

8.APPLICATION OF INTEGRALS

Single Correct Answer Type

1.	Area bounded by the curv $x = 3$ is equal to	y = (x - 1)(x - 2)(x - 1)(x - 2)(x - 1)(x	3) and <i>x</i> -axis lying between	n the ordinates $x = 0$ and
	a) 9/4	b) 11/4	c) 11/2	d) 7/4
2.		unded by the curves $y = e^{-1}$	$x, y = \log_e x$ and lines	
		-	c) $e^2 - e + 1 - 2\log_e 2$	-
3.	The value of <i>k</i> for which t	he area of the figure bound	ded by the curve $y = 8 x^2$ -	- x^5 , the straight line $x = 1$
	and $x = k$ and the <i>x</i> -axis	is equal to 16/3		
	a) 2	b) $\sqrt[3]{8 - \sqrt{17}}$	c) 3	d) —1
4.			dinates $x = -1$ to $x = 2$, is	
_	a) 0 sq unit	b) 1/2 sq unit		d) 5/2 sq unit
5.	-	_	the curves $2x = y^2 - 1$ and	
_	5	3	c) 1 sq unit	d) 2 sq units
6.		curve $y = 4x - x^2$ and the		24
	/	/	c) $\frac{32}{3}$ sq. units	5
7.		enerated by revolving the i	region bounded by $y = x^2 \cdot x^2$	+ 1 and $y = 2x + 1$ about x -
	axis is	40	50	
	10	b) $\frac{42\pi}{15}$ cu units	10	d) None of these
8.	The area bounded by the	curves $ x + y \ge 1$ and x	$x^{2} + y^{2} \le 1$ is	
	a) 2 sq unit		c) $(\pi - 2)$ sq unit	d) $(\pi + 2)$ sq unit
9.	The area bounded by the		2-	
	$y = \cos x$ and $y = \sin x$	between the ordinance $x =$	$x = 0 \text{ and } x = \frac{3\pi}{2} \text{ is}$	
4.0			c) $\left(4\sqrt{2}-1\right)$ sq units	
10.		$y = \left[\frac{x^2}{64} + 2\right], y = x - 1$	and $x = 0$ above <i>x</i> -axis is	([.] denotes the greatest
	integer function)	h) 2 an		d) Novo of these
11	a) 2 sq unit	b) 3 sq unit curve $y^2 = 8x$ and $x^2 = 8y$	•) • • •] ••	d) None of these
11.				3
	a) $\frac{16}{3}$ sq. units	b) $\frac{3}{16}$ sq. units	c) $\frac{1}{3}$ sq. units	d) $\frac{3}{14}$ sq. units
12.	The area enclosed betwee	en the curve $y = \log_e(x + e)$	e)and the coordinate axis is	5
	a) 4 sq units	b) 3 sq units	c) 2 sq units	d) 1 sq unit
13.			x is $a^2/3$, then the value of	
	a) 2	b) -2	c) 1/2	d) 1
14.		anded by the curves $y = x $		1) 4
1 Г	a) 2	b) 3	c) 4	d) 1
15.	The area bounded by the $(\mathbf{F}_{\mathbf{T}})$	curves $y = \sqrt{5 - x^2}$ and y	= x - 1 is	
		•	c) $\frac{(5\pi-2)}{2}$ sq units	d) $\left(\frac{\pi}{2} - 5\right)$ sq units
16.		$y = x y^2 = a^2(a - x)$ and y-		
. –	a) $\pi a^2/2$	b) πa^2	c) $3 \pi a^2$	d) $2\pi a^2$
17.	The area of the ellipse $\frac{x^2}{a^2}$	$+\frac{y^2}{b^2}=1$, is		
	u	-		

		π		
	a) <i>π ab</i>	b) $\frac{\pi}{4}(a^2 + b^2)$	c) $\pi (a + b)$	d) $\pi a^2 b^2$
18.	The area bounded by the			
	a) $\frac{\pi^{15} \times 3! \times 4!}{15!}$ sq unit	b) $\frac{\pi^6 \times 6! \times 8!}{15!}$ sq unit	c) $\frac{\pi^{15} \times 6! \times 8!}{15!}$ sq unit	d) $\frac{\pi^8 \times 6! \times 8!}{15!}$ sq unit
19.		= 9 in between $y = 0$ and	y = 2 is revolved about <i>y</i> -	axis. The volume of
	generating solid will be			
	a) $\frac{1}{3}\pi$ cu units	b) 12 π cu jnits	c) 16 π cu units	d) 28 π cu units
20.	The area of the region by	curves $y = x \log x$ and $y = x \log x$	$= 2x - 2x^2$ is	d) News of these
	a) $\frac{1}{2}$ sq units	b) $\frac{3}{12}$ sq units	c) $\frac{7}{12}$ sq units	d) None of these
21.			$x + 12 \le 0, y \le x \text{ and } x \le 5$	5/2 is
	a) $\frac{\pi}{2} - \frac{\sqrt{3} + 1}{\sqrt{3} + 1}$	b) $\frac{\pi}{6} + \frac{\sqrt{3} + 1}{8}$	c) $\frac{\pi}{2} - \frac{\sqrt{3} - 1}{\sqrt{3} - 1}$	d) None of these
22	0 0	0 0	6 8	
<i>LL</i> .	Area bounded by the curv $y = \log_e x, x = 0, y \le 0$ a			
	a) 1 sq unit		c) 2 sq unit	d) None of these
23.		y = x - 1 , y = 0 and	-	,
	a) 4	b) 5	c) 3	d) 6
24.			nd $x^2 = 4y$ is (in square ur	
05	a) 4/3	b) 1/3	c) 16/3	d) 8/3
25.	a) 2 sq units	ed by the curves $y = x - x $ b) 3 sq units		d) 6 sq units
26	· ·		the ordinates $x = 1, x = 2$	
20.		10	2	d) $\frac{7}{2}$
	a) $\frac{17}{12}$	15	c) $\frac{2}{7}$	Z
27.			axis and the lines $x = -2$ a	nd $x = 3$ is([.] denotes the
	greatest integer function)		a) 21 ca unit	d) 29 ca unit
28	a) 7 sq unit	<i>,</i> 1	c) 21 sq unit	d) 28 sq unit
20.		$y^2 = 16x$ and line $y = n$	3	1) 2
29	a) 3 The area enclosed by	b) 4	c) 1	d) 2
<i>L</i>).	y = 3x - 5, y = 0, x = 3a	and $x = 5$ is		
	a) 12 sq units	b) 13 sq unit	c) $13\frac{1}{2}$ sq unit	d) 14 sq unit
			2	
30.	a) 1	unded by the curves $y = x $ b) 2	x - 2 , x = 1, x = 3 and the c) 3	<i>x</i> -axis is d) 4
31		circle $x^2 + y^2 = 64$ and the		u) 4
011		b) $\frac{16}{3}(8\pi - \sqrt{3})$ sq unit		d) None of these
32	5	5	and $y = \cos 2x$ and x -axis	
52.	a) 1 : 2	b) $2:1$	c) $\sqrt{3}:1$	d) None of these
33.	The slope of tangent to a	curve $y = f(x)$ at $(x, f(x))$	is $2x + 1$. If the curve pass	ses through the point (1, 2),
	_	n bounded by the curve, th	e <i>x</i> -axis and the line $x = 1$	
	a)	b) $\frac{6}{5}$ sq unit	c) $\frac{1}{6}$ sq unit	d) 6 sq unit
34.	The area bounded by the	curves $y = x - 1$ and $y =$	= - x + 1 is	
	a) 1 sq unit	b) 2 sq unit	c) $2\sqrt{2}$ sq unit	d) 4 sq unit
35.		bounded by $ y = -x + $		
26	a) 1 sq unit	b) 2 sq unit by the sum $a_{m} = 1$ we avia	c) 3 sq unit	d) None of these -2 and 4 is the area
36.		by the curve $xy = 1$, x-axis = 1, x-axis and the ordinat	and the ordinates $x = 1, x$ res $r = 2, r = 4$ then	$= 2$; and A_2 is the area
	chelosed by the curve xy		$\lambda = \lambda, \lambda = \tau, $ then	

a) $A_1 = 2 A_2$ b) $A_2 = 2 A_1$ c) $A_2 = 3 A_1$ d) $A_1 = A_2$ 37. The area of the region bounded by the parabola $(y - 2)^2 = x - 1$, the tangent to the parabola at the point (2,3) and the *x*-axis is a) 6 sq units b) 9 sq units c) 12 sq units d) 3 sq units 38. The area of the region $\{(x, y): x^2 + y^2 \le 1 \le x + y\}$, is b) $\frac{\pi}{4}$ a) $\frac{\pi}{5}$ c) $\frac{\pi^2}{2}$ d) $\frac{\pi}{4} - \frac{1}{2}$ 39. The length of the parabola $y^2 = 12x$ cut off by the latusretum is c) $6[\sqrt{2} - \log(1 + \sqrt{2})]$ d) $3[\sqrt{2} - \log(1 + \sqrt{2})]$ a) $6[\sqrt{2} + \log(1 + \sqrt{2})]$ b) $3[\sqrt{2} + \log(1 + \sqrt{2})]$ 40. The area bounded by $y = \sin^{-1} x = \frac{1}{\sqrt{2}}$ and *x*-axis is a) $\left(\frac{1}{\sqrt{2}} + 1\right)$ sq unit b) $\left(1-\frac{1}{\sqrt{2}}\right)$ sq unit d) $\left(\frac{\pi}{4\sqrt{2}} + \frac{1}{\sqrt{2}} - 1\right)$ sq unit c) $\frac{\pi}{4\sqrt{2}}$ sq unit 41. The area of the smaller segment cut off from the circle $x^2 + y^2 = 9$ by x = 1 is a) $\frac{1}{2}(9 \sec^{-1} 3 - \sqrt{8})$ sq unit b) $(9 \sec^{-1}(3) - \sqrt{8})$ sq unit d) None of these c) $(\sqrt{8} - 9 \sec^{-1} 3)$ sq unit 42. The area of the region bounded by $1 - y^2 = |x|$ and |x| + |y| = 1 is a) 1/3 sq unitb) 2/3 sq unit c) 4/3 sq unit d) 1 sq unit 43. The area between the parabola $y^2 = 4ax$ and the line y = mx in square units is b) $\frac{8a^2}{3m^3}$ a) $\frac{5a^2}{3m}$ c) $\frac{7a^2}{4m^2}$ d) $\frac{3a^2}{5m}$ 44. The area bounded by the curves $y = \sin x$ between the ordinates x = 0, $x = \pi$ and the *x*-axis, is b) 4 sq. units a) 2 sq. units c) 3 sq. units d) 1 sq. units 45. The area bounded by $|x - 1| \le 2$ and $x^2 - y^2 = 1$, is a) $6\sqrt{2} + \frac{1}{2}\log|3 + 2\sqrt{2}|$ b) $6\sqrt{2} + \frac{1}{2}\log|3 - 2\sqrt{2}|$ c) $6\sqrt{2} - \log|3 + 2\sqrt{2}|$ d) None of these 46. The area bounded by $y = \log x$, *x*-axis and ordinates x = 1, x = 2 is a) $\frac{1}{2}(\log 2)^2$ b) log(2/e) c) $\log(4/e)$ d) $\log 4$ 47. The area bounded by $y = x^2 + 1$ and the tangents to it drawn from the origin, is b) 1/3 sq. units c) 2/3 sq. units d) None of these a) 8/3 sq. units 48. The area bounded by the *x*-axis, the curve y = f(x) and the lines x = 1 and x = b is equal to $(\sqrt{b^2 + 1}) - b$ $\sqrt{2}$) for all b > 1, then f(x) is d) $\frac{x}{\sqrt{1+x^2}}$ a) $\sqrt{(x-1)}$ b) $\sqrt{(x+1)}$ c) $\sqrt{(x^2+1)}$ 49. The area enclosed between the curves $y = \sin^2 x$ and $y = \cos^2 x$ in the interval $0 \le x \le \pi$ is c) 1 sq unit a) 2 sq unit b) $\frac{1}{2}$ sq unit d) None of these 50. The area bounded by $y = \sin^{-1}x$, $x = \frac{1}{\sqrt{2}}$ and *x*-axis is a) $\left(\frac{1}{\sqrt{2}} + 1\right)$ sq units b) $\left(1 - \frac{1}{\sqrt{2}}\right)$ sq uints d) $\left(\frac{\pi}{4\sqrt{2}} + \frac{1}{\sqrt{2}} - 1\right)$ sq units c) $\frac{\pi}{4\sqrt{2}}$ sq units 51. The area between the curves $x = -2y^2$ and $x = 1 - 3y^2$, is b) 3/4 d) 2/3 a) 4/3 c) 3/2 The area of the region bounded by y = |x - 1| and y = 3 - |x|, is 52. a) 2 b) 3 c) 4 d) 1

53.	The area bounded by $y =$	= [x] and the two ordinates	x = 1 and $x = 1.7$ is	
	a) $\frac{17}{10}$	b) 1	c) $\frac{17}{5}$	d) $\frac{7}{10}$
54.	20	osed by circle $x^2 + y^2 = 1$	6 in two portions A_1 and A_2	$_{2}(A_{1} > A_{2})$, then $\frac{A_{1}}{A_{2}}$ is
	a) 4	b) 3	c) 2	d) None of these
55.	The area enclosed by the	curve $\frac{x^2}{25} + \frac{y^2}{16} = 1$ is		
	a) 10π sq unit	, ,	c) 5π sq unit	d) 4π sq unit
56.		unded by the curve $ y = 1$		d) F /2
57.	a) 2/3 The area enclosed within	b) $4/3$ the curve $ x + y = 1$ is	c) 8/3	d) -5/3
071	a) 1 sq unit	b) $2\sqrt{2}$ sq units	c) $\sqrt{2}$ sq units	d) 2 sq units
58.	The area bounded by the	parabola $y^2 = 4ax$ and x^2	-	
	a) $\frac{8a^3}{2}$	b) $\frac{16a^2}{3}$	c) $\frac{32a^2}{2}$	d) $\frac{64a^2}{2}$
59.	3	5	$x = ay^2 (a > 0)$ is 1 sq uni	3
	a) $\frac{1}{\sqrt{3}}$	b) $\frac{1}{2}$	c) 1	d) $\frac{1}{2}$
	٧J	Z	-	$\frac{1}{3}$
60.	The area bounded by the a) 1/2 sq units	curves $y = x^3$ and $y = x$ is b) 1/4 sq units		d) 1/16 sq units
61.	, ,		and the line $y = 2x - 4$ is eq	,, ,
	a) $\frac{17}{2}$ sq units	10	c) 9 sq units	d) 15 sq units
62	3	5	$x^3, y = x^2$ and the ordinat	tos x - 1 x - 2 is
02.	a) 17/12	b) 12/13		d) $7/2$
63.		curve $y = \sin^2 x$ and lines	, ,	5 1
	a) $\frac{\pi}{2}$ sq unit	b) $\frac{\pi}{4}$ sq unit		d) None of these
64.		gle whose two vertices lies	on the <i>x</i> -axis and two on the	the curve $y = 3 - x , \forall x < $
	3, is a) 9 sq unit	b) ⁹ / ₄ sq unit	c) 3 sq unit	d) None of these
65		$y = x \sin x$ and x-axis v		
05.	a) 2π	b) 3π	c) 4π	d) π
66.		parabola $y = 2x^2$ and $y =$		
	a) $\frac{2}{3}$ sq. units	b) $\frac{3}{2}$ sq. units	c) $\frac{32}{3}$ sq. units	d) $\frac{3}{32}$ sq. units
67.	If a curve $y = a\sqrt{x} + bx$	passes through the point (1	, 2) and the area bounded	by the curves, line $x = 4$ and
	x-axis is 8 sq unit, then $x = 2$	b b b b b b b b b b	- $ -$	d = 2k + 1
68.			c) $a = -3, b = 1$ $y = 2^{kx}$ and $x = 0$ and 2 is	
001	$\frac{3}{\log 2}$ then the value of k			
	-			
69	a) 1/2	b) 1	c) -1	d) 2
09.	~	en the curves $y = \frac{1}{x^2 + 1}$ and		d) None of these
70	a) $\frac{n}{2}$ sq unit		c) 2π sq unit	d) None of these
70.	a) 8/3	en the parabola $y = x^2 - x^2$ b) 1/3	x + 2 and the line $y = x + 2c) 2/3$	d) 4/3
71.		$x \le 2, y \le x $ and $x \ge 0$ is		·) - -
	a) 1 sq unit	b) 4 sq unit		d) None of these
72.	The area bounded by the	curves $y = \sqrt{x}$, $2y + 3 = x$	and <i>x</i> -axis in the first quad	drant is

	a) 9	b) 27/4	c) 36	d) 18
73.	Area enclosed by the curv	ve		
	$\pi[4(\mathbf{x}-\sqrt{2})^2+y^2]=8$	is		
	a) π sq units	b) 2 sq units	c) 3π sq units	d) 4 sq units
74.	The area in square units		the curve $x^2 = 4y$, the line x	x = 2 and the <i>x</i> -axis, is
	a) 1	b) 2/3	c) 4/3	d) 8/3
75.			re region bounded by the lin	
		S_3 are respectively the area	as of these parts numbered	from top to bottom, then
	<i>S</i> ₁ : <i>S</i> ₂ : <i>S</i> ₃ is a) 1:1:1	b) 2:1:2	c) 1:2:3	d) 1:2:1
76.	-	,	$= mx$ is $\frac{2}{3}$, then m is equal to	,
	a) 3	b) 4	c) 1	d) 2
77.		,	2	x^5 , the straight lines $x = 1$
	and $x = c$ and the <i>x</i> -axis		$\int du = \int du = du = du$	λ , the straight lines $\lambda = 1$
	a) 2	5	c) 3	
	a) 2	b) $\sqrt{8 - \sqrt{17}}$	CJ 5	d) -1
78.	The area bounded by $y =$	$x^{2} = 2 - x^{2}$ and $x + y = 0$ is		
	a) $\frac{7}{2}$ sq. units	b) $\frac{9}{2}$ sq. units	c) 9 sq. units	d) None of these
70	<u>L</u>	<u>L</u>		
79.		curve $x = a \cos^3 t$, $y = a$	2	
	a) $\frac{3\pi a^2}{8}$	b) $\frac{3\pi a^2}{16}$	c) $\frac{3\pi a^2}{32}$	d) 3πa ²
80.	Area bounded by the par	abola $x^2 = 4y$ and the line	x = 4y - 2, is	
	a) 9/8	b) 9/4	c) 9/2	d) 9/7
81.			ed by the curves $y = \sin x$,	
	a) $(\sqrt{2} - 1)$ sq unit	b) 1 sq unit	c) $\sqrt{2}$ sq unit	d) $(1 + \sqrt{2})$ sq unit
82.		unded by the curve $y = 2x$		
02	a) 1/2 The area bounded by the	b) $1/3$	c) $1/4$	d) 1/6
83.	a) $\log(16/e)$	curves $y = e^x$, $y = e^{-x}$ and b) $\log(4/e)$	a y = 2, 1S c) $2 \log(4/e)$	d) $\log(8/e)$
84.				, ., ,
			where $[\cdot]$ denotes greatest in	
	a) 1 sq unit	b) $\frac{1}{3}$ sq unit	5	d) $\frac{4}{3}$ sq unit
85.			the curves $y^2 = 4ax$ and y	
	a) 1	b) 2	c) 3	d) √3
86.	The area bounded by $y =$	$= 2 - 2 - x $ and $y = \frac{3}{ x }$ is		
	a) $\frac{4+3\ln 3}{2}$	b) $\frac{4-3\ln 3}{2}$	$\frac{3}{-\ln 3}$	d) $\frac{1}{2}$ + ln 3
07	4	<u>L</u>	L	2
87.	a) 9 π sq units	unded by the curve $9x^2 + 4$ b) 4π sq units	$4y^2 - 36 = 0.1s$ c) 36π sq units	d) 6 π sq unit
88.	2		$x + 2y^2 = 0$ and $x + 3y^2 = 0$	-
00.				
	5	5	c) $\frac{1}{3}$ sq units	a) $\frac{1}{3}$ sq units
89.	4	en curves $y = x^2 - 3x + 2$		
	a) $\frac{1}{6}$ sq unit	b) $\frac{1}{2}$ sq unit	c) 1 sq unit	d) $\frac{1}{3}$ sq unit
90.	The area bounded by the	curve $y^2 = x$ and the ordin	hate $x = 36$ is divided in the	e ratio 1 : 7 by the ordinate
	x = a. Then $a =$		<u>.</u> –	
01	a) 8	b) 9 addee the sum $\omega^2 = 4\omega$	c) 7 $\frac{1}{2}$	d) 0
91.	Area of the region bound	ed by the curve $y^2 = 4x$, y-	axis and the line $y = 3$ is	

	a) 2 sq. units	b) 9/4 sq. units	c) $6\sqrt{3}$ sq. units	d) None of these	
92.	The area bounded by the		s inverse function between	the ordinates $x = 0$ and	
	$x = 2\pi$, is				
	a) 8π sq unit	b) 4π sq unit	c) 8 sq unit	d) None of these	
93.	The area of the region bo	unded by $y = 2x - x^2$ and	the <i>x</i> -axis is		
	a) $\frac{8}{3}$ sq units	b) $\frac{4}{3}$ sq units	$(c) = \frac{7}{50}$	d) $\frac{2}{3}$ sq units	
0.4	5	5	5	5	
94.	a) $\pi/4$	b) $1 + \pi/4$	$x^{2} x, x = 0, y = 0 \text{ and } x = \pi$ c) 1	d) 2	
95			etween $x = 0$ and $x = 2\pi$ is	,	
<i>y</i> ₀ .	a) 2π sq unit	b) 3π sq unit	c) 4π sq unit		
96.	The line $y = mx$ bisects t				
	x^2 . The value of <i>m</i> , is			, , , , , , , , , , , , , , , , , , ,	
	a) 13/8	b) 13/32	c) 13/16	d) 13/4	
97.	Area lying between the c	urves $y^2 = 4x$ and $y = 2x$	is equal to		
	a) 2/3	b) 1/3	c) 1/4	d) 1/2	
98.	The area contained betwe	een the <i>x</i> -axis and one arc	of the curve $y = \cos 3x$, is		
	a) 1/3	b) 2/3	c) 2/7	d) 2/5	
99.	The area bounded by the	curve $y = \sec x$, the <i>x</i> -axis	and the lines $x = 0$ and $x = 0$	$=\pi/4$, is	
	a) $\log(\sqrt{2}+1)$	b) $\log(\sqrt{2} - 1)$	c) $\frac{1}{2}\log 2$	d) √2	
100			$x^{2} + 1$ and the straight line	x + y = 3 is given by	
	a) $\frac{45}{7}$	b) $\frac{25}{4}$	c) $\frac{\pi}{18}$	d) $\frac{9}{2}$	
	/	4	10	$\frac{d}{2}$	
101		<i>x</i> -axis and the curve $y = 4$			
	a) 4/3	b) 3/4	c) 7	d) 3/2	
102	The area bounded by the $\frac{2}{3}$				
	$y^2 = 4a^2(x-1)$ and line		16~2	d) None of these	
	a) $4a^2$ sq units	b) $\frac{10a}{3}$ sq units	c) $\frac{16a^2}{3}$ sq units	u) None of these	
103	. The area between the cur				
	$y = xe^x$ and $y = xe^{-x}$ and	nd line $x = 1$, in square uni	t, is		
	a) $2\left(e+\frac{1}{a}\right)$ sq units	b) 0 sq unit	c) 2 <i>e</i> sq units	d) $\frac{2}{2}$ sq unit	
104	(6)			e	
104		bounded by the curves 4 b) 6	$y = x^2$ and $2y = 6 - x^2$ is c) 4	d) 10	
105	a) 8 The area (in square unit)	2	$= 4x$ and $x^2 = 4y$ in the pl	5	
105					
	a) $\frac{8}{3}$	b) $\frac{16}{3}$	c) $\frac{32}{3}$	d) $\frac{64}{3}$	
106	. The positive value of the	parameter ' a ' for which the	e area of the figure bounde	d by $y = \sin a x, y = 0, x =$	
	πa and $x = \pi 3a$ is 3, is equ	ial to			
	a) 2	1) 1 / 2	c) $\frac{2+\sqrt{3}}{2}$	1) 2 /2	
		b) 1/2	$\frac{c}{3}$	d) 3/2	
107	. Area bounded by the curv	ves $y = x^2$ and $y = 2 - x^2$	is		
	a) 8/3 sq units	b) 3/8 sq units	c) 3/2 sq units	d) None of these	
108	-	-	e area of the figure founded	by $y = \sin ax$, $y = 0$, $x =$	
	π/a and $x=\pi/3a$ is 3, is e	qual to	<u> </u>		
	a) 2	b) 1/2	c) $\frac{2+\sqrt{3}}{3}$	d) √3	
100	The gras between the an		3 s and the ordinates of two		
109	-			40	
	a) $\frac{7}{120}$ sq unit	b) $\frac{9}{120}$ sq unit	c) $\frac{11}{120}$ sq unit	d) $\frac{13}{120}$ sq unit	

110. If the ordinate $x = a$ d	ivides the area bounded by :	x-axis part of the curve y =	= 1 + $\frac{8}{n^2}$ and the ordinates
	equal parts, then <i>a</i> is equal		χ-
a) $\sqrt{2}$ sq unit	b) $2\sqrt{2}$ sq unit	c) $3\sqrt{2}$ sq unit	d) None of these
	d obtained by revolving abo	-	-
	straight line $x + 3y = 3$, in t	-	
a) 3π	b) 4 π	c) 6 π	d) 9 π
-	egion bounded by the curve	2	
a) $\frac{13}{3}$	b) $\frac{2}{5}$	c) $\frac{9}{2}$	d) $\frac{5}{2}$
113. The area bounded by y	$y = x^2 + 2$, <i>x</i> -axis, $x = 1$ and	dx = 2 is	
	b) $\frac{17}{3}$ sq units		d) $\frac{20}{3}$ sq units
5	nded by the curves $y = 2^x$, y	5	5
3 4	3 4	4	4
a) $\frac{1}{\log 2} - \frac{1}{3}$	b) $\frac{3}{\log 2} + \frac{4}{3}$	c) $3 \log 2 - \frac{1}{3}$	d) $3 \log^2 - \frac{1}{3}$
^{115.} The area of the quadri	lateral formed by the tangen	its at the end points of latu	srectum to ellipse $\frac{x^2}{9} + \frac{y^2}{5} = 1$,
is			- 9 5
a) 27/4 sq unit	b) 9 sq unit	c) $27/2$ sq unit	d) 27 sq unit
	he loop of the curve $ay^2 = x^2$		
	b) $\frac{8}{15}a^2$ sq unit		d) None of these
15	15	15	-
	figure bounded by the curve		
a) 4/9	b) 8/9	c) 16/9	d) 5/9
	he curves $y = 3x$ and $y = x$		
a) 10	b) 5	c) 4.5	d) 9
	bounded by the parabolas x		
a) 8/3	b) 6/3	c) 4/3	d) 2/3
	lens $y = x, x = -1, x = 2$ an		
a) $5/2$ sq units	b) 3/2 sq units	c) $1/2$ sq unit	d) None of these
	y = x + 1 between $x = 2$	and $x = 3$ is revolved abou	t x-axis, then the curved
surface of the solid the 27π	us generated is		
a) $\frac{37\pi}{3}$	b) 7π√2	c) 37 π	d) $7\pi/\sqrt{2}$
5	x y = 0 x = 1 x = 4 is		
28	x, y = 0, x = 1, x = 4 is b) $\frac{3}{28}$ sq units	8	4
a) $\frac{1}{3}$ sq units	b) $\frac{1}{28}$ sq units	c) $\frac{1}{3}$ sq units	d) $\frac{1}{3}$ sq units
123. The figure shows a ΔA	<i>OB</i> and the parabola $y = x^2$. The ratio of the area of th	$e \Delta AOB$ to the area of the
	abola $y = x^2$ is equal to		
У.			
$(-a a^2)A$	$(2, 2^2)$		
$(-a, a^2)A$	a, a)		
x' <	→ X		
O(0, 0)			
▼ '			
a) $\frac{3}{5}$	b) $\frac{3}{4}$	c) $\frac{7}{8}$	d) $\frac{5}{6}$
5	7	0	Ū
124. If the area above x -axi	s, bounded by the curves $y =$	$= 2^{kx}$ and $x = 0$ and $x = 2$	is $\frac{3}{\log 2}$, then the value of k is
a) 1/2	b) 1	c) -1	d) 2

125. The area between the cu	rves $y = \cos x$, x-axis and t	the line $y = x + 1$, is	
a) 1/2	b) 1	c) 3	d) 2
126. The area bounded by the			
a) $\frac{3}{32}$	b) $\frac{32}{3}$	c) $\frac{33}{2}$	d) $\frac{16}{3}$
127. The volume of the solid	5	2	5
about $y = 1$ is (in cubic		a cheloseu between the cui	y = x and the fine $y = 1$
a) $\frac{9\pi}{5}$	b) $\frac{2\pi}{5}$	c) $\frac{8\pi}{3}$	d) $\frac{7\pi}{5}$
a) <u>-</u>	b) <u>5</u>	c) $\frac{1}{3}$	a) <u>-</u>
128. The volume of spherical π	cap of height <i>h</i> cut off from	a sphere of radius <i>a</i> is equ	ial to
a) $\frac{\pi}{3}h^2(3a-h)$		b) $\pi(a-h)(2a^2-h^2-h^2)$	ah)
c) $\frac{4\pi}{2}h^{3}$		d) None of these above	
3			
129. The area of the region be 2^{2}	ounded by the straight lines	s $x = 0$ and $x = 2$ and the c	curves $y = 2^x$ and
$y = 2x - x^2$ is equal to 2 4	3 4	1 4	4 3
a) $\frac{2}{\log 2} - \frac{1}{3}$	b) $\frac{3}{\log 2} - \frac{4}{3}$	c) $\frac{1}{\log 2} - \frac{1}{3}$	d) $\frac{1}{\log 2} - \frac{3}{2}$
130. The area bounded by the	$e \text{ curves } f(x) = ce^x (c > 0)$), the x-axis and the two or $\frac{1}{2}$	dinates $x = p$ and $x = q$, is
proportional to			
a) $f(p)f(q)$	b) $ f(p) - f(q) $	c) $f(p) + f(q)$	d) $\sqrt{f(p)f(q)}$
131. The area between <i>x</i> -axis	and curve $y = \cos x$ when	$0 \le x \le 2\pi$, is	
a) 0	b) 2	c) 3	d) 4
132. Area enclosed between	-		
a) πa^2 sq unit	b) $\frac{3\pi a^2}{2}$ sq unit	c) $2\pi a^2$ sq unit	d) $3\pi a^2$ sq unit
133. The area lying between			
a) $\frac{4}{3}a^2$ sq unit	b) $\frac{16}{3}a^2$ sq unit	c) $\frac{8}{3}a^2$ sq unit	d) None of these
134. Ratio of the area cut off	a parabola by any double or	rdinate is that correspondi	ng rectangle contained by
	l its distance from the verte		
a) 1/2	b) 1/3		d) 1
135. The area cut off the para	bola 4y = 3x ² by the straig b) 21		
a) 16 136. The area bounded by the	,	c) 27 d the line $r = 2a$ is	d) 36
		$3\pi a^2$	$ 6\pi a^2$
a) $3\pi a^2$ sq units	b) $\frac{3\pi a^2}{2}$ sq units	c) $\frac{344}{4}$ sq units	d) $\frac{6\pi a^2}{5}$ sq units
137. The area bounded by $y =$			
a) 32 sq units	b) 32/3 sq units		d) 1/3 sq unit
138. The area of the region be	ounded by the curve a^4y^2 =	$= (2a - x)x^5$ is to that of the	ne circle whose radius is <i>a</i> , is
given by the ratio	b) ୮. 0	a)),)	d) 2. 2
a) 4: 5 139. The area bounded by the	b) 5:8 curves $v^2 - r$ and $v - r^2$	c) 2:3	d) 3: 2
a) $\frac{2}{3}$ sq unit	b) 1 sq unit	c) $\frac{1}{2}$ sq unit	d) None of these
5		$c_{j} = \frac{1}{2} sq unit$	
140. Area common to the cur		-) 1 /2	
a) 1 141. The area bounded by the	b) $2/3$	c) $1/3$	d) 4/3
a) 0			a^2
~, ~	b) $\frac{4}{3}a^2$	c) $\frac{2}{3}a^2$	d) $\frac{a^2}{3}$
142. If <i>A</i> is the area between	the curve $y = \sin x$ and x -a	xis in the interval $[0, \pi/4]$,	then in the same interval,
area between the curve			
a) <i>A</i>	b) $\pi/2 - A$	c) 1 − A	d) <i>A</i> – 1

143. The area bounded by $y = \tan^{-1} x$, x = 1 and *x*-axis is a) $\left(\frac{\pi}{4} + \log\sqrt{2}\right)$ sq unit b) $\left(\frac{\pi}{4} - \log\sqrt{2}\right)$ sq unit c) $\left(\frac{\pi}{4} - \log\sqrt{2} + 1\right)$ sq unit d) None of these 144. The area of the smaller segment cut off from the circle $x^2 + y^2 = 9$ by x = 1 is a) $\frac{1}{2}(9 \sec^{-1}3 - \sqrt{8})$ sq unit b) (9 sec⁻¹3 – $\sqrt{8}$)sq unit c) $(\sqrt{8} - 9 \text{ sec}^{-1}3)$ sq unit d) None of the above 145. Area lying in the first quadrant and bounded by the circle $x^2 + y^2 = 4$, the line $x = \sqrt{3}y$ and *x*-axis, is b) $\frac{\pi}{2}$ sq units c) $\frac{\pi}{3}$ sq units d) None of these a) π sq units 146. The area of the figure bounded by $y = e^{x-1}$, y = 0, x = 0 and x = 2, is b) > 2 c) = 2d) None of these a) < 2 147. Area bounded by the curves $y = x \sin x$ and x-axis between x = 0 and $x = 2\pi$ is a) 2 π b) 3 π c) 4 π d) 5π 148. The area of region $\{(x, y): x^2 + y^2 \le 1 \le x + y\}$ is a) $\frac{\pi^2}{5}$ sq unit b) $\frac{\pi^2}{2}$ sq unit c) $\frac{\pi^2}{4}$ sq unit d) $\left(\frac{\pi}{4} - \frac{1}{2}\right)$ sq unit 149. The area bounded by the curves y = f(x), the x-axis and the ordinates x = 1 and x = b is $(b - 1) \sin(3b + 1)$ 4). Then, f(x) is a) $(x - 1)\cos(3x + 4)$ b) sin(3x + 4)c) $\sin(3x + 4) + 3(x - 1)\cos(3x + 4)$ d) None of the above 150. *AOB* is the positive quadrant of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ in which OA = a, OB = b. The area between the arc *AB* and the chord *AB* of the ellipse is d) None of these b) $\frac{1}{4}ab(\pi - 4)$ c) $\frac{1}{4}ab(\pi - 2)$ a) $\frac{1}{2}ab(\pi + 2)$ 151. Area bounded by the curve $x^2 = 4y$ and the straight line x = 4y - 2 is equal to b) $\frac{9}{9}$ sq unit c) $\frac{4}{3}$ sq unit d) None of these a) $\frac{o}{a}$ sq unit 152. The area of the region bounded by the curve $y = \tan x$, a line parallel to *y*-axis at $x = \frac{\pi}{4}$ and the *x*-axis is b) $\log \sqrt{2} + \frac{1}{4}$ sq unit c) $\log \sqrt{2} - \frac{1}{4}$ sq unit d) None of these a) $\frac{1}{4}$ sq unit 153. Let A_1 be the area of the parabola $y^2 = 4ax$ lying between vertex and latusrectum and A_2 be the area between latusrectum and double ordinate x = 2a. Then, $A_1/A_2 =$ b) $(2\sqrt{2} + 1)/7$ d) None of these a) $2\sqrt{2} - 1$ c) $(2\sqrt{2} - 1)/7$ ^{154.} The area of the closed igure bounded by x = -1, x = 2 and $y = \begin{cases} -x^2 + 2, x \le 1\\ 2x - 1, x > 1 \end{cases}$ and the *x*-axis is a) $\frac{16}{3}$ sq unit b) $\frac{10}{3}$ sq unit c) $\frac{13}{3}$ sq unit d) $\frac{7}{3}$ sq unit d) $\frac{7}{3}$ sq unit 155. The area bounded by the curve $y = \log_e x$ and x-axis and the straight line x = e is c) $1 - \frac{1}{e}$ sq. units d) $1 + \frac{1}{e}$ sq. units b) 1 sq. units a) e sq. units 156. The area bounded by the curves $\sqrt{x} + \sqrt{y} = 1$ and x + y = 1 is a) 1/3 sq unitb) 1/6 sq unit c) 1/2 sq unit d) None of these 157. If *A* is the area of the region bounded by the curve $y = \sqrt{3x + 4}$, *x*-axis and the lines x = -1 and x = 4 and *B* is that area bounded by curve $y^2 = 3x + 4$, *x*-axis and the liens x = -1 and x = 4, then *A*: *B* is equal to a) 1:1 b) 2:1 c) 1:2 d) None of these 158. The area bounded by the curves $y = \sqrt{x}$, 2y + 3 = x and x-axis in the 1st quadrant is a) 9 sq unit b) 27/4 sq unit c) 36 sq unit d) 18 sq unit 159. The sine and cosine meet each other at number of points and develop the symmetrical area number of times, area of one such region is

a) 4 √2	b) 3√2	c) 2√2	d) √2
160. Let $f(x)$ be a non-negation and the ordinates $x = \frac{\pi}{4}$		h that the area bounded by	the curve $y = f(x)$, <i>x</i> -axis
$\left(\beta\sin\beta + \frac{\pi}{4}\cos\beta + \sqrt{2}\beta\right)$	т		
, т	b) $\left(1 - \frac{\pi}{4} - \sqrt{2}\right)$	$(\pi \sqrt{2} + 1)$	$d \left(\begin{pmatrix} \pi \\ -1 \end{pmatrix} \right) \left(\begin{pmatrix} \pi \\ -1 \end{pmatrix} \right)$
161. The area bounded by the	· · · ·	·1 ,	a) $(\frac{1}{4} + \sqrt{2} - 1)$
a) 4 sq unit		c) 2 sq unit	d) 8 sq unit
162. The smaller area enclose			
a) 2 $(\pi - 2)$ 163. The area bounded by the	b) $\pi - 2$	-	d) $\pi - 1$
	b) $\sqrt{2}$ sq unit	5	d) None of these
164. The area bounded by the	-		
a) 16 sq units	b) 32 sq units	c) $\frac{32}{2}$ sq units	d) $\frac{16}{2}$ sq units
165. The area bounded by the		5	5
a) 0	b) $\frac{1}{2}$	c) $\frac{2}{3}$	d) None of these
166. The area of the region b	3	5	
a) <i>π</i>	b) 2π	c) 4π	d) π/2
167. The area of the region (i a) 1	n square units) bounded by b) 2/3	y the curve $x^2 = 4y$, line x^2 c) $4/3$	= 2 and <i>x</i> -axis, is d) 8/3
168. The area bounded by $x =$, , , , , , , , , , , , , , , , , , ,	, ,	u) 0/ 0
· · · · ·	b) 2 sq unit	, <u>,</u>	d) None of these
169. The area of the region for c^3			ر ³
a) $\int_{1} (3-2x-x^2) dx$	b) $\int_0^3 (3-2x-x^2) dx$	c) $\int_0^{\infty} (3-2x-x^2) dx$	d) $\int_{-1} (3 - 2x - x^2) dx$
170. Area bounded by parabote $12 \times 1/2$			4) 1 / 2
a) 4/3 171. The area of the triangle	b) 1 formed by the positive <i>x</i> -ax	, ,	d) 1/3 ent to the circle
$x^2 + y^2 = 4 at(1, \sqrt{3})$, is			
a) √3	b) 1/ √3	c) $2\sqrt{3}$	d) 3√3
172. The line $x = \frac{\pi}{4}$ divides the		ed by $y = \sin x$, $y = \cos x$	and x -axis $\left(0 \le x \le \frac{x}{2}\right)$ into
two regions of areas A ₁ a a) 4:1	and A_2 . Then $A_1: A_2$ equals	c) 2:1	d) 1.1
173. Area of the region bound	b) 3:1 and by the curve $y = (x^2, x)$,	d) 1:1
10			d) None of those
a) $\frac{10}{3}$ sq unit	b) $\frac{20}{3}$ sq unit	5	d) None of these
174. The area of the closed figure $\pi + 4$			
a) $\frac{\pi+4}{4}$	b) $\frac{3\pi-4}{4}$	c) $\frac{5\pi}{4}$	d) $\frac{\pi}{4}$
175. The area enclosed betwe	-		1
a) $\frac{1}{2}$	b) $\frac{1}{6}$	c) $\frac{1}{3}$	d) $\frac{1}{4}$
176. If A_n be the area bounded			
a) $A_n + A_{n-2} = \frac{1}{n-1}$	b) $A_n + A_{n-2} < \frac{1}{n-1}$	c) $A_n - A_{n-2} = \frac{1}{n-1}$	d) None of these
177. The area cut off from a p by that double ordinate	arabola by any double ordi and its distance from the ve		onding rectangle contained

a) $\frac{2}{2}$	b) $\frac{1}{2}$	c) $\frac{3}{2}$	d) 3
3 178. The area enclosed betw	3	Z	
a) $\frac{2}{3}$ sq unit	b) 1 sq unit	c) $\frac{1}{6}$ sq unit	d) $\frac{1}{2}$ sq unit
179. The area of the loop bet		0	3
a) a	b) 2a	c) 3a	d) 4 <i>a</i>
180. The area of the region b	-	,	,
	b) $\frac{1}{6}$ sq unit		d) 1 sq unit
181. Area bounded by the cu	rve $y = (x - 1)(x - 2)(x - 2$	- 3) and <i>x</i> -axis lying betwee	en the ordinates $x = 0$ and
x = 3 is equal to	11	12	15
	b) $\frac{11}{4}$ sq unit		d) $\frac{15}{4}$ sq unit
182. The area included betw			
a) (8/3) <i>ab</i>	b) (16/3) <i>ab</i>	c) $(4/3)ab$	d) (5/3) <i>ab</i>
183. Area include between c			1
a) $\frac{1}{6}$ sq unit	b) $\frac{1}{2}$ sq unit	c) 1 sq unit	d) $\frac{1}{3}$ sq unit
184. The area bounded by th	e curve $y = x^3$, the x-axis a	nd the ordinates $x = -2$ ar	x = 1 is
a) 17/2	b) 15/2	c) 15/4	d) 17/4
185. The area of the region ly	ying between the line $x - y$	+ 2 = 0 and the curve $x =$	\sqrt{y} is
a) 9	b) 9/2	c) 10/3	d) 5/2
186. Area lying in the first qu	adrant and bounded by the	e curve $y = x^3$ and the line	y = 4x, is
a) 2	b) 3	c) 4	d) 5
187. The area between the p			
a) $\frac{1}{6}$ sq unit	b) $\frac{1}{3}$ sq unit	c) $\frac{1}{2}$ sq unit	d) None of these
188. The area enclosed betw			
a) $5/3$ 189. If $f(x)$ be continuous fu		c) $5/12$ bunded by the curve $y = f($	d) $12/5$ (x), the x-axis and the lines
$x = a \text{ and } x = 0 \text{ is } \frac{a^2}{2} +$	$\frac{a}{2}\sin a + \frac{\pi}{2}\cos a.$		
Value of <i>j</i>	$f\left(\frac{\pi}{2}\right)$ is		
a) $\frac{1}{2}$	b) $\frac{a}{2}$	c) $\frac{a^2}{2}$	d) $\frac{\pi}{2}$
Z	Z	Z	2
190. The area of the figure b	bunded by the curves $y = e$	$x, y = e^{-x}$ and the straight	
a) $e + \frac{1}{e}$	b) $e - \frac{1}{e}$	c) $e + \frac{1}{e} - 2$	d) None of these
191. The area bounded by y	$= xe^{ x }$ and lines $ x = 1, y$	= 0 is	
a) 4 sq unit	b) 6 sq unit	c) 1 sq unit	d) 2 sq unit
192. The area bounded by th	e parabola $y^2 = 8x$ and its		S
a) 16/3 sq units	b) 32/3 sq units	c) 8/3 sq units	d) 64/3 sq units
193. The areas of the figure i			
a) $\frac{2}{3}$	b) $\frac{4\pi - \sqrt{3}}{8\pi + \sqrt{3}}$	c) $\frac{4\pi + \sqrt{3}}{8\pi - \sqrt{3}}$	d) None of these
			d $x = \pi/2$. Area of the region
	$\sin 2x$ and x-axis in the same		
a) <i>A</i> /2	b) <i>A</i>	c) 2 <i>A</i>	d) 3/2 <i>A</i>
195. If the ordinate $x = a$ div	vides the areaby the curve y	$v = \left(1 + \frac{3}{x^2}\right)x$ -axis and the	ordinates $x = 2, x = 4$ into
two equal parts, then th	e value of <i>a</i> is		

a) 2 <i>a</i>	b) 2 √2	c) $\frac{a}{2}$	d) None of these						
196. The area of the region	n bounded by $y = x - 1 $ an	dy = 1 is							
a) 1	b) 2	c) 1/2	d) 3/2						
	by the curve $y = f(x)$, the co	ordinate axes, and the line x	$x = x_1$ is given by $x_1 e^{x_1}$. Then,						
f (x) equals a) e ^x	b) <i>x e^x</i>	c) $x e^{x} - e^{x}$	d) $x e^{x} + e^{x}$						
2	,	2	$d x e^{x} + e^{x}$						
	the curve $y = \frac{1}{2}x^2$, the <i>x</i> -ax		Λ						
3	3	c) 1 sq units	d) $\frac{4}{3}$ sq units						
	$y = x^2, y = [x + 1], x \le 1$ a	nd the y-axis is							
a) 1/3	b) 2/3	c) 1	d) 7/3						
	e curve $y = 4 + 3x - x^2$ and b) 125/2 sq unit		d) None of these						
a) 125/6 sq unit b) 125/3 sq unit c) 125/2 sq unit d) None of these 201. In the interval $[0, \pi/2]$, area lying between the curves $y = \tan x$, $y = \cot x$ and x -axis is									
a) log 2	b) $\frac{1}{2}\log 2$	c) $2 \log\left(\frac{1}{\sqrt{2}}\right)$	d) $\frac{3}{2}\log 2$						
	the curve $y = f(x) = x^4 - 1$	$2x^3 + x^2 + 3$, <i>x</i> -axis and ord	linates corresponding to						
minimum of the func		20							
a) 1 sq unit	b) $\frac{91}{30}$ sq unit	c) $\frac{30}{9}$ sq unit	d) 4 sq unit						
	tween the curves $y = x^3$ and		12						
a) $\frac{5}{3}$ sq units	b) $\frac{5}{4}$ sq units	c) $\frac{5}{12}$ sq units	d) $\frac{12}{5}$ sq units						
204. The area of the figure	bounded by $ y = 1 - x^2$ is	in square units,	5						
a) 4/3	b) 8/3	c) 16/3	d) 5/3						
205. The area bounded by	the <i>x</i> -axis, part of the curve	$y = 1 + \frac{8}{r^2}$ and the ordinate	es $x = 2$ and $x = 4$, is divided						
	by the ordinate $x = a$, then t								
a) 2√2	b) $\pm 2\sqrt{2}$	c) $\pm \sqrt{2}$	d) ±2						
206. Area of the region bo	unded by the curve $y = \tan x$	x, tangent drawn to the curv	re at						
$x = \frac{\pi}{4}$ and the <i>x</i> -axis	s is								
a) $\log \sqrt{2}$	b) $\log \sqrt{2} + \frac{1}{4}$	c) $\log \sqrt{2} - \frac{1}{2}$	J 1						
	J==8, = 1		d) $\frac{1}{4}$						
207. The area bounded by	Ŧ	Ŧ	$\left(1\right) \frac{1}{4}$						
207. The area bounded by 3	the curve $y = 2x - x^2$ and t	the line $y = -x$ is	d) $\frac{1}{4}$ d) None of these						
a) $\frac{3}{2}$ sq units	the curve $y = 2x - x^2$ and t b) $\frac{9}{3}$ sq units	the line $y = -x$ is c) $\frac{9}{2}$ sq units	4						
a) $\frac{3}{2}$ sq units 208. The area out off by la	the curve $y = 2x - x^2$ and t b) $\frac{9}{3}$ sq units tusrectum form the parabola	the line $y = -x$ is c) $\frac{9}{2}$ sq units a $y^2 = 4ax$ is	d) None of these						
a) $\frac{3}{2}$ sq units 208. The area out off by la a) (8/3) <i>a</i> sq units	the curve $y = 2x - x^2$ and t b) $\frac{9}{3}$ sq units tusrectum form the parabola b) (8/3) \sqrt{a} sq units	the line $y = -x$ is c) $\frac{9}{2}$ sq units a $y^2 = 4ax$ is c) (3/8) a^2 sq units	d) None of these d) (8/3) a^2 sq units						
a) $\frac{3}{2}$ sq units 208. The area out off by la a) (8/3) <i>a</i> sq units 209. The volume of the sol	the curve $y = 2x - x^2$ and t b) $\frac{9}{3}$ sq units tusrectum form the parabola b) $(8/3)\sqrt{a}$ sq units lid is generated by revolving	the line $y = -x$ is c) $\frac{9}{2}$ sq units a $y^2 = 4ax$ is c) (3/8) a^2 sq units	d) None of these d) (8/3) a^2 sq units						
a) $\frac{3}{2}$ sq units 208. The area out off by la a) (8/3) <i>a</i> sq units 209. The volume of the sol $y = x^2$ and $x = y^2$ is	the curve $y = 2x - x^2$ and t b) $\frac{9}{3}$ sq units tusrectum form the parabola b) $(8/3)\sqrt{a}$ sq units lid is generated by revolving	the line $y = -x$ is c) $\frac{9}{2}$ sq units a $y^2 = 4ax$ is c) (3/8) a^2 sq units gabout the <i>y</i> -axis. The figure	d) None of these d) (8/3) a^2 sq units bounded by the parabola						
a) $\frac{3}{2}$ sq units 208. The area out off by la a) (8/3) <i>a</i> sq units 209. The volume of the sol	the curve $y = 2x - x^2$ and t b) $\frac{9}{3}$ sq units tusrectum form the parabola b) $(8/3)\sqrt{a}$ sq units lid is generated by revolving	the line $y = -x$ is c) $\frac{9}{2}$ sq units a $y^2 = 4ax$ is c) (3/8) a^2 sq units	d) None of these d) (8/3) a^2 sq units						
a) $\frac{3}{2}$ sq units 208. The area out off by la a) (8/3) <i>a</i> sq units 209. The volume of the sol $y = x^2$ and $x = y^2$ is a) $\frac{21}{5}\pi$ 210. The area bounded by	the curve $y = 2x - x^2$ and the by $\frac{9}{3}$ sq units tusrectum form the parabolation by $(8/3)\sqrt{a}$ sq units lid is generated by revolving b) $\frac{24}{5}\pi$	the line $y = -x$ is c) $\frac{9}{2}$ sq units a $y^2 = 4ax$ is c) (3/8) a^2 sq units gabout the <i>y</i> -axis. The figure	d) None of these d) (8/3) a^2 sq units bounded by the parabola						
a) $\frac{3}{2}$ sq units 208. The area out off by la a) (8/3) <i>a</i> sq units 209. The volume of the sol $y = x^2$ and $x = y^2$ is a) $\frac{21}{5}\pi$	the curve $y = 2x - x^2$ and the by $\frac{9}{3}$ sq units tusrectum form the parabolation by $(8/3)\sqrt{a}$ sq units lid is generated by revolving b) $\frac{24}{5}\pi$	the line $y = -x$ is c) $\frac{9}{2}$ sq units a $y^2 = 4ax$ is c) (3/8) a^2 sq units gabout the <i>y</i> -axis. The figure	d) None of these d) (8/3) a^2 sq units bounded by the parabola						
a) $\frac{3}{2}$ sq units 208. The area out off by la a) (8/3) <i>a</i> sq units 209. The volume of the sol $y = x^2$ and $x = y^2$ is a) $\frac{21}{5}\pi$ 210. The area bounded by	the curve $y = 2x - x^2$ and the by $\frac{9}{3}$ sq units tusrectum form the parabola b) $(8/3)\sqrt{a}$ sq units lid is generated by revolving b) $\frac{24}{5}\pi$ the curves $+ 1)^2$ and $y = \frac{1}{4}$ is	the line $y = -x$ is c) $\frac{9}{2}$ sq units a $y^2 = 4ax$ is c) (3/8) a^2 sq units gabout the <i>y</i> -axis. The figure	d) None of these d) (8/3) a^2 sq units bounded by the parabola						
a) $\frac{3}{2}$ sq units 208. The area out off by la a) (8/3) <i>a</i> sq units 209. The volume of the sol $y = x^2$ and $x = y^2$ is a) $\frac{21}{5}\pi$ 210. The area bounded by $y = (x - 1)^2, y = (x - 1)^2$	the curve $y = 2x - x^2$ and the by $\frac{9}{3}$ sq units tusrectum form the parabolation b) $(8/3)\sqrt{a}$ sq units lid is generated by revolving b) $\frac{24}{5}\pi$ the curves $+ 1)^2$ and $y = \frac{1}{4}$ is b) $\frac{2}{3}$ sq unit	the line $y = -x$ is c) $\frac{9}{2}$ sq units a $y^2 = 4ax$ is c) (3/8) a^2 sq units g about the <i>y</i> -axis. The figure c) $\frac{3\pi}{10}$	d) None of these d) $(8/3)a^2$ sq units bounded by the parabola d) $\frac{5}{24}\pi$						
a) $\frac{3}{2}$ sq units 208. The area out off by la a) (8/3) <i>a</i> sq units 209. The volume of the sol $y = x^2$ and $x = y^2$ is a) $\frac{21}{5}\pi$ 210. The area bounded by $y = (x - 1)^2, y = (x - 1)^2$ a) $\frac{1}{3}$ sq unit 211. The area of the region	the curve $y = 2x - x^2$ and the by $\frac{9}{3}$ sq units tusrectum form the parabola b) $(8/3)\sqrt{a}$ sq units lid is generated by revolving b) $\frac{24}{5}\pi$ the curves $+1)^2$ and $y = \frac{1}{4}$ is b) $\frac{2}{3}$ sq unit n between the curves	the line $y = -x$ is c) $\frac{9}{2}$ sq units a $y^2 = 4ax$ is c) (3/8) a^2 sq units g about the <i>y</i> -axis. The figure c) $\frac{3\pi}{10}$	d) None of these d) $(8/3)a^2$ sq units bounded by the parabola d) $\frac{5}{24}\pi$						
a) $\frac{3}{2}$ sq units 208. The area out off by la a) (8/3) <i>a</i> sq units 209. The volume of the sol $y = x^2$ and $x = y^2$ is a) $\frac{21}{5}\pi$ 210. The area bounded by $y = (x - 1)^2, y = (x - 1)^2$	the curve $y = 2x - x^2$ and the by $\frac{9}{3}$ sq units tusrectum form the parabola b) $(8/3)\sqrt{a}$ sq units lid is generated by revolving b) $\frac{24}{5}\pi$ the curves $+1)^2$ and $y = \frac{1}{4}$ is b) $\frac{2}{3}$ sq unit n between the curves	the line $y = -x$ is c) $\frac{9}{2}$ sq units a $y^2 = 4ax$ is c) (3/8) a^2 sq units g about the <i>y</i> -axis. The figure c) $\frac{3\pi}{10}$	d) None of these d) $(8/3)a^2$ sq units bounded by the parabola d) $\frac{5}{24}\pi$						

Bounded by the line x = 0 and $x = \frac{\pi}{4}$

a)
$$\int_{0}^{\sqrt{2}-1} \frac{t}{(1+t^{2})\sqrt{1-t^{2}}} dt$$

b)
$$\int_{0}^{\sqrt{2}-1} \frac{4t}{(1+t^{2})\sqrt{1-t^{2}}} dt$$

c)
$$\int_{0}^{\sqrt{2}+1} \frac{4t}{(1+t^{2})\sqrt{1-t^{2}}} dt$$

d)
$$\int_{0}^{\sqrt{2}+1} \frac{t}{(1+t^{2})\sqrt{1-t^{2}}} dt$$

212. The area induced between the curves $y = \frac{x^2}{4a}$ and $y = \frac{8a^3}{x^2 + 4a^2}$ is given by

a)
$$a^{2}\left(2\pi - \frac{4}{3}\right)$$
 b) $a^{2}\left(\pi - \frac{4}{3}\right)$ c) $a^{2}\left(2\pi + \frac{1}{3}\right)$ d) $a^{2}\left(\pi + \frac{4}{3}\right)$

^{213.} The area between $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and the straight line $\frac{x}{a} + \frac{y}{b} = 1$, is a) $\frac{1}{2}ab$ b) $\frac{1}{2}\pi ab$ c) $\frac{1}{4}ab$ d) $\frac{1}{4}\pi ab - \frac{1}{2}ab$

214. The area bounded by the parabola $y^2 = 4ax$ and the line x = a and x = 4a is a) $\frac{35a^2}{3}$ b) $\frac{4a^2}{3}$ c) $\frac{7a^2}{3}$ d) $\frac{56a^2}{3}$

215. Let $f(x) = \min\{x + 1, \sqrt{(1 - x)}\}$, then area bounded by f(x) and x-axis is a) $\frac{1}{6}$ sq unit b) $\frac{5}{6}$ sq unit c) $\frac{7}{6}$ sq unit d) $\frac{11}{6}$ sq unit

216. The area bounded by the curve $y = \sin 2x$, y - axis and y = 1, is a) 1 b) 1/4 c) $\pi/4$ d) $\pi/4 - 1/2$

217. The area common to the circle $x^2 + y^2 = 16a^2$ and the parabola $y^2 = 6ax$ is a) $\frac{4a^2}{3}(4\pi - \sqrt{3})$ sq unit b) $\frac{4a^2}{3}(8\pi - 3)$ sq unit c) $\frac{4a^2}{3}(4\pi + \sqrt{3})$ sq unit d

d) None of these

218. The area bounded by the parabolas
$$r^2$$

$$y = 4x^2$$
, $y = \frac{x}{9}$ and the line $y = 2$ is
a) $\frac{5\sqrt{2}}{3}$ sq units b) $\frac{10\sqrt{2}}{3}$ sq units c) $\frac{15\sqrt{2}}{3}$ sq units d) $\frac{20\sqrt{2}}{3}$ sq units line $y = 4$ is independent of $y = 4$ is independent of $y = 4$ is independent of $y = 4$.

219. If the area bounded by the *x*-axis, the curve y = f(x) and lines x = a and x = b is independent of $b, \forall b > a$ (*a* is a constant), then *f* is

- a) The zero function b) The identity function
- c) A non-zero constant function
- d) None of the above
- 220. The area bounded by curve

 $x^{2} + y^{2} = 25, 4y = |4 - x^{2}|$ and x = 0 above the *x*-axis is b) $25 \sin^{-1}\left(\frac{4}{5}\right)$ c) $4 + 25 \sin^{-1}\left(\frac{4}{r}\right)$ d) None of these a) $24\sin^{-1}\left(\frac{4}{5}\right)$ 221. The area bounded by the curve $x = 3y^2 - 9$ and the line x = 0, y = 0 and y = 1 is a) 8 sq unit b) 8/3 sq unit c) 3/8 sq unit 222. The area of the figure bounded by the curves $y^2 = 2x + 1$ and x - y - 1 = 0 is d) 3 sq unit b) 4/3 c) 8/3 a) 2/3 d) 16/3 223. The value of *a* for which the area between the curves $y^2 = 4ax$ and $x^2 = 4ay$ is 1 unit, is b) 4 a) $\sqrt{3}$ c) $4\sqrt{3}$ d) $\sqrt{3}/4$ 224. The area bounded by $y = |\sin x|$, *x*-axis and the lines $|x| = \pi$ is d) None of these a) 2 sq units b) 3 sq units c) 4 sq units 225. The area out of the region bounded by $y^2 = 4ax$ and $x^2 = 4ay$, a > 0 in square unit is a) $\frac{16a^2}{3}$ sq units b) $\frac{14a^2}{3}$ sq units c) $\frac{13a^2}{3}$ sq units d) $16a^2$ sq units 226. The area enclosed between the curve $y = 1 + x^2$, the *x*-axis and the line y = 5 is given by

a)
$$\frac{14}{3}$$
 sq units b) $\frac{7}{3}$ sq units c) 5 sq units d) $\frac{10}{3}$ sq units 227. The volume of the solid generated by the revolving of the curve

 $y = \frac{a^3}{a^2 + x^2}$ about *x*-axis is a) $\frac{1}{2}\pi^3 a^2$ cu units b) $\pi^3 a^2$ cu units c) $\frac{1}{2}\pi^2 a^3$ cu units d) $\pi^2 a^3$ cu units 228. Area of the region satisfying $x \le 2, y \ge |x|$ and $x \ge 0$ is a) 4 sq units b) 1 sq units c) 2 sq units d) None of these 229. The area of the figure bounded by $y^2 = 2x + 1$ and x - y = 1 is b) $\frac{4}{2}$ c) $\frac{8}{2}$ d) $\frac{16}{3}$ a) $\frac{2}{2}$ 230. The area bounded by the curve $y = x^4 - 2x^3 + x^2 + 3$ with *x*-axis and ordinates corresponding to the minima of y, is b) $\frac{91}{30}$ c) $\frac{30}{0}$ d) 4 a) 1 231. The area bounded by curves $y^2 = 8x$ and $x^2 = 8y$ is b) $\frac{64}{3}$ sq units c) $\frac{8}{3}$ sq units a) 64 sq units d) None of these 232. The area (in square unit) of the region enclosed by the curves $y = x^2$ and $y = x^3$ is b) $\frac{1}{\epsilon}$ c) $\frac{1}{3}$ a) $\frac{1}{12}$ d) 1 233. The area bounded by the *y*-axis, $y = \cos x$ and $y = \sin x$, $0 \le x \le \pi/4$ is b) $\sqrt{2} - 1$ a) $2(\sqrt{2}-1)$ c) $\sqrt{2} + 1$ d) $\sqrt{2}$ 234. The area bounded by y = 2 - |2 - x| and $y = \frac{3}{|x|}$ is a) $\frac{4+3\log 3}{2}$ sq unit b) $\frac{4-3\log 3}{2}$ sq unit c) $\frac{3}{2}\log 3$ sq unit d) $\frac{1}{2}$ + log 3 sq unit 235. The area of the figure bounded by $y = \sin x$, $y = \cos x$ in the first quadrant, is a) $2(\sqrt{2}-1)$ b) $\sqrt{3}+1$ c) $2(\sqrt{3}-1)$ d) None 236. The area between the curve $y = x e^x$ and $y = x e^{-x}$ and the line x = 1 in square unit, is b) $\sqrt{3} + 1$ c) $2(\sqrt{3}-1)$ d) None of these a) 2 $\left(e + \frac{1}{e}\right)$ sq unit b) 0 sq unit d) $\frac{2}{3}$ sq unit c) 2*e* sq unit

8.APPLICATION OF INTEGRALS

						: ANSV	W	ER K	EY						
1)	b	2)	С	3)	b	4)		189)	а	190)	а	191)	d	192)	b
-) 5)	b	_, 6)	c	-) 7)	a	8)		193)	С	194)	b	195)	b	196)	a
9)	а	10)	С	, 11)	а	12)		, 197)	с	198)	d	199)	b	200)	а
13)	а	14)	С	15)	b	16)		201)	а	202)	b	203)	С	204)	b
17)	а	18)	С	19)	а	20)	с	205)	b	206)	С	207)	С	208)	d
21)	С	22)	а	23)	b	24)	с	209)	С	210)	а	211)	b	212)	а
25)	С	26)	а	27)	b	28)	b	213)	d	214)	d	215)	С	216)	d
29)	d	30)	а	31)	b	32)	b	217)	С	218)	d	219)	а	220)	С
33)	а	34)	b	35)	d	36)	d	221)	b	222)	d	223)	d	224)	С
37)	b	38)	d	39)	а	40)	d	225)	а	226)	d	227)	С	228)	С
41)	b	42)	b	43)	b	44)	a	229)	d	230)	b	231)	b	232)	а
45)	С	46)	С	47)	С	48)	d	233)	b	234)	b	235)	а	236)	d
49)	С	50)	d	51)	а	52)	С								
53)	d	54)	d	55)	b	56)	С								
57)	d	58)	b	59)	а	60)	а								
61)	С	62)	а	63)	b	64)	d								
65)	С	66)	С	67)	а	68)	b								
69)	b	70)	d	71)	С	72)	а								
73)	d	74)	b	75)	а	76)	b								
77)	d	78)	b	79)	а	80)	а								
81)	а	82)	d	83)	С	84)	d								
85)	b	86)	b	87)	d	88)	a								
89)	d	90)	b	91)	b	92)	С								
93)	b	94)	С	95)	С	96)	С								
97)	b	98)	b	99)	а	100)	d								
101)	а	102)	b	103)	d	104)	а								
105)	b	106)	b	107)	а	108)	b								
109)	а	110)	b	111)	a	112)	C								
113)	C	114)	d	115)	d	116)	b								
117)	b	118)	С	119)	C	120)	a								
121)	b	122)	a L	123)	b	124)	b								
125)	a	126)	b	127)	b	128)	a L								
129) 122)	b	130) 124)	b	131) 135)	d c	132) 136)	b b								
133) 137)	с b	134) 138)	C h	135) 139)	C d	136) 140)	b c								
137)	b b	138) 142)	b c	139) 143)	d b	140) 144)	c b								
141)	С С	142) 146)	с b	143)	D C	144) 148)	d								
145) 149)	C C	140) 150)	D C	147)	c b	148) 152)	u d								
149)	с b	150) 154)	с а	151)	b	152) 156)	u a								
157)	c	154)	a a	153) 159)	b	150) 160)	a a								
161)	d	150) 162)	a b	163)	C	160) 164)	a C								
165)	u C	162)	a	167)	b	164)	с а								
169)	c	100) 170)	a	171)	c	172)	a d								
173)	c	170) 174)	b	171)	b	172)	a								
177)	a	174)	c	173) 179)	b	180)	b b								
181)	b	182)	b	183)	d	184)	d								
185)	c	186)	c	185) 187)	a	184)	c c								
1005	Ľ	1003	·	1075	u	1005	•								

2 (c)
Required area

$$A = \int_{1}^{2} (e^{x} - \log_{e} x) dx$$

$$= [e^{x}]_{1}^{2} - \left[x \log_{e} x - \int 1 dx\right]_{1}^{2}$$

$$= e^{2} - e - [x \log_{e} x - x]_{1}^{2}$$

$$= e^{2} - e - [2 \log_{e} 2 - 2 - (0 - 1)]$$

$$= e^{2} - e - 2 \log_{e} 2 + 1$$
3 (b)
We have,

$$\int_{1}^{k} (8x^{2} - x^{5}) dx = \frac{16}{3}$$

$$\Rightarrow \left[\frac{8x^{3}}{3} - \frac{x^{6}}{6}\right]_{1}^{k} = \frac{16}{3}$$

$$\Rightarrow \left(\frac{8k^{3}}{3} - \frac{k^{6}}{6}\right) - \left(\frac{8}{3} - \frac{1}{6}\right) = \frac{16}{3}$$

$$\Rightarrow 16k^{3} - k^{6} - 16k + 1 = 32$$

$$\Rightarrow k^{6} - 16k^{3} + 47 = 0 \Rightarrow k^{3} = 8 \pm \sqrt{17} \Rightarrow k$$

$$= (8 \pm \sqrt{17})^{1/3}$$
4 (d)
Required area

$$y = x$$

$$x = -1$$

$$x = 2$$

$$\left| \int_{-1}^{0} x \, dx \right| + \left| \int_{0}^{2} x \, dx \right|$$

$$= \left| \left[\frac{x^2}{2} \right]_{-1}^{0} \right| + \left| \left[\frac{x^2}{2} \right]_{0}^{2} \right|$$

$$= \left| -\frac{1}{2} \right| + |2|$$

$$= 2 + \frac{1}{2} = \frac{5}{2} \text{ sq unit}$$
(b)

Given curve can be rewritten as

HINTS AND SOLUTIONS:

$$y^{2} = 2\left(x + \frac{1}{2}\right)$$

$$x^{2} = 2\left(x + \frac{1}{2}\right)$$

$$= \int_{0}^{x/4} (\cos x - \sin x) dx$$

+ $\int_{\pi/4}^{5\pi/4} (\sin x)$
- $\cos x) dx$
+ $\int_{5\pi/4}^{3\pi/2} (\cos x - \sin x) dx$
= $(\sin x + \cos x)_{\pi/4}^{\pi/4}$
+ $(-\cos x)$
- $\sin x)_{\pi/4}^{5\pi/4} + (\sin x + \cos x)_{5\pi/4}^{3\pi/2}$
= $(4\sqrt{2} - 2)$ sq units
10 (c)
-8 < $x < 8 \Rightarrow y = 2$
 (0)
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1$

$$A = \int_{-1}^{0} \{(3 + x) - (-x + 1)\} + \int_{0}^{1} \{(3 - x) - (-x + 1)\} dx + \int_{1}^{2} \{(3 - x) - (x - 1)\} dx + \int_{1}^{2} \{(3 - x) - (x - 1)\} dx$$

$$\Rightarrow A = \int_{-1}^{0} (2 + 2x) dx + \int_{0}^{1} 2dx + \int_{1}^{2} (4 - 2x) dx + \int_{1$$

$$\therefore \text{ Required area} = \int_{-1}^{2} \sqrt{5 - x^2} \, dx - \int_{-1}^{1} (1 - x) \, dx - \int_{1}^{2} (x - 1) \, dx$$
$$= \left[\frac{x}{2} \sqrt{5 - x^2} + \frac{5}{2} \sin^{-1} \frac{x}{\sqrt{5}} \right]_{-1}^{2} - \left[x - \frac{x^2}{2} \right]_{-1}^{1}$$
$$- \left[\frac{x^2}{2} - x \right]_{1}^{2}$$
$$= \left[1 + \frac{5}{2} \sin^{-1} \frac{2}{\sqrt{5}} + 1 + \frac{5}{2} \sin^{-1} \frac{1}{\sqrt{5}} \right]$$
$$- \left[1 - \frac{1}{2} - \left(-1 - \frac{1}{2} \right) \right]$$
$$- \left[2 - 2 - \left(\frac{1}{2} - 1 \right) \right]$$
$$= 2 + \frac{5}{2} \sin^{-1} \left(\frac{2}{\sqrt{5}} \sqrt{1 - \frac{1}{5}} + \frac{1}{\sqrt{5}} \sqrt{1 - \frac{4}{5}} \right) - \frac{5}{2}$$
$$= \frac{5}{2} \sin^{-1} (1) = \frac{5\pi}{4} - \frac{1}{2} = \left(\frac{5\pi - 2}{4} \right) \text{ sq unit}$$
(a)

Volume of generated solid

$$= \pi \int_{0}^{2} x^{2} dy = \pi \int_{0}^{2} (9 - y^{2}) dy = \pi \left[9y - \frac{1}{3}y^{3}\right]_{0}^{2}$$

$$\pi = \left[18 - \frac{8}{3}\right] = \frac{46}{3} \pi \text{ cu units}$$
20 (c)
: Required area

$$= \int_{0}^{1} \left[(2x - 2x^{2}) - (x \log x)\right] dx$$

$$= \left[x^{2} - \frac{2x^{3}}{3} - \left(\frac{x^{2}}{2} \log x - \frac{x^{2}}{4}\right)\right]_{0}^{1}$$

$$= \left[1 - \frac{2}{3} - \left(0 - \frac{1}{4}\right)\right] = \frac{7}{12} \text{ sq unit}$$
22 (a)
Required area = $\left|\int_{0}^{-\infty} e^{y} dy\right|$

$$= \left|\left[e^{y}\right]\right]_{0}^{-\infty} = 1 \text{ sq unit}$$
25 (c)
Given, $y = |x - 1| = \begin{cases} x - 1, x > 1 \\ -x + 1, x \le 1 \\ 3 - x, x > 0 \end{cases}$

$$y = -x + 1 = \begin{cases} 3 + x, x \le 0 \\ 3 - x, x > 0 \end{cases}$$
On solving $y = x - 1$ and $y = 3 - x$, we get
 $x = 2, y = 1$
Now, $AB^{2} = (2 - 1)^{2} + (1 - 0)^{2} = 2$

$$\Rightarrow AB = \sqrt{2}$$

and $BC^{2} = (0 - 2)^{2} + (3 - 1)^{2} = 8$

$$\Rightarrow BC = 2\sqrt{2}$$

$$\therefore Area of rectangle $ABCD = AB \times BC$

$$= \sqrt{2} \times 2\sqrt{2} = 4 \text{ sq units}$$
26 (a)$$

Required area =
$$\int_{1}^{2} (x^{3} - x^{2}) dx$$

= $\left(\frac{x^{4}}{4} - \frac{x^{3}}{3}\right)_{1}^{2}$
= $\left(4 - \frac{8}{3}\right) - \left(\frac{1}{4} - \frac{1}{3}\right) = \frac{17}{22}$
27 (b)
Required area = $\int_{-2}^{3} [[x - 3]] dx$
= $\int_{-2}^{-1} [[x - 3]] dx + \int_{1}^{2} [[x - 3]] dx + \int_{2}^{3} [[x - 3]] dx$
+ $\int_{0}^{1} [[x - 3]] dx + \int_{1}^{2} [[x - 3]] dx + \int_{2}^{3} [[x - 3]] dx$
= $\int_{-2}^{-1} 5 \cdot dx + \int_{-1}^{0} 4 \cdot dx$
+ $\int_{1}^{2} 2 \cdot dx + \int_{2}^{3} 1 \cdot dx$
= $5(1) + 4(1) + 3(1) + 2(1) + 1(1)$
= 15 sq unit
28 (b)
Area = $\int_{0}^{16/m^{2}} (\sqrt{16x} - mx) dx = \frac{2}{3}$
 $\Rightarrow \left[4 \cdot \frac{2}{3}x^{3/2} - \frac{mx^{2}}{2} \right]_{0}^{16/m^{2}} = \frac{2}{3}$
 $\Rightarrow \frac{1}{m^{3}} \left[\frac{512}{3} - \frac{256}{2} \right] = \frac{2}{3}$
 $\Rightarrow m^{3} = \frac{128}{3} \times \frac{3}{2} = 64$
 $\Rightarrow m = 4$
29 (d)
Requred area = $\int_{3}^{5} (3x - 5) dx$
= $\left(\frac{3x^{2}}{2} - 5x \right)_{3}^{5} = \left(\frac{75}{2} - 25 \right) - \left(\frac{27}{2} - 15 \right)$
 $= \frac{75}{2} - 25 - \frac{27}{2} + 15 = \frac{48}{2} - 10 = 14$ sq units
30 (a)
Required area = $\int_{1}^{3} |x - 2| dx$
= $\int_{1}^{2} (2 - x) dx + \int_{2}^{3} (x - 2) dx$

$$y = x + 1$$

$$y = x + 1, x < 0$$

$$x = 2y - 4$$

$$y = 2x + 1$$

 $\therefore \text{Required area}$

 $= \int_{0}^{3} \{(y-2)^{2} + 1 - 2y + 4\} dy$ $= \left[\frac{(y-2)^{3}}{3} - y^{2} + 5y\right]_{0}^{3}$ $= \frac{1}{3} - 9 + 15 + \frac{8}{3}$ = 9 sq units

39 **(a)**

sq unit

The equation of latusrectum of the parabola $y^2 = 12x$ is x = 3

Coordinates of end points of latuserectum are (3,6) and (3,-6)

Required length =
$$2 \int_{0}^{3} \sqrt{1 + (\frac{dy}{dx})^{2}} dx$$

= $2 \int_{0}^{3} \sqrt{1 + (\frac{6}{y})^{2}}$
= $2 \int_{0}^{3} \sqrt{\frac{12x + 36}{12x}} dx$
= $2 \int_{0}^{3} \frac{x + 3}{\sqrt{x^{2} + 3x}} dx$
= $2 \left[\int_{0}^{3} \frac{2x + 3}{2\sqrt{x^{2} + 3x}} dx + \frac{3}{2} \int_{0}^{3} \frac{1}{\sqrt{(x + \frac{3}{2})^{2}} - (\frac{3}{2})^{2}} dx \right]$
= $2 \left[\sqrt{x^{2} + 3x} + \frac{3}{2} \log \left| (x + \frac{3}{2}) + \sqrt{x^{2} + 3x} \right| \right]_{0}^{3}$
= $2 \left[3\sqrt{2} + \frac{3}{2} \log \left(\frac{9}{2} + 3\sqrt{2} \right) - \frac{3}{2} \log \left(\frac{3}{2} \right) \right]$
= $2 \left[3\sqrt{2} + 3 \log \left(3 + 2\sqrt{2} \right)^{\frac{1}{2}} \right]$
= $2 \left[3\sqrt{2} + 3 \log(\sqrt{2} + 1) \right]$
= $6 \left[\sqrt{2} + \log(1 + \sqrt{2}) \right]$
40 (d)
Required area
 $\begin{pmatrix} 0, \frac{\pi}{2} \\ 0, \frac{\pi}{4} \end{pmatrix} c \int_{0}^{A} \frac{1}{x + \frac{1}{2}} x = 1$

= Area of recangle *OABC* – Area of curve *OABO*
=
$$\frac{\pi}{4\sqrt{2}} - \int_0^{\pi/4} \sin y \, dy$$

$$= \frac{\pi}{4\sqrt{2}} + \left[\cos y\right]_0^{\pi/4} = \left[\frac{\pi}{4\sqrt{2}} + \left\{\frac{1}{\sqrt{2}} - 1\right\}\right] \text{ sq unit}$$

41 **(b)** The equation of circle is $x^2 + y^2 = 9$

x'
$$A(1, 2\sqrt{2})$$

 $A(1, 2\sqrt{2})$
 $C(3, 0)$
 $B(1, -2\sqrt{2})$
 $x = 1$

 $\div\,$ Area of the smaller segment cut off from the circle

$$x^{2} + y^{2} = 9 \text{ by } x = 1, \text{ given by}$$

$$\therefore \text{ Required area, } A = 2 \int_{1}^{3} \sqrt{9 - x^{2}} dx$$

$$= 2 \cdot \frac{1}{2} \left[x \sqrt{9 - x^{2}} + 9 \sin^{-1} \frac{x}{3} \right]_{1}^{3}$$

$$= \left[\frac{9\pi}{2} - \sqrt{8} - 9 \sin^{-1} \left(\frac{1}{3} \right) \right]$$

$$= \left[9 \left(\frac{\pi}{2} - \sin^{-1} \left(\frac{1}{3} \right) \right) - \sqrt{8} \right]$$

$$= \left[9 \cos^{-1} \left(\frac{1}{3} \right) - \sqrt{8} \right]$$

$$= \left[9 \sec^{-1}(3) - \sqrt{8} \right] \text{ sq unit}$$

42 (b)
Since, $|x| + |y| = 1$

$$\Rightarrow \begin{cases} x + y = 1, x > 0, y > 0 \\ x - y = 1, x > 0, y < 0 \\ -x + y = 1, x < 0, y > 0 \\ -x - y = 1, x < 0, y < 0 \end{cases}$$

and $1 - y^{2} = |x|$

$$\Rightarrow \begin{cases} 1 - y^{2} = x, x \ge 0 \\ 1 - y^{2} = -x, x < 0 \end{cases}$$

$$\therefore \text{ Required area} = \left| 2 \int_{0}^{1} \sqrt{(1 - x)} dx \right| + \left| 2 \int_{-1}^{0} \sqrt{(x + 1)} dx \right| - 4 \left(\frac{1}{2} \cdot 1 \cdot 1 \right) \right]$$

$$= \frac{2}{3} \text{ sq unit}$$

45 (c)
Required area

$$= 2 \int_{-1}^{3} \sqrt{x^{2} - 1} dx$$

$$= 2 \left[\frac{x \sqrt{x^{2} - 1}}{2} - \frac{1}{2} \log |x + \sqrt{x^{2} - 1} \right]_{-1}^{3}$$

$$= \left(x\sqrt{x^{2}-1} - \log|x + \sqrt{x^{2}-1}|\right)_{-1}^{3}$$

$$= 6\sqrt{2} - \log|3 + 2\sqrt{2}|$$
46 (c)
Requred area $= \int_{1}^{2} \log x \, dx$

$$= [x \log x - x]_{1}^{2} = 2 \log 2 - 1$$

$$= \log 4 - \log e = \log\left(\frac{4}{e}\right)$$
48 (d)
 $\int_{1}^{b} f(x) dx = \sqrt{(b^{2}+1)} - \sqrt{2}$
On differentiating both sides w.r.t. b, we get
 $f(b) = \frac{b}{\sqrt{(b^{2}+1)}}$
Hence, $f(x) = \frac{x}{\sqrt{(x^{2}+1)}}$
49 (c)
Required area $= \int_{\pi/4}^{3\pi/4} (\sin^{2} x - \cos^{2} x) dx$
 $\int_{-\pi/4}^{3\pi/4} \cos(2x) dx = -\left[\frac{\sin 2x}{2}\right]_{\pi/4}^{3\pi/4}$
 $= -\int_{\pi/4}^{3\pi/4} \cos(2x) dx = -\left[\frac{\sin 2x}{2}\right]_{\pi/4}^{3\pi/4}$
 $= -\frac{1}{2} \left(\sin \frac{3\pi}{2} - \sin \frac{\pi}{2}\right) = 1$ sq unit
50 (d)
Required area
 $= \text{ area of rectangle } OABC - \text{ area of curve } OBCO$
 $\left(0, \frac{\pi}{2}\right)_{\sqrt{2}}^{4} + \frac{\pi}{2} + 1 + x$
 $= \frac{\pi}{4\sqrt{2}} - \int_{0}^{\frac{\pi}{4}} \sin y \, dy$
 $= \left[\frac{\pi}{4\sqrt{2}} + \left(\frac{1}{\sqrt{2}} - 1\right)\right]$ sq unit
53 (d)
Required area $= \int_{1}^{1.7} [x] dx$
 $= \int_{1}^{1.7} dx = 1.7 - 1 = 0.7 = \frac{7}{10}$
54 (d)
Equation of circle is $x^{2} + y^{2} = 16$
 \therefore Total area of circle $= A_{1} + A_{2} = 16\pi$...(i)

$$\int_{x=1}^{y_{4}} \frac{A_{2}}{A_{1}} \frac{A_{2}}{A_{2}} \frac{A_{2}}{A_{2}} \frac{A_{2}}{A_{2}} = \frac{16\pi}{A_{2}} - 1 \quad [\text{ on dividing Eq. (i) by } A_{2}] \\ \text{and } A_{2} = 2 \int_{1}^{4} \sqrt{16 - x^{2}} dx \\ A_{2} = 2 \left\{ \frac{x}{2} \sqrt{16 - x^{2}} + \frac{16}{2} \sin^{-1} \left(\frac{x}{4}\right) \right\}_{1}^{4} \\ = 2 \left\{ 4\pi - \frac{\sqrt{15}}{2} - 8 \sin^{-1} \left(\frac{1}{4}\right) \right\} \\ = 8\pi - \sqrt{15} - 16 \sin^{-1} \left(\frac{1}{4}\right) \\ \therefore \quad \frac{A_{1}}{A_{2}} = \frac{16\pi}{8\pi - \sqrt{15} - 16 \sin^{-1} \left(\frac{1}{4}\right)} \\ \text{Given equation of ellipse is } \frac{x^{2}}{25} + \frac{y^{2}}{16} = 1 \\ \text{Here, } a = 5, b = 4 \\ \text{We know that the area of an ellipse } \frac{x^{4}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1 \text{ is } \pi ab = \pi(5)(4) = 20\pi \text{ sq unit} \\ 57 \quad (d) \\ \text{Area} = 4 \int_{0}^{1} (1 - x) dx = 4 \left[x - \frac{x^{2}}{2} \right]_{0}^{1} \\ = 4 \left(1 - \frac{1}{2} \right) = 2 \text{ sq units} \\ \frac{y}{y} = 0, 1 \\ \frac{y}{y} = 0 \\ \text{Hernate} \\ \text{From figure } ABCD \text{ is square, whose diagonals } AC \\ \text{and } BD \text{ are of length 2 unit.} \\ \text{Hence, } \qquad \text{Required area} = \frac{1}{2} \times AC \times BD \\ \end{cases}$$

$$y = ax^{2}$$

$$x' = (0,0) = \frac{y}{y} = \frac{x}{a}$$

$$x' = (0,0) = \frac{y}{y} = \frac{x}{a}$$

$$x' = (0,0) = \frac{y}{y} = \frac{x}{a}$$

$$x' = \frac{y}{a} = \frac{y}{a}$$

$$x' = \frac{y}{a}$$

$$x' = \frac{y}{a} = \frac{y}{a}$$

$$x' = \frac{y}{a}$$

В

60 **(a)**

Required area =
$$2 \int_{0}^{1} (x - x^{3}) dx$$

 $x' = \int_{0}^{y} (x - x^{3}) dx$

$$= 2\left[\frac{x^2}{2} - \frac{x^4}{4}\right]_0^1 = 2\left[\frac{1}{2} - \frac{1}{4}\right] = \frac{1}{2}$$
 sq unit

61 **(c)**

The point of instruction of $y^2 = 4x$ and y = 2x - 4x4 is

$$(2x-4)^{2} = 4x$$

$$(2x-4)^{2} = 4x$$

$$(4,4)$$

$$x' = (4,4)$$

$$y' = 2x-4$$

$$(4,4)$$

$$x' = (4,4)$$

$$y' = 2x-4$$

$$x' = (4,4)$$

$$y' = 2x-4$$

$$x' = (4,4)$$

$$y' = -2x + 4 = 0$$

$$\Rightarrow x = 1,4$$

$$\Rightarrow y = -2,4$$

$$\therefore \text{ Required area}$$

$$\int_{-2}^{4} (\frac{y+4}{2}) dy - \int_{-2}^{4} \frac{y^{2}}{4} dy$$

$$=\frac{1}{2} \times 2 \times 2$$

59 **(a)**

The points of intersection of given curves are (0,0) and

 $\left(\frac{1}{a}, \frac{1}{a}\right)$

$$= \frac{1}{2} \left[\frac{y^2}{2} + 4y \right]_{-2}^4 - \frac{1}{4} \left[\frac{y^3}{3} \right]_{-2}^4$$
$$= \frac{1}{2} \left[8 + 16 - (2 - 8) \right] - \frac{1}{12} \left[64 + 8 \right]$$
$$= 15 - 6 = 9 \text{ sq units}$$

63 **(b)**

Required area $A = \int_{\pi/2}^{\pi} \sin^2 x \, dx$

$$y = \sin^{2} x$$

$$= \frac{1}{2} \int_{\pi/2}^{\pi} (1 - \cos 2x) dx$$

$$= \frac{1}{2} \left[x - \frac{\sin 2x}{2} \right]_{\pi/2}^{\pi}$$

$$= \frac{\pi}{4} \text{ sq unit}$$

67 **(a)**

Given equation of curve is $y = a\sqrt{x} + bx$. This curve passes through (1, 2)

 $\therefore 2 = a + b \dots(i)$

and area bounded by the curve and line x = 4 and *x*-axis is 8 sq unit, then 71

$$\int_0^4 (a\sqrt{x} + bx)dx = 8$$

$$\Rightarrow \frac{2a}{3} [x^{3/2}]_0^4 + \frac{b}{2} [x^2]_0^4 = 8$$

$$\Rightarrow \frac{2a}{3} \cdot 8 + 8b = 8 \Rightarrow 2a + 3b = 3 \dots (ii)$$

On solving Eqs. (i) and (ii), we get
 $a = 3$ and $b = -1$

68 **(b)**

69

Given. area
$$= \int_{0}^{2} 2^{kx} dx = \frac{3}{\log 2}$$
$$\Rightarrow \left[\frac{2^{kx}}{\log e^2}\right]_{0}^{2} = \frac{3}{\log 2}$$
$$\Rightarrow \frac{2^{2k}}{\log e^2} - \frac{1}{\log e^2} = \frac{3}{\log 2}$$
$$\Rightarrow 2^{2k} - 1 = 3$$
$$\Rightarrow 2^{2k} = 2^{2}$$
$$\Rightarrow 2k = 2$$
$$\Rightarrow k = 1$$
(b)

Required area = $\int_{-\infty}^{\infty} \frac{1}{x^2 + 1} dx$

 $= 2[\tan^{-1} x]_0^\infty = \pi$ sq unit

70 **(d)**

Given the equation of parabola can be rewritten as

$$\left(x - \frac{1}{2}\right)^2 = y - \frac{7}{4}$$

 \therefore Required area $= \int_0^2 [(x + 2) - (x^2 - x + 2)] dx$

$$\int_{0}^{2} (-x^{2} + 2x) dx$$

$$\begin{bmatrix} x^{3} + x^{2} \end{bmatrix}^{2} = \begin{bmatrix} 8 + 4 \end{bmatrix}^{4} = 1$$

$$=\left[-\frac{x^3}{3}+x^2\right]_0 = -\frac{8}{3}+4 = \frac{4}{3}$$
 sq units

(c) Required area = area of $\triangle OAB$

$$y_{\mathbb{A}}$$

$$\begin{array}{c|c} B & y = |x| \\ \hline \\ O & A \\ x = 2 \end{array}$$

 $=\frac{1}{2} \times 2 \times 2 = 2$ sq unit

72 (a)
Required area
$$OABO = \int_{0}^{9} \sqrt{x} \, dx - \int_{3}^{9} \left(\frac{x-3}{2}\right) dx$$

$$= \left(\frac{x^{3/2}}{3/2}\right)_{0}^{9} - \frac{1}{2} \left(\frac{x^{2}}{2} - 3x\right)_{3}^{9}$$

$$\int_{0}^{9} \int_{A(3,0)}^{9} \left(\frac{y}{9,0}\right) dx$$

$$= \left(\frac{2}{3} \cdot 27\right) - \frac{1}{2} \left\{ \left(\frac{81}{2} - 27\right) - \left(\frac{9}{2} - 9\right) \right\}$$

$$= 9 \text{ sq units}$$
73 (d)

(a) The given equation can be rewritten as

$$\frac{(x-\sqrt{2})^2}{2/\pi} + \frac{y^2}{8/\pi} = 1$$
Which represent an ellipse.
Here, $a = \sqrt{\frac{2}{\pi}}$
and $b = \sqrt{\frac{8}{\pi}}$
Area enclosed by an ellipse= πab
 $= \pi \sqrt{\frac{2}{\pi}} \sqrt{\frac{8}{\pi}}$
 $= 4$ sq units
75 (a)
 $S_1 = S_3 = \int_0^4 \frac{x^2}{4} dx$
 $y = 4$
 $y = 4$

77 **(d)**

For
$$c < 1$$
, $\int_{c}^{1} (8x^{2} - x^{5}) dx = \frac{16}{3}$
 $\Rightarrow \frac{8}{3} - \frac{1}{6} - \frac{8c^{3}}{3} + \frac{c^{6}}{6} = \frac{16}{3}$
 $\Rightarrow c^{3} \left[-\frac{8}{3} + \frac{c^{3}}{6} \right] = \frac{13}{6} - \frac{8}{3} + \frac{1}{6} = \frac{17}{6}$
 $\Rightarrow c = -1$ satisfy the above equation
For $c \ge 1$, none of the values of c satisfy the
required condition that
 $\int_{1}^{c} (8x^{2} - x^{5}) dx = \frac{16}{3}$
81 (a)
The given equation of curves are
 $y = \sin x$...(i)
and $y = \cos x$...(ii)
From Eqs. (i) and (ii), we get
 $\sin x = \cos x \Rightarrow x = \frac{\pi}{4}$
 \therefore Required area $= \int_{0}^{\pi/4} (\cos x - \sin x) dx$
 $\int_{0}^{\frac{\pi}{4}} \frac{y = \cos x}{\sqrt{2}} = \frac{y = \sin x}{\sqrt{2}}$
 $= [\sin x + \cos x]_{0}^{\pi/4}$
 $= (\sin \frac{\pi}{4} + \cos \frac{\pi}{4} - \cos 0)$
 $= [\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} - 1]$
 $= \frac{2}{\sqrt{2}} - 1 = (\sqrt{2} - 1)$ sq unit
84 (d)
 $y = [3 + \frac{x^{2}}{4}] = 3, -2 < x < 2$
 $\int_{\frac{\pi}{(-2, 0)}} \frac{x = 1}{x = 10} = \frac{x = 1}{x = 1} (2, 0)^{+x}}$
Required area $= 2\{\int_{0}^{1} (4 - x^{2}) dx - 3\}$
 $= 2\{[4x - \frac{x^{3}}{3}]_{0}^{1} - 3\}$
 $= 2\{[4x - \frac{x^{3}}{3}]_{0}^{1} - 3\}$
 $= 2\{[4 - \frac{1}{3} - 3]$
 $= \frac{4}{3}$ sq unit
87 (d)

Page | 23

The given eqution of curve can be written as $\frac{x^2}{4}$ $+\frac{y^2}{\alpha}=1$ Here, a = 2, b = 3 \therefore Required area = πab $= \pi \times 2 \times 3$ $= 6\pi$ sq units 88 (a) On solving the given curves, we get 93 $y = \pm 1$ and x = -2 \therefore Required aerea = $\left| \int_{-1}^{1} (x_1 - x_2) dy \right|$ $= \left| \int_{-1}^{1} (1 - 3y^2 + 2y^2) dy \right|$ $x + 3y^{2} = 1$ (-2,-1)
(-2,-1)
(-2,-1) $= \left| 2 \int_{0}^{1} (1 - y^2) dy \right|$ $=\left|2\left[y-\frac{y^3}{3}\right]^1\right|$ $=\frac{4}{3}$ sq units 89 (d) Required area = $2\int_{1}^{2}(-x^2+3x-2)dx$ (: both portions are same) $y = x^2 - 3x + 2$ x y = -x^2 + 3x - 2 $= 2 \left[-\frac{x^3}{3} + \frac{3x^2}{2} - 2x \right]^2$ $= 2 \left[-\frac{8}{3} + 6 - 4 - \left(-\frac{1}{3} + \frac{3}{2} - 2 \right) \right]$ $= 2\left[-\frac{8}{2}+2+\frac{5}{6}\right] = \frac{1}{2}$ sq unit 91 **(b)** Let *A* be the required area. Then, $A = \int x \, dy = \int \frac{y^2}{4} \, dy = \left[\frac{y^3}{12}\right]_0^3 = \frac{27}{12} = \frac{9}{4}$

$$= \frac{16a}{3} \text{ sq units}$$

103 (d)
Required area $= \int_{0}^{1} xe^{x} dx - \int_{0}^{1} xe^{-x} dx$
 $= \int_{0}^{1} xe^{x} - e^{x} \int_{0}^{1} - [-xe^{-x}e^{-x}]_{0}^{1} = \frac{2}{e} \text{ sq unit}$
104 (a)
The point intersections of given curves are (2,1) and (-2,1).
 \therefore Required area $= 2 \int_{0}^{1} x dy + 2 \int_{1}^{3} x dy$
 $= 2 \int_{0}^{1} \sqrt{4y} dy + 2 \int_{1}^{3} \sqrt{6-2y} dy$
 $= 4 \left[\frac{y^{3/2}}{3/2} \right]_{0}^{1} + 2 \left[\frac{(6-2y)^{3/2}}{3/2} \times \frac{1}{-2} \right]_{1}^{3}$
 $= \frac{8}{3} + \frac{16}{3} = 8 \text{ sq units}$
105 (b)
Required area of shaded portion *OABCO*
 $= \int_{0}^{4} \left(\sqrt{4x} - \frac{x^{2}}{4} \right) dx$
 $= \left[\frac{2x^{3/2}}{3/2} - \frac{x^{3}}{12} \right]_{0}^{4}$
 $= \left[\frac{32}{3} - \frac{16}{3} \right]$
 $= \frac{13}{3} \text{ sq units}$

106 **(b)** We have,

$$\int_{\pi/3}^{\pi/a} \sin ax \, dx = 3 \Rightarrow \frac{1}{a} \left[1 + \frac{1}{2} \right] = 3 \Rightarrow 2 a = 1$$

$$\Rightarrow a = \frac{1}{2}$$

$$\int_{\frac{1}{2}}^{\frac{1}{2}} \int_{\frac{1}{2}}^{\frac{1}{2}} \int_{\frac{1}{2}}^{\frac{1}{2}$$

$$y = 1 - \frac{1}{a} + 2 = 2$$

$$\Rightarrow a = \sqrt{8} = 2\sqrt{2} \text{ sq unit}$$

Volume =
$$\int_0^1 \pi \ x^2 \ dy - \int_0^1 \pi \ x^2 \ dy$$

= $\pi \int_0^1 9(1-x^2) dy - \pi \int_0^1 9(1-y)^2 \ dy$
= $9\pi \left[\left(y - \frac{y^3}{3} \right) + \frac{(1-y)^3}{3} \right]_0^1$
= $9\pi \left[\left(1 - \frac{1}{3} \right) + \left(0 - \frac{1}{3} \right) \right] = 3\pi$

112 (c)

Required area

$$= 2 \int_{-2}^{-1} \sqrt{x+2} \, dx + \int_{-1}^{2} (-x+\sqrt{x+2}) \, dx$$
$$= \frac{4}{3} \left[(x+2)^{3/2} \right]_{-2}^{-1} + \left[\frac{-x^2}{2} + \frac{2}{3} (x+2)^{3/2} \right]_{-1}^{2}$$
$$= \frac{9}{2} \text{ sq units}$$

113 **(c)**

Required area = area of curve ABCD

Let the required area be A sq. units. Then,

$$A = \int_{0}^{2} (y_{2} - y_{1}) dx$$

$$\Rightarrow A = \int_{0}^{2} \{2^{x} - (2x - x^{2})\} dx$$

$$(0, 1)$$

$$Y$$

$$(x, y_{2})$$

$$(2, 4)$$

$$(1, 1)$$

$$(2, 0)$$

$$(2, 0)$$

$$(2, 0)$$

$$(2, 0)$$

$$(2, 0)$$

$$(2, 0)$$

$$(2, 0)$$

$$(2, 0)$$

$$(2, 0)$$

$$(2, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(2, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3, 0)$$

$$(3$$

115 (d)

Given equation of ellipse is $\frac{x^2}{9} + \frac{y^2}{5} = 1$

To find tangents at the end points of latusrectum we find *ae*,

ie,
$$ae = \sqrt{a^2 - b^2} = \sqrt{4} = 2$$

By symmetry the quadrilateral is rhombus So, area of rhombus is four times the area of the right angled formed by the tangent and axes in the first quadrant

⇒ Equation of tangent at
$$\left[ae, \sqrt{b(1-e^2)}\right] = \left(2, \frac{5}{3}\right)$$

is
 $\frac{2}{9}x + \frac{5}{3} \cdot \frac{y}{5} = 1$
 $\Rightarrow \frac{x}{9/2} + \frac{y}{3} = 1$
 \therefore Area of quadrilateral *ABCD* = 4(area of $\triangle AOB$)
 $= 4\left(\frac{1}{2} \cdot \frac{9}{2} \cdot 3\right) = 27$ sq unit
118 (c)

The intersection points of given curves are (0,0)

and (3,9)

$$\therefore \text{ Required area} = \int_{0}^{3} (3x - x^{2}) dx$$

$$= \left[\frac{3x^{2}}{2} - \frac{x^{3}}{3}\right]_{0}^{3} = \frac{27}{6} = 4.5 \text{ sq units}$$
120 (a)
Required area = $\int_{-1}^{2} y \, dx = \left|\int_{-1}^{0} y \, dx\right| + \int_{0}^{2} y \, dx$

$$= \left|\int_{-1}^{0} x \, dx\right| + \int_{0}^{2} x \, dx$$

$$= \left|\left[\frac{x^{2}}{2}\right]_{-1}^{0}\right| + \left[\frac{x^{2}}{2}\right]_{0}^{2} = \frac{5}{2} \text{ sq unit}$$
Alternate
Required area = Area of $\triangle OAB$ + Area of $\triangle OCD$
 $\frac{1}{2} \times 2 \times 2 + \frac{1}{2} \times 1 \times 1$

$$= \frac{5}{2} \text{ sq units}$$
121 (b)
Curved surface = $\int_{a}^{b} 2 \pi y \sqrt{\left[1 + \left(\frac{dy}{dx}\right)^{2}\right]} dx$
Given that, $a = 2b = 3$ and $y = x + 1$
 $\therefore \frac{dy}{dx} = 1 + 0 \Rightarrow \frac{dy}{dx} = 1$
Therefore, curved surface

$$= \int_{2}^{3} 2\pi (x + 1)\sqrt{[1 + (1)^{2}]} dx$$

$$= 2\sqrt{2}\pi \left[\frac{(x + 1)^{2}}{2}\right]_{2}^{3} = \sqrt{2}\pi (16 - 9) = 7\pi\sqrt{2}$$
122 (a)
Required area = $2 \int_{1}^{4} \sqrt{x} \, dx$

 $= 2 \left[\frac{2}{3} x^{3/2} \right]_{1}^{4} = \frac{4}{3} [8-1] = \frac{28}{3} \text{ sq units}$ 123 (b) Area of curve $OAB = 2 \int_{0}^{a^2} x \, dy$ $(-a,a^2)A \xrightarrow{V_{\text{Tre}}} B(a,a^2)$ $= 2 \int_{0}^{a^{2}} \sqrt{y} \, dy = 2 \left[\frac{y^{3/2}}{3/2} \right]_{a}^{a^{2}}$ $=\frac{4}{3}[a^3]$ Now, Area of $\triangle OAB = \frac{1}{2} \times AB \times OC$ $=\frac{1}{2} \times 2a \times a^2 = a^3$ $\therefore \frac{Area \text{ of } \Delta AOB}{Area \text{ of curve } AOB} = \frac{a^3}{\frac{4}{3}a^3} = \frac{3}{4}$ 124 (b) Area bounded by curves $y = 2^{kx}$ and x = 0 and x = 2 is given by $A = \int_{-\infty}^{2} 2^{kx} dx$ $= \left[\frac{2^{kx}}{k\log 2}\right]_0^2 = \left[\frac{2^{2k}-1}{k\log 2}\right]$ But $A = \frac{3}{\log 2}$ $\therefore \frac{2^{2k} - 1}{k \log 2} = \frac{3}{\log 2} \Rightarrow 2^{2k} - 1 = 3k$ This, relation is satisfied by only option (b) 127 (b) Required volume = $\pi \int_{-1}^{1} y^2 dx = 2\pi \int_{0}^{1} x^4 dx$ $=2\pi \left[\frac{x^5}{5}\right]_{0}^{1} = \frac{2\pi}{5}$ cu unit $x' \leftarrow O_{(0,0)}$ y = 1128 (a)

The required volume of the segment is generated by revolving the area *ABCA* of the circle $x^2 + y^2 = a^2$ about the *x*-axis and for the arc *BA*.

Here, CA = hand OA = a [given] $\therefore OC = OA - CA = a - h$ $\therefore x$ varies from a - h to a

 $\therefore \text{ The required volume} = \int_{a-h}^{a} \pi y^{2} dx$ $= \pi \int_{a-h}^{a} (a^{2} - x^{2}) dx = \pi \left[a^{2}x - \frac{1}{3}x^{3} \right]_{a-h}^{a}$ $= \pi \left[\left(a^{3} - \frac{1}{3}a^{3} \right) - \left\{ a^{3} - a^{2}h - \frac{1}{3}(a^{3} - 3a^{2}h + 3ah^{2} - h^{3}) \right\} \right]$ $= \pi \left[a^{2}h - a^{2}h + ah^{2} - \frac{1}{3}h^{3} \right]$ $= \frac{1}{3}\pi h^{2}(3a - h)$

129 (b)

1

Required area

$$= \int_{0}^{2} [2^{x} - (2x - 2^{2})] dx$$

$$= \left[\frac{2^{x}}{\log 2} - x^{2} + \frac{x^{3}}{3}\right]_{0}^{2}$$

$$= \frac{4}{\log 2} - 4 + \frac{8}{3} - \frac{1}{\log 2}$$

$$= \left(\frac{3}{\log 2} - \frac{4}{3}\right) \text{ sq unit}$$
30 **(b)**
Required area = $\int_{q}^{p} ce^{x} dx$

$$= [ce^{x}]_{q}^{p}$$

$$= c[e^{p} - e^{q}]$$

= f(p) - f(q)

$$y$$

 0
 $x = q$ $x = p$

132 (b)

Given equation of curve is $y^2(2a - x) = x^3$

Which is symmetrical about *x*-axis and passes through origin

Also,
$$\frac{x^3}{2a-x} < 0$$

For $x > 2a$ or $x < 0$
So, curve does not lie in $x > 2a$ and $x < 0$,
therefore curve lies wholly on $0 \le x \le 2a$
 \therefore Required area $= \int_0^{2a} \frac{x^{3/2}}{\sqrt{2a-x}} dx$
Put $x = 2a \sin^2 \theta$
 $\Rightarrow dx = 2a \cdot 2 \sin \theta + \cos \theta d\theta$
 \therefore Required area $= \int_0^{\pi/2} 8a^2 \sin^4 \theta d\theta$
 $= 8a^2 \left[\frac{3}{4} \cdot \frac{1}{2} \cdot \frac{\pi}{2}\right]$ (using gamma function)
 $= \frac{3\pi a^2}{2}$ sq unit

133 (c)

Required area =
$$2 \int_0^a \sqrt{4ax} dx$$

= $4\sqrt{a} \times \frac{2}{3} [x^{3/2}]_0^a = \frac{8}{3} a^2$ sq unit

134 **(c)**

Let $y^2 = 4ax$ be a parabola and let x = b be a double ordinate. Then,

 A_1 = Area enclosed by the parabola $y^2 = 4ax$ and the double ordinate x = b

$$\Rightarrow A_1 = 2 \int_0^b y \, dx = 2 \int_0^b \sqrt{4ax} \, dx = 4\sqrt{a} \int_0^b \sqrt{x^3} \, dx$$
$$\Rightarrow A_1 = 4\sqrt{a} \left[\frac{2}{3}x^{3/2}\right]_0^b = 4\sqrt{a} \times \frac{2}{3}b^{3/2}$$
$$= \frac{8}{3}a^{1/2}b^{3/2}$$

And, A_2 = Area of the rectangle *ABCD* $\Rightarrow A_2 = AB \times AD = 2\sqrt{4ab} \times b = 4 a^{1/2}b^{3/2}$ $\therefore A_1 : A_2 = 8/3 a^{1/2}b^{3/2} : 4 a^{1/2}b^{3/2} = 2/3 : 1$ = 2 : 3

136 **(b)**

The curve $y^2(2a - x) = x^3$ is symmetrical about *x*-axis and passes through origin.

Also, $\frac{x^3}{2a-x} < 0$ for x > 2a and x < 0So, curve does not lie in x > 2a and x < 0, therefore curves lies wholly on $0 \le x \le 2a$ \therefore Requried area $= \int_0^{2a} \frac{x^{3/2}}{\sqrt{2a-x}} dx$ Put $x = 2a\sin^2\theta$ $\Rightarrow 0 dx = 4a \sin\theta \cos\theta d\theta$ \therefore Requried area $= \int_0^{\frac{\pi}{2}} 8a^2 \sin^4\theta d\theta$ $= 8a^2 \left[\frac{3}{4} \cdot \frac{1}{2} \cdot \frac{\pi}{2}\right]$

$$=\frac{3\pi a^2}{2}$$
 sq unit

137 **(b)**

Intersection points of given curves are (-1,0) and (3,0)

Required area =
$$\int_{-1}^{3} (-x^{2} + 2x + 3) dx$$
$$= \left[\frac{x^{3}}{3} + \frac{2x^{2}}{2} + 3x \right]_{-1}^{3}$$
$$= \left[-9 + 9 + 9 - \left(\frac{1}{3} + 1 - 3 \right) \right]$$
$$= \frac{32}{3} \text{ sq units}$$

138 **(b)**

Given curve $a^4y^2 = (2a - x)x^5$ Cut off x-axis, when y = 0 $0 = (2a - x)x^5$ $\therefore x = 0, 2a$ Hence, the area bounded by the curve $a^4y^2 = (2a - x)x^5$ is

$$A_{1} = \int_{0}^{2a} \frac{\sqrt{(2a-x)}x^{5/2}}{a^{2}} dx$$
Put $x = 2a \sin^{2} \theta$
 $\therefore dx = 4a \sin \theta \cos \theta d\theta$
 $\therefore A_{1}$

$$= \int_{0}^{\pi/2} \frac{\sqrt{2a} \cos \theta (2a)^{5/2} \sin^{5} \theta 4a \sin \theta \cos \theta}{a^{2}} d\theta$$

$$= 32a^{2} \int_{0}^{\pi/2} \sin^{6} \theta \cos^{2} \theta d\theta$$

$$= 32a^{2} \cdot \frac{(5\cdot3\cdot1)(1)}{8\cdot6\cdot4\cdot2} \cdot \frac{\pi}{2} \text{ (by walli's formula)}$$

$$= \frac{5\pi a^{2}}{8}$$
Area of circle, $A_{2} = \pi a^{2}$
 $\therefore \frac{A_{1}}{A_{2}} = \frac{5}{8}$
 $\Rightarrow A_{1}: A_{2} = 5: 8$
139 (d)
Required area $= \int_{0}^{1} (\sqrt{x} - x^{2}) dx$

$$= \left[\frac{2x^{3/2}}{3} - \frac{x^{3}}{3} \right]_{0}^{1} = \left(\frac{2}{3} - \frac{1}{3} \right) = \frac{1}{3} \text{ sq unit}$$
142 (c)
We have,
 $A_{1} = \int_{0}^{\pi/4} \sin x \, dx = \left[-\cos x \right]_{0}^{\pi/4} = \frac{\sqrt{2} - 1}{\sqrt{2}}$
 $= 1 - \frac{1}{\sqrt{2}} \dots (i)$
Let A_{1} be the required area. Then,
 $A_{1} = \int_{0}^{\pi/4} \cos x \, dx = \left[\sin x \right]_{0}^{\pi/4} = \frac{1}{\sqrt{2}} \dots (ii)$
From (i) and (ii), we have
Required area $A_{1} = 1 - A$

143 **(b)**

Required area = Area of rectangle *OABC* –Area of curve *OABO*

$$(0, \frac{\pi}{4}) c$$

$$(1, \frac{\pi}{4}) c$$

$$(1,$$

144 **(b)**

Required area =
$$2 \int_{1}^{3} \sqrt{9 - x^{2}} dx$$

= $2 \cdot \frac{1}{2} \left[x \sqrt{9 - x^{2}} + 9 \sin^{-1} \frac{x}{3} \right]_{1}^{3}$

 $x = \frac{1}{2} \left[x \sqrt{9 - x^{2}} + 9 \sin^{-1} \frac{x}{3} \right]_{1}^{3}$

 $x = \frac{1}{2} \left[9 \sin^{-1}(1) - \sqrt{8} - 9 \sin^{-1}(\frac{1}{3}) \right]$
= $\left[9 \left\{ \cos^{-1}(\frac{1}{3}) \right\} - \sqrt{8} \right] \left[\because \cos^{-1}\theta = \frac{\pi}{2} - \sin^{-1}\theta \right]$
= $\left[9 \sec^{-1}(3) - \sqrt{8} \right] \operatorname{sq unit}$
145 (c)
Required area = $\int_{0}^{1} (x_{2} - x_{1}) dy$
= $\int_{0}^{1} (\sqrt{4 - y^{2}} - \sqrt{3} y) dy$
= $\left[\frac{1}{2} y \sqrt{4 - y^{2}} + \frac{1}{2} (4) \sin^{-1} \frac{y}{2} - \frac{\sqrt{3} y^{2}}{2} \right]_{0}^{1}$

 $=\frac{\sqrt{3}}{2}+\sin^{-1}\left(\frac{1}{2}\right)-\frac{\sqrt{3}}{2}-2\sin^{-1}0$

$$= \frac{\pi}{3} \text{ sq units}$$
Alternate
$$= \text{Area} = \frac{\theta}{360^{\circ}} \times \pi r^{2}$$

$$= \frac{30}{360} \times \pi (2)^{2}$$

$$= \frac{\pi}{3} \text{ sq units}$$

148 (d)

Given equation of circle and line are $x^2 + y^2 = 1$...(i) and x + y = 1 ...(ii) From Eqs. (i) and (ii), $x^2 + (1 - x)^2 = 1$ $\Rightarrow x^2 + 1 + x^2 - 2x = 1$ (0, 1)B $x^2 + y^2 = 10$ $\Rightarrow 2x^2 - 2x = 0 \Rightarrow 2x(x - 1) = 0$ $\Rightarrow x = 0, x = 1 \Rightarrow y = 1, y = 0$: Point of intersection of circle and line are *A*(1,0) and *B*(0,1) \therefore Required area = $\int_0^1 \left[\sqrt{1-x^2} - (1-x) \right] dx$ $= \left[\frac{x\sqrt{1-x^2}}{2} + \frac{1}{2}\sin^{-1}x - x + \frac{x^2}{2}\right]_0^1$ $=\frac{1}{2}\cdot\frac{\pi}{2}-1+\frac{1}{2}$ $=\left(\frac{\pi}{4}-\frac{1}{2}\right)$ sq unit 149 (c) $: \int_{1}^{b} f(x)dx = (b-1)\sin(3b+4)$ \therefore On differentiating both sides with respect to *b*, we get $f(b) = 3(b-1)\cos(3b+4) + \sin(3b+4)$ $\therefore f(x) = 3(x-1)\cos(3x+4) + \sin(3x+4)$ 150 (c) The required area A is given by $A = \int_{\Omega} (y_1 - y_2) \, dx$ $\Rightarrow A = \int_{a}^{a} \left\{ \frac{b}{a} \sqrt{a^2 - x^2} - \frac{b}{a}(a - x) \right\} dx$

<u>ALITER</u> A = Area of the ellipse in first quadrant – Area of ΔOAB

$$\Rightarrow A = \frac{\pi a b}{4} - \frac{1}{2}ab = \frac{ab}{4}(\pi - 2)$$

151 (b)

The point of intersection of the parabola and the line are

$$A(2,1) \text{ and } B\left(1-\frac{1}{4}\right)$$

$$x^{2} = 4y$$

$$y$$

$$x = 4y^{-2}/4 (2,1)$$

$$x$$

$$\therefore \text{ The requerd area} = \left[\int_{-1}^{2} y \, dx\right] - \left[\int_{-1}^{2} y \, dx\right]$$

$$= \int_{-1}^{2} \frac{1}{4} (x+2) dx - \int_{-1}^{2} \frac{1}{4} x^{2} \, dx$$

$$= \frac{1}{4} \left[\frac{x^{2}}{2} + 2x\right]_{-1}^{2} - \frac{1}{4} \left[\frac{x^{3}}{3}\right]_{-1}^{2} = \frac{9}{8} \text{ sq units}$$

152 (d)

Required area =
$$\int_0^{\pi/4} \tan x dx = [\log \sec x]_0^{\pi/4}$$

$$A_{1} = 2 \int_{0}^{a} \sqrt{4ax} \, dx \text{ and}, A_{2}$$

$$= 2 \int_{0}^{2a} \sqrt{4ax} - 2 \int_{0}^{a} \sqrt{4ax} \, dx$$

$$\Rightarrow A_{1} = \frac{8a^{2}}{3} \text{ and}, A_{2} = \frac{16}{3}\sqrt{2}a^{2} - \frac{8}{3}a^{2}$$

$$\Rightarrow \frac{A_{1}}{A_{2}} = \frac{1}{2\sqrt{2} - 1} - \frac{2\sqrt{2} + 1}{7}$$
154 (a)
Required area

$$A = \int_{-1}^{1} (-x^{2} + 2) dx + \int_{1}^{2} (2x - 1) dx$$

$$= \left[-\frac{x^{3}}{3} + 2x \right]_{-1}^{1} + [x^{2} - x]_{1}^{2}$$

$$= \frac{10}{3} + 2 = \frac{16}{3} \text{ sq unit}$$

156 (a)

Required area = area of $\triangle AOB - \int_0^1 (1 - \sqrt{x})^2 dx$

157 **(c)**

Given area bounded by the curve, $y = \sqrt{3x + 4}$, *x*-axis and the line x = -1 and x = 4 is *A* and area bounded by the curve $y = \sqrt{3x + 4}$ *ie*, $y = \pm (3x + 4)^{1/2}$ *x*-axis and the line x = -1and x = 4 is *B* \therefore *B* = 2*A*

[Since, it is the area of both sides about x-axis]

Now, A: B = A: 2A = 1: 2

Required area = $\int_{0}^{9} \sqrt{x} dx - \int_{3}^{9} \left(\frac{x-3}{2}\right) dx$ $\left(x^{3/2}\right)^{9} = 1 \left(x^{2} - 2\right)^{9}$

$$= \left(\frac{x^{3/2}}{3/2}\right)_0 - \frac{1}{2}\left(\frac{x^2}{2} - 3x\right)_3$$

$$\int_{A(3,0)}^{y} \int_{(0,4)}^{B} \int_{y=|\overline{x}|}^{\overline{x}} \int_{2}^{-\frac{1}{2}} \left\{ \left(\frac{81}{2} - 27 \right) - \left(\frac{9}{2} - 9 \right) \right\}$$

$$= 18 - 9 = 9 \text{ sq unit}$$
160 (a)
Given, $\int_{\pi/4}^{\beta} f(x) dx = \beta \sin \beta + \frac{\pi}{4} \cos \beta + \sqrt{2} \beta$
On differentiating w.r.t. β on both sides, we get
 $f(\beta) = \sin \beta + \beta \cos \beta - \frac{\pi}{4} \sin \beta + \sqrt{2}$
Put $\beta = \frac{\pi}{2}$
Then, $f\left(\frac{\pi}{2}\right) = \sin \frac{\pi}{2} + \frac{\pi}{2} \cos \frac{\pi}{2} + \frac{\pi}{4} \sin \frac{\pi}{2} + \sqrt{2} = 1 - \frac{\pi}{4} + \sqrt{2}$
161 (d)
It is a square of diagonal of length 4 unit and sides
is $2\sqrt{2}$

$$\therefore \text{ Required area, } A = (2\sqrt{2})^2 = 8 \text{ sq unit}$$

163 (c)

Required area =
$$\int_{-\pi/3}^{\pi/3} \sec^2 x \, dx$$

= $[\tan x]_{-\pi/3}^{\pi/3} = 2\sqrt{3}$ sq unit

164 **(c)**

The required area

$$= 2 \times \int_{0}^{4} \sqrt{4 - x} \, dx$$

= $2 \left[\frac{(4 - x)^{3/2}}{3/2} \right]_{0}^{4} = 2 \left[-\frac{2}{3} \times 0 + \frac{2}{3} (4)^{3/2} \right]$
= $\frac{32}{2}$ sq units
165 (c)

Required area = $\int_{-2}^{0} (4 - x^2) dx + \int_{0}^{4} (4 - x) dx$

$$y = x^{2} \qquad y = x$$

$$y = x^{2} \qquad y = x$$

$$y = 4$$

$$(-2, 4)C \qquad B(4, 4)$$

$$x$$

$$= \left[4x - \frac{x^{3}}{3}\right]_{-2}^{0} + \left[4x - \frac{x^{2}}{2}\right]_{0}^{4}$$

$$= 8 - \frac{8}{3} + 8 = \frac{40}{3} \text{ sq unit}$$

175 **(b)**

The intersection points of given curves are (0,0) and (1,1)

$$x' \xrightarrow{(0,0)0} y' \xrightarrow{(1,1)A} y = 2x - x^{2}$$

$$\therefore \text{ Required area} = \int_{0}^{1} [(2x - x^{2}) - x] dx$$

$$= \int_{0}^{1} (x - x^{2}) dx = \left[\frac{x^{2}}{2} - \frac{x^{3}}{3}\right]_{0}^{1}$$

$$= \frac{1}{6} \text{ sq unit}$$

177 (a)
Required area = $2 \int_{0}^{\alpha} \sqrt{4ax} dx$

$$= k(\alpha)(2\sqrt{4a\alpha})$$

$$y \xrightarrow{y^{2} = 4ax} (\alpha, \sqrt{4a\alpha})$$

$$y \xrightarrow{y^{2} = 4ax} (\alpha, \sqrt{4a\alpha})$$

$$x = \alpha$$

$$\frac{8\sqrt{a}}{3} \alpha^{3/2} = 4\sqrt{a}k\alpha^{3/2}$$

$$\Rightarrow k = \frac{2}{3}$$

178 (c)
Required area = $\int_{0}^{1} (\sqrt{x} - x) dx$

$$y \xrightarrow{y^{2} = x} (1, 0)$$

$$x = \alpha$$

$$y \xrightarrow{y^{2} = x} (1, 0)$$

$$x = \frac{\left[\frac{2}{3}x^{3/2} - \frac{x^{2}}{2}\right]_{0}^{1} = \frac{1}{6} \text{ sq unit}}$$

179 (b) Clearly, Required are = $\int a \sin x \, dx = 2a$ 180 **(b)** (1,0) 0 (0,0) Required area = $\int (\sqrt{x} - x) dx = (\frac{2}{3}x^{3/2} - \frac{x^2}{2})_0^1$ $=\frac{2}{3}-\frac{1}{2}=\frac{4-3}{6}=\frac{1}{6}$ sq unit 181 (b) **Required** area $= \left| \int_0^1 (x-1)(x-2)(x-3) dx \right|$ $+\int_{1}^{2} (x-1)(x-2)(x-3)dx$ $+\left|\int_{2}^{3}(x-1)(x-2)(x-3)dx\right|$ 0 $=\frac{9}{4}+\frac{1}{4}+\frac{1}{4}=\frac{11}{4}$ sq unit 183 (d) Required area = $2 \int_{1}^{2} (-x^2 + 3x - 2) dx$ $= 2\left[\frac{-x^3}{3} + \frac{3x^2}{2} - 2x\right]^2$ $y = x^2 - 3x + 2$ x $y = -x^2 + 3x - 2$ 0 $=2\left[-\frac{8}{3}+4-\frac{7}{6}\right]=\frac{1}{3}$ sq unit 185 (c) Let *A* be the *n*,

187 (a)

The points of intersection of given curves are O(0,0) and P(1,1).

$$\therefore \text{ Required area} = \int_0^1 x \, dx - \int_0^1 x^2 \, dx$$

$$y = x^2$$

$$x' + y' = \int_0^1 x^2 \, dx - \int_0^1 x^2 \, dx$$

$$= \left[\frac{x^2}{2} - \frac{x^3}{3}\right]_0^1 = \frac{1}{6} \text{ sq unit}$$

188 (c)

On solving $y = \sqrt{x}$ or $y^2 = x$, $(y \ge 0)$ and $y = x^3$ $y = \frac{y}{A(1, 1)}$ $y = x^3$

We get points of intersection which are (0, 0) and

We get points of intersection which are (0, 0) and (1, 1)

$$\therefore \text{ Required area} = \int_0^1 (\sqrt{x} - x^3) dx$$
$$= \left[\frac{x^{3/2}}{3/2} - \frac{x^4}{4}\right]_0^1 = \frac{5}{12} \text{ sq unit}$$

189 (a)

According to the given condition,

Area of curve
$$= \int_0^a f(x) dx$$

 $\Rightarrow \frac{a^2}{2} + \frac{a}{2} \sin a + \frac{\pi}{2} \cos a$

$$= \int_{0}^{a} f(x) dx$$
On differentiating both sides w.r.t. *a*, we get
$$a + \frac{1}{2} \sin a + \frac{a}{2} \cos a - \frac{\pi}{2} \sin a = f(a)$$

$$\Rightarrow f\left(\frac{\pi}{2}\right) = \frac{\pi}{2} + \frac{1}{2} \sin \frac{\pi}{2} + \frac{\pi}{4} \cos \frac{\pi}{2} - \frac{\pi}{2} \sin \frac{\pi}{2}$$

$$\Rightarrow f\left(\frac{\pi}{2}\right) = \frac{\pi}{2} + \frac{1}{2} - \frac{\pi}{2}$$

$$\Rightarrow f\left(\frac{\pi}{2}\right) = \frac{1}{2}$$
190 (a)
The required area *A* is given by
$$A = \int_{0}^{1} (e^{x} - e^{-x}) dx = e + \frac{1}{e}$$
191 (d)
Since, $|x| = 1$

$$\therefore x = \pm 1$$

$$y = xe^{|-x|} = \left\{ \frac{xe^{-x}, -1 < x < 0}{xe^{x}, 0 \le x < 1} \\ \therefore \text{ Required area} = \left| \int_{-1}^{0} xe^{-x} dx \right| + \left| \int_{0}^{1} xe^{x} dx \right|$$

$$= \left| \{-xe^{-x} - e^{-x}\}_{-1}^{0} \right| + \left| \{xe^{x} - e^{x}\}_{0}^{0} \right|$$

$$= 2 \text{ sq unit}$$
192 (b)
Required area = $2 \int_{0}^{2} \sqrt{8x} dx = 4\sqrt{2} \left[\frac{x^{3/2}}{3/2} \right]_{0}^{2}$

$$= 4\sqrt{2} \left[\frac{2\sqrt{2}}{3/2} \right]$$

$$= \frac{32}{3} \text{ sq units}$$
193 (c)
We have,
$$A_{1} = Area \text{ bounded by the two curves}$$

$$\Rightarrow A_{1} = \int_{0}^{2} \sqrt{6x} dx + \int_{2}^{4} \sqrt{16 - x^{2}} dx$$

$$= \frac{4\sqrt{3} + 16\pi}{3}$$

$$A_{2} = Area \text{ bounded by } x^{2} + y^{2} = 16 \text{ and outside}$$

$$y^{2} = 6x$$

$$\Rightarrow A_{2} = 16 \pi - \frac{4\sqrt{3} + 16 \pi}{3} = \frac{32 \pi - 4\sqrt{3}}{3}$$

$$\therefore \text{ Required ratio = A_{1} : A_{2} = 4 \pi + \sqrt{3} : 8 \pi - \sqrt{3}$$
194 (b)

We have,

$$\pi/2$$

$$A = \int_{0}^{\pi/2} \sin x \, dx = 1$$
Let A_1 be the required area. Then,

$$A_1 = \int_{0}^{\pi/2} \sin 2x \, dx \Rightarrow A_1 = -\frac{1}{2} [\cos 2x]_0^{\pi/2}$$

$$= -\frac{1}{2} [\cos \pi - 1] = 1 = A$$
Clearly, $A_1 = A$
(b)

195 **(b)**

Area of curve
$$MNBA = \int_{2}^{4} \left(1 + \frac{8}{x^{2}}\right) dx$$

$$= \left[x - \frac{8}{x}\right]_{2}^{-4} = 4 \dots (i)$$

Area of curve
$$ACDM = \int_{2}^{a} \left(1 + \frac{6}{x^2}\right) dx$$

= $\left[x - \frac{8}{x}\right]_{2}^{a} = a - \frac{8}{a} - [2 - 4] = a - \frac{8}{a} + 2$ (ii)
Form Eqs. (i) and (ii), we get

$$a - \frac{8}{a} + 2 = \frac{1}{4}(4)$$

$$\Rightarrow a^2 - 8 = 0 \Rightarrow a = 2\sqrt{2} \quad [\because a > 0]$$

196 **(a)**

Let *A* denote the required area. Then,

$$A = \int_{0}^{1} (x_{2} - x_{1}) dy = \int_{0}^{1} \{(x + 1) - (-x + 1)\} dx$$

$$\Rightarrow A = \int_{0}^{1} 2x dx = [x^{2}]_{0}^{1} = 1$$

$$y = -x + 1$$

(0, 1)

$$y = x + 1$$

(0, 1)

$$y = x + 1$$

(1, 0)
(1, 0)
(1, 0)

198 **(d)**

Required area =
$$\int_{0}^{2} y \, dx$$

 $x' = \int_{0}^{2} \frac{x^{2}}{2} \, dx = \left[\frac{x^{3}}{6}\right]_{0}^{2} = \frac{4}{3} \text{ sq units}$
200 (a)
Equation of curve are $y = 0$...(i)
and $y = 4 + 3x - x^{2}$...(ii)
On solving Eqs. (i) and (ii), we get
 $x = -1, 4$
 \therefore Curve does not intersect x-axis between $x = -1$
and $x = 4$
 \therefore Required area = $\int_{-1}^{4} (4 + 3x - x^{2}) \, dx$
 $= \left[4x + \frac{3x^{2}}{2} - \frac{x^{3}}{3}\right]_{-1}^{4}$
 $= \left[16 + 24 - \frac{64}{3} + 4 - \frac{3}{2} - \frac{1}{3}\right]$
 $= 44 - \frac{65}{3} - \frac{3}{2}$
 $= \frac{264 - 130 - 9}{6} = \frac{125}{6} \text{ sq unit}$
203 (c)

The point of intersection of given curves are (0,0) and (1,1).

$$\therefore \text{ Required area} = \int_0^1 (\sqrt{x} - x^3) dx$$

$$= \left[\frac{x^{3/2}}{3/2} - \frac{x^4}{4} \right]_0^1$$

$$= \frac{5}{12} \text{ sq unit}$$
206 (c)
When $x = \frac{\pi}{4}$

$$\int_{x=\pi/4}^{y} y = \tan x$$

 $y = \tan \frac{\pi}{4} = 1$ $\frac{dy}{dx} = \sec^2 x \quad [\because y = \tan x]$ $\Rightarrow \left[\frac{dy}{dx}\right]_{x=\pi/4} = 2$ Equation of tangent at $P\left(\frac{\pi}{4}, 1\right)$ is $y - 1 = 2\left(x - \frac{\pi}{4}\right) \Rightarrow y = 2x + 1 - \frac{\pi}{2}$ It meets x- axis at $T\left(\frac{\pi - 2}{4}, 0\right)$ Required area $= \int_0^{\pi/4} \tan x \, dx - \frac{1}{2}TN \cdot PN$ $= [\log \sec x]_0^{\pi/4} - \frac{1}{2} \cdot \frac{1}{2} \cdot 1$ $\left[\because TN = ON - OT = \frac{\pi}{4} - \frac{\pi - 2}{4} = \frac{1}{2}\right]$ $= \log \sqrt{2} - 0 - \frac{1}{4} = \left(\log \sqrt{2} - \frac{1}{4}\right)$ sq unit

207 (c)

The point of intersection of given curves are (0,0) and (3,-3)

∴ Required area

$$= \text{ area of curve } OAB + \text{ area of curve } OCB$$
$$= \int_{0}^{2} (2x - x^{2}) dx + \left| \int_{0}^{3} (-x) dx \right| \\ - \left| \int_{2}^{3} (2x - x^{2}) dx \right| \\= \left[x^{2} - \frac{x^{3}}{3} \right]_{0}^{2} + \left| \left[-\frac{x^{2}}{2} \right]_{0}^{3} \right| - \left| \left[x^{2} - \frac{x^{3}}{3} \right]_{2}^{3} \right| \\= \frac{4}{3} + \frac{9}{2} - \frac{4}{3} = \frac{9}{2} \text{ sq units} \\ \text{Alternate} \\\text{Area} = \int_{0}^{3} [(2x - x^{2}) - (-x)] dx \\= \int_{0}^{3} (3x - x^{2}) dx = \left[\frac{3x^{2}}{2} - \frac{x^{3}}{3} \right]_{0}^{3} \\= \frac{27}{2} - \frac{27}{3} = \frac{9}{2} \text{ sq units} \\208 \text{ (d)} \\\text{Required area} = 2 \int_{0}^{a} \sqrt{4ax} dx$$

$$y^{2} = 4ax$$

$$x' + \frac{y}{0} + \frac{y^{2}}{3/2} = 4ax$$

$$= 2.2\sqrt{a} \left[\frac{x^{3/2}}{3/2}\right]_{0}^{a} = \frac{8}{3}a^{2} \text{ sq units}$$
209 (c)
$$\therefore \text{ Required volume}$$

$$V = \left|\int_{0}^{1} \pi x^{2} dy\right|$$

$$= \left|\pi \int_{0}^{1} (y^{4} - y) dy\right|$$

$$= \left|\pi \left[\frac{y^{5}}{5} - \frac{y^{2}}{2}\right]_{0}^{1}\right|$$

$$= \left|\pi \left[\frac{1}{5} - \frac{1}{2}\right]\right| = \frac{3\pi}{10}$$

$$y' = \frac{x^{2} = y}{(1, 1)} + x$$

210 (a)

The points of intersection of given curves and line are

$$Q\left(\frac{1}{2},\frac{1}{4}\right) \text{ and } R\left(\frac{-1}{2},\frac{1}{4}\right)$$

$$V = (x+1)^{2} \quad y = (x-1)^{2}$$

$$\frac{1}{4} \quad P_{Q} \quad y = \frac{1}{4}$$

$$x' \quad -\frac{1}{-\frac{1}{2}} \int_{0}^{0} \frac{1}{2} \left\{ (x-1)^{2} - \frac{1}{4} \right\} dx$$

$$= 2 \left\{ \frac{(x-1)^{3}}{3} - \frac{1}{4} x \right\}_{0}^{1/2}$$

$$= 2 \left\{ \frac{(-1/2)^{3}}{3} - \frac{1}{8} - \left(-\frac{1}{3} - 0\right) \right\}$$

$$= \frac{1}{3} \text{ sq unit}$$
2111 (b)

Required area
$$= \int_{0}^{\pi/4} \left(\sqrt{\frac{1 + \sin x}{\cos x}} - \sqrt{\frac{1 - \sin x}{\cos x}} \right) dx$$
$$\therefore \left[\frac{1 + \sin x}{\cos x} > \frac{1 - \sin x}{\cos x} > 0 \right]$$
$$= \int_{0}^{\pi/4} \left(\sqrt{\frac{1 + \frac{2\tan^2 x}{1 + \tan^2 \frac{x}{2}}}{\frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}}} - \sqrt{\frac{1 - \frac{2\tan^2 x}{1 + \tan^2 \frac{x}{2}}}{\frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}}} \right) dx$$
$$= \int_{0}^{\pi/4} \frac{1 + \tan \frac{x}{2} - 1 + \tan \frac{x}{2}}{\sqrt{1 - \tan^2 \frac{x}{2}}} dx$$
$$= \int_{0}^{\pi/4} \frac{2\tan \frac{x}{2}}{\sqrt{1 - \tan^2 \frac{x}{2}}} dx$$
put $\tan \frac{x}{2} = t \Rightarrow \frac{1}{2}\sec^2 \frac{x}{2} dx = dt$
$$\therefore \text{ Required area} = \int_{0}^{\tan \frac{\pi}{8}} \frac{4t dt}{(1 + t^2)\sqrt{1 - t^2}} dt$$
$$[\because \tan \frac{\pi}{8} = \sqrt{2} - 1]$$
214 (d)
Required area = 2 area of curve *PSRQP*

$$\int_{a}^{4a} \sqrt{4 \ ax} \ dx = 4\sqrt{a} \left[\frac{x^{3/2}}{3/2}\right]_{a}^{4a}$$

$$= 2 \int_{a}^{4a} \sqrt{4 \ ax} \ dx = 4\sqrt{a} \left[\frac{x^{3/2}}{3/2}\right]_{a}^{4a}$$

$$= \frac{8}{3}\sqrt{a} \left(8a^{\frac{3}{2}} - a^{\frac{3}{2}}\right) = \frac{56a^{2}}{3} \text{ squnits}$$
215 (c)

$$f(x) = \min\{x + 1, \sqrt{(1 - x)}\}$$

$$= \left\{\frac{x + 1, -1 \le x < 0}{\sqrt{1 - x}, 0 < x \le 1}\right.$$

$$\therefore \text{ Required area}$$

$$= \left|\int_{-1}^{0} (x + 1) dx\right| + \left|\int_{0}^{1} \sqrt{(1 - x)} dx\right|$$

$$= 7/6 \text{ sq unit}$$
217 (c)
Given equation of curves are

$$x^{2} + y^{2} = 16a^{2} \text{ and } y^{2} = 6ax$$

The point of intersection are
$$x = 2a, y = \pm 2\sqrt{3}a$$

$$x = \sqrt{9} + \frac{1}{9} + \frac{2}{9} + \frac{2}{3} +$$

 $\int_{a}^{b} f(x)dx = c$

On differentiating w. r. t. b, we get

$$f(b) = 0 \rightarrow f(x) = 0$$

Required area $= 2 \left[\int_{0}^{4} \sqrt{(25) - x^{2}} dx - \int_{2}^{4} \frac{4 - x^{2}}{4} dx \right]$
 $= 2 \left[\int_{0}^{4} \sqrt{(25) - x^{2}} dx - \int_{2}^{4} \frac{4 - x^{2}}{4} dx \right]$
 $= 2 \left[\left[\frac{x}{2} \sqrt{25 - x^{2}} + \frac{25}{2} \sin^{-1} \frac{x}{5} \right]_{0}^{4} - \frac{1}{4} \left[4x - \frac{x^{2}}{3} \right]_{0}^{2} - \frac{1}{4} \left[4x - \frac{x^{2}}{3} \right$

x = |sinx|

Put
$$x = a \tan \theta$$

$$\Rightarrow dx = a \sec^2 \theta \, d\theta$$

$$\therefore V = 2\pi a^6 \int_0^{\pi/2} \frac{a \sec^2 \theta}{(a^2 + a^2 \tan^2 \theta)^2} \, d\theta$$

$$= \frac{2\pi a^6}{a^3} \int_0^{\pi/2} \cos^2 \theta \, d\theta = 2\pi a^3 \left[\frac{1}{2} \cdot \frac{\pi}{2}\right]$$

$$= \frac{\pi^2 a^3}{2} \text{ cu units}$$

228 (c)

Required area =
$$\int_0^2 x \, dx = \left[\frac{x^2}{2}\right]_0^2 = 2$$
sq units
 $y = -x$
 $x' = 0$
 y'
 y'
 A
 $x = 2$

229 **(d)**

231

Points of intersection are A(0, -1) and B(4,3)

Area =
$$\int_{-1}^{3} (1+y)dy - \int_{-1}^{3} \left(\frac{y^2-1}{2}\right)dy$$

= $\left[y + \frac{y^2}{2}\right]_{1}^{3} - \left[\frac{1}{2}\left(\frac{y^3}{3} - y\right)\right]_{-1}^{3}$
= $\left[3 + \frac{9}{2} - \left(-1 + \frac{1}{2}\right)\right] - \frac{1}{2}\left[9 - 3 - \left(-\frac{1}{3} + 1\right)\right]$
= $8 - \frac{8}{3} = \frac{16}{3}$
(b)

Given, curves are $y^2 = 8x \implies y = \sqrt{8x}$

and
$$x^2 = 8y \implies y = \frac{x^2}{8}$$

 $x^2 = 8y$
 $y = x^2 = 8y$
 $y^2 = 8x$
 $(8, 0)$
 y'

The points of intersection of two curves are (0,0),(8,8)

Now, required area = $\int_{0}^{8} \left(\sqrt{8x} - \frac{x^2}{8} \right) dx$ $= \left[\frac{\sqrt{8x^{3/2}}}{3/2} - \frac{x^3}{8.3} \right]_{0}^{8}$ $= \frac{64}{3} \text{ sq units.}$

232 **(a)**

Intersection point of given curves is (1,1)

$$\therefore \text{ Area} = \int_{0}^{1} (x^{2} - x^{3}) dx$$

$$= \left[\frac{x^{3}}{3} - \frac{x^{4}}{4}\right]_{0}^{1}$$

$$= \frac{1}{12} \text{ sq unit}$$

233 (b)
The required area *A* is given by
 $A = \int_{0}^{\pi/4} (\cos x - \sin x) dx = \sqrt{2} - 1$
234 (b)
Required area = $\int_{\sqrt{3}}^{3} (2 - 12 - x) dx - \int_{\sqrt{3}}^{3} \frac{3}{|x|} dx$

$$= \int_{\sqrt{3}}^{2} x \, dx + \int_{2}^{3} (4 - x) dx - \int_{\sqrt{3}}^{3} \frac{3}{x} dx$$

$$= \left[\frac{x^{2}}{2}\right]_{\sqrt{3}}^{2} + \left[4x - \frac{x^{2}}{2}\right]_{2}^{3} - [3 \log x]_{\sqrt{3}}^{3}$$

B (2,0)

 $x = \sqrt{3}$

x = 3

$$= \frac{1}{2} [4 - 3] + \left[12 - \frac{9}{2} - (8 - 2) \right] - 3[\log 3 - \log \sqrt{3}] = \frac{1}{2} + \frac{3}{2} - 3 \log \frac{3}{\sqrt{3}} = \frac{4}{2} - \frac{3}{2} \log 3 = \frac{4 - 3 \log 3}{2} \text{ sq unit}$$

235 **(a)** Let A denote the required area. Then, $\pi/4$ $\pi/2$ $A = \int_{0}^{\pi/4} (\cos x - \sin x) \, dx + \int_{\pi/4}^{\pi/4} (\sin x - \cos x) \, dx$ $= 2(\sqrt{2} - 1)$ 236 **(d)**

Required area =
$$\int_0^1 (xe^x - xe^{-x})dx$$

= $[xe^x - e^x + xe^{-x} + e^{-x}]_0^1$
= $e - e + \frac{1}{e} + \frac{1}{e} = \frac{2}{e}$ sq unit

DCAM classes synamic Classes for Academic Master