(\frac{1}{bx}\right)^{r}$$

$$= {}^{8}C_{r}\frac{a^{8-r}}{b^{r}}x^{16-3r}$$

Since this term contains x^{7}

Since, this term contains x'.

16 - 3r = 7:. r = 3 \Rightarrow

 \therefore Coefficient of x^7 in the expansion of $\left(ax^2\right)$

$$+\frac{1}{bx}\Big)^{8}$$
$$= {}^{8}C_{3} \cdot \frac{a^{5}}{b^{3}}$$

Also, the term containing x^{-7} in the expansion of (

$$\left(-\frac{1}{bx^2}\right)^8 \text{ is } T_{R+1}$$

$$T_{R+1} = {}^8C_R(a x)^{8-R} \left(-\frac{1}{bx^2}\right)^R$$

$$= (-1)^R {}^8C_R \frac{a^{8-R}}{b^R} x^{8-3R}$$

Since, this term contains x^{-7}

$$\begin{array}{ll} \therefore & 8 - 3R = -7 \\ \implies & R = 5 \end{array}$$

 \therefore Coefficient of x^{-7} in the expansion of $\left(a x\right)$

$$-\frac{1}{bx^2}\Big)^8$$

= (-1)⁵ ⁸C₅ · $\frac{a^3}{b^5}$

According to the given condition,

$$\begin{vmatrix} {}^{8}C_{3} \cdot \frac{a^{5}}{b^{3}} \end{vmatrix} = \begin{vmatrix} {}^{8}C_{5} \cdot \frac{a^{3}}{b^{5}} \end{vmatrix}$$
$$\implies a^{2}b^{2} = 1 \implies ab = 1$$

284 (b)

We have, $(x + a)^n = T_0 + T_1 + T_2 + \dots + T_n$... (i) Replacing *a* by *ai* and – *ai* respectively in (i), we get (7

$$(a + ai)^n = (T_0 - T_2 + T_4 - T_6 + \cdots)$$

+ $i(T_1 - T_3 + T_5 - \cdots)$... (ii)
And.

And,

$$(x - ia)^{n} = (T_{0} - T_{2} + T_{4} - T_{6} + \cdots)$$

- $i(T_{1} - T_{3} + T_{5} - \cdots) \dots$ (iii)
Multiplying (ii) and (iii), we get
 $(x + ai)^{n}(x - ia)^{n} = (T_{0} - T_{2} + T_{4} - T_{6} - \cdots)^{2}$
+ $(T_{1} - T_{3} + T_{5} - \cdots)^{2}$
 $\Rightarrow (x^{2} + a^{2})^{n} = (T_{0} - T_{2} + T_{4} - T_{6} \dots)^{2}$
+ $(T_{1} - T_{3} + T_{5} - \cdots)^{2}$

285 (c)

$$:: \sum_{i=0}^{m} {10 \choose i} {20 \choose m-i} = \sum_{i=0}^{m} {}^{10}C_i \cdot {}^{20}C_{m-1}$$

$$:= \text{Coefficient of } x^m \text{ in the expansion of } (1 + x)10(1+x)20$$

$$:= {}^{30}C_m$$

$$It \text{ is maximum, when}$$

$$m = \frac{30}{2} = 15$$

$$286 \text{ (d)}$$

$$a_1 = {}^{n}C_1, a_2 = {}^{n}C_2$$

$$a_3 = {}^{n}C_3$$

$$:: a_1, a_2 \text{ and } a_3 \text{ are in AP}$$

$$:= 2a_2 = a_1 + a_3$$

$$:= 2 \cdot {}^{n}C_2 = {}^{n}C_1 + {}^{n}C_3$$

$$:= 2 \cdot {}^{n(n-1)} = n + {}^{n(n-1)(n-2)}$$

$$:= n^2 - 9n + 14 = 0$$

$$:= (n-2)(n-7) = 0$$

$$:= n = 7 \quad (:: n = 2\text{ is not Possible})$$

$$287 \text{ (c)}$$

$$(1 + x)^{15} = a_0 + a_1x + a_2x^2 + \dots + a_{15}x^{15}$$

$$:= a_0 + a_1x + a_2x^2 + \dots + a_{15}x^{15}$$

$$:= a_0 + a_1x + a_2x^2 + \dots + a_{15}x^{15}$$

$$:= a_0 + a_1x + a_2x^2 + \dots + a_{15}x^{15}$$

$$:= a_0 + a_1x + a_2x^2 + \dots + a_{15}x^{15}$$

$$:= a_0 + a_1x + a_2x^2 + \dots + a_{15}x^{15}$$

$$:= a_0 + a_1x + a_2x^2 + \dots + a_{15}x^{15}$$

$$:= a_0 + a_1x + a_2x^2 + \dots + a_{15}x^{15}$$

$$:= a_0 + a_1x + a_2x^2 + \dots + a_{15}x^{15}$$

we get

$$a_0 = {}^{15}C_0, a_1 = {}^{15}C_1, a_2 = {}^{15}C_2, \dots a_{15} = {}^{15}C_{15}$$

 $\therefore \sum_{r=1}^{15} r \frac{a_r}{a_{r-1}} = \sum_{r=1}^{15} r \frac{{}^{15}C_r}{{}^{15}C_{r-1}}$
 $= \sum_{r=1}^{15} r \frac{\frac{15!}{(r-1)(15-r+1)!}}{\frac{15}{(r-1)(15-r+1)!}}$
 $= \sum_{r=1}^{15} \frac{r(r-1)! (15-r+1)!}{r! (15-r)!}$
 $= \sum_{r=1}^{15} 15-r+1$
 $= 15+14+13+\dots+2+1$
 $= \frac{15(15+1)}{2} = 120$

288 (b)

Coefficient of x^5 in $(1 + x^2)^5 (1 + x)^4$ = Coefficient of x^5 in $({}^5C_0 + {}^5C_1 x^2 + {}^5C_2 x^4 + ...1 + x^4)$ = ${}^5C_1 \times \text{Coefficient of } x^3$ in $(1 + x)^4 + {}^5C_2 \times \text{Coefficient of } x$ in $(1 + x)^4$ = ${}^5C_1 \times {}^4C_3 + {}^5C_2 \times {}^4C_1 = 20 + 40 = 60$ 289 **(b)** Since, $(1 - x)^{-2} = 1 + 2x + 3x^2 + + (r + 1)x^r$ \therefore Coefficient of x^r in $(1 - x)^{-2}$ is (r + 1). 290 **(b)** $\frac{1}{(6 - 3x)^{1/3}} = (6 - 3x)^{-1/3} = 6^{-1/3} \left[1 - \frac{x}{2}\right]^{-1/3}$ $= 6^{-1/3} \left[1 + \left(-\frac{1}{3}\right)\left(-\frac{x}{2}\right) + \frac{\left(-\frac{1}{3}\right)\left(-\frac{x}{2}\right)^2}{2.1} + ...\right]$ $= 6^{-1/3} \left[1 + \frac{x}{6} + \frac{2x^2}{6^2} + ...\right]$

291 (a)

The coefficient of $(r + 1)^{th}$ term in the expansion of $(1 + x)^{14}$ is ${}^{14}C_r$ It is given that ${}^{14}C_{r-1}$, ${}^{14}C_r$, ${}^{14}C_{r+1}$ are in A.P. $\Rightarrow 2 {}^{14}C_r = {}^{14}C_{r-1} + {}^{14}C_{r+1}$ $\Rightarrow 2 = \frac{{}^{14}C_{r-1}}{{}^{14}C_r} + \frac{{}^{14}C_{r+1}}{{}^{14}C_r}$ $\Rightarrow 2 - \frac{r}{15 - r} + \frac{14 - r}{r+1}$ $\Rightarrow 2(15 - r)(r+1) = r^2 + r + 210 - 29 r + r^2$ $\Rightarrow 4 r^2 - 56 r + 180 = 0$ $\Rightarrow r^2 - 14 r + 45 = 0 \Rightarrow r = 5, 9$ 292 **(b)**

If *n* id odd, then numerically the greatest coefficient in the expansion of $(1 - x)^n$ is ${}^nC_{\frac{n-1}{2}}$

or,
$${}^{n}C_{\frac{n+1}{2}}$$

Therefore, in case of $(1 - x)^{21}$ the numerically greatest coefficient is ${}^{21}C_{10}$ or, ${}^{21}C_{11}$ Numerically greatest term = ${}^{21}C_{11} x^{11}$ or, ${}^{21}C_{10} x^{10}$ $\therefore {}^{21}C_{11} x^{11} > {}^{21}C_{12} x^{12}$ and ${}^{21}C_{10} x^{10} > {}^{21}C_{9} x^{9}$ $\Rightarrow \frac{21!}{10 + 11!} > \frac{21!}{9 + 12!} x$ and $\frac{21!}{11 + 10!} x > \frac{21!}{9 + 12!}$

$$\Rightarrow \frac{6}{5} > x \text{ and } x < \frac{5}{6} \Rightarrow x \in (5/6, 6/5)$$

293 (d)

Note that for $\log_{10} x$ to be defined, x > 0

We have, $T_6 = T_{5+1} = {}^{8}C_5 \left(\frac{1}{x^{8/3}}\right)^{8-5} (x^2 \log_{10} x)^5$ $\Rightarrow 5600 = \frac{8!}{5! \, 3!} \left(\frac{1}{x^8}\right) x^{10} (\log_{10} x)^5$ $\Rightarrow 5600 = 56x^2 (\log_{10} x)^5$ $\Rightarrow 100 = x^2 (\log_{10} x)^5$ $\Rightarrow \frac{100}{x^2} = (\log_{10} x)^5$ Let $y = \frac{100}{x^2}$ $\therefore y = (\log_{10} x)^5$ From the figure it is clear that curves intersect in just one point. This point is (10, 1)

Therefore, x = 10

294 **(b)**

We have,

$$(1+x^2)^{40} \left(x^2+2+\frac{1}{x^2}\right)^{-5}$$

= $(1+x^2)^{40} (x^2+1)^{-10} x^{10}$
 $\Rightarrow (1+x^2)^{40} \left(x^2+2+\frac{1}{x^2}\right)^{-5} = (1+x^2)^{30} x^{10}$
 \therefore Coeff of x^{20} in the expansion of $(1+x^2)^{40} \left(x^2+2+\frac{1}{x^2}\right)^{-5}$
= Coefficient of x^{20} in $(1+x^2)^{30} \cdot x^{10}$
= Coefficient of x^{10} in $(1+x^2)^{30} = {}^{30}C_5 = {}^{30}C_{25}$

295	(d)
	Let $P(n) = n^3 + 2n$
	$\Rightarrow P(1) = 1 + 2 = 3$
	$\implies P(2) = 8 + 4 = 12$
	$\Rightarrow P(3) = 27 + 6 = 33$
	Here, we see that all these number are divisible by
296	3
290	$(1+x)^m(1-x)^n$
	$=\left(1+mx+\frac{m(m-1)x^2}{2!}+\ldots\right)$
	$\left(1 - nx + \frac{n(n-1)}{2!}x^2 - \dots\right)$
	= 1 + (m - n)x
	$+\left[\frac{n^2-n}{2}-mn+\frac{(m^2-m)}{2}\right]x^2$
	Given, $m - n = 3 \implies n = m - 3$
	and $\frac{n^2 - n}{2} - mn + \frac{m^2 - m}{2} = -6$
	$\Rightarrow \frac{(m-3)(m-4)}{2} - m(m-3) + \frac{m^2 - m}{2} = -6$
	$\implies m^2 - 7m + 12 - 2m^2 + 6m + m^2 - m + 12$
	= 0
	$\Rightarrow -2m + 24 = 0 \Rightarrow m = 12$
297	
	We have, $(1 + \dots + 2 + \dots + 3)^n$
	(1 + x + x2 + x3)n = (1 + x) ⁿ (1 + x ²) ⁿ
	$= (C_0 + C_1 x + C_2 x^2 + \dots + C_n x^n)(C_0 + C_1 x^2)$
	$(o_0 + o_1 x + o_2 x + \cdots + o_n x)(o_0 + o_1 x + \cdots + C_n x^{2n})$
	$\therefore \text{ Coefficient of } x^4 = C_0 C_2 + C_2 C_1 + C_4 C_0$
	$= {}^{n}C_2 + {}^{n}C_2 \cdot {}^{n}C_1 + {}^{n}C_4$
298	
	Let, $S = 1 + \frac{1}{3} \cdot \frac{1}{2} + \frac{2}{3} \cdot \frac{5}{6} \cdot \frac{1}{2^2} + \frac{2}{3} \cdot \frac{5}{6} \cdot \frac{8}{9} \cdot \frac{1}{2^3} + \dots \infty$
	and we know that $n(n-1)$
	$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2$
	$+\frac{(n(n-1)(n-2)}{3!}x^2+\cdots\infty$
	On comparing these two, we get
	$nx = \frac{2}{3} \cdot \frac{1}{2}$ (i)
	5 2
	and $\frac{n(n-1)}{2 \cdot 1} x^2 = \frac{2}{3} \cdot \frac{5}{6} \cdot \frac{1}{2^2}$ (ii)
	from Eqs. (i) and (ii),
	$\frac{n(n-1)}{2\cdot 1} \qquad \frac{2}{3} \times \frac{5}{6} \times \frac{1}{4}$
	$\implies \frac{\frac{n(n-1)}{2\cdot 1}}{n^2} = \frac{\frac{2}{3} \times \frac{5}{6} \times \frac{1}{4}}{\frac{2}{3} \times \frac{1}{2} \times \frac{2}{3} \times \frac{1}{2}}$
	3 2 3 2
	$\Rightarrow \qquad \frac{n-1}{2n} = \frac{5}{4}$
	$\implies 5n = 2n - 2$

$$\Rightarrow n = -\frac{2}{3}$$
On putting value of n in Eq. (i), we get
$$x = -\frac{1}{2}$$
 \therefore Sum of series $= \left(1 - \frac{1}{2}\right)^{-\frac{2}{3}} = (4)^{1/3}$
299 (b)
Here, $T_5 + T_6 = 0$
 $\Rightarrow {}^{n}C_4 a^{n-4}(-2b)^4 + {}^{n}C_5 a^{n-5}(-2b)^5 = 0$
 $\Rightarrow 16 \cdot {}^{n}C_4 a^{n-4}b^4 = 32 \, {}^{n}C_5 a^{n-5}b^5$
 $\Rightarrow \frac{nC_5}{nC_4} \cdot \frac{a^{n-5}b^5}{a^{n-4}b^4} = \frac{1}{2}$
 $\Rightarrow \frac{b}{a} = \frac{1}{2} \cdot \frac{nC_4}{nC_5}$
 $\Rightarrow \frac{a}{a} = \frac{2 \cdot \frac{s_1(n-5)!}{a^{n(n-4)!}}$
 $= \frac{4! (n-4)!}{5! (n-5)!} \times 2 = \frac{2(n-4)}{5}$
300 (c)
Given, $(1 + x)^m (1 - x)^n$
 $= \left(1 + mx + m \frac{(m-1)}{2!} x^2 + \cdots\right)$
 $\left(1 - nx + \frac{n(n-1)}{2!} x^2 - \cdots\right)$
 $= 1 + (m - n)x + \left[\frac{n^2 - n}{2} - mn + \frac{m^2 - m}{2}\right] x^2$
 $+ \cdots$
Also, given $m - n = 3 \Rightarrow n = m - 3$
and $\frac{n^2 - n}{2} - mn + \frac{m^2 - m}{2} = -6$
 $\Rightarrow \frac{(m-3)(m-4)}{2} - m(m-3) + \frac{m^2 - m}{2}$
 $= 0$
 $\Rightarrow -2m + 24 = 0 \Rightarrow m = 12$
301 (b)
Given sum of the coefficient = 1024
 $ie, 2^n = 1024 = 2^{10}$
 $\Rightarrow n = 10$
Since, n is even, so greatest coefficient
 $= {}^{n}C_{n/2} = {}^{10}C_5 = 252$
302 (b)
We have,
 $5^{99} = 5^3 \times 5^{96}$
 $= (13 \times 9 + 8)\{1 + {}^{24}C_1(13 \times 48) + \cdots$
 $+ {}^{24}C_24(13 \times 48)^{24}\}$

 $= (13 \times 9 + 8) + (13 \times 9 + 8) \{ {}^{24}C_1(13 \times 48) \}$ $+ \cdots + {}^{24}C_{24}(13 \times 48)^{24}$ $= 8 + 13 \times An$ integer Hence, remainder = 8303 (c) General term of $(3 + 2x)^{74}$ is $T_{r+1} = {}^{74}C_r(3){}^{74-r}2^r x^r$ Let two consecutive terms are T_{r+1} th and T_{r+2} th terms According to the given condition, Coefficient of T_{r+1} =Coefficient of T_{r+2} $\Rightarrow {}^{74}C_r 3^{74-r} 2^r = {}^{74}C_{r+1} 3^{74-(r+1)} 2^{r+1}$ $\Longrightarrow \frac{{}^{74}C_{r+1}}{{}^{74}C_r} = \frac{3}{2} \Longrightarrow \frac{74-r}{r+1} = \frac{3}{2}$ \Rightarrow 148 - 2r = 3r + 3 \Rightarrow r = 29 Hence, two consecutive terms are 30 and 31. 304 (b) Given expansion is $\left(\frac{2}{3}x - \frac{3}{2x}\right)^n$ $\therefore T_4 = {}^{n}C_3 \left(\frac{2}{2}x\right)^{n-3} \left(-\frac{3}{2x}\right)^{3}$ $= {}^{n}C_{3}\left(\frac{2}{2}\right)^{n-6}x^{n-6}(-1)^{3}$ Since, it is independent of *x* $\therefore n-6=0 \Rightarrow n=6$ 305 (b) General term, $T_{r+1} = {}^{15}C_r(x^4)^{15-r} \left(-\frac{1}{x^3}\right)^r$ $= {}^{15}C_r x^{60-7r} (-1)^r$ For the coefficient of x^{3r} put $60 - 7r = 32 \implies r = 4$ Now, coefficient of x^{32} in $\left(x^4 - \frac{1}{x^3}\right)^{15} =$ ${}^{15}C_4(-1)^4 = {}^{15}C_4$ 306 (d) The number of terms in $(a + b + c)^{12}$ $= {}^{12+2}C_2 = {}^{14}C_2 = 91$ 307 (a) Coefficient of x^7 in $(1 + 3x - 2x^3)^{10}$ $=\sum \frac{10!}{n_1! n_2! n_3!} (1)^{n_1} (3)^{n_2} (-2)^{n_3}$ Where, $n_1 + n_2 + n_3 = 10$, $n_2 + 3n_3 = 7$ Different possibilities are as follows n_1 n_2 n_3 3 7 0 5 4 1 7 1 2 : Coefficient of $x^7 = \frac{10!}{3!7!} (1)^3 (3)^7 (-2)^0$ $+\frac{10!}{5!4!1!}(1)^5(3)^4(-2)^1$ $+\frac{10!}{7! 1! 2!} (1)^7 (3)^1 (-2)^2$

= 62640308 (b) The general term in the expansion of $\left(x - \frac{1}{r}\right)^{10}$ is $T_{r+1} = {}^{18}C_r(x)^{18-r} \left(-\frac{1}{r}\right)^r$ Here, n = 18 \therefore the middle term is T_{9+1} , where r = 9 $T_{9+1} = {}^{18}C_9(-1)^9 x^{18-2r}$:. $= -{}^{18}C_{0}x^{18-18} = -{}^{18}C_{0}$ 309 (d) General term $T_{r+1} = (-1)^{r \ 11} C_r \left(\frac{2\sqrt{x}}{5}\right)^{11-r} \left(\frac{1}{2x^{3/2}}\right)^r$ $=\frac{2^{11-2r}}{5^{11-r}}(-1)^{r} {}^{11}C_r x^{\frac{11-r}{2}-\frac{3r}{2}}$ For term independent of *x*, put $\frac{11-r}{2} - \frac{3r}{2} = 0$ $\Rightarrow \frac{11-4r}{2} = 0 \Rightarrow r = \frac{11}{4} \notin N$ \therefore There is no term which is independent of *x*. 310 (b) $a[C_0 - C_1 + C_2 - C_3 + \cdots (-1)^n \cdot C_n]$ $+[C_1 - 2C_2 + 3C_3 - \dots + (-1)^{n-1}nC_n]$ = a0 + 0 = 0312 (a) Let $(6\sqrt{6} + 14)^{2n+1} = I + F$, where $I \in N$ and 0 < F < 1Also, let $G = (6\sqrt{6} - 14)^{2n+1}$. Then, 0 < G < 1Clearly, I + F - G is an even integer $\Rightarrow F = G$ \Rightarrow *I* is an even integer 313 (a) The sum of the coefficients is obtained by putting x = y = 1 in $(5x - 4y)^n$. So, required sum = 1 314 (a) Now, $\left[\frac{(x+1)}{x^{2/3}-x^{1/3}+1}-\frac{(x-1)}{x-x^{1/2}}\right]^{10}$ $= \left[\frac{(x^{1/3})^3 + 1^3}{x^{2/3} - x^{1/3} + 1} - \frac{\left((\sqrt{x})^2 - 1\right)}{\sqrt{x}(\sqrt{x} - 1)}\right]^{10}$ $= [x^{1/3} + 1 - (x^{-1/2} + 1)]^{10}$ $= [x^{1/3} + x^{-1/2}]^{10}$ $\therefore T_{r+1} = {}^{10}C_r(x)^{\frac{10-r}{3}}(-x^{-1/2})^r \\ = {}^{10}C_r(-1)^r x^{\frac{20-5r}{6}}$ For the term independent of x

 $\operatorname{Put}\frac{20-5r}{6} = 0$

 $\Rightarrow r = 4$

$$\therefore \text{ Required coefficient} = {}^{10}C_4 = 210$$
315 (c)
Putting the values of $C_0, C_2, C_4, ..., \text{ we get}$
 $1 + \frac{n(n-1)}{3 \cdot 2!} + \frac{n(n-1)(n-2)(n-3)}{5 \cdot 4!} + \cdots$
 $= \frac{1}{n+1} [(n+1) + \frac{(n+1)n(n-1)}{3!}$
 $+ \frac{(n+1)n(n-1)(n-2)(n-3)}{5!} + \cdots]$
Put $n+1 = N$
 $= \frac{1}{N} [N + \frac{N(N-1)(N-2)}{3!}]$
 $+ \frac{N(N-1)(N-2)(N-3)(N-4)}{5!} + \cdots$
 $= \frac{1}{N} [N^2C_1 + NC_3 + NC_5 + \cdots]$
 $= \frac{1}{N} [2^{N-1}] = \frac{2^n}{n+1} [: N = n+1]$
316 (b)
We have,
 $(\frac{(1+x)^n}{1-x} = (1+x)^n(1-x)^{-1}$
 $\Rightarrow \frac{(1+x)^n}{1-x} = (n^2C_0x^n + n^2C_1x^{n-1} + \cdots + n^2C_{n-1}x)$
 $+ n^2C_nx^0 \times (1+x+x^2+x^3+\cdots)$
 $+ x^n + \cdots)$
 $\therefore \text{ Coefficient of } x^n \ln \frac{(1+x)^n}{1-x}$
 $= n^2C_0 + n^2C_1 + n^2C_2 + \cdots + n^2C_n = 2^n$
317 (d)
Given that, $(1+x-2x^2)^6 = 1 + a_1x + a_2x^2 + \dots + a_{12}x^{12}$
On putting $x = 1$ and $x = -1$ and adding the results, we get
 $64 = 2(1 + a_2 + a_4 + \dots + a_{12})$
 $\therefore a_2 + a_4 + a_6 + \dots + a_{12} = 31$
318 (b)
 $\therefore (1+x)^n = \sum_{r=0}^n n^2C_rx^r = \sum_{r=0}^n a_rx^r$ (given)
 $\therefore a_r = n^2C_r$
Also, $b_r = 1 + \frac{a_r}{a_{r-1}} = 1 + \frac{n^2C_r}{n^2C_{r-1}} = \frac{n^{n+1}C_r}{n^2C_{r-1}}$
 $b_r = (\frac{n+1}{r})$
 $\therefore n = 100$
319 (c)
Coefficient of $x^2y^3z^4 = \frac{9!}{2!3!4!}a^2b^3c^4$
 $= 1260a^2b^3c^4$

320 (c) $T_{r+1} = {}^{9}C_r(x^2)^{9-r} \left(-\frac{1}{x}\right)^r$ $= {}^{9}C_{r}x^{18-2r-r}(-1)^{r}$ For term independent of *x*, put 18 - 2r - r = $0 \Longrightarrow r = 0$: Constant term, $T_7 = {}^9C_6(-1)^6 = 84$ 321 (c) We have, $\sum_{k=1}^{\infty} k \left(1 + \frac{1}{n}\right)^{k-1}$ $=\sum_{k=1}^{\infty} k x^{k-1}$, where $x = 1 + \frac{1}{n}$ $= 1 + 2x + 3x^2 + 4x^3 + \dots + 10^{10}$ $=(1-x)^{-2}=\left(-\frac{1}{n}\right)^{-2}=n^{2}$ 322 (c) Let (r + 1)th, (r + 2)th and (r + 3)th be three consecutive terms. Then, ${}^{n}C_{r}$: ${}^{n}C_{r+1}$: ${}^{n}C_{r+2} = 1:7:42$ Now, $\frac{{}^{n}C_{r}}{{}^{n}C_{r+1}} = \frac{1}{7} \Rightarrow \frac{r+1}{n-r} = \frac{1}{7} \Rightarrow n-8r=7$ and $\frac{n_{C_{r+1}}}{n_{C_{r+2}}} = \frac{7}{42}$ $\Rightarrow \frac{r+2}{n-r-1} = \frac{1}{6}$ $\Rightarrow n - 7r = 13$...(ii) On solving Eqs. (i) and (ii), we get n = 55323 (c) We have, $(1+3\sqrt{2}x)^9+(1-3\sqrt{2}x)^9$ $= 2 \left\{ {}^{9}C_{0} + {}^{9}C_{2} (3\sqrt{2} x)^{2} + \dots + {}^{9}C_{8} (3\sqrt{2} x)^{8} \right\}$ Clearly, there are 5 terms in the above expansion 324 (c) Given that, ${}^{n}C_{6} = {}^{n}C_{12} \Rightarrow {}^{n}C_{n-6} = {}^{n}C_{12}$ \Rightarrow $n - 6 = 12 \Rightarrow n = 18$ 325 (c) The general term in the expansion of $(2x^2)$ $\left(-\frac{1}{x}\right)^{12}$ is $T_{r+1} = (-1)^{r} {}^{12}C_r \cdot 2^{12-r} \cdot x^{24-3r}$ The term independent of *x*, put 24 - 3r = 0 \Rightarrow r = 8 \therefore In the expansion of $(2x^2)$ $\left(-\frac{1}{r}\right)^{12}$, the term independent of *x* is 9th term. 327 (b)

 $:: 4^n = (1+3)^n$

$$= 1 + 3n + \frac{n(n-1)}{2!} 3^2 + \cdots$$

$$\Rightarrow 4^n - 3n - 1 = 3^2 \left[\frac{n(n-1)}{2!} + \cdots \right]$$

It is clear from above that $4^n - 3n - 1$ is divisible by 9.

328 **(b)**

On putting x = -1 in $(1 + x)^{20} = {}^{20}C_0 + {}^{20}C_1x + \dots + {}^{20}C_{10}x^{10} + \dots + {}^{20}C_{10}x^{10},$

we get

$$0 = {}^{20}C_0 - {}^{20}C_1 + \dots - {}^{20}C_9 + {}^{20}C_{10} - {}^{20}C_{11} + \dots + {}^{20}C_{20}$$

$$\Rightarrow 0 = {}^{20}C_0 - {}^{20}C_1 + \dots - {}^{20}C_9 + {}^{20}C_{10} - {}^{20}C_9 + \dots + {}^{20}C_0$$

$$\Rightarrow 0 = 2({}^{20}C_0 - {}^{20}C_1 + \dots - {}^{20}C_9) + {}^{20}C_{10}$$

$$\Rightarrow {}^{20}C_{10} = 2({}^{20}C_0 - {}^{20}C_1 + \dots + {}^{20}C_{10})$$

$$\Rightarrow {}^{20}C_0 - {}^{20}C_1 + \dots + {}^{20}C_{10} = \frac{1}{2} {}^{20}C_{10}$$

329 (d)

Now,
$$(\sqrt{3} + 1)^5 = (\sqrt{3})^5 + {}^5C_1(\sqrt{3})^4 + {}^5C_2(\sqrt{3})^3 + {}^5C_3(\sqrt{3})^2 + {}^5C_4(\sqrt{3}) + {}^5C_5 = 9\sqrt{3} + 45 + 30\sqrt{3} + 30 + 5\sqrt{3} + {}^= 76 + 44\sqrt{3}$$

$$\therefore [(\sqrt{3} + 1)^5] = [76 + 44\sqrt{3}] = [76] + [44 \times 1.732] = 76 + 76 = 152$$

1

330 **(c)**

The given sigma expansion $\sum_{m=0}^{100} {}^{100}C_m (x-3)^{100-m} \cdot 2^m \text{ can be rewritten}$ as $[(x-3)+2]^{100} = (x-1)^{100} = (1-x)^{100}$ $\therefore x^{53} \text{ will occur in } T_{54}$ $\Rightarrow T_{54} = {}^{100}C_{53}(-x)^{53}$ $\therefore \text{ Required coefficient is} - {}^{100}C_{53}.$ 331 (a)

$$T_{4} = {}^{n}C_{3}(ax)^{n-3} \left(\frac{1}{x}\right)^{3} = \frac{5}{2} \qquad \text{[given]}$$

$$\Rightarrow {}^{n}C_{3}a^{n-3}x^{n-6} = \frac{5}{2}$$

$$\Rightarrow n-6 = 0 \qquad [\because \text{ RHS is independent of } x]$$

$$\Rightarrow n = 6$$
On putting $n = 6$ in Eq. (i), we get
 ${}^{6}C_{3}a^{3} = \frac{5}{2} \Rightarrow a^{3} = \frac{1}{8} \Rightarrow a = \frac{1}{2}$
332 (a)
We have,

$$\begin{split} \sum_{r=0}^{n} \sum_{s=0}^{n} (r+s)C_{r}C_{s} &= \sum_{r=0}^{n} 2rC_{r}^{2} \\ &+ 2 \sum_{0 \leq r < s \leq n} \sum_{r=0}^{n} (r+s)C_{r}C_{s} = 2\sum_{r=0}^{n} r \cdot C_{r}^{2} \\ &+ 2 \sum_{0 \leq r < s \leq n} \sum_{r=0}^{n} r \cdot C_{r}^{2} \\ &+ 2 \sum_{0 \leq r < s \leq n} \sum_{r=0}^{n} (r+s)C_{r}C_{s} \\ &\Rightarrow n \cdot 2^{2n} = 2 \cdot \left(\frac{n}{2}^{2n}C_{n}\right) \\ &+ 2 \sum_{0 \leq r < s \leq n} \sum_{r=0}^{n} (r+s)C_{r}C_{s} \\ &\Rightarrow \sum_{0 \leq r < s \leq n} \sum_{r=0}^{n} (r+s)C_{r}C_{s} = \frac{1}{2} [n \cdot 2^{2n} - n \cdot 2^{n}C_{n}] \\ &= \frac{n}{2} [2^{2n} - \frac{2n}{n} 2^{n-1}C_{n-1}] \\ &= n [2^{2n-1} - 2^{n-1}C_{n-1}] \\ &= n [2^{2n$$

: Coefficient $x^n = \frac{1}{2} \left\{ 1 - \frac{1}{3} \cdot \frac{1}{3^n} \right\} = \frac{1}{2} \frac{(3^{n+1} - 1)}{3^{n+1}}$ 335 (a) For greatest term in $(x + a)^a$ is $\frac{n-r+1}{r} \left| \frac{a}{r} \right| \ge 1$ $\Rightarrow \frac{54-r+1}{r} \left| \frac{3x}{1} \right| \ge 1$ $\Rightarrow 55 - r \ge r \Rightarrow r = 27$ $\because x = \frac{1}{3}$: Greatest term in the expansion of $(1 + 3x)^{54}$ is T_{28} . 336 (b) We have, $T_4 = {}^5C_3 \left(\frac{1}{x}\right)^{5-3} (x \tan x^3) = 10x \tan^3 x$ and $T_2 = {}^5C_2 \left(\frac{1}{x}\right)^{5-1} (x \tan x) = \frac{5 \tan x}{x^3}$ Given $\frac{T_4}{T_2} = \frac{2}{27}\pi^4 \implies 2x^4 \tan^2 x = \frac{2}{27}\pi^4$ $\Rightarrow x^2 \tan x = \pm \frac{1}{3\sqrt{3}}\pi^2$ It is possible (from among the answers) when $x = \pm \frac{\pi}{2}$ 337 (d) We have, $32^{32} = (2^5)^{32} = 2^{160} = (3-1)^{160}$ $\Rightarrow 32^{32} = {}^{160}C_0 \, 3^{160} - {}^{160}C_1 \cdot 3^{159} + \cdots$ $- {}^{160}C_{159} \cdot 3 + {}^{160}C_{160}3^{0}$ $\Rightarrow 32^{32} = (\,{}^{160}C_0 \cdot 3^{160} - \,{}^{160}C_1 \cdot 3^{159} + \cdots$ $- {}^{160}C_{159} \cdot 3) + 1$ $\Rightarrow 32^{32} = 3m + 1$, where $m \in N$ $\therefore 32^{(32)^{(32)}} = (32)^{3m+1} = (2^5)^{3m+1} = 2^{15m+5}$ $= 2^{3(5m+1)} \cdot 2^{2}$ $\Rightarrow 32^{(32)^{(32)}} = (2^3)^{5m+1} \cdot 2^2 = (7+1)^{5m+1} \times 4$ $\Rightarrow 32^{(32)^{(32)}} = \{ {}^{5m+1}C_0 \, 7^{5m+1} + {}^{5m+1}C_1 \, 7^{5m} + \cdots \\$ + ${}^{5m+1}C_{5m}$ 7¹ + ${}^{5m+1}C_{5m+1} \cdot 7^{0}$ } × 4 $\Rightarrow 32^{(32)^{(32)}} = (7n+1) \times 4,$ where $n = {}^{5m+1}C_0 7^{5m+1} + \dots + {}^{5m+1}C_{5m} 7$ $\Rightarrow 32^{(32)^{(32)}} = 28n + 4$ Thus, when $32^{(32)^{(32)}}$ is divided by 7, the remainder is 4 338 (a) Since, $\left(1+\frac{1}{n}\right)^n < 3$ for $\forall n \in N$ Now, $\frac{(1001)^{999}}{(1000)^{1000}} = \frac{1}{1001} \cdot \left(\frac{1001}{1000}\right)^{1000}$ $=\frac{1}{1001}\left(1+\frac{1}{1000}\right)^{1000} < \frac{1}{1001} \cdot 3 < 1$

 $(1001)^{999} < (1000)^{1000}$ $\therefore B < A$ 339 (a) $\therefore T_r = 10_{C_{r-1}} \left(\frac{x}{3}\right)^{11-r} \left(\frac{-2}{x^2}\right)^{r-1}$ $= 10_{C_{r-1}}(x)^{13-3r}(3)^{-11+r}(-1)^{r-1}(2)^{r-1}$ For x^4 , we put $13 - 3r = 4 \implies r = 3$ 340 (a) Given, $\left[\sqrt{\frac{x}{3}} + \frac{\sqrt{3}}{x^2}\right]^{10}$ General term, $T_{r+1} = {}^{10}C_r \left(\frac{x}{3}\right)^{\frac{1}{2}(10-r)} \left(\frac{\sqrt{3}}{x^2}\right)^r$ $\Rightarrow T_{r+1} = {}^{10}C_r \left(\frac{1}{3}\right)^{\frac{10-r}{2}} \left(\sqrt{3}\right)^r x^{\frac{1}{2}(10-r)-2r}$ For term independent of *x* put $\frac{1}{2}(10-r) - 2r = 0$ \Rightarrow $\therefore T_{2+1} = T_3 = {}^{10}C_2 \left(\frac{1}{2}\right)^{\frac{3}{2}} \left(\sqrt{3}\right)^2$ $\implies = 45 \times \frac{1 \times 3}{81} = \frac{5}{3}$ 341 (c) We have, $T_{r+1} = {}^{15}C_r(x^2)^{15-r}\left(\frac{2}{x}\right)^r = {}^{15}C_r x^{30-3r} \cdot 2^r$ If T_{r+1} contains x^{15} , then $30 - 3r = 15 \Rightarrow r = 5$: Coefficient of $x^{15} = {}^{15}C_5(2^5)$ If T_{r+1} does not contain *x*, then $30 - 3r = 0 \Rightarrow r = 10$: Coefficient of $x^0 = {}^{15}C_{10}(2^{10})$ Hence, required ratio = $\frac{{}^{15}C_5(2^5)}{{}^{15}C_{10}(2^{10})} = \frac{1}{32}$ 342 (d) We have, ${}^{40}C_0 + {}^{40}C_1 + {}^{40}C_2 + \dots + {}^{40}C_{20}$ $=\frac{1}{2}\left[2\cdot {}^{40}C_0+2\cdot {}^{40}C_1+2\cdot {}^{40}C_2+\cdots+2\right]$ $\cdot {}^{40}C_{20}$] $=\frac{1}{2}\left[\left(\begin{array}{cc} {}^{40}C_0 + {}^{40}C_{40}\right) + \left(\begin{array}{cc} {}^{40}C_1 + {}^{40}C_{0=39}\right) + \cdots \right]\right]$ + $({}^{40}C_{19} + {}^{40}C_{21}) + 2 {}^{40}C_{20}]$ $=\frac{1}{2}[\{ {}^{40}C_0 + {}^{40}C_1 + {}^{40}C_2 + \dots + {}^{40}C_{19} + {}^{40}C_{20}$ $+ {}^{40}C_{21} + {}^{40}C_{20}]$ = $\frac{1}{2} \Big[2^{40} + \frac{40!}{(20!)^2} \Big] = 2^{39} + \frac{1}{2} \frac{40!}{(20!)^2}$ 343 (d) We have,

$$\frac{1+x^2}{1+x} = (1+x^2)(1+x)^{-1}$$

= $(1+x^2)(1-x+x^2-x^3+x^4-x^5+\cdots)$
: Coefficient of x^5 in $\left(\frac{1+x^2}{1+x}\right) = -1 - 1 = -2$

344 (a)

Genaral term $T_{r+1} = {}^{10}C_r \left(\frac{1}{3}x^{1/2}\right)^{10-r} (x^{-1/4})^r$ $= {}^{10}C_r \frac{1}{3^{10-r}} x^{5-3r/4}$

For the coefficient of x^2 put

 $5 - \frac{3r}{4} = 2$ r = 4 \Rightarrow : Coefficient of $x^2 = {}^{10}C_4 \frac{1}{3^{10-4}} = \frac{70}{243}$

345 (d)

The 14th term in the expansion of $\left(\frac{3\sqrt{x}}{7}\right)$ $r \rangle^{13n}$

$$-\frac{5}{2x\sqrt{x}}\right) \text{ is}$$

$$T_{14} = {}^{13n}C_{13}\left(\frac{3}{7}x^{1/2}\right)^{13n-13}(-1){}^{13}\left(\frac{5}{2}x^{-3/2}\right)^{13}$$

$$= {}^{13n}C_{13}\left(\frac{3}{7}\right)^{13n-13}(-1){}^{13}\left(\frac{5}{2}\right)^{13}x^{\frac{13n-13}{2}-\frac{39}{2}}$$
For this term to be independent of *x*, we put

13n - 52 = 0n = 4

346 **(b)**

 \Rightarrow

Here, the greatest coefficient is $\ ^{2n}C_n$ $\therefore \ ^{2n}\mathcal{C}_n x^n > \ ^{2n}\mathcal{C}_{n+1} x^{n-1} \Rightarrow x > \frac{n}{n+1}$ and ${}^{2n}C_nx^n > {}^{2n}C_{n-1}x^{n-1} \Rightarrow x < \frac{n+1}{n}$ $\therefore x$ must lie in the interval $\left(\frac{n}{n+1}, \frac{n+1}{n}\right)$ 347 (d)

 $(1 + a - b + c)^9$ $= \sum \frac{9!}{x_1! \, x_2! \, x_3! \, x_4!}$ $(1)^{x_1}(a)^{x_2}(-b)^{x_3}(c)^{x_4}$ $\Rightarrow \text{Coefficient of } a^3 b^4 c = \frac{9!}{1! 3! 4! 1!} = \frac{9!}{3! 4!}$ 348 (b) We have, $(1 + x + x^2)^n = a_0 + a_1x + a_2x^2 + a_2x^2 + a_3x^2 $a_3x^3 + \ldots + a_{2n}x^{2n}$ On differentiating both sides, we get $n(1 + x + x^2)^{n-1}(1 + 2x)$ $= a_1 + 2a_2x$ $+ 3a_3x^2 + \ldots + 2na_{2n}x^{2n-1}$ On putting x = -1, we get

$$n(1-1+1)^{n-1}(1-2) = a_1 - 2a_2 + 3a_3 - \dots - 2na_{2n} \Rightarrow a_1 - 2a_2 + 3a_3 - \dots - 2na_{2n} = -n$$
350 (b)
We have,
 $T_4 = 200$
 $\Rightarrow {}^{6}C_3 \left\{ \sqrt{x^{\frac{1}{\log x+1}}} \right\}^3 \left(x^{\frac{1}{12}} \right)^3 = 200$
 $\Rightarrow 20 x^{\frac{3}{2(\log x+1)} + \frac{1}{4}} = 200$
 $\Rightarrow x^{\frac{3}{2(\log x+1)} + \frac{1}{4}} = 10$
 $\Rightarrow \frac{3}{2(\log x+1)} + \frac{1}{4} = \log_x 10$
 $\Rightarrow \frac{3}{2(y+1)} + \frac{1}{4} = \frac{1}{y}, \text{ where } y = \log_{10} x$
 $\Rightarrow \frac{6+y+1}{4(y+1)} = \frac{1}{y}$
 $\Rightarrow 7y + y^2 = 4y + 4$
 $\Rightarrow y^2 + 3y - 4 = 0$
 $\Rightarrow (y+4)(y-1) = 0$
 $\Rightarrow y = -4, y = 1$
 $\Rightarrow \log_{10} x = -4 \text{ or,} \log_{10} x = 1$
 $\Rightarrow x = 10^{-4} \text{ or,} x = 10^{1} \Rightarrow x = 10 \quad [\because x > 1]$
351 (a)
We have,
 $\{(1+x)^6 + (1+x)^7 + \dots + (1+x)^{15}\}$
 $= (1+x)^6 \left\{ \frac{1-(1+x)^{10}}{1-(1+x)} \right\}$
 $= (1+x)^6 \left\{ \frac{1-(1+x)^{10}}{-x} \right\}$
 $= \frac{1}{x} \{(1+x)^{16} - (1+x)^6\}$
 $\therefore \text{ Coefficient of } x^6 \text{ in } \{(1+x)^{16} - (1+x)^6\} = {}^{16}C_7$
 $= {}^{16}C_9$
352 (d)

Let $S = 1 + \frac{1}{5} + \frac{1 \cdot 3}{5 \cdot 10} + \frac{1 \cdot 3 \cdot 5}{5 \cdot 10 \cdot 15} + \dots$ On comparing with $(1+x)^n = 1 + \frac{nx}{1!} + \frac{n(n-1)}{2!}x^2$ $+\frac{n(n-1)(n-2)}{2!}x^3+\cdots$, we get $\Rightarrow nx = \frac{1}{5}$ and $\frac{n(n-1)x^2}{2!} = \frac{1\cdot 3}{5\cdot 10}$ $\Rightarrow \qquad n = -\frac{1}{2}$ and $\qquad x = -\frac{2}{5}$

358 (d)
We have,
$$C_0^2 - 2C_1^2 + 3C_2^2 - ... + (-1)^n (n+1)C_n^2$$

 $= [C_0^2 - C_1^2 + C_2^2 - ... + (-1)^n C_n^2]$
 $- [C_1^2 - 2C_2^2$
 $+ 3C_3^2 - ... + (-1)^n nC_n^2]$
 $= (-1)^{n/2} \frac{n!}{\left(\frac{n}{2}\right)! \left(\frac{n}{2}\right)!} \cdot -(-1)^{n/2-1} \cdot \frac{1}{2}n \frac{n!}{\left(\frac{n}{2}\right)! \left(\frac{n}{2}\right)!}$
 $= (-1)^{n/2} \cdot \frac{n!}{\left(\frac{n}{2}\right)! \left(\frac{n}{2}\right)!} \cdot \left(1 + \frac{n}{2}\right)$
Therefore, the value of the given expression is
 $\frac{2\left(\frac{n}{2}\right)! \left(\frac{n}{2}\right)!}{n!} \times (-1)^{n/2} \cdot \frac{(n)!}{\left(\frac{n}{2}\right)! \left(\frac{n}{2}\right)!} \left(1 + \frac{n}{2}\right)$
 $= (-1)^{n/2}(2+n)$

359 **(a)**

We have, $(1.002)^{12}$ or it can be rewritten as $(1 + 0.002)^{12}$

$$\Rightarrow (1.002)^{12} = 1 + {}^{12}C_1(0.002) + {}^{12}C_2(0.002)^2 + {}^{12}C_3(0.002)^3 + \dots$$

We want the answer upto 4 decimal places and as such, we have left further expansion.

$$\therefore (1.002)^{12} = 1 + 12(0.002) + \frac{12 \cdot 11}{1 \cdot 2} (0.002)^{2} + \frac{12 \cdot 11 \cdot 10}{1 \cdot 2 \cdot 3} (0.002)^{3} + \dots$$

= 1 + 0.024 + 2.64 × 10⁻⁴ + 1.76 × 10⁻⁶ + \dots
= 1.0242

360 **(c)**

The general term in the expansion of $\left(\frac{3}{2}x^2 - 13x9\right)$ is

$$T_{r+1} = {}^{9}C_r \left(\frac{3}{2}x^2\right)^{9-r} \left(-\frac{1}{3x}\right)^r$$

= ${}^{9}C_r \left(\frac{3}{2}\right)^{9-r} \left(-\frac{1}{3}\right)^r x^{18-3r}$...(i)
Now, the coefficients of the terms x^0 , x^{-1} and x^{-3}
in $\left(\frac{3}{2}x^2 - \frac{1}{3x}\right)^9$ is
For x^0 , $18 - 3r = 0 \Rightarrow r = 6$
For x^{-1} , there exists no integer value of r
For x^{-3} , $18 - 3r = -3 \Rightarrow r = 7$
Now, the coefficient of the term independent of x
in the expansion of $(1 + x + 2x^3) \left(\frac{3}{2}x^2 - \frac{1}{3x}\right)^9$
 $= 1. {}^{9}C_6(-1)^6 \left(\frac{3}{2}\right)^{9-6} \left(\frac{1}{3}\right)^6 + 0$
 $+ 2. {}^{9}C_7(-1)^7 \left(\frac{3}{2}\right)^{9-7} \left(\frac{1}{3}\right)^7$
 $= \frac{9.8.7}{1.2.3} \cdot \frac{3^3}{2^3} \cdot \frac{1}{3^6} + 2 \cdot \frac{9.8}{1.2} (-1) \frac{3^2}{2^2} \cdot \frac{1}{3^7}$

 $=\frac{7}{18}-\frac{2}{27}=\frac{17}{54}$ 361 (c) We can write. $aC_0 - (a+d)C_1 + (a+2d)C_2 - \dots$ upto (n+1)terms $= a(C_0 - C_1 + C_2 - \dots) + d(-C_1 + 2C_2 - 3C_3 + \dots)$...(i) We know, $(1-x)^n = C_0 - C_1 x + C_2 x^2 - \dots + (-1)^n C_n x^n$...(ii) On differentiating Eq. (ii) w.r.t. x, we get $-n(1-x)^{n-1} = -C_1 + 2C_2x - \dots (-1)^n C_n nx^{n-1}$...(iii) On putting x = 1 in Eqs. (ii) and (iii), we get $C_0 - C_1 + C_2 - \dots + (-1)^n C_n = 0 \dots (iv)$ and $-C_1 + 2C_2 - \ldots + (-1)^n nC_n = 0 \ldots (v)$ From Eq. (i), $aC_0 - (a + d)C_1 + (a + 2d)C_2 - \dots$ upto (n + 1)terms $= a \cdot 0 + d \cdot 0 = 0$ [from Eqs. (iv) and (v)] 362 (c) Let $P(n) = 2^{3n} - 7n - 1$ P(1) = 0, P(2) = 49... P(1) and P(2) are divisible by 49. Let $P(k) \equiv 2^{3k} - 7k - 1 = 49I$ $\therefore P(k+1) \equiv 2^{3k+3} - 7k - 8$ = 8(49I + 7k + 1) - 7k - 8 $= 49(8I) + 49k = 49I_1$ Alternate $P(n) = (1+7)^n - 7n - 1$ $= 1 + 7n + 7^{2} \frac{n(n-1)}{2!} + \dots - 7n - 1$ $=7^2\left(\frac{n(n-1)}{2!}+\cdots\right)$ 363 (d) Let $P(n) = 5^{2n+2} - 24n - 25$ For n = 1 $P(1) = 5^4 - 24 - 25 = 576$ $P(2) = 5^6 - 24(2) - 25 = 15552$ $= 576 \times 27$ Here, we see that P(n) is divisible by 576 364 (c) Let $b = \sum_{r=0}^{n} \frac{r}{n_{C_r}} = \sum_{r=0}^{n} \frac{n - (n-r)}{n_{C_r}}$ $=n\sum_{r=1}^{n}\frac{1}{nC_{r}}-\sum_{r=1}^{n}\frac{n-r}{nC_{r}}$ $= na_n - \sum_{r=0}^{n} \frac{n-r}{nC_{n-r}} \ (\because \ ^nC_r = \ ^nC_{n-1} \)$ $= na_n - b$

$$\Rightarrow 2b = na_n \Rightarrow b = \frac{n}{2}a_n$$

365 **(d)**

We have,

$$\frac{1}{\sqrt{4x+1}} \left\{ \left(1 + \frac{\sqrt{4x+1}}{2} \right)^2 - \left(1 - \frac{\sqrt{4x+1}}{2} \right)^2 \right\}$$

$$= \frac{1}{2^7 \sqrt{4x+1}} \left[2 \left\{ {}^7 C_1 \sqrt{4x+1} + {}^7 C_3 (\sqrt{4x+1})^3 + {}^7 C_5 (\sqrt{4x+1})^5 + {}^7 C_7 (\sqrt{4x+1})^7 \right\} \right]$$

$$= \frac{1}{2^6} \left\{ {}^7 C_1 + {}^7 C_3 (4x+1) + {}^7 C_5 (4x+1)^2 + {}^7 C_7 (4x+1)^3 \right\}$$
Clearly, it is a polynomial of degree 3
366 **(a)**
In the expansion of $\left(ax^2 + \frac{1}{bx} \right)^{11}$,
 $T_{r+1} = {}^{11}C_r (ax^2)^{11-r} \left(\frac{1}{bx} \right)^r$
 $= {}^{11}C_r \frac{a^{11-r}}{b^r} \cdot x^{22-3r}$
For coefficient of x^7 , put $22 - 3r = 7$
 $\Rightarrow r = 5$
 $\therefore T_6 = {}^{11}C_5 \frac{a^6}{b^5} \cdot x^7$
 \therefore Coefficient of x^7 in the expansion of
 $\left(ax^2 + \frac{1}{bx} \right)^{11}$ is
 ${}^{11}C_5 \frac{a^6}{b^5}$
Similarly, coefficient of x^{-7} in the expansion of
 $\left(ax + \frac{1}{bx} \right)^{11}$ is
 ${}^{11}C_5 \frac{a^5}{b^6}$
Now, ${}^{11}C_5 \frac{a^6}{b^5} = {}^{11}C_6 \frac{a^5}{b^6}$
 $\Rightarrow ab = 1$
367 **(b)**
Given expansion is $\left(x + \frac{1}{2x} \right)^{2n}$
 \therefore Middle term $= {}^{2n}C_n (x)^n \left(\frac{1}{2x} \right)^n$
 $= \frac{2n!}{n! n! 2^n} = \frac{1 \cdot 3 \cdot 5 \dots (2n-1)}{n!}$
368 **(c)**
 $(1 + x)^{21} + (1 + x)^{22} + \dots + (1 + x)^{30}$
 $= (1 + x)^{21} [\frac{(1 + x)^{10} - 1}{(1 + x) - 1}]$

$$= \frac{1}{x} [(1+x)^{31} - (1+x)^{21}]$$

: Coefficient of x^5 in the given expression
= Coefficient of x^6 in $[(1+x)^{31} - (1+x)^{21}]$
= Coefficient of x^6 in $[(1+x)^{31} - (1+x)^{21}]$
= $^{31}C_6 - ^{21}C_6$
369 (a)
We have,
 $T_{r+1} = \frac{7}{2}(\frac{7}{2}-1)(\frac{7}{2}-2)...(\frac{7}{2}-r+1)x^r}{r!}$
This will be the first negative term if
 $\frac{7}{2}-r+1 < 0 \Rightarrow r > \frac{9}{2}$
Hence, $r = 5$
370 (b)
According to question, coefficient of
 $x^r = coefficient of x^{r+1}$
 $\Rightarrow ^{21}C_r = ^{21}C_{r+1} ...(i)$
But $^{21}C_r = ^{21}C_{21-r}$...(ii)
On comparing Eqs. (i) and (i), we get
 $r+1 = 21 - r \Rightarrow r = \frac{21-1}{2} = 10$
371 (a)
Let $(r+1)^{th}$ term be the greatest term
We have,
 $T_{r+1} = \sqrt{3} \cdot ^{20}C_r(\frac{1}{\sqrt{3}})^r$ and T_r
 $= \sqrt{3} \, ^{20}C_{r-1}(\frac{1}{\sqrt{3}})^{r-1}$
 $\therefore \frac{T_{r+1}}{T_r} = \frac{20 - r + 1}{r}(\frac{1}{\sqrt{3}})$
 $\therefore T_{r+1} \ge T_r$
 $\Rightarrow 20 - r + 1 \ge \sqrt{3}r$
 $\Rightarrow 21 \ge r(\sqrt{3} + 1)$
 $\Rightarrow r \le \frac{21}{\sqrt{3}+1} \Rightarrow r \le 7.686 \Rightarrow r = 7$
Hence, greatest term $T_8 = \sqrt{3} \, ^{20}C_7(\frac{1}{\sqrt{3}})^7 = \frac{25840}{9}$
372 (b)
We have,
 $(1 + x + x^2 + ...)^{-n} = [(1 - x)^{-1}]^{-n} = (1 - x)^n$
 \therefore Coefficient of $x^n = (-1)^n \, nC_n = (-1)^n$
373 (a)
We have, $(1 + t^2)^{12}(1 + t^{12})(1 + t^{12} + t^{24} + t^{36})$
 \therefore Coefficient of t^{24} in $(1 + t^2)^{12}(1 + t^{12})(1 + t^{12})(1 + t^{24})^{12}(1 + t^{12})(1 + t^{24})^{12}(1 + t^{12})(1 + t^{24})^{12}(1

$$\begin{array}{l} T_r = {}^{14}C_{r-1}x^{r-1}; \ T_{r+1} = {}^{14}C_rx^r; \ T_{r+2} \\ = {}^{14}C_{r+1}x^{r+1} \\ \text{Since, these terms are in AP} \\ \therefore 2T_{r+1} = T_r + T_{r+2} \\ \Rightarrow 2{}^{14}C_r = {}^{14}C_{r-1} + {}^{14}C_{r+1} \dots(i) \\ \Rightarrow 2 \cdot \frac{14!}{r!(14-r)!} = \frac{14!}{(r-1)!(15-r)!} \\ + \frac{14!}{(r+1)!(13-r)!} \\ \Rightarrow \frac{2}{r \cdot (r-1)!(14-r) \cdot (13-r)!} \\ \Rightarrow \frac{2}{r \cdot (r-1)!(14-r) \cdot (14-r) \cdot (13-r)!} \\ + \frac{1}{(r+1)r(r-1)!(13-r)!} \\ \Rightarrow \frac{1}{r(14-r)} = \frac{1}{(15-r)(14-r)} + \frac{1}{(r+1)r} \\ \Rightarrow \frac{1}{r(14-r)} = \frac{1}{(15-r)(14-r)} \\ + \frac{1}{(r+1)r(15-r)(14-r)} \\ + \frac{1}{(r+1)r(15-r)(14-r)} = \frac{(14-r)-(r+1)}{(r+1)r(14-r)} \\ \Rightarrow \frac{(15-r)-r}{r(15-r)(14-r)} = \frac{(14-r)-(r+1)}{(r+1)r(14-r)} \\ \Rightarrow (15-r)-r = (13-2r)(15-r) \\ \Rightarrow 15r+15-2r^2-2r \\ = 195-30r-13r+2r^2 \\ \Rightarrow 4r^2-56r+180=0 \\ \Rightarrow r^2-14r+45=0 \\ \Rightarrow (r-5)(r-9)=0 \Rightarrow r=5,9 \\ \text{But 5 is not given.} \\ \text{Hence, } r=9 \\ 375 \ \textbf{(c)} \\ We have, (101)^{50} = (100+1)^{50} \\ = (100)^{50}-{}^{50}C_1(100)^{49}+{}^{50}C_2(100)^{48}+ \\ \cdots \dots(i) \\ \text{and } (99)^{50} = (100-1)^{50} \\ = (100)^{50}-{}^{50}C_1(100)^{49}+{}^{50}C_2(100)^{48}+ \\ \cdots \dots(ii) \\ \text{on subtracting Eq. (ii) from Eq. (i), we get (101)^{50} - (2100)^{50} \\ = 2\{{}^{50}C_1(100)^{49}+ {}^{50}C_3(100)^{47} + \\ + \cdots\} \\ = (100(100)^{50} + (99)^{50} \\ \therefore (101)^{50} > (100)^{50} + (99)^{50} \\ 376 \ \textbf{(a)} \\ \text{The general term of the given series is } \\ T_r = (-1)^r(3+5r) {}^nC_r \\ \end{array}$$

$$\therefore \operatorname{Sum} \sum_{r=0}^{n} (1)^{r} (3+5r)^{n} C_{r}$$

$$= 3 \prod_{r=0}^{n} (-1)^{r} n^{r} C_{r} + 5 \sum_{r=0}^{n} (1)^{r} r^{n} C_{r}$$

$$= 3(C_{0} - C_{1} + C_{2} - C_{3} + C_{4} - \dots + (-1)^{n} \cdot C_{n})$$

$$+ 5(-C_{1} + 2C_{2} - 3C_{3} + 4C_{4} - \dots + (-1)^{n} \cdot n \cdot C_{n})$$

$$\Rightarrow S = 0 + 0 = 0$$

$$378 \text{ (d)}$$

$$S = (\alpha \cdot 1 + \beta \cdot 1 + \gamma \cdot 1)^{n} = (\alpha + \beta - \gamma)^{n}$$

$$\therefore \lim_{n \to \infty} (\frac{51/n}{11^{n}} = \lim_{n \to \infty} (\frac{\alpha + \beta - \gamma}{\alpha + \beta - \gamma + 1})^{n} = 0$$

$$(\because \alpha + \beta - \gamma + 1 > \alpha + \beta - \gamma)$$

$$379 \text{ (b)}$$

$$It is given that the sum of the numerical coefficients in the binomial expansion of
$$(\frac{1}{x} + 2x)^{n} \text{ is 6561} \qquad [Putting x = 1]$$

$$\Rightarrow 3^{n} = 3^{8} \Rightarrow n = 8$$

$$The general term in the expansion of $(\frac{1}{x} + 2x)^{n} \text{ is given by}$

$$T_{r+1} = {}^{n}C_{r} (\frac{1}{x})^{n-r} (2x)^{r} = {}^{n}C_{r}2^{r}x^{-n+2r}$$

$$= {}^{8}C_{r}2^{r} x^{2r-8}$$

$$This will be independent of x id $r = 4$

$$Hence, the constant term = {}^{8}C_{4}2^{4}$$

$$386$$

$$1 - x, we have E = \frac{1 - x}{(1 - x)(1 + x^{2})(1 + x^{4}) \dots (1 - x^{2m})}$$

$$= \frac{1 - x}{(1 - x^{2})(1 + x^{2})(1 + x^{4}) \dots (1 - x^{2m})}$$

$$= \frac{1 - x}{(1 - x^{2})(1 + x^{2})(1 + x^{4}) \dots (1 - x^{2m})}$$

$$= \frac{1 - x}{(1 - x^{2})(1 + x^{2})^{n} \text{ is 1} 3$$

$$382 \text{ (b)}$$

$$Let G = (7 - 4\sqrt{3})^{n}. Then,$$

$$o < G < 1 as 0 < 7 - 4\sqrt{3} < 1$$

$$Now,$$

$$1 + F + G = 2({}^{n}C_{0}7^{n} + {}^{n}C_{2}7^{n-2}(4\sqrt{3})^{2}$$

$$+ \cdots)$$

$$\Rightarrow I + F + G = an integer$$$$$$$$

 $\Rightarrow F + G = 1$ $\Rightarrow G = 1 - F$

$$\therefore (I+F)(1-F) = (I+F)G = (7+4\sqrt{3})^n (7-4\sqrt{3})^n = 1$$

383 **(c)**

Since, number of terms in the expansion of $(1 + x)^{24}$ is 25. Therefore, the middle term is 13th term. \therefore Required greatest coefficient = ${}^{24}C_{12}$. 34 (d) We have,

We have, $(1 + x + x^{3} + x^{4})^{10} = (1 + x)^{10}(1 + x^{3})^{10}$ $= ({}^{10}C_{0} + {}^{10}C_{1}x + {}^{10}C_{2}x^{2} + {}^{10}C_{3}x^{3} + {}^{10}C_{4}x^{4} + \dots + {}^{10}C_{10}x^{10}) \times ({}^{10}C_{0} + {}^{10}C_{1}x^{3} + {}^{10}C_{2}x^{6} + \dots + {}^{10}C_{10}x^{30})$ $\therefore \text{ Coefficient of } x^{4} = {}^{10}C_{0} \times {}^{10}C_{4} + {}^{10}C_{1} \times {}^{10}C_{1} = 310$

We have,

$$(1+x)^{m} = 1 + mx + \frac{m(m-1)}{2!}x^{2} + \cdots$$
It is given that the third term is $-\frac{1}{8}x^{2}$

$$\therefore \frac{m(m-1)}{2}x^{2} = -\frac{1}{8}x^{2}$$

$$\Rightarrow 4m^{2} - 4m = -1 \Rightarrow (2m-1)^{2} = 0 \Rightarrow m = \frac{1}{2}$$

386 **(a)**

We have,

$$(C_{0} + C_{1})(C_{1} + C_{2})(C_{2} + C_{3}) \dots (C_{n-1} + C_{n})$$

$$= C_{1} C_{2} \dots C_{n-1} C_{n} \left(1 + \frac{C_{0}}{C_{1}}\right) \left(1 + \frac{C_{1}}{C_{2}}\right) \left(1 + \frac{C_{2}}{C_{3}}\right) \dots \left(1 + \frac{C_{n-1}}{C_{n}}\right)$$

$$= C_{1} C_{2} \dots C_{n-1} C_{n} \left(1 + \frac{C_{0}}{C_{1}}\right) \left(1 + \frac{2}{n-1}\right) \left(1 + \frac{3}{n-2}\right) \dots \left(1 + \frac{n}{1}\right)$$

$$= C_{1} C_{2} \dots C_{n-1} C_{n} \frac{(n+1)^{n}}{n!}$$

$$\therefore k = C_{1} C_{2} C_{3} \dots C_{n-1} C_{n} = C_{0} C_{1} C_{2} \dots C_{n-1} C_{n}$$

$$T (c)$$
We have,

$$\sum_{m=0}^{100} \sum_{m=0}^{100} C_{m} (x - 3)^{100-2} 2^{m} = [(x - 3) + 2]^{100}$$

$$= (1 - x)^{100}$$

$$\therefore \text{ Coefficient of } x^{53} = \sum_{n=0}^{100} C_{53} (-1)^{53} = -\sum_{n=0}^{100} C_{53} (-1)^{53} = \sum_{n=0}^{100} C_{53} (-1)^{53} (-1)^{53} = \sum_{n=0}^{100} C_{53} (-1)^{53} (-1)^{53} (-1)^{53} (-1)^{53} (-1)^{53} (-1)^{53} (-1)^{53} (-1)^{53} (-1)^{53} (-1)^{53} (-1)^{53} (-1)^{53} (-1)^{53} (-1)^{53} (-1)^{53} (-1)^{53} (-1)^{53}$$

388 (d)

Given expansion is
$$\left(x - \frac{1}{2x}\right)^n$$

 $\therefore T_3 = {}^n C_2(x)^{n-2} \left(-\frac{1}{2x}\right)^2$
and $T_4 = {}^n C_3(x)^{n-3} \left(-\frac{1}{2x}\right)^3$
But according to the given condition,
 $\frac{T_3}{T_4} = -\frac{n(n-1)\times3\times2\times1\times8}{n(n-1)(n-2)\times2\times1\times4\times} = \frac{1}{2}$ (given)
 $\Rightarrow -n+2 = 12 \Rightarrow n = -10$
389 (b)
We have, $(1 + x + x^2 + ...)^{-n} = \left(\frac{1}{1-x}\right)^{-n} = (1-x)^n$
 \therefore The coefficient of x^n is $(-1)^n$
390 (b)
Here, $T_4 = {}^n C_3(a)^{n-3}(-2b)^3$
and $T_5 = {}^n C_4(a)^{n-4}(-2b)^4$
Given, $T_4 + T_5 = 0$
 $\Rightarrow {}^n C_3(a)^{n-3}(-2b)^3 + {}^n C_4(a)^{n-4}(-2b)^4 = 0$
 $\Rightarrow (a)^{n-4}(-2b)^3 [a {}^n C_3 + {}^n C_4(-2b)] = 0$
 $\Rightarrow \frac{a}{b} = \frac{2 {}^n C_4}{nC_3}$
 $= \frac{2 . n(n-1)(n-2)(n-3)}{4.3.2.1} \times \frac{3.2.1}{n(n-1)(n-2)}$
 $= \frac{n-3}{2}$
391 (d)
The general term in the expansion of $(2 - x + 1)^n$

3x26 is given by $\frac{6!}{r! s! t!} 2^r (-x)^s (3x^2)^t$, where r + s + t = 6 $=\frac{0!}{r! s! t!} 2^r \times (-1)^s \times 3^t \times x^{s+2t}$, where r+s+tFor the coefficient of x^5 , we must have s + 2t = 5But, r + s + t = 6 \therefore *s* = 5 - 2*t* and *r* = 1 + *t*, where 0 \leq *r*, *s*, *t* \leq 6 Now, $t = 0 \Rightarrow r = 1, s = 5$ $t = 1 \Rightarrow r = 2, s = 3$ $t = 2 \Rightarrow r = 3, s = 1$ Thus, there are three terms containing x^5 and hence Coefficient of x^5 $=\frac{6!}{1!5!0!} \times 2^1 \times (-1)^5 \times 3$ $+\frac{6!}{2!3!1!} \times 2^2 \times (-1)^3 \times 3^1 + \frac{6!}{3!1!2!} \times 2^3$ $\times (-1)^1 \times 3^2$

= -12 - 720 - 4320 = -5052392 (b) We have, $\left(x^2 - 2 + \frac{1}{r^2}\right)^n = \left(x - \frac{1}{r}\right)^{2n}$ $\therefore T_{r+1} = {}^{2n}C_r x^{2n-r} \left(-\frac{1}{x}\right)^r = {}^{2n}C_r x^{2n-2r} (-1)^r$ This term will be independent of *x* if 2n - 2r =0 i.e. r = n: Number of terms dependent on x = (2n + 1) - 11 = 2n393 (b) We have, Coeff. of x^7 = Coeff. of x^8 $\Rightarrow {}^{n}C_{7} \times 2^{n-7} \times \left(\frac{1}{3}\right)^{7} = {}^{n}C_{8} \times 2^{n-8} \times \left(\frac{1}{3}\right)^{\circ}$ $\Rightarrow 6({}^{n}C_{7}) = {}^{n}C_{8} \Rightarrow 48 = n - 7 \Rightarrow n = 55$ 394 (c) We have, $\therefore T_{r+1} = {}^{10}C_r \left(\sqrt{\frac{x}{3}}\right)^{10-7} \left(\frac{3}{2x^2}\right)^r$ $\Rightarrow T_{r+1} = \ {}^{10}C_r \left(\frac{1}{3}\right)^{5-\frac{\prime}{2}} \left(\frac{3}{2}\right)^r \ x^{5-\frac{5r}{2}}$ For this term to be independent of *x*, we must have $5 - \frac{5r}{2} = 0 \Rightarrow r = 2$, which is an integer Hence, third term is independent of xAlso, $T_3 = {}^{10}C_2 \left(\frac{1}{3}\right)^4 \left(\frac{3}{2}\right)^2 = 45 \times \frac{1}{9} \times \frac{9}{4} = \frac{5}{4}$ 395 (d) Suppose x^{-4} occurs in $(r + 1)^{\text{th}}$ term We have. $T_{r+1} = {}^{10}C_r \left(\frac{3}{2}\right)^{10-r} \left(\frac{-3}{x^2}\right)^r$ $= {}^{10}C_r \left(\frac{3}{2}\right)^{10-r} (-3)^r x^{-2r}$ This will contain x^4 , if $-2r = -4 \Rightarrow r = 2$: Coefficient of $x^{-4} = {}^{10}C_2 \left(\frac{3}{2}\right)^{10-2} (-3)^2$ $=\frac{3^{12}\times 5}{28}$ 396 (b) By hypothesis, we have ${}^{18}C_{2r+3} = {}^{18}C_{r-3} \Rightarrow 2r+3 = r-3 \Rightarrow r = 6$ 398 (d) $49^n + 16n - 1 = (1 + 48)^n + 16nn - 1$ $= 1 + n_{\mathcal{C}_1}(48) + n_{\mathcal{C}_2}(48)^2 + \dots + n_{\mathcal{C}_n}(48)^n +$ 16*n* – 1 =

$$(48n + 16n) + n_{c_2}(48)^2 + n_{c_3}(48)^3 + \dots + n_{c_n}(48)^n$$

$$64n + 8^2(n_{c_2} \cdot 6^2 + n_{c_3} \cdot 6^3 \cdot 8 + n_{c_4} \cdot 6^4 \cdot 8^2 + \dots + n_{c_n} \cdot 6^n \cdot 8^{n-2})$$

Hence, $49^n + 16n - 1$ is divisible by 64
Alternate Let $P(n) = 49^n + 16n - 1$
For $n = 1$
 $P(1) = 49 + 16 - 1 = 64$
(d)
We have

$$\sum_{r=1}^{n} r^2 \cdot {}^n C_r = n(n-1)2^{n-2} + n \cdot 2^{n-1} \dots (i)$$

and $\sum_{r=1}^{n} (-1)^{r-1}r^2 {}^n C_r = 0 \dots (ii)$
On adding Eqs. (i) and (ii), we get
 $2[1 {}^2 C_1 + 3^2 C_3 + 5^2 C_5 + \dots]$
 $= n(n-1)2^{n-2} + n \cdot 2^{n-1}$
 $\Rightarrow 1^2 C_1 + 3^2 C_3 + 5^2 C_5 + \dots$
 $= n(n-1)2^{n-3} + n \cdot 2^{n-2}$

400 (d)

399

Since, $(3 + ax)^9 = {}^9C_0 3^9 + {}^9C_1 3^8(ax) +$ ${}^9C_2 3^7(ax)^2 + {}^9C_3 3^6(ax)^3 + \cdots$ Since, coefficient of $x^2 =$ coefficient of x^3 $\Rightarrow {}^9C_2 3^7 a^2 = {}^9C_3 3^6 a^3$ $\Rightarrow {}^9C_2 \cdot 3 = a$ $\Rightarrow {}^{\frac{9\times 8}{2\times 1}}_{\frac{9\times 8\times 7}{3\times 2}} \times 3 = a$ $\Rightarrow a = {}^{\frac{9}{7}}_{\frac{9}{7}}$

401 **(a)**

The coefficient of x in the expansion of (1 + x)(1 + 2x)(1 + 3x)...(1 + 100x) = 1 + 2 + 3 + + 100 $\frac{100(100 + 1)}{2} = 50 \times 101 = 5050$

402 **(a)**

Suppose x^5 occurs in (r + 1)th term of the

expansion of $\left(x^2 + \frac{a}{x^3}\right)^{10}$ We have, $T_{r+1} = {}^{10}C_r (x^2)^{10-r} \left(\frac{a}{x^3}\right)^r = {}^{10}C_r x^{20-5r} a^r$ $\therefore 20 - 5r = 5 \Rightarrow r = 3$: Coefficient of $x^5 = {}^{10}C_3 a^3$ Similarly, Coefficient of $x^{15} = {}^{10}C_1 a^1$ Now, Coeff. of $x^5 = \text{Coeff. of } x^{15}$ \Rightarrow ¹⁰ $C_3 a^3 =$ ¹⁰ $C_1 a$ $\Rightarrow 120 \ a^3 = 10 \ a \Rightarrow a^2 = \frac{1}{12} \Rightarrow a = \frac{1}{2\sqrt{3}}$ 403 (a) : 10th term in the expansion of $(2 - 3x^3)^{20}$ is ${}^{20}C_92^9(-1)^9(2)^{11}(3)^9x^{27}$ and 11th term is ${}^{20}C_{10}2^{10}3^{10}x^{30}$ $\therefore \quad \frac{{}^{10}C_9(-1)^9(2)^{11}(3)^9x^{27}}{{}^{20}C_{10} \cdot 2^{10} \cdot 3^{10} \cdot x^{30}} = \frac{45}{22}$ $\implies \quad -\frac{10}{11} \cdot \frac{2}{3x^3} = \frac{45}{22}$ $\Rightarrow x^3 = -\frac{8}{27} \Rightarrow x = -\frac{2}{3}$

