

Single Correct Answer Type

A resistor 30 Ω , inductor of reactance 10 Ω and capacitor of reactance 10 Ω are connected in series to an 1. AC voltage source $e = 300\sqrt{2} \sin(\omega t)$. The current in the circuit is a) 10√2 A b) 10 A d) $30/\sqrt{11}$ A c) $30\sqrt{11}$ A The natural frequency (ω_0) of oscillations in *L* - *C* circuit is given by 2. c) $\frac{1}{\sqrt{LC}}$ a) $\frac{1}{2\pi} \frac{1}{\sqrt{LC}}$ b) $\frac{1}{2\pi}\sqrt{LC}$ d) \sqrt{LC} An ac source of angular frequency ω is fed across a resistor r and a capctior C in series. The current 3. registered is *I*. If the frequency of source is changed to $\omega/3$ (maintaining the same voltage), the current in the circuit is found to be halved. Calculate the ratio of reactance to resistance at the original frequency ω b) $\sqrt{\frac{2}{5}}$ c) $\sqrt{\frac{1}{5}}$ d) $\left|\frac{4}{5}\right|$ When a DC voltage of 200 V is applied to a coil of self-inductance $\left(\frac{2\sqrt{3}}{\pi}\right)$ H, a current of 1 A flows through it. 4. But by replacing DC source with AC source of 200 V, the current in the coil is reduced to 0.5 A. Then the frequency of AC supply is a) 100 Hz b) 75 Hz c) 60 Hz d) 50 Hz The power factor of good choke coil is 5. a) Nearly zero b) Exactly zero c) Nearly one d) Exactly one A resistor of $R = 6\Omega$, an inductor of L = 1 H and a capacitor of $C = 17.36 \mu$ F are connected in series with 6. an AC source. Find the Q-factor. a) 3.72 b) 40 c) 2.37 d) 80 7. Power dissipated in an *LCR* series circuit connected to an a.c. source of *emf E* is b) $\frac{E^2 \sqrt{R^2 + \left(L\omega - \frac{1}{C\omega}\right)^2}}{\frac{R}{\sqrt{R^2 + \left(L\omega - \frac{1}{C\omega}\right)^2}}}$ d) $\frac{\sqrt{R^2 + \left(L\omega - \frac{1}{C\omega}\right)^2}}{\sqrt{R^2 + \left(L\omega - \frac{1}{C\omega}\right)^2}}$ a) $E^2 R / \left| R^2 + \left(L\omega - \frac{1}{C\omega} \right)^2 \right|$ c) $\frac{E^2 \left[R^2 + \left(L\omega - \frac{1}{C\omega} \right)^2 \right]}{R}$ A virtual current of 4A and 50 Hz flows in an ac circuit containing a coil. The power consumed in the coil is 8. 240 W. If the virtual voltage across the coil is 100 V its inductance will be a) $\frac{1}{3\pi}H$ c) $\frac{1}{7\pi}H$ d) $\frac{1}{9\pi}H$ b) $\frac{1}{5\pi}H$ A lamp consumes only 50% of peak power in an a.c. circuit. What is the phase difference between the 9. applied voltage and the circuit current c) $\frac{\pi}{\Lambda}$ b) $\frac{\pi}{3}$ a) $\frac{\pi}{6}$ d) $\frac{\pi}{2}$ 10. A vertical ring of radius r and resistance R falls vertically. It is in contact with two vertical rails which are joined at the top, figure. The rails are without friction and resistance. There is a horizontal uniform magnetic field of magnitude B perpendicular to the plane of the ring and the rails. When the speed of the

ring is *v*, the current is the section *PQ* is

a) Zero b)
$$\frac{2 R r v}{R}$$
 c) $\frac{4 R r v}{R}$ d) $\frac{8 B r v}{R}$

11. Voltage *V* and current *i* in AC circuit are given by

$$V = 50 \sin(50t) \text{ volt}$$

$$i = 50 \sin(50t + \frac{\pi}{3}) \text{mA}$$
The power dissipated in circuit is
a) 5.0 W b) 2.5 W c) 1.25 W d) zero
1. In an *LCR* series resonant circuit which one of the following cannot be the expression for the Q-factor
a) $\frac{\omega L}{R}$ b) $\frac{1}{\omega CR}$ c) $\sqrt{\frac{L}{CR}}$ d) $\frac{R}{LC}$
1.3. Which one of the following curves represents the variation of impedance (*Z*) with frequency *f* in series
LCR circuit
a) $\frac{2}{1}$ b) $\frac{1}{\omega CR}$ c) $\frac{1}{\sqrt{2}}$ d) $\frac{1}{2}$ d)

a) $\frac{VR_1R_2}{\sqrt{R_1^2 + R_2^2}} \text{ at } t = 0 \text{ and } \frac{1}{R_2} \text{ at } t = \infty$ b) $\frac{V}{R_2} \text{ at } t = 0 \text{ and } \frac{V(R_1 + R_2)}{R_1R_2} \text{ at } t = \infty$ c) $\frac{V}{R_2} \text{ at } t = 0 \text{ and } \frac{VR_1R_2}{\sqrt{R_1^2 + R_2^2}} \text{ at } t = \infty$ d) $\frac{V(R_1 + R_2)}{R_1R_2} \text{ at } t = 0 \text{ and } \frac{V}{R_2} \text{ at } t = \infty$

- 19. In a circuit, the value of the alternating current is measured by hot wire ammeter as 10 *ampere*. Its peak value will be
- a) 10 *A*b) 20 *A*c) 14.14 *A*d) 7.07 *A*20. In an electrical circuit *R*, *L*, *C* and an a.c. voltage source are all connected in series. When *L* is removed from the circuit, the phase difference between the voltage and the current in the circuit is π/3. If instead, *C* is removed from the circuit, the phase difference is again π/3. The power factor of the circuit is

a) 1/2 b) $1/\sqrt{2}$ c) 1 d) $\sqrt{3}/2$

21.	The power factor of an A	AC circuit having resistance	R and inductance L (conne	cted in series) and an
	angular velocity ω is			
	a) R/ωL	b) $R/(R^2 + \omega^2 L^2)^{1/2}$	c) ω <i>L/R</i>	d) $R/(R^2 - \omega^2 L^2)^{1/2}$
22.	A uniformly wound sol	enoidal coil of self inductar	nce 1.8×10^{-4} H and resis	tance 6 Ω is broken up into
	two identical coils. The	se identical coils are then c	onnected in parallel across	a 12 V battery of negligible
	resistance. The time cor	nstant of the current in the c	ircuit and the steady state o	current through battery is
	a) 3 $\times 10^{-5}$ s, 8 A	b) 1.5 $\times 10^{-5}$ s, 8 A	c) 0.75 $\times 10^{-4}$ s, 4 A	d) 6 $\times 10^{-5}$ s, 2 A
23.	An alternating voltage is	s connected in series with a	resistance R and an induct	ance <i>L</i> . If the potential drop
	across the resistance is	200 V and across the induct	cance is 150 V, then the app	lied voltage is
	a) 350 <i>V</i>	b) 250 <i>V</i>	c) 500 <i>V</i>	d) 300 V
24.	The number of turns in	a secondary coil is twice the	e number of turns in primar	ry. A leclanche cell of 1.5 V is
	connected across the pr	imary. The voltage across s	econdary is	
	a) 1.5 V	b) 3.0 V	c) 240 V	d) Zero
25.	When the rate of change	e of current is unity, induced	d emf is equal to	
	a) Thickness of coil	b) Number of turns in co	il c) Coefficient of self-	d) Total flux linked with
			induction	coil
26.	A coil of wire of certain	radius has 100 turns and a	self inductance of 15 mH. T	he self inductance of a
	second similar coil of 50)0 turns will be		
	a) 75 mH	b) 375 mH	c) 15 mH	d) None of these
27.	The coefficient of induc	tion of a choke coil is 0.1 <i>H</i> a	nd resistance is 12Ω . If it is	connected to an alternating
	current source of freque	ency 60 <i>Hz</i> , then power fact	or will be	
	a) 0.32	b) 0.30	c) 0.28	d) 0.24
28.	A square loop of side a	placed in the same plane as	a long straight wire carry	ing a current <i>i</i> . The centre of

28. A square loop of side a placed in the same plane as a long straight wire carrying a current *i*. The centre of the loop is at a distance r from the wire, where r >> a, figure. The loop is moved away from the wire with a constant velocity v. The induced emf in the loop is

i d) $\frac{\mu_0 i a^2 v}{2 \pi r^2}$ a) $\frac{\mu_0 i a v}{2 \pi r}$ b) $\frac{\mu_0 i a^3 v}{2 \pi r^3}$ c) $\frac{\mu_0 i v}{2 \pi}$ 29. Voltage and current in an ac circuit are given by $V = 5 \sin\left(100\pi t - \frac{\pi}{6}\right)$ and $I = 4 \sin\left(100\pi t + \frac{\pi}{6}\right)$ a) Voltage leads the current by 30° b) Current leads the voltage by 30° c) Current leads the voltage by 60° d) Voltage leads the current by 60° 30. A coil is wound on a core of rectangular cross-section. If all the linear dimensions of core are increased by a factor 2 and number of turns per unit length of coil remains same, the self-inductance increases by a factor of a) 16 b) 8 c) 4 d) 2 31. The phase angle between *e*.m.f. and current in *LCR* series as circuit is c) $\frac{\pi}{2}$ b) $\frac{\pi}{4}$ a) 0 to $\frac{\pi}{2}$ d) π 32. The primary winding of a transformer has 200 turns and its secondary winding has 50 turns. If the current in the secondary winding is 40 A, the current in the primary is b) 80 A d) 800 A a) 10 A c) 160 A 33. The initial phase angle for $i = 10 \sin \omega t + 8 \cos \omega t$ is

	a) $\tan^{-1}\left(\frac{4}{5}\right)$ b) $\tan^{-1}\left(\frac{5}{4}\right)$	c) $\sin^{-1}\left(\frac{4}{5}\right)$	d) 90°
34.	An inductor is connected to an AC source. When co	ompared to voltage , the curi	ent in the lead wires
	a) Is ahead in phase by π	b) Lags in phase by π	
	c) Is ahead in phase by $\frac{\pi}{2}$	d) Lags in phase by $\frac{\pi}{2}$	
35	An ac supply gives $30 V r m$ s which passes through	r_{2}	wer dissinated in it is
55.	An ac supply gives 50 V 1.1.1.3. which passes through $2 \to 00.\sqrt{2} W$	(c) $AE_{1}/2$ W	
26	a) $90\sqrt{2}$ W b) $90\sqrt{2}$ W	CJ 45V Z W	uj 45 W
50.	in a series LCK circuit, operated with an ac of angu	$a_{2}1/2$	
	a) $[R^2 + (L\omega - C\omega)^2]^{1/2}$	b) $\left[R^2 + \left(L\omega - \frac{1}{C\omega} \right)^2 \right]^{-1}$	
	$(1) \left[p^{2} + (1 - 1)^{2} \right]^{-1/2}$	$d \left[\left(p \right)^{2} + \left(p \right)^{2} \right]$	1/2 1
	$C \left[\frac{R^2 + (L\omega - \overline{C\omega})}{C\omega} \right]$	$u_{J}\left[(R\omega)^{2} + (L\omega - \frac{1}{C\omega})\right]$]
37.	An <i>LCR</i> series circuit is at resonance. Then		
	a) The phase difference between current and volta	ige is 90°	
	b) The phase difference between current and volta	ige is 45°	
	c) Its impedance is purely resistive		
	d) Its impedance is zero		
38.	The voltage of domestic ac is 220 <i>volt</i> . What does	the represent	
	a) Mean voltage	b) Peak voltage	
	c) Root mean voltage	d) Root mean square vol	tage
39.	In an ideal transformer, the voltage is stepped dow	vn from 11 kV to 220 V. If th	e primary current be 100 A,
	the current in the secondary should be		
	a) 5 kA b) 1 kA	c) 0.5 kA	d) 0.1 kA
40.	If an 8 Ω resistance and 6 Ω reactance are present is will be	in an ac series circuit then the	ne impedance of the circuit
	a) 20 <i>ohm</i> b) 5 <i>ohm</i>	c) 10 ohm	d) 14√ <u>2</u> ohm
41.	An alternating current of frequency ' f ' is flowing in	n a circuit containing a resis	tance <i>R</i> and a choke <i>L</i> in
	series. The impedance of this circuit is		
	a) $R + 2\pi f L$ b) $\sqrt{R^2 + 4\pi^2 f^2 L^2}$	c) $\sqrt{R^2 + L^2}$	d) $\sqrt{R^2 + 2\pi f L}$
42.	The process by which ac is converted into dc is known	own as	
	a) Purification b) Amplification	c) Rectification	d) Current amplification
43.	The frequency of an alternating voltage is 50 cycle	es/sec and its amplitude is 1	20 <i>V</i> . Then the <i>r</i> . <i>m</i> . <i>s</i> . value
	of voltage is		
	a) 101.3V b) 84.8V	c) 70.7 <i>V</i>	d) 56.5 <i>V</i>
44.	An inductor ($L = 100 \text{ mH}$), a resistor ($R = 100 \Omega$)) and a battery ($E = 100 \text{ V}$)	are initially connected in
	series as shown in figure. After a long time the batt	tery is disconnected after sh	ort circuiting the points A
	and <i>B</i> .		
	The current in the circuit 1 ms after the short circu	iit is	
	>		
	R≷		
	E		
	a) 1/e A b) e A	c) 0.1 A	d) 1 A
45.	$\frac{R}{r}$ has the dimensions to		
	L		

a) Time b) Mass c) Length d) Frequency 46. The instantaneous values of current and emf in an ac circuit are $I = 1/\sqrt{2} \sin 314 t$ amp and E = $\sqrt{2}$ sin(314 *t* - $\pi/6$) *V* respectively. The phase difference between *E* and *I* will be b) $-\pi/3$ rad a) $-\pi/6 rad$ c) $\pi/6$ rad d) $\pi/3$ rad 47. The variation of the instantaneous current (*I*) and the instantaneous *e*mf (*E*) in a circuit is as shown in fig. Which of the following statements is correct 0 a) The voltage lags behind the current by $\pi/2$ b) The voltage leads the current by $\pi/2$ c) The voltage and the current are in phase d) The voltage leads the current by π 48. In a *L* – *R* circuit, the value of *L* is $\left(\frac{0.4}{\pi}\right)$ H and the value of *R* is 30 Ω. If in the circuit, an alternating emf of 200 V at 50 cycle/s is connected, the impedance of the circuit and current will be d) 50 Ω, 4 A a) 11.4 Ω. 17.5 A b) 30.7 Ω. 6.5 A c) 40.4 Ω, 5 A 49. In an A. C. circuit the current a) Always leads the voltage b) Always lags behind the voltage d) May lead or lag behind or be in phase with the c) Is always in phase with the voltage voltage 50. A 100 V, AC source of frequency 500 Hz is connected to an *L*-*C*-*R* circuit with L=8.1 mH, C = 12.5 μ F, R = 10 Ω all connected in series as shown in figure. What is the quality factor of circuit? a) 2.02 b) 2.5434 c) 20.54 d) 200.54 51. A constant voltage at different frequencies is applied across a capacitance *C* as shown in the figure. Which of the following graphs correctly depicts the variation of current with frequency Signal Generator С V b) a) c) d) 52. If the value of potential in an ac circuit is 10V, then the peak value of potential is d) $\frac{20}{\sqrt{2}}$ a) $\frac{10}{\sqrt{2}}$ b) $10\sqrt{2}$ c) $20\sqrt{2}$ 53. In the circuit shown in figure switch S is closed at time t = 0. The charge which passes through the battery in one time constant is b) $\frac{eL}{ER}$ c) $\frac{eR^2E}{I}$ d) $E\left(\frac{L}{R}\right)$

- 54. A transformer is used to light 140 W, 24 V lamp from 240 V AC mains. The current in the mains is 0.7 A. The efficiency of transformer is nearest to
 - a) 90% b) 80% c) 70% d) 60%
- 55. In an L R circuit to a battery, the rate at which energy is stored in the inductor is plotted against time during the growth of current in the circuit. Which of the following, figure best represents the resulting curve?

	0	time		
56.	An ac source is rate	d at 220V, 50 <i>Hz</i> . The tir	ne taken for voltage to change	from its peak value to zero is
	a) 50 <i>sec</i>	b) 0.02 <i>sec</i>	c) 5 <i>sec</i>	d) $5 \times 10^{-3} sec$
57.	The maximum volta	age in DC circuit is 282V.	The effective voltage in AC circ	cuit will be
	a) 200 V	b) 300 V	c) 400 V	d) 564 V
58.	The capacity of a pu	are capacitor is 1 <i>farad</i> .	In dc circuits, its effective resis	stance will be
	a) Zero	b) Infinite	c) 1 <i>ohm</i>	d) 1/2 ohm
59.	An inductive circuit	t contains a resistance of	10 ohm and an inductance of 2	2.0 <i>henry</i> . If an ac voltage of
	120 volt and freque	ency of 60 Hz is applied	to this circuit, the current in th	e circuit would be nearly
	a) 0.32 <i>amp</i>	b) 0.16 <i>amp</i>	c) 0.48 <i>amp</i>	d) 0.80 <i>amp</i>
60.	The time taken by a	an alternating current of	50 Hz in reaching from zero to	its maximum value will be
	a) 0.5 s	b) 0.005 s	c) 0.05 s	d) 5 s
61.	If coefficient of self	induction of a coil is 1 H,	, an emf of 1 V is induced, if	
	a) Current flowing	is 1 A	b) Current variation	rate is 1 As ⁻¹
	c) Current of 1 A flo	ows for one sec	d) None of the above	
62.	A parallel plate cap	acitor <i>C</i> with plates of un	nit area and separation <i>d</i> is fille	d with a liquid of dielectric
	constant $K = 2$. The	e level of liquid is $\frac{d}{3}$ initial	lly. Suppose the liquid level dec	creases at a constant speed v , the
	time constant as a f	unction of time <i>t</i> is.		

a)
$$\frac{\mu_0 N}{\pi t}$$
 i b) $\mu_0 NLi$ c) $\frac{\mu_0}{t} NLi$ d) $\mu_0 \frac{N^2}{L}i$
72. In an *LR*-circuit, the inductive reactance is equal to the resistance *R* of the circuit. An e.m.f. $E = E_0 \cos(\omega t)$ is applied to the circuit. The power consumed in the circuit is
a) $\frac{E_0^2}{R}$ b) $\frac{E_0^2}{2R}$ c) $\frac{E_0^2}{4R}$ c) $\frac{E_0^2}{4R}$ d) $\frac{E_0^2}{8R}$
73. In an *AC* circuit, the current lags behind the voltage by $\pi/3$. The components of the circuit are
a) *R* and *L* b) *L* and *C* c) *R* and *C* d) Only *R*
74. The instantaneous value of current in an *AC*. circuit is $I = 2\sin(100 \pi t + \pi/3) A$. The current will be
maximum for the first time at
a) $t = \frac{1}{100} s$ b) $t = \frac{1}{200} s$ c) $t = \frac{1}{400} s$ d) $t = \frac{1}{600} s$
75. A resistor *R*, an inductor *L* and a capactor *C* are connected in series to an oscillator of frequency *n*. If the
resonant frequency is *n_r*, then the current lags behind voltage, when
a) $n = 0$ b) $n < n_r$ c) $n = n_r$ d) $n > n_r$
76. During a current change from 2 A to 4 A in 0.05 s, 8 V of emf is developed in a coil. The coefficient of self-
induction is
a) 0.1 H b) 0.2 H c) 0.4 H d) 0.8 H
77. In an *L* – *R* circuit shown in above figure switch S is closed at time $t = 0$. If *e* denotes the induced emf
across inductor and *i*, the current in the circuit at any time *t*, then which of the following graphs, figure
shows the variation of *e* with *i*?
a $\int \frac{e}{10} \int \frac{1}{10} \int \frac{1}{10}$

a) $R = 1 \text{ k} \Omega$, $C = 10 \mu \text{F}$ b) $R = 1 \text{ k} \Omega$, $C = 1 \mu \text{F}$ c) $R = 1 \text{ k} \Omega$, L = 10 H d) $R = 1 \text{ k} \Omega$, L = 1 H85. If a current *I* given by $I_0 \sin\left(\omega t - \frac{\pi}{2}\right)$ flows in an ac circuit across, which an ac potential of $E = E_0 \sin \omega t$ has been applied, then the power consumption *P* in the circuit will be a) $P = \frac{E_0 I_0}{\sqrt{2}}$ b) $P = \sqrt{2}E_0I_0$ c) $P = \frac{E_0I_0}{2}$ d) P = 086. A resistance *R*, inductance *L* and capacitor *C* are connected in series to an oscillator of frequency *f*. If resonant frequency is *f*, then current will lag the voltage when a) f = 0b) $f < f_r$ c) $f = f_r$ d) $f > f_r$ 87. A generator produces a voltage that is given by $V = 240 \sin 120 t$, where t is in seconds. The frequency and r.m.s. voltage are a) 60 *Hz* and 240 V b) 19 *Hz* and 120 V c) 19 Hz and 170 V d) 754 Hz and 70 V 88. A 50 V AC is applied across an R-C (series) network. The rms voltage across the resistance is 40 V, then the potential across the capacitance would be c) 30 V d) 40 V a) 10 V b) 20 V 89. An alternating voltage $e = 200 \sin 100 t$ is applied to a series combination $R = 30 \Omega$ and an inductor of 400 mH. The power factor of the circuit is a) 0.01 b) 0.2 c) 0.05 d) 0.6 90. Is it possible a) Yes b) No c) Cannot be predicted d) Insufficient data to reply 91. The figure shows variation of *R*, *X*_L and *X*_C with frequency *f* in a series *L*, *C*, *R* circuit. Then for what frequency f in a series L, C, R circuit. Then for what frequency point, the circuit is inductive АВ С a) A b) *B* c) C d) All points

92. In the inductive circuit given in the figure, the current rises after the switch is closed. At instant when the current is 15 *mA*, then potential difference across the inductor will be

a) Zero b) 240V c) 180V d) 60V93. If *L* and *R* represent inductance and resistance respectively, then dimension of *L/R* will be a) $[ML^0T^0]$ b) $[M^0L^0T^{-1}]$ c) $[M^0L^0T^{-2}]$ d) $[M^0LT^{-2}]$

94. Two identical incandescent light bulbs are connected as shown in figure. When the circuit is an AC voltage source of frequency f, which of the following observation will be correct

a) Both bulbs will glow alternatively

b) Both bulbs will glow with same brightness provided $f = \frac{1}{2\pi} \sqrt{(1/LC)}$

- c) Bulb b_1 will light up initially and goes off, bulb b_2 will be ON constantly
- d) Bulb b_1 will blink and bulb b_2 will be ON constantly
- 95. When a coil carrying a steady current is short circuited, the current in it, decreases η time in time t_0 . The time constant of the circuit is

a)
$$\frac{t_0}{\ln \eta}$$
 b) $\frac{t_0}{\eta - 1}$ c) $t_0 \ln \eta$ d) $\frac{t_0}{\eta}$

96. Following figure shows an ac generator connected to a "block box" through a pair of terminals. The box contains possible *R*, *L*, *C* or their combination, whose elements and arrangements are not known to us. Measurements outside the box reveals t

 $e = 75\sin(\sin\omega t) volt,$

- $i = 1.5 \sin(\omega t + 45^\circ) amp$. The wrong statement is
- a) There must be a capacitor in the box
- b) There must be an inductor in the box
- c) There must be a resistance in the box
- d) The power factor is 0.707
- 97. An L C R circuit of $R = 100 \Omega$ is connected to an AC source 100 V, 50 Hz. The magnitude of phase difference between current and voltage is 30°. The power dissipated in the L C R circuit is a) 50 W b) 86.6 W c) 100 W d) 200 W
- 98. In a circuit *L*, *C* and *R* are connected in series with an alternating voltage source of frequency *f*. The current leads the voltage by 45°. The value of *C* is

a)
$$\frac{1}{2\pi f (2\pi f L + R)}$$
 b) $\frac{1}{\pi f (2\pi f L + R)}$ c) $\frac{1}{2\pi f (2\pi f L - R)}$ d) $\frac{1}{\pi f (2\pi f L - R)}$

99. If the total charge stored in the *LC* circuit is Q_0 , then for $t \ge 0$

- a) The charge on the capacitor is $Q = Q_0 \cos\left(\frac{\pi}{2} + \frac{t}{\sqrt{LC}}\right)$
- b) The charge on the capacitor is $Q = Q_0 \cos\left(\frac{\pi}{2} \frac{t}{\sqrt{LC}}\right)$ c) The charge on the capacitor is $Q = -LC \frac{d^2Q}{dt^2}$

d) The charge on the capacitor is
$$Q = \frac{1}{\sqrt{LC}} \frac{d^2Q}{dt^2}$$

- 100. In L C R series circuit the resonance condition in terms of capacitive reactance (X_C) and inductive reactance (X_L) is
 - a) $X_C + X_L = 0$ b) $X_C = 0$ c) $X_L = 0$ d) $X_C X_L = 0$

101. What is the average value of the AC voltage over one complete cycle?

- c) $\frac{2V_{\text{max}}}{2}$ d) $\frac{V_{\text{max}}}{2}$ b) V_{max} 102. A current of 10 A in the primary coil of a circuit is reduced to zero. If the coefficient f mutual inductance is 3H and emf induced in secondary coil is 30 kV, time taken for the change of current is d) 10^{-2} s a) 10³ s b) 10^2 s c) 10^{-3} s
- 103. A square metal wire loop *PQRS* of side 10 cm and resistance 1 Ω is moved with a constant velocity v_c in a uniform magnetic field of induction B = 2 Wbm², as shown in figure. The magnetic field lines are perpendicular to the plane of the loop (directed into the paper). The loop is connected to network *ABCD* of resistors each of value 3 Ω . The resistance of the lead wires *SB* and *RD* are negligible. The speed of the loop so as to have a steady current of mA in the loop is

a) 2 ms⁻¹

a) Zero

c) 20 ms⁻¹

d) 200 ms⁻¹

104. A conducting rod PQ of length L = 1.0 m is moving with a uniform speed v = 2.0 ms⁻¹ in a uniform magnetic field = 4.0 T directed into the paper. A capacitor of capacity $C = 10 \,\mu F$ is connected as shown in figure. Then,

a) $q_A = -80\mu C$ and $q_B = +80\mu C$

c)
$$q_A = 0 = q_B$$

b) $q_A = +80\mu C$ and $q_B = -80\mu C$

d) Charge stored in the capacitor increases expotentially with time

- 105. For a large industrial city with much load variations, the DC generator should be a) Series wound b) Shunt wound
 - c) Mixed wound d) Anv
- 106. The self inductance of the motor of an electric fan is 10*H*. In order to impart maximum power at 50 Hz, it should be connected to a capacitance of
- a) 1 μF b) 2 *mF* c) 4 *mF* d) 8 *mF* 107. In L - C - R circuit, an alternating emf of angular frequency ω is applied then the total impedance will be

a)
$$\left[(R\omega)^2 + \left(L\omega - \frac{1}{C\omega} \right)^2 \right]^{1/2}$$

b) $\left[R^2 + \left(L\omega - \frac{1}{C\omega} \right)^2 \right]^{-\frac{1}{2}}$
c) $\left[R^2 + \left(L\omega - C\omega \right)^2 \right]^{1/2}$
d) $\left[R^2 + \left(L\omega - \frac{1}{C\omega} \right)^2 \right]^{1/2}$

- $108.\frac{2.5}{\pi}\mu F$ capacitor and 3000-*ohm* resistance are joined in series to an ac source of 200 *volt* and $50sec^{-1}$ frequency. The power factor of the circuit and the power dissipated in it will respectively be
 - c) 0.6, 4.8 W a) 0.6, 0.06 W d) 4.8, 0.6 W b) 0.06, 0.6 W
- 109. For series LCR circuit, wrong statement is
 - a) Applied e.m.f. and potential difference across resistance are in same phase
 - b) Applied *e*.m.f. and potential difference at inductor coil have phase difference of $\pi/2$
 - c) Potential difference at capacitor and inductor have phase difference of $\pi/2$
 - d) Potential difference across resistance and capacitor have phase difference of $\pi/2$
- 110. An ideal coil of 10 H is connected in series with a resistance of 5 Ω and a battery of 5 V. 2s after the

a) $(1 - e)$ b) e					
	c) <i>e</i> ⁻¹	d) $(1 - e^{-1})$			
111. If a current of 3 A flowing in the primary coil is redu	ced to zero in 0.001 s, the i	nduced emf in between the			
two coils is 15000 V, the coefficient of mutual induction is					
a) 0.5 H b) 5 H	c) 1.5 H	d) 10 H			
112. The power factor of <i>LCR</i> circuit at resonance is	-) -				
a) 0.707 b) 1	c) Zero	d) 0.5			
113 At time $t = 0$ a battery of 10 V is connected across n	oints A and Bin the given o	ircuit If the canacitors have			
no charge initially at what time (in second) does the	voltage across them becou	ne 4 V?			
(Take $\ln 5 - 1.6 \ln 3 - 1.1$)	voltage del 055 them been				
(1 are in 5 - 1.0, in 5 - 1.1)					
$2M \Omega$ $2\mu F$					
a) 2 b) 3	c) 2.5	d) ³			
		$\frac{1}{2}$			
114. An air cored coil has a self-inductance of 0.1 H. A sof	t iron core of relative perm	eability 100 is 1/10 th. The			
value of self-inductance now becomes					
a) 1 mH b) 10 mH	c) 0.4 H	d) 0.8 H			
115. The armature of a shunt wound motor can with stan	d current up to 8A before i	t overheats and it damaged.			
If the armature resistance is 0.5 Ω , minimum back er	nf that must be motor is co	nnected to a 120 V line is			
a) 120 V b) 116 V	c) 124 V	d) 4 V			
116. In the circuit shown below what will be the readings	of the voltmeter and amm	eter? (Total impedance of			
circuit $Z = 100 \Omega$)					
300 V 300 V 50 Hz					
300 V 300 V 220 V					
a) 200 V, 1 A b) 800 V, 2 A	c) 100 V, 2 A	d) 220 V, 2.2 A			
a) 200 V, 1 A 117. In the non-resonant circuit, what will be the nature of the second sec	c) 100 V, 2 A of the circuit for frequencie	d) 220 V, 2.2 A s higher than the resonant			
a) 200 V, 1 A 117. In the non-resonant circuit, what will be the nature of frequency	c) 100 V, 2 A of the circuit for frequencie	d) 220 V, 2.2 A s higher than the resonant			
a) 200 V, 1 A if requency b) Capacitive b) Capacitive	c) 100 V, 2 A of the circuit for frequencie c) Inductive	d) 220 V, 2.2 A s higher than the resonant d) None of the above			
 a) 200 V, 1 A b) 800 V, 2 A 117. In the non-resonant circuit, what will be the nature of frequency a) Resistive b) Capacitive 118. In AC circuit a resistance of <i>R</i> Ω is connected in series 	 c) 100 V, 2 A of the circuit for frequencie c) Inductive s with an inductance <i>L</i>. If t 	d) 220 V, 2.2 A s higher than the resonant d) None of the above he phase difference			
 a) 200 V, 1 A b) 800 V, 2 A 117. In the non-resonant circuit, what will be the nature of frequency a) Resistive b) Capacitive 118. In AC circuit a resistance of R Ω is connected in series between the current and voltage is 45°, the inductive 	 c) 100 V, 2 A of the circuit for frequencie c) Inductive s with an inductance <i>L</i>. If t e reactance will be 	d) 220 V, 2.2 A s higher than the resonant d) None of the above he phase difference			
 a) 200 V, 1 A b) 800 V, 2 A c) 117. In the non-resonant circuit, what will be the nature of frequency a) Resistive b) Capacitive 118. In AC circuit a resistance of <i>R</i> Ω is connected in series between the current and voltage is 45°, the inductive a) <i>R</i>/2 b) <i>R</i>/4 	 c) 100 V, 2 A of the circuit for frequencies c) Inductive s with an inductance <i>L</i>. If the reactance will be c) <i>R</i> 	d) 220 V, 2.2 A s higher than the resonant d) None of the above he phase difference d) None of the above			
a) 200 V, 1 A a) 200 V, 1 A b) 800 V, 2 A 117. In the non-resonant circuit, what will be the nature of frequency a) Resistive b) Capacitive 118. In AC circuit a resistance of $R \Omega$ is connected in series between the current and voltage is 45°, the inductive a) $R/2$ b) $R/4$ 119. The current in series <i>LCR</i> circuit will be maximum we	c) 100 V, 2 A of the circuit for frequencie c) Inductive s with an inductance <i>L</i> . If t e reactance will be c) <i>R</i> when ω is	d) 220 V, 2.2 A s higher than the resonant d) None of the above he phase difference d) None of the above			
a) 200 V, 1 A a) 200 V, 1 A b) 800 V, 2 A 117. In the non-resonant circuit, what will be the nature of frequency a) Resistive b) Capacitive 118. In AC circuit a resistance of $R \Omega$ is connected in series between the current and voltage is 45°, the inductive a) $R/2$ b) $R/4$ 119. The current in series <i>LCR</i> circuit will be maximum we a) As large as possible	c) 100 V, 2 A of the circuit for frequencie c) Inductive s with an inductance <i>L</i> . If t e reactance will be c) <i>R</i> when ω is b) Equal o natural freque	 d) 220 V, 2.2 A s higher than the resonant d) None of the above he phase difference d) None of the above ncy of <i>LCR</i> system 			
a) 200 V, 1 A a) 200 V, 1 A b) 800 V, 2 A 117. In the non-resonant circuit, what will be the nature of frequency a) Resistive b) Capacitive 118. In AC circuit a resistance of $R \Omega$ is connected in seried between the current and voltage is 45°, the inductive a) $R/2$ b) $R/4$ 119. The current in series <i>LCR</i> circuit will be maximum we a) As large as possible c) \sqrt{LC}	c) 100 V, 2 A of the circuit for frequencie c) Inductive s with an inductance <i>L</i> . If t e reactance will be c) <i>R</i> when ω is b) Equal o natural freque d) $\sqrt{1/LC}$	 d) 220 V, 2.2 A s higher than the resonant d) None of the above he phase difference d) None of the above ncy of <i>LCR</i> system 			
a) 200 V, 1 A a) 200 V, 1 A b) 800 V, 2 A 117. In the non-resonant circuit, what will be the nature of frequency a) Resistive b) Capacitive 118. In AC circuit a resistance of $R \Omega$ is connected in seried between the current and voltage is 45°, the inductive a) $R/2$ b) $R/4$ 119. The current in series <i>LCR</i> circuit will be maximum we a) As large as possible c) \sqrt{LC} 120. Two conducting circular loops of radii R_1 and R_2 are	c) 100 V, 2 A of the circuit for frequencie c) Inductive s with an inductance <i>L</i> . If t e reactance will be c) <i>R</i> when ω is b) Equal o natural freque d) $\sqrt{1/LC}$	 d) 220 V, 2.2 A s higher than the resonant d) None of the above he phase difference d) None of the above ncy of <i>LCR</i> system 			
a) 200 V, 1 A a) 200 V, 1 A b) 800 V, 2 A 117. In the non-resonant circuit, what will be the nature of frequency a) Resistive b) Capacitive 118. In AC circuit a resistance of $R \Omega$ is connected in seried between the current and voltage is 45°, the inductive a) $R/2$ b) $R/4$ 119. The current in series <i>LCR</i> circuit will be maximum with a) As large as possible c) \sqrt{LC} 120. Two conducting circular loops of radii R_1 and R_2 are coinciding. If $R_1 > R_2$ the mutual inductance M betw	c) 100 V, 2 A of the circuit for frequencie c) Inductive s with an inductance <i>L</i> . If t e reactance will be c) <i>R</i> when ω is b) Equal o natural freque d) $\sqrt{1/LC}$ placed in the same plane w	 d) 220 V, 2.2 A s higher than the resonant d) None of the above he phase difference d) None of the above ncy of <i>LCR</i> system with their centres 			
a) 200 V, 1 A a) 200 V, 1 A b) 800 V, 2 A 117. In the non-resonant circuit, what will be the nature of frequency a) Resistive b) Capacitive 118. In AC circuit a resistance of $R \Omega$ is connected in seried between the current and voltage is 45°, the inductive a) $R/2$ b) $R/4$ 119. The current in series <i>LCR</i> circuit will be maximum we a) As large as possible c) \sqrt{LC} 120. Two conducting circular loops of radii R_1 and R_2 are coinciding. If $R_1 > R_2$, the mutual inductance M between the two series are the two series t	c) 100 V, 2 A of the circuit for frequencie c) Inductive s with an inductance <i>L</i> . If t e reactance will be c) <i>R</i> when ω is b) Equal o natural freque d) $\sqrt{1/LC}$ placed in the same plane w	d) 220 V, 2.2 A s higher than the resonant d) None of the above he phase difference d) None of the above ncy of <i>LCR</i> system with their centres proportional to			
a) 200 V, 1 A a) 200 V, 1 A b) 800 V, 2 A 117. In the non-resonant circuit, what will be the nature of frequency a) Resistive b) Capacitive 118. In AC circuit a resistance of $R \Omega$ is connected in series between the current and voltage is 45°, the inductive a) $R/2$ b) $R/4$ 119. The current in series <i>LCR</i> circuit will be maximum w a) As large as possible c) \sqrt{LC} 120. Two conducting circular loops of radii R_1 and R_2 are coinciding. If $R_1 > R_2$, the mutual inductance M betw a) $\frac{R_1}{R}$ b) $\frac{R_2}{R}$	c) 100 V, 2 A of the circuit for frequencie c) Inductive s with an inductance <i>L</i> . If t e reactance will be c) <i>R</i> when ω is b) Equal o natural freque d) $\sqrt{1/LC}$ placed in the same plane w veen them will be directly p c) $\frac{R_1^2}{R}$	d) 220 V, 2.2 A s higher than the resonant d) None of the above he phase difference d) None of the above ncy of <i>LCR</i> system with their centres proportional to d) $\frac{R_2^2}{R}$			
a) 200 V, 1 A a) 200 V, 1 A b) 800 V, 2 A 117. In the non-resonant circuit, what will be the nature of frequency a) Resistive b) Capacitive 118. In AC circuit a resistance of $R \Omega$ is connected in seried between the current and voltage is 45°, the inductive a) $R/2$ b) $R/4$ 119. The current in series <i>LCR</i> circuit will be maximum we a) As large as possible c) \sqrt{LC} 120. Two conducting circular loops of radii R_1 and R_2 are coinciding. If $R_1 > R_2$, the mutual inductance M betw a) $\frac{R_1}{R_2}$ b) $\frac{R_2}{R_1}$	c) 100 V, 2 A of the circuit for frequencies c) Inductive s with an inductance <i>L</i> . If the reactance will be c) <i>R</i> when ω is b) Equal o natural frequend d) $\sqrt{1/LC}$ placed in the same plane will be directly provide the formula to the same plane with the same pl	d) 220 V, 2.2 A s higher than the resonant d) None of the above he phase difference d) None of the above ncy of <i>LCR</i> system with their centres proportional to d) $\frac{R_2^2}{R_1}$			
a) 200 V, 1 A a) 200 V, 1 A b) 800 V, 2 A 117. In the non-resonant circuit, what will be the nature of frequency a) Resistive b) Capacitive 118. In AC circuit a resistance of $R \Omega$ is connected in seried between the current and voltage is 45°, the inductive a) $R/2$ b) $R/4$ 119. The current in series <i>LCR</i> circuit will be maximum w a) As large as possible c) \sqrt{LC} 120. Two conducting circular loops of radii R_1 and R_2 are coinciding. If $R_1 > R_2$, the mutual inductance M betw a) $\frac{R_1}{R_2}$ b) $\frac{R_2}{R_1}$ 121. Which of the following quantities remains constant if a) Current	c) 100 V, 2 A of the circuit for frequencies c) Inductive s with an inductance <i>L</i> . If the reactance will be c) <i>R</i> when ω is b) Equal o natural frequendly $\sqrt{1/LC}$ placed in the same plane with the directly placed c) $\frac{R_1^2}{R_2}$ n a step-down transformer	d) 220 V, 2.2 A s higher than the resonant d) None of the above he phase difference d) None of the above ncy of <i>LCR</i> system with their centres proportional to d) $\frac{R_2^2}{R_1}$			
a) 200 V, 1 A b) 800 V, 2 A 117. In the non-resonant circuit, what will be the nature of frequency a) Resistive b) Capacitive 118. In AC circuit a resistance of $R \Omega$ is connected in series between the current and voltage is 45°, the inductive a) $R/2$ b) $R/4$ 119. The current in series <i>LCR</i> circuit will be maximum with a) As large as possible c) \sqrt{LC} 120. Two conducting circular loops of radii R_1 and R_2 are coinciding. If $R_1 > R_2$, the mutual inductance M betw a) $\frac{R_1}{R_2}$ b) $\frac{R_2}{R_1}$ 121. Which of the following quantities remains constant if a) Current b) Voltage 122. The welfaret of a series of a series of the following remains constant if b) Voltage	c) 100 V, 2 A of the circuit for frequencie c) Inductive s with an inductance <i>L</i> . If the reactance will be c) <i>R</i> when ω is b) Equal o natural freque d) $\sqrt{1/LC}$ placed in the same plane will be directly placed c) $\frac{R_1^2}{R_2}$ n a step-down transformer c) Power	d) 220 V, 2.2 A s higher than the resonant d) None of the above he phase difference d) None of the above ncy of <i>LCR</i> system with their centres proportional to d) $\frac{R_2^2}{R_1}$:? d) None of these			
a) 200 V, 1 A a) 200 V, 1 A b) 800 V, 2 A 117. In the non-resonant circuit, what will be the nature of frequency a) Resistive b) Capacitive 118. In AC circuit a resistance of $R \Omega$ is connected in series between the current and voltage is 45°, the inductive a) $R/2$ b) $R/4$ 119. The current in series <i>LCR</i> circuit will be maximum w a) As large as possible c) \sqrt{LC} 120. Two conducting circular loops of radii R_1 and R_2 are coinciding. If $R_1 > R_2$, the mutual inductance M betw a) $\frac{R_1}{R_2}$ b) $\frac{R_2}{R_1}$ 121. Which of the following quantities remains constant if a) Current b) Voltage 122. The voltage of an ac source varies with time according	c) 100 V, 2 A of the circuit for frequencies c) Inductive s with an inductance <i>L</i> . If the reactance will be c) <i>R</i> when ω is b) Equal o natural frequend d) $\sqrt{1/LC}$ placed in the same plane we ween them will be directly placed c) $\frac{R_1^2}{R_2}$ n a step-down transformer c) Power ng to the equation $V = 100$	d) 220 V, 2.2 A s higher than the resonant d) None of the above he phase difference d) None of the above ncy of <i>LCR</i> system with their centres proportional to d) $\frac{R_2^2}{R_1}$:? d) None of these sin 100 πt cos 100 πt where			

a) The peak voltage of the source is 100 <i>volt</i>	S	
b) The peak voltage of the source is 50 <i>volts</i>		
c) The peak voltage of the source is $100/\sqrt{2}$	volts	
d) The frequency of the source is 50 <i>Hz</i>		
123. At high frequency, the capacitor offer		
a) More reactance b) Less reactance	c) Zero reactance	d) Infinite reactance
124. A circuit has a resistance of 12 Ω and an imp	edance of 15 Ω . The power factor	r of the circuit will be
a) 0.8 b) 0.4	c) 1.25	d) 0.125
125. An inductance of 1 <i>mH</i> a condenser of 10 μ <i>F</i>	and a resistance of 50 Ω are con	nected in series. The
reactances of inductor and condensers are sa	ame. The reactance of either of th	nem will be
a) 100 Ω b) 30 Ω	c) 3.2 Ω	d) 10 Ω
126. The current flowing in a step down transform	ner 220 V to 22 V having impeda	ince 220 Ω is
a) 1 A b) 0.1 A	c) 2 mA	d) 0.1 mA
127. If $E = 100 \sin(100t)$ volt and $I = 100 \sin(100t)$	$00t + \frac{\pi}{3}$) mA are the instantaneous	us values of voltage and
current, then the <i>r</i> . <i>m</i> . <i>s</i> . values of voltage and	d current are respectively	
a) 70.7 <i>V</i> , 70.7 <i>mA</i> b) 70.7 <i>V</i> , 70.7 <i>A</i>	c) 141.4V, 141.4mA	d) 141.4 <i>V</i> , 141.4 <i>A</i>
128. An ideal choke draws a current of 8 A when o	connected to an AC supply of 100) V, 50 Hz. A pure resistor
draws a current of 10 A when connected to t	he same source. The ideal choke	and the resister are
connected in series and then connected to th	e AC source of 150 V, 40 Hz. The	current in the circuit
becomes		
a) $\frac{15}{\sqrt{2}}$ A b) 8 A	c) 18 A	d) 10 A
129. If <i>A</i> and <i>B</i> are identical bulbs, which bulb glo 100 mH	ws brighter	
a) A b) B	c) Both equally bright	d) Cannot sav
130. A 280 <i>ohm</i> electric bulb is connected to 2001	V electric line. The peak value of	current in the bulb will be
a) About one ampere b) Zero	c) About two ampere	d) About four ampere
131. If E_0 represents the peak value of the voltage	e in an ac circuit, the <i>r</i> . <i>m</i> . <i>s</i> value	of the voltage will be
E_0 E_0	E_0	E_0
a) $\frac{\pi}{\pi}$ b) $\frac{\pi}{2}$	c) $\overline{\sqrt{\pi}}$	$d \int \frac{1}{\sqrt{2}}$
132. In $L - R$ circuit, resistance is 8 Ω and inductiv	ve reactance is 6 Ω , then impeda	nce is
a) 2 Ω b) 14 Ω	c) 4 Ω	d) 10 Ω
133. The root mean square value of the alternation	ig current is equal to	
a) Twice the peak value	b) Half the peak value	
c) $\frac{1}{\sqrt{2}}$ times the peak value	d) Equal to the peak val	lue
$\sqrt{2}$ 134 What will be the phase difference between v	irtual voltage and virtual current	t when the current in the
circuit is wattles	in tuar voltage and vir tuar current	, when the current in the
a) 90° b) 45°	c) 180°	d) 60°
135. Power factor is maximum in an <i>LCR</i> circuit v	when	u) 00
a) $X_L = X_C$ b) $R = 0$	c) $X_{r} = 0$	d) $X_c = 0$
136. The output current versus time curve of a re	ctifier is shown in the figure. The	e average value of output
current in this case is		

140. In an *R*-*C* circuit while charging, the graph of ln*I versus* time is as shown by the dotted line in the adjoining diagram where *I* is the current. When the value of the resistance is doubled, which of the solid curves best represents the variation of ln *I versus* time?

d) 4 A

143. A circuit has a resistance of 11Ω , an inductive reactance of 25Ω and a capacitative resistance of 18Ω . It is connected to an ac source of 260V and 50Hz. The current through the circuit (in amperes) is

144. The reading of ammeter in the circuit shown will be

c) Zero

145. A step-up transformer is used on a 120 V line to provide a potential difference of 2400 V. If the primary coil has 75 turns, the number of turns in the secondary coil is

d) 1.7 A

a) 150	b) 1200	c) 1500	d) 1575			
146. A coil of inductance 300 mH and resistance 2 Ω is connected to a source of voltage 2V. The current reaches						
half of its steady state value in						
a) 0.05 s	b) 0.1 s	c) 0.15 s	d) 0.3 s			
147. An alternating e.m.f. o	147. An alternating e.m.f. of angular frequency ω is applied across an inductance. The instantaneous power					
developed in the circu	uit has an angular frequenc	у				
a) ω/4	b) ω/2	c) ω	d) 2ω			
148. A 10 ohm resistance,	5 <i>mH</i> coil and 10 μ <i>F</i> capacities	itor are joined in series. When	a suitable frequency			
alternating current so	ource is joined to this comb	ination, the circuit resonates. I	f the resistance is halved,			
the resonance freque	ncy					
a) Is halved	b) Is doubled	c) Remains unchanged	d) In quadrupled			
149. There is a 5Ω resistant	nce in an ac, circuit. Inducta	nce of $0.1H$ is connected with	it in series. If equation of ac			
<i>e</i> .m.f. is 5 sin 50 <i>t</i> , then	n the phase difference betw	veen current and <i>e</i> .m.f. is				
$\frac{\pi}{2}$	h) $\frac{\pi}{-}$	$\frac{\pi}{2}$	d) 0			
⁴ 2	6 6	4				
150. In the alternating cur	rent shown in the figure, th	le currents through inductor a	nd capacitor are 1.2 <i>amp</i>			
and 1.0 <i>amp</i> respectiv	vely. The current drawn fro	om the generator is				
	_					
C						
A.C. generator						
a) 0.4 <i>amp</i>	b) 0.2 amp	c) 1.0 <i>amp</i>	d) 1.2 <i>amp</i>			
151. In a region of uniform	b) 0.2 amp n magnetic induction $B = 1$	c) 1.0 <i>amp</i> 0^{-2} <i>tesla</i> , a circular coil of rad	d) 1.2 <i>amp</i> ius 30 <i>cm</i> and resistance			
151. In a region of uniform π^2 ohm is rotated abo	b) 0.2 amp n magnetic induction $B = 1$ put an axis which is perpendent	c) 1.0 <i>amp</i> 0^{-2} <i>tesla</i> , a circular coil of rad dicular to the direction of <i>B</i> are followed by the direction of <i>B</i>	d) 1.2 <i>amp</i> ius 30 <i>cm</i> and resistance id which forms a diameter of			
151. In a region of uniform π^2 ohm is rotated abo the coil. If the rotates	b) 0.2 amp n magnetic induction $B = 1$ but an axis which is perpend at 200 <i>rpm</i> the amplitude	c) 1.0 <i>amp</i> 0^{-2} <i>tesla</i> , a circular coil of rad dicular to the direction of <i>B</i> and of the alternating current indu	d) 1.2 <i>amp</i> ius 30 <i>cm</i> and resistance id which forms a diameter of iced in the coil is			
151. In a region of uniform π^2 ohm is rotated abo the coil. If the rotates a) $4\pi^2 mA$	b) 0.2 amp in magnetic induction $B = 1$ bout an axis which is perpend at 200 <i>rpm</i> the amplitude b) 30 <i>mA</i>	c) 1.0 <i>amp</i> $0^{-2}tesla$, a circular coil of rad dicular to the direction of <i>B</i> ar of the alternating current indu c) 6 <i>mA</i>	d) 1.2 <i>amp</i> ius 30 <i>cm</i> and resistance ad which forms a diameter of iced in the coil is d) 200 <i>mA</i>			
151. In a region of uniform π^2 ohm is rotated abo the coil. If the rotates a) $4\pi^2 mA$ 152. In an $L - C - R$ circuit,	b) 0.2 amp in magnetic induction $B = 1$ but an axis which is perpend at 200 <i>rpm</i> the amplitude b) 30 <i>mA</i> capacitance is changed fro	c) 1.0 <i>amp</i> $0^{-2}tesla$, a circular coil of rad dicular to the direction of <i>B</i> ar of the alternating current indu c) 6 <i>mA</i> om <i>C</i> to 2 <i>C</i> . For the resonant fre	d) 1.2 <i>amp</i> ius 30 <i>cm</i> and resistance ad which forms a diameter of iced in the coil is d) 200 <i>mA</i> equency to remain			
151. In a region of uniform π^2 ohm is rotated aborthe coil. If the rotates a) $4\pi^2 mA$ 152. In an $L - C - R$ circuit, unchanged, the induction	b) 0.2 amp in magnetic induction $B = 1$ but an axis which is perpend at 200 <i>rpm</i> the amplitude b) 30 <i>mA</i> capacitance is changed from tance should be changed from	c) 1.0 <i>amp</i> $0^{-2}tesla$, a circular coil of rad dicular to the direction of <i>B</i> ar of the alternating current indu c) 6 <i>mA</i> om <i>C</i> to 2 <i>C</i> . For the resonant free om <i>L</i> to	d) 1.2 <i>amp</i> ius 30 <i>cm</i> and resistance ad which forms a diameter of iced in the coil is d) 200 <i>mA</i> equency to remain			
151. In a region of uniform π^2 ohm is rotated abo the coil. If the rotates a) $4\pi^2$ mA 152. In an $L - C - R$ circuit, unchanged, the induct a) $4L$	b) 0.2 amp n magnetic induction $B = 1$ but an axis which is perpend at 200 <i>rpm</i> the amplitude b) 30 <i>mA</i> capacitance is changed fro tance should be changed fro b) 2 <i>L</i>	c) 1.0 <i>amp</i> $0^{-2}tesla$, a circular coil of rad dicular to the direction of <i>B</i> ar of the alternating current indu c) 6 <i>mA</i> om <i>C</i> to 2 <i>C</i> . For the resonant free om <i>L</i> to c) <i>L/2</i>	 d) 1.2 <i>amp</i> ius 30 <i>cm</i> and resistance ius which forms a diameter of ius diameter of			
151. In a region of uniform π^2 ohm is rotated abore the coil. If the rotates a) $4\pi^2 mA$ 152. In an $L - C - R$ circuit, unchanged, the induce a) $4L$ 153. A bulb and a capacito	b) 0.2 amp in magnetic induction $B = 1$ but an axis which is perpend at 200 <i>rpm</i> the amplitude b) 30 <i>mA</i> capacitance is changed from tance should be changed from b) 2 <i>L</i> r are in series with an ac so	c) 1.0 <i>amp</i> $0^{-2}tesla$, a circular coil of rad dicular to the direction of <i>B</i> ar of the alternating current indu- c) 6 <i>mA</i> om <i>C</i> to 2 <i>C</i> . For the resonant fre- om <i>L</i> to c) <i>L</i> /2 purce. On increasing frequency	 d) 1.2 <i>amp</i> ius 30 <i>cm</i> and resistance ius which forms a diameter of iced in the coil is id) 200 <i>mA</i> id) 200 <i>mA</i> id) <i>L</i>/4 id) box will glow of the bulb 			
151. In a region of uniform π^2 ohm is rotated aborthe coil. If the rotates a) $4\pi^2 mA$ 152. In an $L - C - R$ circuit, unchanged, the induct a) $4L$ 153. A bulb and a capacito change	b) 0.2 amp a magnetic induction $B = 1$ but an axis which is perpend at 200 <i>rpm</i> the amplitude b) 30 <i>mA</i> capacitance is changed fro tance should be changed fro b) 2 <i>L</i> r are in series with an ac so	c) 1.0 <i>amp</i> $0^{-2}tesla$, a circular coil of rad dicular to the direction of <i>B</i> ar of the alternating current indu c) 6 <i>mA</i> om <i>C</i> to 2 <i>C</i> . For the resonant fre- om <i>L</i> to c) <i>L</i> /2 purce. On increasing frequency	 d) 1.2 <i>amp</i> ius 30 <i>cm</i> and resistance ius which forms a diameter of ius diameter of			
151. In a region of uniform π^2 ohm is rotated abore the coil. If the rotates a) $4\pi^2 mA$ 152. In an $L - C - R$ circuit, unchanged, the induce a) $4L$ 153. A bulb and a capacito change a) The glow decrease	b) 0.2 amp in magnetic induction $B = 1$ but an axis which is perpend at 200 <i>rpm</i> the amplitude b) 30 <i>mA</i> capacitance is changed from tance should be changed from b) 2 <i>L</i> r are in series with an ac so	c) 1.0 <i>amp</i> $0^{-2}tesla$, a circular coil of rad dicular to the direction of <i>B</i> ar of the alternating current indu- c) 6 <i>mA</i> cm <i>C</i> to 2 <i>C</i> . For the resonant fre- om <i>L</i> to c) <i>L</i> /2 purce. On increasing frequency b) The glow increases	 d) 1.2 <i>amp</i> ius 30 <i>cm</i> and resistance ius which forms a diameter of iced in the coil is id) 200 <i>mA</i> id) 200 <i>mA</i> id) <i>L/4</i> id) <i>L/4</i> id) will glow of the bulb 			
151. In a region of uniform π^2 ohm is rotated aborthe coil. If the rotates a) $4\pi^2 mA$ 152. In an $L - C - R$ circuit, unchanged, the induct a) $4L$ 153. A bulb and a capacito change a) The glow decrease c) The glow remain the second s	b) 0.2 amp in magnetic induction $B = 1$ but an axis which is perpend at 200 <i>rpm</i> the amplitude b) 30 <i>mA</i> capacitance is changed fro tance should be changed fro b) 2 <i>L</i> r are in series with an ac so s he same	c) 1.0 <i>amp</i> $0^{-2}tesla$, a circular coil of rad dicular to the direction of <i>B</i> ar of the alternating current induce c) 6 <i>mA</i> om <i>C</i> to 2 <i>C</i> . For the resonant free om <i>L</i> to c) <i>L</i> /2 purce. On increasing frequency b) The glow increases d) The bulb quenches	 d) 1.2 <i>amp</i> ius 30 <i>cm</i> and resistance ius which forms a diameter of ius diameter of			
151. In a region of uniform $\pi^2 ohm$ is rotated abo the coil. If the rotates a) $4\pi^2 mA$ 152. In an $L - C - R$ circuit, unchanged, the induce a) $4L$ 153. A bulb and a capacito change a) The glow decrease c) The glow remain the 154. An alternating voltage	b) 0.2 amp a magnetic induction $B = 1$ but an axis which is perpend at 200 <i>rpm</i> the amplitude b) 30 <i>mA</i> capacitance is changed from tance should be changed from b) 2 <i>L</i> r are in series with an ac so s he same e is represented as $E = 20$ s	c) 1.0 <i>amp</i> $0^{-2}tesla$, a circular coil of rad dicular to the direction of <i>B</i> ar of the alternating current indu- c) 6 <i>mA</i> om <i>C</i> to 2 <i>C</i> . For the resonant fre- om <i>L</i> to c) <i>L</i> /2 purce. On increasing frequency b) The glow increases d) The bulb quenches sin 300 <i>t</i> . The average value of	 d) 1.2 <i>amp</i> ius 30 <i>cm</i> and resistance ius which forms a diameter of iced in the coil is id) 200 <i>mA</i> id) 200 <i>mA</i> id) <i>L</i>/4 id) <i>L</i>/4 id) will glow of the bulb 			
151. In a region of uniform $\pi^2 \ ohm$ is rotated above the coil. If the rotates a) $4\pi^2 \ mA$ 152. In an $L - C - R$ circuit, unchanged, the induce a) $4L$ 153. A bulb and a capacitor change a) The glow decrease c) The glow remain the 154. An alternating voltage be	b) 0.2 amp a magnetic induction $B = 1$ but an axis which is perpend at 200 <i>rpm</i> the amplitude b) 30 <i>mA</i> capacitance is changed fro tance should be changed fro b) 2 <i>L</i> r are in series with an ac so s he same e is represented as $E = 20$ s	c) 1.0 <i>amp</i> $0^{-2}tesla$, a circular coil of rad dicular to the direction of <i>B</i> are of the alternating current indu- c) 6 <i>mA</i> om <i>C</i> to 2 <i>C</i> . For the resonant free om <i>L</i> to c) <i>L/2</i> purce. On increasing frequency b) The glow increases d) The bulb quenches sin 300 <i>t</i> . The average value of	 d) 1.2 <i>amp</i> ius 30 <i>cm</i> and resistance ius 30 <i>cm</i> and resistance iud which forms a diameter of iud which forms a diameter of iud and the coil is iud and the coil iud and the coil is iud and the coil iud and the coil iud and the coil iud and the coil iud and the			
151. In a region of uniform $\pi^2 ohm$ is rotated abor- the coil. If the rotates a) $4\pi^2 mA$ 152. In an $L - C - R$ circuit, unchanged, the induce a) $4L$ 153. A bulb and a capacito change a) The glow decrease c) The glow remain the 154. An alternating voltage be a) Zero	b) 0.2 amp n magnetic induction $B = 1$ but an axis which is perpend at 200 <i>rpm</i> the amplitude b) 30 <i>mA</i> capacitance is changed from tance should be changed from b) 2 <i>L</i> r are in series with an ac so s he same e is represented as $E = 20$ s b) 10 <i>volt</i>	c) 1.0 <i>amp</i> $0^{-2}tesla$, a circular coil of rad dicular to the direction of <i>B</i> ar of the alternating current induce c) 6 <i>mA</i> om <i>C</i> to 2 <i>C</i> . For the resonant free om <i>L</i> to c) <i>L</i> /2 purce. On increasing frequency b) The glow increases d) The bulb quenches sin 300 <i>t</i> . The average value of c) $20\sqrt{2}$ <i>volt</i>	d) 1.2 <i>amp</i> ius 30 <i>cm</i> and resistance ad which forms a diameter of iced in the coil is d) 200 <i>mA</i> equency to remain d) <i>L</i> /4 show will glow of the bulb			
151. In a region of uniform π^2 ohm is rotated aborthe coil. If the rotates a) $4\pi^2 mA$ 152. In an $L - C - R$ circuit, unchanged, the induction a) $4L$ 153. A bulb and a capacito change a) The glow decrease c) The glow remain the formula of the second seco	b) 0.2 amp in magnetic induction $B = 1$ but an axis which is perpend at 200 <i>rpm</i> the amplitude b) 30 <i>mA</i> capacitance is changed from tance should be changed from b) 2 <i>L</i> r are in series with an ac so s he same e is represented as $E = 20$ s b) 10 <i>volt</i>	c) 1.0 <i>amp</i> $0^{-2}tesla$, a circular coil of rad dicular to the direction of <i>B</i> ar of the alternating current indu- c) 6 <i>mA</i> om <i>C</i> to 2 <i>C</i> . For the resonant fre- om <i>L</i> to c) <i>L</i> /2 purce. On increasing frequency b) The glow increases d) The bulb quenches sin 300 <i>t</i> . The average value of c) $20\sqrt{2}$ <i>volt</i>	d) 1.2 <i>amp</i> ius 30 <i>cm</i> and resistance ad which forms a diameter of iced in the coil is d) 200 <i>mA</i> equency to remain d) <i>L</i> /4 how will glow of the bulb voltage over one cycle will d) $\frac{20}{\sqrt{2}}$ <i>volt</i>			
151. In a region of uniform $\pi^2 \ ohm$ is rotated above the coil. If the rotates a) $4\pi^2 \ mA$ 152. In an $L - C - R$ circuit, unchanged, the induce a) $4L$ 153. A bulb and a capacitor change a) The glow decrease c) The glow remain the 154. An alternating voltage be a) Zero 155. The magnet in figure	b) 0.2 amp n magnetic induction $B = 1$ but an axis which is perpend at 200 <i>rpm</i> the amplitude of b) 30 <i>mA</i> capacitance is changed from tance should be changed from b) 2 <i>L</i> r are in series with an ac so s he same e is represented as $E = 20$ s b) 10 <i>volt</i> rotates a shown on a pivot	c) 1.0 <i>amp</i> $0^{-2}tesla$, a circular coil of rad dicular to the direction of <i>B</i> ar of the alternating current indu- c) 6 <i>mA</i> om <i>C</i> to 2 <i>C</i> . For the resonant fre- om <i>L</i> to c) <i>L</i> /2 purce. On increasing frequency b) The glow increases d) The bulb quenches sin 300 <i>t</i> . The average value of c) $20\sqrt{2}$ <i>volt</i> through its center. At the insta	d) 1.2 <i>amp</i> ius 30 <i>cm</i> and resistance ad which forms a diameter of iced in the coil is d) 200 <i>mA</i> equency to remain d) <i>L</i> /4 how will glow of the bulb voltage over one cycle will d) $\frac{20}{\sqrt{2}}$ <i>volt</i> ant shown, what are the			
151. In a region of uniform π^2 ohm is rotated aborthe coil. If the rotates a) $4\pi^2 mA$ 152. In an $L - C - R$ circuit, unchanged, the induction a) $4L$ 153. A bulb and a capacito change a) The glow decrease c) The glow remain the formula of the second seco	b) 0.2 amp n magnetic induction $B = 1$ but an axis which is perpend at 200 <i>rpm</i> the amplitude b) 30 <i>mA</i> capacitance is changed front tance should be changed front b) 2 <i>L</i> r are in series with an ac so s he same e is represented as $E = 20$ s b) 10 <i>volt</i> rotates a shown on a pivot ced currents.	c) 1.0 <i>amp</i> $0^{-2}tesla$, a circular coil of rad dicular to the direction of <i>B</i> ar of the alternating current indu- c) 6 <i>mA</i> om <i>C</i> to 2 <i>C</i> . For the resonant fre- om <i>L</i> to c) <i>L</i> /2 purce. On increasing frequency b) The glow increases d) The bulb quenches sin 300 <i>t</i> . The average value of c) $20\sqrt{2}$ <i>volt</i> through its center. At the insta	d) 1.2 <i>amp</i> ius 30 <i>cm</i> and resistance ad which forms a diameter of iced in the coil is d) 200 <i>mA</i> equency to remain d) <i>L</i> /4 how will glow of the bulb voltage over one cycle will d) $\frac{20}{\sqrt{2}}$ <i>volt</i> ant shown, what are the			
151. In a region of uniform π^2 ohm is rotated aborthe coil. If the rotates a) $4\pi^2 mA$ 152. In an $L - C - R$ circuit, unchanged, the induct a) $4L$ 153. A bulb and a capacito change a) The glow decrease c) The glow remain the glow r	b) 0.2 amp in magnetic induction $B = 1$ but an axis which is perpend at 200 <i>rpm</i> the amplitude b) 30 <i>mA</i> capacitance is changed front tance should be changed front b) 2 <i>L</i> r are in series with an ac so she same is represented as $E = 20$ so b) 10 <i>volt</i> rotates a shown on a pivot ced currents.	c) 1.0 <i>amp</i> $0^{-2}tesla$, a circular coil of rad dicular to the direction of <i>B</i> ar of the alternating current indu- c) 6 <i>mA</i> om <i>C</i> to 2 <i>C</i> . For the resonant fre- om <i>L</i> to c) <i>L</i> /2 purce. On increasing frequency b) The glow increases d) The bulb quenches sin 300 <i>t</i> . The average value of c) $20\sqrt{2}$ <i>volt</i> through its center. At the insta	d) 1.2 <i>amp</i> ius 30 <i>cm</i> and resistance ad which forms a diameter of iced in the coil is d) 200 <i>mA</i> equency to remain d) <i>L</i> /4 how will glow of the bulb voltage over one cycle will d) $\frac{20}{\sqrt{2}}$ <i>volt</i> ant shown, what are the			
151. In a region of uniform π^2 ohm is rotated aborthe coil. If the rotates a) $4\pi^2 mA$ 152. In an $L - C - R$ circuit, unchanged, the induction a) $4L$ 153. A bulb and a capacito change a) The glow decrease c) The glow remain the figure be a) Zero 155. The magnet in figure directions of the induction of th	b) 0.2 amp n magnetic induction $B = 1$ but an axis which is perpend at 200 <i>rpm</i> the amplitude b) 30 <i>mA</i> capacitance is changed fro- tance should be changed fro- b) 2 <i>L</i> r are in series with an ac so s he same e is represented as $E = 20$ s b) 10 <i>volt</i> rotates a shown on a pivot ced currents.	c) 1.0 <i>amp</i> $0^{-2}tesla$, a circular coil of rad dicular to the direction of <i>B</i> ar of the alternating current indu- c) 6 <i>mA</i> om <i>C</i> to 2 <i>C</i> . For the resonant fre- om <i>L</i> to c) <i>L</i> /2 purce. On increasing frequency b) The glow increases d) The bulb quenches sin 300 <i>t</i> . The average value of c) $20\sqrt{2}$ <i>volt</i> through its center. At the insta	d) 1.2 <i>amp</i> ius 30 <i>cm</i> and resistance ad which forms a diameter of iced in the coil is d) 200 <i>mA</i> equency to remain d) <i>L</i> /4 how will glow of the bulb voltage over one cycle will d) $\frac{20}{\sqrt{2}}$ <i>volt</i> ant shown, what are the			
151. In a region of uniform π^2 ohm is rotated aborthe coil. If the rotates a) $4\pi^2 mA$ 152. In an $L - C - R$ circuit, unchanged, the induct a) $4L$ 153. A bulb and a capacito change a) The glow decrease c) The glow remain the set of the	b) 0.2 amp in magnetic induction $B = 1$ but an axis which is perpend at 200 <i>rpm</i> the amplitude b) 30 <i>mA</i> capacitance is changed front tance should be changed front b) 2 <i>L</i> r are in series with an ac so s he same e is represented as $E = 20$ s b) 10 <i>volt</i> rotates a shown on a pivot ced currents.	c) 1.0 <i>amp</i> $0^{-2}tesla$, a circular coil of rad dicular to the direction of <i>B</i> are of the alternating current indu- c) 6 <i>mA</i> om <i>C</i> to 2 <i>C</i> . For the resonant free om <i>L</i> to c) <i>L</i> /2 purce. On increasing frequency b) The glow increases d) The bulb quenches sin 300 <i>t</i> . The average value of c) $20\sqrt{2}$ <i>volt</i> through its center. At the insta	d) 1.2 <i>amp</i> ius 30 <i>cm</i> and resistance ad which forms a diameter of aced in the coil is d) 200 <i>mA</i> equency to remain d) <i>L</i> /4 how will glow of the bulb voltage over one cycle will d) $\frac{20}{\sqrt{2}}$ <i>volt</i> ant shown, what are the			
151. In a region of uniform π^2 ohm is rotated aborthe coil. If the rotates a) $4\pi^2 mA$ 152. In an $L - C - R$ circuit, unchanged, the inductional of $4L$ 153. A bulb and a capacito change a) The glow decrease c) The glow remain the set of the glow remain the	b) 0.2 amp n magnetic induction $B = 1$ but an axis which is perpend at 200 <i>rpm</i> the amplitude b) 30 <i>mA</i> capacitance is changed from tance should be changed from b) 2 <i>L</i> r are in series with an ac so s he same e is represented as $E = 20$ s b) 10 <i>volt</i> rotates a shown on a pivot ced currents.	c) 1.0 <i>amp</i> $0^{-2}tesla$, a circular coil of rad dicular to the direction of <i>B</i> ar of the alternating current indu- c) 6 <i>mA</i> om <i>C</i> to 2 <i>C</i> . For the resonant fre- om <i>L</i> to c) <i>L</i> /2 purce. On increasing frequency b) The glow increases d) The bulb quenches sin 300 <i>t</i> . The average value of c) $20\sqrt{2}$ <i>volt</i> through its center. At the insta	d) 1.2 <i>amp</i> ius 30 <i>cm</i> and resistance ad which forms a diameter of iced in the coil is d) 200 <i>mA</i> equency to remain d) <i>L</i> /4 how will glow of the bulb voltage over one cycle will d) $\frac{20}{\sqrt{2}}$ <i>volt</i> ant shown, what are the			

c) A to B and D to C

- d) B to A and D to C
- 156. A magnet is suspended lengthwise from a spring and while it oscillates, the magnet moves in and out of the coil C connected to a galvanometer G. Then as the magnet oscillates.
 - a) G shows no deflection

- b) G shows deflection on one side
- c) Deflection of G to the left and right has constant d) Deflection of G to the left and right has decreasing amplitude amplitude

157. Current growth in two L - R circuits (ii) and (iii) is as shown in figure (i). Let L_1, L_2, R_1 and R_2 be the corresponding values in two circuits. Then

a)
$$\frac{E_0 I_0}{2}$$
 b) $\frac{E_0 I_0}{2} \sin \phi$ c) $\frac{E_0 I_0}{2} \cos \phi$ d) $E_0 I_0$

167. A copper rod of mass m slides under gravity on two smooth parallel rails l distance apart and set at an angle θ to the horizontal. At the bottom, the rails are joined by a resistance R, figure. There is a uniform magnetic field B perpendicular to the plane of the rails. The terminal velocity of the rod is

175. Q-factor can be increased by having a coil of

- a) Large inductance, small ohmic resistance
- b) Large inductance, large ohmic resistance
- c) Small inductance, large ohmic resistance
- d) Small inductance, small ohmic resistance
- 176. The current which does not contribute to the power consumed in an AC circuit is called
 - a) non-ideal current

b) wattles current

c) convectional current

d) inductance current

177. In the circuit shown in figure, a conducting wire *HE* is moved with a constant speed v towards legt. Th complete circuit is placed in a uniform magnetic field \vec{B} perpendicular to the plane of circuit inwards. The current in *HKDE* is

	×	ĸ		
	× _ × _ × _			
		T		
] ×		
	B E L			
	a) Anti alaali uriaa	x b) Clock wise	a) Altomating	d) Zana
170	The current passing three	UJ CIOCK-WISE	docroasing at the rate of	$u_j \Delta e_i u_j$ 2 As ⁻¹ The omf developed
1/0.	across the coil is	ugli a choke con of 5 m is	decreasing at the rate of	2 AS . The end developed
	a) -10 V	h) $+ 10 V$	c) 2.5 V	d) –2 5 V
179	A light hulb is rated 100 M	V for a 220 V supply The re	esistance of the hulb and th	e neak voltage of the
177.	source respectively are	, 101 a 220 v Supply. The R		te peak voltage of the
	a) 242 Ω and 311 V	b) 484 Ω and 311 V	c) 484 Ω and 440 V	d) 242 Ω and 440 V
180.	If number of turns in prim	nary and secondary coils is	increased to two times eac	h, the mutual inductance
	a) Becomes 4 times	y y	b) Becomes 2 times	
	c) Becomes 1 /4 times		d) Remains unchanged	
181.	An LCR circuit contains R	$= 50 \Omega, L = 1 mH$ and $C =$	$0.1 \mu F$. The impedance of	the circuit will be
	minimum for a frequency	of		
	a) $\frac{10^5}{2\pi}s^{-1}$	b) $\frac{10^6}{2\pi} s^{-1}$	c) $2\pi \times 10^5 s^{-1}$	d) $2\pi \times 10^6 s^{-1}$
182.	A metal rod of resistance 2	20 Ω is fixed along a diamet	ter of a conducting ring of i	radius 0.1 m and lies on $x - x$
	y plane. There is a magnet	tic field $\vec{B} = (50 \text{ T}) \hat{k}$. The r	ing rotates with an angula	r velocity $\omega =$
	20 rads ⁻¹ about its axis. A	n external resistance of 10	$\boldsymbol{\Omega}$ is connected across the	centre of the ring and rim.
	The current through exter	rnal resistance is		
	a) $\frac{1}{2}$ A	b) $\frac{1}{2}$ A	c) $\frac{1}{4}$ A	d) zero
183.	A 12 <i>ohm</i> resistor and a 0.	.21 henry inductor are con	nected in series to an ac so	urce operating at 20 <i>volts</i> .
	50 cycle/second. The phas	se angle between the curre	nt and the source voltage is	S
	a) 30°	b) 40°	c) 80°	d) 90°
184.	The ratio of peak value an	d <i>r</i> . <i>m</i> . <i>s</i> . value of an alterna	ating current is	
	a) 1	ы ¹	$c)\sqrt{2}$	d) $1/\sqrt{2}$
		$\frac{10}{2}$		u) 1/ V2
185.	In an induction coil, the co	pefficient of mutual inducta	nce is 4H. If current of 5A	in the primary coil is cut off
	i 1/1500s, the emf at the	terminals of the secondary	coil will be	
	a) 15 kV	b) 60 kV	c) 10 kV	d) 30 kV
186.	The coil of choke in a circu	uit	ו מוו	
	a) Increases the current	1	b) Decreases the current	1
107	c) De not change the curre	ent	a) Has high resistance to	ac circuit
18/.	In the L-L-K circuit shown	i, the impedance is		

188. The frequency of ac mains in India is

a) 30 c/s or Hz b) 50 c/s or Hz c) 60 c/s or Hz d) 120 c/s or Hz189. In the circuit shown in the figure, the ac source gives a voltage $V = 20 \cos(2000t)$. Neglecting source resistance, the voltmeter and ammeter reading will be

a) 0V, 0.47A b) 1.68V, 0.47A c) 0V, 1.4 A d) 5.6V, 1.4 A 190. An *LCR* series ac circuit is at resonance with 10 V each across *L*, *C* and *R*. If the resistance is halved, the respective voltage across *L*, *C* and *R* are

a) 10 V, 10 V and 5 V b) 10 V, 10 V and 10 V c) 20 V, 20 V and 5 V d) 20 V, 20 V and 10 V 191. The readings of ammeter and voltmeter in the following circuit are respectively

a) 2A, 200V b) 1.5A, 100V c) 2.7A, 220V d) 2.2A, 220V192. A rectangular loop with a sliding connector of length l = 1.0 m is situated in a uniform magnetic field B = 2T. Perpendicular to the plane of loop. Resistance of connector is $r = 2\Omega$. Two resistance of 6Ω and 3Ω are connected as shown in figure. The external force required to keep the connector moving with a constant velocity $v = 2 \text{ ms}^{-1}$ is $\int_{0}^{\infty} \int_{0}^{\infty} \int_{$

a) 2 N b) 1 N d) 6 N c) 4 N 193. What is the *r*.*m*.*s*. value of an alternating current which when passed through a resistor produces heat which is thrice of that produced by a direct current of 2 amperes in the same resistor a) 6 *amp* b) 2 *amp* c) 3.46 amp d) 0.66 amp 194. A bulb is connected first with dc and then ac of same voltage it will shine brightly with a) AC b) DC c) Brightness will be in ratio 1/1.4d) Equally with both 195. If an alternating voltage is represented as $E = 141 \sin(628 t)$, then the rms value of the voltage and the frequency are respectively

```
a) 141 V, 628 Hz b) 100 V, 50 Hz c) 100 V, 100 Hz d) 141 V, 100 Hz
```

196. Some magnetic flux is changed from a coil of resistance 110 Ω . As a result, an induced current is developed in it, which varies with time as shown in figure. The magnitude of change in flux through the coil in weber

is *i* (A) 4 - t (s) a) 4 b) 8 c) 2 d) 6 197. Two coils *A* and *B* have 200 and 400 turns respectively. A current of 1 A in coil A causes a flux per turn of 10^{-3} Wb to link with A and a flux per turn of 0.8×10^{-3} Wb through B. The ratio of mutual inductance of A and B is a) 0.625 b) 1.25 c) 1.5 d) 1.625 198. 220 V, 50 Hz AC is applied to a resistor. The instantaneous value of voltage is b) $220 \sin 100\pi t$ c) $220\sqrt{2} \sin 50\pi t$ d) $220 \sin 50\pi t$ a) $220\sqrt{2} \sin 100\pi t$ 199. Two circuits have mutual inductance of 0.09 H. Average emf induced in the secondary by a change of current from 0 to 20 A in 0.006 s in primary will be a) 120 V b) 200 V c) 180 V d) 300 V 200. One 10 V, 60 W bulb is to be connected to 100 V line. The required induction coil has self inductance of value (f = 50 Hz) a) 0.052 H b) 2.42 H c) 16.2 *mH* d) 1.62 mH 201. What is self inductance of a coil which produces 5V, when current in it changes from 3 A to 2 A in one millisecond? a) 5000 H b) 5 mH c) 50 H d) 5 H 202. The self inductance of a choke coils is 10 mH. When it is connected with a 10V dc source, then the loss of power is 20 watt. When it is connected with 10 volt ac source loss of power is 10 watt. The frequency of ac source will be a) 50 Hz b) 60 *Hz* c) 80 Hz d) 100 Hz 203. In the circuit shown in figure neglecting source resistance, the voltmeter and ammeter readings will be respectively R = 30.0A 240 V a) 0 V, 3 A b) 150 V, 3 A c) 150 V, 6 A d) 0 V, 8 A 204. A coil has resistance 30 ohm and inductive reactance 20 Ohm at 50 Hz frequency. If ac source, of 200 volt, 100 Hz, is connected across the coil, the current in the coil will be a) $\frac{20}{\sqrt{13}}A$ b) 2.0A c) 4.0A d) 8.0A 205. Eddy current are produced when a) A metal is kept in varying magnetic field b) A metal is kept in steady magnetic field c) A circular coil is placed in a magnetic field d) Through a circular coil, current is passed 206. Average power generated in an inductor connected to an AC source is c) Zero d) None of these a) $\frac{1}{2}Li^{2}$ b) *Li*² 207. The resonant frequency of a circuit is *f*. If the capacitance is made 4 times the initial values, then the resonant frequency will become

a) <i>f</i> /2 b) 2 <i>f</i>	c) <i>f</i>	d) <i>f</i> /4			
208. Three identical ring move with the same speed on a	a horizontal surface in a	uniform horizontal magnetic			
field normal to the planes of the rings. The first (A) slips without rolling, the second (B) rolls without					
slipping, and the third rolls with slipping	slipping, and the third rolls with slipping				
a) The same emf is induced in all the three rings	b) No emf is induced in a	any of the rings			
c) In each ring, all points are at the same potential	B developes the maxi	mum induced emf, and A the			
	d) least.				
209. Two coils are at fixed locations. When coil 1 has no c	current and the current ir	the coil 2 increases at the			
rate 15.0 As^{-1} , the emf in coil 1 is 25.0 mV. When coi	l 2 has no current of 3.6 A	A. The flux linkage in coil 2			
a) 4 mWb b) 6 mWb	c) 10 mWb	d) 16 mWb			
210. In Colpitt oscillator the feedback network consists of					
a) Two inductors and a capacitor	b) Two capacitors and a	n inductor			
c) Three pairs of <i>R-C</i> circuit	d) Three pairs of <i>R-L</i> cir	cuit			
211. A choke is preferred to a resistance for limiting curre	ent in AC circuit because				
a) Choke is cheap	b) There is no wastage of	of power			
c) Choke is compact in size	d) Choke is a good absor	ber of heat			
212. The induced emf of a generator when the flux of pole	s is doubled and speed is	doubled			
a) Becomes half	b) Remains same				
c) Becomes double	d) Becomes 4 times				
213. In an AC circuit, the instantaneous values of emf and	current are $e = 200 \sin 3$	B14t volt and $I =$			
$\sin\left(314t \pm \frac{\pi}{2}\right)$ amp. The average nower consumed in	wattis				
$\sin\left(51.11+\frac{3}{3}\right)$ amp. The average power consumed in	> 50				
a) 200 b) 100	c) 50	d) 25			
214. An emf is 15 V is applied in a circuit coil containi	ng 5 H inductance and	10 12 resistance. The ratio of			
currents at time $t = \infty$ and $t = 1$ s is					
a) $\frac{e^{1/2}}{1/2}$ b) $\frac{e^2}{2}$	c) $1 - e^{-1}$	d) <i>e</i> ⁻¹			
$e^{1/2} - 1$ $e^2 - 1$ 215 For a series <i>L C</i> . <i>R</i> sincuit the phase difference bet	waan current and valtag	at the condition of			
215. For a series $L - C - A$ circuit, the phase difference bet	ween current and vonage	e at the condition of			
π π	a) Zara	d) Nothing can be said			
a) $\frac{1}{2}$ b) $\frac{1}{4}$		u) Nothing can be said			
216. Which of the following components of a $L - C - R$ circ	uit, with AC supply, dissi	pates energy?			
a) <i>L</i> b) <i>R</i>	c) <i>C</i>	d) All of these			
217. An AC voltage source has an output of $\Delta V = (200V)$ s	$\sin 2\pi ft$. This source is co	onnected to a 100 Ω resistor.			
RMS current in the resistance is					
a) 1.41 A b) 2.41 A	c) 3.41 A	d) 0.71 A			
218. In a pure inductive circuit or In an ac circuit containi	ng inductance only, the c	urrent			
a) Leads the <i>e</i> .m.f. by 90°	b) Lags behind the e.m.f	. by 90°			
Sometimes leads and sometimes lags behind the	d) Ia in phase with the a	m f			
e.m.f.	d) is in phase with the e				
²¹⁹ . An inductance of $\left(\frac{200}{10^{-3}}\right)$ mH a capacitance of $\left(\frac{10^{-3}}{10^{-3}}\right)$ F a	nd a resistance of 10.0 a	re connected in series with			
π AC source 220 V Γ 0 Uz. The phase angle of the size					
π π π π	π	π			
a) $\frac{\pi}{6}$ b) $\frac{\pi}{4}$	c) $\frac{\pi}{2}$	d) $\frac{1}{3}$			
220. The ratio of turns in primary and secondary coils of a	a transformer is 1 : 20. Th	e ratio of currents in			
primary and secondary coils will be					
a) 1 : 20 b) 20 : 1	c) 1:400	d) 400 : 1			
221. A group of electric lamps having a total power rating	of 1000 <i>watt</i> is supplied	by an ac voltage $E =$			
$200 \sin(310t + 60^\circ)$. Then the <i>r</i> . <i>m</i> . <i>s</i> . value of the cir	cuit current is				
a) 10 A b) $10\sqrt{2} A$	c) 20 <i>A</i>	d) 20√2 <i>A</i>			
222. The values of <i>L</i> , <i>C</i> and <i>R</i> for a circuit are 1H, 9F and 3	Ω. What is the quality fac	tor for the circuit at			

	resonance?					
	a) 1	b) 9	$(1)\frac{1}{2}$	$d)\frac{1}{2}$		
			9	3		
223.	3. In a series resonant circuit, the AC voltage across resistance <i>R</i> , inductor <i>L</i> and capacitor <i>C</i> are 5 V, 10 V and					
	10 V respectively. The AC	voltage applied to the curr	ent will be			
	a) 10 V	b) 25 V	c) 5 V	d) 20 V		
224.	The impedance of a <i>R</i> -C ci	rcuit is Z_1 for frequency fa	nd Z_2 for frequency 2 <i>f</i> . The	en,		
	$\frac{Z_1}{Z_2}$ is					
	a) Between 1 and 2	b) 2	c) Between $\frac{1}{2}$ and 1	d) $\frac{1}{2}$		
225.	A circuit consists of an ind	luctance of 0.5 mH and a ca	pacitor of 20 μ F. The frequ	ency of the <i>L</i> – <i>C</i>		
	oscillations is approximat	ely				
	a) 400 Hz	b) 88 Hz	c) 1600 Hz	d) 2400 Hz		
226.	A coil of 200Ω resistance a	and 0.1 <i>H</i> inductance is con	nected to an ac source of f	requency $200/2\pi$ <i>Hz</i> . Phase		
	angle between potential a	nd current will be				
	a) 30°	b) 90°	c) 45°	d) 0°		
227.	For a coil having $L = 2 \text{ mH}$	I, current flows at the rate of	of 10 ³ As ⁻¹ . The emf indu	ced is		
	a) 2 V	b) 1 V	c) 4 V	d) 3 V		
228.	In the transmission of a.c.	power through transmission	on lines, when the voltage	is stepped up <i>n</i> times, the		
	power loss in transmissio	n				
	a) Increases <i>n</i> times		b) Decreases <i>n</i> times			
	c) Increases n^2 times		d) Decreases n^2 times			
229.	The instantaneous values	of current and voltage in a	n ac circuit are $i = 100 \sin \theta$	314 t amp and $e =$		
	200 <i>in</i> $(314 t + \pi/3)V$ res	spectively. If the resistance	is 1 Ω , then the reactance of	of the circuit will be		
	a) –200√3 Ω	b) $\sqrt{3} \Omega$	c) −200√3 Ω	d) 100√3 Ω		
230.	What is the approximate p	peak value of an alternating	g current producing four time	mes the heat produced per		
	second by a steady curren	nt of 2.0 A in a resistor				
	a) 2.8 <i>A</i>	b) 4.0 <i>A</i>	c) 5.6 <i>A</i>	d) 8.0 <i>A</i>		
231.	The power is transmitted	from a power house on hig	h voltage ac because			
	a) Electric current travels	faster at higher volts				
	b) It is more economical d	lue to less power wastage				
	c) It is difficult to generate	e power at low voltage				
	d) Changes of stealing tran	nsmission lines are minimiz	zed			
232.	Two electric bulbs marked	d 25 <i>W</i> – 220 <i>V</i> and 100 <i>W</i> -	 – 220V are connected in se 	eries to a 440V supply.		
	Which of the bulbs will fus	se				
	a) Both	b) 100 <i>W</i>	c) 25 W	d) Neither		
233.	If 25 A current is drawn b	y 220 V motor and back em	nf produced is 80 V, the val	ue of armature resistance is		
	a) 56 Ω	b) 5.6 Ω	c) 0.56 Ω	d) 0.5 Ω		
234.	Current in the LCR circuit	becomes extremely large v	vhen			
	a) Frequency of AC supply	y is increased				
	b) Frequency of AC supply	y is decreased				
	c) Inductive reactance be	comes equal to capacitive r	eactance			
	d) Inductance becomes eq	qual to capacitance				
235.	The $i - v$ curve for anti-re	esonant circuit is				
	a) _i ↑	b) _i †	c) _i †	d) _i ↑		
		$ $ \vee				
				$\downarrow \longrightarrow \nu$		

236. The average power dissipated in a pure inductor of inductance *L* when an ac current is passing through it,

is

(Inductance of the coil *L* and current *I*)

a)
$$\frac{1}{2}LI^2$$
 b) $\frac{1}{4}LI^2$ c) $2Li^2$ d) Zero

237. An inductor of inductance L and resistor of resistance R are joined in series and connected by a source of frequency ω . Power dissipated in the circuit is

a)
$$\frac{(R^2 + \omega^2 L^2)}{V}$$
 b) $\frac{V^2 R}{(R^2 + \omega^2 L^2)}$ c) $\frac{V}{(R^2 + \omega^2 L^2)}$ d) $\frac{\sqrt{R^2 + \omega^2 L^2}}{V^2}$

238. The network shown in figure is part of a complete circuit. If a certain instant, the current *i* is 5 A and is decreasing at a rate 10^3 As^{-1} , then $(V_B - V_A)$ is

239. For a series *L-C-R* circuit at resonance, the statement which is not true is

a) Peak energy stored by a capacitor = peak energy stored by an inductor

- b) Average power = apparent power
- c) Wattles current is zero
- d) Power factor is zero

240. In ac circuit of capacitance the current from potential is

- b) Backward a) Forward
- c) Both are in the same phase d) None of these
- 241. In a *LCR* circuit having L = 8.0 henry, $C = 0.5 \mu F$ and R = 100 ohm in series. The resonance frequency in per second is

242. Which of the following curves correctly represents the variation of capacitive reactance X_c with frequency

243. An AC voltage source of variable angular frequency ω and fixed amplitude V_0 is connected in series with a capacitance C and an electric bulb of resistance R (inductance zero). When ω is increased a) The bulb glows dimmer b) The bulb glows brighter

c) Total impedance of the circuit is unchanged

d) Total impedance of the circuit increases

d) 230 Hz

- 244. In order to obtain a time constant of 10 s in a R C circuit containing a resistance of $10^3 \Omega$, the capacity of the condenser should be
- c) 1000 µF a) 10 μF b) 100 μF d) 10000 µF 245. An ac generator, produces an output voltage $E = 170 \sin 377 t$ volts, where t is in seconds. The frequency of ac voltage is

246. Radio frequency choke uses core of

a) Air b) Iron c) Air and iron d) None of these 247. The natural frequency of an *L* – *C* circuit is 125000 cycle/s. Then the capacitor *C* is replaced by another capacitor with a dielectric medium of dielectric constant *K*. In this case, the frequency decreases by 25 kHz. The value of Kis

a) 3.0 d) 1.7 b) 2.1 c) 1.56 248. A low-loss transformer has 230 V applied to the primary and gives 4.6 V in the secondary. Secondary is connected to a load, which draws 5 A of current. The current (in ampere) in the primary is d) 250

a) 0.1 b) 1.0 c) 10

249. If an ac main supply is given to be 220 V. What would be the average e.m.f. during a positive half cycle a) 198V b) 386V c) 256V d) None of these 250. A circuit draws 330 W from a 110V, 60 Hz AC line. The power factor is 0.6 and the current lags the voltage. The capacitance of a series capacitor that will result in a power factor of unity is equal to b) 54µF c) 151µF d) 201µF a) 31µF 251. If the capacity of a condenser is 1 F, then its resistance in a DC circuit will be a) Zero b) infinity d) $\frac{1}{2} \Omega$ c) 1 Ω 252. What is the charge stored by 1 μ F as shown in the figure? 0.5 Ω 1 μF 1Ω a) 2.33 µC b) 3.33 µC c) 1.33 µC d) 4.33 µC 253. A transistor-oscillator using a resonant circuit with an inductor L (of negligible resistance) and a capacitor *C* in series produce oscillation of frequency *f*. If *L* is doubled and *C* is changed to 4*C*, the frequency will be a) $f/2\sqrt{2}$ b) f/2 c) f/4 d) 8f 254. A coil of inductance 0.2 H and 1.0 W resistance is connected to a 90 V source. At what rate will the current in the coil grow at the instant the coil is connected to the source? a) $450 \, \text{As}^{-1}$ b) 4.5 As⁻¹ c) $45 \, \text{As}^{-1}$ d) 0.45 As^{-1} 255. The voltage of an ac supply varies with time (t) as $V = 120 \sin 100\pi t \cos 100\pi t$. The maximum voltage and frequency respectively are b) $\frac{120}{\sqrt{2}}$ volts, 100 Hz c) 60 volts, 200 Hz a) 12 volts, 100 Hz d) 60 *volts*. 100 *Hz* 256. In an AC circuit the emf(e) and the current (i) at any instant are given respectively by $e = E_0 \sin \omega t$ $i = I_0 \sin(\omega t - \phi)$ The average power in the circuit over one cycle of AC is b) $\frac{E_0 I_0}{2} \sin \phi$ c) $\frac{E_0 I_0}{2} \cos \phi$ a) $\frac{E_0 I_0}{2}$ d) $E_0 I_0$ 257. From figure shown below a series L - C - R circuit connected to a variable frequency 200 V source. C =80 μ *F* and $R = 40 \Omega$. Then the source frequency which drive the circuit at resonance is C=80µF L=5H $R = 40 \Omega$ V = 200 volt a) 25 Hz b) $\frac{25}{\pi}$ Hz c) 50 Hz d) $\frac{50}{\pi}$ Hz 258. In an ac circuit, the *r*. *m*. *s*. value of current, I_{rms} is related to the peak current, I_0 by the relation b) $I_{rms} = \frac{1}{\sqrt{2}} I_0$ a) $I_{rms} = \frac{1}{\pi}I_0$ c) $I_{rms} = \sqrt{2}I_0$ d) $I_{rms} = \pi I_0$ 259. The time taken by AC of 50 Hz in reaching from zero to the maximum value is d) 2×10^{-3} s b) 5×10^{-3} s a) 50×10^{-3} s c) 1×10^{-3} s ^{260.} In an AC circuit the voltage applied is $E = E_0 \sin \omega t$. The resulting current in the circuit is $I = I_0 \sin (\omega t - \omega t)$

 $\frac{\pi}{2}$). The power consumption in the circuit is given by

a)
$$P = \frac{E_0 I_0}{\sqrt{2}}$$
 b) $P = \text{zero}$ c) $P = \frac{E_0 I_0}{2}$ d) $P = \sqrt{2}E_0 I_0$

261. The quality factor of *LCR* circuit having resistance (*R*) and inductance (*L*) at resonance frequency (ω) is given by

a)
$$\frac{\omega L}{R}$$
 b) $\frac{R}{\omega L}$ c) $\left(\frac{\omega L}{R}\right)^{1/2}$ d) $\left(\frac{\omega L}{R}\right)^2$

262. In a circuit containing an inductance of zero resistance, the *e*.m.f. of the applied ac voltage leads the current by

a) 90° b) 45° c) 30° d) 0°

^{263.} In an ac circuit, the current is given by $i = 5 \sin \left(100 t - \frac{\pi}{2}\right)$ and the ac potential is $V = 200 \sin(100) volt$. Then the power consumption is

a) 20 watts
b) 40 watts
c) 1000 watts
d) 0 watt
264. The graphs given below depict the dependence of two reactive impedances X₁ and X₂ on the frequency of the alternating e.m.f. applied individually to them. We can then say that

b) X_1 is a resistor and X_2 is a capacitor

c) X_1 is a capacitor and X_2 is an inductor

d) X_1 is an inductor and X_2 is a resistor

265. An alternating current of rms value 10 A is passed through a 12 Ω resistor. The maximum potential difference across the resistor is
a) 20V
b) 90V
c) 169.68 V
d) None of these

266. A series R-C circuit is connected to AC Voltage source. Consider two cases: (A) when *C* is without a dielectric medium and (*B*) when *C* is filled with dielectric of constant 4. The current I_R through the resistor and voltage V_c across the capacitor are compared in the two cases. Which of the following is/are true? a) $I_R^A > I_R^B$ b) $I_R^A < I_R^B$ c) $V_C^A > V_C^B$ d) $V_C^A < V_C^B$

- 267. An ac voltage is applied to a resistance *R* and inductor *L* in series. If *R* and the inductive reactance are both equal to 3Ω, the phase difference between the applied voltage and the current in the circuit is a) Zero b) $\pi/6$ c) $\pi/4$ d) $\pi/2$
- 268. The phase difference between the alternating current and emf is $\pi/2$. Which of the following cannot be the constituent of the circuit?

a) *C* alone
b) *R*, *L*c) *L*, *C*d) *L* alone
269. Two parallel wires A₁L and B₁ M placed at a distance w are connected by a resistor R and placed in a magnetic field B which is perpendicular to the plane containing the wires (see figure). Another wire *CD* now connects the two wires perpendicularly and made to slide with velocity v through distance L. The power developed is

a)
$$B\frac{lv}{R}$$
 b) $\frac{B^2l^2v^2}{R}$ c) $\frac{Bwv}{R}$ d) $\frac{B^2w^2v^2}{R}$

270. The diagram shows a capacitor *C* and a resistor *R* connected in series to an ac source. V_1 and V_2 are voltmeters and *A* is an ammeter

Consider the following statements

I. Readings in *A* are always in phase

II. Reading in V_1 is ahead in phase with reading in V_2

- III. Reading in A and V_1 are always in phase. Which of these statements are/is correct
- a) I only b) II only c) I and II only d) II and III only

271. The number of turns in the primary coil of a transformer is 200 and the number of turns in secondary coil is 10. If 240 V AC is applied to the primary, the output from secondary will be

272. In a *L* – *R* circuit of 3 mH inductance and 4 Ω resistance, emf *E* = 4 cos 1000*t* V is applied. The amplitude of emf is

a) 0.8 A b)
$$\frac{4}{7}$$
 A c) 1.0 A d) $\frac{4}{\sqrt{7}}$ A

273. The resonance frequency of the tank circuit of an oscillator when $L = \frac{10}{\pi^2}$ mH and $C = 0.04 \,\mu\text{F}$ are connected in parallel is

274. The r.m.s. value of potential difference V shown in the figure is

voltage across the resistance is 12 V, the voltage across the coil is

b) 10 volts

a)
$$V_0/2$$
 b) $V_0/\sqrt{3}$

c) *V*₀

c) 8 volts

- -

d) $V_0 / \sqrt{2}$

d) 6 volts

d) 6 V

a) 16 volts

a) Current

c) Emf

 v^{\uparrow}

276. Average power in the *L*-*C*-*R* circuit depends upon

b) phase difference only

```
d) Current, emf and phase difference
```

277. The reactance of a coil when used in the domestic ac power supply (220 *volts*, 50 cycles per second) is 50 *ohms*. The inductance of the coil is nearly

275. A 20 volts ac is applied to a circuit consisting of a resistance and a coil with negligible resistance. If the

a) 2.2 *henry*b) 0.22 *henry*c) 1.6 *henry*d) 0.16 *henry*278. If *E*₀ is the peak emf, *I*₀ is the peak current and φ is the phase difference between them, then the average power dissipation in the circuit is

a)
$$\frac{1}{2}E_0I_0$$
 b) $\frac{E_0I_0}{\sqrt{2}}$ c) $\frac{1}{2}E_0I_0\sin\phi$ d) $\frac{1}{2}E_0I_0\cos\phi$

279. A coil of resistance *R* and inductance *L* is connected to a battery of emf *E* volt. The final current in the coil is

a)
$$\frac{E}{R}$$
 b) $\frac{E}{L}$ c) $\sqrt{\left(\frac{E}{R^2 + L^2}\right)}$ d) $\sqrt{\left(\frac{EL}{R^2 + L^2}\right)}$

280. An irregular closed loop carrying a current has a shape such that the entire loop cannot lie in a single

	plane. If this is placed in a a) Must be zero c) May be zero	a uniform magnetic field, th	e force acting on the loop b) Can never be zero d) Will be zero only for o the magnetic field	ne particular direction of
281	. Mutual inductance of two a) Decreasing the numbe c) Winding the coils on w	o coils can be increased by or of turns in the coils wooden cores	b) Increasing the number d) None of the above	of turns in the coils
282	In a <i>L-C-R</i> series circuit, t the terminals of the capac	he potential difference betw citor is 30 V and that across	veen the terminals of the in the resistance is 40 V. The	nductance is 60 V, between en, supply voltage will be
	$a_{1} = 0 V$	h) 70 V	c) 120 V	d) 10 V
283	a) 50 V The value of alternating a	DJ 70 V	l) 150 V	uj 10 v
203	$V_R = 80V V_L = 40V V_C = 10$ $E, 50 \text{ Hz}$			
	a) 220 V	b) 140 V	c) 100 V	d) 20 V
284	. Choke coil works on the p	principle of		
	a) Transient current	b) Self induction	c) Mutual induction	d) Wattless current
285	· In an AC circuit, Vand Ia	re given by $V = 150 \sin(150)$	0t) volt and $I = 150 \sin(15)$	$50t + \frac{\pi}{2}$ amp.
	The power dissipated in	the circuit is	X	37
	a) Zero	b) 5625 W	c) 150 W	d) 106 W
286	An <i>LCR</i> series circuit with is removed, the current le the voltage by 60°. The cu	h $R = 100\Omega$ is connected to eads the voltage by 60°. Wh arrent in the circuit is	a 200 <i>V</i> , 50 <i>Hz</i> a.c. source en only the inductance is re	when only the capacitance emoved, the current leads
	a) 2 <i>A</i>	b) 1 <i>A</i>	c) $\frac{\sqrt{3}}{2}A$	d) $\frac{2}{\sqrt{3}}A$
287	. An electric bulb has a rat	ed power of 50 W at 100 V.	If it is used on an AC sourc	e 200 V, 50 Hz, a choke has
	a) 0.1 mu	h) 1 mJ		J) 1 1 II
200	a) $U.1 III \Pi$	UJ I IIIN stance increases, quality fact	сј 0.1 П	иј 1.1 п
200	a) Increases finitely	h) Decreases finitely	c) Remains constant	d) None of the above
289	In the given circuit diagra	am the current through the	hattery and the charge on t	the canacitor respectively in
207	steady state are	an the current through the	battery and the charge on t	the cupacitor respectively in
	6 V 			

2 Ω 4 Ω 0.5 μF

2Ω _/\/

a) 1 A and 3 μC

b) 17 A and 0 μC

c) $\frac{6}{7}$ A and $\frac{12}{7}$ µC

d) 11 A and 3 µC

290. In a series circuit $C = 2\mu F$, L = 1mH and $R = 10\Omega$. When the current in the circuit is maximum, at that time the ratio of the energies stored in the capacitor and the inductor will be

291. The inductive reactance of an inductor of $\frac{1}{\pi}$ henry at 50 Hz frequency is

a)
$$\frac{50}{\pi}ohm$$
 b) $\frac{\pi}{50}ohm$ c) 100 ohm d) 50 ohm

292. In general in an alternating current circuit

- a) The average value of current is zero
- b) The average value of square of the current is zero
- c) Average power dissipation is zero
- d) The phase difference between voltage and current is zero
- 293. In a series combination $R = 300 \Omega$, L = 0.9H, $C = 2.0 \mu$ F, $\omega = 1000 \text{ rads}^{-1}$, the impedance of the circuit is a) 1300 Ω b) 900 Ω c) 500 Ω d) 400 Ω
- 294. Three identical coils *A*, *B* and *C* are placed with their planes parallel to one another. Coils *A* and *C* carry currents as shown in figure. Coils *B* and *C* are fixed in position and coil A is moved towards *B*. Then, current induced in *B* is in

- a) Clock-wise current
- b) Anti-clock-wise current
- c) No current is induced in *B*
- d) Current in induced only when both coils move

295. Which of the following plots may represent the reactance of a series LC combination

c) *c*

d) *d*

296. In an *L*-*C*-*R* series AC circuit the voltage across *L*, *C* and *R* is 10 V each. If the inductor is short circuited, the voltage across the capacitor would become

a) 10 V
b)
$$\frac{20}{\sqrt{2}}$$
 V
c) $20\sqrt{2}$ V
d) $\frac{10}{\sqrt{2}}$ V
297. adsf

a) 122
b) 3
c) 4
d) 5
298. When current in a coil changes from 2 A to 4 A in 0.05s, an emf of 8 V is induced in the coil. Self inductance of the coil is

a) 0.1 H
b) 0.2 H
c) 0.4 H
d) 0.8 H

299. A telephone wire of length 200 km has a capacitance of 0.014 μF per km. If it carries an AC frequency 5 kHz, what should be the value of an inductor required to be connected in series so that the impedance of the circuit is minimum?

a) 0.35 mH b) 3.5 mH c) 2.5 mH d) zero 300. The resonance point in $X_L - f$ and $X_C - f$ curves is

c) *R*

d) 1 V

301. The natural frequency of a L - C circuit is equal to

a)
$$\frac{1}{2\pi}\sqrt{LC}$$
 b) $\frac{1}{2\pi\sqrt{LC}}$ c) $\frac{1}{2\pi}\sqrt{\frac{L}{C}}$ d) $\frac{1}{2\pi}\sqrt{\frac{C}{L}}$

302. In a purely resistive ac circuit, the current

a) Lags behind the *e*.m.f. in phase

b) Is in phase with the *e*.m.f.

c) Leads the *e*.m.f. in phase

d) Leads the *e*.m.f. in half the cycle and lags behind it in the other half

303. In a current carrying long solenoid, the field produced does not depend upon

- a) Number of turns per unit length b) Current flowing
- c) Radius of solenoid d) All of the above

304. A pure inductor of 25 *mH* is connected to a source of 220 *V*. Given the frequency of the source as 50 *Hz*, the *rms* current in the circuit is

305. In a choke coil, the reactance X_L and resistance R are such that a) $X_L = R$ b) $X_L >> R$ c) $X_L << R$

a) $X_L = R$ b) $X_L >> R$ c) $X_L << R$ d) $X_L = \infty$ 306. What is the value of inductance *L* for which the current is a maximum in a series *L*-*C*-*R* circuit with $C = 10\mu$ F and $\omega = 1000$ s⁻¹?

- a) 100 mH b) 1 mH
- c) Cannot be calculated unless *R* is known d) 10 mH

307. The peak value of an alternating emf E given by $E = E_0 \cos \omega t$ is 10 V and its frequency is 50 Hz. At a time $t = \frac{1}{100}$ s, the instantaneous value of the emf is

- a) 10 V b) $5\sqrt{3}$ V c) 5 V
- 308. Power delivered by the source of the circuit becomes maximum, when

a) $\omega L = \omega C$ b) $\omega L = \frac{1}{\omega C}$ c) $\omega L = -\left(\frac{1}{\omega C}\right)^2$ d) $\omega L = \sqrt{\omega C}$

309. An ac source of variable frequency f is connected to an *LCR* series circuit. Which of the graphs in figure represents the variation of current I in the circuit with frequency f

310. In the figure shown, three AC voltmeters are connected. At resonance,

a) $V_2 = 0$ b) $V_1 = 0$ c) $V_3 = 0$ d) $V_1 = V_2 \neq 0$ 311. In an *LCR* circuit R = 100 ohm. When capacitance *C* is removed, the current lags behind the voltage by $\pi/3$. When inductance *L* is removed, the current leads the voltage by $\pi/3$. The impedance of the circuit is

- a) 50 ohm b) 100 ohm c) 200 ohm d) 400 ohm 312. An alternating current source of frequency 100 Hz is joined to a combination of a resistance, a capacitance and a coil in series. The potential difference across the coil, the resistance and the capacitor is 46, 8 and 40 *volt* respectively. The electromotive force of alternating current source in *volt* is a) 94 b) 14 c) 10 d) 76 313. For the series *L* – *C* – *R* circuit shown in the figure, what is the resonance frequency and the amplitude of the current at the resonating frequency? 8mH 200 V 20 uF 44 Q a) 2500 rads⁻¹ and $5\sqrt{2}$ A b) 2500 rads⁻¹ and 5 A c) 2500 rads⁻¹ and $\frac{5}{\sqrt{2}}$ A d) 250 rad s^{-1} and $5\sqrt{2}$ A 314. The *r*. *m*. *s*. voltage of the wave form shown is + 10 0 - 10 a) 10 V c) 6.37 V b) 7 V d) None of these 315. In an ac circuit, peak value of voltage is 423 volts. Its effective voltage is a) 400 volts b) 323 volts c) 300 *volts* d) 340 volts 316. An LC circuit contains a 20 mH inductor and a 50 µF capacitor with an initial charge of 10 mC. The resistance of the circuit is negligible. Let the instant the circuit is closed be t = 0. At what time is the energy stored completely magnetic? b) t = 1.57 msa) t = 0c) t = 3.14 msd) t = 6.28 ms317. Two inductors of inductance L each are connected in series with opposite magnetic fluxes. What is the resultant inductance? (Ignore mutual inductance) a) Zero b) *L* d) 3 L c) 2 L 318. The current *i* passed in any instrument in an AC circuit is $i = 2 \sin \omega t$ A and potential difference applied is given by $V = 5 \cos \omega t$ V. Power loss in the instrument is a) 10 W b) 5 W c) Zero W d) 20 W 319. The inductance of the oscillatory circuit of the ratio station is 10 mH and its capacitance is 0.25 μ F. Taking the effect of resistance negligible, wavelength of the broadcasted waves will be (velocity of light = $3.0 \times 10^8 \,\mathrm{ms}^{-1}, \pi = 3.14$) a) 9.42×10^4 m b) 18.8×10^4 m c) 4.5×10^4 m d) None of these 320. Two inductors L_1 and L_2 are connected in parallel and a time varying current flows as shown in figure. The ratio of currents i_1/i_2 at any time t is c) $\frac{L_2^2}{(L_1 + L_2)^2}$ d) $\frac{L_1^2}{(L_1 + L_2)^2}$ a) L_2/L_1 b) L_1/L_2
 - 321. In a series L C R circuit, resistance $R = 10 \Omega$ and the impedance $Z = 10 \Omega$. The phase difference between the current and the voltage is

a) 0°	b) 30°	c) 45°	d) 60°
322. In an <i>L</i> – <i>C</i> – <i>R</i> series AC	circuit, the voltage across e	ach of the components. <i>L, C</i>	Cand <i>R</i> is 50 V. The voltage
across the <i>L</i> – <i>C</i> combination	ation will be		
a) 50 V	b) 50√2 V	c) 100 V	d) zero
323. What is the self inductar	nce of an air core solenoid 1	m long, diameter 0.05m, if	it has 500 turns? Take $\pi^2 =$
10.			
a) 3.15 × 10 ⁻⁴ H	b) 4.8×10^{-4} H	c) 5 $\times 10^{-4}$ H	d) 6.25 $\times 10^{-4}$ H
324. An alternating voltage (i ammeter. The reading o	in volt) given by $V = 200\sqrt{2}$ f the ammeter will be	$\overline{2}\sin(100t)$ is connected to 2	l μF capacitor through an AC
a) 10 mA	b) 20 m A	c) 40 mA	d) 80 mA
325. The power loss in AC cir	cuit will be minimum when	-	-
a) Resistance is high, ind	luctance is high	b) Resistance is high, ind	uctance is low
c) Resistance is low, ind	uctance is low	d) None of the above	
326. An inductance 1 H is cor	nnected in series with an AC	source of 220 V and 50 Hz	. The inductive reactance (in
ohm) is			
a) 2 π	b) 50 π	c) 100 π	d) 1000 π
327. A voltage of peak value 2	283 V and varying frequency	y is applied to a series $L - C$	<i>C – R</i> combination in which
$R = 3 \Omega, L = 25 \text{ mH and}$	$C = 400\mu$ F. The frequency	(in Hz)of the source at wh	ich maximum power is
dissipated in the above,	is		
a) 51.5	b) 50.7	c) 51.1	d) 50.3
328. A fully charged capacito	r <i>C</i> with initial charge q_0 is o	connected to a coil of self in	iductance L at $t = 0$. The
time at which the energy π	y is stored equally between	the electric and the magne	tic fields is
a) $\frac{\pi}{4}\sqrt{LC}$	b) 2π√ <i>LC</i>	c) √ <i>LC</i>	d) $\pi\sqrt{LC}$
329. An inductor <i>L</i> and a capa	acitor <i>C</i> are connected in th	e circuit as shown in the fig	gure. The frequency of the
power supply is equal to	the resonant frequency of	the circuit. Which ammeter	will read zero ampere
L	_		
(A1		
С	-		
	A2)		
(A3)(A	~		
E =	E₀ sin <i>ω</i> t		
a) <i>A</i> ₁			
b) <i>A</i> ₂			
c) <i>A</i> ₃			
d) None of these			

330. The current '*i*' in an inductance coil varies with time '*t*' according to following graph

331. What is the average power dissipation in an ideal capacitor in AC circuit?

t

a) 2 <i>CV</i> ²	b) $\frac{1}{2}CV^{2}$	c) Zero	d) <i>CV</i> ²		
332. Same current is flowing in two alternating circuits. The first circuit contains only inductance and the other contains only a capacitor. If the frequency of the emf of AC is increased, the effect on the value of the current					
a) Increases in	the first circuit and decreases	in the other			
b) Increases in	both the circuits				
d) Decreases in	the first circuit and increases	in the other			
u) Decreases II	i the mist chicult and micreases	longth 10 cm. Its goomotrie	longth is		
333. Consider a sho	The magnetic dipole of magnetic	length 10 cm. its geometric			
a) 12 cm	DJ 5	CJ 3			
334. In a series reso	rant R-L-C circuit, the voltage	across R is 100 v and the value 1 The	alue of = 1000Ω . The capacitance		
of the capacito	r is 2×10^{-6} F; angular freque	$\frac{1}{100} \text{ ac is 200 rad s}^{-1} \cdot 1 \text{ ac s}^{-1} \cdot 1 ac s$	en the potential difference across		
the inductance	COIL IS				
a) 100 V	b) 40 V	c) 250 V	d) 400 V		
335. Find the time r	equired for a 50 Hz alternating	g current to become its value	e from zero to the rms value		
a) 10.0 ms	b) 2.5 ms	c) 15.0 ms	d) 5.0 ms		
336. Alternating cur	rrent cannot be measured by D	C ammeter because			
a) AC cannot p	ass through DC ammeter				
b) AC changes	direction				
c) Average valu	ue of current for complete cycl	e is zero			
d) DC ammeter	will get damaged				
337. An ac circuit co	onsists of an inductor of induct	ance 0.5 <i>H</i> and a capacitor o	of capacitance 8 μF in series. The		
current in the o	circuit is maximum when the a	ngular frequency of ac sour	ce is		
a) 500 <i>rad/se</i> d	b) 2×10^5 rad/set	c c) 4000 rad/sec	d) 5000 <i>rad/sec</i>		
338. The armature of	of a DC motor has a resistance	of 20 Ω . It draws a current o	of 1.5 A when run by 220 V DC.		
The value of pe	eak emf induced in it will be		, i i i i i i i i i i i i i i i i i i i		
a) 150 V	b) 170 V	c) 190 V	d) 180 V		
339. The maximum	value of AC voltage in a circuit	is 707 V. Its rms value is	2		
a) 70.7 V	b) 100 V	c) 500 V	d) 707 V		
340. The impedance	e of a circuit, when a resistance	R and an inductor of induc	tance Lare connected in series in		
an AC circuit of	f frequency $f_{\rm c}$ is				
a) $\sqrt{D+2\pi^2 f}$	$\frac{1}{2} \frac{1}{12}$ b) $\sqrt{B + 4\pi^2 f^2 I^2}$	c) $\sqrt{P^2 + 4\pi^2 f^2 I^2}$	d) $\sqrt{P^2 + 2\pi^2 f^2 I^2}$		
a) $\sqrt{K} + 2\pi^2$	$L^2 = U^2 $	$C_J \sqrt{K^2 + 4\pi^2} J^2 L^2$	$u_{J}\sqrt{R^{2}+2\pi^{2}J}=L^{2}$		
341. A 4μ F capacito	or, a resistance of 2.5 mm is in s	series with 12 v battery. Fin	a the the time after which the		
potential differ	ence across the capacitor is 3 t	limes the potential difference	ce across the resistor. [Given in		
(2)=0.693					
a) 13.86 s	DJ 6.93 S	c) / s	a) 14 s		
342. An inductor of	inductance $L = 400$ mH and re	esistors of resistances $R_1 =$	4Ω and $R_2 = 2\Omega$ are connected to		
battery of emf	12 V as shown in the figure. Th	e internal resistance of the	battery is negligible. The switch S		
is closed at $t =$	0. The potential drop across L	as a function of time is			
a) $6e^{-5t}$ V	b) $\frac{12}{2} e^{-3t} V$	c) $6(1 - e^{-t/0.2})$ V	d) 12 e^{-5t} V		
343. A capacitor 50	t t t t t t t t t t	220 V and angular frequency	$x 50 \text{ rad s}^{-1}$. The value of rms		
current in the <i>c</i>	rircuit is	angunar noquonoj	,		
a) 0.45 Δ	b) 0 50 4	c) 0 55 A	4) 0 60 A		
344 In an ideal cho	ke ratio of its inductance I to i	ts DC resistance Ric	uj 0.00 h		
a) Infinity	b) Zero	c) Unity	d) hundred		

345. In a series L - C - R circuit the frequency of a 10 V AC voltage source is adjusted in such a fashion that the reactance of the inductor measures 15 Ω and that of the capacitor 11 Ω . If $R = 3 \Omega$, the potential difference across the series combination of L and C will be

a) 8 V b) 10 V c) 22 V d) 52 V

346. In the adjoining ac circuit the voltmeter whose reading will be zero at resonance is

a) V_1 b) V_2 c) V_3 347. In an ac circuit with voltage *V* and current *I*, the power dissipated is

a) VI

c)
$$\frac{1}{\sqrt{2}}VI$$
 d) Depends on the phases between V and I

348. Two coils have mutual inductance 0.005 H. The current changes in the first coil according to equation $i = i_0 \sin \omega t$ where $i_0 = 10$ A and $\omega = 100\pi$ rads⁻¹. The maximum value of emf in second coil is a) 2π b) 5π c) π d) 4π

 1_{1}

349. A thin semicircular conducting ring of radius R is falling with its plane vertical in a horizontal magnetic induction \vec{B} , figure. At the position *MNQ*, the speed of the ring is *v*. The potential difference developed across the ring is

a) Zero

b) $\frac{1}{2} B v \pi R^2$, and *M* is at a higher potential

- c) $\pi R B v$, and Q is at a higher potential
- d) 2 R B v, and Q is at a higher potential
- 350. What is the self-inductance of a coil which produces 5 V when the current changes from 3 A to 2 A in one millisecond?
 - a) 5000 H b) 5 mH c) 50 H d) 5 H
- 351. The number of turns of primary and secondary coils of a transformer is 5 and 10 respectively and mutual inductance of the transformer is 25 H. Now, number of turns in primary and secondary are made 10 and 5 respectively. Mutual inductance of transformer will be
 a) 25 H
 b) 12.5 H
 c) 50 H
 d) 6.25 H

352. An alternating *e*.m.f. is applied to purely capacitive circuit. The phase relation between *e*.m.f. and current flowing in the circuit is **or**

In a circuit containing capacitance only

a) *e*.m.f. is ahead of current by $\pi/2$

b) Current is ahead of *e*.m.f. by $\pi/2$

d) V₄

- c) Current lags behind *e*.m.f. by π
- d) Current is ahead of *e*.m.f. by π
- 353. A capacitor and an inductance coil are connected in separate AC circuits with a bulb glowing in both the circuits. The bulb glows more brightly when

- a) An iron rod is introduced into the inductance coil
- b) The number of turns in the inductance coil is increased
- c) Separation between the plates of the capacitor is increased

d) A dielectric is introduced into the gap between the plates of the capacitor

354. Which of the following statement is incorrect?

a) In a <i>L – C – R</i> series AC	If the net reactance of	c) At resonance, the	d) Below resonance,
circuit, as the frequency	an $L - C - R$ series AC	impedance of an AC	voltage leads the
of the source increases, by	circuit is same as its	circuit becomes purely	current while above it,
the impedance of the	resistance, then the	resistive.	current leads the
circuit first decreases	current lags behind the		voltage
and then increases	voltage by 45°		

- 355. In an AC series circuit, the instantaneous current is maximum when the instantaneous voltage is maximum. The circuit element connected to the source will be
 - a) Pure inductor

c) Pure resistor

- b) Pure capacitor
- d) Combination of capacitor and an inductor
- 356. *L*, *C* and *R* represent physical quantities inductance capacitance and resistance respectively. The combination representing dimension of frequency is
 - a) LC

b)
$$(LC)^{-1/2}$$
 c) $\left(\frac{L}{C}\right)^{-1/2}$ d) $\frac{C}{L}$

357. A LCR series A. C. circuit is tuned to resonance. The impedence of the circuit is now

a)
$$R$$

b) $\left[R^2 + \left(\frac{1}{\omega C} - \omega L\right)^2\right]^{1/2}$
c) $\left[R^2 + \left(\omega L\right)^2 + \left(\frac{1}{\omega C}\right)^2\right]^{1/2}$
d) $\left[R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2\right]^{1/2}$

358. In pure inductive circuit, the curves between frequency f and reciprocal of inductive reactance $1/X_L$ is

359. In AC circuit in which inductance and capacitance are joined in series. Current is found to be maximum when the value of inductance is 0.5 H and the value of capacitance is 8 μ F. The angular frequency of applied alternating voltage will be

a) 4000 Hz b) 5000 Hz c) 2×10^5 Hz

d) 500 Hz

d) 400

360. In an AC circuit the instantaneous values of emf and current are

b) 100

 $e = 200 \sin 300 t \text{ volt}$

and
$$i = 2 \sin \left(300t + \frac{\pi}{2} \right)$$
 amp.

The average power consumed in watt is

361. In a series *L-C-R* circuit $R = 200 \Omega$ and the voltage and the frequency of the main supply is 220V and 50 Hz respectively. On taking out the capacitance from the circuit the current lags behind the voltage by 30°. On taking out the inductor from the circuit the current leads the voltage by 30°. The power dissipated in the *L-C-R* circuit is

c) 50

363. In the adjoining figure the impedance of the circuit will be

7.ALTERNATING CURRENT

						: ANS	WER K	EY	:					
1)	b	2)	а	3)	а	4)	d 189)	d	190)	d	191)	d	192)	а
5)	а	6)	b	7)	а	8)	b 193)	С	194)	d	195)	С	196)	С
9)	b	10)	d	11)	С	12)	d 197)	а	198)	а	199)	d	200)	а
13)	С	14)	а	15)	а	16)	a 201)	b	202)	С	203)	d	204)	С
17)	b	18)	b	19)	С	20)	c 205)	а	206)	С	207)	а	208)	а
21)	b	22)	а	23)	b	24)	d 209)	b	210)	b	211)	d	212)	d
25)	С	26)	b	27)	b	28)	d 213)	С	214)	b	215)	С	216)	b
29)	С	30)	b	31)	а	32)	a 217)	а	218)	b	219)	b	220)	b
33)	а	34)	d	35)	b	36)	b 221)	b	222)	С	223)	С	224)	b
37)	С	38)	d	39)	С	40)	c 225)	С	226)	С	227)	а	228)	d
41)	b	42)	С	43)	b	44)	a 229)	b	230)	С	231)	b	232)	С
45)	d	46)	а	47)	b	48)	d 233)	b	234)	С	235)	b	236)	d
49)	d	50)	b	51)	b	52)	b 237)	b	238)	b	239)	d	240)	а
53)	а	54)	b	55)	С	56)	d 241)	С	242)	b	243)	b	244)	d
57)	а	58)	b	59)	b	60)	b 245)	С	246)	а	247)	С	248)	а
61)	b	62)	а	63)	d	64)	c 249)	а	250)	b	251)	b	252)	С
65)	С	66)	b	67)	b	68)	a 253)	а	254)	а	255)	d	256)	С
69)	d	70)	а	71)	d	72)	c 257)	b	258)	b	259)	b	260)	b
73)	а	74)	d	75)	d	76)	b 261)	а	262)	а	263)	d	264)	С
77)	С	78)	С	79)	а	80)	b 265)	С	266)	b	267)	С	268)	С
81)	d	82)	а	83)	b	84)	a 269)	d	270)	b	271)	С	272)	а
85)	d	86)	d	87)	С	88)	c 273)	b	274)	d	275)	а	276)	d
89)	d	90)	а	91)	С	92)	c 277)	d	278)	d	279)	а	280)	а
93)	b	94)	а	95)	а	96)	b 281)	b	282)	а	283)	С	284)	b
97)	b	98)	С	99)	С	100)	d 285)	b	286)	а	287)	d	288)	b
101)	а	102)	С	103)	b	104)	b 289)	d	290)	d	291)	С	292)	а
105)	С	106)	а	107)	d	108)	c 293)	С	294)	b	295)	d	296)	d
109)	С	110)	d	111)	b	112)	b 297)	С	298)	b	299)	а	300)	С
113)	а	114)	С	115)	b	116)	c 301)	b	302)	b	303)	С	304)	С
117)	b	118)	С	119)	d	120)	d 305)	b	306)	а	307)	b	308)	b
121)	С	122)	b	123)	b	124)	a 309)	d	310)	а	311)	b	312)	С
125)	d	126)	b	127)	а	128)	a 313)	b	314)	а	315)	С	316)	b
129)	а	130)	а	131)	d	132)	d 317)	С	318)	а	319)	а	320)	а
133)	С	134)	а	135)	а	136)	c 321)	а	322)	d	323)	d	324)	b
137)	С	138)	b	139)	b	140)	b 325)	С	326)	С	327)	d	328)	а
141)	b	142)	а	143)	d	144)	c 329)	С	330)	b	331)	С	332)	d
145)	С	146)	b	147)	d	148)	c 333)	а	334)	С	335)	d	336)	С
149)	С	150)	b	151)	С	152)	c 337)	а	338)	С	339)	С	340)	С
153)	b	154)	а	155)	а	156)	d 341)	а	342)	d	343)	С	344)	а
157)	b	158)	b	159)	а	160)	c 345)	а	346)	d	347)	d	348)	b
161)	d	162)	b	163)	С	164)	d 349)	d	350)	b	351)	а	352)	b
165)	а	166)	С	167)	С	168)	a 353)	d	354)	d	355)	С	356)	b
169)	а	170)	С	171)	а	172)	c 357)	а	358)	С	359)	d	360)	b
173)	а	174)	d	175)	а	176)	b 361)	d	362)	С	363)	С	364)	С
177)	d	178)	b	179)	b	180)	a 365)	С	366)	d	367)	а	368)	d
181)	а	182)	b	183)	С	184)	c 369)	а	370)	С	371)	d		
185)	d	186)	b	187)	а	188)	b							

1 **(b**)

(b)

$$e = 300\sqrt{2} \sin \omega t$$

 $I_0 = \frac{e_0}{Z} = \frac{300\sqrt{2}}{\sqrt{(30)^2 + (10 - 10)^2}}$
 $\{\because Z = \sqrt{R^2 + (X_L - X_C)^2}\}$
 $= \frac{300\sqrt{2}}{30} = 10\sqrt{2} \text{ A}$
 $\therefore \text{ Current } I = \frac{I_0}{\sqrt{2}} = 10 \text{ A}$

2 (a)

Natural frequency is nothing but resonant frequency.

In this case
$$X_L = X_C$$

 $\Rightarrow \qquad \omega_0 L = \frac{1}{\omega_0 C}$
 $\Rightarrow \qquad \omega_0^2 = \frac{1}{LC}$
 $\Rightarrow \qquad \omega_0 = \frac{1}{\sqrt{LC}}$
 $\Rightarrow \qquad 2\pi f = \frac{1}{\sqrt{LC}}$
 $\Rightarrow \qquad f = \frac{1}{2\pi\sqrt{LC}}$

3 (a)

At angular frequency ω , the current in *RC* circuit is given by

$$i_{rms} = \frac{V_{rms}}{\sqrt{R^2 + \left(\frac{1}{\omega C}\right)^2}} \qquad \dots (i)$$

Also $\frac{i_{rms}}{2} = \frac{V_{rms}}{\sqrt{R^2 + \left(\frac{1}{\omega C}\right)^2}} = \frac{V_{rms}}{\sqrt{R^2 + \frac{9}{\omega^2 C^2}}} \quad \dots (ii)$

From equation (i) and (ii), we get

$$3R^2 = \frac{5}{\omega^2 C^2} \Rightarrow \frac{\frac{1}{\omega C}}{R} = \sqrt{\frac{3}{5}} \Rightarrow \frac{X_C}{R} = \sqrt{\frac{3}{5}}$$

4 **(d)**

Resistance of coil(R) =
$$\frac{200}{1}$$
 = 200 Ω
Current, $I = \frac{200}{\sqrt{R^2 + X_L^2}}$
or $0.5 = \frac{200}{\sqrt{R^2 + X_L^2}}$
or $R^2 + (2\pi f L)^2 = (400)^2$

or
$$\left(2\pi f \times \frac{2\sqrt{3}}{\pi}\right)^2 = (400)^2 - (200)^2$$

= 120000
or $4f\sqrt{3} = 200\sqrt{3}$

: HINTS AND SOLUTIONS : f = 50 Hzor 5 (a) $\cos \phi = \frac{R}{Z}$. In choke coil $\phi = 90^{\circ}$ so $\cos \phi \approx 0$ 6 (b) $Q - \text{factor} = \frac{1}{R} \sqrt{\frac{L}{C}} = \frac{1}{6} \sqrt{\frac{1}{17.36 \times 10^{-6}}} = 40$ 7 (a) $P = E_{rms} i_{rms} \cos \phi = \frac{E^2 R}{Z^2} = \frac{E^2 R}{\left[R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2\right]}$ 8 (b) $R = \frac{P}{i^2_{max}} = \frac{240}{16} = 15\Omega; Z = \frac{V}{i} = \frac{100}{4} = 25\Omega$ Now $X_L = \sqrt{Z^2 - R^2} = \sqrt{(25)^2 - (15)^2} = 20\Omega$ $\therefore 2\pi vL = 20 \Rightarrow L = \frac{20}{2\pi \times 50} = \frac{1}{5\pi} Hz$ 9 (b) $P = \frac{1}{2} V_0 i_0 \cos \phi \Rightarrow P = P_{Peak} \cdot \cos \phi$ $\Rightarrow \frac{1}{2} (P_{peak}) = P_{peak} \cos \phi \Rightarrow \cos \phi \frac{1}{2} \Rightarrow \phi = \frac{\pi}{3}$ 10 (d) When a ring moves in a magnetic field in a direction perpendicular to its plane, we replace the ring by a diameter (2r) perpendicular to the direction of motion. The emf is induced across

> this diameter. Current flow in the ring will be through the two semicircular portions in parallel. Induced emf = B (2 r)v. Resistance of each half of ring = R /2

As the two halves are in parallel, therefore, equivalent resistance = R/4

 \therefore Current in the section = $\frac{B(2r)v}{R/4}$

$$I = \frac{8B\eta}{2}$$

$$Z = \sqrt{R^2 + \left(2\pi fL - \frac{1}{2\pi fC}\right)^2}$$

From above equation at $f = 0, z = \infty$ When $f = \frac{1}{2\pi\sqrt{LC}}$ (resonant frequency) $\Rightarrow Z = R$ For $f > \frac{1}{2\pi\sqrt{LC}} \Rightarrow Z$ starts increasing *i. e.*, for frequency $0 - f_r, Z$ decreases and for f_r to ∞, Z increases This is justified by graph c

1

$$\begin{split} X_C &= \frac{1}{2\pi vC} \Rightarrow \frac{1}{1000} = \frac{1}{2\pi \times v \times 5 \times 10^{-6}} \\ \Rightarrow v &= \frac{100}{\pi} MHz \end{split}$$

15 **(a)**
$$i_{rms} = \frac{i_0}{\sqrt{2}} = \frac{5}{\sqrt{2}} = 3.536 \text{ A}$$

16 **(a)**

 $X_L = \omega L.$

or
$$L = \frac{X_L}{\omega} = \frac{10}{20} = 0.5 \text{ H}$$

17 **(b)**

When a circuit contains inductance only, then the current lags behind the voltage by the phase difference of $\frac{\pi}{2}$ or 90°.

While in a purely capacitive circuit, the current leads the voltage by a phase angle of $\frac{\pi}{2}$ or 90°. In a purely resistive circuit current is in phase with the applied voltage.

18 **(b)**

At t = 0, inductor behaves like an infinite resistance. So at

$$t = 0, i = \frac{V}{R_2}$$

And at $t = \infty$, inductor behaves like a conducting wire,

$$i = \frac{V}{R_{eq}} = \frac{V(R_1 + R_2)}{R_1 R_2}$$

19 **(c)**

Hot wire ammeter reads *rms* value of current. Hence its peak value = $i_{rms} \times \sqrt{2} = 14.14$ *amp* 20 (c)

$$\frac{X_{C}}{R} = \tan \frac{\pi}{3}$$

$$\frac{X_{C}}{X_{1}}$$

$$X_{C} = R \tan \frac{\pi}{3}$$

$$\frac{X_{C}}{X_{1}}$$

$$X_{C} = R \tan \frac{\pi}{3}$$

$$\frac{X_{L}}{R} = \tan \frac{\pi}{3}$$

$$\frac{Z_{2}}{\pi/3}$$

$$X_{L} = R \tan \frac{\pi}{3}$$

$$\frac{Z_{2}}{\pi/3}$$

$$R$$

$$X_{L} = R \tan \frac{\pi}{3}$$

$$\dots$$
 (ii)
Net impedance $Z = \sqrt{R^{2} + (X_{L} - X_{C})^{2}} = R$

Power factor $\cos \phi = \frac{R}{Z} = 1$

21 **(b)** From the relation, $\tan \phi = \frac{\omega L}{R}$ Power factor $\cos \phi = \frac{1}{\sqrt{1 + \tan^2 \phi}}$ $= \frac{1}{\sqrt{1 + \left(\frac{\omega L}{R}\right)^2}}$

$$=\frac{1}{\sqrt{R^2+\omega^2L^2}}$$

22 **(a)**

23

24

25

26

27

28

$$\frac{1}{L_p} = \frac{1}{L} + \frac{1}{L} = \frac{2}{L} \quad or \quad L_p = \frac{L}{2}$$
Where L is inductance of each part
$$= \frac{1.8 \times 10^{-4}}{2} = 0.9 \times 10^{-4} \text{ H}$$

$$\therefore L_p = \frac{L}{2} = \frac{0.9 \times 10^{-4}}{2} = 0.45 \times 10^{-4} \text{ H}$$
Resistance of each part, $r = \frac{6}{2} = 3\Omega$
Now, $\frac{1}{r_p} = \frac{1}{3} + \frac{1}{3} = \frac{2}{3}$

$$\therefore r_p = 3/2\Omega$$
Time constant of circuit $= \frac{L_p}{r_p} = \frac{0.45 \times 10^{-4}}{3/2} = 8A$
(b)
The applied voltage is given by $V = \sqrt{V_R^2 + V_L^2}$
 $V = \sqrt{(200)^2 + (150)^2} = 250 \text{ volt}$
(d)
The voltage across secondary in zero, as transformer does not work on DC supply.
(c)
From $e = \frac{Ldi}{dt}$, when $\frac{di}{dt} = 1$, $e = L$
(b)
 $\frac{L_2}{L_1} = \frac{N_2^2}{N_1^2}$

$$\therefore L_2 = L_1 \frac{N_2^2}{N_1^2} = 1.5 \left(\frac{500}{100}\right)^2 = 375 \text{ mH}$$
(b)
(c)
(d)
Magnetic field intensity at a distance r from the straight wire carrying current is
 $B = \frac{\mu_0 i}{2\pi r}$
As area of loop, $A = a^2$

And magnetic flux, $\phi = BA$ $\therefore \phi = \frac{\mu_0 i a^2}{2\pi r}$ The induced emf in the loop is

$$e = \left| \frac{d\phi}{dt} \right| = \left| \frac{d}{dt} \frac{\mu_0 i a^2 v}{2 \pi r} \right|$$
$$e = \frac{\mu_0 i a^2}{2 \pi r^2} \frac{dr}{dt} = \frac{\mu_0 i a^2 v}{2 \pi r^2}$$
Where $v = \frac{dr}{dt}$ is velocity.

29 (c)

Phase difference $\Delta \phi = \phi_2 - \phi_1 = \frac{\pi}{6} - \left(\frac{-\pi}{6}\right) = \frac{\pi}{3}$

30 **(b)**

As $L = \frac{\mu_0 N^2 A}{l}$ $\therefore A \rightarrow \frac{2 \times 2 \times 4}{2}$ times = 8 times

32 (a)

 $i_P = \frac{n_s}{n_P} i_s = \frac{50}{200} \times 40 = 10 \text{ A}$

33 **(a**)

Current $i = i_0 \sin(\omega t + \phi)$ $i_p = i_0 \sin \omega t \cos \phi + i_0 \cos \omega t \sin \phi$ Thus, $i_0 \cos \phi = 10$ $i_0 \sin \phi = 8$ $\tan \phi = \frac{4}{\pi}$ Hence,

34 (d)

In a purely inductive circuit, current is

Which shows that the current lags behind the emf by a phase angle of $\frac{\pi}{2}$ or 90° or the

emf leads the current by a phase angle of $\frac{\pi}{2}$ or 90°.

35 (b)

$$P = \frac{V_{rms}^2}{R} = \frac{(30)^2}{10} = 90 W$$

37 (c)

In series LCR, the impedance of the circuit is given by

$$Z = \sqrt{R^2 + (X_L - X_C)^2}$$

At resonance, $X_L = X_C$
 $\therefore Z = R$

At resonance, the phase difference between the current and voltage is 0°. Current is maximum at resonance

$$e = \frac{E_P i_P}{E_S} = \frac{1100 \times 100}{220} = 500 \text{ A} = 0.5 \text{ kA}$$

40 (c)

Impedance
$$Z = \sqrt{R^2 + X^2} = \sqrt{(8)^2 + (6)^2} = 10\Omega$$

41 (b)

$$Z = \sqrt{R^2 + X_L^2}$$
, $X_L = \omega L$ and $\omega = 2\pi f$

$$\therefore Z = \sqrt{R^2 + 4\pi^2 f^2 L^2}$$
43 **(b)**

$$V_{rms} = \frac{V_0}{\sqrt{2}} = \frac{120}{1.414} = 84.8 V$$

44 (a)

> This is a combined example of growth and decay of current in an *L* – *R* circuit.

The current through circuit just before shorting the battery,

$$I_0 = \frac{E}{R} = 1 \text{ A}$$

(as inductor would be shorted in steady state) After this decay of current starts in the circuit according to the equation $I = I_0 e^{-t/\tau}$ Where $\tau = L/R$.

$$I = 1 \times e^{-(1 \times 1 \ 0^{-3})/(1 \ 00 \times 1 \ 0^{-3}/1 \ 00)} = (1/e) \text{ A}$$
(d)
$$\frac{R}{L} = \frac{e/i}{edt/di} = \frac{1}{dt} = \text{frequency.}$$
(a)
Phase difference relative to the current

 $\phi = \left(314t - \frac{\pi}{6}\right) - (314\ t) = -\frac{\pi}{6}$

47 **(b)**

45

46

48

At t = 0, phase of the voltage is zero, while phase of the current is $-\frac{\pi}{2}$, *i. e.*, voltage leads by $\frac{\pi}{2}$

(d)

$$Z^{2} = R^{2} + (2\pi fL)^{2}$$

$$= (30)^{2} + \left(2\pi \times 50 \times \frac{0.4}{\pi}\right)^{2}$$

$$= (900 + 1600) = 2500$$
or
$$Z = 50 \Omega$$
Also,
$$I = \frac{V}{Z} = \frac{200}{50} =$$

50 (b)

We know that *Q*- factor of series resonant circuit is given as

4 A

$$Q = \frac{\omega_r L}{R}$$

Here, L = 8.1 mH, $C = 12.5 \mu\text{F}$, $R = 10\Omega$, f =500 Hz

$$\therefore \qquad Q = \frac{\omega_r L}{R} = \frac{2\pi f L}{R} \\ = \frac{2 \times \pi \times 500 \times 8.1 \times 10^{-3}}{10} = \frac{8.1\pi}{10} = 2.5434$$

51 (b)

For capacitive circuits $X_C = \frac{1}{\omega C}$

 $\therefore i = \frac{V}{X_c} = V\omega C \implies i \propto \omega$

52 **(b)**

53 (a)

 $V_0 = \sqrt{2} V_{rms} = 10\sqrt{2}$ In L-R circuit, the growing current at time t is given y $i = i_0 \left[1 - e^{-\frac{t}{\tau}} \right]$ where $i_0 = \frac{E}{R}$ and $\tau = \frac{L}{R}$: Charge passed through the battery in one time constant is $q = \int_0^{\tau} i dt = \int_0^{\tau} i_0 (1 - e^{-t/r}) dt$ $q = i_0 \tau - \left[\frac{i_0 e^{-t}}{-2/\tau}\right]_0^t = i_0 \tau + i_0 \tau [e^{-1} - 1]$ $=i_0\tau - i_0\tau + \frac{i_0\tau}{e}$ $q = \frac{i_0 \tau}{e} = \frac{(E/R)(L/R)}{e} = \frac{el}{eR^2}$ 54 (b) $P_i = 240 \times 0.7 = 168 \text{ W}, P_0 = 140 \text{ W}$ $\eta = \frac{P_0}{P_i} \times 100 = \frac{140}{168} \times 100 \approx 80\%$ 55 (c) Energy stored in a inductor *L* carrying Current *i* is $U = \frac{1}{2} L i^2$ Rate at which energy is stored $=\frac{dU}{dt}=\frac{1}{2}L2i\left(\frac{di}{dt}\right)=Li\left(\frac{di}{dt}\right)$ At t = 0, i = 0, $\therefore \frac{dU}{dt} = 0$ At $t = \infty, i = i_0$ (constant), $\therefore \frac{di}{dt} = 0$ 56 (d) Required time $t = T/4 = \frac{1}{4 \times 50} = 5 \times 10^{-3} sec$ 57 (a) Maximum voltage is AC circuit $V_0 = 282 V$ $V = \frac{V_0}{\sqrt{2}} = \frac{282}{\sqrt{2}}$ $V = \frac{282}{1.41} = \frac{28200}{141}$ V = 200 V58 (b) $X_{C} = \frac{1}{2\pi m C} = \frac{1}{0} = \infty$

59 **(b)**

$$Z = \sqrt{R^2 + X_L^2} = \sqrt{10^2 + (2\pi \times 60 \times 2)^2} = 753.7$$

$$\therefore i = \frac{120}{753.7} = 0.159 A$$
60 **(b)**

An alternating current is one whose magnitude changes continuously with time between zero and a maximum value and whose direction reverses periodically. The relation between frequency (f)

$$T = \frac{1}{f} = \frac{1}{50} = 0.02 \, s$$

As is clear from the figure time taken to reach the maximum value is

$$\frac{T}{4} = \frac{0.02}{4} = 0.005$$
 s

61 (b)

From
$$e = LdI/dt \Rightarrow dI = \frac{e}{L} = \frac{1}{1} = 1 \text{ As}^{-1}$$

62 (a)

After time t, thickness of liquid will remain $\left(\frac{d}{2}-vt\right)$.

Now, time constant as function of time $\tau_c = CR$

$$= \frac{\varepsilon_0(1).R}{\left(d - \frac{d}{3} + vt\right) + \frac{d/3 - vt}{2}} \left(\text{Applying } C \right)$$
$$= \frac{\varepsilon_0 A}{d - t + \frac{t}{k}}$$
$$6\varepsilon_0 R$$

$$=\frac{3660 \text{ M}}{5d+3vt}$$

63 (d)

When wire is thick, its resistance reduces. Therefore, Joules' heating loss is reduced.

64 (c)

Peak value = $220\sqrt{2} = 311 V$

 I_L lags behind I_R by a phase of $\frac{\pi}{2}$, while I_C leads by

a phase of $\frac{\pi}{2}$

66 **(b)**

Time constant of R – C circuit is $\tau = RC$ Here effective resistance of the circuit

$$=\frac{2R\times 3R}{2R+3R} = \frac{6R}{5}$$
$$\tau = \frac{6R}{5} \times C = \frac{6RC}{5}$$

67 **(b)**

...

$$e = \frac{Mdi}{dt} = \left(\frac{\mu_0 N_1 N_2 A}{l}\right) \frac{di}{dt}$$

= $\frac{4\pi \times 10^{-7} \times 2000 \times 300 \times 1.2 \times 10^{-3}(4)}{0.3 \times 0.25}$
= 4.8 × 10⁻² V

68 (a)

 $V = 5\cos\omega t = 5\sin\left(\omega t + \frac{\pi}{2}\right) \text{ and } i = 2\sin\omega t$ Power = $V_{r.m.s.} \times i_{r.m.s.} \times \cos\phi = 0$ [Since $\phi = \frac{\pi}{2}$, therefore $\cos\phi = \cos\frac{\pi}{2} = 0$]

$$i = \frac{V}{Z} = \frac{4}{\sqrt{4^2 + (1000 \times 3 \times 10^{-3})^2}} = 0.8 A$$

70 (a)

(a) $X_L = 31\Omega, X_C = 25\Omega, R = 8\Omega$ Impedance of series *LCR* is $Z = \sqrt{(R)^2 + (X_L - X_C)^2}$ $= \sqrt{(8)^2 + (31 - 25)^2} = \sqrt{64 + 36} = 10\Omega$ Power factor, $\cos \phi = \frac{R}{Z} = \frac{8}{10} = 0.8$ (d)

71 **(d)**

72

$$B = \frac{\phi}{A} = \frac{\mu_0 N_1 A i}{L A} = \frac{\mu_0 N^2 i}{L}$$
(c)

$$P = E_{rms}i_{rms}\cos\phi = \frac{E_0}{\sqrt{2}} \times \frac{i_0}{\sqrt{2}} \times \frac{R}{Z}$$
$$\Rightarrow \frac{E_0}{\sqrt{2}} \times \frac{E_0}{Z\sqrt{2}} \times \frac{R}{Z} \Rightarrow P = \frac{E_0^2 R}{2Z^2}$$
Given $X_L = R$ so, $Z = \sqrt{2}R \Rightarrow P = \frac{E_0^2}{4R}$

73 (a)

Since, current lags behind the voltage in phase by a constant angle, then circuit must contain R and

We find that in R - L circuit, voltage leads the current by a phase angle ϕ , where

$$\tan \phi = \frac{AK}{OA} = \frac{OL}{OA}$$
$$= \frac{V_L}{V_R} = \frac{I_0 X_L}{I_0 R}$$

74 **(d)**

Current will be max at first time when $100\pi t + \pi/3 = \pi/2 \Rightarrow 100 \pi t = \pi/6 \Rightarrow t$ = 1/600 s

75 **(d)**

The current will lag behind the voltage when reactance of inductance is more than the reactance of condenser.

Thus,
$$\omega L > \frac{1}{\omega c}$$
 or $\omega > \frac{1}{\sqrt{LC}}$
or $n > \frac{1}{2\pi\sqrt{LC}}$ or $n > n_r$ where n_r = resonant
frequency

76 **(b)**

$$e = L \frac{dI}{dt} L = \frac{edt}{dI} = \frac{8(0.05)}{(4-2)} = 0.2 \text{ H}$$

77 **(c)**

In L - R circuit, current at any time t is given by $i = \frac{E}{R} \left(1 - e^{-\frac{R}{L}t} \right) = \frac{E}{R} - \frac{E}{R} e^{-\frac{R}{L}t}$ $\frac{di}{dt} = \frac{E}{R} e^{-\frac{R}{L}t} \left(\frac{R}{L}\right) = \frac{E}{L} e^{-\frac{R}{L}t}$ Induced emf $= L \frac{di}{dt} = E e^{-\frac{R}{L}t}$ From Eq. (i), $iR = E - E e^{-\frac{R}{L}t}$ Using Eq. (ii), iR = E - e or e = E - iRTherefore, graph between e and i is a straight line with negative slope and positive intercept. The choice (c) is correct. (c)

$$U = \frac{1}{2} \frac{q^2}{c} = \frac{1}{2c} \left(q_0 e^{-t/\tau} \right)^2 = \frac{q_0^2}{2c} e^{-2t/\tau} \text{ (where } \tau = CR)$$
$$U = U_{-2t/\tau}$$

 $\frac{1}{2}q_0 = q_{0^{e^{-t_2/\tau}}}$

78

 $\frac{1}{2}U_i = U_{i^{e^{-2t_1/\tau}}}$ $\frac{1}{2} = e^{-2t_1/\tau}$ $t_1 = \frac{\tau}{2}\ln 2$ $q = q_{0^{e^{-t/\tau}}}$

Now

$$t_{2} = \tau \ln 4 = 2\tau \ln 2$$

$$\therefore \quad \frac{t_{3}}{t_{2}} = \frac{1}{4}$$

$$(a)$$
Ar resonance *LCR* series circuit behaves as pure resistive circuit. For resistive circuit $\phi = 0^{\circ}$
80 (b)

$$Z = \sqrt{R^{2} + X^{2}} = \sqrt{4^{2} + 3^{2}} = 5$$

$$\therefore \cos \phi = \frac{R}{2} = \frac{3}{5} = 0.6$$
81 (d)

$$I = \frac{220}{\sqrt{(20)^{2} + (2 \times \pi \times 50 \times 0.2)^{2}}} = \frac{220}{66} = 3.33.4$$
82 (a)

$$F_{3} = \frac{n_{V}}{n_{V}} E_{F} = \frac{4200}{2100} \times 10 = 5.4$$
83 (b)

$$I_{c,m,x} = \frac{I_{0}}{\sqrt{2}} = \frac{4}{\sqrt{2}} = 2\sqrt{2} \text{ ampre}$$
84 (a)
As the current *l* leads the end *e* by $\frac{\pi}{3}$ it is an *R*-*C* circuit

$$\tan \phi = \frac{S_{C}}{n}$$

$$(c)$$

$$\tan \phi = \frac{S_{C}}{n}$$

$$(c)$$

$$\tan \phi = \frac{S_{C}}{n}$$

$$(c)$$

$$\tan \phi = \frac{S_{C}}{n}$$

$$(d)$$

$$\tan \phi = \frac{S_{C}}{n}$$

$$d = 10 \text{ rads}^{-1}$$

$$The product of C - R should be $\frac{1}{100}$ s⁻¹.
85 (d)
Phase angle $\phi = 90^{\circ}$, so power *P* = *V* i cos $\phi = 0$
86 (d)

$$r = \frac{120 \times 7}{\sqrt{2} + 1/2} = 19 \text{ Hz}$$

$$v_{m} = \frac{240}{\sqrt{2}} = 120\sqrt{2} = 170 \text{ V}$$
88 (c)
For an *R* - *C* circuit
Applied votage, $V = \sqrt{V_{x}^{2} + V_{x}^{2}}$

$$\therefore \quad 50 = \sqrt{(40)^{2} + V_{x}^{2}}$$

$$\frac{120 \times 7}{\sqrt{2}} = 19 \text{ Hz}$$

$$v_{m} = \frac{240}{\sqrt{2}} = 120\sqrt{2} = 170 \text{ V}$$
88 (c)
For an *R* - *C* circuit
Applied votage, $V = \sqrt{V_{x}^{2} + V_{x}^{2}}$

$$\frac{120 \times 7}{\sqrt{2}} = 19 \text{ Hz}$$

$$v_{m} = \frac{120 \times 7}{\sqrt{2}} = 19 \text{ Hz}$$

$$v_{m} = \frac{240}{\sqrt{2}} = 120\sqrt{2} = 170 \text{ V}$$
88 (c)
For an *R* - *C* circuit
Applied votage, $V = \sqrt{V_{x}^{2} + V_{x}^{2}}$

$$\frac{1}{\sqrt{2}} = \sqrt{U_{x}^{2} + V_{x}^{2}}$$

$$\frac{1}{\sqrt{2}} = 100\sqrt{2} = 170 \text{ V}$$
89 (d)
Fower factor
90 (d)
Fower factor
90 (d)
Fower factor
91 (d)
Fower factor
92 (d)
For an *R* - *C* circuit
Applied votage, $V = \sqrt{V_{x}^{2} + V_{x}^{2}}$

$$\frac{1}{\sqrt{2}} = 100\sqrt{2} = 170 \text{ V}$$
84 (c)
For an *R* - *C* circuit
Applied votage, $V = \sqrt{V_{x}^{2} + V_{x}^{2}}$

$$\frac{1}{\sqrt{2}} = 100\sqrt{2} = 170 \text{ V}$$
85 (d)
For an *R* - *C* circuit
Applied votage, $V = \sqrt{V_{x}^{2} + V_{x}^{2}}$

$$\frac{1}{\sqrt{2}} = 100\sqrt{2} = 100 \text{ V}$$
95 (d)
For an *R* - *C* circuit
Applied votage, $V = \sqrt{V_{x}^{2} + V_{x}^{2}}$

$$\frac{1}{\sqrt{2}} = 100 \text{ V}$$

$$\frac{1}{\sqrt{2}} = 100 \text{ V}$$

$$\frac{1}{\sqrt{2}} =$$$$

Since voltage is lagging behind the current, so there must be no inductor in the box

97 **(b)**

Average power dissipated in an AC circuit $P_{av} = V_{rms}I_{rms}\cos\phi$...(i) Where the term $\cos\phi$ is known as power factor. Given, $V_{rms} = 100 \text{ V}$, $R = 100 \Omega$, $\phi = 30^{\circ}$ \therefore $I_{rms} = \frac{V_{rms}}{R} = \frac{100}{100} = 1 \text{ A}$ Putting the values in Eq. (i), we get $P_{av} = 100 \times 1 \times \cos 30^{\circ}$ $= 100\frac{\sqrt{3}}{2}$ $= 50\sqrt{3} = 86.6 \text{ W}$

98 **(c)**

 $\tan\phi = \frac{\omega L - \frac{1}{\omega C}}{R}$

 ϕ being the angle by which the current leads the voltage.

Given,
$$\phi = 45^{\circ}$$

 $\therefore \quad \tan 45^{\circ} = \frac{\omega L - \frac{1}{\omega C}}{R}$
 $\Rightarrow \quad 1 = \frac{\omega L - \frac{1}{\omega C}}{R}$
 $\Rightarrow \quad R = \omega L - \frac{1}{\omega C}$
 $\Rightarrow \quad C = \frac{1}{\omega (\omega L - R)}$
 $= \frac{1}{2\pi f (2\pi f L - R)}$

100 (d)

In an L - C - R circuit in resonance condition

$$X_L = X_C$$

or
$$X_C - X_L = 0$$

102 (c)

As $e = M \frac{di}{dt}$ $\therefore 30 \times 10^3 = 3 \times \frac{10}{dt}$, $d = \frac{30}{30 \times 10^3} = 10^{-3} \text{ s}$

103 **(b)**

104

Wheatstone bridge is balanced. Current through *AC* is zero. Effective resistance R of bridge is

$$\frac{1}{R} = \frac{1}{6} + \frac{1}{6} = \frac{1}{3}, R = 3\Omega$$

Total resistance = 1 + 3 = 4 Ω
Induced emf
 $e = iR = Blv$
 $\therefore v = \frac{iR}{Bl} = \frac{1 \times 10^{-3} \times 4}{2 \times 0.1}$
= 2 × 10⁻² ms⁻¹
(b)

Motional emf across PQ

V = Blv = 4(1) (2) = 8 volt This is the potential to which the capacitor is charged.

As q = CV

: $q = (10 \times 10^{-6})8 = 10^{-5}C = 80 \mu C$

As magnetic force on electron in the conducting rod *PQ* is towards *Q*, therefore, *A* is positively charged and *B* is negatively charged

ie, $q_A = +80\mu C$ and $q_B = -80\mu C$

105 **(c)**

The DC generator must be mixed wound to with stand the load variation.

106 (a)

For imparting max power

$$X_L = X_C \Rightarrow \omega L = \frac{1}{\omega C}$$
$$C = \frac{1}{\omega^2 L} = \frac{1}{(2\pi f)^2 \times L} = \frac{1}{(100\pi)^2 \times 10}$$
$$= 1 \times 10^{-6} = 1\mu F$$

108 (c)

$$Z = \sqrt{R^2 + \left(\frac{1}{2\pi\nu C}\right)^2}$$

= $\sqrt{(3000)^2 + \frac{1}{\left(2\pi \times 50 \times \frac{2.5}{\pi} \times 10^{-6}\right)^2}}$
 $\Rightarrow Z = \sqrt{(3000)^2 + (4000)^2} = 5 \times 10^3 \Omega$
So power factor $\cos \phi = \frac{R}{Z} = \frac{3000}{5 \times 10^3} = 0.6$ and

power

$$P = V_{rms}i_{rms}\cos\phi = \frac{V_{rms}^2\cos\phi}{Z} \Rightarrow P$$
$$= \frac{(200)^2 \times 0.6}{5 \times 10^3} = 4.8W$$

110 (d)

Rise of current in L - R circuit is given by

 $I = I_0(1 - e^{-t/\tau})$ Where, $I_0 = \frac{E}{R} = \frac{5}{5} = 1$ A Now, $\tau = \frac{L}{R} = \frac{10}{5} = 2$ s After 2s, *ie*, at t = 2 s Rise of current $I = (1 - e^{-1})$ A

111 (b)
As
$$e = MdI/dt$$
,
 $\therefore M = \frac{edt}{dt} = -\frac{15000 \times 0.001}{3} = 5H$
112 (b)
At resonance, *LCR* circuit behaves as purely
resistive circuit. For purely resistive circuit power
factor = 1
113 (a)
Voltage across the capacitors will increase from 0
to 10 V exponentially. The voltage at time *t* will be
given by
 $V = 10(1 - e^{-t/\tau_c})$
Here $\tau_c = C_{net}R_{net} = (1 \times 10^6)(4 \times 10^{-6}) = 4 \text{ s}$
 $\therefore V = 10(1 - e^{-t/4})$
Substituting $V = 4$ volt, we have,
 $4 = 10(1 - e^{-t/4})$
 $e^{-t/4} = 0.6 = \frac{3}{5}$
Taking log both sides we have,
 $-\frac{t}{4} = \ln 3 - \ln 5$
or $t = 4(\ln 5 - \ln 3) = 2s$.
114 (c)
From $L = \frac{\mu_0 N^2 A}{l} = \frac{\mu_0 \mu_r N^2 A}{l}$,
When $\mu = 1000$ and *N* becomes $\frac{1}{10}$
 \therefore *L* becomes $1000 \times (\frac{1}{10})^2 = 10$ times
ie, $L = 10 \times 0.1 = 1H$
115 (b)
From $R = \frac{B - V}{i}$
 $0.5 = \frac{120 - V}{8}$
 $V = 116 V$
117 (b)
In non resonant circuits
Impedance $Z = \frac{1}{\sqrt{\frac{1}{\lambda^2} + (\omega c - \frac{1}{\omega L})^2}}$, with rise in
frequency *Z* decreases, *i. e.*, current increases so
circuit behaves as capacitive circuit
118 (c)
Phase difference in $R - L$ circuit,
 $\phi = \tan^{-1} \frac{x_L}{R}$
or $x_L = R$
119 (d)
At resonant frequency current in series *LCR*
circuit is maximum
120 (d)
Magnetic field at the centre of primary coil $B = \mu_0 i_1/2R_1$. Considering it to be uniform, magnetic

flux passing through secondary coil is

$$\phi = BA = \frac{\mu_0 l_1}{2R_1} (\pi R_2^2)$$

Now, $M = \frac{\phi_2}{l_1} = \frac{\mu_0 \pi R_2^2}{2R_1}$
 $\therefore M \propto \frac{R_2^2}{R_1}$

121 **(c)**

Power remains constant in a ideal step down transformer.

122 **(b)**

 $V = 50 \times 2 \sin 100\pi t \cos 100\pi t = 50 \sin 200\pi t$ $\Rightarrow V_0 = 50 \text{ volts and } v = 100Hz$

123 **(b)**

Capacitive reactance is given by

$$X_C = \frac{1}{\omega C}$$

Where *C* is capacitance and ω the angular frequency ($\omega = 2\pi f$).

$$\therefore \qquad X_C = \frac{1}{2\pi fC}$$
$$\Rightarrow \qquad X_C \propto \frac{1}{f}$$

Hence, when frequency f increases capacitive reactance decreases.

124 **(a)**

Power factor=
$$\cos \phi = \frac{R}{Z}$$

= $\frac{12}{15} = \frac{4}{5} = 0.8$

Given
$$\omega L = \frac{1}{\omega C} \Rightarrow \omega^2 = \frac{1}{LC}$$

Or $\omega = \frac{1}{\sqrt{10^{-3} \times 10^{-6}}} = \frac{1}{\sqrt{10^{-8}}} = 10^4$
 $X_L = \omega L = 10^4 \times 10^{-3} = 10.0$

26 **(b)**
$$i_s = \frac{E_s}{Z} = \frac{22}{220} = 0.1 \text{ A}$$

127 **(a)**

The instantaneous value of voltage is $E = 100 \sin(100t) V$... (i) Compare it with $E = E_0 \sin(\omega t) V$ We get $E_0 = 100V, \omega = 100 rads^{-1}$ The rms value of voltage is $E_{rms} = \frac{E_0}{\sqrt{2}} = \frac{100}{\sqrt{2}} V = 70.7V$ The instantaneous value of current is $I = 100 \sin(100t + \frac{\pi}{3}) mA$ Compare it with $I = I_0 \sin(\omega t + \phi)$ We get $I_0 = 100 mA, \omega = 100 rads^{-1}$

The rms value of current is $I_{rms} = \frac{I_0}{\sqrt{2}} = \frac{100}{\sqrt{2}} mA = 70.7 mA$ 128 (a) Resistance , $R = \frac{100}{10} = 10 \Omega$ Inductive reactance , $X_L = 2\pi f L$ $\frac{100}{8} = 2\pi \times 50 \times L$ $\Rightarrow L = \frac{1}{8\pi} H$ $X'_{L} = 2\pi f' L = 2\pi \times 40 \times \frac{1}{8\pi} = 10 \,\Omega$ Impedance of the circuit is $Z = \sqrt{R^2 + X'_L}^2$ $=\sqrt{(10)^2+(10)^2}$ $=10\sqrt{2}\Omega$ Current in the circuit is $i = \frac{V}{Z} = \frac{150}{10\sqrt{2}} = \frac{15}{\sqrt{2}} A$ 129 (a) $\therefore (X_C) >> (X_L)$ 130 (a) $i_{rms} = \frac{200}{280} = \frac{5}{7}A$. So $i_0 = i_{rms} \times \sqrt{2} = \frac{5}{7} \times \sqrt{2} \approx 1A$ 132 (d) In series L - R circuit, impedance is given by $Z = \sqrt{R^2 + X_I^2}$ Where R is the resistance and X_L the inductive reactance. $R = 8\Omega, X_L = 6\Omega$ Given, $Z = \sqrt{(8)^2 + (6)^2}$ ÷ $=\sqrt{64+36}$ $=\sqrt{100} = 10 \Omega$ 134 (a) If the current is wattles then power is zero. Hence phase difference $\phi = 90^{\circ}$ 135 (a) In *LCR* circuit; in the condition of resonance X_L = X_{C} , *i.e.*, circuit behaves as resistive circuit. In resistive circuit power factor is maximum 136 (c)

$$I_{av} = \frac{\int_{0}^{T/2} i \, dt}{\int_{0}^{T/2} dt} = \frac{\int_{0}^{T/2} I_0 \sin(\omega t) dt}{T/2}$$
$$= \frac{2I_0}{T} \left[\frac{-\cos \omega t}{\omega} \right]_{0}^{T/2} = \frac{2I_0}{T} \left[-\frac{\cos \left(\frac{\omega T}{2}\right)}{\omega} + \frac{\cos 0^{\circ}}{\omega} \right]$$
$$= \frac{2I_0}{\omega T} [-\cos \pi + \cos 0^{\circ}] = \frac{2I_0}{2\pi} [1+1] = \frac{2I_0}{\pi}$$

13 (C)

> At resonance, $\omega L = \frac{1}{\omega C}$ Current flowing through the circuit,

$$I = \frac{V_R}{R}$$

$$= \frac{100}{1000} = 0.1 \text{ A}$$
So, voltage across *L* is given by

$$V_L = IX_L = I\omega L$$
But

$$\omega L = \frac{1}{\omega C}$$

$$\therefore \qquad V_L = \frac{1}{\omega C}$$

$$= \frac{0.1}{200 \times 2 \times 10^{-6}} = 250 \text{ V}$$
(b)
When the direction of current is reversed, moving
from *B* to *A*.

$$V_B - V_A = [5 \times 10^{-3}(-10^3) + 15 + 1 \times 5]$$

$$= 15 \text{ volt}$$

139 **(b)**

138

The instantaneous voltage through the given device

 $e = 80 \sin 100 \pi t$

Comparing the given instantaneous voltage with standard instantaneous voltage

 $e = e_0 \sin \omega t$. We get $e_0 = 80 V$ Where e_0 is the peak value of voltage Impedance $(Z) = 20\Omega$

Peak value of current $I_0 = \frac{e_0}{7}$

$$=\frac{80}{20}=4A$$

Effective value of current (root mean square value of current).

$$I_{rms} = \frac{I_0}{\sqrt{2}} = \frac{4}{\sqrt{2}} = 2\sqrt{2} = 2.828 \text{ A}$$

140 **(b)**

Charging current, $I = \frac{E}{R} e^{-\frac{t}{RC}}$ Taking log both sides,

$$\log I = \log\left(\frac{E}{R}\right) - \frac{t}{RC}$$

When *R* is doubled, slope of curve increases. Also at t = 0, the current will be less. Graph Q represents the best.

141 (b)

The coil has inductance *L* besides the resistance *R*. Hence for ac it's effective resistance $\sqrt{R^2 + X_L^2}$ will be larger than it's resistance R for dc

142 **(a)**

In R-C circuit current increases exponentially with time, so correct graph will be (a)

143 (d)

$$Z = \sqrt{R^2 + (X_L - X_C)^2} = \sqrt{(11)^2 + (25 - 18)^2}$$

= 13 \Omega

Current
$$i = \frac{260}{12} = 20 A$$

144 (c)

Given $X_L = X_C = 5\Omega$, this is the condition of resonance. So $V_L = V_C$, so net voltage across L and C combination will be zero

145 (c)

 $\frac{n_s}{n_P} = \frac{E_s}{E_P} = \frac{2400}{120} = 20$ $n_s = 20 n_P = 20 \times 75 = 1500.$

146 **(b)**

The current at any instant is given by

$$I = I_0 (1 - e^{-Rt/L})$$

$$\frac{I_0}{2} = I_0 (1 - e^{-Rt/L})$$

$$\frac{1}{2} = (1 - e^{-Rt/L})$$

$$e^{-Rt/L} = \frac{1}{2}$$

$$\frac{Rt}{L} = 1 \text{ n } 2$$

$$\therefore \quad t = \frac{L}{2} 1 \text{ n } 2 = \frac{3 \ 00 \times 1 \ 0^{-3}}{2} \times 0.6 \ 93$$

$$= 150 \times 0.6 \ 93 \times 1 \ 0^{-3}$$

$$= 0.10395 \text{ s} = 0.1 \text{ s}$$

147 (d)

The instantaneous values of emf and current in inductive circuit are given by $E = E_0 \sin \omega t$ and

$$i = i_0 \sin\left(\omega t - \frac{\pi}{2}\right) \text{ respectively}$$

So, $P_{\text{inst}} = Ei = E_0 \sin \omega t \times i_0 \sin\left(\omega t - \frac{\pi}{2}\right)$
 $= E_0 i_0 \sin \omega t \left(\sin \omega t \cos \frac{\pi}{2} - \cos \omega t \sin \frac{\pi}{2}\right)$
 $= E_0 i_0 \sin \omega t \cos \omega t$
 $= \frac{1}{2} E_0 i_0 \sin 2\omega t \quad (\sin 2\omega t = 2 \sin \omega t \cos \omega t)$
Hence, angular frequency of instantaneous power

148 (c)

is 2ω

Resonance frequency = $\frac{1}{2\pi\sqrt{LC}}$ does not depend on resistance

149 (c)

$$\cos \phi = \frac{R}{Z} = \frac{R}{\sqrt{R^2 + \omega^2 L^2}} = \frac{5}{\sqrt{25 + (50)^2 \times (0.1)^2}}$$
$$= \frac{5}{\sqrt{25 + 25}} = \frac{1}{\sqrt{2}} \Rightarrow \phi = \pi/4$$
151 (c)

Amplitude of $ac = i_0 = \frac{V_0}{R} = \frac{\omega NBA}{R} = \frac{(2\pi v)NB(\pi r^2)}{R}$

$$i_0 = \frac{2\pi \times \frac{200}{60} \times 1 \times 10^{-2} \times \pi \times (0.3)^2}{\pi^2} = 6 \, mA$$

152 (c)

⇒

or

In the condition of resonance

ωL

$$\begin{aligned} X_L &= X_C \\ \omega L &= \frac{1}{\omega C} \end{aligned} \qquad \dots (i)$$

Since, resonant frequency remains unchanged,

So,
$$\sqrt{LC} = \text{constant}$$

or $LC = \text{constant}$
 $\therefore \quad L_1C_1 = L_2C_2$
 $\Rightarrow \quad L \times C = L_2 \times 2C$
 $\Rightarrow \quad L_2 = \frac{L}{2}$

153 (b)

This is because, when frequency v is increased, the capacitive reactance $X_C = \frac{1}{2\pi\nu C}$ decreases and hence the current through the bulb increases

155 (a)

In the rotation of magnet, N pole moves closer to coil *CD* and *S* pole moves closer to coil *AB*. As per Lenz's law, N pole should develop at the end corresponding to C. Induced current flows from *C* to *D*. Again *S* pole should develop at the end corresponding to *B*. Therefore, induced current in the coil flows from *A* to *B*.

156 (d)

As a given pole (N or S) of suspended magnet goes into the coil and comes out of its, current is induced in the coil in two opposite directions. Therefore, galvanometer deflection goes to left and right both. As amplitude of oscillation of magnet goes on decreasing, so does the amplitude of deflection.

157 (b)

As is for Fig. (i), steady state current for t = boththe circuits is same. Therefore,

$$\frac{V}{R_1} = \frac{V}{R_2}$$

0r

158

$$R_1 = R_2$$

Again, from the same figure, we observe that

$$\tau_1 < \tau_2 \quad \therefore \frac{L_1}{P} < \frac{L_2}{P}$$

As
$$R_1 = R_2$$
, therefore, $L_1 < L_2$.

$$\begin{array}{l} \textbf{(b)} \\ P = VI \end{array}$$

$$I = \frac{550}{220} = 2.5 A$$
159 (a)

Let the applied voltage be *V* volt.

$$V_{R} = 12 V, V_{C} = 5 V$$

$$V = \sqrt{V_{R}^{2} + V_{C}^{2}} = \sqrt{(12)^{2} + (5)^{2}}$$

$$V = \sqrt{144 + 25} = \sqrt{169} = 13V$$

$$i = i_{0} \left(1 - e^{-\frac{Rt}{L}}\right)$$

$$\Rightarrow \quad \frac{di}{dt} = \frac{d}{dt} i_0 - \frac{d}{dt} \left(i_0 e^{-\frac{Rt}{L}} \right) = 0 + \frac{i_0 R}{L} e^{-\frac{Rt}{L}}$$

Initially, $t = 0$
$$\Rightarrow \quad \frac{di}{dt} = \frac{i_0 \times R}{L} = \frac{E}{L} = \frac{5}{2} = 2.5 \text{ As}^{-1}$$

161 (d)

As the magnetic field directed into the paper is increasing at a constant rate, therefore, induced current should produce a magnetic field directed out of the paper. Thus current in both the loops must be anti-clock-wise.

 $\left[\therefore e = -\frac{d\phi}{dt} = -A\frac{dB}{dt} \right]$

As area of loop on right side is more, therefore, induced emf o right side of loop will be more compared to the emf induced on the left-side of the loop

162 **(b)** Given,

Now,

$$= 2 \times 3.14 \times 50 \times 30 \times 10^{-3}$$
$$= 9.42 \Omega$$

L = 30 mH

 $V_{rms} = 220 V$ f = 50Hz $X_L = \omega L = 2\pi f L$

The rms current in the coil is

$$i_{rms} = \frac{V_{rms}}{X_L} = \frac{220V}{9.42\,\Omega} = 23.4\,\mathrm{A}$$

163 **(c)**

$$P = V_{r.m.s.} \times i_{r.m.s.} \times \cos \phi$$

= $\frac{100}{\sqrt{2}} \times \frac{100 \times 10^{-3}}{\sqrt{2}} \times \cos \frac{\pi}{3}$
= $\frac{10^4 \times 10^{-3}}{2} \times \frac{1}{2} = \frac{10}{4} = 2.5 \text{ watt}$

Initial flux linked with inner coil when i = 0 is zero. Final flux linked with inner coil when i = i is $\left(\frac{\mu_0 i}{2\pi b}\right) \pi a^2$

$$\therefore \text{ Change in flux, } d\phi = \left(\frac{\mu_0 i}{2\pi b}\right)\pi a^2$$
As $dq = \frac{d\phi}{R}$

$$\therefore \text{ Total charge circulating the inner coil is}$$

$$= \left(\frac{\mu_0 i}{2\pi b}\right)\frac{\pi a^2}{R} = \frac{\mu_0 i a^2}{2R b}$$
165 (a)
165 (a)
Induced emf produced in coil
$$e = \frac{-d\phi}{dt} = \frac{-d}{dt}(BA)$$

$$\therefore |e| = A\frac{dB}{dt} = 0.01 \times \frac{1}{1 \times 10^{-3}}$$

$$|e| = 10 \text{ V}$$
Current produced in coil

Current produced in coil,

$$i = \frac{|e|}{R} = \frac{10}{2} = 5$$
 A

Heat evolved = $i^2 R t$

$$= (5)^2 \times (2) \times 1 \times 10^{-3} = 0.05 \text{ J}$$

166 **(c)**

Power = Rate of work done in one complete cycle. or $P_{av} = \frac{W}{T}$ or $P_{av} = \frac{(E_0 I_0 \cos \phi)T/2}{T}$ or $P_{av} = \frac{E_0 I_0 \cos \phi}{2}$

Where $\cos \phi$ is called the power factor of an AC circuit.

167 **(c)**

Terminal velocity of the rod is attained when magnetic force on the rod (*Bil*) balances the component of weight of the rod(mg sin θ), figure.

$$mg \sin \theta$$

$$F_m$$

$$R = \frac{Bil}{e} = mg \sin \theta$$

$$B\left(\frac{e}{R}\right) l = mg \sin \theta$$

$$\frac{Bl}{R}(e) = mg \sin \theta$$

$$\frac{Bl}{R}(Blv_r) = mg \sin \theta$$

$$r_T = \frac{mgR \sin \theta}{B^2 l^2}$$
168 (a)
$$X_C = \frac{1}{2\pi vC} \Rightarrow C = \frac{1}{2\pi vX_C} = \frac{1}{2 \times \pi \times \frac{400}{\pi} \times 25}$$

$$= 50 \,\mu F$$
170 (c)
Here, $M = 2H$, $d\phi = 4$ Wb, $dt = 10$ s
As $\phi = M i$

$$d\phi = M di$$

Or
$$di = \frac{d\phi}{M} = \frac{4}{2} = 2 \text{ A}$$

Also, $d\phi = M (di) = 2(1)$
 $= 2 \text{ Wb}$
171 (a)
 $\tan \phi = \frac{X_L}{R} = \frac{\sqrt{3} R}{R} = \sqrt{3} \Rightarrow \phi = 60^\circ = \pi/3$
172 (c)
Time difference $= \frac{T}{2\pi} \times \phi = \frac{(1/50)}{2\pi} \times \frac{\pi}{4} = \frac{1}{400}s = 2.5m$ -s
173 (a)
Here, Resistance, $R = 3\Omega$
Inductive reactance, $X_L = 10\Omega$
Capacitive reactance, $X_L = 14\Omega$
The impedance of the series *LCR* circuit is
 $Z = \sqrt{R^2 + (X_C + X_L)^2} = \sqrt{(3)^2 + (14 - 10)^2}$
 $Z = 5\Omega$
174 (d)

In purely inductive circuit voltage leads the current by 90°

175 (a)

Q factor is given by $\frac{1}{R}\sqrt{\frac{L}{C}}$

So, for large quality factor the inductance should be large and resistance and capacitance must be small

176 **(b)**

As, power factor =
$$\frac{\text{true power}}{\text{apparent power}}$$

= $\cos \phi$
= $\frac{R}{\sqrt{R^2 + (X_L - X_C)^2}}$

power factor = $\cos \phi = \frac{\pi}{z}$:.

In a non-inductive circuit, $X_L = X_C$

$$\therefore \qquad \text{Power factor} = \cos \phi = \frac{R}{\sqrt{R^2}} = \frac{R}{R} = 1$$

$$\therefore \qquad \phi = 0^{\circ}$$

This is the maximum value of power factor. In a pure inductor or an ideal capacitor

$$\phi = 90^{\circ}$$

Power factor=
$$\cos \phi = \cos 90^\circ = 0$$

Average power consumed in a pure inductor or ideal capacitor

 $P = E_{\nu} I_{\nu} \cos 90^{\circ} = \text{zero}$

Therefore, current through pure *L* or pure *C*, which consumes no power for its maintenance in the circuit is called ideal current or wattles current.

177 (d)

:.

Potential difference across the capacitor = emf induced across HE = Blv which is constant.

Therefore, charge stored in the capacitor is constant. Hence current in the circuit *HKDE* is zero.

 $-LdI/dt = -5 \times (-2) = +10 \text{ V}$ 179 **(b)**

Resistance of a bulb = $\frac{(\text{Rated voltage})^2}{\text{Rated power}}$

$$=\frac{(220)^2}{100}=484\,\Omega$$

Peak voltage of the source, $V_0 = 220\sqrt{2} V = 311 V$ 180 (a)

As
$$M = \frac{\mu_0 N_1 N_2 A}{l}$$
, therefore, *M* becomes 4 times

181 (a)

 $\frac{1}{400}s =$

Impedance of *LCR* circuit will be minimum at resonant frequency so

$$V_0 = \frac{1}{2\pi\sqrt{LC}} = \frac{1}{2\pi\sqrt{1 \times 10^{-3} \times 0.1 \times 10^{-6}}}$$
$$= \frac{10^5}{2\pi} Hz$$

182 (b)

Here, resistance of rod = 2Ω . r = 0.1 m, B =50 T, along $z - axis \omega = 20 \text{ rads}^{-1}$. Potential difference between centre of the ring and the rim is

$$V = \frac{1}{2}B\omega r^2 = \frac{1}{2} \times 50 \times 20 \times (0.1)^2 = 5 \text{ V}$$

The equivalent circuit of the arrangement is shown in figure

Current through external resistance,

$$i = \frac{E}{R+r} = \frac{5}{10+5} = \frac{1}{3} A$$
183 (c)
 $\omega L = 2\pi \times 50 \times 0.21$

$$\tan \phi = \frac{\omega L}{R} = \frac{2\pi \times 50 \times 0.21}{12} = 5.5 \Rightarrow \phi = 80^{\circ}$$
185 (d)

$$e = Ldi/dt = 4 \times \frac{5}{1/1500} = 30000$$
V=30kV
187 (a)

$$X_{L} = 2\pi f L = 2\pi \left(\frac{50}{\pi}\right) \times 1 = 100\Omega$$

$$X_{C} = \frac{1}{2\pi f C}$$

$$= \frac{1}{2\pi \left(\frac{50}{\pi}\right) \times 20 \times 10^{-6}}$$

$$= 500 \Omega$$

Impedence $Z = \sqrt{(R)^{2} + (X_{C} - X_{L})^{2}}$

$$= \sqrt{(300)^{2} + (400)^{2}}$$

 $= 500 \Omega$

189 (d)

$$Z = \sqrt{(R)^{2} + (X_{L} - X_{C})^{2}};$$

$$R = 10\Omega, X_{L} = \omega L = 2000 \times 5 \times 10^{-3} = 10\Omega$$

$$X_{C} = \frac{1}{\omega C} = \frac{1}{2000 \times 50 \times 10^{-6}} = 10\Omega, i.e., Z$$

$$= 10\Omega$$
Maximum current $i_{0} = \frac{V_{0}}{Z} = \frac{20}{10} = 2A$
Hence $i_{rms} = \frac{2}{\sqrt{2}} = 1.4 A$ and $V_{rms} = 4 \times 1.41 = 5.64 V$
191 (d)

$$V = \sqrt{V_R^2 + (V_L - V_C)^2}$$

$$\therefore V_R = V \quad \because V_L = V_C$$

$$\therefore \text{ Reading of voltmeter} = 220V$$

$$\text{Reading of ammeter } I_{rms} = \frac{E_{rms}}{Z}$$

$$= \frac{220}{100} = 2.2A$$

192 (a)

Motion emf induced in the connector e = Blv = 2(1)(2) = 4 VThis acts as a cell of emf 4 V and internal resistance 2 Ω . 6 Ω and 3 Ω resistors are in

parallel.

$$\therefore \frac{1}{R_{P}} = \frac{1}{6} + \frac{1}{3} = \frac{1+2}{6} = \frac{3}{6} = \frac{1}{2}$$

$$R_{P} = 2 \Omega$$

$$4 \sqrt{-}$$

$$3 \Omega \qquad 4 \sqrt{-}$$

$$2 \Omega \qquad 2 \Omega \qquad 2$$

Magnetic force on the connector = Bil = (1)(1) = 2 N

Therefore, to keep the connector moving with a constant velocity, a force of 2 N has to be applied

to the right side.

193 (c) Heat produced by $ac = 3 \times Heat$ produced by dc $\therefore i_{rms}^2 Rt = 3 \times i^2 Rt \Rightarrow i_{rms}^2 = 3 \times 2^2$ $\Rightarrow i_{rms} = 2\sqrt{3} = 3.46 A$

194 **(d)**

Brightness $\propto P_{\text{consumed}} \propto \frac{1}{R}$. For bulb, $R_{ac} = R_{dc}$, so brightness will be equal in both the cases

$$E = 141 \sin 628t$$

$$\therefore \qquad E_{rms} = \frac{E_0}{\sqrt{2}}$$

$$= \frac{141}{1.41} = 100 \text{ V}$$

and

$$v = \frac{\omega}{2\pi}$$

$$= \frac{628}{2 \times 3.14} = 100 \text{ Hz}$$

196 **(c)**

Here,
$$R = 10 \Omega$$
. As is known,
 $|dq| = \frac{d\phi}{R} = |i \ dt| = \text{area under } i - t \text{ graphs.}$
 $\therefore \frac{d\phi}{R} = \frac{(4)(0.1)}{2} = 0.2$
 $d\phi = 0.2 \ R = 0.2 \times 10 = 2 \text{ Wb}$
197 (a)

From
$$\phi = Mi$$

 $\frac{M_1}{M_2} = \frac{\phi_1}{\phi_2} = \frac{10^{-3} \times 200}{0.8 \times 10^{-3} \times 400} = \frac{10}{16} = 0.625$
198 (a)

Here, $V_{rms} = 220V$, v = 50 Hz Peak value of voltage $V_0 = \sqrt{2} V_{rms} = 220\sqrt{2} V$ \therefore The instantaneous value of voltage is $V = V_0 \sin 2\pi v t = 220\sqrt{2} \sin 2\pi \times 50t$ $= 220\sqrt{2} \sin 100\pi t$

$$e = \frac{MdI}{dt} = 0.09 \times \frac{20}{0.006} = 300V$$

200 (a)

Current through the bulb
$$i = \frac{P}{V} = \frac{60}{10} = 6A$$

$$V = \sqrt{V_R^2 + V_L^2}$$

(100)² = (10)² + V_L^2
$$\Rightarrow V_L = 99.5 Volt$$

Also $V_L = iX_L = i \times (2\pi vL)$
$$\Rightarrow 99.5 = 6 \times 2 \times 3.14 \times 50 \times L$$

$$\Rightarrow L = 0.052 H$$

$$L = ?e = 5 V, \frac{dI}{dt} = \frac{(2-3)}{10^{-3}} = -10^3 \text{ As}^{-1}$$

As $e = -L\frac{dI}{dt}$
 $\therefore 5 = -L(-10^3), L = \frac{5}{10^3}\text{H} = 5\text{mH}$

202 (c)

With dc:
$$P = \frac{V^2}{R} \Rightarrow R = \frac{(10)^2}{20} = 5\Omega;$$

With ac: $P = \frac{V_{rms}^2 R}{Z^2} \Rightarrow Z^2 = \frac{(10)^2 \times 5}{10} = 50 \ \Omega^2$
Also $Z^2 = R^2 + 4\pi^2 v^2 L^2$
 $\Rightarrow 50 = (5)^2 + 4(3.14)^2 v^2 (10 \times 10^{-3})^2 \Rightarrow v$
 $= 80 \ Hz$

203 (d)

The voltage V_L and V_C are equal and opposite so, voltmeter reading will be zero.

Also,
$$R = 30 \ \Omega, X_L = X_C = 25 \ \Omega$$

So, $i = \frac{V}{\sqrt{R^2 + (X_L - X_C)^2}}$
 $= \frac{V}{R} = \frac{240}{30} = 8A$

204 (c)

If
$$\omega = 50 \times 2\pi$$
 then $\omega L = 20\Omega$
If $\omega' = 100 \times 2\pi$ then $\omega' L = 40\Omega$
 $I = \frac{200}{Z} = \frac{200}{\sqrt{R^2 + (\omega' L)^2}} = \frac{200}{\sqrt{(30)^2 + (40)^2}}$
 $I = 4A$

205 (a)

Eddy currents are produced when a metal is kept |214 (b) in a varying magnetic field.

206 (c)

After the current in the inductor reaches its maximum value I_0 , it falls from I_0 to zero. The energy $\frac{1}{2}LI_0^2$ supplied by the source during build up of current is returned back to the source during the fall of current.

Thus, net power supplied by the source in a complete cycle is zero.

207 (a)

$$f = \frac{1}{2\pi\sqrt{LC}} \Rightarrow f \propto \frac{1}{\sqrt{C}}$$

208 (a)

The same emf is induced in all the three rings because emf is only due to linear motion and does not depend on spin.

209 (b)

As
$$e = M \frac{di}{dt}$$

 $\therefore M = \frac{e}{di/dt} = \frac{25 \times 10^{-3}}{15.0} = 1.67 \times 10^{-3} \text{ H}$
As $\phi = Mi$
 $\therefore \phi = 1.67 \times 10^{-3} \times 3.6 = 6 \times 10^{-3} \text{ Wb}$

= 6 m Wb

210 (b)

In Colpitt oscillator two capacitors are placed across a common inductor and the centre of the two capacitors is tapped.

211 (d)

In an AC circuit, the coil of high inductance and negligible resistance used to control current, is called the choke coil. The power factor of such a coil is given by

$$\cos \phi = \frac{R}{\sqrt{R^2 + \omega^2 L^2}}$$
$$\approx \frac{R}{\omega L} \qquad (\text{as } R << \omega L)$$

As $R \ll \omega L$, $\cos \phi$ is very small. Thus, the power absorbed by the coil is very small. The only loss of energy is due to hysteresis in the iron core, which is much less than the loss of energy in the resistance that can also reduce the current if placed instead of the choke coil.

212 (d)

 $e_0 = NAB\omega$. When *B* and ω are doubled, e_0 becomes 4 times.

213 (c)

$$V_{\rm rms} = \frac{200}{\sqrt{2}}, I_{\rm rms} = \frac{1}{\sqrt{2}}$$

 $\therefore P = V_{\rm rms} I_{\rm rms} \cos \phi = \frac{200}{\sqrt{2}} \frac{1}{\sqrt{2}} \cos \frac{\pi}{3} = 50 W$

Here,
$$i = i_0$$
 at $t = \infty$. Let *i* be the current at $t = 1$ s

From
$$i = i_0 \left(1 - e^{-\frac{R}{L}t} \right)$$

= $i_0 \left(1 - e^{-\frac{10}{5} \times 1} \right) = i_0 \left(1 - \frac{1}{e^2} \right)$
 $\therefore \frac{i_0}{i} = \frac{e^2}{e^2 - 1}$

215 (c)

or

In a series L - C - R circuit, potential difference leads the current by an angle $\phi(\text{let})$.

$$\phi = \tan^{-1} \left(\frac{x_L}{R} \right)$$
$$\phi = \tan^{-1} \left(\frac{\omega_L}{R} \right)$$

At resonance, $X_L = X_C$, *ie*, $\omega L = \frac{1}{\omega C}$ Hence, $\phi = \tan^{-1}(0) = 0$

Therefore, phase difference between current and voltage at resonance is zero.

216 **(b)**

Since,

The average power output of the emf source is

$$P = \frac{1}{2} |V_0| |I_0| \cos \theta$$
$$V_0 = I_0 R$$

÷

$$P = \frac{1}{2}R|I_0|^2$$

It is clear that only the resistor dissipates energy in the circuit. The inductor and capacitor both store energy but they eventually return it to the circuit without dissipation.

217 (a)

$$I_0 = \frac{V_0}{R} = \frac{200}{100} = 2 \text{ A}$$

 $I_{rms} = \frac{I_0}{\sqrt{2}} = 1.414 \text{ A}$

219 **(b)**

The phase angle (θ) between *I* and *V* is given by

$$\tan \theta = \frac{\pi_L - \pi_C}{R} \quad \dots(i)$$
Where, $X_L = 2\pi fL$
 $= 2\pi \times 50 \times \left[\frac{200}{\pi} \times 10^{-3}\right]$
 $= 20 \Omega$
 $X_L = \frac{1}{2\pi fC}$
 $= \frac{1 \times \pi}{2\pi \times 50 \times 10^{-3}}$
 $= 10 \Omega$
and $R = 10 \Omega$
Substituting values of X_L, X_C and R in eq.(i), we get
 $\tan \theta = \frac{20 - 10}{10} = 1$
 $\Rightarrow \tan \theta = \tan \frac{\pi}{4}$
 $\therefore \theta = \frac{\pi}{4}$

The phase angle of the circuit is $\frac{\pi}{4}$.

220 **(b)**

 $\frac{n_P}{n_s} = \frac{1}{20}$ As $\frac{i_P}{i_s} = \frac{n_s}{n_P}$ $\therefore \quad \frac{i_P}{i_s} = 20 : 1$ 221 **(b)**

$$P = \frac{1}{2} V_0 i_0 \cos \phi \Rightarrow 1000 = \frac{1}{2} \times 200 \times i_0 \cos 60^{\circ}$$

$$\Rightarrow i_0 = 20 \ A \Rightarrow i_{rms} = \frac{i_0}{\sqrt{2}} = \frac{20}{\sqrt{2}} = 10\sqrt{2}A$$

222 (c)
$$Q = \frac{\omega L}{\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{$$

$$Q = \frac{\omega L}{R} = \frac{1}{R} \times \frac{1}{\sqrt{LC}} \times L$$
$$= \frac{1}{R} \sqrt{\frac{L}{C}}$$
$$= \frac{1}{3} \times \sqrt{\frac{1}{9}} = \frac{1}{9}$$
223 (c)

Given, $V_R = 5$ V, $V_L = 10$ V and $V_C = 10$ V In the L - C - R circuit, the AC voltage applied to the circuit will be

224 **(b)**

The impedance of
$$R$$
 – C circuit for frequency f_1 is

$$Z_1 = \sqrt{R^2 + \frac{1}{4\pi^2 f^2 C^2}}$$

Vc

The impedance of R - C circuit for frequency 2f is

$$Z_{2} = \sqrt{R^{2} + \frac{1}{4\pi^{2}(2f^{2})C^{2}}}$$

or
$$Z_{2} = \sqrt{R^{2} + \frac{1}{16\pi^{2}f^{2}C^{2}}}$$

Then,
$$\frac{Z_{1}^{2}}{Z_{2}^{2}} = \frac{R^{2} + \frac{1}{4\pi^{2}f^{2}C^{2}}}{R^{2} + \frac{1}{16\pi^{2}f^{2}C^{2}}}$$

Or
$$\frac{Z_{1}^{2}}{Z_{2}^{2}} = \frac{1 + \frac{1}{4\pi^{2}f^{2}C^{2}R^{2}}}{1 + \frac{1}{16\pi^{2}f^{2}R^{2}C^{2}}}$$

Values are greater than 1 then $\frac{Z_1}{Z_2}$ = lies between 1 and 2.

225 **(c)**

$$f = \frac{1}{2\pi\sqrt{LC}}$$

$$\therefore f = \frac{1}{2\times 3.14\sqrt{0.5 \times 10^{-3} \times 20 \times 10^{-6}}}$$

$$= \frac{1}{2\times 3.14 \times 10^{-4}} \approx 1600 \text{ Hz}$$

226 **(c)**

$$\tan \phi = \frac{X_L}{R} = \frac{2\pi vL}{R} = \frac{2\pi \times \frac{200}{2\pi} \times 1}{200} = 1 \Rightarrow \phi$$
$$= 45^{\circ}$$

227 (a)

$$e = L \frac{dI}{dt} = 2 \times 10^{-3} = 2V$$

228 (d)
 $P_{av} = \frac{V_{rms}^2 R}{Z^2}$
229 (b)
 $V_0 = i_0 Z \Rightarrow 200 = 100 Z \Rightarrow Z = 2\Omega$

Also
$$Z^2 = R^2 + X_L^2 \Rightarrow (2)^2 = (1)^2 + X_L^2 \Rightarrow X_L = \sqrt{3}\Omega$$

(b)

Power loss $\propto \frac{1}{(Voltage)^2}$

232 (c)

231

Resistances of both the bulbs are

$$R_{1} = \frac{V^{2}}{P_{1}} = \frac{220^{2}}{25}$$
$$R_{2} = \frac{V^{2}}{P_{2}} = \frac{220^{2}}{100}$$
$$\therefore R_{2} > R_{2}$$

Hence 25 W bulb will fuse

233 (b)

$$i = \frac{V - E}{R}, R = \frac{V - E}{i} = \frac{220 - 80}{25} = 5.6 \Omega$$

234 (c)

The current in LCR circuit becomes maximum at series resonance condition. At this point the total reactance of the circuit is zero. That means the reactance of inductance becomes equal and opposite to the reactance by the capacitor

235 (b)

For anti-resonant circuit current is minimum at resonant frequency and at frequencies other than resonant frequency current rises with frequency

237 (b)

$$P = Vi\cos\phi = V\left(\frac{V}{Z}\right)\left(\frac{R}{Z}\right) = \frac{V^2R}{Z^2} = \frac{V^2R}{(R^2 + \omega^2 L^2)}$$

238 (b)

Moving from A to B. $V_B - V_A = [5 \times 10^{-3}(-10^3) + 15 + 1 \times 5]$ = 15 volt

239 (d)

For a series L - C - Rcircuit at resonance Phase difference, $\phi = 0^{\circ}$ Power factor = $\cos \phi = 1$

241 (c)

Resonance frequency in *radian/second* is 1 1 500 rad/sec

$$\omega = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{8 \times 0.5 \times 10^{-6}}} = 500 \, ra$$
242 (b)
$$x_{0} = \frac{1}{\sqrt{16}} = \frac{1}{\sqrt{16}}$$

$$x_{C} = \frac{1}{\omega C} = \frac{1}{2\pi f C}$$

i.e., $X_{C} \propto \frac{1}{f}$

243 **(b)**

$$Z = \sqrt{R^2 + X_C^2} : I_{rms} = \frac{V_{rms}}{Z} : P = I_{rms}^2 R$$

Where $X_C = \frac{1}{\omega C}$

As ω is increased, X_C will decrease or Z will decrease. Hence *I*_{rms} or *P* will increase. Therefore, bulb glows brighter. Hence the correct option is (b).

244 (d)

$$C = \frac{t}{R} = \frac{10}{10^3} = 10^{-2}F = 10^4 \,\mu\,\text{F}$$

245 (c)
 $2\pi v = 377 \Rightarrow v = 60.03 \,Hz$
247 (c)
 $f = \frac{1}{2\pi\sqrt{LC}}$
or
 $f \propto \frac{1}{\sqrt{C}}$

When capacitor C is replaced by another capacitor C' of dielectric constant K, then

$$C' = KC$$

$$\therefore \qquad \frac{f'}{f} = \sqrt{\frac{C}{C'}}$$
or
$$\frac{125000 - 25000}{125000} = \sqrt{\frac{C}{KC}}$$
or
$$\frac{100}{125} = \frac{1}{\sqrt{K}}$$
or
$$K = \left(\frac{125}{100}\right)^2 = 1.56$$

248 (a)

or

$$\frac{E_S}{E_P} = \frac{i_P}{i_S} \Rightarrow i_P = \frac{E_S}{E_P} \times i_S = \frac{4.6}{230} \times 5 = 0.1 \text{ A}$$

Frequency is not affected by transformer. 249 (a)

$$V_{av} = \frac{2}{\pi} V_0 = \frac{2}{\pi} \times (V_{rms} \times \sqrt{2}) = \frac{2\sqrt{2}}{\pi} V_{rms}$$
$$= \frac{2\sqrt{2}}{\pi} \times 220 = 198 V$$

250 **(b)**

Ist case From formula

$$R = \frac{V^2}{P} = \frac{110 \times 110}{330} = \frac{110}{3} \Omega$$

Since, current lags the voltage thus, the circuit contains resistance and inductance.

Power factor $cos \phi = 0.6$ $\frac{R}{\sqrt{R^2 + X_L^2}} = 0.6$ $R^2 + X_L^2 = \left(\frac{R}{0.6}\right)^2$ ⇒ $X_L^2 = \frac{R^2}{(0.6)^2} - R^2$ $X_L^2 = \frac{R^2 \times 0.64}{0.36}$ $X_L = \frac{0.8 R}{0.6} = \frac{4R}{3}$ **→** •

IInd case Now

 $\cos \phi = 1$

(given)

...(i)

Therefore, circuit is purely resistive, *ie*, it contains only resistance. This is the condition of resonance in which

$$X_L = X_C$$

 $\therefore X_C = \frac{4R}{3} = \frac{4}{3} \times \frac{110}{3} = \frac{440}{9} \Omega$ [From Eq.

(i)] $\frac{1}{2\pi f c} = \frac{440}{9} \Omega$ $C = \frac{9}{2 \times 3.14 \times 60 \times 440}$ $= 54 \,\mu\text{F}$

251 **(b)**

Capacitive reactance(X_C) is given by

$$X_C = \frac{1}{\omega C}$$

Where ω is angular frequency and *C* the capacitance.

Also, $\omega = 2\pi f$, where f is frequency. In a DC circuit $f = 0 \quad \therefore \quad \omega = 0$ $X_C = \frac{1}{2} = \infty$

252 **(c)**

As continuous flow of DC do not take place through a capacitor, Therefore resistance of the circuit

R = 1 + 0.5 = 1.5

Current with circuit

$$E = \frac{E}{R'}$$
$$= \frac{2}{1.5} = \frac{4}{3}A$$

Potential difference across capacitor =Potential difference across 1 Ω resistor

$$= \frac{4}{3} \times 1 = \frac{4}{3} V$$

∴ Charge on capacitor $q = CV$

$$= 1 \times \frac{4}{3} = 1.33 \mu F$$

253 (a)

Frequency of *LC* oscillation
$$=\frac{1}{2\pi\sqrt{LC}}$$

 $\Rightarrow \frac{f_1}{f_2} = \frac{1}{\sqrt{L_1C_1}}\sqrt{L_2C_2} = \left(\frac{L_2C_2}{L_1C_1}\right)^{1/2}$
 $= \left(\frac{2L \times 4C}{L \times C}\right)^{1/2} = (8)^{1/2}$
 $\therefore \frac{f_1}{f_2} = 2\sqrt{2} \Rightarrow f_2 = \frac{f_1}{2\sqrt{2}} \text{ or, } f_2 = \frac{f}{2\sqrt{2}} \quad [\because f_1 = f]$
254 (a)
From $e = L \, dI/dt$
 $\frac{dI}{dt} = \frac{e}{L} = \frac{90}{0.2} = 450 \text{ As}^{-1}$
255 (d)
 $V = 120 \sin 100\pi t \cos 100\pi t \Rightarrow V = 60 \sin 200\pi t$

 $V_{\rm max} = 60V$ and v = 100 Hz

Power = Rate of work done in one complete cycle.

or
$$P_{av} = \frac{W}{T}$$

or $P_{av} = \frac{(E_0 I_0 \cos \phi)T/2}{T}$
or $P_{av} = \frac{E_0 I_0 \cos \phi}{2}$

Where $\cos \phi$ is called the power factor of an AC circuit.

257 **(b)**

The impedance (*Z*) of an R - L - C series circuit is given by

$$Z = \sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}$$

As frequency of alternating emf applied to the circuit is increased, X_L goes on increasing and X_C goes on decreasing.

For a particular value of $\omega = (\omega_r \text{ say})$

$$X_L = X_C$$

ie, $\omega_r L = \frac{1}{\omega_r C}$
or $\omega_r = \frac{1}{\sqrt{LC}}$

or
$$2\pi v_r = \frac{1}{\sqrt{Lc}}$$

$$v_r = \frac{1}{2\pi\sqrt{LC}}$$

$$v = \frac{1}{2 \times 3.14 \times \sqrt{5 \times 80 \times 10^{-6}}}$$
$$= \frac{1}{2 \times 3.14 \times \sqrt{(400 \times 10^{-6})}}$$
$$= \frac{1}{2 \times 3.14 \times 2 \times 10^{-2}}$$
$$= \frac{100}{3.14 \times 4}$$
$$= \frac{25}{3.15} = \frac{25}{\pi} \text{Hz}$$

259 **(b)**

or

:.

The time taken by AC in reaching from zero to maximum value is

$$t = \frac{T}{4} = \frac{1}{4f}$$
$$= \frac{1}{50 \times 4} = 5 \times 10^{-3} \text{s}$$

260 **(b)**

For given circuit current is lagging the voltage by $\pi/2$, so circuit is purely inductive and there is no power consumption in the circuit. The work done by battery is stored as magnetic energy in the inductor.

262 **(a)**

In a pure inductor (zero resistance), voltage leads the current by 90° *i.e.*, $\pi/2$

263 **(d)**

 $P = Vi \cos \phi$ Phase difference $\phi = \frac{\pi}{2} \Rightarrow P = \text{zero}$

264 **(c)**

We have
$$X_C = \frac{1}{C \times 2\pi f}$$
 and $X_L = L \times 2\pi f$

265 (c)
Here
$$I_{rms} = 10 A, R = 12 \Omega$$

The maximum current is
 $I_m = \sqrt{2} I_{rms} = \sqrt{2}(10) = 10\sqrt{2} A$
Maximum potential difference is $V_m = I_m R$
 $= 10\sqrt{2} \times 12 = 169.68 V$

266 **(b)**

$$Z = \sqrt{R^2 + X_c^2}$$
$$= \sqrt{(R)^2 + \left(\frac{1}{\omega c}\right)^2}$$

In case (b) capacitance (c) will be more. Therefore, impedance Z will be less. Hence current will be more.

267 **(c)**

 $\tan\phi = \frac{X_L}{R} = 1 : \phi = 45^\circ \text{ or } \pi/4$

268 (c)

(i) In a circuit having *C* alone, the voltage lags the current by $\frac{\pi}{2}$.

(ii) In a circuit containing *R* and *L*, the voltage leads the current by $\frac{\pi}{2}$.

(iii) In L – C circuit, the phase difference between current and voltage can have any

value between 0 to $\frac{\pi}{2}$ depending on the values of *L* and *C*.

(iv) In a circuit containing *L* alone, the voltage leads the current by $\frac{\pi}{2}$.

269 **(d)**

Induced emf e = Blv = BWvPower developed $= \frac{e^2}{R} = \frac{B^2 W^2 v^2}{R}$

270 **(b)**

In *RC* series circuit voltage across the capacitor leads the voltage across the resistance by $\frac{\pi}{2}$

271 **(c)**

$$E_S = \frac{n_S}{n_P} E_P = \frac{1}{200} \times 240 = 12 \text{ V}$$

272 **(a)**

The current is
$$I = \frac{E_0}{\sqrt{R^2 + \omega^2 L^2}}$$

= $\frac{4}{\sqrt{4^2 + (1000 \times 3 \times 10^{-3})^2}} = 0.8 \text{ A}$

273 **(b)**

In parallel resonant circuit, resonance frequency

$$f_0 = \frac{1}{2\pi\sqrt{LC}} = \frac{1}{2\pi\sqrt{\frac{10\times10^{-3}}{\pi^2}}\times0.04\times10^{-6}}} = \frac{10^4}{2\times0.2} = 25 \text{ kHz}$$

274 (d)

$$V_{rms} = \sqrt{\frac{(T/2)V_0^2 + 0}{T}} = \frac{V_0}{\sqrt{2}}$$

275 **(a)**

The voltage across a L - R combination is given by

$$V^{2} = V_{R}^{2} + V_{L}^{2}$$
$$V_{L} = \sqrt{V^{2} - V_{R}^{2}} = \sqrt{400 - 144} = \sqrt{256} = 16 \text{ volt}$$

276 **(d)**

The average power of L - C - R circuit $P_{av} = V_{rms}$. $i_{rms} \cos \phi$ Hence, the average power depends upon current, emf and phase difference.

277 **(d)**

$$X_L = 2\pi v L \Rightarrow L = \frac{X_L}{2\pi v} = \frac{50}{2 \times 3.14 \times 50} = 0.16 H$$

278 **(d)**

The average power dissipation in the circuit is $\frac{1}{2}E_0I_0\tan\varphi$

279 **(a)**

Final current in constant and L plays no role at that instant. Therefore, i = E/R.

280 **(a)**

A closed current carrying loop of any irregular shape and even not lying in a single plane, placed in a uniform magnetic field shall experience no net force. Therefore, force acting on the loop must be zero.

281 **(b)**

As
$$M = \frac{\mu_0 N_1 N_2 A}{l}$$
,

 \therefore *M* can be increased by increasing the number of turns in the coils.

In *L-C-R* series circuit, $V = \sqrt{V_R^2 + (V_L - V_C)^2}$

$$= \sqrt[7]{(40)^2 + (60 - 30)^2}$$

$$=\sqrt{1600+900}=\sqrt{2500}=50V$$

283 **(c)**

For series
$$L - C - R$$
 circuit

$$V = \sqrt{V_R^2 + (V_L - V_C)^2}$$

= $\sqrt{(80)^2 + (40 - 100)^2}$
= 100 V

285 **(b)**

Power
$$P = \frac{1}{2} V_0 I_0 \cos \phi$$

$$= 0.5 \times 150 \times 150 \times \cos 60^{\circ} = \frac{22500}{4}$$

= 5625 W 286 **(a)**

If the capacitance is removed, it is an L - R circuit $\phi = 60^{\circ}$

$$\tan \phi = \frac{X_L}{R} = \tan 60^\circ = \sqrt{3}$$

If inductance is removed, it is a capacitative circuit or R - C circuit. $|\phi|$ is the same $\therefore L\omega = \frac{1}{C\omega}$ This is a resonance circuit

$$Z = R; I_{rms} = \frac{E_{rms}}{R}, E_{rms} = 200 V$$

$$\therefore I_{rms} = \frac{200V}{100\Omega} = 2A$$

287 (d)

Resistance of the bulb

$$R = \frac{V^2}{P} = \frac{(100)^2}{50} = 200 \ \Omega$$
Current through bulb(I) = $\frac{V}{R}$
= $\frac{100}{200} = 0.5 \ A$
In a circuit containing inductive reactance (N

In a circuit containing inductive reactance (X_L) and resistance (R), impedance (Z) of the circuit is

$$Z = \sqrt{R^{2} + \omega^{2}L^{2}} \qquad ...(i)$$

Here, $Z = \frac{200}{0.5} = 400 \ \Omega$
Now, $X_{L}^{2} = Z^{2} - R^{2}$
 $= (400)^{2} - (200)^{2}$
 $(2\pi fL)^{2} = 12 \times 10^{4}$
 $L = \frac{2\sqrt{3} \times 100}{2\pi \times 50}$
 $= \frac{2\sqrt{3}}{\pi} = 1.1 \ \text{H}$

288 (b)

The *Q*- factor of series resonant circuit is given by

$$Q = \frac{\omega_r^{2L}}{R}$$

It is evident from the relation that as *R* is

increased, *Q* – factor of the circuit is decreased. 289 **(d)**

In steady state current through the branch having capacitor is zero.

$$\therefore \qquad \frac{1}{R} = \frac{1}{1} + \frac{1}{2} + \frac{1}{3}$$

$$\frac{1}{R} = \frac{6+3+2}{6}$$

$$R = \frac{6}{11}$$
As $V = iR$

$$\therefore \qquad 6 = i \times \frac{6}{11}$$
Current through the battery $i = 11A$

Charge on the capacitor q = CV $\Rightarrow \qquad q = 0.5 \times 10^{-6} \times 6$ $q = 3\mu C$

290 **(d)**

Current will be maximum in the condition of resonance so $i_{\text{max}} = \frac{V}{R} = \frac{V}{10}A$ Energy stored in the coil $W_L = \frac{1}{2}Li_{\text{max}}^2 = \frac{1}{2}L\left(\frac{E}{10}\right)^2$ $=\frac{1}{2} \times 10^{-3} \left(\frac{E^2}{100}\right) = \frac{1}{2} \times 10^{-5} E^2 \text{ joule}$: Energy stored in the capacitor $W_C = \frac{1}{2}CE^2 = \frac{1}{2} \times 2 \times 10^{-6}E^2 = 10^{-6}E^2$ joule $\therefore \frac{W_C}{W_c} = \frac{1}{5}$ 291 (c) $X_L = 2\pi v L = 2 \times \pi \times 50 \times \frac{1}{\pi} = 100\Omega$ 293 (c) In series R - L - C circuit, the impedance of the circuit is given by $Z = \sqrt{R^2 + (X_L - X_C)^2}$ Also, $X_L = \omega L$, $X_C = \frac{1}{\omega C}$ $Z = \sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}$ Given, $R = 300\Omega$, $\omega = 1000 \text{ rads}^{-1}$, L = 0.9 H, $C = 20\mu F = 2 \times 10^{-6} F$ Hence, $Z = \sqrt{(300)^2} + (1000 \times 0.9 - 1000 \times 0.9)$ $\frac{1}{1000\times2\times10^{-6}}\Big)^2$ $=\sqrt{90000 + (900 - 500)^2}$ $=\sqrt{90000 + 160000}$ $=\sqrt{250000}=500 \Omega$ 294 (b) As coil *A* is moved closer to *B*, field due to A intercepting B is increasing. Induced current in *B* must oppose this increase. Hence the current in

B must be anti-clock-wise.

295 **(d)** Reactance

Reactance
$$X = X_L - X_C = 2\pi f L - \frac{1}{2\pi f C}$$

296 **(d)**

Circuit is resonant. Hence supply voltage equals

$$V_R = 10 \text{ V}$$

Also,
$$X_C = R$$

As the voltage drops are equals across them when *L* is shortened

$$Z = \sqrt{R^2 + X_C^2} = \sqrt{2R}$$

$$V_{C} = iX_{C} \qquad \left(\because i = \frac{V}{2} \right)$$

or
$$V_{C} = \frac{V}{2}X_{C} = \frac{10}{\sqrt{2R}}R$$
$$V_{C} = \frac{10}{\sqrt{2}}V$$

297 (c)
Adff sdaf sdfsdf dsf
298 (b)
From $e = LdI/dt, L = \frac{edt}{dl} = \frac{8 \times 0.05}{2} = 0.2H$
299 (a)
Capacitance of wire
 $C = 0.014 \times 10^{-6} \times 200$
$$= 2.8 \times 10^{-6}F = 2.84\mu$$
F
For impedance of the circuit to be minimum
 $X_{L} = X_{C}$
 $\Rightarrow 2\pi vL = \frac{1}{2\pi vC}$
$$L = \frac{1}{4\pi^{2}v^{2}C}$$
$$= \frac{1}{4(3.14)^{2} \times (5 \times 10^{3})^{2} \times 2.8 \times 10^{-6}}$$
$$= 0.35 \times 10^{-3}$$
H = 0.35 mH
300 (c)
At resonance $X_{L} = X_{C}$
303 (c)
As $B_{0} = \mu_{0} ni$, therefore B_{0} does not depend upon
radius (r) of the solenoid.
304 (c)
Here, $L = 25 mH = 25 \times 10^{-3} H$ $v = 50 Hz, V_{rms} = 220 V$
The inductive reactance is
 $X_{L} = 2\pi v L = 2 \times \frac{22}{7} \times 50 \times 25 \times 10^{-3} \Omega$
The rms current in the circuit is
 $I_{rms} = \frac{V_{rms}}{X_{L}} = \frac{220}{2 \times \frac{22}{7} \times 50 \times 25 \times 10^{-3}}$
 $= \frac{7 \times 1000}{2 \times 5 \times 25} A = 28 A$
305 (b)
To decrease current in an AC circuit, choke coil is
used. The choke coil has high inductance and
negligible resistance, so that the energy loss in the
circuit is negligible.
Hence, $X_{L} >> R$
306 (a)
Current in a *L-C-R* series circuit,

$$i = \frac{V}{\sqrt{R^2 + (X_L - X_C)^2}}$$

coil is

Where *V* is rms value of current, *R* is resistance, X_L is inductive reactance and X_C is capacitive reactance.

For current to be maximum, denominator should

be minimum which can be done, if $X_L = X_C$ This happens in resonance state of the circuit $\omega L = \frac{1}{\omega C}$ i.e, $L=\frac{1}{\omega^2 C}$ or ...(i) Given, $\omega = 1000 \text{s}^{-1}$, $C = 10 \mu F = 10 \times 10^{-6} \text{F}$ Hence, $L = \frac{1}{(1000)^2 \times 10 \times 10^{-6}} = 0.1 \text{ H} = 100 \text{ mH}$ 307 (b) $E = E_0 \cos \omega t = 10 \cos(2\pi \times ft)$ $= 10 \cos\left(2\pi \times 50 \times \frac{1}{600}\right)$ $= 10 \cos\left(\frac{\pi}{6}\right) = 10 \times \frac{\sqrt{3}}{2} = 5\sqrt{3} \text{ V}$ 309 (d) As explained in solution (1) for frequency 0 f_r , *Z* decreases hence (i = V/Z) increases and for frequency $f_r - \infty$, *Z* increases hence *i* decreases 310 **(a)** At resonance, V_L and V_C are equal in magnitude but have phase difference of 180° relative to each other $\therefore V_{LC} = V_L - V_C = 0$ Hence, voltmeter V_2 read 0 volt 311 **(b)** When C is removed circuit becomes RL circuit hence $\tan\frac{\pi}{2} = \frac{X_L}{P}$...(i) When L is removed circuit becomes RC circuit hence $\tan\frac{\pi}{3} = \frac{X_C}{P}$...(ii) From equation (i) and (ii) we obtain $X_L = X_C$. This is the condition of resonance and in resonance $Z = R = 100\Omega$ 312 (c) $V_L = 46 \text{ volts}, V_C = 40 \text{ volts}, V_R = 8 \text{ volts}$ E.M.F. of source $V = \sqrt{8^2 + (46 - 40)^2} = 10$ volts 313 **(b)** Resonance frequency, $\omega = \frac{1}{\sqrt{LC}}$ $=\frac{\sqrt{LC}}{\sqrt{8\times10^{-3}\times20\times10^{-6}}}$ $= \frac{1}{4 \times 10^{-4}} = \frac{10^4}{4}$ $= 2500 \text{ rad } s^{-1}$ Amplitude of current, $I_0 = \frac{V}{R} = \frac{220}{44} = 5 \text{ A}$ 314 **(a)**

$$V_{rms} = \sqrt{\frac{1}{T}} \int_0^T 10^2 \, dt = 10 \, V$$

315 (c) Effective voltage $V_{r.m.s.} = \frac{V_0}{\sqrt{2}} = \frac{423}{\sqrt{2}} = 300 V$ 316 (b) Given, $L = 20 \text{ mH} = 20 \times 10^{-3} \text{H}$ $C = 50\mu F = 50 \times 10^{-6} F$ For *LC* circuit the frequency, $f = \frac{1}{2\pi\sqrt{LC}}$ $T = 2\pi\sqrt{LC}$ $\left(:: T = \frac{1}{\epsilon}\right)$ or At time $t = \frac{T}{4}$, energy stored is completely magnetic. The time, $t = \frac{T}{4}$ $t = \frac{2\pi\sqrt{LC}}{4}$ $t = \frac{2\pi\sqrt{20 \times 10^{-3} \times 50 \times 10^{-6}}}{4}$ $t = \frac{3.14\sqrt{10^{-6}}}{2}$ or or $t = \frac{3.14 \times 10^{-3}}{2}$ or $t = 1.57 \times 10^{-3}$ s = 1.57 ms or 317 (c) Ignoring mutual induction, resultant, inductance $L' = L_1 + L_2$ =L + L = 2L319 (a) In an *L* – *C* circuit the impedance of circuit is $Z = X_L - X_C$ When $X_L = X_C$, then Z = 0. In this situation the amplitude of current in the circuit would be infinite. It will be condition of electrical resonance and frequency is given by 1

$$f = \frac{1}{2\pi\sqrt{LC}}$$

$$= \frac{1}{2\times3.14\times\sqrt{10\times10^{-3}\times0.25\times10^{-6}}}$$

$$= 3184.7 \text{ cycle s}^{-1}$$
Also frequency = $\frac{\text{velocity}}{\text{wavelength}}$

$$\Rightarrow \qquad \lambda = \frac{c}{f} = \frac{3\times10^8}{3184.7}$$

$$\Rightarrow \qquad \lambda = 9.42\times10^4 \text{ m}$$

320 **(a)**

As the inductors are in parallel, therefore, induced emf across the two inductors is the same *ie*,

 $e_{1} = e_{2}$ $L_{1}\left(\frac{di_{1}}{dt}\right) = L_{2}\left(\frac{di_{2}}{dt}\right)$

Integrating both sides w.r.t. *t*, we get

$$L_{1}i_{1} = L_{2}i_{2}$$

$$\therefore \quad \frac{i_{1}}{i_{2}} = \frac{L_{2}}{L_{1}}$$
321 (a)

Impedance,

$$Z = \sqrt{R^2 + (X_L - X_C)^2}$$

$$\therefore \quad 10 = \sqrt{(10^2 + (X_L - X_C)^2)}$$

$$\Rightarrow \quad 100 = 100 + (X_L - X_C)^2$$

$$\Rightarrow \quad X_L - X_C = 0$$

...(i)

Let $\boldsymbol{\phi}$ is the phase difference between current and voltage

$$\tan \phi = \frac{X_L - X_C}{R}$$

$$\therefore \qquad \tan \phi = \frac{0}{R}$$

$$\Rightarrow \qquad \phi = 0 \qquad [From Eq.(i)]$$

322 **(d)**

In an L - C - R series AC circuit, the voltage across inductor L leads the current by 90° and the voltage across capacitor C lags behind the current by 90°.

Hence, the voltage across L - C combination will be zero.

323 **(d)**

$$L = \frac{\mu_0 N^2 A}{l} = \frac{\mu_0 N^2 (\pi r^2)}{l}$$

= $\frac{4\pi \times 10^{-7} \times (500)^2 \times \pi (0.025)^2}{1}$
= $4 \times 10 \times 10^7 \times (500)^2 \times (0.025)^2$
= 6.25×10^{-4} H

325 **(c)**

The power loss in AC circuit will be minimum, if resistance is low. In inductance power loss is zero. It applies to high as well as low inductances.

326 **(c)**

Inductive reactance $X_L = \omega L$

$$= 2\pi vL$$
$$= 2\pi \times 50 \times 1$$
$$= 100\pi$$

327 **(d)**

A series resonance circuit admits maximum current, as

$$P = i^2 R$$

So, power dissipated is maximum at resonance. So, frequency of the source at which maximum power is dissipated in the circuit is

$$v = \frac{1}{2\pi\sqrt{LC}} = \frac{1}{2\times3.14\sqrt{25\times10^{-3}\times400\times10^{-6}}} = \frac{1}{2\times3.14\sqrt{10^{-5}}} = 50.3 \text{ Hz}$$

328 (a)

As initially charge is maximum,

$$q = q_0 \cos \omega t$$

$$\Rightarrow \qquad i = \frac{dq}{dt} = -\omega q_0 \sin \omega t$$
Given
$$\frac{1}{2}Li^2 = \frac{q^2}{2C}$$

$$\Rightarrow \frac{1}{2}L(\omega q_0 \sin \omega t)^2 = \frac{(q_0 \cos \omega t)^2}{2C}$$

$$\omega = \frac{1}{\sqrt{LC}}$$

$$\therefore \qquad \tan \omega t = 1$$

$$\omega t = \tan \frac{\pi}{4}$$

$$t = \frac{\pi}{4\omega} = \frac{\pi}{4}\sqrt{LC}$$

330 **(b)**

(1) For time interval 0 < t < T/2 I = kt, where k is the slope For inductor as we know, induced voltage $V = -L \frac{di}{dt}$

$$V_1 = -KL$$

(2) For time interval
$$\frac{T}{2} < t < T$$

 $I = -Kt \Rightarrow V_2 = KL$

331 (c)

Average power in AC circuits is given by $P = V_{\rm rms} I_{\rm rms} \cos \phi$ for pure capacitive circuit $\phi = 90^{\circ}$ so, P = 0.

332 (d)

 $I_L = \frac{v}{x_L} \text{ and } I_C = \frac{v}{x_C}$ *i.e,* $I_L \propto \frac{1}{\omega}$ and $I_C \propto \omega$ \therefore With increase in ω ,

 \therefore With increase in ω , I_L decreases while I_C increases.

333 **(a)**

Geometric length of a magnet is 6/5 times its magnetic length.

 \therefore Geometric length =6/5×10=12 cm

334 (c)

The current in the circuit

$$i = \frac{v_R}{R}$$

= $\frac{100}{1000} = 0.1 \text{ A}$

At resonance,

$$V_L = V_C = iX_C = \frac{i}{\omega C}$$

= $\frac{0.1}{200 \times 2 \times 10^{-6}} = 250 \text{ V}$

335 **(d)**

Given, the frequency of alternating current f= 50 Hz

The time for alternating current to become its rms value from zero.

336 (c)

The full cycle of alternating current consists of two half cycles. For one – half, current is positive and for second half, current is negative. Therefore, for an AC cycle, the net value of current average out to zero. While the DC ammeter, read the average value. Hence, the alternating current cannot DC measured by DC ammeter.

337 **(a)**

Current will be maximum at the condition of resonance. So resonant frequency $\omega_0 = \frac{1}{\sqrt{LC}} =$

$$\frac{1}{\sqrt{0.5 \times 8 \times 10^{-6}}}$$

$$= 500 \, rad/s$$

338 **(c)**

Input power $P_1 = 220 \times 1.5 = 330 \text{ W}$ Loss of power $i^2 R = \left(\frac{3}{2}\right)^2 \times 20 = 45 \text{ W}$ Output power, $P_0 = 330 - 45 = 285 \text{ W}$ \therefore Peak emf induced, $V_0 = \frac{P_0}{i} = \frac{285}{1.5} = 190 \text{ V}$ 339 (c)

$$V_{rms} = \frac{V_0}{\sqrt{2}} = \frac{770\sqrt{2}}{2} \approx 500 \text{ V}$$

340 (c) In L - R circuit, impedance $Z = \sqrt{R^2 + X_L^2}$ Here, $X_L = \omega L = 2\pi f L$ $\therefore \qquad Z = \sqrt{R^2 + 4\pi^2 f^2 L^2}$ 341 (a) Given, $V_C = 3V_R = 3(V - V_C)$

Here, *V* is the applied potential. $V_C = \frac{3}{4} V$:. Or $V(1 - e^{-t/\tau_c}) = \frac{3}{4}V$ $e^{-t/\tau_C} = \frac{1}{4}$:. ...(i) $\tau_C = CR = 10s$ Here, Substituting this value of τ_C in Eq.(i) and solving for *t*, we get t = 1 3.8 6s 342 (d) $l_1 = \frac{F}{R_1} = \frac{12}{2} = 6 A$ $E = L\frac{dl_2}{dt} + R_2 \times l_2$ $I_2 = I_0(1 - e^{-t/t_c})$ $I_0 = \frac{E}{R_2} = \frac{12}{2} = 6A$ ⇒ $t_c = \frac{L}{R} = \frac{400 \times 10^{-3}}{2} = 0.2$ $I_2 = 6(1 - e^{-t/0.2})$ Potential drop across $L = E - R_2 L_2 = 12 - 2 \times 6(1 - e^{-bt}) = 12e^{-5t}$ 343 (c) Reactance of capacitor or capacitive reactance is denoted by X_C , given by $X_C = \frac{1}{\omega C}$ Given, $\omega = 50 \text{ rad s}^{-1}$, $C = 50 \mu \text{F} = 50 \times 10^{-6} \text{F}$ $X_C = \frac{1}{50 \times 50 \times 10^{-6}}$:. From Ohm's law, current flowing through the circuit is given by $I_{\rm rms} = \frac{V_{\rm rms}}{X_C}$ $= \frac{V_{\rm rms}}{1/\omega C} = \frac{220}{1/50 \times 50 \times 10^{-6}}$ 353 (d) $I_{\rm rms} = 220 \times 50 \times 50 \times 10^{-6}$ ⇒ C $= 55 \times 10^{-2} \text{ A} = 0.55 \text{ A}$ 344 (a) In an ideal choke, ratio of its inductance L to its DC resistance *R* is infinity. 345 (a) Given, $R = 3\Omega$, $X_L = 15 \Omega$, $X_C = 11 \Omega$ $V_{\rm rms} = 10$ volt ∴ Current through the circuit $i = \frac{V_{\rm rms}}{V_{\rm rms}}$

$$\sqrt{R^2 + (X_L - X_C)^2}$$

$$= \frac{10}{\sqrt{(3)^2 + (15 - 11)^2}}$$

$$= \frac{10}{\sqrt{9 + 16}} = \frac{10}{5} = 2A$$

Since, *L*, *C* and *R* are connected in series combination then potential difference across R is $V_R = i \times R = 2 \times 3 = 6 \text{ V}$

 $V_L = iX_L = 2 \times 15 = 30 \text{ V}$ Across L, Across C, $V_C = iX_C = 2 \times 11 = 22 \text{ V}$ So, potential difference across series combination of L and C, 17

$$= v_L - v_C$$

= 30 - 22 = 8 V

346 (d)

At resonance net voltage across L and C is zero 347 (d)

$$\therefore P = Vi\cos\phi$$
, $\therefore P \propto \cos\phi$

As
$$e = M \frac{di}{dt} = M \frac{d}{dt} (i_0 \sin \omega t)$$

 $\therefore e = M i_0 \cos \omega t(\omega)$
 $e_{\text{max}} = M i_0 \times 1 \times \omega$
 $= 0.005 \times 10 \times 10\pi = 5\pi$

349 (d)

The emf induced in a conductor does not depend o its shape, but only on its end points, M and Q in this case. Thus the conductor is equivalent to an imaginary straight conductor of l = MQ = 2R. Therefore, potential difference developed across the ring =Blv = B(2R)v. And the direction of induced current is from Q to M. Therefore, Q is at higher potential.

350 (b)

$$L = \frac{e}{di/dt} = \frac{edt}{di} = \frac{5 \times 10^{-3}}{(3-2)} \text{H} = 5 \text{ mH}$$

351 (a)

As $M \propto N_1 N_2$, therefore, M remains the same. 352 (b)

For purely capacitive circuit
$$e = e_0 \sin \omega t$$

 $i = i_0 \sin \left(\omega t + \frac{\pi}{2} \right)$, *i. e.*, current is ahead of emf by $\frac{\pi}{2}$

urrent,
$$i = \frac{V}{\sqrt{R^2 + X_C^2}}$$

If a dielectric is introduced into the gap between the plates of capacitor. Its capacitance will increase and hence, impedance of the circuit will decrease. Thus, current and hence brightness of the bulb increase.

354 (d)

When resonance occurs emf E and current *i* are in phase. In this case, the impedance is minimum and current is maximum. At resonance inductive reactance is equal to capacitive reactance $X_L = X_C$

355 (c)

The circuit element connected to the AC source will be pure resistor. In pure resistive AC circuit, voltage and current are in the same phase

356 **(b)**

Frequency = $\frac{1}{2\pi\sqrt{LC}}$ So the combination which represents dimension of frequency is $\frac{1}{\sqrt{LC}} = (LC)^{-1/2}$

357 **(a)**

In *LCR* series circuit, impedance *Z* of the circuit is given by

 $Z = \sqrt{(R)^2 + (X_L - X_C)^2}$ where $X_L = \omega L, X_C = 1/\omega C$

At resonance $X_L = X_C :: Z = R$

358 **(c)**

$$\begin{split} X_L &= 2\pi f \\ \Rightarrow X_L \propto f \\ \Rightarrow \frac{1}{X_L} \propto \frac{1}{f} \end{split}$$

i.e., graph between $\frac{1}{X_L}$ and f will be a hyperbola

359 **(d)**

For current to be maximum , $X_L = X_C$ Hence, resonant frequency

$$f = \frac{1}{2\pi} = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{0.5 \times 8 \times 10^{-6}}} = \frac{10^3}{4\pi}$$

But angular frequency
 $\omega = 2\pi f$

 $\omega = \frac{2\pi \times 1000}{4\pi} = 500 \text{ Hz}$

360 **(b)**

The average power consumed in an AC circuit is given by

$$P = \frac{V_0 I_0}{2} \cos \phi$$

Where ϕ is phase angle and V_0 and I_0 the peak value of voltage and current.

Given,
$$V_0 = 200V$$
, $I_0 = 2A$, $\phi = \frac{\pi}{3}$.
 $P = \frac{200 \times 2}{2} \cos \frac{\pi}{3}$
 $= \frac{200 \times 2}{2} \times \frac{1}{2} = 100 \text{ W}$

361 **(d)**

The given circuit is under resonance as $X_L = X/C$ Hence, power dissipated in the circuit is

$$P = \frac{V^2}{R} = 242 \text{ W}$$

362 **(c)**

$$Z = \sqrt{R^2 + (2\pi\nu L)^2}$$

= $\sqrt{(40)^2 + 4\pi^2 \times (50)^2 \times (95.5 \times 10^{-3})^2}$
= 50 ohm

363 **(c)**

$$i_L = \frac{90}{30} = 3A$$

 $i_C = \frac{90}{20} = 4.5 A$ Net current through circuit $i = i_C - i_L = 1.5 A$ $\therefore Z = \frac{V}{i} = \frac{90}{1.5} = 60\Omega$ 364 (c) $\therefore \phi = Mi$: $M = \frac{\phi}{i} = \frac{0.4}{2} = 0.2 \text{ H}$ 365 (c) $i = \frac{V}{X_i} = \frac{120}{2 \times 3.14 \times 60 \times 0.7} = 0.455 \,A$ 366 (d) $\tan \phi = \frac{X_L}{R} = \frac{2\pi \nu L}{R} \Rightarrow \tan 30^\circ = \frac{2\pi \times 50 \times L}{\pi \sqrt{3}}$ = 0.01 H367 (a) For purely *L*-circuit P = 0369 (a) $R = 6 + 4 = 10\Omega$ $X_L = \omega L = 2000 \times 5 \times 10^{-3} = 10\Omega$ $X_{C} = \frac{1}{\omega C} = \frac{1}{2000 \times 50 \times 10^{-6}} = 10\Omega$ $\therefore Z = \sqrt{R^{2} + (X_{L} - X_{C})^{2}} = 10\Omega$ Amplitude of current = $i_0 = \frac{V_0}{Z} = \frac{20}{10} = 2A$ 370 (c) Impedance, $Z = \sqrt{(X_L \sim X_C)^2 + R^2}$ $\leftarrow 100 \,\mu\,\mathrm{H} \rightarrow \sim 1 \,\mu\,F \rightarrow \sim 10 \,\Omega \rightarrow$ $Z = \sqrt{\left(\omega L \sim \frac{1}{\omega C}\right)^2 + R^2}$ Inductive reaction $X_L = \omega L = 70 \times 10^3 \times 100 \times 10^{-6} = 7\Omega$ Capacitance reactance $X_C = \frac{1}{\omega C} = \frac{1}{70 \times 10^3 \times 1 \times 10^{-6}}$ $=\frac{100}{7}$ [X_C > X_L] Hence, circuit behaves like an R-C circuit