

12.ATOMS

Single Correct Answer Type

1.	An electron of an atom t will be emitted?	ransits from n_1 to n_2 . In w	hich of the following maxim	num frequency of photon
	a) $n_1 = 1$ to $n_2 = 2$	b) $n_1=2$ to $n_2=1$	c) $n_1=2$ to $n_2=6$	d) $n_1 = 6$ to $n_2 = 2$
2.	If <i>a</i> is radius of first Boh	r orbit in hydrogen atom, t	he radius of the third orbit i	S
	a) 3 <i>a</i>	b) 9 a	c) 27 a	d) 81 a
3.	An electron collides with	n a hydrogen atom in its gro	ound state and excites it to a	n=3. The energy given to
	hydrogen atom in this in	elastic collision is(neglect	the recoiling of hydrogen at	com)
	a) 10.2 eV	b) 12.1 eV	c) 12.5 eV	d) None of these
4.	When a hydrogen atom	is bombared, the atom is ex	cited to then $n = 4$ state. The state of t	he energy released, when
	the atom goes from $n =$	4 state to the ground state	is	
	a) 1.275 eV	b) 12.75 eV	c) 5 eV	d) 8 eV
5.	Excitation energy of a hy the electron from the ion	vdrogen like atom in its firs 1 in ground state is	t excitation state is 40.8 eV.	Energy needed to remove
	a) 40.8 eV	b) 27.2 eV	c) 54.4 eV	d) 13.6 eV
6.	The spectral series of the	e hydrogen atom that lies in	n the visible ragion of the el	ectromagnetic spectrum
	a) Paschen	b) Balmer	c) Lyman	d) Brackett
7.	An alpha nucleus of ener	$rgy \frac{1}{2}mv^2$ bombards a heav	y nuclear target of charge Z	e. Then the distance of
	closest approach for the	alpha nucleus will be prop	portional to	
	a) v^2	b) 1/m	c) $1/v^4$	d) 1/Ze
8.	In terms of Bohr radius	a_o , the radius of the second	Bohr orbit of a hydrogen a	toms is given by
	a) 4 <i>a</i> _o	b) 8 <i>a_o</i>	c) $\sqrt{2} a_o$	d) 2 <i>a_o</i>
9.	The Kinetic energy of the	e electron in an orbit of rad	lius <i>r</i> in hydrogen atom is (e	e =electronic charge)
	a) $\frac{e^2}{2}$	b) $\frac{e^2}{2}$	c) $\frac{e^2}{2}$	d) $\frac{e^2}{2e^2}$
10	<i>r²</i> If the hinding energy of t	<i>Lr</i> the electron in a hydrogen	r	$2r^2$
10.	electron from the first ex	cited state of Li ²⁺ is	atom is 15.0 ev, the chergy	required to remove the
	a) 30.6 eV	h) 13.6 eV	c) 34 eV	d) 122 4 eV
11	The ratio of minimum to	maximum wavelength in F	Ralmer series is	uj 122.1 CV
11.	a) 5:9	b) 5:36	c) 1:4	d) 3:4
12.	<i>V</i> ₁ is the frequency of the	e series limit of Lyman seri	es. V_2 is the frequency of the	e first line of Lyman series
	and V_3 is the frequency of	of the series limit of the Bal	mer series. Then	
			<u>111</u>	1 1 1
	a) $v_1 - v_2 = v_2$	$b_{11} - 11 - 11$		
13.		$v_1 = v_2 = v_3$	$c_{1} = \frac{1}{v_{2}} = \frac{1}{v_{1}} + \frac{1}{v_{3}}$	d) $\frac{1}{v_1} = \frac{1}{v_2} + \frac{1}{v_3}$
	The orbital frequency of	an electron in the hydroge	c) $\frac{1}{v_2} = \frac{1}{v_1} + \frac{1}{v_3}$ n atom is proportional to	d) $\frac{1}{v_1} = \frac{1}{v_2} + \frac{1}{v_3}$
	The orbital frequency of a) n^3	b) $v_1 = v_2 = v_3$ an electron in the hydroge b) n^{-3}	c) $\frac{v_2}{v_2} = \frac{v_1}{v_1} + \frac{v_3}{v_3}$ n atom is proportional to c) n	d) $\frac{1}{v_1} = \frac{1}{v_2} + \frac{1}{v_3}$ d) n^0
14.	The orbital frequency of a) n^3 Given that in a hydrogen	b) $v_1 = v_2 = v_3$ an electron in the hydroge b) n^{-3} atom, the energy of <i>n</i> th or	c) $\frac{1}{v_2} = \frac{1}{v_1} + \frac{1}{v_3}$ n atom is proportional to c) n bit $E_n = -\frac{13.6}{n^2}$ eV. The amo	d) $\frac{1}{v_1} = \frac{1}{v_2} + \frac{1}{v_3}$ d) n^0 unt of energy required to
14.	The orbital frequency of a) n^3 Given that in a hydrogen send electron from first	b) $v_1 = v_2 = v_3$ an electron in the hydroge b) n^{-3} atom, the energy of <i>n</i> th or orbit to second orbit is	c) $\frac{1}{v_2} = \frac{1}{v_1} + \frac{1}{v_3}$ n atom is proportional to c) n bit $E_n = -\frac{13.6}{n^2}$ eV. The amo	d) $\frac{1}{v_1} = \frac{1}{v_2} + \frac{1}{v_3}$ d) n^0 unt of energy required to
14.	The orbital frequency of a) n^3 Given that in a hydrogen send electron from first a) 10.2 eV	b) $v_1 = v_2 - v_3$ f an electron in the hydroge b) n^{-3} a atom, the energy of <i>n</i> th or orbit to second orbit is b) 12.1 eV	c) $\frac{1}{v_2} = \frac{1}{v_1} + \frac{1}{v_3}$ n atom is proportional to c) n bit $E_n = -\frac{13.6}{n^2}$ eV. The amo c) 13.6 eV	d) $\frac{1}{v_1} = \frac{1}{v_2} + \frac{1}{v_3}$ d) n^0 unt of energy required to d) 3.4 eV
14. 15.	The orbital frequency of a) n^3 Given that in a hydrogen send electron from first a) 10.2 eV The ratio of minimum to	b) $v_1 = v_2 = v_3$ an electron in the hydroge b) n^{-3} atom, the energy of <i>n</i> th or orbit to second orbit is b) 12.1 eV maximum wavelength in H	c) $\frac{1}{v_2} = \frac{1}{v_1} + \frac{1}{v_3}$ n atom is proportional to c) n bit $E_n = -\frac{13.6}{n^2}$ eV. The amo c) 13.6 eV Balmer series is	d) $\frac{1}{v_1} = \frac{1}{v_2} + \frac{1}{v_3}$ d) n^0 unt of energy required to d) 3.4 eV
14. 15.	The orbital frequency of a) n^3 Given that in a hydrogen send electron from first a) 10.2 eV The ratio of minimum to a) 5: 9	b) $v_1 = v_2 - v_3$ (an electron in the hydroge b) n^{-3} (atom, the energy of <i>n</i> th or orbit to second orbit is b) 12.1 eV (b) maximum wavelength in H b) 5: 36	c) $\frac{1}{v_2} = \frac{1}{v_1} + \frac{1}{v_3}$ n atom is proportional to c) n bit $E_n = -\frac{13.6}{n^2}$ eV. The amo c) 13.6 eV Balmer series is c) 1:4	d) $\frac{1}{v_1} = \frac{1}{v_2} + \frac{1}{v_3}$ d) n^0 unt of energy required to d) 3.4 eV d) 3:4
14. 15. 16.	The orbital frequency of a) n^3 Given that in a hydrogen send electron from first a) 10.2 eV The ratio of minimum to a) 5:9 Which state of triply ion hydrogen?	b) $v_1 = v_2 = v_3$ an electron in the hydroge b) n^{-3} atom, the energy of <i>n</i> th or orbit to second orbit is b) 12.1 eV maximum wavelength in H b) 5:36 ised beryllium (Be ³⁺) has t	c) $\frac{1}{v_2} = \frac{1}{v_1} + \frac{1}{v_3}$ In atom is proportional to c) n bit $E_n = -\frac{13.6}{n^2}$ eV. The amo c) 13.6 eV Balmer series is c) 1:4 the same orbital radius as the	d) $\frac{1}{v_1} = \frac{1}{v_2} + \frac{1}{v_3}$ d) n^0 unt of energy required to d) 3.4 eV d) 3:4 hat of ground state of
14. 15. 16.	The orbital frequency of a) n^3 Given that in a hydrogen send electron from first a) 10.2 eV The ratio of minimum to a) 5:9 Which state of triply ion hydrogen? a) $n = 3$	b) $v_1 = v_2 = v_3$ an electron in the hydroge b) n^{-3} atom, the energy of <i>n</i> th or orbit to second orbit is b) 12.1 eV maximum wavelength in H b) 5: 36 ised beryllium (Be ³⁺) has the b) $n = 4$	c) $\frac{1}{v_2} = \frac{1}{v_1} + \frac{1}{v_3}$ n atom is proportional to c) n bit $E_n = -\frac{13.6}{n^2}$ eV. The amo c) 13.6 eV Balmer series is c) 1:4 the same orbital radius as the c) $n = 1$	d) $\frac{1}{v_1} = \frac{1}{v_2} + \frac{1}{v_3}$ d) n^0 unt of energy required to d) 3.4 eV d) 3:4 hat of ground state of d) $n = 2$
 14. 15. 16. 17. 	The orbital frequency of a) n^3 Given that in a hydrogen send electron from first a) 10.2 eV The ratio of minimum to a) 5:9 Which state of triply ion hydrogen? a) $n = 3$ The spin-orbit interaction	b) $v_1 = v_2 - v_3$ an electron in the hydroge b) n^{-3} atom, the energy of <i>n</i> th or orbit to second orbit is b) 12.1 eV maximum wavelength in H b) 5:36 ised beryllium (Be ³⁺) has the b) $n = 4$ on has no effect in the level	c) $\frac{1}{v_2} = \frac{1}{v_1} + \frac{1}{v_3}$ n atom is proportional to c) n bit $E_n = -\frac{13.6}{n^2}$ eV. The amo c) 13.6 eV Balmer series is c) 1:4 the same orbital radius as th c) $n = 1$ of the hydrogen atom	d) $\frac{1}{v_1} = \frac{1}{v_2} + \frac{1}{v_3}$ d) n^0 unt of energy required to d) 3.4 eV d) 3:4 hat of ground state of d) $n = 2$

18.	If the radii of nuclei of ${}_{13}\text{Al}^{27}$ and ${}_{30}\text{Zn}^{64}$ are R_1 and	d R_2 respectively, then $\frac{R_1}{R_2}$ is	s equal to
	a) $\frac{27}{64}$ b) $\frac{64}{27}$	c) $\frac{4}{3}$	d) $\frac{3}{4}$
19.	For ionising an excited hydrogen atom, the energy r	equired (in eV) will be	т
	a) A little less than 13.6 b) 13.6	c) More than 13.6	d) 3.4 or less
20.	Let the PE of hydrogen atom in the ground state be	zero. Then its total energy i	n the first excited state will
	be		
	a) 27.2 eV b) 23.8 eV	c) 12.6 eV	d) 10.2 eV
21.	The ground state energy of hydrogen atom is -13.6	eV. When its electron is in	the first excited state, its
	excitation energy is		,
	a) 3.4 eV b) 6.8 eV	c) 10.2 eV	d) zero
22.	Two energy lavels of an electron in an atom are sepa	arated by 2.3 eV. The freque	ency of radiation emitted
	when the electrons go from higher to lower level is	5 1	5
	a) 6.95×10^{14} Hz b) 3.68×10^{15} Hz	c) 5.6 × 10 ¹⁴ Hz	d) 9.11 × 10 ¹⁵ Hz
23.	A neon sign does not produce		,
	a) A line spectrum	b) An emission spectrum	1
	c) An absorption spectrum	d) Photons	
24.	The ratio of the frequencies of the long wavelength l	imits of the Lyman and Bal	mer series of hydrogen is
	a) 27:5 b) 5:27	c) 4:1	d) 1:4
25.	The required energy to detach one electron from Ba	lmer series of hydrogen sp	ectrum is
	a) 13.6 eV b) 10.2 eV	c) 3.4 eV	d) –1.5 eV
26.	The radius of hydrogen atom in its ground state is 5	$.3 \times 10^{-11}$ m. After collision	on with an electron it is
	found to have a radius of 212 $\times 10^{-11}$ m. What is the	ne principal quantum numb	per <i>n</i> of the final state of
	atom?		
	a) $n = 4$ b) $n = 2$	c) <i>n</i> = 16	d) <i>n</i> = 3
27.	The diagram shows the energy levels for an electron	i in a certain atom. Which t	ransition shown represents
	the emission of a photon with the most energy?		
	n = 4		
	n=2		
	$\frac{1}{ } n = 1$		
	a) III b) IV	c) I	d) II
28.	When hydrogen atom is in its first excited level, its r	adius is how many times it	s ground state radius?
•	a) Half b) Same	c) Twice	d) Four times
29.	An electron jumps from the 4th orbit to 2nd orbit of	hydrogen atom. Given the	Rydberg's constant $R = 10^{5}$
	cm^{-1} , the frequency in hertz of the emitted radiatio	n will be	n
	a) $\frac{3}{16} \times 10^5$ b) $\frac{3}{16} \times 10^{15}$	c) $\frac{9}{16} \times 10^{15}$	d) $\frac{3}{4} \times 10^{15}$
30	16 16 An electron is moving in an orbit of a hydrogen atom	16 a from which there can be c	4 maximum of six transition
50.	An electron is moving in an orbit of a nythogen atom	an atom from which there of	a maximum of six transition.
	transition The ratio of the velocities of the electron	in these two orbits is	
		. 5	3
	a) $\frac{-}{2}$ b) $\frac{-}{1}$	c) $\frac{-}{4}$	d) $\frac{-}{4}$
31.	The ionization energy of Li^{2+} is equal to	•	•
	a) 9 <i>hcR</i> b) 6 <i>hcR</i>	c) 2 <i>hcR</i>	d) hcR
32.	An α -particle of energy 5 MeV is scattered through 1	180° by a fixed uranium nue	cleus. The distance of the
	closest approach is of the order of		
	a) 1Å b) 10 ⁻¹⁰ cm	c) 10 ⁻¹² cm	d) 10 ⁻¹⁵ cm
33.	In the Bohr model of the hydrogen atom, let <i>R</i> , <i>V</i> and	E represent the radius of t	he orbit, the speed of

	electron and the total ene	rgy of the electron respecti	vely. Which of the followin	g quantities is proportional
	to quantum number <i>n</i> ?			
	a) $\frac{R}{E}$	b) $\frac{E}{V}$	c) <i>RE</i>	d) <i>VR</i>
34.	The energy of a hydrogen	atom in its ground state is	-13.6eV. The energy of the	e level corresponding to the
	quantum number $n = 5$ is			
	a) –0.54 eV	b) -5.40 eV	c) 20.58 eV	d) –2.72 eV
35.	Three photons coming fro	m excited atomic hydroger	n sample are observed, thei	r energies are 12.1 eV, 10.2
	eV and 1.9 eV. These phot	ons must come from		
	a) Single atom		b) Two atoms	
	c) Three atoms		d) Either two or three ato	om
36.	First Bohr radius of an ato	om with $Z = 82$ is R . Radius	s of its third orbit is	
	a) 9 <i>R</i>	b) 6 <i>R</i>	c) 3 <i>R</i>	d) <i>R</i>
37.	Radius of 2He ⁴ nucleus is	3 fermi. The radius of ${}_{82}$ Pb	o ²⁰⁶ nucleus will be	
	a) 5 fermi	b) 6 fermi	c) 11.16 fermi	d) 8 fermi
38.	In an inelastic collision an	electron excites a hydroge	n atom from its ground sta	te to a M-shell state. A
	second electron collides in	nstantaneously with the exe	cited hydrogen atom in the	M-state and ionizes it.At
	least how much energy th	e second electron transfers	s to the atom in the M-state	?
	a) +3.4 eV	b) + 1.51 eV	c) - 3.4 eV	d) -1.51eV
39.	If an electron is revolving	around the hydrogen nucle	eus at a distance of 0.1 nm,	what would be its speed?
	a) 2.188 × 106 ms ⁻¹	b) 1.094 \times 106 ms ⁻¹	c) 4.376 × 106 ms ⁻¹	d) 1.59 × 106 ms – 1
40.	Ionisation potential of hyd	lrogen atom is 13.6 eV. The	e least energy of photon of	Balmer series is
	a) 3.4 eV	b) 1.89 eV	c) 10.2 ev	d) 8.5 eV
41.	The angular momentum o	f electron in hydrogen ator	n is proportional to	
	a) \sqrt{r}	b) 1/ <i>r</i>	c) <i>r</i> ²	d) 1/√ <i>r</i>
42.	Hydrogen atoms are excit	ed from ground state of the	e principal quantum numbe	er 4. Then the number of
	spectral lines observed with	ll be		
	a) 3	b) 6	c) 5	d) 2
43.	Wavelength of first line in	Lyman series is λ . The way	velength of first line in Balr	ner series is
	a) $\frac{5}{2}\lambda$	b) $\frac{36}{-\lambda}$	c) $\frac{27}{-\lambda}$	d) $\frac{5}{-\lambda}$
	³ 27	5	5	36
44.	Mercury vapour lamp give	2S	h) Line anestrum	
	a) Continuous spectrum		d) Absorbation encetation	
45	C) Band spectrum	and arbit of Dabr's budrage	a) Absorption spectrum	an momentum is
45.	For an electron in the seco	ond of bit of boint's hydroge	2h	h
	a) <i>nπ</i>	b) 2 <i>πh</i>	c) $\frac{2\pi}{\pi}$	d) $\frac{\pi}{\pi}$
46.	The angular momentum (L) of an electron moving in	a stable orbit around nucl	eus is
101	a) Half integral multiple of	f ^h	b) integral multiple of h	
		$\frac{1}{2\pi}$	b) integral multiple of <i>n</i>	
	c) integral multiple of $\frac{n}{2\pi}$		d) Half integral multiple o	of h
47.	The shortest wavelength i	n Lyman series is 91.2 nm.	The longest wavelength of	the series is
	a) 121.6 nm	b) 182.4 nm	c) 234.4 nm	d) 364.8 nm
48.	The first excited state of h	ydrogen atoms is 10.2 eV a	bove its ground state. The	temperature needed to
	excite hydrogen atoms to	first excited level, is		
	a) 7.9 \times 10 ⁴ K	b) $3.5 \times 10^4 \text{ K}$	c) 5.8 \times 10 ⁴ K	d) $14 \times 10^4 \text{ K}$
49.	The ratio of the energies of	of the hydrogen atom in its	first to second excited state	es is
	a) 9/4	b) 4/1	c) 8/1	d) 1/8
50.	If λ is the wavelength of h	ydrogen atom from the trai	nsition $n = 3$ to $n = 1$, then w	vhat is the wavelength for

doubly ionised lithium ion for same transition?

	a) $\frac{\lambda}{3}$	b) 3λ	c) $\frac{\lambda}{9}$	d) 9 λ
51.	In H spectrum, the wavel	ength of H_{α} line is 656 nm γ	whereas in a distance galax	xy, the wavelength of H_{α} line
	is 706 nm. Estimate the s	peed of galaxy with respect	t to earth	
	a) $2 \times 10^8 \text{ms}^{-1}$	b) $2 \times 10^7 \text{ms}^{-1}$	c) $2 \times 10^{6} \text{ms}^{-1}$	d) $2 \times 10^5 \text{ms}^{-1}$
52.	In a hydrogen atom, the e	electron in a given orbit has	total energy -1.5 eV. The	potential energy is
	a) 1.5 eV	b) –1.5 eV	c) 3.0 eV	d) -3.0 eV
53.	The first member of the E	Balmer's series of the hydro	gen has a wavelength λ , th	e wavelength of the second
	member of its series is			
	27	$b)^{20}$	27 J	d) None of these
	$\frac{1}{20}$	$5 \frac{1}{27} \frac{1}{27}$	$c_{J}\frac{1}{20}$	
54.	Energy required for the e	lectron excitation in Li ²⁺ fr	om the first to the third Bo	hr orbit is
	a) 36.3 eV	b) 108.8 eV	c) 122.4 eV	d) 12.1eV
55.	The ionisation potential of	of mercury is 10.39 V. How	far an electron must travel	in an electric field of
	1.5×10^6 Vm ⁻¹ to gain s	sufficient energy to ionize n	nercury?	
	a) $\frac{10.39}{1.5 \times 10^6} \times 1.0 \times 10^{-19}$	m	b) $\frac{10.39}{1.5 \times 10^6}$ m	
	c) 1.39 x 1.6 x 10^{-19} n	n	d) $\frac{10.39}{m}$ m	
۲c	Wavelength of light emitt	und furanze as a sound a white to fire	1.6×10^{-19}	. in
50.			st orbit in a hydrogen atom -2 , $40(1)^{10}$	
	a) 6563 A	DJ 4102 A	CJ 4861 A	a) 1215 A
57.	white light is passed thro	bugh a dilutee solution of pe	otassium permanganate. II	he spectrum produced by
	the emergent light is			
	a) Band emission spectru	lm	d) Line emission spectru	.m
F 0	The mean atia memory of	lulli the ground state of an eter	u) Line absorption spect	I UIII
58.	in a magnetic moment of	the ground state of an ator	n whose open sub-shell is i	ian-inied with live electrons
		1.) 25		
-	a) $\sqrt{35}\sqrt{\mu_B}$	DJ 35 μ_B	c) $35\sqrt{\mu_B}$	a) $\mu_B \sqrt{35}$
59.	The wavelengths involve	d in the Spectrum of deute	rium $\binom{2}{1}$ D) are slightly diffe	rent from that of hydrogen
	Spectrum, because			
	a) Sizes of the two nuclei	are different		
	b) Nuclear forces are diff	erent in the two cases		
	c) Masses of the two nucl	lei are different		
(0)	d) Attraction between the	e electron and the nucleus i	s different in the two cases	S.
60.	Consider an electron in th	ie <i>n</i> th orbit of a hydrogen a	itom in the Bohr model. In	e circumference of the orbit
	can be expressed in term	s of the de-Broglie wavelen	lgth λ of that electron as	1) 1
(1	a) $(0.529) n\lambda$	D) $\sqrt{n} \lambda$	CJ $(13.6)\lambda$	$a_j n_\lambda$
61.	According to Bonr's theol	ry of nydrogen atom, for th	e electron in the <i>n</i> th allowe	ed orbit the
	(i) Linear momentum is p	Droportional to $1/n$		
	(II) Radius is proportiona	$\frac{11}{10} \frac{10}{n}$		
	(iii) Kinetic energy is pro	portional to $1/n^2$		
	(IV) Angular momentum Choose the correct option	is proportional to n	T AT	
	choose the correct option	-	w. b) (i) is correct	
	a) (i),(iii),(iv) are correct	•	d) (iii) is correct	
62	If elements with principa	1 guantum number $n > 1$ n	u) (III) is correct	mbar of passible alamante
02.	mend bo	i quantum number n> 4 m	ot anoweu in nature, the m	linder of possible elements
	a) 60	h) 32	c) 4	d) 64
63	uj 00	0,02	C) 1	4,01
05.	In a hypothetical bohr by	drogen atom the mass of t	he electron is doubled. The	energy F and energy r of
	In a hypothetical bohr hy	drogen atom, the mass of the state of the second state is the Bohr radius)	he electron is doubled. The	energy E_o and energy r_o of
	In a hypothetical bohr hy the first orbit will be $(a_o$ a) $E_o = -27$ 2eV: $r = a$	drogen atom, the mass of t is the Bohr radius) /2	he electron is doubled. The b) $E_r = -272 \text{eV} \cdot r = a$	energy E_o and energy r_o of
	In a hypothetical bohr hy the first orbit will be $(a_o$ a) $E_o = -27.2 \text{eV}$; $r_o = a_o$ c) $E_o = -13.6 \text{eV}$: $r_c = a_o$	drogen atom, the mass of t is the Bohr radius) /2 /2	b) $E_o = -27.2 \text{eV}; r_o = a_o$ d) $E_o = -13.6 \text{eV}; r_o = a_o$	energy E_o and energy r_o of

64.	The electric potential b	etween a proton and an ele	ectron is given by $V = V_0 I$	$n\frac{r}{r_0}$, where r_0 is a constant.
	Assuming Bohr's mode number?	l to be applicable, write van	riation of r_n with n,n being	g the principal quantum
	a) $r_n \propto n$	b) $r_n \propto \frac{1}{n}$	c) $r_n \propto n^2$	d) $r_n \propto \frac{1}{n^2}$
65.	The product of linear n proportional to n^x , wh	nomentum and angular motorer x is	mentum of an electron of t	the hydrogen atom is
	a) 0	b) 1	c) -2	d) 2
66.	If series limit of Balmer	r series is 6400 Å, then seri	es limit of Paschen series	will be
	a) 6400 Å	b) 18680 Å	c) 14400 Å	d) 2400 Å
67.	The energy of an electr	on in <i>n</i> th orbit of the hydrodynamic of the h	ogen atom is given by E_n =	$=\frac{-13.6}{n^2}$ eV The energy required
	to raise an electron fro	m the first orbit to the seco	nd orbit will be	
	a) 10.2 eV	b) 12.1 eV	c) 13.6 eV	d) 3.4 eV
68.	Energy <i>E</i> of a hydroger	n atom with principal quant	tum number <i>n</i> is given by	$E = -\frac{13.6}{n^2}$ eV.The energy of a
	photon ejected when that a) 1.5 eV	he electron jumps from n = b) 0.85 eV	=3 state to <i>n</i> = 2state of h c) 3.4 eV	ydrogen , is approximately d) 1.9 eV
69.	In the Bohr model of a	hydrogen atom, the centrip	etal force is furnished by	the coulomb attraction
	between the proton an	d the electron. If a_o is the ra	idius of the ground state o	rbit, <i>m</i> is the mass and <i>e</i> is
	charge on the electron	and ε_o is the vacuum perm	ittivity, the speed of the el	ectron is
	a) 0	e	e	$4\pi\varepsilon_0a_0m$
		$\int \sqrt{\varepsilon_0 a_0 m}$	$\sqrt{4\pi\varepsilon_0 a_0 m}$	$\left(\int \frac{1}{e} \right) = \frac{1}{e}$
70.	The acceleration of ele	ctron in the first orbit of hy	drogen atom is	
	a) $\frac{4\pi^2 m}{m}$	b) $\frac{h^2}{1}$	c) $\frac{h^2}{2}$	d) $\frac{m^2h^2}{m^2h^2}$
71	h^3	$4\pi^2 mr$	$4\pi^2 m^2 r^3$	$4\pi^2 r^3$
/1.	The figure mulcates the	e energy levels of a certain a		$\frac{4E}{E}$
	photon of wavelength A	l is emitted. The wavelengt	h of photon produced dur	$\frac{1}{3}$ level
	to E is	21	1)	
	a) $\frac{\pi}{3}$	b) $\frac{3\lambda}{4}$	c) $\frac{4\pi}{3}$	d) 3λ
72.	The ionisation potentia	al of hydrogen atom is –13.	6 eV. An electron in the gr	ound state of a hydrogen
	atoms absorbs a photo	n of energy 12.75 eV. How	many different spectral lin	ie can one expect when the
	electron make a down	ward transition?		
	a) 1	b) 4	c) 2	d) 6
73.	If the shortest wavelen	gth in the Lyman series is 9	911.6 Å, the longest wavel	ength in the same series will be
	a) 1600 Å	b) 2430Å	c) 1215 Å	d) ∞
74.	The series limit wavele	ength of the Lyman series fo	or the hydrogen atom is given by the hydrogen by the hydrogen atom is given by the hydrogen by the hydrogen by the hydrogen atom is given by the hydrogen by the hydroge	ven by
	a) 1/ <i>R</i>	b) 4/ <i>R</i>	c) 9/ <i>R</i>	d) 16/ <i>R</i>
75.	The ratio of minimum	wavelengths of Lyman and	Balmer series will be	
	a) 1.25	b) 0.25	c) 5	d) 10
/6.	In the Bohr model of hy 5×10^{-11} m at a mass	ydrogen atom, the electron 106 ms^{-1} What is	is pictured to rotate in a c	ircular orbit of radius
	5×10^{-1} m, at a spee	$au 2.2 \times 10^{\circ} \text{ ms}^{-1}$. What is	s the current associated w	d) 2.25 mA
77	If the atom Em^{257} f	UJ S IIIA Collows the Bohr model and	the radius of Em^{257} is	u) 2.25 IIIA
//.	find n .	onows the bonn model and	the factors of 100 min is	<i>it</i> times the boin faulus, then
	a) 100	b) 200	c) 4	d) 1/4
78.	- The energy of electron	in the <i>n</i> th orbit of hydroge	n atom is expressed as En	$=\frac{-14.6}{100}$ eV. The shortest and
	longest wavelength of	wman series will be		n^2
	a) 910Å, 1213 Å	b) 5463 Å , 7858 Å	c) 1315 Å, 1530 Å	d) None of these

79.	In hydrogen atom, the electron is moving roun	d the nucleus with velocity 2.1	$8 \times 10^{6} \text{ ms}^{-1}$ in an orbit of
	radius 0.528 Å. The acceleration of the electron	n is	
	a) 9 × 10 ¹⁸ ms ⁻² b) 9 × 10 ²² ms ⁻²	c) 9 × 10^{-22} ms ⁻²	d) 9 × 10^{12} ms ⁻²
80.	Rutherford's atomic model could account for		
	a) Concept of stationary orbits	b) The positively charge	ed control core of an atom
	c) Origin of spectra	d) Stability of atoms	
81.	The energy of an electron in an excited hydrog	en atom is -3.4 eV. Its angular	momentum is
	a) 3.72×10^{-34} Js b) 2.11×10^{-34} Js	c) 1.57 \times 10 ⁻³⁴ Js	d) 1.11×10^{-34} Js
82.	The largest wavelength in the ultraviolet region	n of the hydrogen spectrum is	122 nm. The smallest
	wavelength in the infrared region of the hydrog	gen spectrum (to the nearest in	nteger) is
	a) 802 nm b) 823 nm	c) 1882 nm	d) 1648 nm
83.	If λ_1 and λ_2 are the wavelengths of the first me	mbers of the Lyman and Pasch	en series respectively, then
	$\lambda_1: \lambda_2$ is		
	a) 1:3 b) 1:30	c) 7:50	d) 7:108
84.	Which of the following lines of the H-atom spec	ctrum belongs to the Balmer se	eries?
	a) 1025 Å b) 1218 Å	c) 4861 Å	d) 18751 Å
85.	Continuous emission spectrum is produced by		
	a) Incandescent electric lamp	b) Mercury vapour lam	ıp
	c) Sodium vapour lamp	d) Polyatomic substanc	es
86.	The ionisation potential of hydrogen atom is 13	3.6 eV. The energy required to	remove an electron from the
	second orbit of hydrogen will be		
	a) 27.4 eV b) 13.6 eV	c) 3.4 eV	d) None of these
87.	In a hydrogen atom, the electron is making 6.6	\times 10 ¹⁵ revs ⁻¹ around the nuc	cleus in an orbit of radius
	0.528 Å.The magnetic moment (Am ²) will be		
	a) 1×10^{-15} b) 1×10^{-10}	c) 1 × 10 ⁻²³	d) 1 × 10 ⁻²⁷
88.	The ratio of longest wavelength and the shorte	st wavelength observed in the	fifth spectral series of
	emission spectrum of hydrogen is	C	
	a) 4/3 b) 525/376	c) 36/11	d) 960/11
89.	In an atom, the two electrons move round the r	nucleus in circular orbits of rac	lii <i>R</i> and 4 <i>R</i> . The ratio of the
	times taken by them to complete one revolutio	n is	
	a) 1/4 b) 4/1	c) 8/1	d) 1/8
90.	Which of the following transition gives the pho	oton of minimum frequency?	
	a) $n=2$ to $n=1$ b) $n=3$ to $n=1$	c) $n=3$ to $n=2$	d) $n = 4$ to $n = 3$
91.	Let the potential energy of hydrogen atom in th	ne ground state be regarded as	zero. Then its potential
	energy in the first excited state will be	5	-
	a) 20.4 eV b) 13.6 eV	c) 3.4 eV	d) 10.2eV
92.	Of the following transition in the hydrogen ato	m, the one which gives an emis	ssion line of the highest
	frequency is		-
	a) $n = 1$ to $n = 2$ b) $n = 2$ to $n = 1$	c) $n = 3$ to $n = 10$	d) $n = 10$ to $n = 3$
93.	The acceleration of electron in the first orbit of	hydrogen atom is	,
	h^2	h^2	m^2h^2
	a) $\frac{h^3}{h^3}$ b) $\frac{1}{4\pi^2 mr}$	c) $\frac{1}{2\pi^2 m^2 r^3}$	d) $\frac{1}{4\pi^2 r^3}$
94.	The ratio of minimum wavelength of Lyman an	d Balmer series will be	
	a) 10 b) 5	c) 0.25	d) 1.25
95.	The first excitation potential of a given atom is	10.2 V. Then ionisation potent	tial must be
	a) 20.4 V b) 13.6 V	c) 30.6 V	d) 40.8 V
96.	As the electron in Bohr orbit of hydrogen atom	passes from state $n=2$ to $n=1$, the kinetic energy K and
	potential energy <i>U</i> change as		
	a) <i>K</i> two-fold, <i>U</i> four-fold	b) <i>K</i> four-fold, <i>U</i> two-fo	old
	c) <i>K</i> four-fold, <i>U</i> also four-fold	d) <i>K</i> two-fold, <i>U</i> also tw	vo-fold

97.	The wavelength of the fir will be $(h = 6.62 \times 10^{-3})$	st spectral line of sodium is	5896 Å. The first excitatio	n potential of sodium atom
	will be $(n = 0.05 \times 10^{-5})$	-JS	c) 21 W	d) None of these
00	d) 4.2 V The ratio of errors of the e	UJ 3.3 V	CJ 2.1 V	d state for the hydrogen
90.	The fatio of alleas of the e		excited state and the groun	u state for the hydrogen
		L) 1 (1	-) 0 1	101
00	d) 4:1 The total energy of an ale	DJ 10:1	CJ 8:1	UJ 2:1 A oV. Ita kinatia onormuin
99.	The total energy of an ele	ectron in the first excited sta	ate of hydrogen is about -3	3.4ev. Its kinetic energy in
	this state is			1) 2 4 . 17
100	$a_{J} - 3.4 \text{ eV}$	b) = 6.8 eV	CJ 6.8 eV	a) 3.4 ev
100	. If E_P and E_K are the poten	itial energy and kinetic ene	rgy of the electron in statio	nary orbit in the hydrogen
	atom, the value of $\frac{E_P}{E_K}$ is			
	a) 2	b) —1	c) 1	d) -2
101	Assuming <i>f</i> to be frequen	cy of first line in Balmer se	ries, the frequency of the in	nmediate next(<i>ie</i> , second)
	line is			
	a) 0.50 <i>f</i>	b) 1.35 <i>f</i>	c) 2.05 <i>f</i>	d) 2.70 <i>f</i>
102	A charged particle q is sh	ot towards another charged	d particle Q which is fixed,	with a speed <i>v</i> . It
	approaches Qupto a clos	est distance r and then retu	ırns. If <i>q</i> was given a speed	2v, the closest distance of
	approach would be			
	q v	Q		
	· · · · · · · · · · · · · · · · · · ·			
	a) <i>r</i>	b) 2 <i>r</i>	c) <i>r</i> /2	d) r/4
103	Electrons in the atom are	held to the nucleus by		
	a) Coulomb's forces		b) Nuclear forces	
	c) Van der Waals' forces		d) Gravitational forces	
104	. If the electron is a hydrog	gen atom jumps from an orl	bit with level $n_1 = 3$ to an o	brbit with level $n_1 = 2$, the
	emitted radiation has a w	vavelength given by		
	a) $\lambda = \frac{36}{36}$	b) $\lambda = \frac{5R}{2}$	c) $\lambda = \frac{6}{2}$	d) $\lambda - \frac{R}{R}$
	47×10^{-1} 5R	36	r R	<i>aj n</i> = 6
105.	The transition from the s	tate $n=4$ to $n=3$ in a hydro	gen like atom results in ult	raviolet radiation. Infrared
	radiation will be obtained	in the transition from		
	a) $2 \rightarrow 1$	b) $3 \rightarrow 2$	c) $4 \rightarrow 2$	d) $5 \rightarrow 3$
106	Imagine an atom made up	p of proton and a hypotheti	cal particle of double the m	ass of electron, but having
	the same charge as that o	f electron. Apply the Bohr a	atom model and consider a	ll possible transitions of this
	hypothetical particle to th	he first excited level. The lo	ngest wavelength photon t	hat will be emitted has
	wavelength λ , (given in te	erms of Rydberg constant R	for hydrogen atom) equal	to
	a) $\frac{9}{50}$	b) $\frac{30}{50}$	c) $\frac{10}{50}$	d) $\frac{4}{n}$
107	5K	5K inst ling of the holmon corio	5K	<i>R</i>
107	in the wavelength of the h	irst line of the ballier serie	s of flydrogen is 6561A, the	e wavelength of the second
				d) 2107 Å
100	a) 13122 A	DJ 3280 A	CJ 4860 A	uj 2187 A
108	to Dobr is	nergy level from fundamen	tal state to $n = 3$. Number (of spectrum lines, according
		L) 2	a) 1	4) 0
100	a) 4	DJ 3	CJ 1	d) Z
109.	Number of neutrons in C	¹² and C ¹⁴ are		
440	a) 8 and 6	b) 6 and 8	c) 6 and 6	d) 8 and 8
110	Ionization energy of He ⁺	ion at minimum position is		
111	aj 13.6 ev	DJ 27.2 eV	cj 54.4 eV	aj 68.0 eV
111.	Suppose an electron is at	tracted towards the origin	by a force $\frac{\pi}{r}$, where k is con	is the distance r is the distance
	of the electron from the o	origin. By applying Bohr mo	del to this system, the radi	us of the <i>n</i> th orbital of the
	electron is found to be r_n	and the kinetic energy of th	he electron to be T_n . Then w	which of the following is

	true?			
	a) $T_n \propto \frac{1}{n^2}$, $r_n \propto n^2$		b) T_n independent of n, r_n	$\propto n$
	c) $T_n \propto \frac{1}{n}, r_n \propto n$		d) $T_n \propto \frac{1}{n}$, $r_n \propto n^2$	
112	The angular speed of the e	electric in the <i>n</i> th orbit of I	Bohr hydrogen atom is	
	a) Directly proportional to	0 <i>n</i>	b) Inversely proportiona	l to \sqrt{n}
	c) Inversely proportional	$1 \text{ to } n^2$	d) Inversely proportiona	l to n^3
113	The first line of Balmer se	ries has wavelength 6563	Å. What will be the waveler	ngth of the first member of
	1215 4 Å	b) 2500 Å	c) 7500 Å	ፈን
114	a) 1213.4 A Ionization notential of hy	drogen stom is 13.6 eV. Hyd	lrogen atoms in the ground	l state are excited by
114	monochromatic radiation	of photon energy 12.1 eV.	According to Bohr's theory	, the spectral lines emitted
	by hydrogen will be			
	a) Two	b) Three	c) Four	d) One
115	. Solar spectrum is an exam	ple for		
	a) Line emission spectrum	n	b) Continuous emission s	pectrum
	c) Band absorption spec	trum	d) Line absorption spectr	um
116	The wavelength of the firs of the second spectral line	st spectral line in the Balme e in the Balmer series of sin	er series of hydrogen atom Igly ionized helium atom is	is 6561 A. The wavelength
	a) 1215 Å	b) 1640 Å	c) 2430 Å	d) 4687 Å
117	. The ionization energy of h	vdrogen atom is 13.6eV. F	ollowing Bohr's theory, the	energy corresponding to a
	transition between 3rd ar	nd 4th orbit is	,	
	a) 3.40 eV	b) 1.51 eV	c) 0.85 eV	d) 0.66 eV
118	The nucleus of an atom co	onsists of	,	,
	a) Electrons and protons		b) Electrons, protons and	neutrons
	c) Electrons and Neutron	S	d) Neutrons and protons	5
119	Electrons in a certain ener	rgy level $n = n_1$, can emit 3	spectral lines. When they a	re in another energy level,
	$n = n_2$, they can emit 6 sp	ectral lines. The orbital spe	eed of the electrons in the o	orbits are in the ratio
	a) 4:3	b) 3:4	c) 2:1	d) 1:2
120	Which of the following tra	nsition in Balmer series fo	r hydrogen will have longe	st wavelength?
	a) <i>n</i> =2 to <i>n</i> =1	b) <i>n</i> =6 to <i>n</i> =1	c) $n = 3$ to $n = 2$	d) <i>n</i> =6 to <i>n</i> =2
121	. In Raman effect, Stokes' li	nes are spectral lines havir	ıg	
	a) Frequency greater than	n that of the original line		
	b) Wavelength equal to th	at of the original line		
	c) Wavelength less than t	hat of the original line		
	d) Wavelength greater tha	an that of the original line		
122.	Which of the following ato	oms has the lowest ionizati	on potential?	- 16
	a) ¹⁴ ₇ N	b) $^{133}_{55}$ Cs	c) $^{40}_{18}$ Ar	d) $^{16}_{8}$ 0
123	. For hydrogen atom electr	on in <i>n</i> th Bohr orbit, the ra	atio of radius of orbit to its	de-Broglie wavelength is
	a) $\frac{n}{2\pi}$	b) $\frac{n^2}{2\pi}$	c) $\frac{1}{2\pi n}$	d) $\frac{1}{2\pi n^2}$
124	. If the electron in hydroge	n atom jumps from the thir	d to second orbit, the wave	elength of the emitted
	radiation in terms of Ryd	oerg constant R is given by		
	a) $\lambda = \frac{36}{5P}$	b) $\lambda = \frac{5R}{36}$	c) $\lambda = \frac{5}{R}$	d) $\lambda = \frac{R}{6}$
125	. In Bohr's model of hydrog	en atom, which of the follo	wing pairs of quantities ar	e quantized?
	a) Energy and linear mor	ientum	b) Linear and angular mo	omentum
	c) Energy and angular me	omentum	d) None of the above	
126	. In the Bohr's model of the	hydrogen atom. the lowes	t orbit corresponds to	
	a) Infinite energy	b) Maximum energy	c) Minimum energy	d) Zero energy

127. The atomic number a	nd the mass number of an ato	om remains unchanged wl	hen it emits
a) a photon	b) a neutron	c) β –particle	d) An α – particle
128. Band spectrum is also	called		
a) Molecular spectrum	m	b) Atomic spectrum	
c) Flash spectrum		d) Line absorption spe	ectrum
129. In a hydrogen atom, tl	ne electron moves around th	e nucleus in a circular orb	it of radius 5 $\times 10^{-11}$ m. Its
time period is 1.5 \times 3	10 ^{–16} .The current associated	d with the electron motion	is (charge of electron is
1.6×10^{-16} C)			
a) 1.00 A	b) 1.066 $\times 10^{-3}$ A	c) 1.81 \times 10 ⁻³ A	d) 1.66×10^{-3} A
130. Bohr's atom model as	sumes	,	,
a) The nucleus is of in	finite mass and is at rest		
b) Electrons in a quan	tized orbit will not radiate e	nergy	
c) Mass of electron re	mains constant		
d) All the above condi	tions.		
131. An electron of charge	<i>e</i> moves with a constant spe	ed <i>v</i> along a circle of radiu	is r , its magnetic moment will
be		0	,
a) evr	b) $evr/2$	c) $\pi r^2 ev$	d) $2\pi rev$
132. The ratio of the wavel	engths for $2 \rightarrow 1$ transition in	1 Li^{2+} . He ⁺ and H is	-)
a) 1:2:3	. 1 1 1	c) 1:4:1	d) 3:2:1
	b) $\frac{-}{9} : \frac{-}{4} : \frac{-}{1}$	0) 1111	
133. Ionization potential of	f hydrogen atom is 13.6 eV. F	lydrogen atoms in the gro	und state are exicted by
monochromatic radia	tion of photon energy 12.1 e	V. The spectral lines emitt	ed by hydrogen atom
according to Bohr's th	eory will be		
a) One	b) Two	c) Three	d) Four
134. The production of bar	id spectra is caused by	-	-
a) Atomic nuclei	b) Hot metals	c) Molecules	d) electrons
135. In Rutherford scatteri	ng experiment, what will be	the correct angle for α sca	ttering for an impact
parameter <i>b=</i> 0?			
a) 90°	b) 270°	c) 0°	d) 180°
136. According to Bohr's at	comic model, the relation bet	ween principal quantum r	number(n) and radius of
orbit(r) is			
a) $r \propto n^2$	b) $r \propto \frac{1}{2}$	$r \propto \frac{1}{r}$	d) $r \propto n$
ajr∝n	n^2	$c_{j} = \frac{1}{n}$	
137. In the spectrum of hyd	drogen atom, the ratio of the	longest wavelength in Lyr	nan series to the longest
wavelength in the Bal	mer series is		
a) 5/27	b) 1/93	c) 4/9	d) 3/2
138. The wave number of t	he energy emitted when elec	ctron comes from fourth o	rbit to second orbit in
hydrogen is 20,397 cr	n^{-1} . The wave number of the	e energy for the same trans	sition in He ⁺ is
a) 5,099 cm ⁻¹	b) 20,497 cm ⁻¹	c) 14400 Å	d) 81,588 cm ⁻¹
139. At the time of total so	lar eclipse, the spectrum of s	olar radiation will have	
a) A large number of o	lark Fraunhofer lines		
b) A smaller number o	of dark Fraunhofer lines		
c) No lines at all			
d) All Fraunhofer line	s changed into bright coloure	ed lines	
140. What is the difference	of angular momenta of an el	lectron in two consecutive	orbits in hydrogen atom?
$h = \frac{h}{h}$	$h \frac{h}{-}$	$\frac{2\pi}{2\pi}$	$h = \frac{h}{h}$
² 2	π	^c , h	2π
141. The colour of the seco	nd line of Balmer series is		
a) Blue	b) Yellow	c) red	d) violet
142. An α –particle of ener closest approach is of	gy 5MeV is scattered throug the order of	h 180° by a fixed uranium	nucleus. The distance of

a) 1 A°	b) 10 ⁻¹⁰ cm	c) 10 ⁻¹² cm	d) 10 ⁻¹⁵ cm
143. The wavelength of radia	ation emitted is λ_0 when an	electron jumps from the t	hird to the second orbit of
hydrogen atom. For the	electron jump from the fou	irth to the second orbit of	hydrogen atom,the
wavelength of radiation	emitted will be		
a) $\frac{16}{2}\lambda_0$	b) $\frac{20}{2}\lambda_0$	c) $\frac{27}{27}\lambda_0$	d) $\frac{25}{2}\lambda_0$
²⁵ ¹⁴⁴ Four light of a second an ath	27 ¹⁰	20 °	16^{10}
144. For light of wavelength	5000 A, photon energy is n	learly 2.5 ev. For X-rays of	wavelength 1 A, the photon
energy will be close to	h [2 f , $(f000)^{2}$] v	a) [2 E v E000]aV	d [2 Γ × (Γ 0.00) ²] d
a) $[2.5 \div 5000]$ ev	$D [2.5 \div (5000)^{-}] ev$	$CJ [2.5 \times 5000] ev$	a) [2.5 × (5000)-]ev
13.6	13 6		
a) $\frac{1000}{11}$ eV	b) $\frac{10.0}{112}$ eV	c) 13.6 × $(11)^2 eV$	d) 13.6 eV
146. What is the maximum v	vavelength of light emitted	in Lyman series by hydrog	en atom?
a) 691 nm	b) 550 nm	c) 380 nm	d) 122 nm
147. The Rydberg constant <i>F</i>	? for hydrogen is		
$(1) 2\pi^2 m d$	2 ²	$(1) 2\pi^2 m e^2$	
a) $R = -\left(\frac{1}{4\pi\varepsilon_0}\right) \frac{1}{ch^2}$	_	b) $R = \left(\frac{1}{4\pi\varepsilon_0}\right) \frac{1}{ch^2}$	
$(1)^{2}2\pi^{2}me^{2}$	2	$(1)^2 2\pi^2 me$	4
$C R = \left(\frac{1}{4\pi\varepsilon_0}\right) \frac{1}{c^2 h^2}$	-	$d R = \left(\frac{1}{4\pi\varepsilon_0}\right) - \frac{1}{ch^3}$	_
148. A photon collides with a	a stationary hydrogen atom	in ground state inelastica	lly. Energy of the colliding
photon is 10.2 eV. After	a time interval of the order	r of micro second another	photon collides with same
hydrogen atom inelasti	cally with an energy of 15n	eV. What will be observed	by the detector?
a) 2 photon of energy 1	0.2 eV.		
b) 2 photon of energy o	f 1.4 eV.		
c) One photon of energ	y 10.2 eV and an electron of	f energy 1.4 eV	
d) One photon of energ	y 10.2 eV and another phot	on of energy 1.4 eV	
149. The ratio of kinetic ener	rgy and the total energy of	the electron in the <i>n</i> th qua	ntum state of Bohr's atomic
model of hydrogen ator	n is		
a) -2	b) -1	c) +2	d) +1
150. When an electron jump	s from the orbit $n = 2$ to n	= 4,then wavelength of th	e radiations absorbed will be
(R is Rydberg's constan	τ) 5 Ρ	16	16
a) $\frac{5\pi}{16}$	b) $\frac{3\pi}{16}$	c) $\frac{10}{5R}$	d) $\frac{10}{3P}$
151. Assuming the mass of e	arth as 6.64 $\times 10^{24}$ kg and	the average mass of the at	oms that makes up earth as 40
u (atomic mass unit), th	e number of atoms in the e	arth is approximately	
a) 10 ³⁰	b) 10 ⁴⁰	c) 10^{50}	d) 10 ⁶⁰
152. The shortest wavelengt	h which can be obtained in	hydrogen spectrum is (<i>R</i> =	$=10^{7} m^{-1}$)
a) 1000 Å	b) 800 Å	c) 1300 Å	d) 2100 Å
153. The K_{α} line of singly ior	nised calcium has a waveler	ngth of 393.3nm as measur	ed on earth. In the spectrum
of one of the observed a		•	•
moving away from us, v	galaxies, the spectral line is	located at 401.8 nm. The s	peed with which this galaxy is
0,	vill be	located at 401.8 nm. The s	peed with which this galaxy is
a) 7400 ms ⁻¹	vill be b) 32.4 × 10 ² ms ⁻¹	located at 401.8 nm. The s c) 6480kms ⁻¹	peed with which this galaxy is d) None of these
a) 7400 ms ^{-1} 154. The binding energy of t	vill be b) 32.4 × 10 ² ms ⁻¹ he electron in the lowest or	located at 401.8 nm. The s c) 6480kms ⁻¹ bit of the hydrogen atom i	peed with which this galaxy is d) None of these s 13.6 eV. The energies
a) 7400 ms ⁻¹ 154. The binding energy of t required in eV to remov	vill be b) 32.4 × 10 ² ms ⁻¹ he electron in the lowest or ve an electron from the thre	located at 401.8 nm. The s c) 6480kms ⁻¹ bit of the hydrogen atom i se lowest orbits of the hydr	peed with which this galaxy is d) None of these s 13.6 eV. The energies rogen atom are
 a) 7400 ms⁻¹ 154. The binding energy of t required in eV to remove a) 13.6, 6.8, 8.4 	galaxies, the spectral line is vill be b) $32.4 \times 10^2 \text{ ms}^{-1}$ he electron in the lowest or ve an electron from the three b) 13.6, 10.2, 3.4	located at 401.8 nm. The s c) 6480kms ⁻¹ bit of the hydrogen atom i ee lowest orbits of the hydr c) 13.6, 27.2, 40.8	peed with which this galaxy is d) None of these s 13.6 eV. The energies rogen atom are d) 13.6, 3.4, 1.5
 a) 7400 ms⁻¹ 154. The binding energy of t required in eV to removal 13.6, 6.8, 8.4 155. What is the radius of Io 	vill be b) $32.4 \times 10^2 \text{ ms}^{-1}$ he electron in the lowest or re an electron from the thre b) $13.6, 10.2, 3.4$ dine atom? (Atomic no.53, 10)	located at 401.8 nm. The s c) 6480kms ⁻¹ bit of the hydrogen atom i ce lowest orbits of the hydr c) 13.6, 27.2, 40.8 mass no.126)	peed with which this galaxy is d) None of these s 13.6 eV. The energies rogen atom are d) 13.6, 3.4, 1.5
a) 7400 ms ⁻¹ 154. The binding energy of t required in eV to remov a) 13.6, 6.8, 8.4 155. What is the radius of Io a) 2.5×10^{-11} m	galaxies, the spectral line is vill be b) $32.4 \times 10^2 \text{ ms}^{-1}$ he electron in the lowest or ve an electron from the three b) 13.6, 10.2, 3.4 dine atom? (Atomic no.53, m b) 2.5 × 10 ⁻⁹ m	located at 401.8 nm. The s c) 6480kms ⁻¹ bit of the hydrogen atom i e lowest orbits of the hydr c) 13.6, 27.2, 40.8 mass no.126) c) 7×10^{-9} m	peed with which this galaxy is d) None of these s 13.6 eV. The energies rogen atom are d) 13.6, 3.4, 1.5 d) 7×10^{-11} m
a) 7400 ms ⁻¹ 154. The binding energy of t required in eV to remov a) 13.6, 6.8, 8.4 155. What is the radius of Io a) 2.5×10^{-11} m 156. Hydrogen atom from ex	galaxies, the spectral line is vill be b) $32.4 \times 10^2 \text{ ms}^{-1}$ he electron in the lowest or ve an electron from the three b) $13.6, 10.2, 3.4$ dine atom? (Atomic no.53, 10) b) 2.5×10^{-9} m context state comes to the group	located at 401.8 nm. The s c) 6480kms ⁻¹ bit of the hydrogen atom i ce lowest orbits of the hydr c) 13.6, 27.2, 40.8 mass no.126) c) 7×10^{-9} m pund state by emitting a pl	peed with which this galaxy is d) None of these s 13.6 eV. The energies rogen atom are d) 13.6, 3.4, 1.5 d) 7×10^{-11} m noton of wavelength λ . If <i>R</i> is

a)
$$\sqrt{\frac{\lambda R}{\lambda R - 1}}$$

b) $\sqrt{\frac{\lambda}{\lambda R-1}}$

- a) Line emission spectrum
- c) Line absorption spectrum

c)
$$\sqrt{\frac{\lambda R^2}{\lambda R - 1}}$$
 d) $\sqrt{\frac{\lambda R}{\lambda - 1}}$

- b) Continuous emission spectrum
- d) Band emissionspectrum

_

					: ANS	W
h	21	h	3)	h	4)	h
C		h	5) 7)	h		a
b b	10)	2	11)	2	0) 12)	u 2
h	14)	и 2	15)	и Э	16)	d d
2	19)	d d	10)	u h	20)	u d
a c	22)	u c	22)	D C	20)	u n
C	26)	L h	23J 27)	ι ο	24J 20)	a d
l c	20)	U d	27J 21)	d	20J 22)	u
C J	30)	a	31)	a	32)	C
a	34)	a L	35)	C	30J	a L
С	38)	D	39)	a	40)	D
a	42)	b	43)	С	44)	b
d	46)	С	47)	а	48)	a
а	50)	С	51)	b	52)	d
b	54)	b	55)	b	56)	d
С	58)	d	59)	С	60)	d
а	62)	а	63)	а	64)	a
а	66)	С	67)	а	68)	d
С	70)	С	71)	d	72)	d
С	74)	а	75)	b	76)	a
d	78)	а	79)	b	80)	b
b	82)	b	83)	d	84)	с
а	86)	С	87)	с	88)	С
d	90)	d	91)	d	92)	b
c	94)	c	95)	h	96)	c
c	981	ĥ	991	ď	100)	ď
с h	70J 102)	Ь	77) 102)	u 2	104)	u a
и Б	104J 106)	u	103J 107)	a	104J 10Q)	a h
u h	110)	L C	107J	L C	100J 112)	U A
D	110)	C L	111) 44 EN	a J	112)	a
a	114)	D ,	115)	đ	116)	a
d	118)	d	119)	а	120)	С
d	122)	b	123)	а	124)	a
С	126)	С	127)	а	128)	a
d	130)	d	131)	b	132)	b
С	134)	С	135)	d	136)	a
а	138)	d	139)	d	140)	d
а	142)	С	143)	b	144)	С
С	146)	d	147)	d	148)	С
b	150)	d	151)	С	152)	a
С	154)	d	155)	а	156)	a
b					-	
	b c b b a c c c d c a d a b c a a c c d b a d c c b d b a d d c d c a a c b c b	b 2) c 6) b 10) b 14) a 18) c 22) c 26) c 30) d 34) c 38) a 42) d 46) a 50) b 54) c 58) a 62) a 66) c 70) c 74) d 78) b 82) a 86) d 90) c 94) c 98) b 102) d 106) b 110) a 114) d 122) c 126) d 130) c 134) a 138) a 142) c 146) b 150)	b 2) b c 6) b b 10) a b 14) a a 18) d c 22) c c 26) b c 26) b c 26) b c 30) d d 34) a c 38) b a 42) b d 46) c a 50) c b 54) b c 78) a d 78) a d 78) a b 82) b a 86) c d 102) d d 110) c a 114) b d 118) d d 130) d c 134) c a 133) d	b 2) b 3) c 6) b 7) b 10) a 11) b 14) a 15) a 18) d 19) c 22) c 23) c 26) b 27) c 30) d 31) d 34) a 35) c 30) d 31) d 34) a 35) c 38) b 39) a 42) b 43 d 46) c 47) a 50) c 51) b 54) b 55) c 58) d 59 a 62) a 63) a 66) c 67) c 74) a 75) d 78) a 79) b 82) b 83) a 86	b 2) b 3) b c 6) b 7) b b 10) a 11) a b 14) a 15) a a 18) d 19) b c 22) c 23) c c 20) d 21) a c 20) c 23) c c 20) d 31) a d 34) a 35) c c 30) d 31) a d 34) a 35) c c 38) b 39) d a 42) b 43) c d 46) c 47) a a 50) c 51) b c 58) d 59) c a 62) a 63) a c 74) a 75) b </td <td>b 2) b 3) b 4) c 6) b 7) b 8) b 10) a 11) a 12) b 14) a 15) a 16) a 18) d 19) b 20) c 22) c 23) c 24) c 26) b 27) a 28) c 30) d 31) a 32) d 34) a 35) c 36) c 30) d 31) a 32) d 34) a 35) c 36) c 38) b 39) d 40) a 42) b 43) c 44 d 46) c 477) a 48 a 50) c 51) b 56) c 58) d 59) c 60</td>	b 2) b 3) b 4) c 6) b 7) b 8) b 10) a 11) a 12) b 14) a 15) a 16) a 18) d 19) b 20) c 22) c 23) c 24) c 26) b 27) a 28) c 30) d 31) a 32) d 34) a 35) c 36) c 30) d 31) a 32) d 34) a 35) c 36) c 38) b 39) d 40) a 42) b 43) c 44 d 46) c 477) a 48 a 50) c 51) b 56) c 58) d 59) c 60

: HINTS AND SOLUTIONS :

7

1 **(b)**

As $E_1 > E_2$

 \therefore $v_1 > v_2$

ie, photon oh higher frequency will be emitted if transition takes place from n=2 to n=1.

2 **(b)**

:.

Radius of Bohr orbit is given by

$$r_n = \left(\frac{\varepsilon_0 h^2}{\pi m e^2}\right) n^2$$

The quantities in the bracket are constant

$$r_n \propto n^2$$

The expression gives the radius of the nth Bohr orbit

$$\frac{r_1}{r_2} = \frac{n_1^2}{n_2^2} \\ \frac{a}{r_2} = \frac{1}{3^2} \\ r_2 = 9 a$$

3 **(b)**

The energy taken by hydrogen atom corresponds to its transition from

n = 1 to n = 3 state.

$$\Delta E \quad (\text{given to hydrogen atom})$$
$$= 13.6 \left(1 - \frac{1}{9}\right)$$
$$= 13.6 \times \frac{8}{9} = 12.1 \text{ eV}$$

4 **(b)**

Energy released = $E_4 - E_1$

$$= -\frac{13.6}{4^2} - \left(-\frac{13.6}{1^2}\right) = 1.75 \text{eV}$$

5 **(c)**

The excitation energy in the first excited state is

$$E = RhcZ^{2}\left(\frac{1}{1^{2}} - \frac{1}{2^{2}}\right) = (13.6 \text{ eV}) \times Z^{2} \times \frac{3}{4}$$

$$\therefore \qquad 40.8 = 13.6 \times Z^{2} \times \frac{3}{4}$$

$$\Rightarrow \qquad Z = 2$$

So the ion in much law in U.t. The converse of the

So, the ion in problem is He⁺. The energy of the ion in the ground state is

$$E = \frac{RhcZ^2}{1^2} = 13.6 \times 4 = 54.4 \text{ eV}$$

Hence, 54.4 eV is required to remove the electron from the ion.

6 **(b)**

Ultraviolet region	Lyman series
Visible region	Balmer series
Infrared region	Paschen series, Brackett series
	Pfund series

From the above chart it is clear that Balmer series lies in the visible region of the electromagnetic spectrum.

(b)

At distance of closest approach relative velocity of two particles is v. Here target is considered as stationary, so α -particle comes to rest instantaneously at distance of closest approach. Let required distance is r, then from work energytheorem.

$$0 - \frac{mv^2}{2} = -\frac{1}{4\pi\varepsilon_0} \frac{Z_e \times Z_e}{r}$$
$$r \propto \frac{1}{m}$$
$$\propto \frac{1}{v^2}$$
$$\propto Ze^2$$

8 **(a)**

As $r \propto n^2$, therefore, radius of 2nd Bohr's orbit = $4a_0$

(b)
$$1 e^2$$

$$KE = \frac{1}{2} \frac{\sigma}{r}$$

10 **(a)**

9

$$E = -Z^2 \frac{13.6}{n^2} \text{eV}$$

For first excited state,

$$E_2 = -3^2 \times \frac{13.6}{4}$$

= -30.6 eV

Ionisation energy for first excited state of Li²⁺ is 30.6 eV.

11 **(a)**

:.

12

For maximum wavelength of Balmer series

$$\frac{1}{\lambda_{\max}} = R\left(\frac{1}{2^2} - \frac{1}{3^2}\right) = \frac{R \times 5}{36} \qquad \dots (i)$$

For minimum wavelength of Balmer series,

$$\frac{1}{\lambda_{\min}} = R\left(\frac{1}{2^2} - \frac{1}{\infty}\right) = \frac{R}{4} \qquad \dots (ii)$$

$$\frac{\lambda_{\min}}{\lambda_{\max}} = \frac{R \times 5}{36} \times \frac{4}{R} = \frac{5}{9}$$

(a) Frequency, $v = RC \left[\frac{1}{n_1^2} - \frac{1}{n_2^2}\right]$ $v_1 = RC \left[1 - \frac{1}{\infty}\right] = RC$ $v_2 = RC \left[1 - \frac{1}{4}\right] = \frac{3}{4}RC$

 $v_3 = RC \left[\frac{1}{4} - \frac{1}{\infty}\right] = \frac{RC}{4}$ $v_1 - v_2 = v_3$ ⇒ 13 **(b)** Time period of electron, T= $\frac{4\varepsilon_0^2 n^3 h^3}{mZ^2 e^4}$:. $T \propto n^3$ $\frac{1}{\text{frequency}\left(f\right)} \propto n^3$:. or 14 (a) $E = E_2 - E_1 = -\frac{13.6}{2^2} - \left(-\frac{13.6}{1^2}\right) = 10.2 \text{ eV}$ 15 $\frac{1}{\lambda_{\min}} = R \left[\frac{1}{2^2} - \frac{1}{3^2} \right] = \frac{R \times 5}{36}$ $\frac{1}{\lambda_{\max}} = R \left[\frac{1}{2^2} - \frac{1}{\infty} \right] = \frac{R}{4}$ $\frac{\lambda_{\min}}{\lambda_{\max}} = \frac{R \times 5}{36} \times \frac{4}{R} = \frac{5}{9}$

16 **(d)**

Radius of orbit of electron in *n*th excited state of hydrogen

$$r = \frac{\varepsilon_0 h^2 n^2}{\pi m Z e^2}$$

$$\therefore \quad r \propto \frac{n^2}{Z} \qquad \dots (i)$$

$$\therefore \quad \frac{r_1}{r_2} = \frac{n_1^2}{n_2^2} \times \frac{Z_2}{Z_1}$$

But $r_1 = r_2$
So, $n_2^2 = n_1^2 \times \frac{Z_2}{Z_1}$
Here.

 $n_1 = 1$ (ground state of hydrogen), $Z_1 = 1$ (atomic number of hydrogen), $Z_2 = 4$ (atomic number of beryllium) $\therefore \qquad \sqrt{n_2^2} = (1)^2 \times \frac{4}{1}$ or $n_2^2 = 4$ or $n_2 = 2$

17 **(a)**

For spin-orbit interaction, only the case of $l \ge 1$ is important since spin orbit interaction vanishes for l=0.

19 **(b)**

Hydrogen atom normally stays in lowest energy state (n=1), where its energy is

$$E_1 = \frac{Rhc}{1^2} = -Rhc$$

On being ionized its energy becomes zero. Thus, ionization of hydrogen atom is

= energy after ionisation – energy before ionisation

$$= 0 - (-Rhc) = Rhc$$

= (1.097 × 10⁷ m⁻¹) (6.63 × 10 - 34 J -
s)(3 × 108 ms⁻¹)
= 21.8 × 10⁻¹⁹ J
= $\frac{21.8 \times 10^{-19}}{1.6 \times 10^{-19}} = 13.6 \text{ eV}$
20 (d)

In ground state TE = -13.6 eV

In first excited state, TE=-3.4 eV, *ie*,

10.2 eV above the ground state.

If ground state energy is taken as zero, the total energy in

First excited state = 10.2 eV

21 **(c)**

Given, ground state energy of hydrogen atom $E_1 = -13.6 \text{ eV}$ Energy of electron in first excited state (*ie*, *n*=2) $E_2 = -\frac{13.6}{(2)^2} \text{ eV}$ Therefore ,excitation energy

$$\Delta E = E_2 - E_1$$

= $-\frac{13.6}{4} - (-13.6) = -3.4 + 13.6 = 10.2 \text{ eV}$

22 **(c)**

Given,
$$E_2 - E_1 = 2.3 \text{ eV}$$

Or $v = \frac{E2 - E1}{h} = \frac{2.3 \times 1.6 \times 10^{-19}}{6.6 \times 10^{-34}}$
 $= 0.55 \times 10^{15}$
 $= 5.5 \times 10^{14} \text{ Hz}$

23 **(c)**

The Spectrum of light emitted by a luminous source is called the emission Spectrum. Neon bulb gives an emission Spectrum. The spectrum of the neon light has several bright lines. The red lines are bright. The emission Spectrum of an element is the exact opposite of its absorption Spectrum, that is, the frequencies emitted by a material when heated are the only frequencies that will be absorbed when it is lighted with a white light. Hence, neon sign does not produce an absorption Spectrum.

(a)

$$\frac{\lambda_L}{\lambda_B} = \left(\frac{\frac{1}{2^2} - \frac{1}{3^2}}{\frac{1}{1^2} - \frac{1}{2^2}}\right) = \frac{5/36}{3/4} = \frac{5}{27}$$

$$\frac{v_L}{v_B} = \frac{27}{5}$$

25 **(c)**

24

In Balmer series, n = 2

$$E = \frac{13.6}{2^2} = 3.4 \text{ eV}$$

26 **(b)**

$$r \propto n^2$$

$$\frac{r_f}{r_i} = \left(\frac{n_f}{n_i}\right)^2$$

$$\frac{21.2 \times 10^{-11}}{5.3 \times 10^{-11}} = \left(\frac{n}{1}\right)^2$$

$$n^2 = 4$$

$$n = 2$$

$$E = Rhc \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right]$$

$$E_{(4 \to 3)} = Rhc \left[\frac{1}{3^2} - \frac{1}{4^2} \right]$$

$$= Rhc \left[\frac{7}{9 \times 16} \right] = 0.05 Rhc$$

$$E_{(4 \to 2)} = Rhc \left[\frac{1}{2^2} - \frac{1}{4^2} \right]$$

$$= Rhc \left[\frac{3}{16} \right] = 0.2 Rhc$$

$$E_{(2 \to 1)} = Rhc \left[\frac{1}{(1)^2} - \frac{1}{(2)^2} \right]$$

$$= Rhc \left[\frac{3}{4} \right] = 0.75 Rhc$$

$$E_{(1 \to 3)} = Rhc \left[\frac{1}{(3)^2} - \frac{1}{(1)^2} \right]$$

$$= -\frac{8}{9} Rhc = -0.9 Rhc$$

Thus, transition III gives most energy. Transition I represents the absorption of energy.

28 (d)

For ground state, n = 1

For first excited state, n = 2

As $r \propto n^2$

 \therefore radius becomes 4 times.

29 (c)

$$v = \frac{c}{\lambda} = c.R\left(\frac{1}{n_1^2} - \frac{1}{n_2^2}\right)$$

 $= 3 \times 10^8 \times 10^7 \left(\frac{1}{2^2} - \frac{1}{4^2}\right) = \frac{9}{16} \times 10^{15} \text{Hz}$

30 **(d)**

Number of spectral lines obtained due to transition of electrons from *n*th orbit to lower orbit is,

$$N = \frac{n(n-1)}{2}$$

I case $6 = \frac{n_1(n_1-1)}{2}$
 $\Rightarrow n_1 = 4$
II case $3 = \frac{n_2(n_2-1)}{2}$
 $\Rightarrow n_2 = 3$

Velocity of electron in hydrogen atom in *n*th orbit

$$v_n \propto \frac{1}{n}$$
$$\frac{v_n}{v'_n} = \frac{n_2}{n_1}$$
$$\frac{n_6}{n_3} = \frac{3}{4}$$

31 **(a)**

 \Rightarrow

Ionization energy = $RchZ^2$

$$Z = 3$$
 for Li²⁺

: Ionization energy = $(3)^2 Rch = 9Rch$

32 **(c)**

According to law of conservation of energy, kinetic energy of α -particle

= potential energy of α -particle at distance of closest approach

$$ie, \quad \frac{1}{2}mv^{2} = \frac{1}{4\pi\varepsilon_{0}}\frac{q_{1}q_{2}}{r}$$

$$\therefore \quad 5MeV = \frac{9 \times 10^{9} \times (2e) \times (92e)}{r}$$

$$\left(\because \frac{1}{2}mv^{2} = 5 \text{ MeV} \right)$$

$$\Rightarrow \quad r = \frac{9 \times 10^{9} \times 2 \times 92 \times (1.6 \times 10^{-19})^{2}}{5 \times 10^{6} \times 1.6 \times 10^{-19}}$$

$$\therefore \quad r = 5.3 \times 10^{-14} \text{ m} \approx 10^{-12} \text{ cm}$$

$$(d)$$

$$As R \propto n^{2}; V \propto \frac{1}{n} \text{ and } E \propto \frac{1}{n^{2}}$$

$$\therefore VR \propto \left(\frac{1}{n} \times n^{2}\right) ie, VR \propto n$$

$$(a)$$

34 **(a)**
$$E_5 = -\frac{13.6}{5^2} \text{ eV} = -0.54 \text{ eV}$$

33

These photons will be emitted when electron makes transitions in the shown way.

So, these transitions is possible from two or three atoms.

From three atoms separately.

36 (a)

Radius of Bohr's orbit

$$R_n = \frac{A_0 n^2}{Z}$$

$$\Rightarrow R_n \propto n^2 \qquad (Z=\text{constant})$$

$$\therefore R_3 = 3^2 R = 9R$$

37 (c)

We have, $r \propto A^{1/3}$

$$\Rightarrow \qquad \frac{r_2}{r_1} = \left[\frac{A_2}{A_1}\right]^{1/3} = \left[\frac{206}{4}\right]^{1/3}$$
$$\therefore \qquad r_2 = 3 \left[\frac{206}{4}\right]^{1/3} = 11.16 \text{ fermi}$$

38 (b)

$$E_m = -\frac{13.6}{(3)^2} = 1.51$$

Minimum energy required by electron should be + 1.51 eV.

39 (d)

Electrostatic force = centripetal force

$$\frac{1}{4\pi\varepsilon_0} \frac{Ze^2}{r^2} = \frac{mv^2}{r}$$

$$\therefore \qquad v = \sqrt{\left(\frac{1}{4\pi\varepsilon_0} \frac{Ze^2}{mr}\right)}$$

$$= \sqrt{\frac{9 \times 10^9 \times (1.6 \times 10^{-19})^2}{(9.1 \times 10^{-31}) \times (0.1 \times 10^{-9})}}$$

$$= 1.59 \times 10^6 \text{ms}^{-1}$$

40 **(b)**

Least energy of photon of Balmer series is obtained when an electron jumps to 2nd orbit from 3rd orbit.

$$E = E_3 - E_2 = \left[\frac{-13.6}{3^2} - \left(\frac{-13.6}{2^2}\right)\right] eV$$
$$= 13.6 \left[\frac{1}{4} - \frac{1}{9}\right] = \frac{13.6 \times 5}{36} eV$$
$$= 1.89 eV$$

41 (a)

Angular momentum = $\frac{nh}{2\pi}ie$,

$$L \propto n \propto \sqrt{r}$$
 (:: $r \propto n^2$)

42 **(b)**

43 **(c)**

Number of spectral lines = $\frac{n(n-1)}{2} = \frac{4(4 \ 3)}{2} = 6$

According to Bohr, the wavelength emitted when an electron jumps from n_1 th to n_2 th orbit is

$$E = \frac{hc}{\lambda} = E_2 - E_1$$
$$\frac{1}{\lambda} = R\left(\frac{1}{n_1^2} - \frac{1}{n_2^2}\right)$$

For first line in Lyman series $\frac{1}{\lambda_I} = R\left(\frac{1}{1^2} - \frac{1}{2^2}\right) = \frac{3R}{4}$...(i)

For first line in Balmer series,

$$\left(-\frac{1}{3^2}\right) = \frac{5 R}{36}$$
 ...(ii)

λ)

$$\frac{1}{\lambda_B} = R\left(\frac{1}{2^2} - \frac{1}{3^2}\right) = \frac{5R}{36} \qquad \dots (ii)$$

From Eqs. (i) and (ii)
$$\therefore \qquad \frac{\lambda_B}{\lambda_L} = \frac{3R}{4} \times \frac{36}{5R} = \frac{27}{5}$$

$$\therefore \qquad \lambda_B = \frac{27}{5}\lambda \qquad (\because \lambda_L = 1)$$

44 **(b)**

When electric discharge is passed through mercury vapour lamp, eight to ten lines from red to violet are seen in its spectrum. In some line spectra there are only a few lines, while in many of them there are hundreds of them. Hence, mercury vapour lamp gives line spectra.

45 (d)

The moment of linear momentum is angular momentum

$$L = mvr = \frac{nh}{2\pi}$$

Here, $n=2$
$$\therefore \quad L = \frac{2h}{2\pi} = \frac{h}{\pi}$$

46 (c)

...

For an electron to remain orbiting around the nucleous, the angular momentum (L) should be an integral multiple of $h/2\pi$.

$$mvr = \frac{nh}{2\pi}$$

where n = principle quantum number of electron, and h = Planck's constant

47 (a)

ie,

The wavelength (λ) of lines is given by

$$\frac{1}{\lambda} = R\left(\frac{1}{1^2} - \frac{1}{n^2}\right)$$

For Lyman series, the shortest wavelength is for $n = \infty$ and longest is for n = 2.

$$\therefore \qquad \frac{1}{\lambda_s} = R\left(\frac{1}{1^2}\right) \qquad \dots (i)$$

$$\frac{1}{\lambda_L} = R\left(\frac{1}{1} - \frac{1}{2^2}\right) = \frac{3}{4}R \qquad \dots (ii)$$
Dividing Eq.(ii) by Eq. (i), we get
$$\frac{\lambda_L}{\lambda_s} = \frac{4}{3}$$
Given, $\lambda_s = 91.2$ nm
$$\Rightarrow \qquad \lambda_L = 91.2 \times \frac{4}{3} = 121.6$$
nm

48 (a)

According to kinetic interpretation of temperature

$$Ek = \left(=\frac{1}{2}mv^{2}\right) = \frac{3}{2}kT$$

Given: $E_{i} = 10.2 \text{ eV} = 10.2 \times 1.6 \times 10^{-19} \text{ J}$
So, $\frac{3}{2}kT = 10.2 \times 1.6 \times 10^{-19} \text{ J}$
Or $T = \frac{2}{3} \times \frac{10.2 \times 1.6 \times 10^{-19}}{k}$
 $= \frac{2}{3} \times \frac{10.2 \times 1.6 \times 10^{-19}}{1.38 \times 10^{-23}} = 7.9 \times 10^{4} \text{ K}$
(a)

49 (a)

1st excited state corresponds to n = 2

2nd excited state corresponds to n = 3

$$\frac{E_1}{E_2} = \frac{n_3^2}{n_2^2} = \frac{3^2}{2^2} = \frac{9}{4}$$

50 **(c)**

For wavelength

$$\frac{1}{\lambda} = RZ^2 \left(\frac{1}{n_1^2} - \frac{1}{n_2^2}\right)$$

Here, transition is same

So,
$$\lambda \propto \frac{1}{Z^2}$$

 $\frac{\lambda_H}{\lambda_{Li}} = \frac{(Z_{Li})^2}{(Z_H)^2} = \frac{(3)^1}{(1)^2} = 9$
 $\lambda_{Li} = \frac{\lambda_H}{9} = \frac{\lambda}{9}$

51 **(b)**

$$\Delta \lambda = 706 - 656 = 50 \text{ nm} = 50 \times 10^{-9} \text{m}, v = ?$$

As
$$\frac{\Delta\lambda}{\lambda} = \frac{v}{c}$$

 $\therefore v = \frac{\Delta\lambda}{\lambda} \times c = \frac{50 \times 10^{-9}}{656 \times 10^{-9}} \times 3 \times 10^{8}$
 $= 2.2 \times 10^{7} \text{ ms}^{-1}$

52 (d)

 $PE=2 \times total energy$

$$= 2(-1.5) \text{ eV} = -3.0 \text{ eV}$$

53 **(b)**

The wavelength of series for n is given by

$$\frac{1}{\lambda} = R\left(\frac{1}{2^2} - \frac{1}{n^2}\right)$$

were *R* is Rydberg's constant. For Balmer series n=3 gives the first member of series and n=4 gives the second member of series. Hence,

$$\frac{1}{\lambda} = R\left(\frac{1}{2^2} - \frac{1}{3^2}\right)$$
$$\frac{1}{\lambda_1} = R\left(\frac{5}{36}\right) \qquad \dots(i)$$

$$\frac{1}{\lambda_2} = R\left(\frac{1}{2^2} - \frac{1}{4^2}\right)$$
$$= R\left(\frac{12}{16 \times 4}\right) = \frac{3R}{16} \quad \dots (ii)$$
$$\Rightarrow \qquad \frac{\lambda_2}{\lambda_1} = \frac{16}{3} \times \frac{5}{36} = \frac{20}{27}$$
$$\lambda_2 = \frac{20}{27} \lambda \qquad (\because \lambda_1 = \lambda)$$

54 **(b)**

$$\Delta E = 13.6Z^2 \left(\frac{1}{n_1^2} - \frac{1}{n_2^2}\right)$$

= 13.6 (3)² $\left[\frac{1}{1^2} - \frac{1}{3^2}\right]$
= 108.8 eV

Electric field
$$E = \frac{V}{d}$$

$$d = \frac{V}{E}$$
$$= \frac{10.39}{1.5 \times 10^6} \text{ m}$$

56 **(d)**

$$\frac{1}{\lambda} = R\left(\frac{1}{1^2} - \frac{1}{2^2}\right)$$

$$\Rightarrow \quad \frac{1}{\lambda} = 1.097 \times 10^7 \times \frac{3}{4}$$

$$\therefore \quad \lambda = 1.215 \times 10^{-7} \text{m} = 1215 \text{ Å}$$

58 **(d)**

The magnetic moment of the ground state of an atom is

$$\mu = \sqrt{n(n+2)\mu_B}$$

Where, μ_B is gyromagnetic moment. Here, open sub-shell is half-filled with 5 electrons. *ie*, n=5

$$\therefore \qquad \mu = \sqrt{5(5+2).\,\mu_B} \\ = \mu_B \sqrt{35}$$

60 **(d)**

Circumference of *n*th Bohr orbit = $n \lambda$

61 (a)

According to Bohr's theory of hydrogen atom , angular momentum is quantized *ie*,

$$L = m v_n r_n = n \left(\frac{h}{2\pi}\right)$$

Or $L \propto n$ Radius of the orbit $r_n \propto \frac{n^2}{Z}$ Kinetic Energy $= \frac{kZ^2e^2}{2n^2}$ ie, $k \propto \frac{1}{n^2}$

62 **(a)**

Number of possible elements = $2(1^2 + 2^2 + 3^2 + 4^2)$ = 2(1 + 4 + 9 + 16) = 60

As
$$r \propto \frac{1}{m}$$

$$\therefore r_0 = \frac{1}{2}a_0$$

As $E \propto m$

$$\therefore E_0 = 2(-13.6) = -27.2 \text{ eV}$$

64 **(a)**

:.

$$U = eV = eV_0 \ln\left(\frac{r}{r_0}\right)$$
$$|F| = \left|-\frac{dU}{dr}\right| = \frac{eV_0}{r}$$

This force will provide the necessary centripetal force. Hence

$$\frac{mv^2}{r} = \frac{eV_0}{r}$$
$$v = \sqrt{\frac{eV_0}{m}} \qquad \dots (i)$$

Moreover

or

$$mvr = \frac{nh}{2\pi}$$
(ii)

Dividing Eq. (ii) by Eq. (i), we have

$$mr = \left(\frac{nh}{2\pi}\right) \sqrt{\frac{m}{eV_0}}$$
$$r_n \propto n$$

65 **(a)**

0r

Linear momentum = $mv = \frac{mcZ}{137 n}$ Angular momentum = $\frac{nh}{2 \pi}$ Given, Linear momentum × angular momentum $\propto n^x$ $\therefore \qquad \frac{mcZ}{137 n} \times \frac{nh}{2\pi} \propto n^x$ $n^0 \propto n^x$

x = 0

66 **(c)**

⇒

Series limit of Balmer series is given by

$$\frac{1}{\lambda_{\min}} = R\left(\frac{1}{2^2} - \frac{1}{\infty}\right) = \frac{R}{4}$$
$$R = \frac{4}{\lambda_{\min}} = \frac{4}{6400} = \frac{1}{1600} \text{\AA}^{-1}$$

Series limit of Paschen series would be

$$\frac{1}{\lambda_{\min}} = R\left(\frac{1}{3^3} - \frac{1}{\infty}\right) = \frac{R}{9}$$
$$\lambda_{\min} = \frac{9}{R} = \frac{9}{1/1600} = 14400\text{\AA}$$

67 **(a)**
$$E = E_2 - E_1 = -\frac{13.6}{2^2} - \left(-\frac{13.6}{1^2}\right) = 10.2 \text{ eV}$$

68 **(d)**

Given , $E_n = \frac{13.6}{n^2}$ eV Energy of photon ejected when electron jumps from n=3 state to n=2 state is given by

$$\Delta E = E_3 - E_2$$

$$\therefore \qquad E_3 = -\frac{13.6}{(3)^2} \text{ eV} = -\frac{13.6}{9} \text{ eV}$$

$$E_2 = -\frac{13.6}{(2)^2} \text{ eV} = -\frac{13.6}{4} \text{ eV}$$

So,
$$\Delta E = E_3 - E_2 = -\frac{13.6}{9} - \left(-\frac{13.6}{4}\right)$$

$$= 1.9 \text{ eV}$$

(approximately)

69 **(c)**

Centripetal force=force of attraction of nucleus on electron

$$\frac{mv^2}{a_0} = \frac{1}{4\pi\varepsilon_0} \frac{e^2}{a_0^2}$$
$$v = \frac{e}{\sqrt{4\pi\varepsilon_0 m a_0}}$$

From $mvr = \frac{nh}{2\pi}$, $v = \frac{nh}{2\pi mr}$

Acceleration,
$$a = \frac{v^2}{r} = \frac{n^2 h^2}{4\pi^2 m^2 r^2(r)} = \frac{h^2}{4\pi^2 m^2 \mu^3}$$

71 **(d)**

In the first case, energy emitted,

$$E_1 = 2E - E = E$$

In the second case, energy emitted

$$E_2 = \frac{4E}{3} - E = \frac{E}{3}$$

As
$$E_3$$
 is $\frac{1}{3}$ rd, λ_2 must be 3 times, *ie*, 3λ

72 **(d)**

 $E = E_1/n^2$ Energy used for excitation is 12.75 eV *ie*, (-13.6 + 12.75) eV = -0.85 eV Energy levels of H-atom The photon of energy 12.75 eV can excite the fourth level of H-atom Therefore, six lines will be emitted.

$$\begin{pmatrix} n\frac{(n-1)}{2} \text{ lines} \end{pmatrix}.$$
73 (c)

$$\frac{\lambda_l}{\lambda_s} = \frac{R\left(\frac{1}{1^2} - \frac{1}{\infty}\right)}{R\left(\frac{1}{1^2} - \frac{1}{2^2}\right)} = \frac{4}{3}$$

$$\lambda_l = \frac{4}{3}\lambda_s = \frac{4}{3} \times 911.6 = 1215.4 \text{ Å}$$

74 (a)

For Lyman series, $n_1 = 1, n_2 = \infty$

$$\frac{1}{\lambda} = R\left(\frac{1}{n_1^2} - \frac{1}{n_2^2}\right) = R\left(\frac{1}{1^2} - \frac{1}{\infty}\right) = R$$

75 **(b)**

The series end of Lyman series corresponds to transition from $n_i = \infty$ to $n_f = 1$, corresponding to the wavelength $\frac{1}{(\lambda_{\min})_{\rm L}} = R \left[\frac{1}{1} - \frac{1}{\infty} \right] = R$ $(\lambda_{\min})_{\rm L} = \frac{1}{R} = 912 \text{ Å}$ \Rightarrow ...(i) For last line of Balmer series $\frac{1}{(\lambda_{\min})_{\rm B}} = R \left[\frac{1}{(2)^2} - \frac{1}{(\infty)^2} \right] = \frac{R}{4}$ $(\lambda_{\min})_{\rm B} = \frac{4}{R} = 3636 \,\text{\AA}$...(ii) \Rightarrow Dividing Eq.(i) by Eq. (ii) .we get

 $\frac{(\lambda_{\min})_{L}}{(\lambda_{\min})_{B}} = 0.25$

76 (a)

Frequency of revolution of electron,

$$f = \frac{v}{2\pi r} = \frac{2.2 \times 10^6}{2\pi (5 \times 10^{-11})} = 7.0 \times 10^{15} \text{ Hz}$$

Current associated, $i = q f$
$$= (1.6 \times 10^{-19})(7.0 \times 10^{15})$$
$$= 11.2 \times 10^{-4} \text{ A} = 1.12 \text{ mA}$$

77 (d)

$$(r_m) = \left(\frac{m^2}{z}\right)(0.53\text{\AA}) = (n \times 0.3)\text{\AA}$$

$$\therefore \qquad \frac{m^2}{z} = n$$

$$m=5 \text{ for } \log \text{Fm}^{257} \text{ (the outermost shell)}$$

(the outermost shell) and m=5 for $_{100}$ Fm²⁵⁷ z = 100

1

:.
$$n = \frac{(5)^2}{100} = \frac{1}{4}$$

78 (a)

$$\frac{1}{\lambda_{\max}} = R \left[\frac{1}{(1)^2} - \frac{1}{(2)^2} \right]$$

$$\Rightarrow \quad \lambda_{\max} = \frac{4}{3R} \approx 1213 \text{ Å}$$

and
$$\frac{1}{\lambda_{\min}} = R \left[\frac{1}{(1)^2} - \frac{1}{\infty} \right]$$

$$\Rightarrow \quad \lambda_{\min} = \frac{1}{R} \approx 910 \text{ Å}$$

79 **(b)**

 $v = 2.18 \times 10^{6} \text{ ms}^{-1}, r = 0.528 \times 10^{6} \text{ ms}^{-1}$ Given, 10^{-10} m

Acceleration of electron moving round the nucleus

$$a = \frac{(2.18 \times 10^6)^2}{0.528 \times 10^{-10}} \approx 9 \times 10^{22} \text{ ms}^{-2}$$

81 **(b)**

Energy of electron in *n*th energy level in hydrogen atom

$$= \frac{-13.6}{n^2} \text{ eV}$$

Here, $\frac{-13.6}{n^2} = -3.4 \text{ eV}$

So, n=2Angular momentum from Bohr's principle

$$= n \frac{h}{2\pi} = \frac{2 \times 6.626 \times 10^{-34}}{2 \times 3.14}$$
$$= 2.11 \times 10^{-34} \text{ Js}$$

82 **(b)**

÷

:..

The series in U-V region is Lyman series. Longest wavelength corresponds to, minimum energy which occurs in transition from n=2 to n=1.

$$122 = \frac{\frac{1}{R}}{\left(\frac{1}{1^2} - \frac{1}{2^2}\right)} \qquad \dots (i)$$

The smallest wavelength in the infrared region corresponds to maximum energy of Paschen series.

$$\lambda = \frac{\frac{1}{R}}{\left(\frac{1}{3^2} - \frac{1}{\infty}\right)} \qquad \dots \text{(ii)}$$

Solving Eqs.(i) and (ii), we get $\lambda = 823.5 \text{ nm}$

83 (d)

:.

For first line of Lyman series,

$$n_1 = 1 \text{ and } n_2 = 2$$

$$\frac{1}{\lambda_1} = R\left(\frac{1}{1^2} - \frac{1}{2^2}\right) = R\left(1 - \frac{1}{4}\right) = \frac{3R}{4}$$

For first line of Paschen Series

$$\therefore \quad \frac{1}{\lambda_2} = R\left(\frac{1}{3^2} - \frac{1}{4^2}\right) = R\left(\frac{1}{9} - \frac{1}{16}\right) = \frac{7R}{144}$$
$$\therefore \quad \frac{\lambda_1}{\lambda_2} = \frac{7R}{144} \times \frac{4}{3R} = \frac{7}{108}$$

84 (c)

The wavelength of different members of Balmer series are given by

$$\frac{1}{\lambda} = R_{\rm H} \left[\frac{1}{2^2} - \frac{1}{n_i^2} \right]$$
, where $n_i = 3, 4, 5, \dots$

The first member of Balmer series (H_{α}) corresponds to n_i =3.It has maximum energy and hence the longest wavelength. Therefore ,wavelength of ${\rm H}_{\alpha}$ line (or longest wavelength)

$$\frac{1}{\lambda_1} = R_{\rm H} \left[\frac{1}{2^2} - \frac{1}{3^2} \right]$$

= 1.097 × 10⁷ $\left(\frac{5}{36} \right)$
or $\lambda_1 = \frac{36}{5 \times 1.097 \times 10^7} = 6.563 \times 10^{-7} \,\rm{m}$
 $n = 6563 \,\rm{\AA}$

The wavelength of the Balmer series limit corresponds to $n_i = \infty$ and has got shortest wavelength.

Therefore, wavelength of Balmer series limit is given by

$$\frac{1}{\lambda_{\infty}} = R_{\rm H} \left[\frac{1}{2^2} - \frac{1}{\infty^2} \right] = 1.097 \times 10^7 \times \frac{1}{4}$$

or $\lambda_{\infty} = \frac{4}{1.097 \times 10^7} = 3.646 \times 10^{-7} \,\rm{m}$
 $= 3646 \rm{\AA}$

Only 4861 Å is between the first and last line of the Balmer series.

85 **(a)**

Incandescent electric lamp produces continuous emission spectrum whereas mercury and sodium vapour give line emission spectrum. Polyatomic substances such as H_2 , CO_2 and $KMnO_4$ produces band absorption spectrum.

86 **(c)**

The potential energy of hydrogen atom

$$E_n = \frac{13.6}{n^2} \,\mathrm{eV}$$

So, the potential energy in second orbit is

$$E_2 = -\frac{13.6}{2^2} \text{ eV}$$

$$E_2 = -\frac{13.6}{4} \text{ eV} = -3.4 \text{ eV}$$

Now, the energy required to remove an electron from second orbit to infinity is

 $U = E_{\infty} - E_2$ [From work-energy theorem and $E_{\infty} = 0$] $\Rightarrow \qquad U = 0 - (-3.4) \text{ eV}$

$$0r \qquad U = 3.4 \text{ eV}$$

Hence, the required energy is 3.4 eV.

87 **(c)**

Current, $I = 6.6 \times 10^{15} \times 1.6 \times 10^{-19}$ = 10.5 × 10⁻⁴ A Area $A = \pi R^2 = 3.142 \times (0.528)^2 \times 10^{-20} m^2$ So, magnetic moment $M = IA = 10.5 \times 10^{-4} \times 10^{-4}$

3.142

 $(0.528)^2 \times 10^{-20}$ = 10 × 10⁻²⁴ = 10⁻²³ units 88 (c)

For Pfund series,
$$\frac{1}{\lambda_s} = R \left(\frac{1}{5^2} - \frac{1}{(\infty)^2} \right) = \frac{R}{25}$$

 $\lambda_s = 25/R$
 $\frac{1}{\lambda_l} = R \left(\frac{1}{5^2} - \frac{1}{6^2} \right) = R \left(\frac{36 - 25}{25 \times 36} \right)$
 $\lambda_l = \frac{25 \times 36}{11R}$
 $\therefore \frac{\lambda_l}{\lambda_s} = \frac{25 \times 36}{11R} \times \frac{R}{25}$
 $= \frac{36}{11}$
(d)
 $\frac{R_1}{R_2} = \frac{n_1^2}{n_2^2} = \frac{1}{4} \therefore \frac{n_1}{n_2} = \frac{1}{2}$

$$\frac{T_1}{T_2} = \left(\frac{n_1}{n_2}\right)^3 = \left(\frac{1}{2}\right)^3 = \frac{1}{8}$$

90 (d)

92

89

$$n = 3 (-1.51 \text{ eV})$$

$$E_1 \downarrow E_2 \quad n = 2 (-3.4 \text{ eV})$$

$$n = 1 (-13.6 \text{ eV})$$

$$E_1 = -13.6 - (-3.4) = -10.2 \text{ eV}$$

$$E_2 = -3.4 - (-13.6) = +10.2 \text{ eV}$$

$$E_3 = -0.136 - (-1.51) = -1.374 \text{ eV}$$

$$E_4 = -1.51 - (-0.136) = -1.374 \text{ eV}$$
When an electron makes transition from higher energy level having energy $E_2(n_2)$ to lower energy level having energy $E_1(n_1)$, then a photon of frequency v is emitted.
Here, for emission line E_1 is maximum hence, it will have the highest frequency emission line.

93 **(**

From
$$mvr = \frac{nh}{2\pi}$$

 $v = \frac{nh}{2\pi mr}$
Acceleration, $a = \frac{v^2}{r} = \frac{n^2h^2}{4\pi^2m^2r^3}$
 $= \frac{h^2}{4\pi^2m^2r^3}$ $(n = 1)$

94 (c) $\lambda \propto n^2$

$$\therefore \qquad \frac{\lambda_{\text{Lyman}}}{\lambda_{\text{Balmer}}} = \left(\frac{1}{2}\right)^2 = \frac{1}{4} = 0.25$$

95 **(b)**

The minimum energy needed to ionise an atom is called ionisation energy. The potential difference through which an electron should be accelerated to acquire this much energy is called ionisation potential.

 $(E_2)_H - (E_1)_H = 10.2 \text{ eV}$ or $\frac{(E_1)_H}{4} - (E_1)_H = 10.2 \text{ eV}$ $\therefore \qquad (E_1)_H = -13.6 \text{ eV}$ Hence ,ionisation potential energy is $= (E_{\infty})_H - (E_1)_H = 13.6 \text{ eV}$

: Ionisation potential =
$$13.6 \text{ V}$$

96 **(c)**

As U = 2E, K = -EAlso, $E = -\frac{13.6}{n^2}$ eV Hence, *K* and *U* change as four fold each.

97 (c)

The energy of first excitation of sodium is $E = hv = \frac{hc}{\lambda}$

Where *h* is Planck's constants, *v* is frequency, *c* is speed of light and λ is wavelength.

$$E = \frac{6.63 \times 10^{-34} \times 3 \times 10^{8}}{5896 \times 10^{-10}}$$

$$E = 3.37 \times 10 - 19 \text{ J}$$

Also since $1.6 \times 10 - 19 \text{ J} = 1 \text{ eV}$

$$\therefore \qquad E = \frac{3.37 \times 10^{-19}}{1.6 \times 10^{-19}} \text{ eV}$$

$$E = 2.1 \text{ eV}$$

Hence ,corresponding first excitation potential is 2.1 V.

98 **(b)**

The radius of the orbit of the electron in the *n*th excited state

$$r_e = \frac{n^2 4\pi\varepsilon_0 h^2}{4\pi^2 m Z e^2}$$
rst excited state

For the first excited state n = 2, Z = 1

$$r' = \frac{4\varepsilon_0 h^2}{\pi m e^2}$$

For the ground state of hydrogen atom

$$n = 1, Z = 1$$
$$r'' = \frac{h^2 \varepsilon_0}{\pi m e^2}$$

The ratio of radius

$$\frac{r'}{r''} = \frac{4}{1}$$

The ratio of area of the electron orbit for hydrogen atom

$$\frac{A'}{A''} = \frac{4\pi (r')^2}{4\pi (r'')^2}$$
$$\frac{A'}{A''} = \frac{16}{1}$$

99 (d)

÷

Kinetic energy of electron

$$K = \frac{Ze^2}{8\pi\varepsilon_0 r}$$

Potential energy of electron

$$U = \frac{1}{4\pi\varepsilon_0 r} \frac{Ze^2}{r}$$

∴ Total energy

$$E = K + U = \frac{Ze^2}{8\pi\varepsilon_0 r} - \frac{Ze^2}{4\pi\varepsilon_0 r}$$

Or
$$E = \frac{Ze^2}{8\pi\varepsilon_0 r}$$

Or
$$E = -K$$

Or
$$K = -E = -(-3.4)$$

Or
$$= 3.4 \text{ eV}$$

100 **(d)**

As is known,

$$PE = -2KE$$

ie,
$$E_P = -2E_K$$
 or $\frac{E_P}{E_k} = -2$

101 **(b)**

or

For Balmer series, $n_f = 2$ and $n_i = 3, 4, 5,$ Frequency, of 1st spectral line of Balmer series

$$f = RZ^{2} c \left(\frac{1}{2^{2}} - \frac{1}{3^{2}}\right)$$

$$f = RZ^{2} c \times \frac{5}{36} \qquad \dots(i)$$

Frequency, of 2nd spectral line of Balmer series

$$f' = RZ^2 c \left(\frac{1}{2^2} - \frac{1}{4^2}\right)$$

or $f' = RZ^2 c \times \frac{3}{16}$ (ii)

Form eqs. (i) and (ii), we have

$$\frac{f}{f'} = \frac{20}{27}$$

: $f' = \frac{27}{20} f = 1.35 f$

102 **(d)**

Let a particle of change q having velocity vapproaches Q upto a closest distance r and if the velocity becomes 2v, the closest distance will be r. The law of conservation of energy yields, Kinetic energy of particle=electric potential energy between them at closest distance of approach.

0r

0r

 $\frac{1}{2}mv^2 = \frac{1}{4\pi\varepsilon_0}\frac{Q_q}{r}$

$$\frac{1}{2}mv^2 = k\frac{Qq}{r} \qquad \dots(i)$$

$$\left(k = \text{constant} = \frac{1}{4\pi\varepsilon_0}\right)$$

$$\frac{1}{2}m(2v)^2 = k\frac{Qq}{r} \qquad \dots(ii)$$

and

Dividing Eq. (i) by Eq.(ii),

$$\frac{\frac{1}{2}mv^{2}}{\frac{1}{2}m(2v)^{2}} = \frac{\frac{kQq}{r}}{\frac{kQq}{r'}}$$

$$\Rightarrow \qquad \frac{1}{4} = \frac{r'}{r}$$

$$\Rightarrow \qquad r' = \frac{r}{4}$$

103 (a)

⇒

⇒

The positively charged nucleus, has electrons revolving around it in stationary orbits. The Coulomb's force provides the necessary centripetal force attraction to keep the electrons is orbits.

104 (a)

Wavelength emitted (λ) is given by

$$\frac{1}{\lambda} = R\left(\frac{1}{n_1^2} - \frac{1}{n_2^2}\right) = R\left(\frac{1}{2^2} - \frac{1}{3^2}\right) = \frac{5R}{36}$$
$$\lambda = \frac{36}{5R}$$

105 (d)

Infrared radiation corresponds to least value of $\left(\frac{1}{n_1^2} - \frac{1}{n_2^2}\right)$, *ie*, from Paschen, Brackett and Pfund series. Thus the transition corresponds to $5 \rightarrow 3$. 106 (c)

In hydrogen atom, $E_n = \frac{Rhc}{n^2}$

Also, $E_n \propto m$, where *m* is the mass of the electron. Here, the electron has been replaced by a particle, whose mass is double the mass of an electron. Therefore, this hypothetical atom, energy is *n*th orbit will be given by

$$E_n = -\frac{2Rhc}{n^2}$$

The longest wavelength (or minimum energy)

photon will correspond to the transition of particle from n = 3 to n = 2

$$\Rightarrow \frac{hc}{\lambda_{\max}} = E_3 - E_2 = 2Rhc \left[\frac{1}{2^2} - \frac{1}{3^2}\right] = 2Rhc \times \frac{5}{36}$$
$$\therefore \quad \lambda_{\max} = \frac{hc}{\frac{5}{18}Rhc} = \frac{18}{5R}$$

107 (c)

For Balmer series, $n_1 - 2$, $n_2 = 3$ for 1st line and $n_2 = 4$ for second line

$$\frac{\lambda_1}{\lambda_2} = \left(\frac{\frac{1}{2^2} - \frac{1}{4^2}}{\frac{1}{2^2} - \frac{1}{3^2}}\right) = \frac{3/16}{5/16} = \frac{3}{16} \times \frac{36}{5} = \frac{27}{20}$$
$$\lambda_2 = \frac{20}{27}\lambda_1 = \frac{20}{27} \times 6561 = 4860 \text{ Å}$$

108 (b)

Number of spectral lines
$$=$$
 $\frac{n(n-1)}{2} = \frac{3(3-1)}{2} = 3$

109 (b)

No. of neutrons in $C^{12} = 12 - 6 = 6$ No. of electrons in $C^{14} = 14 - 6 = 8$ 110 (c)

Energy of helium ions.

$$E_n = -\frac{13.6 Z^2}{n^2} \text{ eV}$$

In minimum position, $n=1$
For He⁺, $Z = 2$
 $E = \frac{-13.6 \times (2)^2}{1} \text{ eV}$
 $E = 54.4 \text{ eV}$

111 (a)

Radius of orbit

$$r_n = \frac{n^2 h^2}{4 \pi^2 k^2 m_e^2}$$

$$r_n \propto n^2$$
Energy $E = -Rch \frac{Z^2}{n^2}$
 $E \propto \frac{1}{n^2}$

113 (a)

$$\frac{\lambda_B}{\lambda_L} = \frac{\left(\frac{1}{1^2} - \frac{1}{2^2}\right)}{\left(\frac{1}{2^2} - \frac{1}{3^2}\right)} = \frac{3/4}{5/36} = \frac{27}{5}$$

$$\lambda_L = \frac{5}{27} \lambda_B = \frac{5}{27} \times 6563 = 1215.4 \text{ Å}$$

114 **(b)**

Ionization energy corresponding to ionization potential

= -13.6 eVPhoton energy incident = 12.1 eVSo,the energy of electron in excited state

$$= -13.6 + 12.1 = -1.5 \text{ eV}$$

ie, $E_n = -\frac{13.6}{n^2} \text{ eV}$
 $-1.5 = -\frac{-13.6}{n^2}$
 $\Rightarrow \qquad n^2 = \frac{-13.6}{-1.5} \approx 9$
 $\therefore \qquad n = 3$

ie, energy of electron in excited state corresponds to third orbit.

The possible spectral lines are when electron jumps from orbit 3rd to 2nd; 3rd to 1st and 2nd to 1st. Thus, 3 spectral lines are emitted.

115 (d)

Solar Spectrum is an example of line absorption Spectrum.

116 **(a)**

For hydrogen or hydrogen type atoms

$$\frac{1}{\lambda} = RZ^2 \left(\frac{1}{n_f^2} - \frac{1}{n_i^2} \right)$$

In the transition from $ni \rightarrow nf$

$$\lambda \propto \frac{1}{Z^2 \left(\frac{1}{n_f^2} - \frac{1}{n_i^2}\right)} \\ \frac{\lambda_2}{\lambda_1} = \frac{Z_1^2 \left(\frac{1}{n_f^2} - \frac{1}{n_i^2}\right)}{Z_2^2 \left(\frac{1}{n_f^2} - \frac{1}{n_i^2}\right)_2} \\ \lambda_2 = \frac{\lambda_1 Z_1^2 \left(\frac{1}{n_f^2} - \frac{1}{n_i^2}\right)}{Z_2^2 \left(\frac{1}{n_f^2} - \frac{1}{n_i^2}\right)_2}$$

Substituting the values, we have

$$= \frac{(6561)(1)^2 \left(\frac{1}{2^2} - \frac{1}{3^2}\right)}{(2)^2 \left(\frac{1}{2^2} - \frac{1}{4^2}\right)} = 1215 \text{ Å}$$

117 (d)

 $E = E_4 - E_3$

$$= -\frac{13.6}{4^2} - \left(-\frac{13.6}{3^2}\right) = -0.85 + 1.51$$

$$= 0.66 \text{ eV}$$

118 **(d)**

Nucleus Contains only the neutrons and protons. 119 **(a)**

 $N = \frac{n(n-1)}{2}$

Case I

$$N = 3$$

$$\therefore \qquad 3 = \frac{n_1(n_1 - 1)}{2}$$

$$\Rightarrow \qquad n_1^2 - n_1 - 6 = 0$$

$$(n_1 - 3)(n_1 + 2) = 0$$

$$n_1 = 3$$

Case II

$$N = 6$$

$$6 = \frac{n_2(n_2 - 1)}{2}$$

$$n_2^2 - n_2 - 12 = 0$$

$$\Rightarrow (n_2 - 4)(n_2 + 3) = 0$$

$$n_2 = 4, n_2 = -3$$
Again, as n_2 is always positive

$$\therefore \qquad n_2 = 4$$
Velocity of electron $v = \frac{Ze^2}{2\varepsilon_0 hn}$

$$\therefore \qquad \frac{v_1}{v_2} = \frac{n_2}{n_1}$$

$$\Rightarrow \qquad \frac{v_1}{v_2} = \frac{4}{3}$$

120 (c)

According to the Bohr's theory the wavelength of radiations emitted from hydrogen atom given by

$$\frac{1}{\lambda} = R\left[\frac{1}{n_1^2} - \frac{1}{n_2^2}\right] \Rightarrow \lambda = \frac{n_1^2 n_2^2}{(n_2^2 n_1^2)R}$$

For maximum wavelength if $n_1 = n$, then $n_2 = n + 1$

$$\therefore \lambda$$
 is maximumfor $n_2 = 3$ and $n_1 = 2$.

121 **(d)**

In Raman effect, Stokes' lines are spectral lines having lower frequency or greater wavelength than that of the original line.

122 **(b)**

As ${}_{55}Cs^{133}$ has larger size among the four atoms given, thus, electrons present in the outermost orbit will be away from the nucleus and the electrostatic force experienced by electrons due to nucleus will be minimum. Therefore, the energy required to liberate electrons from outer orbit will be minimum in case of ${}_{55}Cs^{133}$.

123 **(a)**

For *n*th Bohr orbit,

$$r = \frac{\varepsilon_0 n^2 h^2}{\pi m Z e^2}$$
de-Broglie wavelength

$$\lambda = \frac{h}{mv}$$

Ratio of both r and λ , we have

$$\frac{r}{\lambda} = \frac{\varepsilon_0 n^2 h^2}{\pi m Z e^2} \times \frac{mv}{h}$$
$$= \frac{\varepsilon_0 n^2 hv}{\pi Z e^2}$$
But $v = \frac{Z e^2}{2h\varepsilon_0 n}$ for *n*th orbit Hence, $\frac{r}{\lambda} = \frac{n}{2\pi}$

124 **(a)**

From Bohr's model of atom, the wave number is given by

$$\frac{1}{\lambda} = R\left(\frac{1}{n_1^2} - \frac{1}{n_2^2}\right)$$

where *R* is Rydberg's constant and n_1 and n_2 the energy levels.

Given,
$$n_1=2, n_2=3$$

 $\therefore \qquad \frac{1}{\lambda} = R\left(\frac{1}{2^2} - \frac{1}{3^2}\right)$
 $\frac{1}{\lambda} = R\left[\frac{5}{36}\right]$
 $\Rightarrow \qquad \lambda = \frac{36}{5R}$

This gives corresponding wavelength of Balmer series.

125 **(c)**

According to Bohr's theory of atom electrons can revolve only in those orbits in which their angular momentum is an integral multiple of $\frac{h}{2\pi}$, where *h* is

Planck's constant.

Angular momentum = $mvr = \frac{2h}{2\pi}$

Hence, angular momentum is quantized. The energy of electron in *n*th orbit of hydrogen atom,

$$E = \frac{Rhc}{n^2}$$
 joule

Thus, it is obvious that the hydrogen atom has some characteristics energy state. In fact this is true for the atom of each element, *ie*, each atom has its energy quantized.

Hence, both energy and angular momentum are quantised.

126 **(c)**

In hydrogen atom, the lowest orbit corresponds to minimum energy.

127 **(a)**

When a γ – ray photon is emitted then atomic number and mass number remains unchanged.

131 **(b)**

Here ,area of circular orbit of electron A = πr^2 ,current due to motion of electron

$$i = \frac{e}{t} = \frac{e}{2\pi r/v} = \frac{ev}{2\pi r}$$

Magnetic moment = iA
$$= \frac{eV}{2\pi r} \times \pi r^{2}$$
$$= \frac{evr}{2}$$

132 **(b)**

From Bohr's formula, the wave number $\left(\frac{1}{\lambda}\right)$ is given by

$$\frac{1}{\lambda} = Z^2 R \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$$

where Z is atomic number, R the Rydberg's constant and n the quantum number.

$$\Rightarrow \qquad \lambda \propto \frac{1}{Z^2}$$

Atomic number of lithium is 3, of helium is 2 and of hydrogen is 1.

$$\lambda_{\text{Li}^{2+}}:\lambda_{\text{He}^{+}}:\lambda_{\text{H}} = \frac{1}{(3)^{2}}:\frac{1}{(2)^{2}}:1$$
$$= \frac{1}{2}:\frac{1}{4}:1$$

133 **(c)**

...

Total energy of electron in excited state = -13.6 + 12.1 = -1.5 eV, which corresponds to third orbit. The possible spectral lines are when electron jumps from orbit 3rd to 2nd; 3rd to 1st and 2nd to 1st

134 **(c)**

The given type of spectrum has coloured bands of light on a dark-ground. One end of each band is sharp and bright and the brightness gradually decreases towards the other end. Band spectrum is obtained from the molecules in the gaseous state of matter. For example, when discharge is passed through oxygen, nitrogen or carbon dioxide, the light emitted from these gases give band spectrum.

135 **(d)**

Impact parameter $b \propto \cot \frac{\theta}{2}$ Here *b*=0, hence, $\theta = 180^{\circ}$

136 **(a)**

Electron angular momentum about the nucleus is an integer multiple of $\frac{h}{2\pi}$, where *h* is Planck's constant.

$$I\omega = mvr$$
$$= \frac{nh}{2\pi}$$
$$r \propto n$$

137 **(a)**

When an atom comes down from some higher energy level to the first energy level then emitted lines form of Lyman series.

$$\frac{1}{\lambda_L} = R\left(\frac{1}{1^2} - \frac{1}{n^2}\right)$$

where *R* is Rydberg's constant.

When an atom comes from higher energy level to the second level, then Balmer series are obtained.

$$\frac{1}{\lambda_B} = R\left(\frac{1}{2^2} - \frac{1}{n^2}\right)$$

For maximum wavelength

$$n=2, \frac{1}{\lambda_L} = R\left(1 - \frac{1}{(2)^2}\right) = R\left(1 - \frac{1}{4}\right) = \frac{3R}{4} \quad \dots (i)$$

$$n = 3, \frac{1}{\lambda_B} = R\left(\frac{1}{(2)^2} - \frac{1}{(3)^2}\right) = R\left(\frac{5}{36}\right) \quad \dots (ii)$$

Dividing Eq. (ii) by Eq. (i), we get

 $\frac{\lambda_L}{\lambda_B} = \frac{5}{27}$

138 (d)

$$\bar{v} = R\left[\frac{1}{2^2} - \frac{1}{4^2}\right] = \frac{3R}{4} = 20397 \text{ cm}^{-1}$$

For the same transaction in He atom (Z = 2)

$$\bar{v} = RZ^2 \left[\frac{1}{2^2} - \frac{1}{4^2} \right] = \frac{3R \times 2^2}{4}$$

= 20397 × 4 = 81588 cm⁻¹

139 **(d)**

Fraunhofer lines are certain dark lines observed in the otherwise continuous spectrum of the sum. According to Fraunhofer, these dark lines represent the absorption spectrum of the vapours surrounding the sun. The sun consists of a hot central core called photosphere, which is at an extremely high temperature = 1.4×10^7 K. it is surrounded by less dense, luminous and highly compressed gases. They are said to form sun's atmosphere. A continuous spectrum

containing radiations of all wavelengths is emitted by the sun's atmosphere . surrounding this , is another sphere of vapours and gases at a comparatively lower temperature (6000 K). At the time of total solar eclipse, photosphere is covered. Emission lines from vapours of elements in chromosphere appear as bright lines. So, all Fraunhofer lines are changed into bright coloured lines.

140 **(d)**

The angular momenta of an electron is

$$mvr = \frac{nh}{2\pi}$$

141 **(a)**

When an atom comes down from some higher energy level to the second energy (n=2), then the lines of spectrum are obtained in visible part and give the Balmer series.

$$\frac{1}{\lambda} = R\left(\frac{1}{2^2} - \frac{1}{n^2}\right), n = 3,4,5,\dots$$

For second line $n = 4$
$$\therefore \qquad \frac{1}{\lambda} = R\left(\frac{1}{2^2} - \frac{1}{4^2}\right) = \frac{3R}{16}$$
$$\lambda = \frac{16}{3R}$$
$$R = 1.097 \times 10^7 \text{ m}^{-1}$$
$$\lambda = \frac{16}{3 \times 1.097 \times 10^7}$$
$$= 4860 \times 10^{-10} \text{ m}$$
$$\Rightarrow \qquad \lambda = 4860 \text{ Å}$$

which corresponds to colour blue.

142 **(c)**

$$r_0 = \frac{(Ze)(2e)}{4\pi\varepsilon_0(E)} = \frac{2 \times 92(1.6 \times 10^{-19})^2 \times 9 \times 10^9}{5 \times 1.6 \times 10^{-13}}$$

 $= 0.53 \times 10^{-14} \text{m} \approx 10^{-12} \text{cm}$

143 **(b)**

Wavelength (λ) during transition from n_2 to n_1 is given by

$$\frac{1}{\lambda} = R \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right]$$

$$\Rightarrow \frac{1}{\lambda_{3 \to 2}} = R \left[\frac{1}{2^2} - \frac{1}{3^2} \right] = \frac{5R}{36}$$
and $\frac{1}{\lambda_{4 \to 2}} = r \left[\frac{1}{2^2} - \frac{1}{4^2} \right] = \frac{3R}{16}$

$$\therefore \quad \frac{\lambda_{4 \to 2}}{\lambda_{3 \to 2}} = \frac{20}{27}$$

$$\Rightarrow \quad \lambda_{4 \to 2} = \frac{20}{27} \lambda_0$$
(c)
As energy $\propto \frac{1}{4}$,

Therefore, energy corresponding to 1 Å = 2.5 \times 5000 eV

145 **(c)**

144

The energy of *n*th orbit of hydrogen like atom is,

$$E_n = -13.6 \frac{Z^2}{n^2}$$

Here, Z = 11 for Na atom. 10 electrons are removed already. For the last electron to be removed n=1.

$$\therefore E_n = \frac{-13.6 \times (11)^2}{(1)^2} \text{ eV}$$
$$= -13.6 \times (11)^2 \text{ eV}$$

146 (d)

In Lyman series, wavelength emitted is given by

 $\frac{1}{\lambda} = R \left[\frac{1}{1^2} - \frac{1}{n^2} \right]$ where, *n* = 2,3,4..... and R = Rydberg's constant $= 1.097 \times 10^{7} \text{m}^{-1}$ For maximum wavelength n=2 $\frac{1}{\lambda_{\text{max}}} = 1.097 \times 10^7 \left[\frac{1}{1^2} - \frac{1}{2^2} \right]$:. $\frac{1}{\lambda_{\max}} = 1.097 \times 10^7 \left[\frac{1}{1} - \frac{1}{4}\right]$ $= 1.097 \times 10^7 \times \frac{3}{4}$ $\lambda_{\max} = \frac{4}{3.291 \times 10^7}$ ⇒ = 1216 Å = 121.6 m $\lambda_{max} = 122 nm$... 147 (d) $R = \frac{2\pi^2 m k^2 e^4}{ch^3} = \left(\frac{1}{4\pi\varepsilon}\right)^2 \frac{2\pi^2 m e^4}{ch^3}$

148 **(c)**

The first photon will excite the hydrogen atom (in ground state) in first excited state (as

 $E_2 - E_1 - 10.2$ eV). Hence, during de-excitation a photon of 10.2 eV will be released. The second photon of energy 15 eV can ionize the atom. Hence the balance energy *ie*,

(15 - 13.6) eV = 1.4 eV is retained by the electron.

Therefore, by the second photon an electron of energy 1.4 eV will be released.

149 **(b)**

The Kinetic energy of the electron in the nth state

$$K = \frac{mZ^2 e^4}{8\varepsilon_0^2 h^2 n^2}$$

The total energy of the electron in the *n*th state

$$T = -\frac{mZ^2 e^4}{8\varepsilon_0^2 h^2 n^2}$$
$$\frac{K}{T} = -1$$

150 (d)

:.

$$\frac{1}{\lambda} = R \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right]$$

$$n_1 = 2, n_2 = 4$$

$$\frac{1}{\lambda} = R \left[\frac{1}{4} - \frac{1}{16} \right]$$

$$= R \left[\frac{4-1}{16} \right] = \frac{3R}{16}$$

$$\lambda = \frac{16}{3R}$$

151 (c)
1amu (or 1 u)=1.6 ×
$$10^{-27}$$
 kg
40 u=40 × 1.6 × 10^{-27} kg

 $=\frac{6.64 \times 10^{24}}{40 \times 1.6 \times 10^{-27}}=10^{50}$ 152 (a) For minimum wavelength $n_2 = \infty$, $n_1 = n$. $\lambda_{\min} = \frac{n^2}{R} = \frac{1}{107} = 1000 \text{ Å}$ So. 153 (c) From Hubble 's law $Z \propto r$ Where $Z \rightarrow$ red shift, $r \rightarrow$ distance of the galaxy $Z = \frac{d\lambda}{\lambda} = \frac{v}{c} = \frac{\text{speed of galaxy}}{\text{speed of light}}$ Also, Given $d\lambda = 401.8 - 393.3 = 8.5$ nm. $\lambda = 393.3 \, \text{nm},$ $Z = \frac{8.5}{393.3} = 0.0216$ Also v = cZ $= 3 \times 10^8 \times 0.0216$ $= 64.8 \times 10^{5} \text{ms}^{-1}$ Since $1 \text{km} = 10^3 \text{m}$, therefore $v = 6480 \text{ kms}^{-1}$ 154 (d) Lowest orbit is n = 1. Three lower orbits correspond to n = 1.2.3 $\therefore E_1 = \frac{13.6}{1^2} = 13.6 \text{ eV},$ $E_2 = \frac{13.6}{2^2} = 3.4 \text{ eV}, E_3 = \frac{13.6}{3^2} = 1.5 \text{ eV}$ 155 (a) $\therefore n = 5$ $r_n = (0.53 \times 10^{-10}) \frac{n^2}{7}$ $=\frac{0.53\times10^{-10}\times5^2}{52}=2.5\times10^{-11}\mathrm{m}$ 156 (a) $n_f = 1, n_i = n$ Here, $\frac{1}{\lambda} = R\left(\frac{1}{1^2} - \frac{1}{n^2}\right)$ $\Rightarrow \qquad \frac{1}{\lambda} = R\left(1 - \frac{1}{n^2}\right) \qquad \dots (i)$ or $\frac{1}{\lambda R} = 1 - \frac{1}{n^2} \text{ or } \frac{1}{n^2} = 1 - \frac{1}{\lambda R}$ or $n = \sqrt{\frac{\lambda R}{\lambda R - 1}}$ or 157 (b)

Number of atoms in earth

Since spectrum of an oil flame consists of continuously varying wavelength in a definite wavelength range, it is an example for continuous emission spectrum.

