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Single Correct Answer Type

Area bounded by the curve y = (x — 1)(x — 2)(x — 3) and x-axis lying between the ordinates x = 0 and
x = 3isequal to

a) 9/4 b) 11/4 c) 11/2 d)7/4

The area of the region bounded by the curves y = e*,y = log,x and lines

x=1x=2is

a) (e — 1)? b)e?—e+1 c)e’—e+1—2log,2 d)e?+e—2log.2

The value of k for which the area of the figure bounded by the curve y = 8 x? — x°, the straight line x = 1
and x = k and the x-axis is equal to 16/3

a) 2 b)3,8—\/1_7 )3 d) -1

The area bounded by the curve y = x, x-axis and ordinates x = —1tox = 2, is
a) 0 sq unit b) 1/2 sq unit c) 3/2 sq unit d) 5/2 sq unit
The area (in square unit) of the region bounded by the curves 2x = y2 — 1andx = O is

1 2 '
a) 3 Sq unit b) 3 sq unit c) 1squnit d) 2 sq units
The area bounded by the curve y = 4x — x? and the x-axis, is

30 ) 31 ) 32 _ 34 _
a) — sq units b) — 54 units c) 3 5% units d) 3 5% units
The volume of the solid generated by revolving the region bounded by y = x? + 1and y = 2x + 1 about x-
axis is

1041 427 52n
a) G Cu units b) Tc Cu units ) T Cu units d) None of these
The area bounded by the curves |x| + |y| = 1and x? + y2 < 1is
a) 2 sq unit b) 7 sq unit c) (mr — 2) squnit d) (m + 2) sq unit

The area bounded by the curves

y = cos x and y = sin x between the ordinance x = 0 and x = 3711 is
a) (4V2 — 2)sq units b) (4V2 + 2)sq units c) (4V2 — 1)sq units d) (4V2 + 1)sq units
2
Area bounded by the curves y = [2—4 + 2] ,¥ = x — 1 and x = 0 above x-axis is ([. ] denotes the greatest

integer function)
a) 2 sq unit b) 3 sq unit ) 4 sq unit d) None of these
The area bounded by the curve y? = 8x and x? = 8y, is

a) ? Sq. units b) %sq. units ) % SQ. units d) 13—4 SQ. units
The area enclosed between the curve y = log,(x + e)and the coordinate axis is

a) 4 sq units b) 3 sq units ) 2 sq units d) 1 sq unit

If area bounded by the curves y? = 4 ax and y = mx is a?/3, then the value of m is

a) 2 b) —2 c) 1/2 d)1

The area of the figure bounded by the curves y = |[x — 1| and y = 3 — |x| is

a) 2 b) 3 c) 4 d)1

The area bounded by the curves y = V5 — x2andy = |x — 1] is

a) (% - 2) sq units b) y sq units c) y sq units d) (g - 5) sq units

Area bounded by the curve x y? = a?(a — x) and y-axis, is
a)ma?/2 b) m a? c) 3ma? d) 2w a?
x2

2
The area of the ellipse pri i—z =1,is
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a) 7 ab b)%(a2+b2) O 7 (a+h) d) 7 a2 b2

The area bounded by the curve y = xé(r — x)8is

15 6 15 8
T2 X31x4! . ToX6!%8! . T X6!X8! . moX6!%x8!
) ———sq unit b) sq unit €) ———— sq unit d)
15! 15! 15! 15!

The part of circle x? + y? = 9 in between y = 0 and y = 2 is revolved about y-axis. The volume of
generating solid will be

sq unit

a) ?n Cu units b) 12 1 cu jnits c) 16 1 cu units d) 28 1 cu units

The area of the region by curves y = xlogx and y = 2x — 2x? is

a)l sq units b) 3 sq units c) ls units d) None of these
2 % 12 4 121
The area of the region formed by x? + y2 —6x — 4y + 12 < 0,y < xandx < 5/2is

T V3+1 T V341 T V3-1 d) None of these
a)”_ 0=, 9r_

6 8 6 8 6 8

Area bounded by the curve
y =log.x,x = 0,y < 0 and x-axis is

a) 1squnit b) 1/2 sq unit ) 2 sq unit d) None of these
Area bounded by the curves y = |[x — 1|,y = 0 and |x| = 2, is

a) 4 b) 5 c)3 d) 6

The area included between the parabolas y? = 4x and x? = 4y is (in square units)

a) 4/3 b) 1/3 c) 16/3 d) 8/3

The area of region bounded by the curves y =[x — 1| and y = 3 — |x] is

a) 2 sq units b) 3 sq units c) 4 sq units d) 6 sq units

The area bounded by the curves y = x3,y = x? and the ordinates x = 1,x = 2 is
17 12 2 7

a) — b) — c) = d) =

) 12 ) 13 ) 7 ) 2
The area bounded by the graph y = |[x — 3]|, the x-axis and the lines x = —2 and x = 3 is( [.] denotes the
greatest integer function)
a) 7 sq unit b) 15 sq unit c) 21 sq unit d) 28 sq unit
Area bounded by the curve y? = 16x and line y = mx is % then m is equal to
a) 3 b) 4 A1l d) 2
The area enclosed by
y=3x—-5y=0x=3andx =5is

a) 12 sq units b) 13 sq unit d) 14 sq unit

1
c) 13 5 sq unit

The area of the region bounded by the curves y = |x — 2|, x = 1,x = 3 and the x-axis is
a)l b) 2 c)3 d) 4
The area common to the circle x? + y? = 64 and the parabola y? = 4x is

1

a) 36 (4w ++/3) squnit  b) 13—6 (8w —V3)squnit  ¢) % (4w —v/3)squnit  d) None of these

The ratio of the areas between the curves y = cos x and y = cos 2x and x-axis fromx = 0tox = /3 is
a)l:2 b)2:1 c)V3:1 d) None of these

The slope of tangent to a curve y = f(x) at (x, f(x)) is 2x + 1. If the curve passes through the point (1, 2),
then the area of the region bounded by the curve, the x-axis and the line x = 1 is

a) % sq unit b) % sq unit 0) % sq unit d) 6 sq unit

The area bounded by the curvesy = |x| —1andy = —|x| + 1is

) 1sq unit b) 2 sq unit ¢) 22 sq unit d) 4 5q unit

The area of smaller portion bounded by |y| = —x + 1 and y? = 4x is

a) 1 squnit b) 2 sq unit ¢) 3 sq unit d) None of these

If A, is the area enclosed by the curve xy = 1, x-axis and the ordinates x = 1,x = 2; and A, is the area
enclosed by the curve xy = 1, x-axis and the ordinates x = 2, x = 4, then
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a)A, =24, b) A, =2 A, c) 4, =3 A, d) 4, =4,
The area of the region bounded by the parabola (y — 2)? = x — 1, the tangent to the parabola at the point
(2,3) and the x-axis is

a) 6 sq units b) 9 sq units c) 12 sq units d) 3 sq units
The area of the region {(x, y): x> + y2 < 1 < x + y},is

7.[.2

z b) = d
a) g )7 )% )
The length of the parabola y? = 12x cut off by the latusretum is

a) 6[\/5 +log(1 + \/E)] b) 3[\/§ +log(1 + \/i)] c) 6[\/5 —log(1+ \/E)] d) 3[\/5 —log(1 + \/5)]

The area bounded by y = sin™! x = — and x-axis is

=8
N =

V2
)(1+1) it b)(l 1) it
a)|—= sq uni —— sq uni
V2 ! v2)
s
sq unit d (— +—=- 1) sq unit
\/_ LAVNG AN a

The area of the smaller segment cut off from the circle x? + y2 =9 by x = 1is

1
a) > (9sec™! 3 — /8) sq unit b) (9sec™1(3) — V8) sq unit
¢) (V8 —9sec™! 3) sq unit d) None of these
The area of the region bounded by 1 — y? = |x| and |x| + |y| = 1is
a) 1/3 sq unit b) 2/3 sq unit c) 4/3 sq unit d) 1 sq unit
The area between the parabola y? = 4ax and the line y = mx in square units is

542 a? a? a?
a) — b) — - d) —

) 3m )3m3 ) 4m?2 ) 5m
The area bounded by the curves y = sin x between the ordinates x = 0, x = 7 and the x-axis, is
a) 2 sqg. units b) 4 sq. units ) 3 sq. units d) 1 sg. units
The area bounded by |x — 1| < 2and x2 — y% = 1,is
1 1

a) 6\/§+Elog|3+2\/§| b) 6\/§+§10g|3—2\/§|
) 6vV2 —log|3 + 2 V2] d) None of these
The area bounded by y = logx, x-axis and ordinatesx = 1,x = 2 is

1
a) > (log 2)? b) log(2/e) c) log(4/e) d) log4
The area bounded by y = x2 + 1 and the tangents to it drawn from the origin, is
a) 8/3 sq. units b) 1/3 sqg. units c) 2/3 sq. units d) None of these

The area bounded by the x-axis, the curve y = f(x) and the lines x = 1 and x = b is equal to (y/ (b? + 1) —
V2) for all b > 1, then f(x) is

X
a) /(x —1) b) J(x + 1) DRVICEERY d)‘/(1+x2)

The area enclosed between the curves y = sin? x and y = cos? x in the interval 0 < x < m is

a) 2 sq unit b) 1 sq unit c) 1sq unit d) None of these
2

The area bounded by y = sin™x,x = % and x-axis is

1 1
a) (— + 1) sq units b) (1 - —) sq uints

V2 2

sq units d) ( T 1 1) it
——+ ——1]) sq units

\/_ 4\/_ V2 1
The area between the curves x = —2y?and x = 1 — 3y?,
a) 4/3 b) 3/4 c) 3/2 d) 2/3
The area of the region bounded by y = |x — 1| and y = 3 — [x], is
a) 2 b) 3 c) 4 d)1
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The area bounded by y = [x] and the two ordinates x = 1 and x = 1.7 is

17 17 7
a) — b)1 0 — d)—
10 5 10
Line x = 1 divides 4 enclosed by circle x? + y2 = 16 in two portions A; and 4,(4; > A;), then % is
2
a) 4 b) 3 c) 2 d) None of these
2 2
The area enclosed by the curve ’26—5 + 31’—6 =1is
a) 10m sq unit b) 207 sq unit c) 5m sq unit d) 4m sq unit
The area of the figure bounded by the curve |y| = 1 — x?is
a) 2/3 b) 4/3 c) 8/3 d) =5/3
The area enclosed within the curve |x| + |y| = 1is
a) 1sq unit b) 22 sq units ¢) V2 sq units d) 2 sq units
The area bounded by the parabola y? = 4ax and x? = 4ay, is
3 2 2 2
2) 81 b) 16a J 32a d) 64a
3 3 3 3
The area enclosed between the curves y = ax? and x = ay?(a > 0) is 1 sq unit. Then value of a is
1 1 1
a) —= b) = 1l d) =
) 75 )3 ) )3
The area bounded by the curves y = x3 and y = x is
a) 1/2 squnits b) 1/4 sq units c) 1/8 sq units d) 1/16 sq units
The area bounded between the parabola y? = 4x and the line y = 2x — 4 is equal to
17 19 '
a) 3 sq units b) 3 sq units c) 9 sq units d) 15 sq units

The area in square units bounded by the curves y = x3,y = x2 and the ordinates x = 1,x = 2 is
a) 17/12 b) 12/13 c) 2/7 d)7/2
The area bounded by the curve y = sin? x and lines x = g, x = m and x-axis is

Tt Tt T
a) > sq unit b) z sq unit c) 3 sq unit d) None of these
Maximum area of rectangle whose two vertices lies on the x-axis and two on the curve y = 3 — |x|, V|x| <
3,1is
a) 9 sq unit b) 2 sq unit c) 3 sq unit d) None of these

4

The area between the curve y = x sin x and x-axis where 0 < x < 27, is
a) 2m b) 3w c) 4r dr
The area common to the parabolay = 2x? andy = x2 + 4, is

2 3 32 3
a) 3 Sg. units b) 5 SG: units ) 3 Sq. units d) o SQ. units

Ifa curve y = av/x + bx passes through the point (1, 2) and the area bounded by the curves, line x = 4 and

x-axis is 8 sq unit, then
a)a=3b=-1 b)a=3b=1 ca=-3b=1 da=-3b=-1
If the area above the x-axis bounded by the curves y = 25 and x = 0 and 2 is

3
—— then the value of k is

log 2

a)1/2 b) 1 c) —1 d) 2

The area included between the curves y = —— and x-axis is

a) % sq unit b) 7 sq unit ) 2m sq unit d) None of these
The area enclosed between the parabola y = x? — x + 2 and the line y = x + 2 in square unit equals
a) 8/3 b) 1/3 c) 2/3 d) 4/3

Area of region satisfyingx < 2,y < [x|and x = 0 is

a) 1squnit b) 4 sq unit ) 2 sq unit d) None of these

The area bounded by the curves y = v/x, 2y + 3 = x and x-axis in the first quadrant is
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a)o9 b) 27/4 c) 36 d) 18

Area enclosed by the curve

n[4(x—V2)2 +y?] =8is

a) T sq units b) 2 sq units ) 3m sq units d) 4 sq units

The area in square units of the region bounded by the curve x? = 4y, the line x = 2 and the x-axis, is
a)l b) 2/3 c) 4/3 d) 8/3

The parabola y? = 4x and x? = 4 y divide the square region bounded by the lines x = 4,y = 4 and the

coordinate axes. If §;, S5, S5 are respectively the areas of these parts numbered from top to bottom, then

S51:855:83 is

a) 1:1:1 b) 2:1:2 c) 1:2:3 d) 1:2:1
The area bounded by the curve y? = 16x and line y = mx is %, then m is equal to

a) 3 b) 4 1 d) 2

The value of ¢ for which the area of the figure bounded by the curve y = 8x2 — x>, the straight lines x = 1

. 16 .
and x = c and the x-axis is equal to S is

2) 2 b) J& - vi7 3 d) -1

The area bounded by y =2 —x?andx + y = 0 is

7 9
a) 3 Sg. units b) 5S4 units c) 9 sq.units d) None of these
The area bounded by the curve x = acos3t, y = asin3t,is

2 2 2
2) 3ma b) 3ma J 3na d) 3ma?
8 16 32
Area bounded by the parabola x? = 4y and the linex = 4y — 2, is
a) 9/8 b) 9/4 c) 9/2 d)9/7
The area formed by triangular shared region bounded by the curves y = sinx,y = cosx and x = 0 is
a) (V2 — 1) sq unit b) 1 sq unit ¢) V2 sq unit d) (1 +v2) sq unit
The area of the region bounded by the curve y = 2x — x? and the line y = x is
a) 1/2 b) 1/3 c) 1/4 d)1/6
The area bounded by the curvesy = e*,y = e ™ andy = 2,is
a) log(16/e) b) log(4/e) c) 2log(4/e) d) log(8/e)
2

The area boundedbyy =4 —x%2 andy = [3 + xT], where [-] denotes greatest integer function, is
a) 1sq unit b) % sq unit c) % sq unit d) % sq unit
The value of m for which the area included between the curves y? = 4ax and y = mx equals, a?/3 is
a) 1l b) 2 c)3 d) V3
The area boundedbyy =2 — |2 —x|and y = %is

4+3In3 4—-3In3 3 1

- - - b ——— — Z d) =
a) > ) > c)21n3 )2+1n3
The area of the region bounded by the curve 9x2? + 4y? —36 = 0 is
a) 9 1 sq units b) 4 1 sq units ) 36T sq units d) 6 T sq unit
The area of the plane region bounded by the curves x + 2 y2 = 0 and x + 3y? = 1 is equal to

4 5 1 ) 2 )
a) 3 54 uints b) 354 units c) 354 units d) 354 units
The area included between curves y = x2 — 3x + 2andy = —x% + 3x — 2 is
a) % sq unit b) % sq unit ¢) 1squnit d) % sq unit

The area bounded by the curve y? = x and the ordinate x = 36 is divided in the ratio 1 : 7 by the ordinate

x =a.Thena =
a)8 b) 9 c)7 d) o
Area of the region bounded by the curve y? = 4x, y-axis and the line y = 3 is
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a) 2 sq. units b) 9/4 sq. units ¢) 6v/3 sq. units d) None of these
92. The area bounded by the curve y = x + sin x and its inverse function between the ordinates x = 0 and

x = 2m, is

a) 8m sq unit b) 4 sq unit ) 8sq unit d) None of these
93. The area of the region bounded by y = 2x — x?and the x-axis is

8 4 7 2

a) 3 54 units b) 3 54 units c) 3 54 units d) 3 54 units
94. The area of the closed figure bounded by y = 1/ cos?x,x = 0,y = 0 and x = /4, is

a) /4 b)1+n/4 a1 d) 2
95. Area bounded by the curve y = x sin x and x-axis between x = 0 and x = 2x is

a) 21 sq unit b) 37 sq unit c) 4m sq unit d) 5 sq unit

96. The line y = mx bisects the area enclosed by the linesx = 0,y = 0,x = 3/2and thecurvey =1 4+ 4x —
x?. The value of m, is

a) 13/8 b) 13/32 c) 13/16 d) 13/4
97. Area lying between the curves y? = 4x and y = 2x is equal to
a)2/3 b) 1/3 c) 1/4 d)1/2
98. The area contained between the x-axis and one arc of the curve y = cos 3x, is
a)1/3 b) 2/3 c) 2/7 d)2/5
99. The area bounded by the curve y = secx, the x-axis and the lines x = 0 and x = /4, is
1
a) log(V2 + 1) b) log(v2 — 1) c) 5 log?2 d) v2
100. The area of the region bounded by the parabola y = x? + 1 and the straight line x + y = 3 is given by
45 25 T 9
ki o) — d) =
a) — )3 )15 )5
101. The area bounded by the x-axis and the curve y = 4x — x? — 3 is
a) 4/3 b) 3/4 )7 d)3/2

102. The area bounded by the curves
y? = 4a?(x — 1)and lines x = landy = 4a is

16a 16a? d)N fth
a) 4a? sq units b) —- squnits o) 164 sq units ) None of these

103. The area between the curves
y = xe”* and y = xe™* and line x = 1, in square unit, is

b) 0 sq unit

1 2
a) 2 (e + E) sq units ) 2e sq units d) S Sd unit

104. The area (in square unit ) bounded by the curves 4y = x? and 2y = 6 — x? is

a) 8 b) 6 Q) 4 d) 10
105. The area (in square unit)bounded by the curves y? = 4x and x? = 4y in the plane is
8 16 32 64
h b) — td d) =
a) 3 ) 3 c) 3 ) 3

106. The positive value of the parameter 'a’ for which the area of the figure bounded by y = sina x,y = 0,x =
zaand xy=73ais 3, is equal to

a) 2

b) 1/2 0 2 +3‘/§

d)3/2

107. Area bounded by the curves y = x2andy = 2 — x? is
a) 8/3 sq units b) 3/8 sq units c) 3/2 sq units d) None of these

108. The positive value of the parameter ‘a’ for which the area of the figure founded by y = sinax,y = 0,x =
z/aand x=7z/3ais 3, is equal to

a) 2 2+3

b) 1/2 9 d) /3

109. The area between the curve y = 2x* — x?, the x-axis and the ordinates of two minima of the curve is

7 . 9 . 11 . 13 .
a) 7,5 Sq unit b) 155 59 unit ¢) 15, 59 unit d) 7, 59 unit
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120.

121.

122.

123.

124.

If the ordinate x = a divides the area bounded by x-axis part of the curve y =1 + % and the ordinates
x = 2,x = 4 into two equal parts, then a is equal

a) V2 sq unit b) 2v/2 sq unit ¢) 3v2 sq unit d) None of these

The volume of the solid obtained by revolving about y-axis the area enclosed between the ellipse

x% + 9y? = 9 and the straight line x + 3y = 3, in the first quadrant is

a) 3m b)4 c)6™ d)9n
The area of the plane region bounded by the curve x = y? — 2 and the line y = —x is (in square units)
13 2 9 5
a) — b) = c) = d) -
) 3 ) 5 ) 2 ) 2
The area bounded by y = x?+ 2,x-axis,x = land x = 2 is
16 . 17 _ 13 ) 20 )
a) 3 sq units b) 3 sq units ) 3 sq units d) 3 sq units
Area of the region bounded by the curves y = 2%,y = 2x — x?,x = 0 and x = 2 is given by
3 4 b 3 N 4 4 d , 4
a)logZ 3 )logZ 3 C)310g2_§ )3log 3

2 2
The area of the quadrilateral formed by the tangents at the end points of latusrectum to ellipse % + y? =1,

is

a) 27/4 sq unit b) 9 sq unit c) 27/2 sq unit d) 27 sq unit
The area bounded by the loop of the curve ay? = x?(a — x) is equal to

a) 14—5a2 sq unit b) %az sq unit c) ﬁ a? sq unit d) None of these
The area of the closed figure bounded by the curves y = vx,y = V4 —3xandy = 0, is

a) 4/9 b) 8/9 c) 16/9 d)5/9

The area bounded by the curves y = 3x and y = x? is (in square unit)

a) 10 b) 5 c) 4.5 d)9

The area of the figure bounded by the parabolas x = —2y? and x = 1 — 3y? is

a) 8/3 b) 6/3 c) 4/3 d) 2/3

Area bounded by the liens y = x,x = —1,x = 2 and x-axis is

a) 5/2 sq units b) 3/2 sq units c) 1/2 sq unit d) None of these

The part of straight line y = x 4+ 1 between x = 2 and x = 3 is revolved about x-axis, then the curved

surface of the solid thus generated is

2) % b) 71v2 )37 d) 7 /v2

Areabounded by y? = x,y = 0,x = 1,x = 4 is

28 3 8 4
a) — ' b) — ' c) = i d) = i
) 7 54 units )28 sq units ) 3 54 units )3 sq units

The figure shows a AAOB and the parabola y = x2. The ratio of the area of the AAOB to the area of the
region AOB of the parabola y = x? is equal to

3 3 7 5

Z b) = Z d) =
A3 )2 98 )%
If the area above x-axis, bounded by the curves y = 2* and x = 0 and x = 2 is é, then the value of k is
a)1/2 b) 1 c) -1 d) 2
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125. The area between the curves y = cos x, x-axis and the liney = x + 1, is

a)1/2 b) 1 c)3 d) 2
126. The area bounded by the parabola x = 4 — y? and y —axis, in square units, is
3 32 33 16
= b) == = d) —
U533 )3 93 )3

127. The volume of the solid formed by rotating the area enclosed between the curve y = x2 and the liney = 1
about y = 1is (in cubic unit)

It 2T 8t m
- b) — — d)—
a) z ) = ) 3 ) :
128. The volume of spherical cap of height h cut off from a sphere of radius a is equal to
T
a) §h2(3a —h) b) m(a — h)(2a? — h? — ah)
0) 4?nh3 d) None of these above

129. The area of the region bounded by the straight lines x = 0 and x = 2 and the curves y = 2* and
y = 2x — x? is equal to
2 4 3 4 1 4 4 3
a) log 2 log 2 3

3 b) 3 ) log2_§ d)logz_z
130. The area bounded by the curves f(x) = ce*(c > 0), the x-axis and the two ordinates x = p and x = q, is
proportional to

a) f(p)f (@) b) |f (p) — f(@)] o f+f(@ d) V() f (@)
131. The area between x-axis and curve y = cosx when 0 < x < 2 7, is
a) 0 b) 2 03 d) 4

132. Area enclosed between the curves y?(2a — x) = x3 and line x = 2a above x-axis is
a) ma? sq unit b) 3”2—“2 sq unit c) 2ma? sq unit d) 3ma? sq unit

133. The area lying between parabola y? = 4ax and it’s latusrectum is
a) gaz sq unit b) %az sq unit ) gaz sq unit d) None of these

134. Ratio of the area cut off a parabola by any double ordinate is that corresponding rectangle contained by
that double ordinate and its distance from the vertex is

a)1/2 b) 1/3 c) 2/3 d)1
135. The area cut off the parabola 4y = 3x2 by the straight line 2y = 3x + 12 in square units is
a) 16 b) 21 c) 27 d) 36
136. The area bounded by the curve y?(2a — x) = x3 and the line x = 2a is
. 3ma? 3ma? 6ma’
a) 3ma® sq units b) sq units c) sq units d) sq units

137. The area bounded by y = —x2 + 2x + 3andy = 0 is
a) 32 sq units b) 32/3 sq units c) 1/32 sq unit d) 1/3 sq unit

138. The area of the region bounded by the curve a*y? = (2a — x)x? is to that of the circle whose radius is a, is
given by the ratio
a)4:5 b) 5:8 c) 2:3 d)3:2

139. The area bounded by the curves y? = x and y = x? is

a) % sq unit b) 1 sq unit o) % sq unit d) None of these
140. Area common to the curves y = Vxand x = ,/y is
a)l b) 2/3 c) 1/3 d) 4/3
141. The area bounded by the parabola y? = 4ax, latusrectum and x-axis, is
a)o 4 2 a?
b) = a? —a? d) —
)za c) za ) 3

142. If A is the area between the curve y = sin x and x-axis in the interval [0, r /4], then in the same interval,
area between the curve y = cos x and x-axis is
a) A b)ym/2—-A c)1-4 d)A-1
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143.

144.

145.

146.

147.

148.

149.

150.

151.

152.

153.

154.

155.

156.

157.

158.

159.

The area bounded by y = tan™! x, x = 1 and x-axis is

a) (% + log \/7) sq unit b) (% —log \/E) sq unit

o) (% —logVZ + 1) sq unit d) None of these

The area of the smaller segment cut off from the circle x> + y2 = 9byx = 1is
a) % (9 sec™13 — +/8)sq unit b) (9 sec™'3 — V/8)sq unit
c) (V8 — 9 sec™'3)sq unit d) None of the above

Area lying in the first quadrant and bounded by the circle x? + y? = 4, the line x = v/3y and x-axis, is

a) T sq units b) g sq units ) g sq units d) None of these
The area of the figure bounded by y = e¥*™1,y = 0,x = 0and x = 2, is

a)< 2 b) > 2 c)=2 d) None of these
Area bounded by the curves y = x sin x and x-axis between x = 0 and x = 2m is

a)2m b)3m c4m d)5n

The area of region {(x,y): x> + y2 <1 <x+y}is

a) %2 sq unit b) ”72 sq unit ) ”TZ sq unit d) (% — %) sq unit
The area bounded by the curves y = f(x), the x-axis and the ordinates x = 1 and x = bis (b — 1) sin(3b +
4). Then, f(x)is

a) (x — 1) cos(3x + 4) b) sin(3x + 4)

c) sin(3x +4) + 3(x — 1) cos(3x + 4) d) None of the above

2 2
AOB is the positive quadrant of the ellipse 4 Z—Z = 1in which OA = a, OB = b. The area between the arc

2
AB and the chord AB of the ellipse is ’

a)%ab(n+2) b)%ab(n—él) 9 %ab(n—Z) d) None of these
Area bounded by the curve x? = 4y and the straight line x = 4y — 2 is equal to
a) g sq unit b) % sq unit ) g sq unit d) None of these

The area of the region bounded by the curve y = tan x, a line parallel to y-axis at x = % and the x-axis is

1 1 1
a) 7 5 unit b) log V2 + 254 unit c) logV2 — 754 unit d) None of these

Let A, be the area of the parabola y? = 4ax lying between vertex and latusrectum and A, be the area
between latusrectum and double ordinate x = 2a. Then, 4, /A4, =

a)2v2 -1 b) (2v2 +1)/7 o) (2vV2-1)/7 d) None of these
42

The area of the closed igure bounded by x = —1,x = 2and y = {2; _+12 ;C § Ell and the x-axis is
a) ? sq unit b) % sq unit ) % sq unit d) g sq unit
The area bounded by the curve y = log, x and x-axis and the straight line x = e is

1 1
a) e sq.units b) 1 sq. units c)1- S S units d)1+ S 54 units
The area bounded by the curves vx + ﬁ =landx+y=1is
a) 1/3 sq unit b) 1/6 sq unit c) 1/2 sq unit d) None of these
If A is the area of the region bounded by the curve y = v/3x + 4, x-axis and the lines x = —1 and x = 4 and
B is that area bounded by curve y? = 3x + 4, x-axis and the liens x = —1 and x = 4, then A: B is equal to
a) 1:1 b) 2:1 c) 1.2 d) None of these
The area bounded by the curves y = v/x, 2y + 3 = x and x-axis in the Ist quadrant is
a) 9 sq unit b) 27/4 sq unit ) 36 sq unit d) 18 sq unit

The sine and cosine meet each other at number of points and develop the symmetrical area number of
times, area of one such region is
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160.

161.

162.

163.

164.

165.

166.

167.

168.

169.

170.

171.

172.

173.

174.

175.

176.

177.

a) 4V2 b) 3v2 c) 2v2 d) V2

Let f(x) be a non-negative continuous function such that the area bounded by the curve y = f(x), x-axis

and the ordinates x = %and x=3> gisn

(BsinB+gcosB+\/§B) thef(g)s

T T g g
a) (1-7+V2) b) (1-7-2) 9 (z-v2+1) d) (7+v2-1)
The area bounded by the curves y = |x| and y = 4 — |x] is
a) 4 sq unit b) 16 sq unit ) 2 sq unit d) 8 sq unit
The smaller area enclosed by the circle x? + y? = 4 and the line x + y = 2 is equal to
a)2(mr—2) b)m — 2 c2n—-1 dm—1
The area bounded by the curve y = sec? x,y = 0 and |x| = % is
a) V3 sq unit b) V2 sq unit ¢) 2v/3 sq unit d) None of these
The area bounded by the curve x = 4 — y? and the y-axis is
32 16

a) 16 sq units b) 32 sq units c) =354 units d) 3 Sd units
The area bounded by the curve y = x|x/|, x-axis and the ordinates x = 1,x = —1 is given by

1 2
a)0 b) = 9 - d) None of these
The area of the region bounded by x? + y2 — 2y —3 =0and y = |x| + 1, s
ajm b) 2 c) 4r d) /2
The area of the region (in square units) bounded by the curve x? = 4y, line x = 2 and x-axis, is
a)1 b) 2/3 c) 4/3 d) 8/3
The area bounded by x = 1,x = 2, xy = 1 and x-axis is
a) (log2) sq unit b) 2 sq unit c) 1squnit d) None of these

The area of the region for which0 <y <3 —2x—x%?andx > 0, is
3 3 1 3

a)f (3—2x—x?)dx b)f (3-2x—x%dx ) f (3—2x—x?)dx d)f (3—2x—x%)dx
1 0 0 -1

Area bounded by parabola y? = x and straight line 2y = x, is

a)4/3 b) 1 c) 2/3 d)1/3

The area of the triangle formed by the positive x-axis and the normal and tangent to the circle

x% +y? =4at(1,V3),is

a) V3 b) 1/V3 c) 2v3 d) 3v3

The line x = Edivides the area of the region bounded by y = sinx, y = cosx and x-axis (0 <x< g) into

two regions of areas A; and A,. Then A;: A, equals

a) 4:1 b) 3:1 c) 2:1 d) 1:1

x%,x<0
x, x>0

a) ? 5q unit b) ? sq unit c) 43—0 sq unit d) None of these

Area of the region bounded by the curve y = { and theliney = 4is

The area of the closed figure bounded by the curves y = cosx,y =1 + %x andx =m/2,is

T+4 3r—4 3 i
b — d) -
) —; )= )5 )3
The area enclosed between the curves y = x and y = 2x — x? is (in square unit)
1 1 1 1
a) — b) — c) — d) =
) 2 ) 6 ) 3 ) 4
If A,, be the area bounded by the curve y = (tan x)™ and the lines x = 0,y = 0 and x = /4, then for x > 2
1 1 1 d) None of these
a) Ap + Ap_ =7 b) Ap + An_ <——7 ) Ap —An_ =7 )

The area cut off from a parabola by any double ordinate is k times the corresponding rectangle contained
by that double ordinate and its distance from the vertex, then k is
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178.

179.

180.

181.

182.

183.

184.

185.

186.

187.

188.

189.

190.

191.

192.

193.

194.

195.

2 1 3 d)3
a) — b) - c) —
) 3 ) 3 ) 2
The area enclosed between the curves y2 = x and y = |x| is
2 1 1
a) 3 sq unit b) 1 sq unit ) g sq unit d) 3 sq unit

The area of the loop between the curve y = a sin x and x-axis is
a)a b) 2a c) 3a d) 4a
The area of the region bounced by y? = x and y = |x| is

1 . 1 . 2 . d) 1 sq unit
a) 354 unit b) ¢ sd unit c) 354 unit
Area bounded by the curve y = (x — 1)(x — 2)(x — 3) and x-axis lying between the ordinates x = 0 and
x = 3isequal to

a) % sq unit b) % Sq unit c) % sq unit d) 1:5 sq unit
The area included between the parabolas y? = 4ax and x? = 4 by is
a) (8/3)ab b) (16/3)ab c) (4/3)ab d) (5/3)ab
Area include between curves y = x2 —3x + 2andy = —x% + 3x — 2 is

1 1 ' 1
a) g sq unit b) 2 sq unit c) 1 sq unit d) 3 sq unit
The area bounded by the curve y = x3, the x-axis and the ordinates x = —2 and x = 1is
a)17/2 b) 15/2 c) 15/4 d)17/4
The area of the region lying between the line x — y + 2 = 0 and the curve x = ﬁ is
a)9 b) 9/2 c) 10/3 d)5/2
Area lying in the first quadrant and bounded by the curve y = x3 and the line y = 4x, is
a) 2 b) 3 c) 4 d) 5

The area between the parabola y = x? and the line y = x is

a) % sq unit b) % sq unit ) % sq unit d) None of these

The area enclosed between the curves y = x3 and y = v/x is (in square unit)

a)5/3 b) 5/4 c) 5/12 d)12/5

If f (x) be continuous function such that the area bounded by the curve y = f(x), the x-axis and the lines
a? a T

x=aandx = 0157+§sma+§cosa.

Value of f (g) is

1 a a TC
a) 5 b) > c) = d) >
The area of the figure bounded by the curves y = e*,y = e™ and the straightline x = 1 is

1 1 1
a)et- b)e—- Jet-—2 d) None of these
e e e
The area bounded by y = xe!*! and lines |x| = 1,y = 0 s
a) 4 sq unit b) 6 sq unit c) 1sq unit d) 2 sq unit
The area bounded by the parabola y? = 8x and its latusretum in square unit is
a) 16/3 sq units b) 32/3 sq units c) 8/3 sq units d) 64/3 sq units
The areas of the figure into which curve y? = 6x divides the circle x? + y? = 16 are in the ratio
2 47 —+/3 41 ++3 d) None of these
a) = b) —— ) ——
3 8m++3 8m—+/3

If A is the area lying between the curve y = sin x and x-axis between x = 0 and x = /2. Area of the region
between the curve y = sin 2x and x-axis in the same interval is given by

a)A/2 b) A c) 24 d)3/2A4

If the ordinate x = a divides the areaby the curve y = (1 + %) x-axis and the ordinates x = 2,x = 4 into

two equal parts, then the value of a is

Page|11l



196.

197.

198.

199.

200.

201.

202.

203.

204.

205.

206.

207.

208.

209.

210.

211.

a) 2a b) 22 9 % d) None of these

The area of the region bounded by y = |[x — 1|]and y = 1is

a)l b) 2 c)1/2 d) 3/2

If the area bounded by the curve y = f(x), the coordinate axes, and the line x = x; is given by x; e*1. Then,
f(x) equals

a) e* b) x e* c) xe*—e* d)xe* +e*

The area bounded by the curve y = %xz, the x-axis and the ordinate x = 2 is

1 2 4
a) 3 sq units b) 3 sq units c) 1 sq units d) 3 sq units
The area bounded by y = x2,y = [x + 1], x < 1 and the y-axis is
a)1/3 b) 2/3 a1l d)7/3
The area between the curve y = 4 + 3x — x? and x-axis is
a) 125/6 sq unit b) 125/3 sq unit c) 125/2 sq unit d) None of these
In the interval [0,z /2], area lying between the curves y = tanx,y = cot x and x-axis is

1 1 3
a) log2 b) =log 2 c210(—) d) =log2
) log )5 log ) 2log| = ) 5 log

The area bounded by the curve y = f(x) = x* — 2x3 + x? + 3, x-axis and ordinates corresponding to
minimum of the function f(x), isf

a) 1sq unit b) % sq unit c) ? sq unit d) 4 sq unit
The area enclosed between the curves y = x% and y = V/x is
5 5 5 12
a) 3 Sq units b) 1 sq units c) T Sq units d) ?sq units
The area of the figure bounded by |y| = 1 — x? is in square units,
a) 4/3 b) 8/3 c) 16/3 d)5/3
The area bounded by the x-axis, part of the curve y = 1 + % and the ordinates x = 2 and x = 4, is divided

into two equal parts by the ordinate x = a, then the value of 'a’ is

a) 242 b) +2+2 <) +V2 d) £2

Area of the region bounded by the curve y = tan x, tangent drawn to the curve at

T
x = — and the x- axis is

4
1 1 1
a) logV2 b)log\/i+z c) 1og\/§—z d)Z
The area bounded by the curve y = 2x — x? and the liney = —x is
a) 5 54 units b) 3 5 units 0) > sq units d) None of these

The area out off by latusrectum form the parabola y? = 4ax is
a) (8/3) a sq units b) (8/3)/a sq units c) (3/8) a? sq units d) (8/3)a? sq units
The volume of the solid is generated by revolving about the y-axis. The figure bounded by the parabola
y =x?and x = y?is

21 24 3n 5

21 by 2% T a) =
a)gm )5 )10 7k

The area bounded by the curves
y=(x-1%y=(x+1?andy =%is

1 2 1 1
a) 354 unit b) 3 54 unit c) 750 unit d) =54 unit

The area of the region between the curves
1+ sinx d 1 —sinx
= |[——andy = |[——
y cos x y cos x
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Bounded by the line x = 0 and x = g

Va1 t Va1 4t
2) f dt b) f dt
0 (1 +t2)V1 —t2 0 (1 +t2)V1 —t2
V2+1 At V2+1 t
) j dt d) f dt
0 (1+t2)V1 —t2 0 1+ t?)V1 —t?
212. : _x _ P
The area induced between the curves y = py andy = iy .z is given by
4 4 1 4
2 _= b a2 (m—— 2 - d) a2 ( _)
a)a(Zn 3) )a (n 3) c)a(2n+3) )Ja n+3
2 2
213. The area between Z—Z + % = 1 and the straight line E + % =1,is
1 1 1 1 1
= b) - — d) = — -
a)zab )Znab C)4ab )47Tab 2ab
214. The area bounded by the parabola y? = 4ax and the line x = a and x = 4a is
35a? 4q? 7a? 56a?
a by — c) — d
) 3 ) 3 ) 3 ) 3
215. Let f(x) = min{x + 1,,/(1 — x)}, then area bounded by f(x) and x-axis is
a) ﬁ sq unit b) 2 Sq unit c) % sq unit d) % Sq unit

216. The area bounded by the curve y = sin 2x,y —axisand y = 1, is

a) 1 b) 1/4 ¢) /4 d)m/4—1/2
217. The area common to the circle x? + y? = 16a? and the parabola y? = 6ax is

2 2 2

a) % (4w —+/3) squnit  b) % (8r —3)squnit  ¢) 4% (47 +V/3) sq unit d) None of these

218. The area bounded by the parabolas
2
y =4x%y= %andtheliney =2is

5v2 _ 10v2 _ 15v2 _ 20V2
a) N Sq units b) Sq units c) Sq units d)

sq units

219. If the area bounded by the x-axis, the curve y = f(x) and lines x = a and x = b is independent of
b,V b > a (a is a constant), then f is
a) The zero function b) The identity function
c) A non-zero constant function d) None of the above
220. The area bounded by curve
x? +y? = 25,4y = |4 — x?| and x = 0 above the x-axis is

4 4 4
a) 24sin 71 (E) b) 25sin 1 (g) c) 4+ 25sin ! (E) d) None of these
221. The area bounded by the curve x = 3y? — 9 and thelinex = 0,y = 0andy = 1is
a) 8 sq unit b) 8/3 sq unit c) 3/8 sq unit d) 3 sq unit
222. The area of the figure bounded by the curves y? = 2x + landx —y —1=01is
a)2/3 b) 4/3 c) 8/3 d) 16/3
223. The value of a for which the area between the curves y? = 4ax and x? = 4ay is 1 unit, is
2) V3 b) 4 c) 43 d) V3/4
224. The area bounded by y = [sin x|, x-axis and the lines |x| = s
a) 2 sq units b) 3 sq units c) 4 sq units d) None of these
225. The area out of the region bounded by y? = 4ax and x? = 4ay,a > 0 in square unit is
16a? 14a? 13a2 .
a) 3 Sdunits b) 3 S units c) sq units d) 16a* sq units
226. The area enclosed between the curve y = 1 + x?2, the x-axis and the line y = 5 is given by
14 7 16
a) 3 sq units b) 3 sq units c) 5 sq units d) ?sq units

227. The volume of the solid generated by the revolving of the curve
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a3
Y=,z pw; about x- axis is
1
a) Zn3a2 cu units b) m3a? cu units c) En2a3 cu units d) m?a® cu units
228. Area of the region satisfyingx < 2,y = [x| and x > 0 is
a) 4 sq units b) 1 sq units €) 2 sq units d) None of these
229. The area of the figure bounded by
y?=2x+1landx—y=1is
2 4 8 16
Z b) = - d)—
I3 )3 93 )3
230. The area bounded by the curve y = x* — 2x3 + x? + 3 with x-axis and ordinates corresponding to the
minima of y, is

91 30
a)l b) g d) 4
30 9

231. The area bounded by curves

y? = 8x and x? = 8y is

i 64 8

a) 64 sq units b) - 5 units 9 - sq units d) None of these

232. The area (in square unit) of the region enclosed by the curves y = x? and y = x3 is
1 1 1
— b) — = d)1

KT )5 93 )
233. The area bounded by the y-axis,y = cosxand y =sinx,0 < x < mw/4is

a)2(v2-1) b)vV2 -1 A)V2+1 d) V2
234. The area boundedby y =2 — |2 —x|and y = % is

4+ 3log3 4 —3log3 3 1

a) Tg sq unit b) Tg sq unit c) Elog 3 sq unit d) 2 + log 3 sq unit
235. The area of the figure bounded by y = sin x, y = cos x in the first quadrant, is

a) 2(v2-1) b)V3 + 1 Q) 2(vV3-1) d) None of these
236. The area between the curve y = x e* and y = x e and the line x = 1 in square unit, is

a) 2 ( e+ é) sq unit b) 0 sq unit c) 2e sq unit d) 3 sq unit
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8.APPLICATION OF INTEGRALS

: ANSWERKEY :

1) b 2) c 3) b 4) d|189) a 190) a 191) d 192) b
5) b 6) c 7) a 8) c|193) c 194) b 195) b 196) a
9) a 10) ¢ 11) a 12) d|197) c 198) d 199) b 200) a
13) a 14) ¢ 15) b 16) b|201) a 202) b 203) c 204) b
17) a 18) ¢ 19) a 20) c|205) b 206) c 207) c 208) d
21) c 22) a 23) b 24) c|209) c 210) a 211) b 212) a
25) ¢ 26) a 27) b 28) b|213) d 214) d 215) c 216) d
29) d 30) a 31) b 32) b|217) c 218) d 219) a 220) c
33) a 34) b 35) d 36) d|221) b 222) d 223) d 224) c
37) b 38) d 39) a 40) d|225) a 226) d 227) c 228) c
41) b 42) b 43) b 44) a|229) d 230) b 231) b 232) a
45) ¢ 46) ¢ 47) ¢ 48) d|233) b 234) b 235) a 236) d
49) ¢ 50) d 51) a 52) ¢
53) d 54) d 55) b 56) ¢
57) d 58) b 59) a 60) a
61) c 62) a 63) b 64) d
65) ¢ 66) ¢ 67) a 68) b
69) b 70) d 71) ¢ 72) a
73) d 74) b 75) a 76) b
77) d 78) b 79) a 80) a
81) a 82) d 83) c 84) d
85) b 86) b 87) d 88) a
89) d 90) b 91) b 92) <
93) b 94) ¢ 95) ¢ 96) ¢
97) b 98) b 99) a 100) d
101) a 102) b 103) d 104) a
105) b 106) b 107) a 108) b
109) a 110) b 111) a 112) c
113) ¢ 114) d 115) d 116) b
117) b 118) c 119) c 120) a
121) b 122) a 123) b 124) b
125) a 126) b 127) b 128) a
129) b 130) b 131) d 132) b
133) ¢ 134) c 135) ¢ 136) b
137) b 138) b 139) d 140) c
141) b 142) c 143) b 144) b
145) c 146) b 147) c 148) d
149) c 150) c 151) b 152) d
153) b 154) a 155) b 156) a
157) ¢ 158) a 159) b 160) a
161) d 162) b 163) c 164) c
165) c 166) a 167) b 168) a
169) c 170) a 171) c 172) d
173) ¢ 174) b 175) b 176) a
177) a 178) c 179) b 180) b
181) b 182) b 183) d 184) d
185) c 186) c 187) a 188) c

Page]15



8.APPLICATION OF INTEGRALS

: HINTS AND SOLUTIONS :

1
Required area 2
2 Y
A =.f (e* —logex)dx ©0,1)
1 /’,,,—-w‘
. * X' £ X
LN |
/ = logex k “ (O:?)‘“-yz =2 (X+ ;—\\
| V2 ’
X- X ¥
1
-~ Required area = j x dy
-1
1,,2 _ 1
x12 ? =2 4 dy
= [e*]f — |xlogex — | 1ldx )
1 3 1
=e? — e — [xlog.x — x]? _ [y_ _ y]
=e2—e—[2log,2—2—(0—1)] 3 0
—el2_p— 2
e‘—e—2log.2+1 =2 sq unit
3 (b) 3
We have, 7 (a)
k 16 On the solving the given equations of curves, we
f(8x2—x5)dx=? getx = 0,2
1 ~ Required volume
3 61k 2
B x| _16 =nf[(2x+1)2—(x2+1)2]dx
3 6 3 0
! 2
N 8_I<3_k_6 _(§_1>:E =7rf (—x* + 2x% + 4x)dx
3 6 3 6 3 0 ;

3 _ 1,6 _ _ x5 2x3  4x? 1041
= 16k® — k6 —16+1 =32 =n[——+—+— _ sq units
>k®—16k34+47=0=2k3=8+V17 =k 5 3 2 [, 15

1/3
= (8+V17) / 8 (9
Area of square ABCD = 2 sq unit
4 (@ !
Required area B(0, 1)
;
y _, /\
a 1,0/C K/Am, 0) X
X

e X=2 D(0, -1)

x=-1
L Area of circle = m sq unit

0 2 _ o _
f x dxl + f x dx = Required area = ( — 2) sq unit

-1 0 9 (a)

+21° 21? y
= e + PR
2]_1 [2]0 I//Goe,*
:;;/\\ y = sinx
= |—1 + 12| __L;I‘:;).\\fn w2
2 0 i;‘?\x
=2+ =7squnit
5 (b)

Given curve can be rewritten as Required area
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10

12

13

14

x/4
= f (cosx — sinx)dx
0

5m/4
+ f (sinx
/4

— cos x)dx
31t/2
+ f (cosx —sinx)dx
5m/4

s /4
= (sinx + cos x),

+ (—cosx
. 3m/2
- smx)ﬂ/4 + (sinx + cos x)Sﬂ/4
= (4V2 — 2)sq units
(©
—8<x<8=2>y=2
y 72
(0) 32)

° /(1.0
~ Required area = % (1+3)x2
= 4 sq unit
(d)
0
Required area, A = f log,(x + e)dx
1-e

Put x+e=t=dx =dt

e
= f log, t dt
1

= [t log, t — t]§
=(e—e—-0+1)
= 1 sq unit

y

0, 1)

5 ;/1—eO
;

X=—06

(@

The two curves y? = 4 ax and y = mx intersect at

(4a/m?, 4a/m) and the area enclosed by the two
2
curves is given by [ 04a/ m (V4 ax —mx)dx

4a/m?

(\/4ax—mx)dx——:——=—=>m

300
=8=>m=2

(0

Let A be the required area. Then,

15

19

0

A= f{(3+x)—(—x+1)}
1—1

+f{(3—x)—(—x+1)}dx
0

2
+f{(3—x)—(x—1)}dx

0 1 2
=>A= f(2+2x)dx+f2dx+f(4—2x)dx
-1 0
= A=[2x+x%]° + [2x]3 + [4x—x]1—4
y

y=-x+1

{95;3+x X

¥
(b)
Given, y=+45—x%and y = |x — 1|
or y2+x%2=5
and y = |x — 1|
y
y=1-x y=x—1
VRN AD. 4N
\\—1112/
J
~ Required area
2 1 2
=f 5—x2dx—f (1—x)dx—f(x—1)dx
-1 1
_[x 5-— x2+ sin~ ] x
12 2 J‘ T2
[——x]
1+55'n1 +1+ =sin ]
= —sin " — i
2 V5 2 \/_
1-5-(-1-3)
2
1
[2—2— ——1
_2+5 -1
2sm \/_ ~z \/_
5 “1eqy = 1_(57r— .
—251n (D) = e 2 squnl
(a)
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20

22

25

26

Volume of generated solid

=nf02 Zdy—nf 9- yz)dy—n[9y——y]

_ [18 8] _ 46 it
= 3 = 3 T CU units
(o)

-~ Required area

1
= f [(2x — 2x?) — (xlogx)]dx
0

y=xlog x

Ve

(1,0)
y=2x-2x2
2x3  [x? x2\1!
|22t (1 _Z
= [x 3 <2 log x 2 )L

“[s-2-(0- Y- s
= 3 2 —lzsqunl

(a)
Required area = f ey dy‘
0
y
y =log, x
—» X
0

= [[e¥]l;” = 1squnit

()

) x—1,x>1

Given, y=|x—1|={ rtlx<l
34+x,x<0

andy—3—|| { —x,x>0

Onsolvingy =x —landy = 3 — x, we get
x=2y=1
Now, AB? = (2 —
= AB =12
andBC?=(0-2)2+(B3-1)2=8
= BC =22

~ Area of rectangle ABCD = AB X BC
= V2 x 2v/2=4 sq units

()

1D2+(1-0)2=2

2

27

28

29

30

Required area = flz(x3 —x?)dx
)
4 3 1
8 1 1 17
KR
3 4 3 22

(b)
Required area = f3 | [x

=f_1| [x — 3] |dx+f I[x — 3]ldx

flx— Idx+f|x— Idx+f|x—3|dx
f 5- dx+f 4-dx
-1
-1
+j 3-dx
0

2 3
+f 2-dx+f1-dx
1 2

=5(D)+4)+3(D)+2(1)+1(D)
= 15 sq unit
(b)

16/m? 2
Area = f (\/ 16x — mx)dx = 3
0

— 3]ldx

y = mx
V}ﬁ:mx
x T *
(0] X——n?
M v—
v
- 4__ 3/2_— = —
[ 3" 2 ) 3
1 [512 256 _2
m3l 3 21 3
= m3 = 28><3—64
mE=T T
= m=4
(d)

Requred area = j(3x —5)dx
3

_ (3, 5_<75 25) (27 15)
2 7)) T2 2
75 27

48 )
=7—25—7+ 15=7—10=14squn1ts

(@)
3
Required area = f |x — 2|dx
1

= LZ(Z —x)dx + j:(x — 2)dx
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33

34

37

Y
i L/
] |/
8 £°
! : » " X
X A0 1D
dx=1 x=3
y

=2 & 3+2—1 it
= >3 = 1sq uni

Alternate
Area= Area of AAOB + Area of AODC

! 1 1+1 1x1
==-x1X =X 1X
2 2

= 1 sq unit
(@)
We have, L ox+1
dx
= y = x? + x + ¢, it passes through (1, 2)
~c=0
Then,y = x? + x

~ Required area = fol(x2 + x)dx = Z sq unit

(b)

Thelinesarey =x—1,x >0

y=—x—-1,x<0=—-x+1,x=>0and
y=x+1x<0
Required area = (4 X area of A AOB)

1
=4><(—><1><1>
2

= 2 sq unit

(b)
The equation of tangent at (2,3) to the given
parabola is

x=2y—4
x=2y—4
y
X~=Ca0)

~ Required area

3
=f {((y—2)2+1—-2y +4}dy
0
[y —=2)° ’
_[T

—y%+5y
0

_1 9+15+8
3 3

= 9 sq units

39 (a)
The equation of latusrectum of the parabola
y?=12xisx =3
Coordinates of end points of latuserectum are
(3,6) and (3,-6)

3 dy 2
Required length = 2_[ 1+ (—) dx
0 dx
3 6 2
<[ [+ 6)
0
J ’12x + 36

3 x+3

sz + 3x

[

2|f3 2x + 3 4
= —dx

|[0 2Vx?% + 3x

dx

e

3
<x+§)+ x% 4+ 3x

=2 3\/—+—log( +3\/—)——log(3)]

=2[3vZ+3log(3+ 2\/5)5)]
=2[3vV2 + 3log(V2 + 1)]
= 6[\/5 + log(l + \/E)]
40 (d)
Required area

y
032

[ 3
=2 x2+3x+—log

[ )
o

H el

o
x=1

Nl=>

xX=

= Area of recangle OABC — Area of curve 0ABO
/4
siny dy

A

Tz
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41

42

45

]71'/4-

1
[cosy o 1}] sq unit

T
-t rARRs
(b)

The equation of circle is x? + y2 =9

Rzm)
4

X
0O
(©, 0) C(3,0)

B(1,-2J2)
Jx=1

= Area of the smaller segment cut off from the
circle

x%2 +y? =9byx = 1, given by

~ Required area, 4 = 2 f13 V9 — x2dx

1 x13
= 2-—[x\/9—x2+9sin‘1—]
2 34
91 1
= _7—\/5— 9sin~1! (§>]

= 9(z—sm 1( )) \/_]
| \2
[ 1

=19 cos™? (5)—\/5]

= [9sec™'(3) — V8] sq unit

(b)

Since, x| + |y| =1
x+y=1,x>0,y>0
x—y=1x>0,y<0
—-x+y=1,x<0,y>0
-x—-y=1,x<0,y<0

and 1 —y? = |x|

{1—y2=x,x20
=
1-y2=—-xx<0

- Required area = |2 fl (1- x)dx| +

|2f (+ Dax| - 4(5-1-1)
=§squn1t
(<)

Required area

3
=2J Vx2—1dx
-1

3
xVx2—1 1
=2[T—§log|x+\/x2—1

46

48

49

50

53

54

= (x\/xz —1—log|x ++/x?— 1|)?_’1

= 6v2 —log|3 + 2V2|
(0

2
Requred area =f logx dx
1
= [xlogx — x]?
4
=log4 —loge =log (E)
(d)
b
f fG)dx = /(b2 +1) — V2
1

On differentiating both sides w.r.t. b, we get

=2log2 -1

fb) = S
T 1)
Hence, f(x) = ﬁ

(<)

Required area—f/ *(sin? x — cos? x)dx
Y

Ol /4 /2 3n/d n

371'/4 Sll‘l zx 37'[/4-
= —J cos(2x)dx = —[ ]
/4 2 /4
_ 1( C3r n) —1 it
> sin > sin 5) = sq uni
(d)

Required area
= area of rectangle OABC — area of curve OBCO

y H
513 | I— ]
ko' 2) /
pB 2
X5 LA x=1
V2
/.
T (i .
=———| sin
42 0 i
_m i
=1 + [cos y];
1
—t |—=- 1)] sq unit
[4\/‘ (\/_
(d)

Required area = | 11'7[x]dx

1.7 7
=f dx=17-1=07 =—
1

10
(d)
Equation of circle is x% + y? = 16
~ Total area of circle= A, + 4, = 161 ...(i)
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55

57

59

.
&4/(4, 0)

x=1

A _ 16w [on dividing Eq. (i) by 4]

Az Az

and A, = 2f14\/16 — x2dx
x 16 xy\)*
— o 16— 2 4+ —cin-1(Z
A, 2{2 16 —x= + 2sm (4)}1
V15 1
=2 {471 - 8sin™! (Z)}

1
=8m — V15 — 16sin?! (—)

4
A4 l6m
o —= -1
A . 1 (1
2 8m—+15—16sin (Z)
(b)

. . . . x%2 y?

Given equation of ellipse is—=+==1
25 16
Here,a =5,b =4
4 2
We know that the area of an ellipse x—z + y—2 =1is
a b
mab = w(5)(4) = 207 sq unit
(d)
291

1 x
Area=4f (1—x)dx=4[x—7
0 0

1
=4(1—§)=quunits

(1,0 e
X c . (me
41\)

y

Alternate
From figure ABCD is square, whose diagonals AC
and BD are of length 2 unit.

1
Hence, Required area = > X AC X BD

! 2X2
==X
2

= 2 sq units

()

The points of intersection of given curves are
(0,0) and

G2

60

61

. Required area 0ABCO
= area of OCBDO
— area of 0OABDO
1/a X
= j <\/: - ax2> dx =1 [given]
0 a
1 %32 qx3\"*
= (= =—- =1
&5%),
2 1
3a2 3a?
. N P
== =a=— asa
3 V3
(a)
1
Required area = Zf (x — x3)dx
0
{ y=¢$=x

e //[o R

y
_2x2 x41_2[1 17 1 .

B Y M I R

(9]

The point of instruction of y? = 4x and y = 2x —
4is

(2x — 4)%? = 4x

y
y=2x-4

e
(4.,4)

,\2/ y2=4x

4 4
= x2—-5x+4=0
S x-1Dkx-4)=0
=x=14
=y=-24
~ Required area

4 4 .2
y+4) f y
f_z( 2 )Y
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63

67

68

69

il Al

8+16—(2 8)] ——[64+8]

2
= 15— 6 = 9 sq units
(b)
Required area A = f:/z sin? x dx
4

P sin x
ol r i
3

1

s
= —f (1 —cos 2x)dx
2 /2

[ sin Zx]
x —
2 /2

s "
= — sq uni
4 q

(a)

Given equation of curve is y = av/x + bx. This
curve passes through (1, 2)

~2=a+b ..(i)

and area bounded by the curve and line x = 4 and
x-axis is 8 sq unit, then

J4(a\/§ + bx)dx =8

2a 4 b
= ?[x3/2]0 +5lx

>2.8+8)=8 = 2a+3b=3

I =8

(i)
On solving Egs. (i) and (ii), we get
a=3andb =-1
(b)

2

Given. area :.f 2kX dx =
0 log2

2kx 12 3
[logQZL - log 2
22k 1 3
N _ —
log,2 log,2
= 22k-1=3
= 2%k =22

~log2

= 2k =12

= k=1

(b)

Required area= [ x21+1 dx

70

71

72

73

= 2[tan" 1 x]§’ = 1 sq unit

(d)
Given the equation of parabola can be rewritten
as

(c-3) =y
*T3) TV,

. Required area = f
0

2
[((x+2)— (x? —x+2)]dx

2
f (—x?% + 2x)dx
0
x3 ? 8 4 :
— __+x2 :——+4:§S(]unlts
0

3 3
(9
Required area = area of AOAB
Y,
gLy =M
o A X
x=2
1 .
=§><2><2:25qun1t
(a)

9 % /x—3
Required area OABO = f Vx dx — j ( > )dx
0 3

<x3/2>9 1<x2 9
_(22) 1L __3x>
3/2), 2\2 ,

= 9 sq units

(d)

The given equation can be rewritten as
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Which represent an ellipse.

Here, a =

TR

8
and b=\/:
T

Area enclosed by an ellipse= wab

= 4 sq units

75

314
[ ] — sq units

x3/2
Now, SZ+S3—f\/4xdx—2>< 3/2]

32 "
= 3 squnits

16 ]
= S, = —-squnits

3
16 16 16
v 8188y =—1—i—=1:1:1

3 3 3
76 (b)
. 16/m? 2
Required area = fo (V16x — mx)dx = 3

(given)

2 3 xz 16/m2

4X=x2—m— =
zX2—m- i

wi N

77 (d)

Forc <1, fcl(8x2 —x5)dx = ?
8 1 8C3 06 16

$ —— ——
16 8 1 17
6
= c=-1 satlsfy the above equation

For ¢ = 1, none of the values of ¢ satisfy the
required condition that

Cc
f (8x% — x°)dx = 16
1 3
81 (a)
The given equation of curves are
y=sinx ..(i)

and y = cosx ...(ii)

From Egs. (i) and (ii), we get
s
sinx =cosx = x =2

~ Required area = f:/4(cos x —sinx)dx

Y\
y=cos x
f y=sin x

I8 S

4
=s nx+cosx]/
(smn + cosE — cos 0)

4 4

-[1 5]

W2 V2
2

—1 = (v/2—1) squnit
84 (d

(=2, 0){x=10 x=1\(2, 0) X

Required area = 2 {f01(4 —x?)dx — 3}

=24[4x——=| —3
31

1
=2{4-3-3
4 .
=§squmt
87 (d)
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88

89

91

2
X
The given eqution of curve can be written as 7

y?
+ i 1

Here,a =2,b = 3

~ Required area= m ab

=T X2X3

= 61 sq units

(@)

On solving the given curves, we get

y=24landx = -2

~ Required aerea =

1
f (g — xz)dYI
-1

1
f (1-3y*+ 2y2)dy’
-1

X+ 3y?= 1( o

(_ 2v—1 )
v

1
- H) (1—y2)dy‘

31
= Z[y—y?
0
_4 't
=3 Sq units
(d)

Required area = 2 flz(—x2 +3x —2)dx (~ both

portions are same)

O
M=—x2+3x—2
x=1 x=2
x3  3x? 2
3 2 x]
1
=2 8+6 4 <1+3 2)]
- 3 32
=2 8+2+5]—1 it
=2|-3 6—3squn1
(b)

Let A be the required area. Then,

3 3
A—j d—jyzd—y33—27—9
SR E YT T127:
0 0 0

93

95

102

(b)

Given curve can be rewritten as
x-1)?=-(-1)

o
b | (2.0)
o\
y
%
4

X

The curve cut the x-axis at (0,0) and (2,0)

2
~. Required area = f (2x — x*)dx
0

3 2
_ [ _x

31,
=3 Squnits
(o)
Required area = [ x sin x dx + |f2nx sinx dx

0 ™
y
y=—x —
/y=xsinx
7 T 2t X
= {—x cosx + sinx}T + |{—x cos x + sin x}2"
=(r+0)—-0+0)+|(—2r+0)—(r+0)
=n+3m
= 41 sq unit
(b)
On solving y? = 4a?(x — 1)and y = 4a, we get x
=5
y -
] _//,_y—4a
; (1.9A X
0
y’ x=1 x=5

5
~ Required area = f (4a —2aVx — 1)dx
1

~ (x —1)32)°
= [46196 — ZQT:L
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16a
= T sq units

103 (d)
1

Required area :f xe*

1
dx—] xe™* dx
0 0

—X

y
xe
%
1)

= [xe* —

104 (a)
The point intersections of given curves are (2,1)
and (—2,1).

e ]} = - sq unit

1 3

=~ Required area = 2f xdy + ZJ x dy
0 1
y
2=
(O%’)’\ :f’x —4y
(_21)>, MZJ)
X ;// b . \ o
x“=-2(y-3)
Y,
y
1 3
=2f A4y dy+2f J6—2y dy
0
3
N y3 2 L6~ Zy)3/2 L
3/2 2],
_3 + 16 =8 it
=3+ 3 = 8squnits

105 (b)
Required area of shaded portion OABCO
* x2=4y

‘ y2 =4x
%374,4)
, A
000 \ .

N —
M

4 X2

=f (\/4_——> dx
0 4
2x3/2 3]

- [ 3/2 12|,

_ [32 16]

13 3

16 "

=3 sq units

106 (b)
We have,

107

109

110

T/a
1 1
f sinaxdx=3=>a[1+z]=3=>2a=1
/3 a

1
=>a=—
2
¥
0<x<1
y=[x+1]for

O D=

X 1 0 1,00 X

y=[x+1]
for-<x<0
Yl
(a)
Required area = 2 area of curve OABO
y
, Ly =x2
B
(-1,1)0// A(1,1)
X" / o) X X
y‘=2—x2
v
1
~2[ 12~ - @)ax
0
1
= Zf (2 — 2x?)dx
0
_ 4 31 8 "
=4|x—| =3squnits
0
(a)
vy = 2x4 _ x2
_dy
=8x3-2
Ty x x
For maxima or minima, putz—z = 0, we get
1 0 1
S el

Then, (%)le >0, (%)Fo <0
2

and (%)x_l >0
2

=~ Required area = |f 1/2(2354 — x¥)dx| =
— t
—= squni
(b)
) 4 8
~ Area = [, (1 +;) dx

Since, the ordinate x = a divides area into two
equal parts, therefore,
8
+ x—z) dx

fz“(H;)dx:;f:(l

o3, = 33
> | x——] ==|x—-—-
xl, 2 xl,
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\

(0] x=2 x=a x=4

=X

8 1
> (“‘5)‘(2‘4)=§[(4‘2)‘(2‘4)1
= a—§+2:2

a

= a=\/§=2\/§squnit

111 (a)

1 1

nxzdy—fnxzdy

Volume = f
0

0

1 1
=nf 9(1—x2)dy—nf 9(1 —y)?dy
0 0

3 a3t
=9H[<y_%>+u

112 (c)

2

Required area

-1 2
=2f\/x+2dx+f(—x+\/x+2)dx
22 1

— 52 2
[+ 2)%2]73 + [Tx + %(x + 2)3/2]
-1

sq units

N|O W] n

113 ()
Required area= area of curve ABCD

2 %3 2
= f (x% +2)dx = [—+ Zx]
1 3 1

—(8+4) (1+2)
—\3 3
13 "

= 3squnls

114 (d)

Let the required area be A sq. units. Then,

2
A:f(YZ—h)dx
0

2
=>A=f{2"—(2x—x2)}dx
0

=2% f
y=2x<1(2,4)

©,1)

X' 7 | x

o 2.0
y=2x-x2
Yr
3 2
= ” — 2—|-x—
log 2 3 o
Ao 4 +8 1
" log2 3 log2
3 4
“log2 3
115 (d)

2 2
Given equation of ellipse is % + y? =1

YA

g
<5 0 %
=1

Al

To find tangents at the end points of latusrectum
we find ae,

ie,ae =+va?—b2=+4=2

By symmetry the quadrilateral is rhombus

So, area of rhombus is four times the area of the
right angled formed by the tangent and axes in the
first quadrant

= Equation of tangent at [ae, \/m] = (2’5)

1S

~ Area of quadrilateral ABCD = 4(area of A AOB)
19 .
= 4(;-;-3) = 27 sq unit
118 (c)
The intersection points of given curves are (0,0)
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and (3,9)

3
- Required area = f (3x — x®)dx
0

(0,0)

3
3x%2  x3

2 3

27 ]
= — = 4.5 sq units

6
0
0
j ydx
-1

120 (a)
2

Required area = j
-1

2
+Jydx
0

=1,1MD

0
f xdx
-1
x2]° x2])°
R + —_—
BilE!
Alternate
Required area = Area of AOAB + Area of AOCD

2
+fxdx
0

=3 sq uni

1 1
—x2x2+§x1x1

2
j— 5 't
=5 sq units
121 (b)
b dy 2
Curved surface =f 2 my [1 + (—) ]dx
a dx
Giventhata =2b=3andy =x+1
dy dy
a—=14+0=-——=1
dx 0= dx
Therefore, curved surface
3
= f 2n(x + 1)4/[1 + (1)?]dx
? 3
=22 nf (x + 1)dx
2
x+1)?2°
=2V2n [% =2n(16 —9) = 7nV2
2
122 (a)

4
Required area = 2f Vx dx
1

123

124

127

128

2 o4 28
=2 |:§x3/2:|1 = §[8 — 1] = ? Sq units
(b)

aZ
Area of curve OAB = 2 f x dy
0
Y
8]
S
(_ayaZ)A ___.--Q-)——/- B(a,az)
% 0(0,0)
M
a? y3/2
o VY =237
4
— _ 3
3 (@]

1
Now, Area of AOAB = 5 X AB x OC

=5 X 2axa®=ad
Area of A AOB a

3
" Areaofcurve AOB  %,3 4
3

(b)
Area bounded by curves y = 2%* and x = 0 and
x = 2 is given by
2

A= J 2kxdx

0

zkx 2 22k -1
- [klogZL - [klogZ]
ButA = ——

log2

S 2%k—1 3
" klog2 log2
This, relation is satisfied by only option (b)
(b)

1 1
Required volume = nf y?dx = Zﬂf x*dx
-1 0

= 2%k _1 =3k

_, x51_27r "
=2m So—scuunl

y
A
\ / -
= =7’
X 0[(0,0) =
Y
A
(a)

The required volume of the segment is generated
by revolving the area ABCA of the circle
x? + y? = a? about the x-axis and for the arc BA.
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1

X

£
~

Here,CA=h
and OA = a [given]
~0C=04A-CA=a—-h
~ x varies froma —htoa
a
=~ The required volume = f my? dx

a—h
a

a 1
= nf (a? —x¥)dx=m [azx - —x3]
a-h 3

alfr-40)

1
- {a3 —a’h —§(a3

a—h

—3a?h + 3ah? - h3)}]
1
=r [azh — a’h + ah? —§h3]

1
= = mh?(3a~h)

129 (b)
Required area

2
_ f [2% — (2x — 22)]dxx
0

y
y=2"
0,1)
X- ) r\: X
.
2% x3 2
= - 2 -
[logZ X 3 0
4 8 1
= — 44 ——
log 2 3 log2
_( 3 4) it
=\logz 3 sq uni
130 (b)
Required area = fqp ce*dx
- P
- [Cex]q
= c[eP —e1]
=fp)-f@)

X
of 4 =Iq xl=p
132 (b)
Given equation of curve is
y?(2a —x) = x3
y

J

9]

X=2a

‘ X
Which is symmetrical about x-axis and passes
through origin
3
Also, X <0
2a—-x
Forx > 2ao0orx <0

So, curve does not liein x > 2a and x < 0,
therefore curve lies whollyon 0 < x < 2a

. 2a x3/?
« Required area = [[™ ——dx

Putx = 2 asin?0
= dx = 2a-2sin0 + cos 6d0O
~ Required area = fon/z 8a? sin* 0d0

= 8a? [E L. E] (using gamma function)

133
Required area = 2 foa Vdaxdx
2 a 8
— 20,321 = 2 2 :
4+/a x 3[x ]0 7 @” squnit
(©
Let y2 = 4ax be a parabolaand let x = bbe a
double ordinate. Then,

A; = Area enclosed by the parabola y? = 4ax and

the double ordinate x = b
b

b b
=>A1=2fydx=2f\/4axdx=4\/af\/ﬁdx
0 0

0

134

b

2 2
= A; =4Va [§x3/2] = 4/a x §b3/2

0
8

= 2 gl/2p3/2
3a
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136

137

138

A vap

20,6 x

x=b

Vaab

C \ B

Y ¥? =4ax

And, A, = Area of the rectangle ABCD

= A, = AB X AD = 2\4ab x b = 4 a}/2p3/2
Ay A, =8/3a'?p3/% : 41 /2p3/2 =273 : 1
=2:3

(b)
The curve y2(2a — x) = x3 is symmetrical about

x-axis and passes through origin.
3

Also,

<O0forx>2aandx<0
a—x

So, curve does not liein x > 2a and x < 0,

therefore curves lies wholly on 0 < x < 2a
2a ,3/2

~ Requried area = —dx
d o V2a—x
Put x = 2asin?0
= 0dx =4asinBcos06do
2
- Requried area = f 8a’sin*0d 0
0

(b)

Intersection points of given curves are (—1,0) and
(3,0)

3
Required area = f (—x? + 2x + 3)dx
-1

x3  2x? 3
Y R
[3 + > + x]_l

= [—9+9+9—G+1—3>]
32 ]
3 sq units
(b)
Given curve a*y? = (2a — x)x°
Cut off x-axis, wheny = 0
0 = (2a — x)x°
~x=0,2a
Hence, the area bounded by the curve

a*y? = (2a — x)x° is

139

142

A1:

—_——dx
2
0 a

Put x = 2a sin?0

~ dx = 4asin 6 cos 6d0O

Ay

f"/z v2a cos 8(2a)5/2 sin® 0 4a sin 6 cos O "
0 a?

/2
= 32a? f sin® 0 cos? 0 dO
0

=32q2 - E3DD T (by walli’s formula)

8642 2
_ 5ma?
8
Area of circle, A, = ma?
A; 5
T A, 8
= AI:AZ = 5: 8
(d)
Required area = fol(\/E — x%)dx
¥
x2=y
(o) x=1 x
232 ¥ 2 1y 1 _
7373 7 (5‘5) =~ 3 squnt
0
(9
We have,
/4 \/_
2—-1
A= f sinx dx = [~ cosx]7/* =
. V2
1 .
=1- ﬁ (l)
Let A; be the required area. Then,
/4
. /4 1 .
A; = | cosxdx = [sinx],’" = ﬁ .. (i)

0
From (i) and (ii), we have
Required aread; =1—4
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143 (b)
Required area = Area of rectangle OABC —Area of
curve OABO
y
y=m/2
- ==
(0' Z)C B
X
A
T /4
i f tany dy
I
Z [log cos y] /4
T
=2 + log cos — —logcos(0)
I
= Z+ log1 —log\/_— log1

~\

7T 0
i log\/f) sq unit

144 (b)

3

Required area = Zf 9 —x?dx
1

1 x13
=2 E[x 9 — x? +95in‘1§]1
y

A (1,242)
X Q JO
B(1,-2v2)
yl x=1

= [9 sin~1(1) — V8 — 9sin~! (%)]
T

e ) o< 2o
= [9sec™(3) — V8]sq unit
145 ()

16]

1
Required area = f (2, — x1)dy
0

1
=f0 (\/4—y2—\/§y)dy
1 1 V3 y?
=[§y\/4—y2+5(4)sin‘1%— zy L

y

x =3y
30°

(
v,

x2+y?=4

¥

V3 V3
— + sin

1
N el D Y |
> (2) > 2sin™0

148

149

150

s it
= —sq units
3 q

Alternate

X 1r?

= rea—3600
30

=« 2
=350 X"

r it

7 59 units

(d)
Given equation of circle and line are
x2+y2=1 ..(1)
andx +y =1..(i0)
From Egs. (i) and (ii),
2+ (1-x)?%=1
> x2+1+x2-2x=1
3/

0,1)B
( ﬁ\X2+y2= 10
A(1,0)
- X
O A
J’\\

7

= 2x?—2x=0 = 2x(x—1)=0

> x=0x=1=>y=1y=0

~ Point of intersection of circle and line are
A(1,0) and B(0,1)

= Required area = fol[v 1—x2—(1—x)]dx
1
[le -xz 1 x?
=|——F+ssin " x—x+—
2 2],
_ 1n 1+ 1
22 2
_ (n 1) it
=7~ 3) squni
()
b
J f(x)dx = (b—1)sin(3b + 4)
1
- On differentiating both sides with respect to b,
we get

f(b) =3(b—1)cos(3b + 4) +sin(3b + 4)
&~ f(x) =30 —1)cos(3x + 4) + sin(3x + 4)
(<)

The required area A4 is given by

~ o1 -y x
0

> A=

[t ofe
0
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b1 1 x1*
>A=—|zx az—x2+—a25in‘1—]
al2 2
b 21a
+%[(a—x) 15
b (1 b
_Pfr 21 Do 2
> A Sz ¢ sin (1)}+2a(0 ac)
=>A—n b b—ab 2
=gob-gab=7(@=2)

P (x,y;)

Jf
(x yz)Q A (a,0)

LWy
y a2 B
ALITER A = Area of the ellipse in first quadrant -
Area of AOAB
mab 1 ab
= =T—Eab=r(ﬂ—2)
151 (b)
The point of intersection of the parabola and the
line are

1
A(2,1)and B (1 - Z)
y

2 2
= The requerd area = [f y dx] - U y dx]
- -1
21 2 11
=f_1z(x+2)dx—f_lz x2 dx

1[x2+2 r 1[x3]2 9 .
=—=|=+2x| —=|=| =z squnits
4|2 .

43 8
152 (d)
Required area = f:/4 tanxdx = [logsec x]g/4

Y
1p%

= X

f

x

= log sec (%) —logsecO

=logVv2 —log1 = log V2 sq unit

(b)
We have,

153

154

156

157

158

a
A = Zj V4ax dx and, A,
0

2a a
=2f v4ax—2f\/4axdx
0 0

8a? 16 8
= A, = = and, A, = ?\/Eaz —§a2
A, 1 2V2+1
> —== —
Ay 22-1 7
(@)

Required area

1 2
_ 2 -
A= f_l( X +2)dx+£ (2x — 1)dx

x3 !
=[——+2x] + [x% —x]}
-1

3
10 16 _
=?+2 =3 Sq unit
(a)
Required area = area of A AOB — fol(l - \/E)zdx
Yy
X+ |
-
x=0 X‘= 1
1 2x3/2]"
=§><1><1—[x— 3 ]
0
1 :
=35q unit
(9]
Given area bounded by the curve, y = v3x + 4, x-
axis and the line x = —1 and x = 4 is A and area

bounded by the curve y = +/3x + 4
ie,y = +(3x + 4)¥/? x-axis and the line x = —1
andx = 4isB
~B=2A
[Since, it is the area of both sides about x-
axis]
Now, A:B=A:2A=1:2
(a)
Required area = f09 Vxdx — f: (x__3) dx

2
<x3/2>9 1<x2 9
_(2E) L ——3x>

3/2), 2\2 .

Page]31



160

161

163

164

165

y B
— Y= |X
L =X;3.
il
X
(0] (3,0)(9,0)
/]

- 0)-3(%-+)-(-9)

=18 — 9 = 9 sq unit

(@)

Givenf f(x)dx—BsmB+—cosB+\/_B
/4

On differentiating w.r.t. § on both sides, we get
T
f(B) = sinp + BcosB—ZsinB+\/§

i
Put B =

2
3) =

(d)

[t is a square of diagonal of length 4 unit and sides

is 242

¥
(0.4)

y=4-1x
0](0,0)
2
~ Required area, 4 = (2v2)" = 8 sq unit
(<)

Required area = f:ﬁ; sec? x dx

= [tan x]7_t7/13/3 = 23 sq unit
()
y
— x=4- y2
X" X
ko
b

The required area

4
=2va4—xdx

— x)3/
[(4 x)3 2] _2[——><0+ (4)3/2

_ 32 i«
= - squnits

(9

168

172

173

Required area =

1
f x|x| dx
-1

y=x|x|

¥

0
jxlxldx
-1

0 1
f —x2%dx| + fxzdx

311 11
[ ]_5 5__
(a)

: 2
Required area = [; idx
Y,

1
+f x|x|dx
0

xy=1

(0] x=1x=2

= [log|x|]? = log 2 sq unit
(d)

4
Area, Aq =j sin x dx
0

y
| _y=cosx
i ) “"\%
i
X- A1E & \‘ X
0} 4 b
4 2
¥
——[cosx]g/4
_ 1
V2
_V2-1
V2
/2
and area, 4, =f cos x dx
/4
11 V2-1
s 71'/2_[ __]_
= [sinx =1 =
S Tl i R
V2—-1+2-1
A A, = : =1:1
V2 2
()

Required area = f_02(4 —x?)dx + f:(4 — x)dx
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Y
y= X2 y=x

A y=4
(-2,4)C B(4, 4)

0 X
= |4 ll + |4 <)
B AE] P e
=8 8 +8 = 20 it
= 3 = squni

175 (b)

The intersection points of given curves are (0,0)
and (1,1)

y

X5 10.0)0 2 \ X

Y

N

1 x2 31
=] (x—x¥dx = [———
. 2 3],
— 1 1
= £ Squnit
177 (a)
Required area = 2 foa Vdaxdx
= k(a)(2V4aa)
YA y2 =4ax
—(a,\]4aa)
0 » X
X=a
¥a3/2 = 4Jaka®/?
= k= 2
K
178 (c)

1
Required area = f (Vx — x)dx
0

X y=1
y?=x
x- CT\\£{0) ”
' .'\
y
2 2 1
=|-x%%2 ——| ==squnit
L 2|, "6

179 (b)
Clearly,

i
Required are = f asinx dx = 2a
0

180 (b)
Y Aﬁ
47
.0)
O& > X
y2=x
b4
1 , o\
Required area = f(\/E —x)dx = <§x3/2 _ 7)
0 0
_2 1 _4-3_ 1
=373~ =g sduni
181 (b)

Required area

1
f (x—1D(x—2)(x—3)dx
0

2
+ j (x—1(x—2)(x—3)dx
1

+

fg(x Z1)(x — 2)(x — 3)dx
2

X
9 f\/]\y=—x2+3x~2
x=1 x=2
8 7 1
= 2[—§ 4_5] =3 sq unit
185 (c)
Let 4 be the n,
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A= [on-yax
0

0,2) Yo

KRR Q (x,y,)
x7(-2,0) o) dx X

2

5 x? x3
:Azf[(x+2)—(x )]dx=[7+2x—?]o
0

8 10

187 (a)
The points of intersection of given curves are
0 (0,0) and P(1,1).

1 1
~ Required area =f x dx —f x? dx
0

0

yk
y=x FP(1,1)
Y f|
\ /|
4
e \\ o :
/1000 (1.0) *
'y
y
x2 31
= |5 ——=| ==squnit
[2 3]0 61
188 (c)

Onsolvingy = Vxory? = x,(y = 0)andy = x3

We get points of intersection which are (0, 0) and

(1,1

- Required area = fol(\/f —x%)dx
X327 x4t s "
32 4| — 1274

189 (a)
According to the given condition,

a
Area of curve = f f(x)dx
0

a2+a gt "
= — +—=sina + =cosa
2 2 2

= foaf(x)dx

On differentiating both sides w.r.t. a, we get

+1_ +a T @
a+5sina+;cosa 2sma—fa
_ (n)_n+1_n+n T MW
f2 5> tosing +ocoso—osing
- (n)_n+1 8
g)=3%373
T 1
= 13)=3
190 (a)

The required area A4 is given by

1
[
0

1
e X)dx=e+-—
e

191 (d)
Since, |x| =1
~x=x1
x| _ (xeT*,-1<x<0
y=xe _{xex,OSx<1

.. Required area = |f_01 xe"‘dxl T |f01 xexdx|
= [{—xe™* — e} | + |{xe* — e*}}|

= 2 sq unit

(b)
Required area = 2 f V8x dx = 42 [

192

=
b e
I

_4\/_[3/2

32 .
=3sq units
(©
We have,
A = Area bounded by the two curves

193

:AlzjV6xdx+j 16 — x% dx
0

2
_43+16m
B 3
A, = Area bounded by x? + y? = 16 and outside
y2=6x
43+16m 32m—43

~ Requiredratio= A4, : A, =4mw ++3:8m—+3
194 (b)
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We have,
/2

A=f sinxdx =1
0

Let A, be the required area. Then,
/2

1
A = f sin2xdx = A, = —E[cos 2x]701/2
0

1
= —E[cosn—l] =1=4
Clearly,A; = A
(b)
4 8
Area of curve MNBA = f (1 + x—z) dx
2

195

- [x—g]j —4 ..(3)
¥

AR3) 8(4.»—3-)
i
:
:

X5 M 20) D(a0) N@0)

¥

a 8
Area of curve ACDM = f (1 + x_z) dx
2

=[x_§]a=a—§—[2—4]=a_§+2 (ii)
2, " 2

Form Egs. (i) and (ii), we get

8 1
a——+2=-(4)
a 4

= a?2-8=0 =a=2V2 [a>0]
196 (a)
Let A denote the required area. Then,

1 1

A:f(xz—xl)dyzof{(x+1)—(—x+1)}dx

0
1

=>A=f2xdx=[x2](1)=1
0

y=—x+1

(0, 1)

198 (d)

2
Required area = f y dx
0

y
\ x2=2y
’ \\\\-
% oi Iz 4
; x=2
y
_fzxzd _x32_4 .
= 2 x = A —35qums
0

200 (a)
Equation of curve arey = 0 ...(I)
andy = 4 + 3x — x? ..(ii)
On solving Egs. (i) and (ii), we get
x=-1,4
-~ Curve does not intersect x-axis between x = —1
andx = 4

.~ Required area = f_41(4 + 3x — x?)dx

3x2  x31*
= (g + =
[x+ > 3

-1

—[16+24 64+4 3 1]
N 3 2 3

o 65 3
- 3 2

_ 264-130-9

6
(9
The point of intersection of given curves are (0,0)
and (1,1).
y

1,1 —

(1,1) vl
Sy=x°

x" X

~ |

125 .
= sq unit

203

1
= Required area = f (Vx — x3)dx
0

x x4
3/2 4]
=17 Sduni

206 (c)
When x = —
en x = 4

¥

3/2

y =tanx

O T N
X =n/4

;
P (n/4,1) E
1
i
1
i
1]
i

X =n/2
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=t T[—l

y=tan =

£=sec2x [y = tanx]
d
2.,
dx xX=m/4

I
Equation of tangent at P (Z' 1) is

y—1=2(x—%)=>y=2x+1—%

T—2
[t meets x—axisat T (T' 0)

/4 1
Required area = f tanx dx — ETN - PN

0

= [logsec x]g/4 ————— 1

207 (c)
The point of intersection of given curves are
(0,0)and (3,—3)

T00/] g
l (3-3)
y' C

~ Required area
= area of curve OAB
+ area of curve OCB

2 3
= j (2x —x¥)dx + J (—x)dx
0 0

3
f (2x — x®)dx

x3]° 237
=[5 |5 -5
0 2

4

_ +9 4 9 "
=3 +5 3 =3 squnits

Alternate

2
3
x2
2
0

3

Area = f [(2x — x?) — (—x)]dx
0

3 3x2  x371°
=f (3x—x2)dx=[7—?
0 0
27 27 9 ]
=5 373 sq units
208 (d)

a
Required area = 2 f Vdax dx
0

}{/ y?=4ax
' OMS\(&O) X
(0,0)

y
x3/21* 8
=2.2Va ﬁ]o = §a2 sq units
209 (c)
~ Required volume
1

V= f T x? dy‘

0

1
= ﬂf (y‘*—y)dy‘
0
1
-5
5 2]
1 17| 3w

" E_E”:E
y

X2:y

y2=x
1, 1)’
X

0] Sy

210 (a)

The points of intersection of given curves and line

are

2(z:3)mer (7 3)

= (x=1)?

, Ay=ex+12y
AN/ /
\ \ /
\\\ —1—»1‘\ // /
\. AN (= 1
D e
X' el IS,
A HOA
2
A
y

211 (b)
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_ /4 [ 1 +sinx
Required area f _—
cos x

1 —sinx
cosx

”[1+sinx 1—smx ]

COS X COS X
/ 1 2 tan— 2 tang
+ -2
f”“ | 1+tan2)26 1+tan22 |
= — X

—tan2% —tan2%

0 1-tan?; 1-tan?;

1+tan2§ 1+tan2§

dx

fﬂ/‘ll +tan§— 1 +tan§
0

1 —tan 22
\I 2

fn/‘l 2 tan—

/ tanzx

put tan-=1t¢ = 2_dx =dt
f—t
sec

Reauired ftang 4t dt
~ Required area =
o (1+tH)V1—t?

VZ-1 4t
- i
o (A+tH)V1-—t?
T
[ tan§ =2 - 1]

214 (d)
Required area = 2 area of curve PSRQP

¥ Q

P/Pi/l/
S R
O\ (a,0) (4a,0)
.
M
N

x3/2
:Zf Va4 ax dx = 4VJa ﬁ]

4a

8 3 3y 56a? .
= §\/5(8512 — az) = 3 squnits

215 (c)

f(x) =min{x + 1,/ (1 —x)}

_(x+1,-1=sx<0
_{\/1—x,0<xS1
~ Required area
= |f_01(x + 1)dx| + |f01 (1- x)dx|
= 7/6 sq unit

217 (c)
Given equation of curves are
x% +y? = 16a% and y? = 6ax

The point of intersection are x = 2a,y = +2v3a

pi2a. 209

l

X

Q(2a, \2‘/36)

y
Q M A(4§, 0)
Yy

~ Required area,
A = 2 area of curve APOP
= 2[area of curve OMPO +area of curve MAPM]

2a 4a
=2 U \/@\/de] +2 U (4a)? — xzdx]
0 2a
= 22 ea [x*/7]}"
+2 [ \J (4a)? — x?

£ 14@
+ = (4a)2 sin™?! —]
2 2a

4a
4
= §\@(2a)3/2
+2 [(o — 2aV/3a)
1
+ 8a? (sin‘1 1 —sin?! —)]

2
16 T
= ?\@az —4/3a? + 16a2§

4+/3a? N 16ma?
3 3
4q?

= T (47‘[ + \/§) sq unit

= A=

218 (d)

2
Required area = 2 j ( y— —) y
0

2
5 2
~2| (#) dy = 502 5

0

10
== (V8 -0)
20V2 ,
= Sq units
3
y y 4x2

\\ sz o

X

N i

219 (a)

According to the given condition
b
f f(x)dx =c
a
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On differentiating w.r. t. b, we get
fh)y=0= f(x)=0
220 ()

4
Required area = 2 U \ (25) — x?)dx
0

4
dx—j
2

24_x2
J, =

221 (b)
. Aflpm 2
Required area = |f0 (3y? — 9)dy|
= |ly* - 915
= |1 — 9] = 8 sq unit
222 (d)

LetA be the required area. Then,
3

4= f(xz—xl)dy— f{<y+1> (

-1

1

:Azzf(2y+3—y2)dy

-1
1 y3°
=—|y24+3y ——
z[y Y3

-1

xZ

—4

"

2
y*—1
)}

Ny [(9+9 9 -(1-3+ )] [9+3]
16
K
224 ()
s
Required area = 2f sin x dx
0
y
X" : l ! X
x=—n v x=l7t
= 2[—cosx]§ = 2[1 + 1] = 4 sq units
225 (@)
The point of intersection of given curves are (0,0)
and (4a, 4a).

Required area = f
0

" (2\/6\/‘ _ g) dx

32
-]

X2 = 4ay
y2=4ax
(4a, 4a)

X

\<\

16a?
3

3 32a?
-3
16a?

Sq units

226 (d)

5 5
xdy=f Jy—1ldx
1

Required area = f
1

Y.
4( y=5
X" 5 0.1 X
I
v -D¥? 2
= [— = S1(@: - 0]
11
_ 16 "
=3 squnits
227 ()
a3
The figure of the given curve y = ZraZ is

~ Required volume
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V=2f y? dx

0

et [ L

= 21Ta —— 5 ax

o (a?+x?)?
Y,

(6]

y
Putx = atan®
= dx = asec’0d0

asec?0

2
~V =2ma® fﬂ/
o (a%?+a?tan?0)?2

2mab (/2 17
=— f cos?0d0 = 2ra’ [— . —]
a> J, 2 2

m?a3 _
= > Cu units

228 (c)

2 2

2
X
Required area = f xdx = [?] = 2sq units
0

0

y
B/y=x
y=—x
X o 1A~
l =2
b
229 (d)
Given curves are
y2=2x+1
andx—y=1
y
B(4, 3)

—&

©, —1A—nu

¥
Points of intersection are A(0, —1)and B(4,3)

3 3 2 _
Area=f (1+y)dy—f <y > 1>dy

b3l G-,
-[ie3- (a3 s ()

8 16

3 3

231 (b)
Given, curvesare y? = 8x =y =+/8x

) x
andx* =8y =y = ry
y
X2 = 8y
\ /
\ L—y2=8x
\
X- = \@) X
yl

The points of intersection of two curves are
(0,0),(8,8)

8 2
Now, required area = f (VS — §> dx
0
VBx3/2  x31°
32 ﬁ]o
_ 64 _
=359 units.
232 (a)
Intersection point of given curves is (1,1)
y
X \ X
Ly’

1
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233 (b)
The required area 4 is given by
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=j (cosx —sinx)dx =2 —1
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234 (b)
Required area = fjg(z — 12 —x)dx — f\%%dx
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[4—3] + 12—;—(8—2)

—3[log3 — log V3]
3 4 3

235 (a)
Let A denote the required area. Then,
/4 /2
A= f (cosx —sinx) dx + f (sinx — cosx) dx
0 /4
=2(vV2-1)
236 (d)

Required area = fol(xex —xe ¥)dx
= [xe* —e* +xe ¥ + e *]}
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