Single Correct Answer Type

1. Area bounded by the curve $y=(x-1)(x-2)(x-3)$ and x-axis lying between the ordinates $x=0$ and $x=3$ is equal to
a) $9 / 4$
b) $11 / 4$
c) $11 / 2$
d) $7 / 4$
2. The area of the region bounded by the curves $y=e^{x}, y=\log _{e} x$ and lines $x=1, x=2$ is
a) $(e-1)^{2}$
b) $e^{2}-e+1$
c) $e^{2}-e+1-2 \log _{e} 2$
d) $e^{2}+e-2 \log _{e} 2$
3. The value of k for which the area of the figure bounded by the curve $y=8 x^{2}-x^{5}$, the straight line $x=1$ and $x=k$ and the x-axis is equal to $16 / 3$
a) 2
b) $\sqrt[3]{8-\sqrt{17}}$
c) 3
d) -1
4. The area bounded by the curve $y=x, x$-axis and ordinates $x=-1$ to $x=2$, is
a) 0 sq unit
b) $1 / 2$ sq unit
c) $3 / 2$ sq unit
d) $5 / 2$ sq unit
5. The area (in square unit) of the region bounded by the curves $2 x=y^{2}-1$ and $\mathrm{x}=0$ is
a) $\frac{1}{3}$ sq unit
b) $\frac{2}{3}$ sq unit
c) 1 sq unit
d) 2 sq units
6. The area bounded by the curve $y=4 x-x^{2}$ and the x-axis, is
a) $\frac{30}{7}$ sq. units
b) $\frac{31}{7}$ sq. units
c) $\frac{32}{3}$ sq. units
d) $\frac{34}{3}$ sq. units
7. The volume of the solid generated by revolving the region bounded by $y=x^{2}+1$ and $y=2 x+1$ about x axis is
a) $\frac{104 \pi}{15}$ cu units
b) $\frac{42 \pi}{15}$ cu units
c) $\frac{52 \pi}{15}$ cu units
d) None of these
8. The area bounded by the curves $|x|+|y| \geq 1$ and $x^{2}+y^{2} \leq 1$ is
a) 2 squnit
b) π sq unit
c) $(\pi-2)$ sq unit
d) $(\pi+2)$ sq unit
9. The area bounded by the curves $y=\cos x$ and $y=\sin x$ between the ordinance $x=0$ and $x=\frac{3 \pi}{2}$ is
a) $(4 \sqrt{2}-2)$ sq units
b) $(4 \sqrt{2}+2)$ sq units
c) $(4 \sqrt{2}-1)$ sq units
d) $(4 \sqrt{2}+1)$ sq units
10. Area bounded by the curves $y=\left[\frac{x^{2}}{64}+2\right], y=x-1$ and $x=0$ above x-axis is ([.] denotes the greatest integer function)
a) 2 squnit
b) 3 sq unit
c) 4 sq unit
d) None of these
11. The area bounded by the curve $y^{2}=8 x$ and $x^{2}=8 y$, is
a) $\frac{16}{3}$ sq. units
b) $\frac{3}{16}$ sq. units
c) $\frac{14}{3}$ sq. units
d) $\frac{3}{14}$ sq. units
12. The area enclosed between the curve $y=\log _{e}(x+e)$ and the coordinate axis is
a) 4 sq units
b) 3 sq units
c) 2 sq units
d) 1 sq unit
13. If area bounded by the curves $y^{2}=4 a x$ and $y=m x$ is $a^{2} / 3$, then the value of m is
a) 2
b) -2
c) $1 / 2$
d) 1
14. The area of the figure bounded by the curves $y=|x-1|$ and $y=3-|x|$ is
a) 2
b) 3
c) 4
d) 1
15. The area bounded by the curves $y=\sqrt{5-x^{2}}$ and $y=|x-1|$ is
a) $\left(\frac{5 \pi}{4}-2\right)$ sq units
b) $\frac{(5 \pi-2)}{4}$ sq units
c) $\frac{(5 \pi-2)}{2}$ sq units
d) $\left(\frac{\pi}{2}-5\right)$ sq units
16. Area bounded by the curve $x y^{2}=a^{2}(a-x)$ and y-axis, is
a) $\pi a^{2} / 2$
b) πa^{2}
c) $3 \pi a^{2}$
d) $2 \pi a^{2}$
17. The area of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, is
a) $\pi a b$
b) $\frac{\pi}{4}\left(a^{2}+b^{2}\right)$
c) $\pi(a+b)$
d) $\pi a^{2} b^{2}$
18. The area bounded by the curve $y=x^{6}(\pi-x)^{8}$ is
a) $\frac{\pi^{15} \times 3!\times 4!}{15!}$ sq unit
b) $\frac{\pi^{6} \times 6!\times 8!}{15!}$ sq unit
c) $\frac{\pi^{15} \times 6!\times 8!}{15!}$ sq unit
d) $\frac{\pi^{8} \times 6!\times 8!}{15!}$ sq unit
19. The part of circle $x^{2}+y^{2}=9$ in between $y=0$ and $y=2$ is revolved about y-axis. The volume of generating solid will be
a) $\frac{46}{3} \pi$ cu units
b) $12 \pi \mathrm{cu}$ jnits
c) 16π cu units
d) 28π cu units
20. The area of the region by curves $y=x \log x$ and $y=2 x-2 x^{2}$ is
a) $\frac{1}{2}$ sq units
b) $\frac{3}{12}$ sq units
c) $\frac{7}{12}$ sq units
d) None of these
21. The area of the region formed by $x^{2}+y^{2}-6 x-4 y+12 \leq 0, y \leq x$ and $x \leq 5 / 2$ is
a) $\frac{\pi}{6}-\frac{\sqrt{3}+1}{8}$
b) $\frac{\pi}{6}+\frac{\sqrt{3}+1}{8}$
c) $\frac{\pi}{6}-\frac{\sqrt{3}-1}{8}$
d) None of these
22. Area bounded by the curve
$y=\log _{e} x, x=0, y \leq 0$ and x-axis is
a) 1 sq unit
b) $1 / 2$ sq unit
c) 2 sq unit
d) None of these
23. Area bounded by the curves $y=|x-1|, y=0$ and $|x|=2$, is
a) 4
b) 5
c) 3
d) 6
24. The area included between the parabolas $y^{2}=4 x$ and $x^{2}=4 y$ is (in square units)
a) $4 / 3$
b) $1 / 3$
c) $16 / 3$
d) $8 / 3$
25. The area of region bounded by the curves $y=|x-1|$ and $y=3-|x|$ is
a) 2 squnits
b) 3 sq units
c) 4 sq units
d) 6 sq units
26. The area bounded by the curves $y=x^{3}, y=x^{2}$ and the ordinates $x=1, x=2$ is
a) $\frac{17}{12}$
b) $\frac{12}{13}$
c) $\frac{2}{7}$
d) $\frac{7}{2}$
27. The area bounded by the graph $y=|[x-3]|$, the x-axis and the lines $x=-2$ and $x=3$ is([.] denotes the greatest integer function)
a) 7 sq unit
b) 15 sq unit
c) 21 squnit
d) 28 squnit
28. Area bounded by the curve $y^{2}=16 x$ and line $y=m x$ is $\frac{2}{3}$ then m is equal to
a) 3
b) 4
c) 1
d) 2
29. The area enclosed by
$y=3 x-5, y=0, x=3$ and $x=5$ is
a) 12 sq units
b) 13 squnit
c) $13 \frac{1}{2}$ sq unit
d) 14 sq unit
30. The area of the region bounded by the curves $y=|x-2|, x=1, x=3$ and the x-axis is
a) 1
b) 2
c) 3
d) 4
31. The area common to the circle $x^{2}+y^{2}=64$ and the parabola $y^{2}=4 x$ is
a) $\frac{16}{3}(4 \pi+\sqrt{3})$ sq unit
b) $\frac{16}{3}(8 \pi-\sqrt{3})$ sq unit
c) $\frac{16}{3}(4 \pi-\sqrt{3})$ sq unit
d) None of these
32. The ratio of the areas between the curves $y=\cos x$ and $y=\cos 2 x$ and x-axis from $x=0$ to $x=\pi / 3$ is
a) $1: 2$
b) $2: 1$
c) $\sqrt{3}: 1$
d) None of these
33. The slope of tangent to a curve $y=f(x)$ at $(x, f(x))$ is $2 x+1$. If the curve passes through the point $(1,2)$, then the area of the region bounded by the curve, the x-axis and the line $x=1$ is
a) $\frac{5}{6}$ sq unit
b) $\frac{6}{5}$ sq unit
c) $\frac{1}{6}$ sq unit
d) 6 sq unit
34. The area bounded by the curves $y=|x|-1$ and $y=-|x|+1$ is
a) 1 sq unit
b) 2 sq unit
c) $2 \sqrt{2}$ sq unit
d) 4 sq unit
35. The area of smaller portion bounded by $|y|=-x+1$ and $y^{2}=4 x$ is
a) 1 sq unit
b) 2 sq unit
c) 3 sq unit
d) None of these
36. If A_{1} is the area enclosed by the curve $x y=1, x$-axis and the ordinates $x=1, x=2$; and A_{2} is the area enclosed by the curve $x y=1, x$-axis and the ordinates $x=2, x=4$, then
a) $A_{1}=2 A_{2}$
b) $A_{2}=2 A_{1}$
c) $A_{2}=3 A_{1}$
d) $A_{1}=A_{2}$
37. The area of the region bounded by the parabola $(y-2)^{2}=x-1$, the tangent to the parabola at the point $(2,3)$ and the x-axis is
a) 6 squ units
b) 9 sq units
c) 12 sq units
d) 3 sq units
38. The area of the region $\left\{(x, y): x^{2}+y^{2} \leq 1 \leq x+y\right\}$, is
a) $\frac{\pi}{5}$
b) $\frac{\pi}{4}$
c) $\frac{\pi^{2}}{3}$
d) $\frac{\pi}{4}-\frac{1}{2}$
39. The length of the parabola $y^{2}=12 x$ cut off by the latusretum is
a) $6[\sqrt{2}+\log (1+\sqrt{2})]$
b) $3[\sqrt{2}+\log (1+\sqrt{2})]$
c) $6[\sqrt{2}-\log (1+\sqrt{2})]$
d) $3[\sqrt{2}-\log (1+\sqrt{2})]$
40. The area bounded by $y=\sin ^{-1} x=\frac{1}{\sqrt{2}}$ and x-axis is
a) $\left(\frac{1}{\sqrt{2}}+1\right)$ sq unit
b) $\left(1-\frac{1}{\sqrt{2}}\right)$ sq unit
c) $\frac{\pi}{4 \sqrt{2}}$ sq unit
d) $\left(\frac{\pi}{4 \sqrt{2}}+\frac{1}{\sqrt{2}}-1\right)$ sq unit
41. The area of the smaller segment cut off from the circle $x^{2}+y^{2}=9$ by $x=1$ is
a) $\frac{1}{2}\left(9 \sec ^{-1} 3-\sqrt{8}\right)$ sq unit
b) $\left(9 \sec ^{-1}(3)-\sqrt{8}\right)$ sq unit
c) $\left(\sqrt{8}-9 \sec ^{-1} 3\right)$ sq unit
d) None of these
42. The area of the region bounded by $1-y^{2}=|x|$ and $|x|+|y|=1$ is
a) $1 / 3$ sq unit
b) $2 / 3$ sq unit
c) $4 / 3$ sq unit
d) 1 sq unit
43. The area between the parabola $y^{2}=4 a x$ and the line $y=m x$ in square units is
a) $\frac{5 a^{2}}{3 m}$
b) $\frac{8 a^{2}}{3 m^{3}}$
c) $\frac{7 a^{2}}{4 m^{2}}$
d) $\frac{3 a^{2}}{5 m}$
44. The area bounded by the curves $y=\sin x$ between the ordinates $x=0, x=\pi$ and the x-axis, is
a) 2 sq. units
b) 4 sq. units
c) 3 sq. units
d) 1 sq. units
45. The area bounded by $|x-1| \leq 2$ and $x^{2}-y^{2}=1$, is
a) $6 \sqrt{2}+\frac{1}{2} \log |3+2 \sqrt{2}|$
b) $6 \sqrt{2}+\frac{1}{2} \log |3-2 \sqrt{2}|$
c) $6 \sqrt{2}-\log |3+2 \sqrt{2}|$
d) None of these
46. The area bounded by $y=\log x, x$-axis and ordinates $x=1, x=2$ is
a) $\frac{1}{2}(\log 2)^{2}$
b) $\log (2 / e)$
c) $\log (4 / e)$
d) $\log 4$
47. The area bounded by $y=x^{2}+1$ and the tangents to it drawn from the origin, is
a) $8 / 3$ sq. units
b) $1 / 3$ sq. units
c) $2 / 3$ sq. units
d) None of these
48. The area bounded by the x-axis, the curve $y=f(x)$ and the lines $x=1$ and $x=b$ is equal to $\left(\sqrt{\left(b^{2}+1\right)}-\right.$ $\sqrt{2}$) for all $b>1$, then $f(x)$ is
a) $\sqrt{(x-1)}$
b) $\sqrt{(x+1)}$
c) $\sqrt{\left(x^{2}+1\right)}$
d) $\frac{x}{\sqrt{\left(1+x^{2}\right)}}$
49. The area enclosed between the curves $y=\sin ^{2} x$ and $y=\cos ^{2} x$ in the interval $0 \leq x \leq \pi$ is
a) 2 sq unit
b) $\frac{1}{2}$ sq unit
c) 1 sq unit
d) None of these
50. The area bounded by $y=\sin ^{-1} x, x=\frac{1}{\sqrt{2}}$ and x-axis is
a) $\left(\frac{1}{\sqrt{2}}+1\right)$ sq units
b) $\left(1-\frac{1}{\sqrt{2}}\right)$ sq uints
c) $\frac{\pi}{4 \sqrt{2}}$ sq units
d) $\left(\frac{\pi}{4 \sqrt{2}}+\frac{1}{\sqrt{2}}-1\right)$ sq units
51. The area between the curves $x=-2 y^{2}$ and $x=1-3 y^{2}$, is
a) $4 / 3$
b) $3 / 4$
c) $3 / 2$
d) $2 / 3$
52. The area of the region bounded by $y=|x-1|$ and $y=3-|x|$, is
a) 2
b) 3
c) 4
d) 1
53. The area bounded by $y=[x]$ and the two ordinates $x=1$ and $x=1.7$ is
a) $\frac{17}{10}$
b) 1
c) $\frac{17}{5}$
d) $\frac{7}{10}$
54. Line $x=1$ divides A enclosed by circle $x^{2}+y^{2}=16$ in two portions A_{1} and $A_{2}\left(A_{1}>A_{2}\right)$, then $\frac{A_{1}}{A_{2}}$ is
a) 4
b) 3
c) 2
d) None of these
55. The area enclosed by the curve $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$ is
a) 10π sq unit
b) 20π sq unit
c) 5π squnit
d) 4π sq unit
56. The area of the figure bounded by the curve $|y|=1-x^{2}$ is
a) $2 / 3$
b) $4 / 3$
c) $8 / 3$
d) $-5 / 3$
57. The area enclosed within the curve $|x|+|y|=1$ is
a) 1 sq unit
b) $2 \sqrt{2}$ sq units
c) $\sqrt{2}$ sq units
d) 2 sq units
58. The area bounded by the parabola $y^{2}=4 a x$ and $x^{2}=4 a y$, is
а) $\frac{8 a^{3}}{3}$
b) $\frac{16 a^{2}}{3}$
c) $\frac{32 a^{2}}{3}$
d) $\frac{64 a^{2}}{3}$
59. The area enclosed between the curves $y=a x^{2}$ and $x=a y^{2}(a>0)$ is 1 sq unit. Then value of a is
a) $\frac{1}{\sqrt{3}}$
b) $\frac{1}{2}$
c) 1
d) $\frac{1}{3}$
60. The area bounded by the curves $y=x^{3}$ and $y=x$ is
a) $1 / 2$ sq units
b) $1 / 4$ sq units
c) $1 / 8$ squnits
d) $1 / 16$ sq units
61. The area bounded between the parabola $y^{2}=4 x$ and the line $y=2 x-4$ is equal to
a) $\frac{17}{3}$ sq units
b) $\frac{19}{3}$ sq units
c) 9 sq units
d) 15 sq units
62. The area in square units bounded by the curves $y=x^{3}, y=x^{2}$ and the ordinates $x=1, x=2$ is
a) $17 / 12$
b) $12 / 13$
c) $2 / 7$
d) $7 / 2$
63. The area bounded by the curve $y=\sin ^{2} x$ and lines $x=\frac{\pi}{2}, x=\pi$ and x-axis is
a) $\frac{\pi}{2}$ sq unit
b) $\frac{\pi}{4}$ sq unit
c) $\frac{\pi}{8}$ sq unit
d) None of these
64. Maximum area of rectangle whose two vertices lies on the x-axis and two on the curve $y=3-|x|, \forall|x|<$ 3 , is
a) 9 sq unit
b) $\frac{9}{4}$ sq unit
c) 3 sq unit
d) None of these
65. The area between the curve $y=x \sin x$ and x-axis where $0 \leq x \leq 2 \pi$, is
a) 2π
b) 3π
c) 4π
d) π
66. The area common to the parabola $y=2 x^{2}$ and $y=x^{2}+4$, is
a) $\frac{2}{3}$ sq. units
b) $\frac{3}{2}$ sq. units
c) $\frac{32}{3}$ sq. units
d) $\frac{3}{32}$ sq. units
67. If a curve $y=a \sqrt{x}+b x$ passes through the point $(1,2)$ and the area bounded by the curves, line $x=4$ and x-axis is 8 sq unit, then
a) $a=3, b=-1$
b) $a=3, b=1$
c) $a=-3, b=1$
d) $a=-3, b=-1$
68. If the area above the x-axis bounded by the curves $y=2^{k x}$ and $x=0$ and 2 is $\frac{3}{\log 2}$ then the value of k is
a) $1 / 2$
b) 1
c) -1
d) 2
69. The area included between the curves $y=\frac{1}{x^{2}+1}$ and x-axis is
a) $\frac{\pi}{2}$ sq unit
b) π sq unit
c) 2π squnit
d) None of these
70. The area enclosed between the parabola $y=x^{2}-x+2$ and the line $y=x+2$ in square unit equals
a) $8 / 3$
b) $1 / 3$
c) $2 / 3$
d) $4 / 3$
71. Area of region satisfying $x \leq 2, y \leq|x|$ and $x \geq 0$ is
a) 1 sq unit
b) 4 sq unit
c) 2 sq unit
d) None of these
72. The area bounded by the curves $y=\sqrt{x}, 2 y+3=x$ and x-axis in the first quadrant is
a) 9
b) $27 / 4$
c) 36
d) 18
73. Area enclosed by the curve $\pi\left[4(x-\sqrt{2})^{2}+y^{2}\right]=8$ is
a) π sq units
b) 2 sq units
c) 3π sq units
d) 4 sq units
74. The area in square units of the region bounded by the curve $x^{2}=4 y$, the line $x=2$ and the x-axis, is
a) 1
b) $2 / 3$
c) $4 / 3$
d) $8 / 3$
75. The parabola $y^{2}=4 x$ and $x^{2}=4 y$ divide the square region bounded by the lines $x=4, y=4$ and the coordinate axes. If S_{1}, S_{2}, S_{3} are respectively the areas of these parts numbered from top to bottom, then $S_{1}: S_{2}: S_{3}$ is
a) $1: 1: 1$
b) $2: 1: 2$
c) $1: 2: 3$
d) $1: 2: 1$
76. The area bounded by the curve $y^{2}=16 x$ and line $y=m x$ is $\frac{2}{3}$, then m is equal to
a) 3
b) 4
c) 1
d) 2
77. The value of c for which the area of the figure bounded by the curve $y=8 x^{2}-x^{5}$, the straight lines $x=1$ and $x=c$ and the x-axis is equal to $\frac{16}{3}$ is
a) 2
b) $\sqrt{8-\sqrt{17}}$
c) 3
d) -1
78. The area bounded by $y=2-x^{2}$ and $x+y=0$ is
a) $\frac{7}{2}$ sq. units
b) $\frac{9}{2}$ sq. units
c) 9 sq. units
d) None of these
79. The area bounded by the curve $x=a \cos ^{3} t, y=a \sin ^{3} t$, is
a) $\frac{3 \pi a^{2}}{8}$
b) $\frac{3 \pi a^{2}}{16}$
c) $\frac{3 \pi a^{2}}{32}$
d) $3 \pi a^{2}$
80. Area bounded by the parabola $x^{2}=4 y$ and the line $x=4 y-2$, is
a) $9 / 8$
b) $9 / 4$
c) $9 / 2$
d) $9 / 7$
81. The area formed by triangular shared region bounded by the curves $y=\sin x, y=\cos x$ and $x=0$ is
a) $(\sqrt{2}-1)$ sq unit
b) 1 sq unit
c) $\sqrt{2}$ sq unit
d) $(1+\sqrt{2})$ sq unit
82. The area of the region bounded by the curve $y=2 x-x^{2}$ and the line $y=x$ is
a) $1 / 2$
b) $1 / 3$
c) $1 / 4$
d) $1 / 6$
83. The area bounded by the curves $y=e^{x}, y=e^{-x}$ and $y=2$, is
a) $\log (16 / e)$
b) $\log (4 / e)$
c) $2 \log (4 / e)$
d) $\log (8 / e)$
84. The area bounded by $y=4-x^{2}$ and $y=\left[3+\frac{x^{2}}{4}\right]$, where $[\cdot]$ denotes greatest integer function, is
a) 1 sq unit
b) $\frac{1}{3}$ sq unit
c) $\frac{2}{3}$ sq unit
d) $\frac{4}{3}$ sq unit
85. The value of m for which the area included between the curves $y^{2}=4 a x$ and $y=m x$ equals, $a^{2} / 3$ is
a) 1
b) 2
c) 3
d) $\sqrt{3}$
86. The area bounded by $y=2-|2-x|$ and $y=\frac{3}{|x|}$ is
a) $\frac{4+3 \ln 3}{2}$
b) $\frac{4-3 \ln 3}{2}$
c) $\frac{3}{2} \ln 3$
d) $\frac{1}{2}+\ln 3$
87. The area of the region bounded by the curve $9 x^{2}+4 y^{2}-36=0$ is
a) 9π sq units
b) 4π sq units
c) 36π sq units
d) 6π sq unit
88. The area of the plane region bounded by the curves $x+2 y^{2}=0$ and $x+3 y^{2}=1$ is equal to
a) $\frac{4}{3}$ sq uints
b) $\frac{5}{3}$ sq units
c) $\frac{1}{3}$ sq units
d) $\frac{2}{3}$ sq units
89. The area included between curves $y=x^{2}-3 x+2$ and $y=-x^{2}+3 x-2$ is
a) $\frac{1}{6}$ sq unit
b) $\frac{1}{2}$ sq unit
c) 1 sq unit
d) $\frac{1}{3}$ sq unit
90. The area bounded by the curve $y^{2}=x$ and the ordinate $x=36$ is divided in the ratio $1: 7$ by the ordinate $x=a$. Then $a=$
a) 8
b) 9
c) 7
d) 0
91. Area of the region bounded by the curve $y^{2}=4 x, y$-axis and the line $y=3$ is
a) 2 sq. units
b) $9 / 4$ sq. units
c) $6 \sqrt{3}$ sq. units
d) None of these
92. The area bounded by the curve $y=x+\sin x$ and its inverse function between the ordinates $x=0$ and $x=2 \pi$, is
a) 8π sq unit
b) 4π sq unit
c) 8 sq unit
d) None of these
93. The area of the region bounded by $y=2 x-x^{2}$ and the x-axis is
a) $\frac{8}{3}$ sq units
b) $\frac{4}{3}$ sq units
c) $\frac{7}{3}$ sq units
d) $\frac{2}{3}$ sq units
94. The area of the closed figure bounded by $y=1 / \cos ^{2} x, x=0, y=0$ and $x=\pi / 4$, is
a) $\pi / 4$
b) $1+\pi / 4$
c) 1
d) 2
95. Area bounded by the curve $y=x \sin x$ and x-axis between $x=0$ and $x=2 \pi$ is
a) 2π sq unit
b) 3π sq unit
c) 4π sq unit
d) 5π sq unit
96. The line $y=m x$ bisects the area enclosed by the lines $x=0, y=0, x=3 / 2$ and the curve $y=1+4 x-$ x^{2}. The value of m, is
a) $13 / 8$
b) $13 / 32$
c) $13 / 16$
d) $13 / 4$
97. Area lying between the curves $y^{2}=4 x$ and $y=2 x$ is equal to
a) $2 / 3$
b) $1 / 3$
c) $1 / 4$
d) $1 / 2$
98. The area contained between the x-axis and one arc of the curve $y=\cos 3 x$, is
a) $1 / 3$
b) $2 / 3$
c) $2 / 7$
d) $2 / 5$
99. The area bounded by the curve $y=\sec x$, the x-axis and the lines $x=0$ and $x=\pi / 4$, is
a) $\log (\sqrt{2}+1)$
b) $\log (\sqrt{2}-1)$
c) $\frac{1}{2} \log 2$
d) $\sqrt{2}$
100. The area of the region bounded by the parabola $y=x^{2}+1$ and the straight line $x+y=3$ is given by
a) $\frac{45}{7}$
b) $\frac{25}{4}$
c) $\frac{\pi}{18}$
d) $\frac{9}{2}$
101. The area bounded by the x-axis and the curve $y=4 x-x^{2}-3$ is
a) $4 / 3$
b) $3 / 4$
c) 7
d) $3 / 2$
102. The area bounded by the curves $y^{2}=4 a^{2}(x-1)$ and lines $x=1$ and $y=4 a$ is
a) $4 a^{2}$ sq units
b) $\frac{16 a}{3}$ sq units
c) $\frac{16 a^{2}}{3}$ sq units
d) None of these
103. The area between the curves $y=x e^{x}$ and $y=x e^{-x}$ and line $x=1$, in square unit, is
a) $2\left(e+\frac{1}{e}\right)$ sq units
b) 0 sq unit
c) $2 e$ sq units
d) $\frac{2}{e}$ sq unit
104. The area (in square unit) bounded by the curves $4 y=x^{2}$ and $2 y=6-x^{2}$ is
a) 8
b) 6
c) 4
d) 10
105. The area (in square unit)bounded by the curves $y^{2}=4 x$ and $x^{2}=4 y$ in the plane is
a) $\frac{8}{3}$
b) $\frac{16}{3}$
c) $\frac{32}{3}$
d) $\frac{64}{3}$
106. The positive value of the parameter ' a ' for which the area of the figure bounded by $y=\sin a x, y=0, x=$ πa and $x=\pi 3 a$ is 3 , is equal to
a) 2
b) $1 / 2$
c) $\frac{2+\sqrt{3}}{3}$
d) $3 / 2$
107. Area bounded by the curves $y=x^{2}$ and $y=2-x^{2}$ is
a) $8 / 3$ sq units
b) $3 / 8$ sq units
c) $3 / 2$ sq units
d) None of these
108. The positive value of the parameter ' a ' for which the area of the figure founded by $y=\sin a x, y=0, x=$ π / a and $x=\pi / 3 a$ is 3 , is equal to
a) 2
b) $1 / 2$
c) $\frac{2+\sqrt{3}}{3}$
d) $\sqrt{3}$
109. The area between the curve $y=2 x^{4}-x^{2}$, the x-axis and the ordinates of two minima of the curve is
a) $\frac{7}{120}$ sq unit
b) $\frac{9}{120}$ sq unit
c) $\frac{11}{120}$ sq unit
d) $\frac{13}{120}$ sq unit
110. If the ordinate $x=a$ divides the area bounded by x-axis part of the curve $y=1+\frac{8}{x^{2}}$ and the ordinates $x=2, x=4$ into two equal parts, then a is equal
a) $\sqrt{2}$ sq unit
b) $2 \sqrt{2}$ sq unit
c) $3 \sqrt{2}$ sq unit
d) None of these
111. The volume of the solid obtained by revolving about y-axis the area enclosed between the ellipse $x^{2}+9 y^{2}=9$ and the straight line $x+3 y=3$, in the first quadrant is
a) 3π
b) 4π
c) 6π
d) 9π
112. The area of the plane region bounded by the curve $x=y^{2}-2$ and the line $y=-x$ is (in square units)
a) $\frac{13}{3}$
b) $\frac{2}{5}$
c) $\frac{9}{2}$
d) $\frac{5}{2}$
113. The area bounded by $y=x^{2}+2, x$-axis, $x=1$ and $x=2$ is
a) $\frac{16}{3}$ sq units
b) $\frac{17}{3}$ sq units
c) $\frac{13}{3}$ sq units
d) $\frac{20}{3}$ sq units
114. Area of the region bounded by the curves $y=2^{x}, y=2 x-x^{2}, x=0$ and $x=2$ is given by
а) $\frac{3}{\log 2}-\frac{4}{3}$
b) $\frac{3}{\log 2}+\frac{4}{3}$
c) $3 \log 2-\frac{4}{3}$
d) $3 \log ^{2}-\frac{4}{3}$
115. The area of the quadrilateral formed by the tangents at the end points of latusrectum to ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{5}=1$, is
a) $27 / 4$ sq unit
b) 9 sq unit
c) $27 / 2$ sq unit
d) 27 sq unit
116. The area bounded by the loop of the curve $a y^{2}=x^{2}(a-x)$ is equal to
a) $\frac{4}{15} a^{2}$ sq unit
b) $\frac{8}{15} a^{2}$ sq unit
c) $\frac{16}{15} a^{2}$ sq unit
d) None of these
117. The area of the closed figure bounded by the curves $y=\sqrt{x}, y=\sqrt{4-3 x}$ and $y=0$, is
a) $4 / 9$
b) $8 / 9$
c) $16 / 9$
d) $5 / 9$
118. The area bounded by the curves $y=3 x$ and $y=x^{2}$ is (in square unit)
a) 10
b) 5
c) 4.5
d) 9
119. The area of the figure bounded by the parabolas $x=-2 y^{2}$ and $x=1-3 y^{2}$ is
a) $8 / 3$
b) $6 / 3$
c) $4 / 3$
d) $2 / 3$
120. Area bounded by the liens $y=x, x=-1, x=2$ and x-axis is
a) $5 / 2$ sq units
b) $3 / 2$ sq units
c) $1 / 2$ sq unit
d) None of these
121. The part of straight line $y=x+1$ between $x=2$ and $x=3$ is revolved about x-axis, then the curved surface of the solid thus generated is
a) $\frac{37 \pi}{3}$
b) $7 \pi \sqrt{2}$
c) 37π
d) $7 \pi / \sqrt{2}$
122. Area bounded by $y^{2}=x, y=0, x=1, x=4$ is
a) $\frac{28}{3}$ sq units
b) $\frac{3}{28}$ sq units
c) $\frac{8}{3}$ sq units
d) $\frac{4}{3}$ sq units
123. The figure shows a $\triangle A O B$ and the parabola $y=x^{2}$. The ratio of the area of the $\triangle A O B$ to the area of the region $A O B$ of the parabola $y=x^{2}$ is equal to

a) $\frac{3}{5}$
b) $\frac{3}{4}$
c) $\frac{7}{8}$
d) $\frac{5}{6}$
124. If the area above x-axis, bounded by the curves $y=2^{k x}$ and $x=0$ and $x=2$ is $\frac{3}{\log 2^{\prime}}$ then the value of k is
a) $1 / 2$
b) 1
c) -1
d) 2
125. The area between the curves $y=\cos x, x$-axis and the line $y=x+1$, is
a) $1 / 2$
b) 1
c) 3
d) 2
126. The area bounded by the parabola $x=4-y^{2}$ and y-axis, in square units, is
a) $\frac{3}{32}$
b) $\frac{32}{3}$
c) $\frac{33}{2}$
d) $\frac{16}{3}$
127. The volume of the solid formed by rotating the area enclosed between the curve $y=x^{2}$ and the line $y=1$ about $y=1$ is (in cubic unit)
a) $\frac{9 \pi}{5}$
b) $\frac{2 \pi}{5}$
c) $\frac{8 \pi}{3}$
d) $\frac{7 \pi}{5}$
128. The volume of spherical cap of height h cut off from a sphere of radius a is equal to
a) $\frac{\pi}{3} h^{2}(3 a-h)$
b) $\pi(a-h)\left(2 a^{2}-h^{2}-a h\right)$
c) $\frac{4 \pi}{3} h^{3}$
d) None of these above
129. The area of the region bounded by the straight lines $x=0$ and $x=2$ and the curves $y=2^{x}$ and $y=2 x-x^{2}$ is equal to
a) $\frac{2}{\log 2}-\frac{4}{3}$
b) $\frac{3}{\log 2}-\frac{4}{3}$
c) $\frac{1}{\log 2}-\frac{4}{3}$
d) $\frac{4}{\log 2}-\frac{3}{2}$
130. The area bounded by the curves $f(x)=c e^{x}(c>0)$, the x-axis and the two ordinates $x=p$ and $x=q$, is proportional to
a) $f(p) f(q)$
b) $|f(p)-f(q)|$
c) $f(p)+f(q)$
d) $\sqrt{f(p) f(q)}$
131. The area between x-axis and curve $y=\cos x$ when $0 \leq x \leq 2 \pi$, is
a) 0
b) 2
c) 3
d) 4
132. Area enclosed between the curves $y^{2}(2 a-x)=x^{3}$ and line $x=2 a$ above x-axis is
a) πa^{2} sq unit
b) $\frac{3 \pi a^{2}}{2}$ sq unit
c) $2 \pi a^{2}$ sq unit
d) $3 \pi a^{2}$ sq unit
133. The area lying between parabola $y^{2}=4 a x$ and it's latusrectum is
a) $\frac{4}{3} a^{2}$ sq unit
b) $\frac{16}{3} a^{2}$ sq unit
c) $\frac{8}{3} a^{2}$ sq unit
d) None of these
134. Ratio of the area cut off a parabola by any double ordinate is that corresponding rectangle contained by that double ordinate and its distance from the vertex is
a) $1 / 2$
b) $1 / 3$
c) $2 / 3$
d) 1
135. The area cut off the parabola $4 y=3 x^{2}$ by the straight line $2 y=3 x+12$ in square units is
a) 16
b) 21
c) 27
d) 36
136. The area bounded by the curve $y^{2}(2 a-x)=x^{3}$ and the line $x=2 a$ is
a) $3 \pi a^{2}$ sq units
b) $\frac{3 \pi a^{2}}{2}$ sq units
c) $\frac{3 \pi a^{2}}{4}$ sq units
d) $\frac{6 \pi a^{2}}{5}$ sq units
137. The area bounded by $y=-x^{2}+2 x+3$ and $y=0$ is
a) 32 sq units
b) $32 / 3$ sq units
c) $1 / 32$ sq unit
d) $1 / 3$ sq unit
138. The area of the region bounded by the curve $a^{4} y^{2}=(2 a-x) x^{5}$ is to that of the circle whose radius is a, is given by the ratio
a) $4: 5$
b) 5:8
c) 2:3
d) 3:2
139. The area bounded by the curves $y^{2}=x$ and $y=x^{2}$ is
a) $\frac{2}{3}$ sq unit
b) 1 sq unit
c) $\frac{1}{2}$ sq unit
d) None of these
140. Area common to the curves $y=\sqrt{x}$ and $x=\sqrt{y}$ is
a) 1
b) $2 / 3$
c) $1 / 3$
d) $4 / 3$
141. The area bounded by the parabola $y^{2}=4 a x$, latusrectum and x-axis, is
a) 0
b) $\frac{4}{3} a^{2}$
c) $\frac{2}{3} a^{2}$
d) $\frac{a^{2}}{3}$
142. If A is the area between the curve $y=\sin x$ and x-axis in the interval $[0, \pi / 4]$, then in the same interval, area between the curve $y=\cos x$ and x-axis is
a) A
b) $\pi / 2-A$
c) $1-A$
d) $A-1$
143. The area bounded by $y=\tan ^{-1} x, x=1$ and x-axis is
a) $\left(\frac{\pi}{4}+\log \sqrt{2}\right)$ sq unit
b) $\left(\frac{\pi}{4}-\log \sqrt{2}\right)$ sq unit
c) $\left(\frac{\pi}{4}-\log \sqrt{2}+1\right)$ sq unit
d) None of these
144. The area of the smaller segment cut off from the circle $x^{2}+y^{2}=9$ by $x=1$ is
a) $\frac{1}{2}\left(9 \mathrm{sec}^{-1} 3-\sqrt{8}\right)$ sq unit
b) $\left(9 \sec ^{-1} 3-\sqrt{8}\right)$ sq unit
c) $\left(\sqrt{8}-9 \sec ^{-1} 3\right)$ sq unit
d) None of the above
145. Area lying in the first quadrant and bounded by the circle $x^{2}+y^{2}=4$, the line $x=\sqrt{3} y$ and x-axis, is
a) $\pi s q u n i t s$
b) $\frac{\pi}{2}$ sq units
c) $\frac{\pi}{3}$ sq units
d) None of these
146. The area of the figure bounded by $y=e^{x-1}, y=0, x=0$ and $x=2$, is
a) <2
b) >2
c) $=2$
d) None of these
147. Area bounded by the curves $y=x \sin x$ and x-axis between $x=0$ and $x=2 \pi$ is
a) 2π
b) 3π
c) 4π
d) 5π
148. The area of region $\left\{(x, y): x^{2}+y^{2} \leq 1 \leq x+y\right\}$ is
a) $\frac{\pi^{2}}{5}$ sq unit
b) $\frac{\pi^{2}}{2}$ sq unit
c) $\frac{\pi^{2}}{4}$ sq unit
d) $\left(\frac{\pi}{4}-\frac{1}{2}\right)$ sq unit
149. The area bounded by the curves $y=f(x)$, the x-axis and the ordinates $x=1$ and $x=b$ is $(b-1) \sin (3 b+$ 4). Then, $f(x)$ is
a) $(x-1) \cos (3 x+4)$
b) $\sin (3 x+4)$
c) $\sin (3 x+4)+3(x-1) \cos (3 x+4)$
d) None of the above
150. $A O B$ is the positive quadrant of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ in which $O A=a, O B=b$. The area between the arc $A B$ and the chord $A B$ of the ellipse is
a) $\frac{1}{2} a b(\pi+2)$
b) $\frac{1}{4} a b(\pi-4)$
c) $\frac{1}{4} a b(\pi-2)$
d) None of these
151. Area bounded by the curve $x^{2}=4 y$ and the straight line $x=4 y-2$ is equal to
a) $\frac{8}{9}$ sq unit
b) $\frac{9}{8}$ sq unit
c) $\frac{4}{3}$ sq unit
d) None of these
152. The area of the region bounded by the curve $y=\tan x$, a line parallel to y-axis at $x=\frac{\pi}{4}$ and the x-axis is
a) $\frac{1}{4}$ sq unit
b) $\log \sqrt{2}+\frac{1}{4}$ sq unit
c) $\log \sqrt{2}-\frac{1}{4}$ sq unit
d) None of these
153. Let A_{1} be the area of the parabola $y^{2}=4 a x$ lying between vertex and latusrectum and A_{2} be the area between latusrectum and double ordinate $x=2 a$. Then, $A_{1} / A_{2}=$
a) $2 \sqrt{2}-1$
b) $(2 \sqrt{2}+1) / 7$
c) $(2 \sqrt{2}-1) / 7$
d) None of these
154. The area of the closed igure bounded by $x=-1, x=2$ and $y=\left\{\begin{array}{l}-x^{2}+2, x \leq 1 \\ 2 x-1, x>1\end{array}\right.$ and the x-axis is
a) $\frac{16}{3}$ sq unit
b) $\frac{10}{3}$ sq unit
c) $\frac{13}{3}$ sq unit
d) $\frac{7}{3}$ sq unit
155. The area bounded by the curve $y=\log _{e} x$ and x-axis and the straight line $x=e$ is
a) e sq. units
b) 1 sq. units
c) $1-\frac{1}{e}$ sq. units
d) $1+\frac{1}{e}$ sq. units
156. The area bounded by the curves $\sqrt{x}+\sqrt{y}=1$ and $x+y=1$ is
a) $1 / 3$ sq unit
b) $1 / 6$ sq unit
c) $1 / 2$ sq unit
d) None of these
157. If A is the area of the region bounded by the curve $y=\sqrt{3 x+4}, x$-axis and the lines $x=-1$ and $x=4$ and B is that area bounded by curve $y^{2}=3 x+4, x$-axis and the liens $x=-1$ and $x=4$, then $A: B$ is equal to
a) $1: 1$
b) $2: 1$
c) $1: 2$
d) None of these
158. The area bounded by the curves $y=\sqrt{x}, 2 y+3=x$ and x-axis in the Ist quadrant is
a) 9 sq unit
b) $27 / 4$ sq unit
c) 36 sq unit
d) 18 sq unit
159. The sine and cosine meet each other at number of points and develop the symmetrical area number of times, area of one such region is
a) $4 \sqrt{2}$
b) $3 \sqrt{2}$
c) $2 \sqrt{2}$
d) $\sqrt{2}$
160. Let $f(x)$ be a non-negative continuous function such that the area bounded by the curve $y=f(x), x$-axis and the ordinates $x=\frac{\pi}{4}$ and $x=\beta>\frac{\pi}{4}$ is π
$\left(\beta \sin \beta+\frac{\pi}{4} \cos \beta+\sqrt{2} \beta\right)$ the $f\left(\frac{\pi}{2}\right) \mathrm{s}$
a) $\left(1-\frac{\pi}{4}+\sqrt{2}\right)$
b) $\left(1-\frac{\pi}{4}-\sqrt{2}\right)$
c) $\left(\frac{\pi}{4}-\sqrt{2}+1\right)$
d) $\left(\frac{\pi}{4}+\sqrt{2}-1\right)$
161. The area bounded by the curves $y=|x|$ and $y=4-|x|$ is
a) 4 sq unit
b) 16 sq unit
c) 2 sq unit
d) 8 sq unit
162. The smaller area enclosed by the circle $x^{2}+y^{2}=4$ and the line $x+y=2$ is equal to
a) $2(\pi-2)$
b) $\pi-2$
c) $2 \pi-1$
d) $\pi-1$
163. The area bounded by the curve $y=\sec ^{2} x, y=0$ and $|x|=\frac{\pi}{3}$ is
a) $\sqrt{3}$ sq unit
b) $\sqrt{2}$ sq unit
c) $2 \sqrt{3}$ sq unit
d) None of these
164. The area bounded by the curve $x=4-y^{2}$ and the y-axis is
a) 16 sq units
b) 32 sq units
c) $\frac{32}{3}$ sq units
d) $\frac{16}{3}$ sq units
165. The area bounded by the curve $y=x|x|, x$-axis and the ordinates $x=1, x=-1$ is given by
a) 0
b) $\frac{1}{3}$
c) $\frac{2}{3}$
d) None of these
166. The area of the region bounded by $x^{2}+y^{2}-2 y-3=0$ and $y=|x|+1$, is
a) π
b) 2π
c) 4π
d) $\pi / 2$
167. The area of the region (in square units) bounded by the curve $x^{2}=4 y$, line $x=2$ and x-axis, is
a) 1
b) $2 / 3$
c) $4 / 3$
d) $8 / 3$
168. The area bounded by $x=1, x=2, x y=1$ and x-axis is
a) $(\log 2)$ sq unit
b) 2 sq unit
c) 1 sq unit
d) None of these
169. The area of the region for which $0<y<3-2 x-x^{2}$ and $x>0$, is
a) $\int_{1}^{3}\left(3-2 x-x^{2}\right) d x$
b) $\int_{0}^{3}\left(3-2 x-x^{2}\right) d x$
c) $\int_{0}^{1}\left(3-2 x-x^{2}\right) d x$
d) $\int_{-1}^{3}\left(3-2 x-x^{2}\right) d x$
170. Area bounded by parabola $y^{2}=x$ and straight line $2 y=x$, is
a) $4 / 3$
b) 1
c) $2 / 3$
d) $1 / 3$
171. The area of the triangle formed by the positive x-axis and the normal and tangent to the circle $x^{2}+y^{2}=4$ at $(1, \sqrt{3})$, is
a) $\sqrt{3}$
b) $1 / \sqrt{3}$
c) $2 \sqrt{3}$
d) $3 \sqrt{3}$
172. The line $x=\frac{\pi}{4}$ divides the area of the region bounded by $y=\sin x, y=\cos x$ and x-axis $\left(0 \leq x \leq \frac{x}{2}\right)$ into two regions of areas A_{1} and A_{2}. Then $A_{1}: A_{2}$ equals
a) $4: 1$
b) $3: 1$
c) $2: 1$
d) $1: 1$
173. Area of the region bounded by the curve $y=\left\{\begin{array}{l}x^{2}, x<0 \\ x, x \geq 0\end{array}\right.$ and the line $y=4$ is
a) $\frac{10}{3}$ sq unit
b) $\frac{20}{3}$ sq unit
c) $\frac{40}{3}$ sq unit
d) None of these
174. The area of the closed figure bounded by the curves $y=\cos x, y=1+\frac{2}{\pi} x$ and $x=\pi / 2$, is
a) $\frac{\pi+4}{4}$
b) $\frac{3 \pi-4}{4}$
c) $\frac{3 \pi}{4}$
d) $\frac{\pi}{4}$
175. The area enclosed between the curves $y=x$ and $y=2 x-x^{2}$ is (in square unit)
a) $\frac{1}{2}$
b) $\frac{1}{6}$
c) $\frac{1}{3}$
d) $\frac{1}{4}$
176. If A_{n} be the area bounded by the curve $y=(\tan x)^{n}$ and the lines $x=0, y=0$ and $x=\pi / 4$, then for $x>2$
a) $A_{n}+A_{n-2}=\frac{1}{n-1}$
b) $A_{n}+A_{n-2}<\frac{1}{n-1}$
c) $A_{n}-A_{n-2}=\frac{1}{n-1}$
d) None of these
177. The area cut off from a parabola by any double ordinate is k times the corresponding rectangle contained by that double ordinate and its distance from the vertex, then k is
a) $\frac{2}{3}$
b) $\frac{1}{3}$
c) $\frac{3}{2}$
d) 3
178. The area enclosed between the curves $y^{2}=x$ and $y=|x|$ is
a) $\frac{2}{3}$ sq unit
b) 1 sq unit
c) $\frac{1}{6}$ sq unit
d) $\frac{1}{3}$ sq unit
179. The area of the loop between the curve $y=a \sin x$ and x-axis is
a) a
b) $2 a$
c) $3 a$
d) $4 a$
180. The area of the region bounced by $y^{2}=x$ and $y=|x|$ is
a) $\frac{1}{3}$ sq unit
b) $\frac{1}{6}$ sq unit
c) $\frac{2}{3}$ sq unit
d) 1 sq unit
181. Area bounded by the curve $y=(x-1)(x-2)(x-3)$ and x-axis lying between the ordinates $x=0$ and $x=3$ is equal to
a) $\frac{9}{4}$ sq unit
b) $\frac{11}{4}$ sq unit
c) $\frac{13}{4}$ sq unit
d) $\frac{15}{4}$ sq unit
182. The area included between the parabolas $y^{2}=4 a x$ and $x^{2}=4$ by is
a) $(8 / 3) a b$
b) $(16 / 3) a b$
c) $(4 / 3) a b$
d) $(5 / 3) a b$
183. Area include between curves $y=x^{2}-3 x+2$ and $y=-x^{2}+3 x-2$ is
a) $\frac{1}{6}$ sq unit
b) $\frac{1}{2}$ sq unit
c) 1 sq unit
d) $\frac{1}{3}$ sq unit
184. The area bounded by the curve $y=x^{3}$, the x-axis and the ordinates $x=-2$ and $x=1$ is
a) $17 / 2$
b) $15 / 2$
c) $15 / 4$
d) $17 / 4$
185. The area of the region lying between the line $x-y+2=0$ and the curve $x=\sqrt{y}$ is
a) 9
b) $9 / 2$
c) $10 / 3$
d) $5 / 2$
186. Area lying in the first quadrant and bounded by the curve $y=x^{3}$ and the line $y=4 x$, is
a) 2
b) 3
c) 4
d) 5
187. The area between the parabola $y=x^{2}$ and the line $y=x$ is
a) $\frac{1}{6}$ sq unit
b) $\frac{1}{3}$ sq unit
c) $\frac{1}{2}$ sq unit
d) None of these
188. The area enclosed between the curves $y=x^{3}$ and $y=\sqrt{x}$ is (in square unit)
a) $5 / 3$
b) $5 / 4$
c) $5 / 12$
d) $12 / 5$
189. If $f(x)$ be continuous function such that the area bounded by the curve $y=f(x)$, the x-axis and the lines $x=a$ and $x=0$ is $\frac{a^{2}}{2}+\frac{a}{2} \sin a+\frac{\pi}{2} \cos a$.

Value of $f\left(\frac{\pi}{2}\right)$ is
a) $\frac{1}{2}$
b) $\frac{a}{2}$
c) $\frac{a^{2}}{2}$
d) $\frac{\pi}{2}$
190. The area of the figure bounded by the curves $y=e^{x}, y=e^{-x}$ and the straight line $x=1$ is
a) $e+\frac{1}{e}$
b) $e-\frac{1}{e}$
c) $e+\frac{1}{e}-2$
d) None of these
191. The area bounded by $y=x e^{|x|}$ and lines $|x|=1, y=0$ is
a) 4 sq unit
b) 6 sq unit
c) 1 sq unit
d) 2 sq unit
192. The area bounded by the parabola $y^{2}=8 x$ and its latusretum in square unit is
a) $16 / 3$ sq units
b) $32 / 3$ sq units
c) $8 / 3$ sq units
d) $64 / 3$ sq units
193. The areas of the figure into which curve $y^{2}=6 x$ divides the circle $x^{2}+y^{2}=16$ are in the ratio
a) $\frac{2}{3}$
b) $\frac{4 \pi-\sqrt{3}}{8 \pi+\sqrt{3}}$
c) $\frac{4 \pi+\sqrt{3}}{8 \pi-\sqrt{3}}$
d) None of these
194. If A is the area lying between the curve $y=\sin x$ and x-axis between $x=0$ and $x=\pi / 2$. Area of the region between the curve $y=\sin 2 x$ and x-axis in the same interval is given by
a) $A / 2$
b) A
c) 2 A
d) $3 / 2 \mathrm{~A}$
195. If the ordinate $x=a$ divides the areaby the curve $y=\left(1+\frac{8}{x^{2}}\right) x$-axis and the ordinates $x=2, x=4$ into two equal parts, then the value of a is
a) $2 a$
b) $2 \sqrt{2}$
c) $\frac{a}{2}$
d) None of these
196. The area of the region bounded by $y=|x-1|$ and $y=1$ is
a) 1
b) 2
c) $1 / 2$
d) $3 / 2$
197. If the area bounded by the curve $y=f(x)$, the coordinate axes, and the line $x=x_{1}$ is given by $x_{1} e^{x_{1}}$. Then, $f(x)$ equals
a) e^{x}
b) $x e^{x}$
c) $x e^{x}-e^{x}$
d) $x e^{x}+e^{x}$
198. The area bounded by the curve $y=\frac{1}{2} x^{2}$, the x-axis and the ordinate $x=2$ is
a) $\frac{1}{3}$ sq units
b) $\frac{2}{3}$ sq units
c) 1 sq units
d) $\frac{4}{3}$ sq units
199. The area bounded by $y=x^{2}, y=[x+1], x \leq 1$ and the y-axis is
a) $1 / 3$
b) $2 / 3$
c) 1
d) $7 / 3$
200. The area between the curve $y=4+3 x-x^{2}$ and x-axis is
a) $125 / 6$ sq unit
b) $125 / 3 \mathrm{sq}$ unit
c) $125 / 2$ sq unit
d) None of these
201. In the interval $[0, \pi / 2]$, area lying between the curves $y=\tan x, y=\cot x$ and x-axis is
a) $\log 2$
b) $\frac{1}{2} \log 2$
c) $2 \log \left(\frac{1}{\sqrt{2}}\right)$
d) $\frac{3}{2} \log 2$
202. The area bounded by the curve $y=f(x)=x^{4}-2 x^{3}+x^{2}+3, x$-axis and ordinates corresponding to minimum of the function $f(x)$, isf
a) 1 sq unit
b) $\frac{91}{30}$ sq unit
c) $\frac{30}{9}$ sq unit
d) 4 sq unit
203. The area enclosed between the curves $y=x^{3}$ and $y=\sqrt{x}$ is
a) $\frac{5}{3}$ squnits
b) $\frac{5}{4}$ sq units
c) $\frac{5}{12}$ sq units
d) $\frac{12}{5}$ sq units
204. The area of the figure bounded by $|y|=1-x^{2}$ is in square units,
a) $4 / 3$
b) $8 / 3$
c) $16 / 3$
d) $5 / 3$
205. The area bounded by the x-axis, part of the curve $y=1+\frac{8}{x^{2}}$ and the ordinates $x=2$ and $x=4$, is divided into two equal parts by the ordinate $x=a$, then the value of ' a ' is
a) $2 \sqrt{2}$
b) $\pm 2 \sqrt{2}$
c) $\pm \sqrt{2}$
d) ± 2
206. Area of the region bounded by the curve $y=\tan x$, tangent drawn to the curve at $x=\frac{\pi}{4}$ and the x-axis is
a) $\log \sqrt{2}$
b) $\log \sqrt{2}+\frac{1}{4}$
c) $\log \sqrt{2}-\frac{1}{4}$
d) $\frac{1}{4}$
207. The area bounded by the curve $y=2 x-x^{2}$ and the line $y=-x$ is
a) $\frac{3}{2}$ sq units
b) $\frac{9}{3}$ sq units
c) $\frac{9}{2}$ sq units
d) None of these
208. The area out off by latusrectum form the parabola $y^{2}=4 a x$ is
a) $(8 / 3) a$ sq units
b) $(8 / 3) \sqrt{a}$ sq units
c) $(3 / 8) a^{2}$ sq units
d) $(8 / 3) a^{2}$ sq units
209. The volume of the solid is generated by revolving about the y-axis. The figure bounded by the parabola $y=x^{2}$ and $x=y^{2}$ is
a) $\frac{21}{5} \pi$
b) $\frac{24}{5} \pi$
c) $\frac{3 \pi}{10}$
d) $\frac{5}{24} \pi$
210. The area bounded by the curves $y=(x-1)^{2}, y=(x+1)^{2}$ and $y=\frac{1}{4}$ is
a) $\frac{1}{3}$ sq unit
b) $\frac{2}{3}$ sq unit
c) $\frac{1}{4}$ sq unit
d) $\frac{1}{5}$ sq unit
211. The area of the region between the curves
$y=\sqrt{\frac{1+\sin x}{\cos x}}$ and $y=\sqrt{\frac{1-\sin x}{\cos x}}$

Bounded by the line $x=0$ and $x=\frac{\pi}{4}$
a) $\int_{0}^{\sqrt{2}-1} \frac{t}{\left(1+t^{2}\right) \sqrt{1-t^{2}}} d t$
b) $\int_{0}^{\sqrt{2}-1} \frac{4 t}{\left(1+t^{2}\right) \sqrt{1-t^{2}}} d t$
c) $\int_{0}^{\sqrt{2}+1} \frac{4 t}{\left(1+t^{2}\right) \sqrt{1-t^{2}}} d t$
d) $\int_{0}^{\sqrt{2}+1} \frac{t}{\left(1+t^{2}\right) \sqrt{1-t^{2}}} d t$
212. The area induced between the curves $y=\frac{x^{2}}{4 a}$ and $y=\frac{8 a^{3}}{x^{2}+4 a^{2}}$ is given by
a) $a^{2}\left(2 \pi-\frac{4}{3}\right)$
b) $a^{2}\left(\pi-\frac{4}{3}\right)$
c) $a^{2}\left(2 \pi+\frac{1}{3}\right)$
d) $a^{2}\left(\pi+\frac{4}{3}\right)$
213. The area between $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and the straight line $\frac{x}{a}+\frac{y}{b}=1$, is
a) $\frac{1}{2} a b$
b) $\frac{1}{2} \pi a b$
c) $\frac{1}{4} a b$
d) $\frac{1}{4} \pi a b-\frac{1}{2} a b$
214. The area bounded by the parabola $y^{2}=4 a x$ and the line $x=a$ and $x=4 a$ is
a) $\frac{35 a^{2}}{3}$
b) $\frac{4 a^{2}}{3}$
c) $\frac{7 a^{2}}{3}$
d) $\frac{56 a^{2}}{3}$
215. Let $f(x)=\min \{x+1, \sqrt{(1-x)}\}$, then area bounded by $f(x)$ and x-axis is
a) $\frac{1}{6}$ sq unit
b) $\frac{5}{6}$ sq unit
c) $\frac{7}{6}$ sq unit
d) $\frac{11}{6}$ sq unit
216. The area bounded by the curve $y=\sin 2 x, y$-axis and $y=1$, is
a) 1
b) $1 / 4$
c) $\pi / 4$
d) $\pi / 4-1 / 2$
217. The area common to the circle $x^{2}+y^{2}=16 a^{2}$ and the parabola $y^{2}=6 a x$ is
a) $\frac{4 a^{2}}{3}(4 \pi-\sqrt{3})$ sq unit
b) $\frac{4 a^{2}}{3}(8 \pi-3)$ sq unit
c) $\frac{4 a^{2}}{3}(4 \pi+\sqrt{3})$ sq unit
d) None of these
218. The area bounded by the parabolas $y=4 x^{2}, y=\frac{x^{2}}{9}$ and the line $y=2$ is
a) $\frac{5 \sqrt{2}}{3}$ sq units
b) $\frac{10 \sqrt{2}}{3}$ sq units
c) $\frac{15 \sqrt{2}}{3}$ sq units
d) $\frac{20 \sqrt{2}}{3}$ sq units
219. If the area bounded by the x-axis, the curve $y=f(x)$ and lines $x=a$ and $x=b$ is independent of $b, \forall b>a$ (a is a constant), then f is
a) The zero function
b) The identity function
c) A non-zero constant function
d) None of the above
220. The area bounded by curve $x^{2}+y^{2}=25,4 y=\left|4-x^{2}\right|$ and $x=0$ above the x-axis is
a) $24 \sin ^{-1}\left(\frac{4}{5}\right)$
b) $25 \sin ^{-1}\left(\frac{4}{5}\right)$
c) $4+25 \sin ^{-1}\left(\frac{4}{5}\right)$
d) None of these
221. The area bounded by the curve $x=3 y^{2}-9$ and the line $x=0, y=0$ and $y=1$ is
a) 8 sq unit
b) $8 / 3$ sq unit
c) $3 / 8 \mathrm{sq}$ unit
d) 3 sq unit
222. The area of the figure bounded by the curves $y^{2}=2 x+1$ and $x-y-1=0$ is
a) $2 / 3$
b) $4 / 3$
c) $8 / 3$
d) $16 / 3$
223. The value of a for which the area between the curves $y^{2}=4 a x$ and $x^{2}=4 a y$ is 1 unit, is
a) $\sqrt{3}$
b) 4
c) $4 \sqrt{3}$
d) $\sqrt{3} / 4$
224. The area bounded by $y=|\sin x|, x$-axis and the lines $|x|=\pi$ is
a) 2 squnits
b) 3 sq units
c) 4 sq units
d) None of these
225. The area out of the region bounded by $y^{2}=4 a x$ and $x^{2}=4 a y, a>0$ in square unit is
a) $\frac{16 a^{2}}{3}$ sq units
b) $\frac{14 a^{2}}{3}$ sq units
c) $\frac{13 a^{2}}{3}$ sq units
d) $16 a^{2}$ sq units
226. The area enclosed between the curve $y=1+x^{2}$, the x-axis and the line $y=5$ is given by
a) $\frac{14}{3}$ sq units
b) $\frac{7}{3}$ sq units
c) 5 sq units
d) $\frac{16}{3}$ sq units
227. The volume of the solid generated by the revolving of the curve
$y=\frac{a^{3}}{a^{2}+x^{2}}$ about x-axis is
a) $\frac{1}{2} \pi^{3} a^{2} \quad$ cu units
b) $\pi^{3} a^{2} \quad$ cu units
c) $\frac{1}{2} \pi^{2} a^{3} \quad$ cu units
d) $\pi^{2} a^{3}$ cu units
228. Area of the region satisfying $x \leq 2, y \geq|x|$ and $x \geq 0$ is
a) 4 sq units
b) 1 sq units
c) 2 sq units
d) None of these
229. The area of the figure bounded by $y^{2}=2 x+1$ and $x-y=1$ is
a) $\frac{2}{3}$
b) $\frac{4}{3}$
c) $\frac{8}{3}$
d) $\frac{16}{3}$
230. The area bounded by the curve $y=x^{4}-2 x^{3}+x^{2}+3$ with x-axis and ordinates corresponding to the minima of y, is
a) 1
b) $\frac{91}{30}$
c) $\frac{30}{9}$
d) 4
231. The area bounded by curves $y^{2}=8 x$ and $x^{2}=8 y$ is
a) 64 sq units
b) $\frac{64}{3}$ sq units
c) $\frac{8}{3}$ sq units
d) None of these
232. The area (in square unit) of the region enclosed by the curves $y=x^{2}$ and $y=x^{3}$ is
a) $\frac{1}{12}$
b) $\frac{1}{6}$
c) $\frac{1}{3}$
d) 1
233. The area bounded by the y-axis, $y=\cos x$ and $y=\sin x, 0 \leq x \leq \pi / 4$ is
a) $2(\sqrt{2}-1)$
b) $\sqrt{2}-1$
c) $\sqrt{2}+1$
d) $\sqrt{2}$
234. The area bounded by $y=2-|2-x|$ and $y=\frac{3}{|x|}$ is
a) $\frac{4+3 \log 3}{2}$ sq unit
b) $\frac{4-3 \log 3}{2}$ sq unit
c) $\frac{3}{2} \log 3$ sq unit
d) $\frac{1}{2}+\log 3$ sq unit
235. The area of the figure bounded by $y=\sin x, y=\cos x$ in the first quadrant, is
a) $2(\sqrt{2}-1)$
b) $\sqrt{3}+1$
c) $2(\sqrt{3}-1)$
d) None of these
236. The area between the curve $y=x e^{x}$ and $y=x e^{-x}$ and the line $x=1$ in square unit, is
a) $2\left(e+\frac{1}{e}\right)$ sq unit
b) 0 sq unit
c) $2 e$ sq unit
d) $\frac{2}{e}$ sq unit

: ANSWER KEY:													
1)	b	2)	C	3)	b	4) d	189)	a	190)	a	191)	d	192)
5)	b	6)	c	7)	a	8) c	193)	c	194)	b	195)	b	196)
9)	a	10)	C	11)	a	12) d	197)	c	198)	d	199)	b	200)
13)	a	14)	c	15)	b	16) b	201)	a	202)	b	203)	c	204)
17)	a	18)	c	19)	a	20) c	205)	b	206)	c	207)	c	208)
21)	c	22)	a	23)	b	24) c	209)	c	210)	a	211)	b	212)
25)	c	26)	a	27)	b	28) b	213)	d	214)	d	215)	c	216)
29)	d	30)	a	31)	b	32) b	217)	c	218)	d	219)	a	220)
33)	a	34)	b	35)	d	36) d	221)	b	222)	d	223)	d	224)
37)	b	38)	d	39)	a	40) d	225)	a	226)	d	227)	c	228)
41)	b	42)	b	43)	b	44) a	229)	d	230)	b	231)	b	232)
45)	c	46)	c	47)	c	48) d	233)	b	234)	b	235)	a	236)
49)	c	50)	d	51)	a	52) c							
53)	d	54)	d	55)	b	56) c							
57)	d	58)	b	59)	a	60) a							
61)	c	62)	a	63)	b	64) d							
65)	c	66)	c	67)	a	68) b							
69)	b	70)	d	71)	c	72) a							
73)	d	74)	b	75)	a	76) b							
77)	d	78)	b	79)	a	80) a							
81)	a	82)	d	83)	c	84) d							
85)	b	86)	b	87)	d	88) a							
89)	d	90)	b	91)	b	92) c							
93)	b	94)	c	95)	c	96) c							
97)	b	98)	b	99)	a	100) d							
101)	a	102)	b	103)	d	104) a							
105)	b	106)	b	107)	a	108) b							
109)	a	110)	b	111)	a	112) c							
113)	c	114)	d	115)	d	116) b							
117)	b	118)	c	119)	c	120) a							
121)	b	122)	a	123)	b	124) b							
125)	a	126)	b	127)	b	128) a							
129)	b	130)	b	131)	d	132) b							
133)	c	134)	c	135)	c	136) b							
137)	b	138)	b	139)	d	140) c							
141)	b	142)	c	143)	b	144) b							
145)	c	146)	b	147)	c	148) d							
149)	c	150)	c	151)	b	152) d							
153)	b	154)	a	155)	b	156) a							
157)	c	158)	a	159)	b	160) a							
161)	d	162)	b	163)	c	164) c							
165)	c	166)	a	167)	b	168) a							
169)	c	170)	a	171)	c	172) d							
173)	c	174)	b	175)	b	176) a							
177)	a	178)	c	179)	b	180) b							
181)	b	182)	b	183)	d	184) d							
185)	c	186)	c	187)	a	188) c							

: HINTS AND SOLUTIONS :

2 (c)
Required area
$A=\int_{1}^{2}\left(e^{x}-\log _{e} x\right) d x$

$=\left[e^{x}\right]_{1}^{2}-\left[x \log _{e} x-\int 1 d x\right]_{1}^{2}$
$=e^{2}-e-\left[x \log _{e} x-x\right]_{1}^{2}$
$=e^{2}-e-\left[2 \log _{e} 2-2-(0-1)\right]$
$=e^{2}-e-2 \log _{e} 2+1$
(b)

We have,
$\int_{1}^{k}\left(8 x^{2}-x^{5}\right) d x=\frac{16}{3}$
$\Rightarrow\left[\frac{8 x^{3}}{3}-\frac{x^{6}}{6}\right]_{1}^{k}=\frac{16}{3}$
$\Rightarrow\left(\frac{8 k^{3}}{3}-\frac{k^{6}}{6}\right)-\left(\frac{8}{3}-\frac{1}{6}\right)=\frac{16}{3}$
$\Rightarrow 16 k^{3}-k^{6}-16+1=32$
$\Rightarrow k^{6}-16 k^{3}+47=0 \Rightarrow k^{3}=8 \pm \sqrt{17} \Rightarrow k$

$$
=(8 \pm \sqrt{17})^{1 / 3}
$$

4 (d)
Required area

$\left|\int_{-1}^{0} x d x\right|+\left|\int_{0}^{2} x d x\right|$
$=\left|\left[\frac{x^{2}}{2}\right]_{-1}^{0}\right|+\left|\left[\frac{x^{2}}{2}\right]_{0}^{2}\right|$
$=\left|-\frac{1}{2}\right|+|2|$
$=2+\frac{1}{2}=\frac{5}{2}$ sq unit
(b)

Given curve can be rewritten as

$$
y^{2}=2\left(x+\frac{1}{2}\right)
$$

\therefore Required area $=\int_{-1}^{1} x d y$
$=2 \int_{0}^{1} \frac{y^{2}-1}{2} d y$
$=\left|\left[\frac{y^{3}}{3}-y\right]_{0}^{1}\right|$
$=\frac{2}{3}$ sq unit
7 (a)
On the solving the given equations of curves, we get $x=0,2$
\therefore Required volume

$$
=\pi \int_{0}^{2}\left[(2 x+1)^{2}-\left(x^{2}+1\right)^{2}\right] d x
$$

$=\pi \int_{0}^{2}\left(-x^{4}+2 x^{2}+4 x\right) d x$
$=\pi\left[-\frac{x^{5}}{5}+\frac{2 x^{3}}{3}+\frac{4 x^{2}}{2}\right]_{0}^{2}=\frac{104 \pi}{15}$ sq units
(c)

Area of square $A B C D=2$ sq unit

Area of circle $=\pi$ sq unit
\Rightarrow Required area $=(\pi-2)$ sq unit
(a)

Required area

$$
\begin{aligned}
& =\int_{0}^{x / 4}(\cos x- \\
& \sin x) d x \\
& \\
& +\int_{\pi / 4}^{5 \pi / 4}(\sin x \\
& \\
& \quad-\cos x) d x \\
& \\
& \quad+\int_{5 \pi / 4}^{3 \pi / 2}(\cos x-\sin x) d x \\
& =(\sin x+\cos x)_{0}^{\pi / 4} \\
& \quad+(-\cos x \\
& \\
& \quad-\sin x)_{\pi / 4}^{5 \pi / 4}+(\sin x+\cos x)_{5 \pi / 4}^{3 \pi / 2}
\end{aligned}
$$

$=(4 \sqrt{2}-2)$ sq units
10 (c)
$-8<x<8 \Rightarrow y=2$

\therefore Required area $=\frac{1}{2}(1+3) \times 2$
$=4$ squnit
12 (d)
Required area, $A=\int_{1-e}^{0} \log _{e}(x+e) d x$
Put $x+e=t \Rightarrow d x=d t$
$\therefore A=\int_{1}^{e} \log _{e} t d t$
$=\left[t \log _{e} t-t\right]_{1}^{e}$
$=(e-e-0+1)$
$=1$ squnit

13 (a)
The two curves $y^{2}=4 a x$ and $y=m x$ intersect at $\left(4 a / m^{2}, 4 a / m\right)$ and the area enclosed by the two curves is given by $\int_{0}^{4 a / m^{2}}(\sqrt{4 a x}-m x) d x$

$$
\begin{gathered}
\therefore \int_{300}^{4 a / m^{2}}(\sqrt{4 a x}-m x) d x=\frac{a^{2}}{3} \Rightarrow \frac{8}{3} \frac{a^{2}}{m^{3}}=\frac{a^{2}}{3} \Rightarrow m^{3} \\
=8 \Rightarrow m=2
\end{gathered}
$$

14 (c)
Let A be the required area. Then,

$$
\begin{aligned}
& A=\int_{-1}^{0}\{(3+x)-(-x+1)\} \\
& \begin{aligned}
+\int_{0}^{1}\{(3-x)-(-x+1)\} d x
\end{aligned} \\
& \qquad+\int_{1}^{2}\{(3-x)-(x-1)\} d x \\
& \Rightarrow A=\int_{-1}^{0}(2+2 x) d x+\int_{0}^{1} 2 d x+\int_{1}^{2}(4-2 x) d x \\
& \Rightarrow A=\left[2 x+x^{2}\right]_{-1}^{0}+[2 x]_{0}^{1}+\left[4 x-x^{2}\right]_{1}^{2}=4
\end{aligned}
$$

(b)

Given, $\quad y=\sqrt{5-x^{2}}$ and $y=|x-1|$
or $y^{2}+x^{2}=5$
and $y=|x-1|$

\therefore Required area
$=\int_{-1}^{2} \sqrt{5-x^{2}} d x-\int_{-1}^{1}(1-x) d x-\int_{1}^{2}(x-1) d x$

$$
=\left[\frac{x}{2} \sqrt{5-x^{2}}+\frac{5}{2} \sin ^{-1} \frac{x}{\sqrt{5}}\right]_{-1}^{2}-\left[x-\frac{x^{2}}{2}\right]_{-1}^{1}
$$

$$
-\left[\frac{x^{2}}{2}-x\right]_{1}^{2}
$$

$$
=\left[1+\frac{5}{2} \sin ^{-1} \frac{2}{\sqrt{5}}+1+\frac{5}{2} \sin ^{-1} \frac{1}{\sqrt{5}}\right]
$$

$$
-\left[1-\frac{1}{2}-\left(-1-\frac{1}{2}\right)\right]
$$

$$
-\left[2-2-\left(\frac{1}{2}-1\right)\right]
$$

$$
=2+\frac{5}{2} \sin ^{-1}\left(\frac{2}{\sqrt{5}} \sqrt{1-\frac{1}{5}}+\frac{1}{\sqrt{5}} \sqrt{1-\frac{4}{5}}\right)-\frac{5}{2}
$$

$$
=\frac{5}{2} \sin ^{-1}(1)=\frac{5 \pi}{4}-\frac{1}{2}=\left(\frac{5 \pi-2}{4}\right) \text { squnit }
$$

Volume of generated solid
$=\pi \int_{0}^{2} x^{2} d y=\pi \int_{0}^{2}\left(9-y^{2}\right) d y=\pi\left[9 y-\frac{1}{3} y^{3}\right]_{0}^{2}$ $\pi=\left[18-\frac{8}{3}\right]=\frac{46}{3} \pi$ cu units
20
(c)
\therefore Required area
$=\int_{0}^{1}\left[\left(2 x-2 x^{2}\right)-(x \log x)\right] d x$

$=\left[x^{2}-\frac{2 x^{3}}{3}-\left(\frac{x^{2}}{2} \log x-\frac{x^{2}}{4}\right)\right]_{0}^{1}$
$=\left[1-\frac{2}{3}-\left(0-\frac{1}{4}\right)\right]=\frac{7}{12}$ sq unit

Required area $=\left|\int_{0}^{-\infty} e^{y} d y\right|$

$=\left|\left[e^{y}\right]\right|_{0}^{-\infty}=1$ sq unit
(c)

Given, $y=|x-1|=\left\{\begin{array}{c}x-1, x>1 \\ -x+1, x \leq 1\end{array}\right.$
and $y=3-|x|=\left\{\begin{array}{l}3+x, x \leq 0 \\ 3-x, x>0\end{array}\right.$

On solving $y=x-1$ and $y=3-x$, we get $x=2, y=1$
Now, $A B^{2}=(2-1)^{2}+(1-0)^{2}=2$
$\Rightarrow A B=\sqrt{2}$
and $B C^{2}=(0-2)^{2}+(3-1)^{2}=8$
$\Rightarrow B C=2 \sqrt{2}$
\therefore Area of rectangle $A B C D=A B \times B C$
$=\sqrt{2} \times 2 \sqrt{2}=4$ sq units

Required area $=\int_{1}^{2}\left(x^{3}-x^{2}\right) d x$
$=\left(\frac{x^{4}}{4}-\frac{x^{3}}{3}\right)_{1}^{2}$
$=\left(4-\frac{8}{3}\right)-\left(\frac{1}{4}-\frac{1}{3}\right)=\frac{17}{22}$
(b)

Required area $=\int_{-2}^{3}|[x-3]| d x$
$=\int_{-2}^{-1}|[x-3]| d x+\int_{1}^{0}|[x-3]| d x$
$+\int_{0}^{1}|[x-3]| d x+\int_{1}^{2}|[x-3]| d x+\int_{2}^{3}|[x-3]| d x$
$=\int_{-2}^{-1} 5 \cdot d x+\int_{-1}^{0} 4 \cdot d x$
$+\int_{0}^{-1} 3 \cdot d x$
$+\int_{1}^{2} 2 \cdot d x+\int_{2}^{3} 1 \cdot d x$
$=5(1)+4(1)+3(1)+2(1)+1(1)$
$=15$ sq unit

Area $=\int_{0}^{16 / m^{2}}(\sqrt{16 x}-m x) d x=\frac{2}{3}$

$\Rightarrow\left[4 \cdot \frac{2}{3} x^{3 / 2}-\frac{m x^{2}}{2}\right]_{0}^{16 / m^{2}}=\frac{2}{3}$
$\Rightarrow \frac{1}{m^{3}}\left[\frac{512}{3}-\frac{256}{2}\right]=\frac{2}{3}$
$\Rightarrow m^{3}=\frac{128}{3} \times \frac{3}{2}=64$
$\Rightarrow m=4$
29 (d)
Requred area $=\int_{3}^{5}(3 x-5) d x$
$=\left(\frac{3 x^{2}}{2}-5 x\right)_{3}^{5}=\left(\frac{75}{2}-25\right)-\left(\frac{27}{2}-15\right)$
$=\frac{75}{2}-25-\frac{27}{2}+15=\frac{48}{2}-10=14$ sq units
30
(a)

Required area $=\int_{1}^{3}|x-2| d x$
$=\int_{1}^{2}(2-x) d x+\int_{2}^{3}(x-2) d x$

$=\left[2 x-\frac{x^{2}}{2}\right]_{1}^{2}+\left[\frac{x^{2}}{2}-2 x\right]_{2}^{3}$
$=2-\frac{3}{2}-\frac{3}{2}+2=1$ sq unit

Alternate

Area $=$ Area of $\triangle A O B+$ Area of $\triangle O D C$
$=\frac{1}{2} \times 1 \times 1+\frac{1}{2} \times 1 \times 1$
$=1$ squnit
33 (a)
We have, $\frac{d y}{d x}=2 x+1$
$\Rightarrow y=x^{2}+x+c$, it passes through $(1,2)$
$\therefore c=0$
Then, $y=x^{2}+x$
\therefore Required area $=\int_{0}^{1}\left(x^{2}+x\right) d x=\frac{5}{6}$ sq unit
34 (b)
The lines are $y=x-1, x \geq 0$

$y=-x-1, x<0=-x+1, x \geq 0$ and $y=x+1, x<0$
Required area $=(4 \times$ area of $\triangle A O B)$
$=4 \times\left(\frac{1}{2} \times 1 \times 1\right)$
$=2$ sq unit
37
(b)

The equation of tangent at $(2,3)$ to the given parabola is
$x=2 y-4$

\therefore Required area
$=\int_{0}^{3}\left\{(y-2)^{2}+1-2 y+4\right\} d y$
$=\left[\frac{(y-2)^{3}}{3}-y^{2}+5 y\right]_{0}^{3}$
$=\frac{1}{3}-9+15+\frac{8}{3}$
$=9$ squnits
39 (a)
The equation of latusrectum of the parabola $y^{2}=12 x$ is $x=3$
Coordinates of end points of latuserectum are $(3,6)$ and $(3,-6)$

$$
\text { Required length }=2 \int_{0}^{3} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x
$$

$$
=2 \int_{0}^{3} \sqrt{1+\left(\frac{6}{y}\right)^{2}}
$$

$$
=2 \int_{0}^{3} \sqrt{\frac{12 x+36}{12 x}} d x
$$

$$
=2 \int_{0}^{3} \frac{x+3}{\sqrt{x^{2}+3 x}} d x
$$

$=2\left[\int_{0}^{3} \frac{2 x+3}{2 \sqrt{x^{2}+3 x}} d x\right.$ $\left.+\frac{3}{2} \int_{0}^{3} \frac{1}{\sqrt{\left(x+\frac{3}{2}\right)^{2}-\left(\frac{3}{2}\right)^{2}}} d x\right]$
$=2\left[\sqrt{x^{2}+3 x}+\frac{3}{2} \log \left|\left(x+\frac{3}{2}\right)+\sqrt{x^{2}+3 x}\right|\right]_{0}^{3}$
$=2\left[3 \sqrt{2}+\frac{3}{2} \log \left(\frac{9}{2}+3 \sqrt{2}\right)-\frac{3}{2} \log \left(\frac{3}{2}\right)\right]$
$\left.=2\left[3 \sqrt{2}+3 \log (3+2 \sqrt{2})^{\frac{1}{2}}\right)\right]$
$=2[3 \sqrt{2}+3 \log (\sqrt{2}+1)]$
$=6[\sqrt{2}+\log (1+\sqrt{2})]$
40
(d)

Required area

$=$ Area of recangle $O A B C-$ Area of curve $O A B O$
$=\frac{\pi}{4 \sqrt{2}}-\int_{0}^{\pi / 4} \sin y d y$
$=\frac{\pi}{4 \sqrt{2}}+[\cos y]_{0}^{\pi / 4}=\left[\frac{\pi}{4 \sqrt{2}}+\left\{\frac{1}{\sqrt{2}}-1\right\}\right]$ sq unit
41 (b)
The equation of circle is $x^{2}+y^{2}=9$

\therefore Area of the smaller segment cut off from the circle
$x^{2}+y^{2}=9$ by $x=1$, given by
\therefore Required area, $A=2 \int_{1}^{3} \sqrt{9-x^{2}} d x$
$=2 \cdot \frac{1}{2}\left[x \sqrt{9-x^{2}}+9 \sin ^{-1} \frac{x}{3}\right]_{1}^{3}$
$=\left[\frac{9 \pi}{2}-\sqrt{8}-9 \sin ^{-1}\left(\frac{1}{3}\right)\right]$
$=\left[9\left(\frac{\pi}{2}-\sin ^{-1}\left(\frac{1}{3}\right)\right)-\sqrt{8}\right]$
$=\left[9 \cos ^{-1}\left(\frac{1}{3}\right)-\sqrt{8}\right]$
$=\left[9 \sec ^{-1}(3)-\sqrt{8}\right]$ sq unit
42 (b)
Since, $|x|+|y|=1$
$\Rightarrow\left\{\begin{array}{c}x+y=1, x>0, y>0 \\ x-y=1, x>0, y<0 \\ -x+y=1, x<0, y>0 \\ -x-y=1, x<0, y<0\end{array}\right.$
and $1-y^{2}=|x|$

$\Rightarrow\left\{\begin{array}{c}1-y^{2}=x, x \geq 0 \\ 1-y^{2}=-x, x<0\end{array}\right.$
\therefore Required area $=\left|2 \int_{0}^{1} \sqrt{(1-x)} d x\right|+$
$\left|2 \int_{-1}^{0} \sqrt{(x+1)} d x\right|-4\left(\frac{1}{2} \cdot 1 \cdot 1\right)$
$=\frac{2}{3}$ sq unit
45 (c)
Required area
$=2 \int_{-1}^{3} \sqrt{x^{2}-1} d x$
$=2\left[\left.\frac{x \sqrt{x^{2}-1}}{2}-\frac{1}{2} \log \right\rvert\, x+\sqrt{x^{2}-1}\right]_{-1}^{3}$
$=\left(x \sqrt{x^{2}-1}-\log \left|x+\sqrt{x^{2}-1}\right|\right)_{-1}^{3}$
$=6 \sqrt{2}-\log |3+2 \sqrt{2}|$
$46 \quad$ (c)
Requred area $=\int_{1}^{2} \log x d x$
$=[x \log x-x]_{1}^{2}=2 \log 2-1$
$=\log 4-\log e=\log \left(\frac{4}{e}\right)$
(d)
$\int_{1}^{b} f(x) d x=\sqrt{\left(b^{2}+1\right)}-\sqrt{2}$
On differentiating both sides w.r.t. b, we get
$f(b)=\frac{b}{\sqrt{\left(b^{2}+1\right)}}$
Hence, $f(x)=\frac{x}{\sqrt{\left(x^{2}+1\right)}}$
49 (c)
Required area $=\int_{\pi / 4}^{3 \pi / 4}\left(\sin ^{2} x-\cos ^{2} x\right) d x$

$=-\int_{\pi / 4}^{3 \pi / 4} \cos (2 x) d x=-\left[\frac{\sin 2 x}{2}\right]_{\pi / 4}^{3 \pi / 4}$
$=-\frac{1}{2}\left(\sin \frac{3 \pi}{2}-\sin \frac{\pi}{2}\right)=1$ sq unit
50
(d)

Required area
$=$ area of rectangle $O A B C$ - area of curve $O B C O$

$=\frac{\pi}{4 \sqrt{2}}-\int_{0}^{\frac{\pi}{4}} \sin y d y$
$=\frac{\pi}{4 \sqrt{2}}+[\cos y]_{0}^{\frac{\pi}{4}}$
$=\left[\frac{\pi}{4 \sqrt{2}}+\left(\frac{1}{\sqrt{2}}-1\right)\right]$ sq unit
53
(d)

Required area $=\int_{1}^{1.7}[x] d x$
$=\int_{1}^{1.7} d x=1.7-1=0.7=\frac{7}{10}$
54 (d)
Equation of circle is $x^{2}+y^{2}=16$
\therefore Total area of circle $=A_{1}+A_{2}=16 \pi$

$\frac{A_{1}}{A_{2}}=\frac{16 \pi}{A_{2}}-1$ [on dividing Eq. (i) by A_{2}]
and $A_{2}=2 \int_{1}^{4} \sqrt{16-x^{2}} d x$
$A_{2}=2\left\{\frac{x}{2} \sqrt{16-x^{2}}+\frac{16}{2} \sin ^{-1}\left(\frac{x}{4}\right)\right\}_{1}^{4}$
$=2\left\{4 \pi-\frac{\sqrt{15}}{2}-8 \sin ^{-1}\left(\frac{1}{4}\right)\right\}$
$=8 \pi-\sqrt{15}-16 \sin ^{-1}\left(\frac{1}{4}\right)$
$\therefore \frac{A_{1}}{A_{2}}=\frac{16 \pi}{8 \pi-\sqrt{15}-16 \sin ^{-1}\left(\frac{1}{4}\right)}-1$
55
(b)

Given equation of ellipse is $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$
Here, $a=5, b=4$
We know that the area of an ellipse $\frac{x^{4}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is $\pi a b=\pi(5)(4)=20 \pi$ sq unit
(d)

Area $=4 \int_{0}^{1}(1-x) d x=4\left[x-\frac{x^{2}}{2}\right]_{0}^{1}$
$=4\left(1-\frac{1}{2}\right)=2$ sq units

Alternate

From figure $A B C D$ is square, whose diagonals $A C$ and $B D$ are of length 2 unit.
Hence, \quad Required area $=\frac{1}{2} \times A C \times B D$
$=\frac{1}{2} \times 2 \times 2$
$=2$ sq units
59 (a)
The points of intersection of given curves are $(0,0)$ and
$\left(\frac{1}{a}, \frac{1}{a}\right)$

\therefore Required area $O A B C O$

$$
\begin{aligned}
& \text { = area of } O C B D O \\
& \text { - area of } O A B D O
\end{aligned}
$$

$$
\Rightarrow \int_{0}^{1 / a}\left(\sqrt{\frac{x}{a}}-a x^{2}\right) d x=1 \quad[\text { given }]
$$

$$
\Rightarrow\left(\frac{1}{\sqrt{a}} \cdot \frac{x^{3 / 2}}{3 / 2}-\frac{a x^{3}}{3}\right)_{0}^{1 / a}=1
$$

$$
\Rightarrow \frac{2}{3 a^{2}}-\frac{1}{3 a^{2}}=1
$$

$$
\Rightarrow a^{2}=\frac{1}{3} \Rightarrow a=\frac{1}{\sqrt{3}} \quad[\text { as } a>0]
$$

60 (a)
Required area $=2 \int_{0}^{1}\left(x-x^{3}\right) d x$

$=2\left[\frac{x^{2}}{2}-\frac{x^{4}}{4}\right]_{0}^{1}=2\left[\frac{1}{2}-\frac{1}{4}\right]=\frac{1}{2}$ sq unit
61 (c)
The point of instruction of $y^{2}=4 x$ and $y=2 x-$ 4 is

$$
(2 x-4)^{2}=4 x
$$

$\Rightarrow x^{2}-5 x+4=0$
$\Rightarrow(x-1)(x-4)=0$
$\Rightarrow x=1,4$
$\Rightarrow y=-2,4$
\therefore Required area
$\int_{-2}^{4}\left(\frac{y+4}{2}\right) d y-\int_{-2}^{4} \frac{y^{2}}{4} d y$
$=\frac{1}{2}\left[\frac{y^{2}}{2}+4 y\right]_{-2}^{4}-\frac{1}{4}\left[\frac{y^{3}}{3}\right]_{-2}^{4}$
$=\frac{1}{2}[8+16-(2-8)]-\frac{1}{12}[64+8]$
$=15-6=9$ squnits
63 (b)
Required area $A=\int_{\pi / 2}^{\pi} \sin ^{2} x d x$

$=\frac{1}{2} \int_{\pi / 2}^{\pi}(1-\cos 2 x) d x$
$=\frac{1}{2}\left[x-\frac{\sin 2 x}{2}\right]_{\pi / 2}^{\pi}$
$=\frac{\pi}{4}$ sq unit
67 (a)
Given equation of curve is $y=a \sqrt{x}+b x$. This curve passes through $(1,2)$
$\therefore 2=a+b$...(i)
and area bounded by the curve and line $x=4$ and
x-axis is 8 sq unit, then
$\int_{0}^{4}(a \sqrt{x}+b x) d x=8$
$\Rightarrow \frac{2 a}{3}\left[x^{3 / 2}\right]_{0}^{4}+\frac{b}{2}\left[x^{2}\right]_{0}^{4}=8$
$\Rightarrow \frac{2 a}{3} \cdot 8+8 b=8 \Rightarrow 2 a+3 b=3$
On solving Eqs. (i) and (ii), we get $a=3$ and $b=-1$
68
(b)

Given. area $=\int_{0}^{2} 2^{k x} d x=\frac{3}{\log 2}$
$\Rightarrow\left[\frac{2^{k x}}{\log _{e} 2}\right]_{0}^{2}=\frac{3}{\log 2}$
$\Rightarrow \frac{2^{2 k}}{\log _{e} 2}-\frac{1}{\log _{e} 2}=\frac{3}{\log 2}$
$\Rightarrow 2^{2 k}-1=3$
$\Rightarrow 2^{2 k}=2^{2}$
$\Rightarrow 2 k=2$
$\Rightarrow k=1$
(b)

Required area $=\int_{-\infty}^{\infty} \frac{1}{x^{2}+1} d x$

$=2\left[\tan ^{-1} x\right]_{0}^{\infty}=\pi$ sq unit
70 (d)
Given the equation of parabola can be rewritten as

$\left(x-\frac{1}{2}\right)^{2}=y-\frac{7}{4}$
\therefore Required area $=\int_{0}^{2}\left[(\mathrm{x}+2)-\left(x^{2}-x+2\right)\right] d x$
$\int_{0}^{2}\left(-x^{2}+2 x\right) d x$
$=\left[-\frac{x^{3}}{3}+x^{2}\right]_{0}^{2}=-\frac{8}{3}+4=\frac{4}{3}$ sq units
71 (c)
Required area $=$ area of $\triangle O A B$

$=\frac{1}{2} \times 2 \times 2=2$ sq unit
(a)

Required area $O A B O=\int_{0}^{9} \sqrt{x} d x-\int_{3}^{9}\left(\frac{x-3}{2}\right) d x$
$=\left(\frac{x^{3 / 2}}{3 / 2}\right)_{0}^{9}-\frac{1}{2}\left(\frac{x^{2}}{2}-3 x\right)_{3}^{9}$

$=\left(\frac{2}{3} \cdot 27\right)-\frac{1}{2}\left\{\left(\frac{81}{2}-27\right)-\left(\frac{9}{2}-9\right)\right\}$
$=9$ sq units
73 (d)
The given equation can be rewritten as
$\frac{(x-\sqrt{2})^{2}}{2 / \pi}+\frac{y^{2}}{8 / \pi}=1$
Which represent an ellipse.
Here, $a=\sqrt{\frac{2}{\pi}}$
and $b=\sqrt{\frac{8}{\pi}}$
Area enclosed by an ellipse $=\pi a b$
$=\pi \sqrt{\frac{2}{\pi}} \sqrt{\frac{8}{\pi}}$
$=4$ squnits
75 (a)
$S_{1}=S_{3}=\int_{0}^{4} \frac{x^{2}}{4} d x$

$=\frac{1}{4}\left[\frac{x^{3}}{3}\right]_{0}^{4}=\frac{16}{3}$ sq units
Now, $S_{2}+S_{3}=\int_{0}^{4} \sqrt{4 x} d x=2 \times\left[\frac{x^{3 / 2}}{3 / 2}\right]_{0}^{4}$

$$
=\frac{32}{3} \text { sq units }
$$

$\Rightarrow s_{2}=\frac{16}{3}$ sq units
$\therefore S_{1}: S_{2}: S_{3}=\frac{16}{3}: \frac{16}{3}: \frac{16}{3}=1: 1: 1$
76
(b)

Required area $=\int_{0}^{16 / m^{2}}(\sqrt{16 x}-m x) d x=\frac{2}{3}$
(given)
$\Rightarrow\left[4 \times \frac{2}{3} x^{\frac{3}{2}}-m \frac{x^{2}}{2}\right]_{0}^{16 / m^{2}}=\frac{2}{3}$

$\Rightarrow \frac{8}{3} \times \frac{64}{m^{3}}-\frac{m}{2} \frac{256}{m^{4}}=\frac{2}{3}$
$\Rightarrow \frac{1}{m^{3}}\left[\frac{512}{3}-128\right]=\frac{2}{3}$
$\Rightarrow m=4$

For $c<1, \int_{c}^{1}\left(8 x^{2}-x^{5}\right) d x=\frac{16}{3}$
$\Rightarrow \frac{8}{3}-\frac{1}{6}-\frac{8 c^{3}}{3}+\frac{c^{6}}{6}=\frac{16}{3}$
$\Rightarrow c^{3}\left[-\frac{8}{3}+\frac{c^{3}}{6}\right]=\frac{16}{3}-\frac{8}{3}+\frac{1}{6}=\frac{17}{6}$
$\Rightarrow c=-1$ satisfy the above equation
For $c \geq 1$, none of the values of c satisfy the required condition that
$\int_{1}^{c}\left(8 x^{2}-x^{5}\right) d x=\frac{16}{3}$
81 (a)
The given equation of curves are
$y=\sin x$
and $y=\cos x$...(ii)
From Eqs. (i) and (ii), we get
$\sin x=\cos x \Rightarrow x=\frac{\pi}{4}$
\therefore Required area $=\int_{0}^{\pi / 4}(\cos x-\sin x) d x$

$=[\sin x+\cos x]_{0}^{\pi / 4}$
$=\left(\sin \frac{\pi}{4}+\cos \frac{\pi}{4}-\cos 0\right)$
$=\left[\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-1\right]$
$=\frac{2}{\sqrt{2}}-1=(\sqrt{2}-1)$ sq unit
84 (d)
$y=\left[3+\frac{x^{2}}{4}\right]=3,-2<x<2$

Required area $=2\left\{\int_{0}^{1}\left(4-x^{2}\right) d x-3\right\}$
$=2\left\{\left[4 x-\frac{x^{3}}{3}\right]_{0}^{1}-3\right\}$
$=2\left\{4-\frac{1}{3}-3\right\}$
$=\frac{4}{3}$ sq unit
(d)

The given eqution of curve can be written as $\frac{x^{2}}{4}$

$$
+\frac{y^{2}}{9}=1
$$

Here, $a=2, b=3$
\therefore Required area $=\pi a b$
$=\pi \times 2 \times 3$
$=6 \pi$ squnits
88 (a)
On solving the given curves, we get
$y= \pm 1$ and $x=-2$
\therefore Required aerea $=\left|\int_{-1}^{1}\left(x_{1}-x_{2}\right) d y\right|$
$=\left|\int_{-1}^{1}\left(1-3 y^{2}+2 y^{2}\right) d y\right|$

$=\left|2 \int_{0}^{1}\left(1-y^{2}\right) d y\right|$
$=\left|2\left[y-\frac{y^{3}}{3}\right]_{0}^{1}\right|$
$=\frac{4}{3}$ sq units
89
(d)

Required area $=2 \int_{1}^{2}\left(-x^{2}+3 x-2\right) d x \quad(\because$ both portions are same)

$=2\left[-\frac{x^{3}}{3}+\frac{3 x^{2}}{2}-2 x\right]_{1}^{2}$
$=2\left[-\frac{8}{3}+6-4-\left(-\frac{1}{3}+\frac{3}{2}-2\right)\right]$
$=2\left[-\frac{8}{3}+2+\frac{5}{6}\right]=\frac{1}{3}$ sq unit
91
(b)

Let A be the required area. Then,
$A=\int_{0}^{3} x d y=\int_{0}^{3} \frac{y^{2}}{4} d y=\left[\frac{y^{3}}{12}\right]_{0}^{3}=\frac{27}{12}=\frac{9}{4}$

93 (b)
Given curve can be rewritten as

$$
(x-1)^{2}=-(y-1)
$$

The curve cut the x-axis at $(0,0)$ and $(2,0)$
\therefore Required area $=\int_{0}^{2}\left(2 x-x^{2}\right) d x$
$=\left[x^{2}-\frac{x^{3}}{3}\right]_{0}^{2}$
$=\frac{4}{3}$ sq units
95 (c)
Required area $=\int_{0}^{\pi} x \sin x d x+\left|\int_{\pi}^{2 \pi} x \sin x d x\right|$

$$
\begin{aligned}
& =\{-x \cos x+\sin x\}_{0}^{\pi}+\left|\{-x \cos x+\sin x\}_{\pi}^{2 \pi}\right| \\
& =(\pi+0)-(0+0)+\mid(-2 \pi+0)-(\pi+0) \\
& =\pi+3 \pi \\
& =4 \pi \text { sq unit }
\end{aligned}
$$

(b)

On solving $y^{2}=4 a^{2}(x-1)$ and $y=4 a$, we get x

$$
=5
$$

\therefore Required area $=\int_{1}^{5}(4 a-2 a \sqrt{x-1}) d x$
$=\left[4 a x-2 a \frac{(x-1)^{3 / 2}}{3 / 2}\right]_{1}^{5}$
$=\frac{16 a}{3}$ sq units
103 (d)
Required area $=\int_{0}^{1} x e^{x} d x-\int_{0}^{1} x e^{-x} d x$

$=\left[x e^{x}-e^{x}\right]_{0}^{1}-\left[-x e^{-x} e^{-x}\right]_{0}^{1}=\frac{2}{e}$ sq unit
104 (a)
The point intersections of given curves are $(2,1)$ and $(-2,1)$.
\therefore Required area $=2 \int_{0}^{1} x d y+2 \int_{1}^{3} x d y$

$=2 \int_{0}^{1} \sqrt{4 y} d y+2 \int_{1}^{3} \sqrt{6-2 y} d y$
$=4\left[\frac{y^{3 / 2}}{3 / 2}\right]_{0}^{1}+2\left[\frac{(6-2 y)^{3 / 2}}{3 / 2} \times \frac{1}{-2}\right]_{1}^{3}$
$=\frac{8}{3}+\frac{16}{3}=8$ sq units

(b)

Required area of shaded portion $O A B C O$

$=\int_{0}^{4}\left(\sqrt{4 x}-\frac{x^{2}}{4}\right) d x$
$=\left[\frac{2 x^{3 / 2}}{3 / 2}-\frac{x^{3}}{12}\right]_{0}^{4}$
$=\left[\frac{32}{3}-\frac{16}{3}\right]$
$=\frac{16}{3}$ sq units
(b)

We have,
$\int_{\pi / 3}^{\pi / a} \sin a x d x=3 \Rightarrow \frac{1}{a}\left[1+\frac{1}{2}\right]=3 \Rightarrow 2 a=1$ $\Rightarrow a=\frac{1}{2}$

107 (a)
Required area $=2$ area of curve $O A B O$

$=2 \int_{0}^{1}\left[\left(2-x^{2}\right)-\left(x^{2}\right)\right] d x$
$=2 \int_{0}^{1}\left(2-2 x^{2}\right) d x$
$=4\left[x-\frac{x^{3}}{3}\right]_{0}^{1}=\frac{8}{3}$ sq units
109 (a)
$\because y=2 x^{4}-x^{2}$
$\therefore \frac{d y}{d x}=8 x^{3}-2 x$
For maxima or minima, put $\frac{d y}{d x}=0$, we get
$x=-\frac{1}{2}, 0, \frac{1}{2}$
Then, $\left(\frac{d^{2} y}{d x^{2}}\right)_{x=\frac{1}{2}}>0,\left(\frac{d^{2} y}{d x^{2}}\right)_{x=0}<0$
and $\left(\frac{d^{2} y}{d x^{2}}\right)_{x=\frac{1}{2}}>0$
\therefore Required area $=\left|\int_{-1 / 2}^{1 / 2}\left(2 x^{4}-x^{2}\right) d x\right|=$ $\frac{7}{120}$ sq unit
110 (b)
\therefore Area $=\int_{2}^{4}\left(1+\frac{8}{x^{2}}\right) d x$
Since, the ordinate $x=a$ divides area into two equal parts, therefore,
$\int_{2}^{a}\left(1+\frac{8}{x^{2}}\right) d x=\frac{1}{2} \int_{2}^{4}\left(1+\frac{8}{x^{2}}\right) d x$
$\Rightarrow\left[x-\frac{8}{x}\right]_{2}^{a}=\frac{1}{2}\left[x-\frac{8}{x}\right]_{2}^{4}$

$\Rightarrow\left(a-\frac{8}{a}\right)-(2-4)=\frac{1}{2}[(4-2)-(2-4)]$
$\Rightarrow a-\frac{8}{a}+2=2$
$\Rightarrow a=\sqrt{8}=2 \sqrt{2}$ sq unit
111 (a)
Volume $=\int_{0}^{1} \pi x^{2} d y-\int_{0}^{1} \pi x^{2} d y$
$=\pi \int_{0}^{1} 9\left(1-x^{2}\right) d y-\pi \int_{0}^{1} 9(1-y)^{2} d y$
$=9 \pi\left[\left(y-\frac{y^{3}}{3}\right)+\frac{(1-y)^{3}}{3}\right]_{0}^{1}$

$$
=9 \pi\left[\left(1-\frac{1}{3}\right)+\left(0-\frac{1}{3}\right)\right]=3 \pi
$$

112 (c)

Required area
$=2 \int_{-2}^{-1} \sqrt{x+2} d x+\int_{-1}^{2}(-x+\sqrt{x+2}) d x$
$=\frac{4}{3}\left[(x+2)^{3 / 2}\right]_{-2}^{-1}+\left[\frac{-x^{2}}{2}+\frac{2}{3}(x+2)^{3 / 2}\right]_{-1}^{2}$
$=\frac{9}{2}$ squnits
113 (c)
Required area= area of curve $A B C D$
$=\int_{1}^{2}\left(x^{2}+2\right) d x=\left[\frac{x^{3}}{3}+2 x\right]_{1}^{2}$

$=\left(\frac{8}{3}+4\right)-\left(\frac{1}{3}+2\right)$
$=\frac{13}{3}$ sq units

Let the required area be A sq. units. Then,
$A=\int_{0}^{2}\left(y_{2}-y_{1}\right) d x$
$\Rightarrow A=\int_{0}^{2}\left\{2^{x}-\left(2 x-x^{2}\right)\right\} d x$

$\Rightarrow A=\left[\frac{2^{x}}{\log 2}-x^{2}+\frac{x^{3}}{3}\right]_{0}^{2}$
$\Rightarrow A=\frac{4}{\log 2}-4+\frac{8}{3}-\frac{1}{\log 2}$
$\Rightarrow A=\frac{3}{\log 2}-\frac{4}{3}$
115 (d)
Given equation of ellipse is $\frac{x^{2}}{9}+\frac{y^{2}}{5}=1$

To find tangents at the end points of latusrectum we find $a e$,
$i e, a e=\sqrt{a^{2}-b^{2}}=\sqrt{4}=2$
By symmetry the quadrilateral is rhombus
So, area of rhombus is four times the area of the right angled formed by the tangent and axes in the first quadrant
\Rightarrow Equation of tangent at $\left[a e, \sqrt{b\left(1-e^{2}\right)}\right]=\left(2, \frac{5}{3}\right)$ is
$\frac{2}{9} x+\frac{5}{3} \cdot \frac{y}{5}=1$
$\Rightarrow \frac{x}{9 / 2}+\frac{y}{3}=1$
\therefore Area of quadrilateral $A B C D=4($ area of $\triangle A O B)$
$=4\left(\frac{1}{2} \cdot \frac{9}{2} \cdot 3\right)=27$ sq unit
118 (c)
The intersection points of given curves are $(0,0)$
and $(3,9)$
\therefore Required area $=\int_{0}^{3}\left(3 x-x^{2}\right) d x$

$=\left[\frac{3 x^{2}}{2}-\frac{x^{3}}{3}\right]_{0}^{3}=\frac{27}{6}=4.5$ sq units
120 (a)
Required area $=\int_{-1}^{2} y d x=\left|\int_{-1}^{0} y d x\right|+\int_{0}^{2} y d x$

$=\left|\int_{-1}^{0} x d x\right|+\int_{0}^{2} x d x$
$=\left|\left[\frac{x^{2}}{2}\right]_{-1}^{0}\right|+\left[\frac{x^{2}}{2}\right]_{0}^{2}=\frac{5}{2}$ sq unit

Alternate

Required area $=$ Area of $\triangle O A B+$ Area of $\triangle O C D$ $\frac{1}{2} \times 2 \times 2+\frac{1}{2} \times 1 \times 1$
$=\frac{5}{2}$ squnits
121
(b)

Curved surface $=\int_{a}^{b} 2 \pi y \sqrt{\left[1+\left(\frac{d y}{d x}\right)^{2}\right]} d x$
Given that, $a=2 b=3$ and $y=x+1$
$\therefore \frac{d y}{d x}=1+0 \Rightarrow \frac{d y}{d x}=1$
Therefore, curved surface

$$
\begin{aligned}
& =\int_{2}^{3} 2 \pi(x+1) \sqrt{\left[1+(1)^{2}\right]} d x \\
& =2 \sqrt{2} \pi \int_{2}^{3}(x+1) d x \\
& =2 \sqrt{2} \pi\left[\frac{(x+1)^{2}}{2}\right]_{2}^{3}=\sqrt{2} \pi(16-9)=7 \pi \sqrt{2}
\end{aligned}
$$

122 (a)
Required area $=2 \int_{1}^{4} \sqrt{x} d x$
$=2\left[\frac{2}{3} x^{3 / 2}\right]_{1}^{4}=\frac{4}{3}[8-1]=\frac{28}{3}$ sq units
123 (b)
Area of curve $O A B=2 \int_{0}^{a^{2}} x d y$

$=2 \int_{0}^{a^{2}} \sqrt{y} d y=2\left[\frac{y^{3 / 2}}{3 / 2}\right]_{0}^{a^{2}}$
$=\frac{4}{3}\left[a^{3}\right]$
Now, Area of $\triangle O A B=\frac{1}{2} \times A B \times O C$
$=\frac{1}{2} \times 2 a \times a^{2}=a^{3}$
$\therefore \frac{\text { Area of } \triangle A O B}{\text { Area of curve } A O B}=\frac{a^{3}}{\frac{4}{3} a^{3}}=\frac{3}{4}$
124 (b)
Area bounded by curves $y=2^{k x}$ and $x=0$ and $x=2$ is given by
$A=\int_{0}^{2} 2^{k x} d x$
$=\left[\frac{2^{k x}}{k \log 2}\right]_{0}^{2}=\left[\frac{2^{2 k}-1}{k \log 2}\right]$
But $A=\frac{3}{\log 2}$
$\therefore \frac{2^{2 k}-1}{k \log 2}=\frac{3}{\log 2} \Rightarrow 2^{2 k}-1=3 k$
This, relation is satisfied by only option (b)
127 (b)
Required volume $=\pi \int_{-1}^{1} y^{2} d x=2 \pi \int_{0}^{1} x^{4} d x$
$=2 \pi\left[\frac{x^{5}}{5}\right]_{0}^{1}=\frac{2 \pi}{5}$ cu unit

128 (a)
The required volume of the segment is generated by revolving the area $A B C A$ of the circle
$x^{2}+y^{2}=a^{2}$ about the x-axis and for the $\operatorname{arc} B A$.

Here, $C A=h$
and $O A=a$ [given]
$\therefore O C=O A-C A=a-h$
$\therefore x$ varies from $a-h$ to a

$$
\begin{aligned}
& \therefore \text { The required volume }=\int_{a-h}^{a} \pi y^{2} d x \\
& \begin{aligned}
=\pi \int_{a-h}^{a}\left(a^{2}-x^{2}\right) d x=\pi\left[a^{2} x-\frac{1}{3} x^{3}\right]_{a-h}^{a}
\end{aligned} \\
& \begin{array}{r}
=\pi\left[\left(a^{3}-\frac{1}{3} a^{3}\right)\right. \\
\\
-\left\{a^{3}-a^{2} h-\frac{1}{3}\left(a^{3}\right.\right. \\
\\
\left.\left.\left.-3 a^{2} h+3 a h^{2}-h^{3}\right)\right\}\right]
\end{array} \\
& \begin{array}{r}
=\pi\left[a^{2} h-a^{2} h+a h^{2}-\frac{1}{3} h^{3}\right] \\
\quad=\frac{1}{3} \pi h^{2}(3 a-h)
\end{array}
\end{aligned}
$$

129 (b)

Required area

$=\int_{0}^{2}\left[2^{x}-\left(2 x-2^{2}\right)\right] d x$

$=\left[\frac{2^{x}}{\log 2}-x^{2}+\frac{x^{3}}{3}\right]_{0}^{2}$
$=\frac{4}{\log 2}-4+\frac{8}{3}-\frac{1}{\log 2}$
$=\left(\frac{3}{\log 2}-\frac{4}{3}\right)$ sq unit
130
(b)

Required area $=\int_{q}^{p} c e^{x} d x$
$=\left[c e^{x}\right]_{q}^{p}$
$=c\left[e^{p}-e^{q}\right]$
$=f(p)-f(q)$

132 (b)
Given equation of curve is
$y^{2}(2 a-x)=x^{3}$

Which is symmetrical about x-axis and passes through origin
Also, $\frac{x^{3}}{2 a-x}<0$
For $x>2 a$ or $x<0$
So, curve does not lie in $x>2 a$ and $x<0$,
therefore curve lies wholly on $0 \leq x \leq 2 a$
\therefore Required area $=\int_{0}^{2 a} \frac{x^{3 / 2}}{\sqrt{2 a-x}} d x$
Put $x=2 a \sin ^{2} \theta$
$\Rightarrow d x=2 a \cdot 2 \sin \theta+\cos \theta d \theta$
\therefore Required area $=\int_{0}^{\pi / 2} 8 a^{2} \sin ^{4} \theta d \theta$
$=8 a^{2}\left[\frac{3}{4} \cdot \frac{1}{2} \cdot \frac{\pi}{2}\right]$ (using gamma function)
$=\frac{3 \pi a^{2}}{2}$ sq unit
133 (c)
Required area $=2 \int_{0}^{a} \sqrt{4 a x} d x$
$=4 \sqrt{a} \times \frac{2}{3}\left[x^{3 / 2}\right]_{0}^{a}=\frac{8}{3} a^{2}$ sq unit
134 (c)
Let $y^{2}=4 a x$ be a parabola and let $x=b$ be a
double ordinate. Then,
$A_{1}=$ Area enclosed by the parabola $y^{2}=4 a x$ and the double ordinate $x=b$

$$
\begin{gathered}
\Rightarrow A_{1}=2 \int_{0}^{b} y d x=2 \int_{0}^{b} \sqrt{4 a x} d x=4 \sqrt{a} \int_{0}^{b} \sqrt{x^{3}} d x \\
\Rightarrow A_{1}=4 \sqrt{a}\left[\frac{2}{3} x^{3 / 2}\right]_{0}^{b}=4 \sqrt{a} \times \frac{2}{3} b^{3 / 2} \\
=\frac{8}{3} a^{1 / 2} b^{3 / 2}
\end{gathered}
$$

And, $A_{2}=$ Area of the rectangle $A B C D$
$\Rightarrow A_{2}=A B \times A D=2 \sqrt{4 a b} \times b=4 a^{1 / 2} b^{3 / 2}$
$\therefore A_{1}: A_{2}=8 / 3 a^{1 / 2} b^{3 / 2}: 4 a^{1 / 2} b^{3 / 2}=2 / 3: 1$

$$
=2: 3
$$

136 (b)
The curve $y^{2}(2 a-x)=x^{3}$ is symmetrical about x-axis and passes through origin.
Also, $\quad \frac{x^{3}}{2 a-x}<0$ for $x>2 a$ and $x<0$
So, curve does not lie in $x>2 a$ and $x<0$,
therefore curves lies wholly on $0 \leq x \leq 2 a$
\therefore Requried area $=\int_{0}^{2 \mathrm{a}} \frac{x^{3 / 2}}{\sqrt{2 a-x}} d x$
Put $x=2 a \sin ^{2} \theta$
$\Rightarrow 0 d x=4 a \sin \theta \cos \theta d \theta$
\therefore Requried area $=\int_{0}^{\frac{\pi}{2}} 8 a^{2} \sin ^{4} \theta d \theta$
$=8 a^{2}\left[\frac{3}{4} \cdot \frac{1}{2} \cdot \frac{\pi}{2}\right]$
$=\frac{3 \pi a^{2}}{2}$ sq unit
137 (b)
Intersection points of given curves are $(-1,0)$ and $(3,0)$
Required area $=\int_{-1}^{3}\left(-x^{2}+2 x+3\right) d x$
$=\left[\frac{x^{3}}{3}+\frac{2 x^{2}}{2}+3 x\right]_{-1}^{3}$
$=\left[-9+9+9-\left(\frac{1}{3}+1-3\right)\right]$
$=\frac{32}{3}$ sq units
138
(b)

Given curve $a^{4} y^{2}=(2 a-x) x^{5}$
Cut off x-axis, when $y=0$
$0=(2 a-x) x^{5}$
$\therefore x=0,2 a$
Hence, the area bounded by the curve
$a^{4} y^{2}=(2 a-x) x^{5}$ is
$A_{1}=\int_{0}^{2 a} \frac{\sqrt{(2 a-x)} x^{5 / 2}}{a^{2}} d x$
Put $x=2 a \sin ^{2} \theta$
$\therefore d x=4 a \sin \theta \cos \theta d \theta$
$\therefore A_{1}$
$=\int_{0}^{\pi / 2} \frac{\sqrt{2 a} \cos \theta(2 a)^{5 / 2} \sin ^{5} \theta 4 a \sin \theta \cos \theta}{a^{2}} d \theta$
$=32 a^{2} \int_{0}^{\pi / 2} \sin ^{6} \theta \cos ^{2} \theta d \theta$
$=32 a^{2} \cdot \frac{(5 \cdot 3 \cdot 1)(1)}{8 \cdot 6 \cdot 4 \cdot 2} \cdot \frac{\pi}{2}$ (by walli's formula)
$=\frac{5 \pi a^{2}}{8}$
Area of circle, $A_{2}=\pi a^{2}$
$\therefore \frac{A_{1}}{A_{2}}=\frac{5}{8}$
$\Rightarrow A_{1}: A_{2}=5: 8$
139 (d)
Required area $=\int_{0}^{1}\left(\sqrt{x}-x^{2}\right) d x$

$=\left[\frac{2 x^{3 / 2}}{3}-\frac{x^{3}}{3}\right]_{0}^{1}=\left(\frac{2}{3}-\frac{1}{3}\right)=\frac{1}{3}$ sq unit

(c)

We have,

$$
\begin{align*}
A=\int_{0}^{\pi / 4} \sin x d x & =[-\cos x]_{0}^{\pi / 4}=\frac{\sqrt{2}-1}{\sqrt{2}} \\
& =1-\frac{1}{\sqrt{2}} \ldots \text { (i) } \tag{i}
\end{align*}
$$

Let A_{1} be the required area. Then,

$$
\begin{equation*}
A_{1}=\int_{0}^{\pi / 4} \cos x d x=[\sin x]_{0}^{\pi / 4}=\frac{1}{\sqrt{2}} \ldots \tag{ii}
\end{equation*}
$$

From (i) and (ii), we have
Required area $A_{1}=1-A$

143 (b)
Required area $=$ Area of rectangle $O A B C-$ Area of curve OABO

$\frac{\pi}{4}-\int_{0}^{\pi / 4} \tan y d y$
$=\frac{\pi}{4}+[\log \cos y]_{0}^{\pi / 4}$
$=\frac{\pi}{4}+\log \cos \frac{\pi}{4}-\log \cos (0)$
$=\frac{\pi}{4}+\log 1-\log \sqrt{2}-\log 1$
$=\left(\frac{\pi}{4}-\log \sqrt{2}\right)$ sq unit
144
(b)

Required area $=2 \int_{1}^{3} \sqrt{9-x^{2}} d x$
$=2 \cdot \frac{1}{2}\left[x \sqrt{9-x^{2}}+9 \sin ^{-1} \frac{x}{3}\right]_{1}^{3}$

$=\left[9 \sin ^{-1}(1)-\sqrt{8}-9 \sin ^{-1}\left(\frac{1}{3}\right)\right]$
$=\left[9\left\{\cos ^{-1}\left(\frac{1}{3}\right)\right\}-\sqrt{8}\right]\left[\because \cos ^{-1} \theta=\frac{\pi}{2}-\sin ^{-1} \theta\right]$
$=\left[9 \sec ^{-1}(3)-\sqrt{8}\right]$ sq unit
145 (c)
Required area $=\int_{0}^{1}\left(x_{2}-x_{1}\right) d y$
$=\int_{0}^{1}\left(\sqrt{4-y^{2}}-\sqrt{3} y\right) d y$
$=\left[\frac{1}{2} y \sqrt{4-y^{2}}+\frac{1}{2}(4) \sin ^{-1} \frac{y}{2}-\frac{\sqrt{3} y^{2}}{2}\right]_{0}^{1}$

$=\frac{\sqrt{3}}{2}+\sin ^{-1}\left(\frac{1}{2}\right)-\frac{\sqrt{3}}{2}-2 \sin ^{-1} 0$
$=\frac{\pi}{3}$ sq units

Alternate

$=$ Area $=\frac{\theta}{360^{\circ}} \times \pi r^{2}$
$=\frac{30}{360} \times \pi(2)^{2}$
$=\frac{\pi}{3}$ sq units

148 (d)
Given equation of circle and line are
$x^{2}+y^{2}=1$...(i)
and $x+y=1$...(ii)
From Eqs. (i) and (ii),
$x^{2}+(1-x)^{2}=1$
$\Rightarrow x^{2}+1+x^{2}-2 x=1$

$\Rightarrow 2 x^{2}-2 x=0 \Rightarrow 2 x(x-1)=0$
$\Rightarrow x=0, x=1 \Rightarrow y=1, y=0$
\therefore Point of intersection of circle and line are
$A(1,0)$ and $B(0,1)$
\therefore Required area $=\int_{0}^{1}\left[\sqrt{1-x^{2}}-(1-x)\right] d x$
$=\left[\frac{x \sqrt{1-x^{2}}}{2}+\frac{1}{2} \sin ^{-1} x-x+\frac{x^{2}}{2}\right]_{0}^{1}$
$=\frac{1}{2} \cdot \frac{\pi}{2}-1+\frac{1}{2}$
$=\left(\frac{\pi}{4}-\frac{1}{2}\right)$ sq unit
149 (c)
$\because \int_{1}^{b} f(x) d x=(b-1) \sin (3 b+4)$
\therefore On differentiating both sides with respect to b, we get
$f(b)=3(b-1) \cos (3 b+4)+\sin (3 b+4)$
$\therefore f(x)=3(x-1) \cos (3 x+4)+\sin (3 x+4)$
150 (c)
The required area A is given by
$A=\int_{0}^{a}\left(y_{1}-y_{2}\right) d x$
$\Rightarrow A=\int_{0}^{a}\left\{\frac{b}{a} \sqrt{a^{2}-x^{2}}-\frac{b}{a}(a-x)\right\} d x$
$\Rightarrow A=\frac{b}{a}\left[\frac{1}{2} x \sqrt{a^{2}-x^{2}}+\frac{1}{2} a^{2} \sin ^{-1} \frac{x}{a}\right]^{a}$

$$
+\frac{b}{2 a}\left[(a-x)^{2}\right]_{0}^{a}
$$

$\Rightarrow A=\frac{b}{a}\left\{\frac{1}{2} a^{2} \sin ^{-1}(1)\right\}+\frac{b}{2 a}\left(0-a^{2}\right)$
$\Rightarrow A=\frac{\pi}{4} a b-\frac{1}{2} a b=\frac{a b}{4}(\pi-2)$

ALITER $A=$ Area of the ellipse in first quadrant Area of $\triangle O A B$
$\Rightarrow A=\frac{\pi a b}{4}-\frac{1}{2} a b=\frac{a b}{4}(\pi-2)$
151
(b)

The point of intersection of the parabola and the line are
$A(2,1)$ and $B\left(1-\frac{1}{4}\right)$

\therefore The requerd area $=\left[\int_{-1}^{2} y d x\right]-\left[\int_{-1}^{2} y d x\right]$
$=\int_{-1}^{2} \frac{1}{4}(x+2) d x-\int_{-1}^{2} \frac{1}{4} x^{2} d x$
$=\frac{1}{4}\left[\frac{x^{2}}{2}+2 x\right]_{-1}^{2}-\frac{1}{4}\left[\frac{x^{3}}{3}\right]_{-1}^{2}=\frac{9}{8}$ sq units
(d)

Required area $=\int_{0}^{\pi / 4} \tan x d x=[\log \sec x]_{0}^{\pi / 4}$

$=\log \sec \left(\frac{\pi}{4}\right)-\log \sec 0$
$=\log \sqrt{2}-\log 1=\log \sqrt{2}$ sq unit
153
(b)

We have,
$A_{1}=2 \int_{0}^{a} \sqrt{4 a x} d x$ and, A_{2}

$$
=2 \int_{0}^{2 a} \sqrt{4 a x}-2 \int_{0}^{a} \sqrt{4 a x} d x
$$

$\Rightarrow A_{1}=\frac{8 a^{2}}{3}$ and, $A_{2}=\frac{16}{3} \sqrt{2} a^{2}-\frac{8}{3} a^{2}$
$\Rightarrow \frac{A_{1}}{A_{2}}=\frac{1}{2 \sqrt{2}-1}-\frac{2 \sqrt{2}+1}{7}$
154 (a)
Required area
$A=\int_{-1}^{1}\left(-x^{2}+2\right) d x+\int_{1}^{2}(2 x-1) d x$
$=\left[-\frac{x^{3}}{3}+2 x\right]_{-1}^{1}+\left[x^{2}-x\right]_{1}^{2}$
$=\frac{10}{3}+2=\frac{16}{3}$ sq unit
156 (a)
Required area $=$ area of $\triangle A O B-\int_{0}^{1}(1-\sqrt{x})^{2} d x$

$=\frac{1}{2} \times 1 \times 1-\left[x-\frac{2 x^{3 / 2}}{3}\right]_{0}^{1}$
$=\frac{1}{3}$ sq unit
157 (c)
Given area bounded by the curve, $y=\sqrt{3 x+4}, x$ axis and the line $x=-1$ and $x=4$ is A and area bounded by the curve $y=\sqrt{3 x+4}$
ie, $y= \pm(3 x+4)^{1 / 2} x$-axis and the line $x=-1$ and $x=4$ is B
$\therefore B=2 A$
[Since, it is the area of both sides about x axis]
Now, $A: B=A: 2 A=1: 2$
158 (a)
Required area $=\int_{0}^{9} \sqrt{x} d x-\int_{3}^{9}\left(\frac{x-3}{2}\right) d x$
$=\left(\frac{x^{3 / 2}}{3 / 2}\right)_{0}^{9}-\frac{1}{2}\left(\frac{x^{2}}{2}-3 x\right)_{3}^{9}$

$=\left(\frac{2}{7} \cdot 27\right)-\frac{1}{2}\left\{\left(\frac{81}{2}-27\right)-\left(\frac{9}{2}-9\right)\right\}$
$=18-9=9$ sq unit
160 (a)
Given, $\int_{\pi / 4}^{\beta} f(x) d x=\beta \sin \beta+\frac{\pi}{4} \cos \beta+\sqrt{2} \beta$
On differentiating w.r.t. β on both sides, we get
$f(\beta)=\sin \beta+\beta \cos \beta-\frac{\pi}{4} \sin \beta+\sqrt{2}$
Put $\beta=\frac{\pi}{2}$
Then, $f\left(\frac{\pi}{2}\right)=\sin \frac{\pi}{2}$

$$
\begin{aligned}
& +\frac{\pi}{2} \cos \frac{\pi}{2} \\
& -\frac{\pi}{4} \sin \frac{\pi}{2}+\sqrt{2}=1-\frac{\pi}{4}+\sqrt{2}
\end{aligned}
$$

161 (d)
It is a square of diagonal of length 4 unit and sides is $2 \sqrt{2}$

\therefore Required area, $A=(2 \sqrt{2})^{2}=8$ sq unit
163 (c)
Required area $=\int_{-\pi / 3}^{\pi / 3} \sec ^{2} x d x$
$=[\tan x]_{-\pi / 3}^{\pi / 3}=2 \sqrt{3}$ sq unit
164 (c)

The required area
$=2 \times \int_{0}^{4} \sqrt{4-x} d x$
$=2\left[\frac{(4-x)^{3 / 2}}{3 / 2}\right]_{0}^{4}=2\left[-\frac{2}{3} \times 0+\frac{2}{3}(4)^{3 / 2}\right]$
$=\frac{32}{2}$ sq units
(c)

Required area $=\left|\int_{-1}^{1} x\right| x|d x|$

$=\left|\int_{-1}^{0} x\right| x|d x|+\int_{0}^{1} x|x| d x$
$=\left|\int_{-1}^{0}-x^{2} d x\right|+\int_{0}^{1} x^{2} d x$
$=\left|\left[\frac{-x^{3}}{3}\right]_{-1}^{0}\right|+\left[\frac{x^{3}}{3}\right]_{0}^{1}=\frac{1}{3}+\frac{1}{3}=\frac{2}{3}$
168 (a)
Required area $=\int_{1}^{2} \frac{1}{x} d x$

$=[\log |x|]_{1}^{2}=\log 2$ sq unit
Area, $\quad A_{1}=\int_{0}^{\frac{\pi}{4}} \sin x d x$

$=-[\cos x]_{0}^{\pi / 4}$
$=1-\frac{1}{\sqrt{2}}$
$=\frac{\sqrt{2}-1}{\sqrt{2}}$
and area, $A_{2}=\int_{\pi / 4}^{\pi / 2} \cos x d x$
$=[\sin x]_{\pi / 4}^{\pi / 2}=\left[1-\frac{1}{\sqrt{2}}\right]=\frac{\sqrt{2}-1}{\sqrt{2}}$
$\therefore A_{1}: A_{2}=\frac{\sqrt{2}-1}{\sqrt{2}}: \frac{\sqrt{2}-1}{\sqrt{2}}=1: 1$
(c)

Required area $=\int_{-2}^{0}\left(4-x^{2}\right) d x+\int_{0}^{4}(4-x) d x$

$=\left[4 x-\frac{x^{3}}{3}\right]_{-2}^{0}+\left[4 x-\frac{x^{2}}{2}\right]_{0}^{4}$
$=8-\frac{8}{3}+8=\frac{40}{3}$ sq unit
175

(b)

The intersection points of given curves are $(0,0)$ and (1,1)

\therefore Required area $=\int_{0}^{1}\left[\left(2 x-x^{2}\right)-x\right] d x$
$=\int_{0}^{1}\left(x-x^{2}\right) d x=\left[\frac{x^{2}}{2}-\frac{x^{3}}{3}\right]_{0}^{1}$
$=\frac{1}{6}$ sq unit
177 (a)
Required area $=2 \int_{0}^{\alpha} \sqrt{4 a x} d x$
$=k(\alpha)(2 \sqrt{4 a \alpha})$

$\frac{8 \sqrt{a}}{3} \alpha^{3 / 2}=4 \sqrt{a} k \alpha^{3 / 2}$
$\Rightarrow k=\frac{2}{3}$
178
Required area $=\int_{0}^{1}(\sqrt{x}-x) d x$

$=\left[\frac{2}{3} x^{3 / 2}-\frac{x^{2}}{2}\right]_{0}^{1}=\frac{1}{6}$ sq unit

179 (b)
Clearly,
Required are $=\int_{0}^{\pi} a \sin x d x=2 a$
180 (b)

Required area $=\int_{0}^{1}(\sqrt{x}-x) d x=\left(\frac{2}{3} x^{3 / 2}-\frac{x^{2}}{2}\right)_{0}^{1}$ $=\frac{2}{3}-\frac{1}{2}=\frac{4-3}{6}=\frac{1}{6}$ sq unit
181 (b)
Required area

$$
\begin{aligned}
& =\left|\int_{0}^{1}(x-1)(x-2)(x-3) d x\right| \\
& \quad+\int_{1}^{2}(x-1)(x-2)(x-3) d x \\
& +\left|\int_{2}^{3}(x-1)(x-2)(x-3) d x\right|
\end{aligned}
$$

$=\frac{9}{4}+\frac{1}{4}+\frac{1}{4}=\frac{11}{4}$ sq unit
183 (d)
Required area $=2 \int_{1}^{2}\left(-x^{2}+3 x-2\right) d x$
$=2\left[\frac{-x^{3}}{3}+\frac{3 x^{2}}{2}-2 x\right]_{1}^{2}$

$=2\left[-\frac{8}{3}+4-\frac{7}{6}\right]=\frac{1}{3}$ sq unit
185 (c)
Let A be the n,
$A=\int_{0}^{2}\left(y_{1}-y_{2}\right) d x$

$$
\begin{gathered}
\Rightarrow A=\int_{0}^{2}\left[(x+2)-\left(x^{2}\right)\right] d x=\left[\frac{x^{2}}{2}+2 x-\frac{x^{3}}{3}\right]_{0}^{2} \\
=2+4-\frac{8}{3}=\frac{10}{3}
\end{gathered}
$$

187 (a)
The points of intersection of given curves are $O(0,0)$ and $P(1,1)$.
\therefore Required area $=\int_{0}^{1} x d x-\int_{0}^{1} x^{2} d x$

$=\left[\frac{x^{2}}{2}-\frac{x^{3}}{3}\right]_{0}^{1}=\frac{1}{6}$ sq unit
188 (c)
On solving $y=\sqrt{x}$ or $y^{2}=x,(y \geq 0)$ and $y=x^{3}$

We get points of intersection which are $(0,0)$ and $(1,1)$
\therefore Required area $=\int_{0}^{1}\left(\sqrt{x}-x^{3}\right) d x$
$=\left[\frac{x^{3 / 2}}{3 / 2}-\frac{x^{4}}{4}\right]_{0}^{1}=\frac{5}{12}$ sq unit
189 (a)
According to the given condition,
Area of curve $=\int_{0}^{a} f(x) d x$
$\Rightarrow \frac{a^{2}}{2}+\frac{a}{2} \sin a+\frac{\pi}{2} \cos a$
$=\int_{0}^{a} f(x) d x$
On differentiating both sides w.r.t. a, we get
$a+\frac{1}{2} \sin a+\frac{a}{2} \cos a-\frac{\pi}{2} \sin a=f(a)$
$\Rightarrow f\left(\frac{\pi}{2}\right)=\frac{\pi}{2}+\frac{1}{2} \sin \frac{\pi}{2}+\frac{\pi}{4} \cos \frac{\pi}{2}-\frac{\pi}{2} \sin \frac{\pi}{2}$
$\Rightarrow f\left(\frac{\pi}{2}\right)=\frac{\pi}{2}+\frac{1}{2}-\frac{\pi}{2}$
$\Rightarrow f\left(\frac{\pi}{2}\right)=\frac{1}{2}$
190 (a)
The required area A is given by
$A=\int_{0}^{1}\left(e^{x}-e^{-x}\right) d x=e+\frac{1}{e}$
191 (d)
Since, $|x|=1$
$\therefore x= \pm 1$
$y=x e^{|-x|}=\left\{\begin{array}{c}x e^{-x},-1<x<0 \\ x e^{x}, 0 \leq x<1\end{array}\right.$
\therefore Required area $=\left|\int_{-1}^{0} x e^{-x} d x\right|+\left|\int_{0}^{1} x e^{x} d x\right|$
$=\left|\left\{-x e^{-x}-e^{-x}\right\}_{-1}^{0}\right|+\left|\left\{x e^{x}-e^{x}\right\}_{0}^{1}\right|$
$=2$ sq unit
192 (b)
Required area $=2 \int_{0}^{2} \sqrt{8 x} d x=4 \sqrt{2}\left[\frac{x^{3 / 2}}{3 / 2}\right]_{0}^{2}$

$=4 \sqrt{2}\left[\frac{2 \sqrt{2}}{3 / 2}\right]$
$=\frac{32}{3}$ sq units
193 (c)
We have,
$A_{1}=$ Area bounded by the two curves
$\Rightarrow A_{1}=\int_{0}^{2} \sqrt{6 x} d x+\int_{2}^{4} \sqrt{16-x^{2}} d x$

$$
=\frac{4 \sqrt{3}+16 \pi}{3}
$$

$A_{2}=$ Area bounded by $x^{2}+y^{2}=16$ and outside $y^{2}=6 x$
$\Rightarrow A_{2}=16 \pi-\frac{4 \sqrt{3}+16 \pi}{3}=\frac{32 \pi-4 \sqrt{3}}{3}$
\therefore Required ratio $=A_{1}: A_{2}=4 \pi+\sqrt{3}: 8 \pi-\sqrt{3}$
194 (b)

We have,
$A=\int_{0}^{\pi / 2} \sin x d x=1$
Let A_{1} be the required area. Then,

$$
\begin{array}{rl}
A_{1}=\int_{0}^{\pi / 2} \sin 2 x & d x \Rightarrow A_{1}=-\frac{1}{2}[\cos 2 x]_{0}^{\pi / 2} \\
=-\frac{1}{2}[\cos \pi-1]=1=A
\end{array}
$$

Clearly, $A_{1}=A$
195 (b)
Area of curve $M N B A=\int_{2}^{4}\left(1+\frac{8}{x^{2}}\right) d x$
$=\left[x-\frac{8}{x}\right]_{2}^{-4}=4$

Area of curve $A C D M=\int_{2}^{a}\left(1+\frac{8}{x^{2}}\right) d x$
$=\left[x-\frac{8}{x}\right]_{2}^{a}=a-\frac{8}{a}-[2-4]=a-\frac{8}{a}+2$
Form Eqs. (i) and (ii), we get
$a-\frac{8}{a}+2=\frac{1}{4}(4)$
$\Rightarrow a^{2}-8=0 \quad \Rightarrow a=2 \sqrt{2} \quad[\because a>0]$
196 (a)
Let A denote the required area. Then,

$$
A=\int_{0}^{1}\left(x_{2}-x_{1}\right) d y=\int_{0}^{1}\{(x+1)-(-x+1)\} d x
$$

$$
\Rightarrow A=\int_{0}^{1} 2 x d x=\left[x^{2}\right]_{0}^{1}=1
$$

(d)

Required area $=\int_{0}^{2} y d x$

$=\int_{0}^{2} \frac{x^{2}}{2} d x=\left[\frac{x^{3}}{6}\right]_{0}^{2}=\frac{4}{3}$ sq units
200 (a)
Equation of curve are $y=0$
and $y=4+3 x-x^{2} \ldots$ (ii)
On solving Eqs. (i) and (ii), we get
$x=-1,4$
\therefore Curve does not intersect x-axis between $x=-1$ and $x=4$
\therefore Required area $=\int_{-1}^{4}\left(4+3 x-x^{2}\right) d x$
$=\left[4 x+\frac{3 x^{2}}{2}-\frac{x^{3}}{3}\right]_{-1}^{4}$
$=\left[16+24-\frac{64}{3}+4-\frac{3}{2}-\frac{1}{3}\right]$
$=44-\frac{65}{3}-\frac{3}{2}$
$=\frac{264-130-9}{6}=\frac{125}{6}$ sq unit

The point of intersection of given curves are $(0,0)$ and (1,1).

\therefore Required area $=\int_{0}^{1}\left(\sqrt{x}-x^{3}\right) d x$
$=\left[\frac{x^{3 / 2}}{3 / 2}-\frac{x^{4}}{4}\right]_{0}^{1}$
$=\frac{5}{12}$ sq unit
206
(c)

When $x=\frac{\pi}{4}$

$y=\tan \frac{\pi}{4}=1$
$\frac{d y}{d x}=\sec ^{2} x \quad[\because y=\tan x]$
$\Rightarrow\left[\frac{d y}{d x}\right]_{x=\pi / 4}=2$
Equation of tangent at $P\left(\frac{\pi}{4}, 1\right)$ is
$y-1=2\left(x-\frac{\pi}{4}\right) \Rightarrow y=2 x+1-\frac{\pi}{2}$
It meets x - axis at $T\left(\frac{\pi-2}{4}, 0\right)$
Required area $=\int_{0}^{\pi / 4} \tan x d x-\frac{1}{2} T N \cdot P N$
$=[\log \sec x]_{0}^{\pi / 4}-\frac{1}{2} \cdot \frac{1}{2} \cdot 1$
$\left[\because T N=O N-O T=\frac{\pi}{4}-\frac{\pi-2}{4}=\frac{1}{2}\right]$
$=\log \sqrt{2}-0-\frac{1}{4}=\left(\log \sqrt{2}-\frac{1}{4}\right)$ sq unit
207 (c)
The point of intersection of given curves are $(0,0)$ and $(3,-3)$

\therefore Required area

$$
\begin{aligned}
& \quad \begin{array}{l}
\quad \text { area of curve } O A B \\
\\
\quad \text { area of curve } O C B
\end{array} \\
& =\int_{0}^{2}\left(2 x-x^{2}\right) d x+\left|\int_{0}^{3}(-x) d x\right| \\
& \quad-\left|\int_{2}^{3}\left(2 x-x^{2}\right) d x\right| \\
& = \\
& =\left[x^{2}-\frac{x^{3}}{3}\right]_{0}^{2}+\left|\left[-\frac{x^{2}}{2}\right]_{0}^{3}\right|-\left|\left[x^{2}-\frac{x^{3}}{3}\right]_{2}^{3}\right| \\
& =
\end{aligned}
$$

Alternate

Area $=\int_{0}^{3}\left[\left(2 x-x^{2}\right)-(-x)\right] d x$
$=\int_{0}^{3}\left(3 x-x^{2}\right) d x=\left[\frac{3 x^{2}}{2}-\frac{x^{3}}{3}\right]_{0}^{3}$
$=\frac{27}{2}-\frac{27}{3}=\frac{9}{2}$ sq units
208
(d)

Required area $=2 \int_{0}^{a} \sqrt{4 a x} d x$

$=2.2 \sqrt{a}\left[\frac{x^{3 / 2}}{3 / 2}\right]_{0}^{a}=\frac{8}{3} a^{2}$ sq units
209 (c)
\therefore Required volume
$V=\left|\int_{0}^{1} \pi x^{2} d y\right|$
$=\left|\pi \int_{0}^{1}\left(y^{4}-y\right) d y\right|$
$=\left|\pi\left[\frac{y^{5}}{5}-\frac{y^{2}}{2}\right]_{0}^{1}\right|$
$=\left|\pi\left[\frac{1}{5}-\frac{1}{2}\right]\right|=\frac{3 \pi}{10}$

210 (a)
The points of intersection of given curves and line are

$$
Q\left(\frac{1}{2}, \frac{1}{4}\right) \text { and } R\left(\frac{-1}{2}, \frac{1}{4}\right)
$$

Required area $=2 \int_{0}^{1 / 2}\left\{(x-1)^{2}-\frac{1}{4}\right\} d x$
$=2\left\{\frac{(x-1)^{3}}{3}-\frac{1}{4} x\right\}_{0}^{1 / 2}$
$=2\left\{\frac{(-1 / 2)^{3}}{3}-\frac{1}{8}-\left(-\frac{1}{3}-0\right)\right\}$
$=\frac{1}{3}$ sq unit
(b)

$$
\begin{aligned}
& \text { Required area }=\int_{0}^{\pi / 4}\left(\sqrt{\frac{1+\sin x}{\cos x}}\right. \\
& \left.-\sqrt{\frac{1-\sin x}{\cos x}}\right) d x \\
& \because\left[\frac{1+\sin x}{\cos x}>\frac{1-\sin x}{\cos x}>0\right] \\
& =\int_{0}^{\pi / 4}\left(\sqrt{\frac{1+\frac{2 \tan \frac{x}{2}}{1+\tan ^{2} \frac{x}{2}}}{\frac{1-\tan ^{2} \frac{x}{2}}{1+\tan ^{2} \frac{x}{2}}}-\sqrt{\left.\frac{1-\frac{2 \tan ^{\frac{x}{2}}}{1+\tan ^{2} \frac{x}{2}}}{\frac{1-\tan ^{2} \frac{x}{2}}{1+\tan ^{2} \frac{x}{2}}}\right)} \text {) }} \begin{array}{r}
=\int_{0}^{\pi / 4} \frac{1+\tan \frac{x}{2}-1+\tan \frac{x}{2}}{\sqrt{1-\tan ^{2} \frac{x}{2}} d x} \\
=\int_{0}^{\pi / 4} \frac{2 \tan \frac{x}{2}}{\sqrt{1-\tan 2}} d x
\end{array} d x\right.
\end{aligned}
$$

put $\tan \frac{x}{2}=t \Rightarrow \frac{1}{2} \sec ^{2} \frac{x}{2} d x=d t$
\therefore Required area $=\int_{0}^{\tan \frac{\pi}{8}} \frac{4 t d t}{\left(1+t^{2}\right) \sqrt{1-t^{2}}}$
$=\int_{0}^{\sqrt{2}-1} \frac{4 t}{\left(1+t^{2}\right) \sqrt{1-t^{2}}} d t$
$\left[\because \tan \frac{\pi}{8}=\sqrt{2}-1\right]$
214 (d)
Required area $=2$ area of curve $P S R Q P$

$=2 \int_{a}^{4 a} \sqrt{4 a x} d x=4 \sqrt{a}\left[\frac{x^{3 / 2}}{3 / 2}\right]_{a}^{4 a}$
$=\frac{8}{3} \sqrt{a}\left(8 a^{\frac{3}{2}}-a^{\frac{3}{2}}\right)=\frac{56 a^{2}}{3}$ squnits
215 (c)
$f(x)=\min \{x+1, \sqrt{(1-x)}\}$
$=\left\{\begin{array}{l}x+1,-1 \leq x<0 \\ \sqrt{1-x}, 0<x \leq 1\end{array}\right.$
\therefore Required area
$=\left|\int_{-1}^{0}(x+1) d x\right|+\left|\int_{0}^{1} \sqrt{(1-x)} d x\right|$
$=7 / 6$ sq unit
217 (c)
Given equation of curves are
$x^{2}+y^{2}=16 a^{2}$ and $y^{2}=6 a x$

The point of intersection are $x=2 a, y= \pm 2 \sqrt{3} a$

\therefore Required area,
$A=2$ area of curve APOP
$=2$ [area of curve $O M P O$ +area of curve $M A P M$]
$=2\left[\int_{0}^{2 a} \sqrt{6 a} \sqrt{x} d x\right]+2\left[\int_{2 a}^{4 a} \sqrt{(4 a)^{2}-x^{2}} d x\right]$
$=2 \cdot \frac{2}{3} \sqrt{6 a}\left[x^{3 / 2}\right]_{0}^{2 a}$

$$
+2\left[\frac{x}{2} \sqrt{(4 a)^{2}-x^{2}}\right.
$$

$$
\left.+\frac{1}{2}(4 a)^{2} \sin ^{-1} \frac{x}{4 a}\right]_{2 a}^{4 a}
$$

$=\frac{4}{3} \sqrt{6 a}(2 a)^{3 / 2}$

$$
+2[(0-2 a \sqrt{3 a})
$$

$$
\left.+8 a^{2}\left(\sin ^{-1} 1-\sin ^{-1} \frac{1}{2}\right)\right]
$$

$=\frac{16}{3} \sqrt{3} a^{2}-4 \sqrt{3} a^{2}+16 a^{2} \frac{\pi}{3}$
$\Rightarrow A=\frac{4 \sqrt{3} a^{2}}{3}+\frac{16 \pi a^{2}}{3}$
$=\frac{4 a^{2}}{3}(4 \pi+\sqrt{3})$ sq unit
218 (d)
Required area $=2 \int_{0}^{2}\left(3 \sqrt{y}-\frac{\sqrt{y}}{2}\right) d y$
$=2 \int_{0}^{2}\left(\frac{5 \sqrt{y}}{2}\right) d y=5\left(y^{3 / 2}\right)_{0}^{2} \frac{2}{3}$
$=\frac{10}{3}(\sqrt{8}-0)$
$=\frac{20 \sqrt{2}}{3}$ sq units

219 (a)
According to the given condition
$\int_{a}^{b} f(x) d x=c$

On differentiating w.r.t. b, we get
$f(b)=0 \Rightarrow f(x)=0$
220 (c)
Required area $=2\left[\int_{0}^{4} \sqrt{\left.(25)-x^{2}\right)} d x\right.$

$$
\left.-\int_{0}^{2} \frac{4-x^{2}}{4} d x-\int_{2}^{4} \frac{x^{2}-4}{4} d x\right]
$$

$$
\begin{aligned}
& =2\left[\left[\frac{x}{2} \sqrt{25-x^{2}}+\frac{25}{2} \sin ^{-1} \frac{x}{5}\right]_{0}^{4}-\frac{1}{4}\left[4 x-\frac{x^{3}}{3}\right]_{0}^{2}\right. \\
& \left.-\frac{1}{4}\left[\frac{x^{3}}{3}-4 x\right]_{2}^{4}\right] \\
& =2\left[\left[2 \times 3+\frac{25}{5} \sin ^{-1}\left(\frac{4}{5}\right)-\frac{1}{4}\left(\frac{64}{3}-16\right)\right.\right. \\
& \left.\left.+\frac{1}{4}\left(\frac{8}{3}-8\right)\right]\right]=4+\sin ^{-1}\left(\frac{4}{5}\right)
\end{aligned}
$$

221 (b)

Required area $=\left|\int_{0}^{1}\left(3 y^{2}-9\right) d y\right|$
$=\left|\left[y^{3}-9 y\right]_{0}^{1}\right|$
$=|1-9|=8$ sq unit
222 (d)
Let A be the required area. Then,
$A=\int_{-1}^{3}\left(x_{2}-x_{1}\right) d y=\int_{-1}^{3}\left\{(y+1)-\left(\frac{y^{2}-1}{2}\right)\right\} d y$
$\Rightarrow A=\frac{1}{2} \int_{-1}^{3}\left(2 y+3-y^{2}\right) d y$

$$
=\frac{1}{2}\left[y^{2}+3 y-\frac{y^{3}}{3}\right]_{-1}^{3}
$$

$\Rightarrow A=\frac{1}{2}\left[(9+9-9)-\left(1-3+\frac{1}{3}\right)\right]=\frac{1}{2}\left[9+\frac{5}{3}\right]$

$$
=\frac{16}{3}
$$

224 (c)
Required area $=2 \int_{0}^{\pi} \sin x d x$

$=2[-\cos x]_{0}^{\pi}=2[1+1]=4$ sq units
225 (a)
The point of intersection of given curves are $(0,0)$ and ($4 a, 4 a$).
Required area $=\int_{0}^{4 a}\left(2 \sqrt{a} \sqrt{x}-\frac{x^{2}}{4 a}\right) d x$
$=\left[2 \sqrt{a} \cdot \frac{x^{3 / 2}}{3 / 2}-\frac{x^{3}}{12 a}\right]_{0}^{4 a}$

$=\frac{32 a^{2}}{3}-\frac{16 a^{2}}{3}$
$=\frac{16 a^{2}}{3}$ sq units
(d)

Required area $=\int_{1}^{5} x d y=\int_{1}^{5} \sqrt{y-1} d x$

$=\left[\frac{(y-1)^{3 / 2}}{3 / 2}\right]_{1}^{5}=\frac{2}{3}\left[(4)^{\frac{3}{2}}-0\right]$
$=\frac{16}{3}$ sq units
227
(c)

The figure of the given curve $y=\frac{a^{3}}{a^{2}+x^{2}}$ is
\therefore Required volume
$V=2 \int_{0}^{\infty} \pi y^{2} d x$
$=2 \pi a^{6} \int_{0}^{\infty} \frac{1}{\left(a^{2}+x^{2}\right)^{2}} d x$

Put $x=a \tan \theta$
$\Rightarrow d x=a \sec ^{2} \theta d \theta$
$\therefore V=2 \pi a^{6} \int_{0}^{\pi / 2} \frac{a \sec ^{2} \theta}{\left(a^{2}+a^{2} \tan ^{2} \theta\right)^{2}} d \theta$
$=\frac{2 \pi a^{6}}{a^{3}} \int_{0}^{\pi / 2} \cos ^{2} \theta d \theta=2 \pi a^{3}\left[\frac{1}{2} \cdot \frac{\pi}{2}\right]$

$$
=\frac{\pi^{2} a^{3}}{2} \text { cu units }
$$

228 (c)
Required area $=\int_{0}^{2} x d x=\left[\frac{x^{2}}{2}\right]_{0}^{2}=2$ sq units

229 (d)
Given curves are
$y^{2}=2 x+1$
and $x-y=1$

Points of intersection are $A(0,-1)$ and $B(4,3)$
Area $=\int_{-1}^{3}(1+y) d y-\int_{-1}^{3}\left(\frac{y^{2}-1}{2}\right) d y$
$=\left[y+\frac{y^{2}}{2}\right]_{1}^{3}-\left[\frac{1}{2}\left(\frac{y^{3}}{3}-y\right)\right]_{-1}^{3}$
$=\left[3+\frac{9}{2}-\left(-1+\frac{1}{2}\right)\right]-\frac{1}{2}\left[9-3-\left(-\frac{1}{3}+1\right)\right]$
$=8-\frac{8}{3}=\frac{16}{3}$
(b)

Given, curves are $y^{2}=8 x \quad \Rightarrow y=\sqrt{8 x}$
and $x^{2}=8 y \Rightarrow y=\frac{x^{2}}{8}$

The points of intersection of two curves are $(0,0),(8,8)$
Now, required area $=\int_{0}^{8}\left(\sqrt{8 x}-\frac{x^{2}}{8}\right) d x$
$=\left[\frac{\sqrt{8} x^{3 / 2}}{3 / 2}-\frac{x^{3}}{8.3}\right]_{0}^{8}$
$=\frac{64}{3}$ sq units.
232 (a)
Intersection point of given curves is $(1,1)$

\therefore Area $=\int_{0}^{1}\left(x^{2}-x^{3}\right) d x$
$=\left[\frac{x^{3}}{3}-\frac{x^{4}}{4}\right]_{0}^{1}$
$=\frac{1}{12}$ sq unit
233 (b)
The required area A is given by

$$
A=\int_{0}^{\pi / 4}(\cos x-\sin x) d x=\sqrt{2}-1
$$

234 (b)
Required area $=\int_{\sqrt{3}}^{3}(2-12-x) d x-\int_{\sqrt{3}}^{3} \frac{3}{|x|} d x$
$=\int_{\sqrt{3}}^{2} x d x+\int_{2}^{3}(4-x) d x-\int_{\sqrt{3}}^{3} \frac{3}{x} d x$
$=\left[\frac{x^{2}}{2}\right]_{\sqrt{3}}^{2}+\left[4 x-\frac{x^{2}}{2}\right]_{2}^{3}-[3 \log x]_{\sqrt{3}}^{3}$

$=\frac{1}{2}[4-3]+\left[12-\frac{9}{2}-(8-2)\right]$
$-3[\log 3-\log \sqrt{3}]$
$=\frac{1}{2}+\frac{3}{2}-3 \log \frac{3}{\sqrt{3}}=\frac{4}{2}-\frac{3}{2} \log 3$
$=\frac{4-3 \log 3}{2}$ sq unit

235 (a)
Let A denote the required area. Then,

$$
\begin{gathered}
A=\int_{0}^{\pi / 4}(\cos x-\sin x) d x+\int_{\pi / 4}^{\pi / 2}(\sin x-\cos x) d x \\
=2(\sqrt{2}-1)
\end{gathered}
$$

236 (d)
Required area $=\int_{0}^{1}\left(x e^{x}-x e^{-x}\right) d x$
$=\left[x e^{x}-e^{x}+x e^{-x}+e^{-x}\right]_{0}^{1}$
$=e-e+\frac{1}{e}+\frac{1}{e}=\frac{2}{e}$ sq unit

