

6.APPLICATION OF DERIVATIVES

Single Correct Answer Type

1.	The maximum value of th	e function $f(x)$ given by $f(x)$	$f(x) = x(x-1)^2, 0 < x < 2,$	is
	a) 0	b) 4/27	c) -4	d) 1/4
2.	For a given integer k, in the	ne interval $\left[2\pi k + \frac{\pi}{2}, 2\pi k - \right]$	$\left[-\frac{\pi}{2}\right]$ the graph of sin x is	
	a) Increasing from -1 to 1		b) Decreasing from -1 to ()
	c) Decreasing from 0 to 1		d) None of the above	
3.	If θ is the semi vertical an	gle of a cone of maximum v	volume and given slant heig	ght, then tan $ heta$ is given by
	a) 2	b) 1	c) $\sqrt{2}$	d) √3
4.	The value of <i>b</i> for which t	he function $f(x) = \sin x - $	bx + c is decreasing in the	interval $(-\infty, \infty)$ is given
	by	1 > L > 1	\rightarrow L > 1	DL = 1
F	a) $D < 1$ The function $f(x) = 2x^3$	$\begin{array}{c} D \\ D \\ D \\ 2 \\ n^2 \\ n$	C b > 1	a) $b \leq 1$
э.	The function $f(x) = 2x^{-1}$	+ 5x = 12x + 1 decreases		d $(2, 2)$
6	a) $(2, 3)$ If $f(x) = 2x \pm \cot^{-1}x \pm \cot^{-1}x$	$\log(\sqrt{1+r^2} - r) \text{ then } f(r)$	() (-2, 1)	u) (-3,-2)
0.	a) Increases on R	$\log(\sqrt{1+x} - x)$, then $f(x)$		
	h) Decreases in $[0, \infty)$			
	c) Neither increases nor o	lecreases in $(0, \infty)$		
	d) None of these			
7.	The maximum value of $f($	$f(x) = 3\cos^2 x + 4\sin^2 x + 4\sin^2 x$	$\cos\frac{x}{2} + \sin\frac{x}{2}$, is	
	a) 4	b) $3 + \sqrt{2}$	c) $4 + \sqrt{2}$	d) 2 + $\sqrt{2}$
8.	If $a^2x^4 + b^2y^4 = c^6$, then	maximum value of <i>xy</i> is	·) · · · · ·	-) - - - - - - - - -
	c^2	<i>y</i>		
	a) $\frac{1}{\sqrt{ab}}$			
	c^3			
	$\frac{b}{ab}$			
	c) $\frac{c^3}{c}$			
	$\sqrt{2ab}$			
	d) $\frac{c^3}{2}$			
9	2 <i>ab</i> A stone is dronned into a	quiet lake. If the waves mo	ves in circles at the rate of	30cm/sec when the radius
	is 50 m. the rate of increas	se of enclosed area is	ves in encies at the rate of	sooning see when the ruands
	a) $30 \pi \text{ m}^2/\text{sec}$	b) 30 m ² /sec	c) $3\pi \text{ m}^2/\text{sec}$	d) None of these
10.	The equation of the tange	nt to the curve $x = t \cos t$,	$y = t \sin t$ at the origin is	
	a) $x = 0$	b) <i>y</i> = 0	c) $x + y = 0$	d) $x - y = 0$
11.	The rate of change of the	surface area of a sphere of	a sphere of radius <i>r</i> ,when t	he radius is increasing at
	the rate of 2 cm/sis propo	ortional to		
	a) $\frac{1}{2}$	b) $\frac{1}{r^2}$	c) <i>r</i>	d) <i>r</i> ²
12.	<i>r</i> The maximum value of (1	$(x)^{x}$ is		
	a) e	b) e^e	c) $e^{1/e}$	d) $(1/e)^{1/e}$
13.	$If f(x) = 2x^3 - 21x^2 + 3$	6x - 30, then which one of	the following is correct	2 < 1 - 2
	a) $f(x)$ has minimum at x	r = 1	b) $f(x)$ has maximum at x	$\alpha = 6$
	c) $f(x)$ has maximum at x	<i>c</i> = 1	d) $f(x)$ has maxima or mi	nima
14.	An edge of a variable cube	e is increasing at the rate of	f 10cm/s. How fast the volu	me of the cube will
	increase when the edge is	5 cm long?	0 /	D /
	a) 750 cm ³ / _S	b) 75 cm ³ / _s	c) 300 cm ³ / _S	d) 150 cm ³ / _S

- 15. The tangents to the curve $x = a(\theta \sin \theta)$, $y = a(1 + \cos \theta)$ at the points $\theta = (2k + 1)\pi$, $k \in Z$ are parallel to:
- a) y = x16. The normal to the curve $5x^5 - 10x^3 + x + 2y + 6 = 0$ at P(0, -3) meets the curve again at the point a) (-1, 1), (1, 5)b) (1, -1), (-1, -5)c) (-1, -5), (-1, 1)d) (-1, 5), (1, -1)
- 17. The normal to the curve represented parametrically by $x = a(\cos \theta + \theta \sin \theta)$ and $y = a(\sin \theta \theta \cos \theta)$ at any point θ , is such that it
 - a) Makes a constant angle with *x*-axis
 - b) Is at a constant distance from the origin
 - c) Passes through the origin
 - d) Satisfies all the three conditions

18. If
$$f(x) = \begin{cases} 3x^2 + 12x - 1, -1 \le x \le 2\\ 37 - x, 2 < x \le 3 \end{cases}$$
, then

- a) f(x) is increasing in [-1, 2]
- b) f(x) is continuous in [-1, 3]
- c) f(x) is maximum at x = 2
- d) All the above

19. The value of *c*, in the Lagrange's Mean value theorem
$$\frac{f(b)-f(a)}{b-a} = f'(c)$$
, for the function $f(x) = w(x-1)(x-2)$ in the interval [0, 1/2] is

a)
$$\frac{1}{4}$$
 b) $1 - \frac{\sqrt{21}}{6}$ c) $\frac{9}{8}$ d) $1 + \frac{\sqrt{21}}{6}$

- 20. If $f(x) = kx \sin x$ is monotonically increasing, then a) k > 1 b) k > -1 c) k < 1 d) k < -1
- 21. Let $f(x) = x^3 6x^2 + 15x + 3$. Then, a) f(x) > 0 for all $x \in R$
 - b) f(x) > f(x+1) for all $x \in R$
 - c) f(x) is invertible
 - d) None of these
- 22. The diagonal of a square is changing at the rate of 0.5 cm s^{-1} . Then, the rate of change of area, when the area is 400 cm² is equal to

a)
$$20\sqrt{2}cm^2/s$$
 b) $10\sqrt{2}cm^2/s$ c) $\frac{1}{10\sqrt{2}}cm^2/s$ d) $\frac{10}{\sqrt{2}}cm^2/s$

23. If $ax^2 + \frac{b}{x} \ge c$ for all positive *x*, where *a*, *b*, > 0, then

a)
$$27ab^2 \ge 4c^3$$
 b) $27ab^2 < 4c^3$ c) $4ab^2 \ge 27c^3$ d) None of these

24. The equation(s) of the tangent(s) to the curve $y = x^4$ from the point (2, 0) not on the curve is given by a) $y = \frac{4098}{2}$

(a)
$$y = \frac{1}{81}$$

(b) $y - 1 = 5(x - 1)$
(c) $y - \frac{4096}{81} = \frac{2048}{27} \left(x - \frac{8}{3}\right)$
(d) $y - \frac{32}{243} = \frac{80}{81} \left(x - \frac{2}{3}\right)$

25. The value of *c* in Rolle's theorem for the function $f(x) = \frac{x(x+1)}{e^x}$ defined on [-1,0], is

a) 0.5 b)
$$\frac{1+\sqrt{5}}{2}$$
 c) $\frac{1-\sqrt{5}}{2}$ d) -0.5

26. The point on the curve $\sqrt{x} + \sqrt{y} = \sqrt{a}$ at which the normal is parallel to the *x*-axis, is a) (0,0) b) (0, *a*) c) (*a*, 0) d) (*a*, *a*)

27. The value of x for which the polynomial $2x^3 - 9x^2 + 12x + 4$ is a decreasing function of x, is a) -1 < x < 1 b) 0 < x < 2 c) x > 3 d) 1 < x < 2

28. The function
$$f(x) = 1 - x^3 - x^5$$
 is decreasing for

29.	a) $1 \le x \le 5$ $y = \{x(x - 3)\}^2$ increases	b) $x \le 1$ s for all values of x lying in t	c) $x \ge 1$ the interval	d) All values of <i>x</i>
	a) $0 < x < \frac{3}{2}$	b) $0 < x < \infty$	c) $-\infty < x < 0$	d) 1 < <i>x</i> < 3
30.	If <i>m</i> denotes the slope of <i>f</i> a) $m \in [-1, 1]$	the normal to the curve $y =$ b) $m \in R - (-1, 1)$	= −3 log(9 + x^2) at the point c) $m \in R - [-1, 1]$	t $x \neq 0$, then, d) $m \in (-1, 1)$
31.	If $f(x) = \frac{x^2 - 1}{x^2 + 1}$, for every r	real number <i>x</i> , then the min	imum value of $f(x)$	
	a) Does not exist because	<i>f</i> is unbounded		
	b) Is not attained even the	ough <i>f</i> is bounded		
	c) Is equal to 1			
32	The function $f(r) = nr $	$-a + r r r \in (-\infty, \infty)$ w	here $n > 0$ $a > 0$ $r > 0$ as	sume its minimum value
52.	only at one point if	q / x , x C (00, 00), W	p = 0, q = 0, r = 0 as	sume its imminum value
	a) $p \neq q$	b) $r \neq q$	c) $r \neq p$	d) $p = q = r$
33.	If the function $f(x) = \frac{K \sin x}{2}$	$\frac{nx+2\cos x}{2}$ is increasing for a	ll values of <i>x</i> , then	
	a) $K < 1$	$nx + \cos x$ b) $K > 1$	c) <i>K</i> < 2	d) $K > 2$
34.	A man of 2m height walks	s at a uniform speed of 6 km	n/h away from a lamp post	of 6 m height. The rate at
	which the length of his sh	adow increase is		U
	a) 2km/h	b) 1km/h	c) 3km/h	d) 6km/h
35.	ΔABC is not right angled	and is inscribed in a fixed o	circle. If <i>a</i> , <i>A</i> , <i>b</i> , <i>B</i> be slightly	varied keeping <i>c</i> , <i>C</i> fixed,
	then			
	$\frac{aa}{\cos A} + \frac{ab}{\cos P} =$			
	a) $2R$	b) π	c) 0	d) None of these
36.	A value of <i>c</i> for which the	conclusion of Mean value t	heorem holds for the funct	ion $f(x) = \log_e x$ on the
	interval [1, 3] is			
	a) 2 log ₃ <i>e</i>	b) $\frac{1}{2}\log_e 3$	c) $\log_3 e$	d) log _e 3
37.	If $ax + \frac{b}{x} \ge c$ for all positi	ve values of x and a, b, c are	e positive constants, then	
	c^2	c^2	c^2	c^2
	a) $ab \geq \frac{1}{4}$	b ab $< \frac{1}{4}$	$C) bc \geq \frac{1}{4}$	a) $ac \geq \frac{1}{4}$
38.	Let $f(x) = \int_0^x \frac{\cos t}{t} dt$. The	en, at $x = (2n+1)\frac{\pi}{2}$, $f(x)$ h	as	
	a) Maxima when $n = -2$,	$-4, -6, \dots$ and minima whe	$n = -1, -3, -5, \dots$	
	b) Maxima when $n = -1$,	$-3, -5, \dots$ and minima whe	$n = 1, 3, 5, \dots$	
	c) Minima when $n = 0, 2$, d) None of these	4, and maxima when $n =$	- 1, 3, 5,	
39.	The line $x + y$ of the set	$(x)^n$ $(y)^n$		
	The line $\frac{1}{a} + \frac{1}{b} = 2$ touche	s the curve $\left(\frac{-}{a}\right) + \left(\frac{-}{b}\right) = A$	2 at the point (a, b) for	
40	a) $n = 2$ only	b) $n = -3$ only	c) Any $n \in R$	d) None of these
40.	The pressure <i>P</i> and volum	ne V of a gas are connected	by the relation $PV^{1/1} = co$	nstant. The percentage
				d) None of these
	a) $\frac{1}{2}$ %	b) $\frac{1}{4}$ %	c) $\frac{1}{8}$ %	
41.	In the mean value theorem	$m \frac{f(b)-f(a)}{b-a} = f'(c)$, if $a = 0$	$b, b = \frac{1}{2} \text{ and } f(x) = x(x - 1)$)
	(x-2), then value of c is			
	a) $1 - \frac{\sqrt{15}}{1}$	b) $1 + \sqrt{15}$	c) $1 - \frac{\sqrt{21}}{\sqrt{21}}$	d) $1 + \sqrt{21}$
40	6 1	, _ , _ 0	6	, - · ·
42.	If $f(x) = \frac{1}{4x^2 + 2x + 1}$, then it	ts maximum value is		
	a) 4/3	b) 2/3	c) 1	d) 3/4

43. The diameter of a circle is increasing at the rate of 1cm/sec. When its radius is π , the rate of inc				π , the rate of increase of its
	area is a) π cm ² /sec	b) $2\pi \text{ cm}^2/\text{sec}$	c) $\pi^2 \text{ cm}^2/\text{sec}$	d) $2\pi^2$ cm ² / sec ²
44	The minimum value of 2	r + 3y when $ry = 6$ is		
	a) 9	b) 12	c) 8	d) 6
45.	The equation of the norm	mal to the curve $y^4 = ax^3$ a	t (a, a) is	-) -
	a) $x + 2y = 3a$	b) $3x - 4y + a = 0$	c) $4x + 3y = 7a$	d) $4x - 3y = 0$
46.	The value of <i>c</i> in Rolle's	theorem when		
	$f(x) = 2x^3 - 5x^2 - 4x$	$+3, x \in [1/3,3]$, is		
. –	a) 2	b) -1/3	c) -2	d) 2/3
47.	Suppose the cubic x^3 –	px + q has three distinct re-	al roots where $p > 0$ and q	> 0. Then, which one of the
	Iollowing holds?	p at both p and p	1) The subic becominime	at^{p} and maxima at p
	a) The cubic has maxim	$a \text{ at both } \frac{1}{3} ana - \frac{1}{3}$	b) The cubic has minima	at $\frac{-1}{3}$ and maxima at $-\frac{-1}{3}$
	c) The cubic has minima	$a = at - \frac{p}{3}$ and maxima $at \frac{p}{3}$	d) The cubic has minima	at both $\frac{p}{3}$ and $-\frac{p}{3}$
48.	The chord joining the po tangent at the point on t	bints where $x = p$ and $x = q$ he curve whose abscissa is	y on the curve $y = ax^2 + bx$	x + c is parallel to the
	p + q	b) $\frac{p-q}{p-q}$	pq	d) None of these
40	2	⁰ 2	2 D	(1)
49.	<i>n</i> is a positive integer. If the integer $[0, 2]$ is $2/4$	the value of <i>c</i> prescribed in	Rolle's theorem for the fur	function $f(x) = 2x(x-3)^n$ on
	a) 5	h) 2	c) 3	d) 4
50.	The shortest distance be	etween the line $v - x = 1$ ar	nd the curve $x = v^2$ is	u) I
	$\sqrt{3\sqrt{2}}$	$1 > 2\sqrt{3}$	$\sqrt{3\sqrt{2}}$	$\sqrt{3}$
	a) $\frac{1}{8}$	b) <u></u>	c) <u></u>	$d)\frac{4}{4}$
51.	If the distance s covered	by a particle in time t is pro-	oportional to the cube root	of its velocity, then the
	acceleration is		1	
	aj A constant	b) $\propto s^3$	c) $\propto \frac{1}{s^3}$	d) $\propto s^5$
52.	The distance travelled s	(in meteres) by a particle in	t second is given by, $s = t$	$^{3} + 2t^{2} + t$. The speed of the
	particle after 18 will be			
	a) 8 cm/s	b) 6 cm/s	c) 2 cm/s	d) None of these
53.	Using differentials, the a	pproximate value of (627) ¹	^{1/4} is	
F 4	a) 5.002	b) 5.003	c) 5.005	d) 5.004
54.	The length of the subtar	igent at any point (<i>x</i> ₁ , <i>y</i> ₁)on	the curve $y = a^x$, $(a > 0)$	IS
	a) 2 log <i>a</i>	b) $\frac{1}{\log a}$	c) log <i>a</i>	d) $a^{2x_1} \log a$
55.	Using differentials the a	pproximate value of $\sqrt{401}$ is	S	
	a) 20.100	b) 20.025	c) 20.030	d) 20.125
56.	A ladder 10 m long rests	against a vertical wall with	n the lower end on the horiz	contal ground. The lower
	end of the ladder is pull	ed along the ground away fr	rom the wall at the rate of 3	cm/s. The height of the
	upper end while it is des	scending at the rate of 4cm/	/s, is	
	a) 4√3m	b) 5√3m	c) 6m	d) 8m
57.	A cubic $f(x)$ vanishes at	x = -2 and has relative mi	inimum/maximum at $x = -$	-1 and $x = \frac{1}{3}$ such that
	$\int_{-1}^{1} f(x) dx = \frac{14}{3}$. Then, f	f(x) is		
	a) $x^3 + x^2 - x^3$	b) $x^3 + x^2 - x + 1$	c) $x^3 + x^2 - x + 2$	d) $x^3 + x^2 - x - 2$
58.	The different between t	he greatest and least values	of the function $f(x) = \cos x$	$x\frac{1}{2}\cos 2x - \frac{1}{3}\cos 3x$ is
	a) $\frac{2}{-}$	b) $\frac{8}{-}$	c) 3	d) -
50	² 3 The number of real rest	$^{\prime}$ 7	² 8 2 - 0	⁴
59.	The number of real root	s of the equation $e^{x} - + x$ -	-2 = 0	

60.	a) 1 If $f(x) = \sin^6 x + \cos^6 x$,	b) 2 then which one of the follow	c) 3 wing is false?	d) 4
	a) $f(x) \le 1$	b) $f(x) \le 2$	c) $f(x) > \frac{1}{4}$	d) $f(x) \le \frac{1}{8}$
61.	The set $\{x^3 - 12x: -3 \le x\}$ a) $\{x: -16 \le x \le 16\}$	$x \le 3$ is equal to b) { $x: -12 \le x \le 12$ }	c) { $x: -9 \le x \le 9$ }	d) { $x: 0 \le x \le 10$ }
62.	If $xy = a^2$ and $S = b^2x + a$) <i>abc</i>	$c^2 y$ where <i>a</i> , <i>b</i> and <i>c</i> are co b) $\sqrt{a} bc$	onstants, then the minimun c) 2 <i>abc</i>	n value of <i>S</i> is d) None of these
63.	Let $g(x) = f(x) + f'(1 - a) g(x)$ increases on $[1/2]$ b) $g(x)$ decreases on $[0,1]$ c) $g(x)$ increases on $[0,1]$ d) $g(x)$ increases on $[0,1]$	(x) and $f''(x) < 0,0 \le x \le 0,1$ and decreases on $[0,1/2]$ (/2) and decreases on $[1/2,1]$	1. Then 2] 1]	
64.	Select the correct stateme	ent from (a), (b), (c), (d) Th	the function $f(x) = xe^{1/x}$	
	a) Strictly increasing in th	the interval $\left(\frac{1}{2}, 2\right)$	b) Increasing in the interv	$\operatorname{ral}(0,\infty)$
65.	c) Decreases in the interv If $\frac{a_0}{n+1} + \frac{a_1}{n} + \frac{a_2}{n-1} + \dots + \frac{a_n}{n-1}$ (0, 1)	$a_{\frac{n-1}{2}}^{n-1} + a_n = 0$. Then the func	d) Strictly decreasing in the tion $f(x) = a_0 x^n + a_1 x^{n-1}$	the interval $(1, \infty)$ $a_1 + a_2 x^{n-2} + \dots + a_n$ has in
66.	a) At least one zero A particle is moving along uniform	b) At most one zero g the curve $x = at^2 + bt + bt$	c) Only 3 zeros c. If $ac = h^2$, then the partie	d) Only 2 zeros cle would be moving with
	a) Rotation	b) Velocity	c) Acceleration	d) Retardation
67.	The approximate value of a) 2 0125	f $(33)^{1/5}$ is b) 2.1	c) 2 01	d) None of these
68.	At an instant the diagonal rate of $6 \text{cm}^2/\text{sec.}$ At that	l of a square is increasing at moment its side is	t the rate of 0.2cm/sec and	the area is increasing at the
	a) $\frac{30}{\sqrt{2}}$ cm	b) 30√2 cm	c) 30 cm	d) 15 cm
69.	A missile is fired from the	e ground level rises x metr	es vertically upwards in t s	seconds where $x = 100t - $
	$\frac{25}{2}t^2$. The maximum heigh	t reached is		
	a) 200 m	b) 125 m	c) 160 m	d) 190 m
70.	The intercepts made by the are equal to	he tangent to the curve $y =$	$\int_0^\infty t dt$, which is parallel	to the line $y = 2x$, on y-axis
71.	 a) 1, -1 The function f(x) = tan x a) Always increases b) Always decreases c) Never decreases 	b) $-2, 2$ x - x	c) 3	d) -3
72.	d) Some times increases a The maximum value of <i>x</i> y	and some times decreases y subject to $x + y = 8$, is		
	a) 8	b) 16	c) 20	d) 24
73.	The tangent to the curve	$y = 2x^2 - x + 1$ is parallel	to the line $y = 3x + 9$ at th	e point
74	a) (3, 9)	b) (2, -1)	c) (2, 1)	d) (1, 2)
74.	is given by	$y^2 = 2x^3$ such that the tang	ent at <i>P</i> is perpendicular to	5 the line 4x - 3y + 2 = 0
	a) (2, 4)	b) (1, √2)	c) (1/2, -1/2)	d) (1/8, -1/16)
75.	If the parametric equation	n of a curve given by $x = e^t$	$\cos t$, $y = e^{t} \sin t$, then the	tangent to the curve at the
	point $t = \pi/4$ makes with	h axis of x the angle b) $\pi/4$	c) π/2	d) $\pi/2$
	aju	טן געד	Cj 11/5	uj n/ 2

76.	All points on the curve $y^2 = 4a\left(x + a\sin\frac{x}{a}\right)$ at y	which the tangents are p	parallel to the axis of <i>x</i> lie on a
	a) Circle b) Parabola	c) Line	d) None of these
77.	The point of inflexion for the curve $y = x^{5/2}$ is		
	a) (1, 1) b) (0, 0)	c) (1,0)	d) (0, 1)
78.	The minimum value of $2x + 3y$, when $xy = 6$, is		
70	a) 12 b) 9	c) 8	$d \int 6$
79.	If $(x) = x^2 - 2x + 4$ on [1, 5], then the value of a	a constant <i>c</i> such that $\frac{r}{c}$	$\frac{f'(c)}{5-1} = f'(c)$, is
	a) 0 b) 1	c) 2	d) 3
80.	Let a, b be two distinct roots of a polynomial $f(a)$	x). Then there exists at I	east one root lying between a and
	a) $f(x)$ b) $f'(x)$	c) $f''(x)$	d) None of these
81.	A population $p(t)$ of 1000 bacteria introduced in	nto nutrient medium gro	ows according to the
	relation $p(t) = 1000 + \frac{1000t}{2}$. The maximum siz	e of this bacterial popul	ation is
	a) 1100 b) 1250	c) 1050	d) 5250
82.	If $f'(x) = (x - a)^{2n}(x - b)^{2m+1}$ where $m, n \in N$	V, then	4) 5255
	a) $x = b$ is a point of minimum		
	b) $x = b$ is a point of maximum		
	c) $x = b$ is a point of inflexion		
00	d) None of these		
83.	A point is moving on $y = 4 - 2x^2$. The x - coordinate of the point is moving on $y = 4 - 2x^2$.	inate of the point is deci	reasing at the rate of 5 unit per
	a) 5 units b) 10 units	c) 15 units	d) 20 units
84.	The point of the curve $y^2 = 2(x - 3)$ at which the	ie normal is narallel to l	$x_{1} = 0$
•	$\sum_{n=1}^{\infty} (5,2) \qquad \qquad$	a) (F 2)	$\left(\frac{3}{2}\right)$
~ -	a) $(3, 2)$ b) $(-\frac{1}{2}, -2)$	(3, -2)	$\left(\frac{1}{2}, 2\right)$
85.	The function $f(x) = \frac{x}{1+ x }$ is		
	a) Strictly increasing	b) Strictly decreas	ing
0.6	c) Neither increasing nor decreasing	d) Not differential	at $x = 0$
86.	The function $f(x) = 2x^3 - 3x^2 + 90x + 174$ is i	increasing in the interva	1
	a) $\frac{1}{2} < x < 1$ b) $\frac{1}{2} < x < 2$	c) $3 < x < \frac{35}{4}$	d) $-\infty < x < \infty$
87.	Let $f(x) = \int x $, for $0 < x \le 2$ then at $x = 0$	f has	
	Let $f(x) = \{1, for x = 0, then at x = 0,\}$		
00	a) A local maximum b) A local minimum	c) No local extrem	ium d) No local maximum
88.	The set of values of a for which the function $f(x = 2)$	$x^{2} = x^{2} + ax + 1$ is an in	creasing function on [1, 2] is d) $(-\infty, 2]$
89	A particle moves along the curve $y = x^2 + 2x$ The	hen The point on the cu	$(-\infty, 2]$
0,1	of the particle change with the same rate is		
	a) (1,3) $(1 \ 5)$	$\left(\begin{array}{c}1&3\end{array}\right)$	d $(1 1)$
	$DJ(\overline{2},\overline{2})$	$(-\frac{1}{2},-\frac{1}{4})$	u) (-1, -1)
90.	Given $P(x) = x^4 + ax^3 + bx^2 + cx + d$ such that	It $x = 0$ is the only real r	root of $P'(x) = 0.$ If $P(-1) <$
	P(1), then in the interval $[-1,1]$	um of D	
	a) $P(-1)$ is not minimum and $P(1)$ is the maximum by $P(-1)$ is not minimum by $P(1)$ is the maximum by $P(-1)$	un of P	
	c) $P(-1)$ is the minimum and $P(1)$ is not the maximum and $P(1)$	aximum of <i>P</i> .	
	d) Neither $P(-1)$ is the minimum nor $P(1)$ is no	ot the maximum of <i>P</i> .	
91.	If the equation $a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x = 0$) has a positive root $lpha$, th	nen the equation
	$n a_n x^{n-1} + (n-1)a_{n-1}x^{n-2} + \dots + a_1 = 0$ has		

a) A positive root less than α

	b) A positive root larger	than α		
	c) A negative root			
	d) No positive root			
92.	If the error committed in	measuring the radius of the	e circle is 0.05%, then the c	orresponding error in
	calculating the area is			
	a) 0.05%	b) 0.0025%	c) 0.25%	d) 0.1%
93.	The edge of a cube is equ	al to the radius of the spher	e. If the rate at which the v	olume of the cube is
	increasing is equal to λ , t	hen the rate of increase of v	volume of the sphere is	
	a) $\frac{4\pi\lambda}{3}$	b) 4πλ	c) $\frac{\lambda}{3}$	d) None of these
94.	Tangent is drawn to ellip	$se \frac{x^2}{27} + y^2 = 1$ at $(3\sqrt{3}\cos\theta)$	θ , sin θ) (where $\theta \in (0, \pi/2)$)). Then the value of θ such
	that sum of intercepts on	axes made by this tangent	is minimum, is	
	a) π/3	b) π/6	c) π/8	d) π/4
95.	Roll's theorem is not app	licable to the function $f(x)$	$= x $ for $-2 \le x \le 2$ becau	use
	a) f is continuous for -2	$\leq x \leq 2$	b) <i>f</i> is not derivable for <i>x</i>	= 0
	c) $f(-2) = f(2)$		d) <i>f</i> is not a constant fund	ction
96.	The abscissa of the point	on the curve		
	$y = a(e^{x/a} + e^{-x/a})$			
	Where the tangent is par	allel to the x-axis, is		
	a) 0	b) a	c) 2a	d) –2 <i>a</i>
97.	The value of <i>a</i> in order the	$\operatorname{hat} f(x) = \sin x - \cos x - a$	x + b decreases for all real	values of <i>x</i> is given by
	a) $a \ge \sqrt{2}$	b) $a < \sqrt{2}$	c) $a \ge 1$	d) <i>a</i> < 1
98.	Let $f(x) = 1 + 2x^2 + 2^2$	$x^4 + \dots + 2^{10}x^{20}$. Then, $f($	x) has	
	a) More than one minimu	ım	b) Exactly one minimum	
	c) At least one maximum		d) None of the above	
99.	If the subnormal at any p	oint on $y = a^{1-n}x^n$ is of co	nstant length, then the valu	ie of <i>n</i> , is
	a) 1	b) 1/2	c) 2	d) -2
100	The normal to the curve :	$x = a(1 + \cos \theta), y = a \sin \theta$	θ at θ always passes through	gh the fixed point
	a) (<i>a</i> , 0)	b) (0, a)	c) (0,0)	d(a,a)
101	If tangent to the curve <i>x</i>	$= at^2, y = 2at$ is perpendic	cular to x -axis, then its poin	t of contact is
	a) (a, a)	b) (0, a)	c) (0,0)	d) $(a, 0)$
102	If $y = 4x - 5$ is tangent t	o the curve $y^2 = px^3 + q$ at	t(2, 3) then (p, q) is	
	a) (2, 7)	b) (-2,7)	c) $(-2, -7)$	d) (2, -7)
103	A particle is moving in a s	straight line. At time <i>t</i> , the c	listance between the partic	le from its starting point is
	given by $x = t - 6t^2 + t^3$	³ . Its acceleration will be zet	ro at	
	a) $t = 1$ unit time	b) $t = 2$ units time	c) $t = 3$ units time	d) $t = 4$ units time
104	If $y = 4x - 5$ is a tangent	to the curve $y^2 = px^3 + q$	at (2, 3), then	,
	a) $p = 2, q = -7$	b) $p = -2, q = 7$	c) $p = -2, q = -7$	d) <i>p</i> = 2, <i>q</i> = 7
105	Let the function $g: (-\infty, \infty)$	∞) $\rightarrow \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ be given by g	$(u) = 2 \tan^{-1}(e^u) - \frac{\pi}{2}$. The	en, <i>g</i> is
	a) Even and is strictly inc	creasing in $(0, \infty)$	b) Odd and is strictly decr	reasing in $(-\infty, \infty)$
	c) Odd and is strictly inc	reasing in $(-\infty,\infty)$	d) $(-\infty,\infty)$	but is strictly increasing in
106	The tangent to the curve <i>P</i> are	$y = 2x^2 - x + 1$ at a point	P is parallel to y = 3x + 4,	then the coordinates of
	a) (2, 1)	b) (1, 2)	c) $(-1, 2)$	d) $(2, -1)$
107	Let <i>a</i> , <i>b</i> , <i>c</i> be positive real	numbers and $ax^2 + b/x^2$	≥ 2 for all $x \in \mathbb{R}^+$. Then.	
-	a) $4ab \ge c^2$	b) $4ac \ge b^2$	c) $4bc \ge a^2$	d) $4ac < b^2$
108	The function $f(x) = x^4$ –	$-62 x^2 + ax + 9$ attains its	maximum value on the inte	erval [0, 2] at $x = 1$. Then.

the value of *a* is

a) 120	b) —120	c) 52	d) 60
109. The point on the curve $$	$\overline{x} + \sqrt{y} = \sqrt{a}$, the normal at	which is parallel to the <i>x</i> -a	axis, is
a) (0, 0)	b) (0, a)	c) (<i>a</i> , 0)	d) (<i>a</i> , <i>a</i>)
110. The equation of the tang	ent to curve $y(2x-1)e^{2(1-x)}$	^{x)} at the points its maximu	m, is
a) $y - 1 = 0$	b) $x - 1 = 0$	c) $x + y - 1 = 0$	d) $x - y + 1 = 0$
111. If for a function $f(x)$, $f'($	a) = 0, f''(a) = 0, f'''(a) > 0	• 0, then at $x = a$, $f(x)$ is	
a) Minimum	b) Maximum	c) Not an extreme point	d) Extreme point
112. The function $f(x) = x + $	sin x has		
a) A minimum but no ma	ximum	b) A maximum but no mir	nimum
c) Neither maximum nor	minimum	d) Both maximum and mi	nimum
113. Gas is being pumped into	a spherical balloon at the r	rate of $30 f t^3$ /min.Then, the	e rate at which the radius
increases when it reache	s the value 15ft is		
a) $\frac{1}{15\pi}$ ft/min	b) $\frac{1}{30\pi}$ ft/min	c) $\frac{1}{20}$ ft/min	d) $\frac{1}{25}$ ft/min
^{114.} The equation of tangent	to the curve $\frac{x^2}{3} - \frac{y^2}{2} = 1$, wh	ich is parallel to $y = x$, is	
a) $y = x \pm 1$	b) $y = x - 1/2$	c) $y = x + 1/2$	d) $y = 1 - x$
115. If the curves $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	and $\frac{x^2}{l^2} - \frac{y^2}{m^2} = 1$ cut each other	her orthogonally, then	
a) $a^2 + b^2 = l^2 + m^2$	b) $a^2 - b^2 = l^2 - m^2$	c) $a^2 - b^2 = l^2 + m^2$	d) $a^2 + b^2 = l^2 - m^2$
116. A point moves along the	curve $12y = x^3$ in such a wa	ay that the rate of increase	of its ordinate is more than
the rate of increase of ab	scissa. The abscissa of the p	oint lies in the interval	
a) (-2, 2)	b) (−∞, −2) ∪ (2, ∞)	c) [-2,2]	d) None of these
117. The smallest circle with	centre on y-axis and passing	g through the point(7,3)has	radius
a) √ <u>58</u>	b) 7	c) 3	d) 4
118. The point in the interval	$[0,2\pi]$, where $f(x) = e^x$ si	n x has maximum slope, is	
a) $\frac{\pi}{4}$	b) $\frac{\pi}{2}$	c) π	d) $\frac{3\pi}{2}$
119. The perimeter of a sector	r isp. The area of the sector	is maximum, when its radi	us is
- -	1	p	., <i>p</i>
a) \sqrt{p}	b) \sqrt{p}	c) $\frac{1}{2}$	d) $\frac{-}{4}$
120. The normal at point (1.1)) of the curve $v^2 = x^3$ is par	allel to the line	
a) $3x - y - 2 = 0$	b) $2x + 3y - 7 = 0$	c) $2x - 3y + 1 = 0$	d) $2y - 3x + 1 = 0$
121. A particle moves in a stra	hight line so thats $= \sqrt{t}$ ther	its acceleration is proport	ional to
a) $(velocity)^3$	b) velocity	c) (velocity) ²	d) (velocity) ^{3/2}
122. If <i>PO</i> and <i>PR</i> are the two	sides of a triangle, then the	angle between them which	n gives maximum area of
the triangle, is			0
a) π	b) π/3	c) π/4	d) $\pi/2$
123. The function $f(x) = a \cos \theta$	$s x + b \tan x + x$ has extrem	the values at $x = 0$ and $x = 0$	$\frac{\pi}{6}$, then
2 1	2 1	2	
a) $a = -\frac{1}{3}$, $b = -1$	b) $a = \frac{1}{3}, b = -1$	c) $a = -\frac{1}{3}, b = 1$	a) $a = \frac{1}{3}, b = 1$
124. The distance between th	e origin and the normal to t	he curve $y = e^{2x} + x^2$ at x	= 0 is
a) 2	b) $\frac{2}{\sqrt{2}}$	c) $\frac{2}{\sqrt{5}}$	d) $\frac{1}{2}$
125. The function $f(x) = x e^{1}$	-x strictly	٧J	2
a) Increases in the interv	$ral(0,\infty)$		
b) Decreases in the inter	val (0.2)		
c) Increases in the interv	(1/2, 2)		
d) Decreases in the inter	val $(1, \infty)$		
126. If f and g are two decrea	sing functions such that <i>ao</i>	f exists, then <i>aof</i> . is	
, ,	5		

a) An increasing function

- b) A decreasing function
- c) Neither increasing nor decreasing

d) None of these

- 127. The length of subnormal of parabola $y^2 = 4ax$ at any point is equal to
 - c) $\frac{a}{\sqrt{2}}$ b) $2\sqrt{2}a$ a) $\sqrt{2}a$ d) 2a

128. If tangent to the curve $x = at^2$, y = 2at is perpandicular to x-axis, then its point of contact is a) (*a*, *a*) b) (0, a) c) (0,0) d) (*a*, 0)

129. The abscissa of the point on the curve $ay^2 = x^3$, the normal at which cuts off equal intercepts from the coordinate axes is

130. The point on the curve $y = 2x^2 - 6x - 4$ at which the tangent is parallel to the *x*-axis, is a) $\left(\frac{3}{2}, \frac{3}{2}\right)$

a)
$$\left(\frac{3}{2}, \frac{13}{2}\right)$$
 b) $\left(-\frac{5}{2}, -\frac{17}{2}\right)$ c) $\left(\frac{3}{2}, \frac{17}{2}\right)$ d) $\left(\frac{3}{2}, -\frac{17}{2}\right)$
131. If the function $f(x) = x^3 - 6x^2 + ax + b$ satisfies Rolle's theorem in the interval

[1, 3] and $f'\left(\frac{2\sqrt{3}+1}{\sqrt{3}}\right) = 0$, then

a)
$$a = -11$$
 b) $a = -6$ c) $a = 6$ d) $a = 11$

^{132.} Let $g(x) = \begin{cases} 2e & \text{if } x \le 1\\ \log(x-1), & \text{if } x > 1 \end{cases}$. The equation of the normal to y=g(x) at the point (3,log 2), is

- b) $y + 2x = 6 + \log 2$ c) $y + 2x = 6 - \log 2$ d) $y + 2x = -6 + \log 2$ a) $y - 2x = 6 + \log 2$ 133. If *f* is an increasing function and *g* is a decreasing function on an interval *I* such that *f* og exists, then
 - a) fog is an increasing function on I
 - b) *fog* is a decreasing function on *I*
 - c) fog is neither increasing nor decreasing on I
 - d) None of these

134. *N* characters of information are held on magnetic tape, in batches of *x* characters each, the batch processing time is $\alpha + \beta x^2$ seconds, α and β are constants. The optical value of x for fast processing is, a) α/β b) β/α c) $\sqrt{\alpha/\beta}$ d) $\sqrt{\beta/\alpha}$

135. The longest distance of the point (*a*, 0) from the curve $2x^2 + y^2 - 2x = 0$, is given by

a) $\sqrt{1-2a+a^2}$ b) $\sqrt{1+2a+2a^2}$ c) $\sqrt{1+2a-a^2}$ d) $\sqrt{1-2a+2a^2}$ 136. The coordinates of the point on the curve $y = x^2 - 3x + 2$ where the tangent is perpendicular to the straight line y = x are c) (-1,6) d) (2,−2)

b) (1.0) a) (0.2)

137. The tangent and normal at the point $P(at^2, 2 at)$ to the parabola $y^2 = 4 ax$ meet the x-axis in T and G respectively, then the angle at which the tangent at P to the parabola is inclined to the tangent at P to the circle through *T*, *P*, *G* is

a)
$$\tan^{-1} t^2$$
 b) $\cot^{-1} t^2$ c) $\tan^{-1} t$ d) $\cot^{-1} t$
138. The normal to the curve $x = a(\cos \theta + \theta \sin \theta), y = a(\sin \theta - \theta \cos \theta)$ at any point θ is such that
a) It is at a constant distance from the origin b) It passes through $\left(\frac{a\pi}{2}, -a\right)$

c) It makes angle $\frac{\pi}{2} - \theta$ with the *x*-axis

b) It passes through
$$\left(\frac{a\pi}{2}, -a\right)$$

d) It passes through the origin

139. If
$$f(x) = xe^{x(1-x)}$$
, then $f(x)$ is

a) Increasing on $\left[-\frac{1}{2}, 1\right]$ b) Decreasing on R c) Increasing on R140. The function $f(x) = 2x^3 - 15x^2 + 36x + 4$ is maximum at d) Decreasing on $\left[-\frac{1}{2}, 1\right]$

a)
$$x = 2$$
 b) $x = 4$ c) $x = 0$

141. A particle moves on the parabola $y^2 = 4ax$ in such a way that its projection on the y-axis has a constant velocity. Then its projection on *x*-axis moves with

d) Variable acceleration a) Constant velocity b) Constant acceleration c) Variable velocity 142. The points of extremum of the function $\phi(x) = \int_1^x e^{-t^2/2} (1-t^2) dt$, are

d) x = 3

a) x = 0, 1b) x = 1, -1c) x = 1/2d) x = -1/2143. A stone is thrown vertically upwards and the height *x* ft reached by the stone in t seconds is given by $x = 80t - 16t^2$. The stone reaches the maximum height in a) 2s b) 2.5s c) 3s d) 1.5s 144. If $ax^2 + bx + 4$ attains its minimum value -1 at x = 1, then the values of *a* and *b* are respectively b) 5, -5 a) 5, -10 c) 5,5 d) 10, −5 145. The function $f(x) = \log(1 + x) - \frac{2x}{2+x}$ is increasing on c) (−∞,∞) a) (0,∞) b) (−∞, 0) d) None of these 146. Let $f(x) = e^x \sin x$, slope of the curve y = f(x) is maximum at x = a, if 'a' equals b) $\pi/4$ a) 0 c) $\pi/2$ d) None of these 147. The slope of the tangent to the curve $y = \sqrt{9 - x^2}$ at the point where ordinate and abscissa are equal, is a) 1 b) -1 c) 0 d) None of these 148. If $0 < x < \frac{\pi}{2}$, then a) $\cos(\sin x) > \cos x$ b) $\cos(\sin x) < \cos x$ c) $\cos(\sin x) = \sin(\cos x)$ d) $\cos(\sin x) < \sin(\cos x)$ 149. In the mean value theorem f(b) - f(a) = (b - a)f'(c), if a = 4, b = 9 and $f(x) = \sqrt{x}$, then the value of cis b) 5.25 a) 8.00 c) 4.00 d) 6.25 150. If the function $f(x) = (2a - 3)(x + 2\sin 3) + (a - 1)(\sin^4 x + \cos^4 x) + \log 2$ does not possess critical points, then a) $a \in (-\infty, 4/3) \cup (2, \infty)$ b) $a \in (4/3,2)$ c) $a \in (4/3, \infty)$ d) $a \in (2, \infty)$ 151. If $s = ae^{t} + be^{-t}$ is the equation of motion of a particle, then its acceleration is equal to b) 2s a) s c) 3s d) 4s 152. The angle of intersection of the curves $y = x^2$ and $x = y^2$ is d) $\tan^{-1}\left(\frac{3}{4}\right)$ a) $\tan^{-1}\left(\frac{4}{3}\right)$ b) $tan^{-1}(1)$ c) 90° 153. A spherical balloon is expanding. If the radius is increasing at the rate of 2 cm/min, the rate at which the volume increase (in cubic centimeters per minute) when the radius is 5 cm, is b) 100π d) 50π a) 10π c) 200π 154. If the radius of a circle be increasing at a uniform rate of 2cm/s. The area of increasing of area of circle ,at the instant when the radius is 20 cm, is c) $80\pi cm^2/s$ a) $70\pi cm^2/s$ b) $70 cm^2/s$ d) 80 cm^2/s 155. The abscissa of the points, where the tangent to curve $y = x^3 - 3x^2 - 9x + 5$ is parallel to x - axis, are a) x = 0 and 0 b) x = 1 and - 1c) x = 1 and - 3d) x = -1 and 3 156. If $f(x) = x^3 - 6x^2 + 9x + 3$ be a decreasing function, then x lies in a) $(-\infty, -1) \cap (3, \infty)$ b) (1, 3)c) (3,∞) d) None of these 157. If the curve $y = ax^3 + bx^2 + cx$ is inclined at 45° to x-axis at (0, 0) but touches x-axis at (1, 0), then a) a = 1, b = -2, c = 1b) a = 1, b = 1, c = -2 c) a = -2, b = 1, c = 1 d) a = -1, b = 2, c = 1158. The value of *x* for which $1 + x \log_e(x + \sqrt{x^2 + 1}) \ge \sqrt{x^2 + 1}$ are a) $x \leq 0$ b) $0 \le x \le 1$ d) None of these c) $x \ge 0$ 159. The function $f(x) = x^{-x}$, $(x \in R)$ attains a maximum, value at x which is c) $\frac{1}{e}$ a) 2 b) 3 d) 1 160. The value of *c* in (0, 2) satisfying the Mean value theorem for the function $f(x) = x(x-1)^2, x \in [0, 2]$ is

Page | 10

equal to a) $\frac{3}{4}$ c) $\frac{1}{3}$ d) $\frac{2}{3}$ b) $\frac{4}{3}$ 161. If the ratio of base radius and height of a cone is 1:2 and percentage error in radius is λ %, then the error in its volume is a) λ% b) 2λ % c) 3 λ% d) None of these 162. The values of *a* in order that $f(x) = \sqrt{3} \sin x - \cos x - 2ax + b$ decreases for all real values of *x*, is given by d) $a < \sqrt{2}$ a) *a* < 1 b) $a \ge 1$ c) $a \leq \sqrt{2}$ 163. The function $f(x) = \cos(\pi/x)$ is increasing in the interval a) $(2n + 1, 2n), n \in N$ b) $\left(\frac{1}{2n+1}, 2n\right), n \in N$ c) $\left(\frac{1}{2n+2}, \frac{1}{2n+1}\right), n \in N$ d) None of these 164. If the curves $\frac{x^2}{a^2} + \frac{y^2}{12} = 1$ and $y^3 = 8x$ intersect at right angle then the value of a^2 is equal to a) 16 b) 12 c) 8 d) 4 165. Let f(x) and g(x) be differentiable for $0 \le x \le 1$, such that f(0) = 2, g(0) = 0, f(1) = 6. Let there exist a real number *c* in [0, 1] such that f'(c) = 2g'(c), then the value of g(1) must be a) 1 b) 2 c) -2 d) −1 166. If a differentiable function f(x) has a relative minimum at x = 0, then the function $\phi(x) = f(x) + ax + b$ has a relative minimum at x = 0 for c) All *b* > 0 b) All *b* if a = 0a) All *a* and all *b* d) All a > 0167. The point at which the tangent to the curve $y = 2x^2 - x + 1$ is parallel to y = 3x + 9, will be b) (1, 2) d) (-2, 1) a) (2, 1) c) (3,9) 168. The maximum slope of the curve $y = -x^3 + 3x^2 + 2x - 27$ is a) 5 b) -5 d) None of these c) 1/5 169. For the curve $y^n = a^{n-1}x$ if the subnormal at any point is a constant, then *n* is equal to b) 2 c) -2 a) 1 170. On which of the following intervals is the function $f(x) = 2x^2 - \log|x|$, $x \neq 0$ increasing? a) (1/2,∞) b) $(-\infty, -1/2) \cup (1/2, \infty)$ c) $(-\infty, -1/2) \cup (0, 1/2)$ d) $(-1/2, 0) \cup (1/2, \infty)$ 171. The abscissa of the point on the curve $ay^2 - x^3$, the normal at which cuts off equal intercepts from the coordinate axes is a) $\frac{2a}{\alpha}$ b) $\frac{4a}{2}$ c) $-\frac{4a}{2}$ d) $-\frac{2a}{q}$ 172. If $f(x) = \sin x - \cos x$, the interval in which function is decreasing in $0 \le x \le 2\pi$, is c) $\left[\frac{3\pi}{2}, \frac{5\pi}{2}\right]$ d) None of these a) $\left[\frac{5\pi}{6}, \frac{3\pi}{4}\right]$ b) $\left[\frac{\pi}{4}, \frac{\pi}{2}\right]$ 173. The function $f(x) = \frac{x}{2} + \frac{2}{x}$ has local minimum at a) x = -2a) x = -2 b) x = 0 c) x = 1 d) x = 2174. The least value of the f(x) given by $f(x) = \tan^{-1} x - \frac{1}{2} \log_e x$ in the interval $[1/\sqrt{3}, \sqrt{3}]$, is b) x = 0c) *x* = 1 a) $\frac{\pi}{6} + \frac{1}{4}\log_e 3$ b) $\frac{\pi}{3} - \frac{1}{4}\log_e 3$ c) $\frac{\pi}{6} - \frac{1}{4}\log_e 3$ d) $\frac{\pi}{3} + \frac{1}{4}\log_e 3$ 175. If the line ax + by + c = 0 is a normal to the curve xy = 1, then c) *a* < 0, *b* < 0 a) a > 0, b > 0b) a > 0, b < 0d) Data is insufficient 176. Let y be the number of people in a village at time t. Assume that the rate of change of the population is

proportional to the number of people in the village at any time and further assume that the population never increase in time. Then, the population of the village at any fixed *t* is given by

a) $y = e^{kt} + c$, for some constants $c \le 0$ and $k \ge 0$ b) $y = ce^{kt}$, for some constants $c \ge 0$ and $k \le 0$ c) $y = e^{ct} + k$, for some constants $c \le 0$ and $k \ge 0$ d) $y = k e^{ct}$, for some constants $c \ge 0$ and $k \le 0$ 177. The equation of the tangent to the curve $x^2 - 2xy + y^2 + 2x + y - 6 = 0$ at (2,2) is a) 2x + y - 6 = 0b) 2y + x - 6 = 0d) 3x + y - 8 = 0c) x + 3y - 8 = 0178. The length of the normal to the curve $x = a(\theta + \sin \theta)$, $y = a(1 - \cos \theta)at \theta = \frac{\pi}{2}is$ a) 2a b) $\frac{a}{2}$ c) $\frac{a}{\sqrt{2}}$ d) $\sqrt{2a}$ 179. The maximum value of function $f(x) = \sin x (1 + \cos x), x \in R$ is a) $\frac{3^{3/2}}{4}$ b) $\frac{3^{5/3}}{4}$ c) $\frac{3}{2}$ d) $\frac{3^{7/5}}{4}$ 180. The minimum value of $2x^2 + x - 1$ is b) $\frac{3}{2}$ a) $-\frac{1}{4}$ d) $\frac{9}{6}$ c) $-\frac{9}{8}$ 181. If $x = t^2$ and y = 2t, then equation of the normal at t = 1, is a) x + y - 3 = 0b) x + y - 1 = 0c) x + y + 1 = 0d) x + y + 3 = 0182. The side of an equilateral triangle is 'a' units and is increasing at the rate of λ units/sec. The rate of increase of its area is b) $\sqrt{3\lambda} a$ c) $\frac{\sqrt{3}}{2}\lambda a$ d) None of these a) $\frac{2}{\sqrt{2}}\lambda a$ ^{183.} If a and b are positive numbers such that a > b, then the minimum value of a sec $\theta - b \tan \theta \left(0 < \theta < \frac{\pi}{2} \right)$ is a) $\frac{1}{\sqrt{a^2 - b^2}}$ b) $\frac{1}{\sqrt{a^2 + h^2}}$ c) $\sqrt{a^2 + b^2}$ d) $\sqrt{a^2 - b^2}$ 184. If $y = x^n$, then the ratio of relative errors in y and x is b) 2 : 1 d) n : 1 a) 1 : 1 c) 1 : n 185. How many real solutions does the equation $x^7 + 14x^5 + 16x^3 + 30x - 560 = 0$ have? a) 5 b) 7 d) 3 c) 1 186. The function $f(x) = x^3 + ax^2 + bx + c$, $a^2 \le 3b$ has a) One maximum value b) One minimum value d) One maximum and one minimum value c) No extreme value 187. The fixed point *P* on the curve $y = x^2 - 4x + 5$ such that the tangent at *P* is perpendicular to the line x + 2y - 7 = 0 is given by a) (3, 2) c) (2, 1) d) None of these b) (1, 2) 188. If the area of the triangle, included between the axes and any tangent to the curve $xy^n = a^{n+1}$ is constant, then the value of *n* is a) –1 b) -2 d) 2 c) 1 189. The radius of a circular plate is increasing at the rate of 0.01 cm/s when the radius is 12 cm. Then , The rate at which the area increase, is a) 0.24 π sq cm/s b) 60 π sq cm/s c) 24 π sq cm/s d) 1.2 π sq cm/s 190. If $g(x) = \min(x, x^2)$ where x is real number, then a) g(x) is an increasing function b) g(x) is a decreasing function c) g(x) is a constant function d) g(x) is a continuous function except at x = 0191. The angle between the curves $y = a^x$ and $y = b^x$ is equal to a) $\tan^{-1}\left(\left|\frac{a-b}{1+ab}\right|\right)$ c) $\tan^{-1}\left(\left|\frac{\log b + \log a}{1 + \log a \log b}\right|\right)$ b) $\tan^{-1}\left(\left|\frac{a+b}{1-ab}\right|\right)$ d) $\tan^{-1}\left(\left|\frac{\log a - \log b}{1 + \log a \log b}\right|\right)$

192. The function which is neither decreasing nor increasing in $\left(\frac{\pi}{2}, \frac{3\pi}{2}\right)$, is c) *x*² d) |x - 1|a) cosec xb) tan x 193. On the interval [0, 1] the function $x^{25}(1-x)^{75}$ takes its maximum value at the point c) $\frac{1}{2}$ a) 0 b) $\frac{1}{4}$ d) $\frac{1}{3}$ 194. A function f is defined by $f(x) = e^x \sin x \ln[0, \pi]$. Which of the following is not correct? a) *f* is continous in $[0, \pi]$ b) *f* is differentiable in $[0, \pi]$ c) $f(0) = f(\pi)$ d) Rolle's theorem is not true in $[0, \pi]$ 195. If $xy = c^2$, then minimum value of ax + by is a) *c√ab* b) $2c\sqrt{ab}$ c) $-c\sqrt{ab}$ d) $-2c\sqrt{ab}$ 196. If x - 2y = 4, the minimum value of *xy* is c) 0 a) -2 b) 0 d) -3 197. The function $f(x) = (9 - x^2)^2$ increasing in a) $(-3, 0) \cup (3, \infty)$ b) $(-\infty, -3) \cup (3, \infty)$ c) $(-\infty, -3) \cup (0, 3)$ d) (-3, 3)198. The real number *x* when added to its inverse gives the minimum value of the sum at *x* equals to c) -1 a) 2 b) 1 d) -2 199. The points on the curve $12y = x^3$ whose ordinate and abscissa change at the same rate, are a) (-2, -2/3), (2, 2/3) b) (-2/3, -2), (2/3, 2) c) (-2, -2/3) only d) (2/3, 2) only 200. Let P(2, 2) and Q(1/2, -1) be two points on the parabola $y^2 = 2x$. The coordinates of the point *R* on the parabola $y^2 = 2x$, where the tangent to the curve is parallel to the chord *PQ*, are b) (1/8,1/2) d) $(-\sqrt{2}, 1)$ a) (2, -1)c) $(\sqrt{2}, 1)$ 201. If $f(x) = \frac{1}{x+1} - \log(1+x)$, x > 0, then f is a) an increasing function b) a decreasing function c) both increasing and decreasing function d) None of the above 202. The equation of the tangent to the curve $x = 2\cos^3\theta$ and $y = 3\sin^3\theta$ at the point, $\theta = \pi/4$ is a) $2x + 3y = 3\sqrt{2}$ b) $2x - 3y = 3\sqrt{2}$ c) $3x + 2y = 3\sqrt{2}$ d) $3x - 2v = 3\sqrt{2}$ 203. The length of the subtangent to the curve $x^2 + xy + y^2 = 7$ at (1, -3) is c) $\frac{3}{5}$ b) 5 a) 3 d) 15 204. The line (x/a) + (y/b) = 2, touches the curve $\frac{x^n}{a^n} + \frac{y^n}{b^n} = 2$, at a) (b, a) b) (-b, -a) c) (a, b) d) None of these 205. The tangent to the curve $y = x^3 - 6x^2 + 9x + 4, 0 \le x \le 5$ has maximum slope at x which is equal to b) 3 c) 4 d) None of these a) 2 206. If *ST* and *SN* are the lengths of the subtangent and the subnormal at the point $\theta = \frac{\pi}{2}$ on the curve $x = a(\theta + \sin \theta), y = a(1 - \cos \theta), a \neq 1$, then c) $ST^2 = aSN^3$ d) $ST^3 = aSN$ b) ST = 2SNa) ST = SN207. Any tangent to the curve $y = 2x^5 + 4x^3 + 7x + 9$ a) Is parallel to x-axis b) Is parallel to y-axis c) Makes an acute angle with the *x*-axis d) Makes an obtuse angle with x-axis 208. A circular metal plate is heated so that its radius increases at a rate of 0.1 mm per minute. Then the rate at which the plate's area is increasing when the radius is 50 cm is a) 10 π mm/minute b) 100 π mm/minute c) π mm/minute d) $-\pi$ mm/minute 209. The two tangents to the curve $ax^2 + 2hxy + by^2 = 1$, a > 0 at the points where it crosses *x*-axis, are a) Parallel b) Perpendicular c) Inclined at an angle of $\pi/4$

d) None of these

210	. The maximum value of <i>xy</i>	when $x + 2y = 8$ is		
	a) 20	b) 16	c) 24	d) 8
211	f(x) satisfies the condition	ons of Rolle's theorem in [1	, 2] and $f(x)$ is continuous	in
	[1, 2], then $\int_{1}^{2} f'(x) dx$ is	equal to		
	a) 3	b) 0	c) 1	d) 2
212	• The angle between the ta	ngents to the curve $y^2 = 2$	ax at the point where $x = \frac{a}{2}$, is
	a) π/6	b) π/4	c) π/3	d) π/2
213	If the velocity v of a particular velocity $v^2 = a^2 + a^2$	cle moving along a straight s^2 then its acceleration equilation	line and its distance s from	a fixed point on the line
	ale related by $v = u + 1$	b) c	$c c c^2$	d) 2c
214	The value of r for which t	the polynomial $2r^3 - 9r^2$.	c) 3 L 12r ⊥ 4 is a decreasing fu	r_{1}
211	(2) - 1 < r < 1	b) 0 < x < 2	$r_1 2x + r_1 s a$ uccreasing in	d) $1 < r < 2$
215	The sum of two numbers	is 20. If the product of the	$c_{j} x > 5$	The of the other is $1 < \lambda < 2$
215	maximum then the numb	hers are	square of one number and t	cube of the other is
	a) 12.8	h) 3 4	c) 9 12	d) 15-18
216	Coordinates of a point on	the curve $v = x \log x$ at wh	ich the normal is narallel t	o the line $2x - 2y = 3$ are
210	a) (0, 0)	h) $(e e)$	c) $(e^2 2e^2)$	d) $(e^{-2} - 2e^{-2})$
217	Which of the following fu	nctions is not decreasing of	$n(0 \pi/2)?$	u)(c , 2c)
21/	a) $\cos x$	h) cos 2 r	$(0, \pi/2)$.	d) tan r
218	$lf f(x) = (ab - b^2 - 2)x$	$\pm \int_{x}^{x} (\cos^4 \theta \pm \sin^4 \theta) d\theta$ is	docrossing function of r for	$rall x \in P and h \in P h$
210	(ub - b - 2)x	$+ J_0 (\cos \theta + \sin \theta) d\theta \sin \theta$	uecieasing function of x to	I all $x \in K$ all $u \in K, v$
	being independent of x , the formula x is the f	nen		
	a) $a \in (0, \sqrt{6})$	b) $a \in (-\sqrt{6}, \sqrt{6})$	c) $a \in (-\sqrt{6}, 0)$	d) None of these
219	. Consider the following st	atements S and R :	 X 	
	S: Both sin x and cos x are	e decreasing function in $\left(\frac{\pi}{2}\right)$,π)	
	<i>R</i> : If a differentiating fund	ction decreases in (a, b) the	en its derivative also decrea	ses in (a, b)
	Which of the following is	true?		
	a) Both S and R are wron	g		
	b) Both S and R are corre	ct but <i>R</i> is not the correct e	explanation for S	
	c) <i>S</i> is correct and <i>R</i> is the	e correct explanation for S		
	d) <i>S</i> is correct, <i>R</i> is wrong	5		
220	$\operatorname{Let} f(x) = \int e^x (x-1)(x)$	(-2)dx. Then, f decreases	in the interval	
	a) (−∞,−2)	b) (-2, -1)	c) (1,2)	d) (2,∞)
221	. A spherical balloon is bei	ng inflated at the rate of 30	cc /min. The rate of increa	se of the surface area of
	the balloon when its dian	neter is 14cm, is		
	a) 7 sq cm/min	b) 10 sq cm/min	c) 17.5 sq cm/min	d) 28 sq cm/min
222	. A man 2 metres tall walks	s away from a lamp post 5	metres height at the rate of	4.8 km/hr. The rate of
	increase of the length of h	nis shadow is		
	a) 1.6 km/hr	b) 6.3 km/hr	c) 5 km/hr	d) 3.2 km/hr
223	. The equation of the tange	ents at the origin to the curv	$y^2 = x^2(1+x)$ are	
	a) $y = \pm x$	b) $x = \pm y$	c) $y = \pm 2 x$	d) None of these
224	. A particle moves along a	straight line with the law o	f motion given by $s^2 = at^2$	+ 2bt + c. then the
	acceleration varies are			
	a) $\frac{1}{3}$	b) $\frac{1}{2}$	c) $\frac{1}{-4}$	d) $\frac{1}{2}$
225	S ³ If a particle moving along	S	S^* as ² \perp hs \perp c then the retar	S^2
223	nronortional to	, a fine follows the law $t = 0$	us i vs r c, uicli uic i eldi	action of the particle is
	a) Square of the velocity			
	h) Cube of the displacement	ont		
	c) Cube of the velocity			
	-, succost the followity			

d) Square of the displacement

226. Let $f(x) = x^3 - 6x^2 + 12x - 3$. Then at x = 2, f(x) has

a) A maximum

b) A minimum

- c) Both a maximum and a minimum
- d) Neither a maximum nor a minimum
- 227. The set of all values of a for which the function

$$f(x) = \left(\frac{\sqrt{a+4}}{1-a} - 1\right)x^5 - 3x + \log 5$$

Decreases for all real *x* is

a)
$$(-\infty, \infty)$$

b) $\left[-4, \frac{3-\sqrt{21}}{2}\right] \cup [1, \infty)$
c) $\left(-3, 5-\frac{\sqrt{27}}{2}\right) \cup (2, \infty)$

d) [1,∞)

228. A sphere of radius 100 mm shrinks to radius 98 mm, then the approximate decrease in its volume is a) 12000 π mm³ b) 800 π mm³ c) $80000 \,\pi \,\mathrm{mm^3}$ d) 120 π mm³ 229. The value of *c* in Lagrange's mean value theorem for the function f(x) = x(x - 2) when $x \in [1,2]$, is a) 1 b) 1/2 c) 2/3 d) 3/2 230. If the curves $x^2 = 9A(9 - y)$ and $x^2 = A(y + 1)$ intersect orthogonally, then the value of A is a) 3 b) 4 c) 5 d) 7 231. The length of subtangent to the curve $x^2y^2 = a^4$ at the point (-a, a) is a) 3a b) 2a c) a d) 4a 232. The real number *x* when added to its inverse gives the minimum value of the sum at *x* which is equal to a) -2 b) 2 c) 1 d) −1 233. The equation of the normal line to the curve $y = x \log_e x$ parallel to 2x - 2y + 3 = 0 is d) $x - y = 6e^2$ a) $x + y = 3e^{-2}$ b) $x - y = 6e^{-2}$ c) $x - y = 3e^{-2}$ 234. Let f(x) and g(x) are defined and differentiable for $x \ge x_0$ and $f(x_0) = g(x_0)$, f'(x) > g'(x) for $x > x_0$, then a) f(x) < g(x) for some $x > x_0$ b) f(x) = g(x) for some $x > x_0$ c) f(x) > g(x) for all $x > x_0$ d) None of these 235. If the semi-vertical angle of a cone is 45° , then the rate of change of volume of the cone is a) Curved surface area times the rate of change of rb) Base area times the rate of change of *l* c) Base area times the rate of change of *r* d) None of these 236. For the curve $y = x e^x$, the point a) x = -1 is a point of minimum b) x = 0 is a point of minimum c) x = -1 is a point of maximum d) x = 0 is a point of maximum 237. The function $f(x) = \log_e(x^3 + \sqrt{x^6 + 1})$ is of the following types: a) Even and increasing b) Odd and increasing c) Even and decreasing d) Odd and decreasing

238. The slope of the tangent to the curve $x = 3t^2 + 1$, $y = t^3 - 1$, at x = 1 is

a) 0 b)
$$\frac{1}{2}$$
 c) ∞ d) -2

239. If the function $f: R \to R$ be defined by $f(x) = \tan x - x$, then f(x)

		,	a) becomes here
240. The extreme values	of		
$4\cos(x^2)\cos\left(\frac{\pi}{3}+x^2\right)$	$\binom{2}{3}\cos\left(\frac{\pi}{3}-x^2\right)$ over <i>R</i> , are		
a) -1, 1	b) -2, 2	c) -3, 3	d) -4, 4
241. If the rate of change	of sine of an angle θ is k , t	hen the rate of change of its tar	igent is
a) <i>k</i> ²	b) $\frac{1}{k^2}$	c) <i>k</i>	d) $\frac{1}{k}$
^{242.} The maximum and n	ninimum values of $y = \frac{ax^2}{x^2}$	$\frac{2+2bx+c}{2}$ are those for which	
a) $ar^2 + 2hr + c - ar^2$	Ax^2 $y(Ax^2 + 2Bx + C)$ is equi	+2Bx+C	
h) $ax^2 + 2bx + c - b$	$y(Ax^2 + 2Bx + C)$ is a new $y(Ax^2 + 2Bx + C)$ is a new function of the second seco	rfect square	
$dy = d^2y$	y(11x + 2 bx + 0) 13 a pc	lieet square	
c) $\frac{dy}{dx} = 0$ and $\frac{dy}{dx^2} = 0$	0		
d) $ax^2 + 2bx + c - c$	$y(Ax^2 + 2Bx + C)$ is not	a perfect square	
243. Angle between the t	angents to the curve $y = x$	$x^2 - 5x + 6$ at the point (2, 0) a	nd (3, 0) is
a) $\frac{\pi}{2}$	b) $\frac{\pi}{\epsilon}$	c) $\frac{\pi}{\cdot}$	d) $\frac{\pi}{2}$
$\frac{1}{2}$	$\frac{1}{6}$	$\frac{4}{4}$	3
244. Let the function $f: R$	\rightarrow K be defined by $f(x) =$	$= 2x + \cos x$, then j	
a) Has a maximum a	x = n		
D) Паš a Шахішиш а	$\mathbf{I} \mathbf{x} = 0$		
d) Is increasing fund	tion on D		
245 The alone of the tan	$t_{1011} = 011 \text{ K}$	$2t = 9 a_1 - 2t^2 = 2t = 5 a_1 t b_1$	a = a = a = a = a = a = a = a = a = a =
245. The slope of the tang $22/7$	$y = t + \frac{1}{2} = t + \frac{1}{2}$	-5t - 6; y = 2t - 2t - 5 at th	d 7
$\frac{d}{246}$ m $\frac{d}{1}$		0 -0	u)-/
240. The function $x \sqrt{1}$ –	x^{2} , ($x > 0$) has		
a) A local maxima		b) A local minima	
c) Neither a local ma	axima nor a local minima	d) None of the above	
247. The attitude of a rigi	nt circular cone of minimul	m volume circumscribed about	a sphere of radius r is
-) 2	L) 2		$a_{13/2}r$
a) 2 <i>r</i>	b) 3 <i>r</i>	c) $5r$	- 5 - 1
a) 2 <i>r</i> 248. If a particle moves a	b) $3 r$ ccording to the law $s = 6t$	c) 5 r $r^{2} - \frac{t^{3}}{2}$, then the time at which it	is momentarily at rest is
a) $2 r$ 248. If a particle moves a a) $t = 0$ only	b) $3 r$ ccording to the law $s = 6t$ b) $t = 8$ only	c) 5 r $2 - \frac{t^3}{2}$, then the time at which it c) $t = 0.8$	t is momentarily at rest is d) None of these
a) 2 r 248. If a particle moves a a) $t = 0$ only 249. If $f(x) = x^2 + 4x + 4x$	b) $3 r$ ccording to the law $s = 6t$ b) $t = 8$ only 1, then	c) 5 r $2^{2} - \frac{t^{3}}{2}$, then the time at which it c) $t = 0, 8$	t is momentarily at rest is d) None of these
a) 2 r 248. If a particle moves a a) $t = 0$ only 249. If $f(x) = x^2 + 4x + 4x + 4x^2 + 4x + 5x^2 + 4x + 5x^2 + 4x + 5x^2 + 4x + 5x^2 + 5$	b) $3 r$ according to the law $s = 6t$ b) $t = 8$ only 1, then r all x	c) 5 r $2 - \frac{t^3}{2}$, then the time at which it c) $t = 0, 8$ b) $f(x) \neq 1$, for all $x=0$	t is momentarily at rest is d) None of these
a) 2 r 248. If a particle moves a a) $t = 0$ only 249. If $f(x) = x^2 + 4x + 4x + 5x^2 + 4x + 5x^2 + 4x + 5x^2 + 4x + 5x^2 +$	b) $3 r$.ccording to the law $s = 6t$ b) $t = 8$ only 1, then r all x x	c) 5 r $2 - \frac{t^3}{2}$, then the time at which it c) $t = 0, 8$ b) $f(x) \neq 1$, for all $x=0$ d) $f(x) > 1$, for $x \le 4$	t is momentarily at rest is d) None of these
a) 2 r 248. If a particle moves a a) $t = 0$ only 249. If $f(x) = x^2 + 4x + 4x + 5x^2 + 4x + 5x^2 + 4x + 5x^2 + 4x + 5x^2 +$	b) $3 r$ according to the law $s = 6t$ b) $t = 8$ only 1, then r all x x $\cot^{-1} x + x$ increasing in the second sec	c) 5 r $2 - \frac{t^3}{2}$, then the time at which it c) $t = 0, 8$ b) $f(x) \neq 1$, for all $x=0$ d) $f(x) > 1$, for $x \le 4$ the interval	t is momentarily at rest is d) None of these
a) 2 r 248. If a particle moves a a) $t = 0$ only 249. If $f(x) = x^2 + 4x + 4x + 5x^2 + 4x + 5x^2 + 4x + 5x^2 + 4x + 5x^2 +$	b) $3 r$ according to the law $s = 6t$ b) $t = 8$ only 1, then r all x x $\cot^{-1} x + x$ increasing in the b) $(-1, \infty)$	c) 5 r $2 - \frac{t^3}{2}$, then the time at which it c) $t = 0, 8$ b) $f(x) \neq 1$, for all $x=0$ d) $f(x) > 1$, for $x \le 4$ the interval c) $(-\infty, \infty)$	d) (0,∞)
a) 2 r 248. If a particle moves a a) $t = 0$ only 249. If $f(x) = x^2 + 4x + 4x + 5x^2 + 4x + 5x^2 + 4x + 5x^2 + 4x + 5x^2 +$	b) $3r$ according to the law $s = 6t$ b) $t = 8$ only 1, then r all x x $\cot^{-1} x + x$ increasing in the b) $(-1, \infty)$ curve $y = f(x)$ at the poin	c) 5 r $2 - \frac{t^3}{2}$, then the time at which it c) $t = 0, 8$ b) $f(x) \neq 1$, for all $x=0$ d) $f(x) > 1$, for $x \le 4$ the interval c) $(-\infty, \infty)$ t (3, 4) makes an angle $\frac{3\pi}{2}$ with	 d) None of these d) (0,∞) the positive <i>x</i>-axis, then
a) 2 r 248. If a particle moves a a) $t = 0$ only 249. If $f(x) = x^2 + 4x + 4x + 5x^2 + 5$	b) $3 r$ according to the law $s = 6t$ b) $t = 8$ only 1, then r all x x $\cot^{-1} x + x$ increasing in t b) $(-1, \infty)$ curve $y = f(x)$ at the poin	c) 5 r $2 - \frac{t^3}{2}$, then the time at which it c) $t = 0, 8$ b) $f(x) \neq 1$, for all $x=0$ d) $f(x) > 1$, for $x \le 4$ the interval c) $(-\infty, \infty)$ t (3, 4) makes an angle $\frac{3\pi}{2}$ with	 d) None of these d) (0,∞) the positive <i>x</i>-axis, then
a) 2 r 248. If a particle moves a a) $t = 0$ only 249. If $f(x) = x^2 + 4x + 4x + 5x^2 + 5$	b) $3r$ according to the law $s = 6t$ b) $t = 8$ only 1, then r all x x $\cot^{-1} x + x$ increasing in the b) $(-1, \infty)$ curve $y = f(x)$ at the poin	c) 5 r $2 - \frac{t^3}{2}$, then the time at which it c) $t = 0, 8$ b) $f(x) \neq 1$, for all $x=0$ d) $f(x) > 1$, for $x \le 4$ the interval c) $(-\infty, \infty)$ t (3, 4) makes an angle $\frac{3\pi}{2}$ with	 d) None of these d) (0,∞) the positive <i>x</i>-axis, then d) 1
a) 2 r 248. If a particle moves a a) $t = 0$ only 249. If $f(x) = x^2 + 4x + 4x + 5x^2 + 5$	b) $3r$ according to the law $s = 6t$ b) $t = 8$ only 1, then r all x x cot ⁻¹ $x + x$ increasing in t b) $(-1, \infty)$ curve $y = f(x)$ at the poin b) $-\frac{3}{4}$	c) 5 r $2 - \frac{t^3}{2}$, then the time at which it c) $t = 0, 8$ b) $f(x) \neq 1$, for all $x=0$ d) $f(x) > 1$, for $x \le 4$ the interval c) $(-\infty, \infty)$ t (3, 4) makes an angle $\frac{3\pi}{2}$ with c) $\frac{4}{3}$	 d) None of these d) (0,∞) the positive <i>x</i>-axis, then d) 1
a) 2 r 248. If a particle moves a a) $t = 0$ only 249. If $f(x) = x^2 + 4x + 4x + 5x^2 + 5$	b) $3r$ according to the law $s = 6t$ b) $t = 8$ only 1, then r all x x $\cot^{-1} x + x$ increasing in the b) $(-1, \infty)$ curve $y = f(x)$ at the poin b) $-\frac{3}{4}$ $\int_{0}^{x} te^{t^{2}} dt$ is	c) 5 r $2 - \frac{t^3}{2}$, then the time at which it c) $t = 0, 8$ b) $f(x) \neq 1$, for all $x=0$ d) $f(x) > 1$, for $x \le 4$ the interval c) $(-\infty, \infty)$ t (3, 4) makes an angle $\frac{3\pi}{2}$ with c) $\frac{4}{3}$	 d) (0,∞) d) (0,∞) the positive <i>x</i>-axis, then d) 1
a) 2 r 248. If a particle moves a a) $t = 0$ only 249. If $f(x) = x^2 + 4x + 4x + 5x^2 + 5$	b) $3r$ according to the law $s = 6t$ b) $t = 8$ only 1, then r all x x $(-1, \infty)$ curve $y = f(x)$ at the poin b) $-\frac{3}{4}$ $\int_{0}^{x} te^{t^{2}} dt$ is b) 1	c) 5 r $2 - \frac{t^3}{2}$, then the time at which it c) $t = 0,8$ b) $f(x) \neq 1$, for all $x=0$ d) $f(x) > 1$, for $x \le 4$ the interval c) $(-\infty, \infty)$ t (3, 4) makes an angle $\frac{3\pi}{2}$ with c) $\frac{4}{3}$ c) 2	 d) None of these d) (0,∞) the positive <i>x</i>-axis, then d) 1 d) 3
a) 2 r 248. If a particle moves a a) $t = 0$ only 249. If $f(x) = x^2 + 4x + 4x + 5x^2 + 5$	b) $3r$ according to the law $s = 6t$ b) $t = 8$ only 1, then r all x x $\cot^{-1} x + x$ increasing in the b) $(-1, \infty)$ curve $y = f(x)$ at the point b) $-\frac{3}{4}$ $f_0^x te^{t^2} dt$ is b) 1 tion of a particle moving allo	c) 5 r $2 - \frac{t^3}{2}$, then the time at which it c) $t = 0, 8$ b) $f(x) \neq 1$, for all $x=0$ d) $f(x) > 1$, for $x \le 4$ the interval c) $(-\infty, \infty)$ t (3, 4) makes an angle $\frac{3\pi}{2}$ with c) $\frac{4}{3}$ c) 2 ong a straight line is $s=2t^3 - 9$	t is momentarily at rest is d) None of these d) $(0, \infty)$ the positive <i>x</i> -axis, then d) 1 d) 3 $t^2 + 12t$, where the units of s
a) 2 r 248. If a particle moves a a) $t = 0$ only 249. If $f(x) = x^2 + 4x + 4x + 5x^2 + 5$	b) $3 r$ according to the law $s = 6t$ b) $t = 8$ only 1, then r all x x $= \cot^{-1} x + x$ increasing in f b) $(-1, \infty)$ curve $y = f(x)$ at the poin b) $-\frac{3}{4}$ $= \int_{0}^{x} te^{t^{2}} dt$ is b) 1 ion of a particle moving all = and second. The accelerat	c) 5 r $2 - \frac{t^3}{2}$, then the time at which it c) $t = 0, 8$ b) $f(x) \neq 1$, for all $x=0$ d) $f(x) > 1$, for $x \le 4$ the interval c) $(-\infty, \infty)$ t (3, 4) makes an angle $\frac{3\pi}{2}$ with c) $\frac{4}{3}$ c) 2 ong a straight line is $s=2t^3 - 9$ tion of the particle will be zero	t is momentarily at rest is d) None of these d) $(0, \infty)$ the positive <i>x</i> -axis, then d) 1 d) 3 $t^2 + 12t$, where the units of s after
a) 2 r 248. If a particle moves a a) $t = 0$ only 249. If $f(x) = x^2 + 4x + 4x + 5x^2 + 5$	b) $3r$ according to the law $s = 6t$ b) $t = 8$ only 1, then r all x x $= \cot^{-1} x + x$ increasing in f b) $(-1, \infty)$ curve $y = f(x)$ at the poin b) $-\frac{3}{4}$ $= \int_{0}^{x} te^{t^{2}} dt$ is b) 1 ion of a particle moving allowing the second. The accelerated b) $\frac{2}{-1}s$	c) 5 r $2 - \frac{t^3}{2}$, then the time at which it c) $t = 0, 8$ b) $f(x) \neq 1$, for all $x=0$ d) $f(x) > 1$, for $x \le 4$ the interval c) $(-\infty, \infty)$ t (3, 4) makes an angle $\frac{3\pi}{2}$ with c) $\frac{4}{3}$ c) 2 ong a straight line is $s=2t^3 - 9$ tion of the particle will be zero c) $\frac{1}{2}s$	t is momentarily at rest is d) None of these d) $(0, \infty)$ the positive <i>x</i> -axis, then d) 1 d) 3 $t^2 + 12t$, where the units of s after d) 1s
a) 2 r 248. If a particle moves a a) $t = 0$ only 249. If $f(x) = x^2 + 4x + 4x + 5x^2 + 5$	b) $3r$ according to the law $s = 6t$ b) $t = 8$ only 1, then r all x x $= \cot^{-1} x + x$ increasing in f b) $(-1, \infty)$ curve $y = f(x)$ at the poin b) $-\frac{3}{4}$ $= \int_{0}^{x} te^{t^{2}} dt$ is b) 1 tion of a particle moving all = and second. The acceleratt b) $\frac{2}{3}s$	c) 5 r $2 - \frac{t^3}{2}$, then the time at which it c) $t = 0,8$ b) $f(x) \neq 1$, for all $x=0$ d) $f(x) > 1$, for $x \le 4$ the interval c) $(-\infty, \infty)$ t (3, 4) makes an angle $\frac{3\pi}{2}$ with c) $\frac{4}{3}$ c) 2 ong a straight line is $s=2t^3 - 9$ tion of the particle will be zero c) $\frac{1}{2}s$	t is momentarily at rest is d) None of these d) $(0, \infty)$ the positive <i>x</i> -axis, then d) 1 d) 3 $t^2 + 12t$, where the units of s after d) 1s
a) 2 r 248. If a particle moves a a) $t = 0$ only 249. If $f(x) = x^2 + 4x + 4x + 5x^2 + 5$	b) $3r$ according to the law $s = 6t$ b) $t = 8$ only 1, then r all x x $= \cot^{-1} x + x$ increasing in f b) $(-1, \infty)$ curve $y = f(x)$ at the poin b) $-\frac{3}{4}$ $= \int_{0}^{x} te^{t^{2}} dt$ is b) 1 tion of a particle moving allowing and second. The accelerate b) $\frac{2}{3}s$ of $x^{2} + \frac{1}{1+x^{2}}$ is at	c) 5 r $2 - \frac{t^3}{2}$, then the time at which it c) $t = 0, 8$ b) $f(x) \neq 1$, for all $x=0$ d) $f(x) > 1$, for $x \le 4$ the interval c) $(-\infty, \infty)$ t (3, 4) makes an angle $\frac{3\pi}{2}$ with c) $\frac{4}{3}$ c) 2 ong a straight line is $s=2t^3 - 9$ tion of the particle will be zero c) $\frac{1}{2}s$	t is momentarily at rest is d) None of these d) $(0, \infty)$ the positive <i>x</i> -axis, then d) 1 d) 3 $t^2 + 12t$, where the units of s after d) 1s
a) 2 r 248. If a particle moves a a) $t = 0$ only 249. If $f(x) = x^2 + 4x + 4x + 5x^2 + 5$	b) $3r$ according to the law $s = 6t$ b) $t = 8$ only 1, then r all x x $= \cot^{-1} x + x$ increasing in f b) $(-1, \infty)$ curve $y = f(x)$ at the poin b) $-\frac{3}{4}$ $= \int_{0}^{x} te^{t^{2}} dt$ is b) 1 tion of a particle moving all = and second. The accelerate b) $\frac{2}{3}s$ of $x^{2} + \frac{1}{1+x^{2}}$ is at b) $x = 1$	c) 5 r $2 - \frac{t^3}{2}$, then the time at which it c) $t = 0.8$ b) $f(x) \neq 1$, for all $x=0$ d) $f(x) > 1$, for $x \le 4$ the interval c) $(-\infty, \infty)$ t (3, 4) makes an angle $\frac{3\pi}{2}$ with c) $\frac{4}{3}$ c) 2 ong a straight line is $s=2t^3 - 9$ cion of the particle will be zero c) $\frac{1}{2}s$ c) $x = 4$	t is momentarily at rest is d) None of these d) $(0, \infty)$ the positive <i>x</i> -axis, then d) 1 d) 3 $t^2 + 12t$, where the units of s after d) 1s d) $x = 3$
a) 2 r 248. If a particle moves a a) $t = 0$ only 249. If $f(x) = x^2 + 4x + 4x + 5x^2 + 5$	b) $3r$ according to the law $s = 6t$ b) $t = 8$ only 1, then r all x x $= \cot^{-1} x + x$ increasing in f b) $(-1, \infty)$ curve $y = f(x)$ at the poin b) $-\frac{3}{4}$ $= \int_{0}^{x} te^{t^{2}} dt$ is b) 1 tion of a particle moving allowing and second. The accelerate b) $\frac{2}{3}s$ of $x^{2} + \frac{1}{1+x^{2}}$ is at b) $x = 1$ s equal to the radius of a spectrum.	c) 5 r $2 - \frac{t^3}{2}$, then the time at which it c) $t = 0, 8$ b) $f(x) \neq 1$, for all $x=0$ d) $f(x) > 1$, for $x \le 4$ the interval c) $(-\infty, \infty)$ t (3, 4) makes an angle $\frac{3\pi}{2}$ with c) $\frac{4}{3}$ c) 2 ong a straight line is $s=2t^3 - 9$ tion of the particle will be zero c) $\frac{1}{2}s$ c) $x = 4$ ohere. If the edge and the radiu	t is momentarily at rest is d) None of these d) $(0, \infty)$ the positive <i>x</i> -axis, then d) 1 d) 3 $t^2 + 12t$, where the units of s after d) 1s d) $x = 3$ s increase at the same rate,

a) 2π : 3	b) 3 : 2π	c) 6 : π	d) None of these
256. The function $f($	$f(x) = \int_{-1}^{x} t(e^t - 1) (t - 1)(t - 1$	$(t-2)^{3}(t-5)^{5}dt$ has local m	inimum at $x =$
a) 0	b) 1	c) 2	d) 3
257. The slope of the	e tangent to the curve $x = 3t$	$x^{2} + 1, y = t^{3} - 1$ at $x = 1$ is	5
a) $\frac{1}{2}$	b) 0	c) -2	∞ (b
258. The point in the	e interval [0, 2π], where $f(x)$	$= e^x \sin x$ has maximum s	lope is
a) $\frac{\pi}{4}$	b) $\frac{\pi}{2}$	c) π	d) None of these
$^{-4}$	$\int Z$	$e^{-2 x }$ at the point where t	he curve cuts the line $r = 1/2$ is
a) $2e(ex + 2y)$	$= \rho^2 - 4$	e • at the point where t	the curve cuts the line $x = 1/2$, is
b) $2e(ex - 2y)$	$= e^{2} - 4$		
c) $2e(ey - 2x)$	$=e^{2}-4$		
d) None of thes	e		
260. In [0, 1] Lagran	ges Mean value theorem is N	OT applicable to	
$\left(\begin{array}{c}1\\\end{array}\right)$	$-r$ $r < \frac{1}{2}$	(sin r	
a) $f(x) = \begin{cases} 2 \\ -2 \\ -2 \end{cases}$	2	b) $f(x) = \begin{cases} \frac{\sin x}{x}, \\ \frac{\sin x}{x} \end{cases}$	$x \neq 0$
$\left(\frac{1}{2}\right)$	$(-x)^{2}, x \ge \frac{1}{2}$		x = 0
(2) f(x) - x x) / 2	d) $f(x) = x $	
261 If A is the angle	between the curves $xy - 2z$	u) $f(x) = x $ and $r^2 \pm 4y = 0$ then $\tan \theta$	is equal to
a) 1	h) -1	(1) 2	d) 3
262. A stone throw	upwards, has equation of m	otion $s = 490t - 49t^2$. The	n, the maximum height reached by
it ,is	· · · · · · · · · · · · · · · · · · ·		
a) 24500	b) 12500	c) 12250	d) 25400
263. If $f(x)$ is a func	tion given by		
$\sin x$	$\sin a \sin b$	π	
$f(x) = \cos x$	$\cos a \cos b$, where $0 < a < 1$	$< b < \frac{1}{2}$	
Then the equat	$\tan a \tan b$ ion $f'(x) = 0$		
a) Has at least of	one root in (<i>a</i> , <i>b</i>)		
b) Has at most	one root in (a, b)		
c) Has exactly o	one root in (a, b)		
d) Has no root i	n (<i>a</i> , <i>b</i>)		
264. If $\phi(x)$ is contin	nuous at $x = \alpha$ such that $\phi(\alpha)$	(x) < 0 and $f(x)$ is a function	n such that
f'(x) = (ax - a)	$(x^2 - x^2)\phi(x)$ for all x, then f	(x) is	
a) Increasing in	the neighbourhood of $x = a$		
b) Decreasing in	In the neighbourhood of $x = a$	X	
d) Minimum at	The neighbour hood of $x = \alpha$		
265 The point on th	x - u e curve $y - r^3$ at which the t	angent to the curve is nara	llel to the r-axis is
a) (2, 2)	b) (3, 3)	c) (4, 4)	d) $(0, 0)$
266. The function $f($	$f(x) = \cot^{-1} x + x$ increases in	the interval	
a) (1,∞)	b) (−1,∞)	c) (−∞,∞)	d) (0,∞)
267. If the function t	$f(x) = x^3 - 6x^2 + ax + h de$	fined on [1,3] satisfies the	Bolle's theorem for $c = \frac{2\sqrt{3}+1}{2}$ then
a) $a = 11$ $b = 1$	(x) + 0x + 4x + 540	$a_{1} = 11 h \in \mathbb{R}$	d) None of these
a) $u = 11, v = 0$ 268 The function $f($	b = 0 $a = -11, b = 0(x) = \tan^{-1}(\sin x + \cos x) is$	b) $C = 11, D \in R$	d) None of these
$200. \text{ meruncuon } f(\pi, \pi)$	$\chi_{j} = \tan \left(\sin x + \cos x \right) \sin x$	$(\pi \pi)$	$(\pi \pi)$
a) $(\frac{1}{4}, \frac{1}{2})$	b) $(-\frac{1}{2}, \frac{1}{4})$	c) $(0, \frac{1}{2})$	d) $(-\frac{1}{2}, \frac{1}{2})$
269. The height of a error in its volu	cylinder is equal to the radiu me is	s. If an error of α % is made	in the height, then percentage

270.	a) α % The condition $f(x) = x^3$ -	b) 2α % + $px^2 + qx + r(x \in R)$ to h	c) 3α % ave no extreme value, is	d) None of these	
	a) $p^2 < 3q$	b) $2p^2 < q$	c) $p^2 < \frac{1}{4}q$	d) $p^2 > 3q$	
271. 272.	Given that f is a real value a) $f(x)$ is increasing A given right circular cone cone has a volume q . Then	ed differentiable function so b) $f(x)$ is decreasing has volume p and the larg , $p:q$ is	uch that $f(x)f''(x) < 0$ for c) $ f(x) $ is increasing est right circular cylinder t	all $x \in R$. It follows that d) $ f(x) $ is decreasing hat can be inscribed in the	
	a) 9:4	b) 8: 3	c) 7:2	d) None of the above	
273.	The function $f(x) = \frac{\log x}{x}$ i	s increasing in the interval			
274.	a) $(1, 2e)$ The maximum value $x^3 - $	b) (0, <i>e</i>) 3 <i>x</i> in the interval [0, 2] is	c) (2,2 <i>e</i>)	d) (1/e, 2e)	
	a) -2	b) 0	c) 2	d) 1	
275.	The function $f(x) = ax + b$	$\frac{b}{b}$, b, x > 0 takes the least v	value at x equal to		
		x	Ĩ	<u>.</u>	
	a) <i>b</i>	b) \sqrt{a}	c) \sqrt{b}	d) $\sqrt{\frac{b}{a}}$	
276.	The maximum area of the	rectangle that can be inscr	ibed in a circle of radius r, i	S	
	a) πr^2	b) <i>r</i> ²	c) $\pi r^2/4$	d) 2 <i>r</i> ²	
277.	If $f(x) = k x^3 - 9 x^2 + 9$.	x + 3 is increasing on <i>R</i> , th	en		
270	a) $k < 3$	b) $k > 3$	c) $k \leq 3$	d) None of these	
278.	A spherical from ball of rac 100π cm ³ /min The rate of	t which the thickness of dev	reases when the thickness	s of ice is 5 cm is	
	a) 1cm/min	b) 2 cm/min	c) $\frac{1}{376}$ cm/min	d) 5 cm/min	
279.	The minimum value of (1)	$+\frac{1}{\sin^n \alpha}\Big)\Big(1+\frac{1}{\cos^n \alpha}\Big)$, is	370		
	a) 1	b) 2	c) $(1+2^{n/2})^2$	d) 4	
280.	The number of critical poi	nts of $f(x) = x (x - 1)(x$	(x-3)(x-3) is		
	a) 1	b) 2	c) 3	d) 4	
281.	A particle moves on a line the velocity after 2 sec is 2	according to the law $s = a$ 24 cm/sec and acceleration	$t^2 + bt + c$. If the displacer is 8cm/sec ² , then	nent after 1 sec is 16 cm,	
282	a) $a = 4, b = 8, c = 4$	b) $a = 4, b = 4, c = 8$	c) $a = 8, b = 4, c = 4$	d) None of these	
202.	At what point on the curve	$ex^3 - 8a^2y = 0$, the slope of	of the normal is $-\frac{-?}{3}$?		
202	a) (a, a)	b) $(2a, -a)$	c) $(2a, a)$	d) None of these	
283.	The equation of tangent to	the curve $y = be^{-x/a}$ at the	$\begin{array}{ccc} x & y \\ x & y \end{array}$	$-ax_{1S}$, x_{1S}	
	a) $ax + by = 1$	b) $ax - by = 1$	c) $\frac{a}{a} - \frac{b}{b} = 1$	d) $\frac{a}{a} + \frac{b}{b} = 1$	
284.	The function $f(x) = x^2 e^{-x^2}$	^x increases in the interval			
	a) (0, 2)	b) (2, 3)	c) (3, 4)	d) (4, 5)	
285.	The slope of the tangent to	the curve $y = \cos^{-1}(\cos x)$	() at $x = -\frac{\pi}{4}$, is		
	a) 1	b) 0	c) 2	d) -1	
286.	Let $f: R \longrightarrow R$ be defined by	$y f(x) = \begin{cases} k - 2x, & \text{if } x \le -2x, \\ 2x + 3, & \text{if } x > -2x \end{cases}$	-1 -1		
	If <i>f</i> has a local minimum at $x = -1$, then a possible value of <i>k</i> is				

	a) 1	b) 0	c) $-\frac{1}{2}$	d) -1
287	. The minimum value of 2 l	$\log_{10} x - \log_x 0.01$, $x > 1$, is	S Z	
	a) 1	b) -1	c) 2	d) 1/2
288	$\therefore \text{Let } f(x) = \sqrt{x-1} + \sqrt{x-1}$	$\frac{1}{x^2} + 24 - 10\sqrt{x-1}, 1 < x < 2$	26 be real valued function.	then $f'(x)$ for $1 < x < 26$ is
	a) 0	b) $\frac{1}{\sqrt{r-1}}$	c) $2\sqrt{x-1} - 5$	d) None of these
289	. A function <i>f</i> is defined by	$f(x) = 2 + (x - 1)^{2/3}$ in [0	0, 2]. Which of the following	g is not correct?
	a) <i>f</i> is not derivable in (0	,2)	b) f is continuous in [0, 2]]
	c) $f(0) = f(2)$		d) Rolle's Theorem is true	e in [0, 2]
290	• The number of values of <i>y</i>	x where $f(x) = \cos x + \cos x$	$\sqrt{2}x$ attains its maximum i	S
	a) 1	b) 0	c) 2	d) Infinite
291	. The circumference of a cir area is	rcle is measured as 28 cm v	vith an error of 0.01 cm. Th	e percentage error in the
	a) <u>1</u>	b) 0.01	c) $\frac{1}{-}$	d) None of these
202	$\frac{14}{\ln(\pi+1)}$	-x) .	5 7	
292	• The function $f(x) = \frac{\ln(e^x)}{\ln(e^x)}$	$\frac{x}{x}$, is		
	 a) Increasing on [0,∞) b) Decreasing on [0,∞) c) Increasing on [0,π/e) a d) Decreasing on [0, π/e) a 	and decreasing on $[\pi/e,\infty)$		
202	a) Decreasing on $[0, \pi/e]$	and increasing on $[n/e, \infty)$	h)-f(x)	
293	\cdot Let $f(x) = x^{3}$ use Mean v	value theorem to write	$\frac{\theta}{h} = f'(x + \theta h)$ with 0	$< \theta < 1$. If $x \neq 0$, then
	$\lim_{h\to 0} \theta$ is equal to			
	a) -1	b) -0.5	c) 0.5	d) 1
294	For the parabola $y^2 = 4a$	x, the ratio of the subtange	nt to the abscissa is	12 2
205	a) 1:1 If $ab = 2a + 2b = 2b$	$\begin{array}{c} \text{D} \\ \text{D} \\ \text{D} \\ \text{C} \\ $	c) $x : y$	a) $x^2 : y$
295	a = 2a + 3b, a > 0, a	b > 0, then the minimum va	1	d) None of these
	aj 12	0) 24	c) $\frac{1}{4}$	u) None of these
296	 Let f(x) be a function succession of the second s	ch that $f'(a) \neq 0$. Then, at x m m aximum nor a minimum	f = a, f(x)	
297	The equation of the one o line $x + 2y = 0$, is	f the tangents to the curve	$y = \cos(x + y), -2\pi \le x \le$	$\leq 2\pi$ that is parallel to the
	a) $x + 2 y = 1$	b) $x + 2y = \frac{\pi}{2}$	c) $x + 2y = \frac{\pi}{4}$	d) None of these
298	• The function $f(x) = a \sin x$	$x + \frac{1}{3}\sin 3x$ has maximum	value at $x = \frac{\pi}{3}$. The value of	<i>a</i> is
	a) 3	b) $\frac{1}{2}$	c) 2	d) $\frac{1}{2}$
299	. The length of tangent, sub and <i>D</i> respectively, then t	otangent, normal and subno their increasing order is	for the curve $y = x^2$	+x - 1 at (1, 1) are A, B, C
	a) <i>B</i> , <i>D</i> , <i>A</i> , <i>C</i>	b) <i>B</i> , <i>A</i> , <i>C</i> , <i>D</i>	c) <i>A</i> , <i>B</i> , <i>C</i> , <i>D</i>	d) <i>B</i> , <i>A</i> , <i>D</i> , <i>C</i>
300	. If $P(1, 1), Q(3, 2)$ and R is	a point on <i>x</i> -axis is, then th	the value of $PR + RQ$ will be	minimum at
	a) $\left(\frac{5}{3}, 0\right)$	b) $\left(\frac{1}{3}, 0\right)$	c) (3,)	d) (1, 0)
301	. If $2a + 3b + 6c = 0$, then	at least one root of the equ	ation $ax^2 + bx + c = 0$ lies	s in the interval
	a) (0, 1)	b) (1, 2)	c) (2, 3)	d) (1, 3)
302	. If the rate of change of are	ea of a square plate is equal	to that of the rate of chang	e of its perimeter, then

	length of the side is			
	a) 1 unit	b) 2 units	c) 3 units	d) 4 units
303	. If $f(x) = 3x^4 + 4x^3 - 12$.	$x^{2} + 12$, then $f(x)$ is		
	a) Increasing in $(-\infty, -2)$	and in (0, 1)	b) Increasing in (-2, 0) an	d in $(1, \infty)$
	c) Decreasing in (-2, 0) ar	nd in (0, 1)	d) Decreasing in $(-\infty, -2)$) and in (1,∞)
304	. Let f be differentiable for	all x. If $f(1) = -2$ and $f'(2)$	$(x) \ge 2$ for all $x \in [1, 6]$, the	
205	a) $f(6) = 5$	b) $f(6) < 5$	c) $f(6) < 8$	d) $f(6) \ge 8$
305	$f(x) = x^{\circ} - 6x^{2} - 36x + $	2 is decreasing function, the	nen $x \in \mathbb{R}$	d) Nama af thana
206	a) $(0, \infty)$ Tangents are drawn from	b) $(-\infty, -2)$	(-2, 0)	a) None of these
300	a) $x^2y^2 = y^2 - x^2$	b) $x^2y^2 = x^2 + y^2$	c) $x^2y^2 = x^2 - y^2$	d) None of these
307	: If $f(x) = \int_{x^2}^{x^2+1} e^{-t^2} dt$, th	ten $f(x)$ increases on		
	a) (-2, 2)	b) (0,∞)	c) (−∞,0)	d) None of these
308	The greatest value of $f(x)$	$x = (x + 1)^{1/3} - (x - 1)^{1/3}$	on [0,1]is	
	a) 0	b) 1	c) 2	d) -1
309	. A spherical iron ball 10 cr	n in radius is coated with a	layer of ice of uniform thic	kness that melts at a rate of
	$50 \ cm^2$ /min. When the th	ickness of ice is 15 cm. the	n the rate at which the thic	kness of ice decreases, is
	a) $\frac{5}{6\pi}$ cm/min	b) $\frac{5}{54\pi}$ cm/min	c) $\frac{5}{18\pi}$ cm/min	d) $\frac{1}{36\pi}$ cm/min
310	. If the curve $y = 2x^3 + ax$	$a^{2} + bx + c$ passes through	the origin and the tangents	drawn to it at $x = -1$ and
	x = 2 are parallel to the x	-axis, then the values of a,	<i>b</i> and <i>c</i> are respectively	
	a) 12, -3 and 0	b) -3, -12 and 0	c) -3, 12 and 0	d) 3, -12 and 0
311	• The length of the smallest	intercept made by the coo	rdinate axes on any tangen	t to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$,
	is			u b
	a) <i>a</i> + <i>b</i>	b) $\frac{a+b}{2}$	c) $\frac{a+b}{4}$	d) None of these
312	The curve $y - e^{xy} + x = 0$	0 has a vertical tangent at t	he point	
	a) (1, 0)	b) at no point	c) (0, 1)	d) (0, 0)
313	. The interval in which the	function $f(x) = x e^{2-x}$ inc	reases is	
	a) (−∞,0)	b) (2,∞)	c) (0,2)	d) None of these
314	• If $f(x)$ satisfies the condit	tions for Rolle's theorem in	[3, 5], then $\int_{3}^{5} f(x) dx$ equ	als
	a) 2	b) —1	c) 0	d) $-\frac{4}{2}$
315	. While measuring the side	of an equilateral triangle a	n error of $k\%$ is made, the	bercentage error in its area
	is	1 0		
	a) $k 0 k$	b) 2k 06		d) 2k 0k
	aj k 70	DJ 2R 90	$()\frac{1}{2}$ %	uj 5k %
316	. An object is moving in the	clockwise direction aroun	d the unit circle $x^2 + y^2 =$	1.
	As it passes through the p	$\operatorname{oint}\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$, its y –coordina	ate is decreasing at the rate	of 3unit per second.The
	rate at which the <i>x</i> – coord	linate changes at this point	t is (in unit per second)	
	a) 2	b) 3√ <u>3</u>	c) √3	d) 2√3
317	. The point of parallel $2y =$	x^2 , which is nearest to the	e point (0, 3) is	
	a) (±4,8)	b) (±1,1/2)	c) (±2,2)	d) None of these
318	• The function $y = x - \cot^{-1}$	$-1 x - \log(x + \sqrt{x^2 + 1})$ is i	increasing on	
	a) (−∞, 0)	b) (−∞,0)	c) (0,∞)	d) (−∞,∞)
319	• The maximum distance fr	om the origin of a point on	the curve $x = a \sin t - \sin t$	$\left(\frac{at}{b}\right)$, $y = a\cos t - b$
	$b\cos\left(\frac{at}{b}\right)$, both $a, b > 0$, is	S		
	a) <i>a</i> – <i>b</i>	b) <i>a</i> + <i>b</i>	c) $\sqrt{a^2 + b^2}$	d) $\sqrt{a^2 - b^2}$

320. For what value of a, $f(x) = -x^3 + 4ax^2 + 2x - 5$ is decreasing $\forall x$? a) (1, 2) b) (3, 4) c) *R* d) No value of a 321. If 4a + 2b + c = 0, then the equation $3ax^2 + 2bx + c = 0$ has at least one real root lying in the interval a) (0, 1) b) (1, 2) c) (0,2) d) None of these 322. The minimum value of $e^{(x^4-x^3+x^2)}$, is d) e^{-1} a) e b) e^2 c) 1 323. If the Mean value theorem is f(b) - f(a) = (b - a)f'(c)Then, for the function $x^2 - 2x + 3$ in $\left[1, \frac{3}{2}\right]$, the value of *c* is a) 6/5 b) 5/4 c) 4/3 d) 7/6 324. If $y = \frac{\sin(x+a)}{\sin(x+b)}$, $a \neq b$, then y is a) Minima at x=0b) Maxima at x=0c) Neither minima nor maxima at x=0d) None of the above 325. If a < 0, the function $f(x) = a^{ax} + e^{-ax}$ is a monotonically decreasing function for values of x given by c) *x* > 1 a) x > 0b) *x* < 0 d) *x* < 1 326. If θ is the angle between the curves x y = 2 and $x^2 + 4y = 0$, then $\tan \theta$ is equal to a) 1 b) -1 c) 2 d) 3 327. The equation of the tangents to $2x^2 - 3y^2 = 36$ which are parallel to the straight line x + 2y - 10 = 0 are b) $x + 2y + \sqrt{\frac{288}{15}} = 0$ c) $x + 2y + \sqrt{\frac{1}{15}} = 0$ d) None of these a) x + 2y = 0328. If the function $f(x) = x^3 + 3(a-7)x^2 + 3(a^2-9)x - 1$ has positive points of extremum then a) $a \in (3, \infty) \cup (-\infty, -3)$ b) $a \in (-\infty, -3) \cup (3, 29/7)$ c) $(-\infty, 7)$ d) $(-\infty, 29/7)$ 329. The minimum value of (x - a)(x - b) is b) $\frac{(a-b)^2}{4}$ c) 0 d) $-\frac{(a-b)^2}{4}$ a) ab 330. The function $f(x) = x + \frac{1}{x}$ has a) A local maxima at x=1 and a local minima at x = -1b) A local minima at x=1 and a local maxima at x = -1c) Absolute maxima at x = 1 and absolute minima at x = -1d) Absolute minima at x = 1 and absolute maxima at x = -1331. The triangle formed by the tangent to the curve $f(x) = x^2 + bx - b$ at the point (1, 1) and the coordinates axes, lies in the first quadrant. If its area is 2, then the value of *b* is c) −3 a) –1 b) 3 d) 1 332. The length of the longest interval, in which the function $3 \sin x - 4 \sin^3 x$ is increasing, is c) $\frac{3\pi}{2}$ b) $\frac{\pi}{2}$ a) $\frac{\pi}{3}$ d) π 333. If $f(x) = x^{\alpha}$, log x and f(0) = 0, then the value of α for which Rolle's theorem can be applied in [0, 1] is b) -1 a) -2 c) 0 d) 1/2 334. If 2 a + 3 b + 6c = 0, then at least one root of the equation $ax^2 + bx + c = 0$ lies in the interval a) (0, 1) b) (1, 2) c) (2,3) d) None of these 335. If there is an error of 2% in measuring the length of a simple pendulum, then percentage error in its period is b) 2% c) 3% d) 4% a) 1% 336. If $g(x) = \min(x, x^2)$, where x is real number, then a) g(x) is an increasing function b) g(x) is a decreasing function

	c) $f(x)$ is a constant funct	ion	d) $g(x)$ is a continuous fu	nction except at $x = 0$
337	• The slope of the tangent to	the curve $y = \sin^{-1}(\sin x)$	t) at $x = \frac{3\pi}{4}$, is	
	a) 1		4	
	b) -1			
	c) 0			
	d) Non-existent			
338	If the function $f(x) = 2x^3$	$-9ax^2 + 12a^2x + 1$ attai	ins its maximum and minim	num at <i>p</i> and <i>q</i> respectively
	such that $p^2 = q$, then <i>a</i> e	quals		
	a) 0	b) 1	c) 2	d) None of these
339	. Maximum slope of the cur	$ve y = -x^3 + 3x^2 + 9x - 3x^2 + 3x^2 + 9x - 3x^2 + 3x^2 +$	27 is	,
	a) 0	b) 12	c) 16	d) 32
340	. If $a^2x^4 + b^2y^4 = c^6$, then	maximum value of <i>xy</i> is	,	,
	, <i>c</i> ²	c^3	c^3	c^3
	a) $\frac{1}{\sqrt{ab}}$	b) $\frac{1}{ab}$	c) $\frac{1}{\sqrt{2ab}}$	d) $\frac{1}{2ab}$
341	. If the volume of a sphere i	s increasing at a constant i	rate, then the rate at which	its radius is increasing,is
	a) a constant		b) Proportional to the rad	lius
	c) Inversely proportional	to the radius	d) Inversely proportional	to the surface area
342	. If $1^\circ = 0.017$ radians, then	n the approximate value of	sin 46° is	
	-) 0 7104	0.017	1.017	d) None of these
	aj 0.7194	$\frac{1}{\sqrt{2}}$	$\frac{c}{2}$	
343	. A particle moves along a s	traight line according to th	ne law $s = 16 - 2t + 3t^3$, w	where <i>s</i> a metre is the
	distance of the particle from	om a fixed point at the end	of <i>t</i> seconds. The accelerati	ion of the particle at the
	end of 2 s is			
	a) 36 <i>m/s</i> ²	b) 34 <i>m/s</i> ²	c) 36m	d) None of these
344	. The line(s) parallel to the	normal to the curve $xy = 1$	1 is/are	
	a) $3x + 4y + 5 = 0$	b) $3x - 4y + 5 = 0$	c) $4x + 3y + 5 = 0$	d) $3x - 4y - 5 = 0$
345	. The rate of change of the	surface area of the sphere	of radius r when the radius	is increasing at the rate of
	2 cm/s is proportional to			
	a) $\frac{1}{-}$	h) $\frac{1}{-}$	c) r^2	d) <i>r</i>
	r^2	r r	- 3 (1 ())	
346	The angle of intersection π	of the curves $y = x^2$, $6y = \pi$	$7 - x^3$ at (1, 1) is	
	a) $\frac{\pi}{4}$	b) $\frac{\pi}{3}$	c) $\frac{\pi}{2}$	d) None of these
347	. The two curves $x^3 - 3xy^2$	$x^{2} + 2 = 0$ and $3x^{2}y - y^{3} - y^{3}$	2 = 0	
	a) Cut at right angel	b) Touch each other	c) (ut at an angle $\frac{\pi}{2}$	d) (ot at an angle $\frac{\pi}{-}$
240			$\frac{1}{3}$	uj cot at an angle 4
348	. If a particle moves such th	lat the displacement is pro	portional to the square of t	ne velocity acquired , then
			ND 1 1	d) A constant
	a) Proportional to s ²	b) Proportional to $\frac{1}{s^2}$	c) Proportional to $\frac{1}{s}$	u) A constant
349	. The point (0, 3) is nearest	to the curve $x^2 = 2y$ at		
	a) (2 √2 ,0)	b) (0, 0)	c) (2, 2)	d) None of these
350	The two curves $x^3 - 3xy$	$x^{2} + 2 = 0$ and $3x^{2}y - y^{3} - y^{3}$	-2 = 0 intersect at an angle	e of
	a) 45°	b) 60°	c) 90°	d) 30°
351	A point on the parabola y^2	$x^2 = 18x$ at which the ordin	ate increases at twice the r	ate of the abscissa, is
	a) (2,4)	b) (2,-4)	$(-\frac{9}{2}, \frac{9}{2})$	$d_{1}\left(\frac{9}{2},\frac{9}{2}\right)$
	2	- 2	$(8, \overline{2})$	⁽¹⁾ \8' 2/
352	Angle between $y^2 = x$ and	$dx^2 = y$ at the origin is		
	a) $2 \tan^{-1} \left(\frac{3}{2} \right)$	b) $\tan^{-1}\left(\frac{4}{2}\right)$	c) $\frac{\pi}{2}$	d) $\frac{\pi}{4}$
250	$(1+x)^n - 1 + x^n \text{ where}$	(3)	Z	4
222	$(1 \wedge 1) \rightarrow 1$	h) $0 < n < 1$ and $r > 0$	c) $n > 1$ and $r > 0$	d) $r < 0$
	~, · · ~ +	\sim_{1} \sim_{2} \sim_{1} \sim_{1		~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

Page | 22

354. The function $f(x) = \int_1^x \{x\}$	$2(t-1)(t-2)^3 + 3(t-1)$	$d^{2}(t-2)^{2}$ dt attains its ma	ximum at $x =$
a) 1	b) 2	c) 3	d) 4
355. The equation of the tang	ent to the curve $y = e^{- x }$ a	t the point where the curve	e cuts the line $x = 1$, is
a) $x + y = e$	b) $e(x + y) = 1$	c) $y + ex = 1$	d) None of these
356. The angle between the ta <i>x</i> -axis is	angents at those points on t	the curve $x = t^2 + 1$ and $y = t^2 + 1$	$= t^2 - t - 6$ where it meets
a) $\pm \tan^{-1}\left(\frac{4}{29}\right)$	b) $\pm \tan^{-1}\left(\frac{5}{49}\right)$	c) $\pm \tan^{-1}\left(\frac{10}{49}\right)$	d) $\pm \tan^{-1}\left(\frac{8}{29}\right)$
357. The equation of normal t	to the curve $x^2y = x^2 - 3x$	+ 6 at the point with absci	ssa x = 3 is
a) $3x + 27y = 79$	b) $27x - 3y = 79$	c) $27x + 3y = 79$	d) $3x - 27y = 79$
358. If f and g are two increa	sing functions such that <i>J</i> o	g is defined, then	
b) <i>a of</i> is a decreasing fu	nction		
c) <i>aof</i> is neither increas	ing nor decreasing		
d) None of these			
359. The function x^x is increa	ising, when		
a) $r > \frac{1}{2}$	h) $r < \frac{1}{2}$	c) $r < 0$	d) For all real r
e e	e e	$c_{j} \times \langle 0 \rangle$	
^{360.} The equation of the tang	ent to the curve $y = x + \frac{4}{x^2}$	that is parallel to the x-axis	s, is
a) Y=0	b) Y=1	c) Y=2	d) Y=3
361. The angle of intersection	of the curves $y = x^2$, $y = 7$	$7 - x^3$ at (1, 1) is	
a) $\pi/4$	b) π/3	c) π/2	d) None of these
^{362.} If $f(x) = \frac{x^2 - 1}{x^2 + 1}$, for every	real number <i>x</i> , then minim	um value of $f(x)$	
a) Does not exist	b) Is equal to 1	c) Is equal to 0	d) I equal to −1
363. If $f(x) = x + x - 1 + x - 1 $	x-2 , then which one of	the following is not correct	?
a) $f(x)$ has a minimum a	t x = 1		
b) $f(x)$ has a maximum a	at x = 1	0	
c) $f(x)$ has neither a ma	ximum nor a minimum at x	x = 0	
(1) f(x) has herefore a ma	xinium nor a minimum at x	L = 2 2 X And V start from 'O' at 1	the same time V Travels
along OB with a speed of	f 4 km/h and Y travels alon	$\sigma \Omega C$ with a speed of 3 km/	h The rate at which the
shortest distance betwee	en X and Y is increasing after	er 1 h is	II. The face at which the
0			
\wedge			
B 120° C			
a) $\sqrt{27} km / h$	h) 37 km/h	c) 13 km/h	d) $\sqrt{12}$ km / h
365 The function $v = a(1 - a)$	$\cos x$ is maximum when x	is equal to	a) v 13km/n
a) π	b) $\pi/2$	c) $-\pi/2$	d) $-\pi/6$
366. The minimum value of f	$(x) = e^{(x^4 - x^3 + x^2)}$ is		
a) e	b) -e	c) 1	d) -1
367. If $f(x) = x^{\alpha} \log x$ and $f(x) = x^{\alpha} \log x$	$(0) = 0$, then the value of α f	for which Rolle's theorem c	an be applied in [0, 1], is
a) —2	b) -1	c) 0	d) 1/2
368. If $\log_e 4 = 1.3868$, then l	$\log_e 4.01 =$		
a) 1.3968	b) 1.3898	c) 1.3893	d) None of these
369. There is an error of ± 0.0	4cm in the measurement of	the diameter of a sphere. w	when the radius is 10 cm,
the percentage error in t	ne volume of the sphere is	\ ⊥ 0.0	
a) ±1.2	b) ±1.0	c) ±0.8	a) ±0.6
370. If $f(x) = a \log_e x + bx$	$x^2 + x$ has extremum at $x =$	1 and $x = 3$, then	

a) $a = -3/4, b =$ 371. A variable triang	a = -1/8 b) $a = 3/4$, $b = -1/8$ b) $a = 3/4$, $b = -1/8$	1/8 c) $a = -3/4, b = 1/6$	/8 d) None of these
change of side 'a	' is $x/2$ times the rate of cha	nge of the opposite angle A , t	then $A =$
a) π/6	b) π/3	c) $\pi/4$	d) π/2
372. The equation of t	the tangent to the curve $y =$	$4xe^x$ at $\left(-1, \frac{-4}{e}\right)$ is	,
a) $Y = -1$	b) $y = -\frac{4}{e}$	c) $x = -1$	d) $x = \frac{-4}{e}$
373. If $f(x) = \int_{x^2}^{x^2+1} e^{x^2}$	$-t^2 dt$, then $f(x)$ increases in	n	-
a) (2, 2)	b) No value of <i>x</i>	c) (0,∞)	d) (−∞, 0)
374. If [0, 1], Lagrange	e's mean value theorem is N	OT applicable to	
$\left(\begin{array}{c}\frac{1}{2}\end{array}\right)$	$-x, x < \frac{1}{2}$	sin x	
a) $f(x) = \begin{cases} 2 \\ (\frac{1}{2} - \frac{1}{2}) \end{cases}$	$\begin{pmatrix} 2 \\ x \end{pmatrix}^2, x \ge \frac{1}{2}$	b) $f(x) = \begin{cases} x \\ 1, \end{cases}$	$\begin{array}{l} x \neq 0 \\ x = 0 \end{array}$
c) $f(x) = x x $, L	d) $f(x) = x $	
375. $f(x) = \left(\frac{e^{2x}-1}{e^{2x}+1}\right)$ is	3		
a) An increasing	b) A decreasing	c) An even	d) None of these
3/6. The curve $x = y^{2}$	and $xy = k$ cut at right ang	(les, if $c = 1$	d) $0k^2 - 1$
$a_J 2\kappa = 1$ 377 If the sum of the	UJ 4K = 1	$C \int O K = 1$	u) or $x = 1$ of to the curve $x^{1/3} \pm y^{1/3} = a^{1/3}$
(with $a > 0$) at F	P(a/8, a/8) is 2, then $a =$	the axes cut on by the tangen	$\int dx dx dx dx dx dx dx dx $
a) 1	b) 2	c) 4	d) 8
378. If normal to the c	curve $y = f(x)$ is parallel to	<i>x</i> -axis, then	
a) $\frac{dy}{dx} = 0$	b) $\frac{dy}{dx} = 1$	c) $\frac{dx}{dy} = 0$	d) None of these
379. the speed <i>v</i> of pa	article moving along a straig	ht line is given by $a + by^2 = x$	x^2 (where x is its distance from
the origin).The a	cceleration of the particle is	r	r
a) <i>bx</i>	b) $\frac{\pi}{a}$	c) $\frac{\pi}{h}$	d) $\frac{x}{ab}$
380. A right circular c volume if its heig	ylinder which is open at the ht <i>h</i> and radius r are related	top and has a given surface a l by	rea, will have the greatest
a) 2 <i>h</i> = <i>r</i>	b) $h = 4r$	c) $h = 2r$	d) $h = r$
381. The point on the	curve $x^2 + y^2 = a^2$, $y \ge 0$ at	t which the tangent is paralle	l to <i>x</i> -axis is
a) (a,0)	b) (-a,0)	c) $\left(\frac{a}{2}, \frac{\sqrt{3}}{2}a\right)$	d) (0,a)
382. The normal to th	e parabola $y^2 = 4 ax$ at (at_1^2	$\binom{2}{1}, 2at_1$ meets it again at (at_2^2)	$(2, 2at_2)$, then
a) $t_1 t_2 = -1$	b) $t_2 = -t_1 - \frac{2}{t_1}$	c) $2t_1 = t_2$	d) None of these
$383. f(x) = \frac{e^{2x}-1}{e^{2x}+1}$, is			
 a) An increasing b) A decreasing f c) An even funct d) None of these 	function on <i>R</i> function on <i>R</i> ion on <i>R</i>		
384. The interval of in	crease of the function $F(x)$	$= x - e^x + \tan\left(\frac{2\pi}{7}\right)$ is	
a) (0,∞)	b) (−∞,0)	c) (1,∞)	d) (−∞, −1)
385. Divide 12 into two second port is ma	o parts such that the produce aximum, are	ct of the square on one part a	nd the fourth power of the
a) 6, 6	b) 5, 7	c) 4, 8	d) 3, 9
386. The position of a	point in time 't' is given by	$x = a + bt - ct^2, y = at + bt$	t^2 .Its acceleration at time 't' is

Page | 24

a) <i>b</i>	b-c	b) <i>b</i> + <i>c</i>	c) 2 <i>b</i> - 2c	d) $2\sqrt{b^2 + c^2}$
387. If <i>f</i>	$f(x) = \frac{a \sin x + b \cos x}{c \sin x + d \cos x}$ is defined as	ecreasing for all x , then		
a) <i>c</i>	ad - bc > 0	b) <i>ad</i> – <i>bc</i> < 0	c) $ab - cd > 0$	d) $ab - cd < 0$
388. The	e value of <i>c</i> in Lagrange	's theorem for the function	$f(x) = \log_e \sin x$ in the in	terval [$\pi/6,5 \pi/6$] is
a) $\frac{\pi}{2}$	<u>τ</u> 4	b) $\frac{\pi}{2}$	c) $\frac{2\pi}{3}$	d) None of these
389. The	e largest value of $2x^3$ –	$3x^2 - 12x + 5$ for $-2 \le x$	$x \le 4$ occurs at x is equal to)
a) -	-4	b) 0	c) 1	d) 4
390. The	e denominator of a frac	tion is greatest then 16 of t	he square of numerator, th	en least value of fraction is
a) -	-1/4	b) -1/8	c) 1/12	d) 1/16
391. A p	article moves in a strai	ght line so that $s = \sqrt{t}$, then	n its acceleration is propor	tional to
a) ((velocity) ³	b) Velocity	c) (velocity) ²	d) (velocity) ^{3/2}
392. The	e greatest value of sin ³	$x + \cos^3 x$ is		
a) 1	1	b) 2	c) $\sqrt{2}$	d) $\sqrt{3}$
393. A co the	one of maximum volum sphere is	ne is inscribed in given sph	ere, then ratio of the height	t of the cone to diameter of
a) 2	2	b) $\frac{3}{4}$	c) $\frac{1}{3}$	d) $\frac{1}{4}$
394. The	e maximum value of $f(x)$	$x = \frac{x}{4+x+x^2}$ on $[-1, 1]$ is	U	-
a) -	$-\frac{1}{4}$	b) $-\frac{1}{3}$	c) $\frac{1}{6}$	d) $\frac{1}{5}$
395. The	e length of the subtange	ent at (2,2) to the curve x^5	$= 2y^4$ is	5
a) =	5	$h) = \frac{8}{2}$	$\left(1\right) \frac{2}{2}$	പ <u>5</u>
u) <u>-</u> 2	2	5	5	$\frac{1}{8}$
dist a) (b) 7 c) S d) N	tance covered, then its Cube of the distance The distance Square of the distance None of these	acceleration at time <i>t</i> varie	e <i>t</i> is proportional to the so	quare of the square of the
397. Def	$\operatorname{fine} f(x) = \int_0^x \sin t dt, x$	$z \ge 0$. Then,		
a) <i>f</i>	f is decreasing only in t	the interval $\left(0, \frac{\pi}{2}\right)$	b) <i>f</i> is decreasing in the in	nterval $[0, \pi]$
c) _	f attains maximum at z	$x = \frac{\pi}{2}$	d) <i>f</i> attains minimum at <i>x</i>	$c = \pi$
398. The a) (e distance covered by a) unit	particle in <i>t</i> second is give b) 3 units	n by $x = 3 + 8t - 4t^2$. After c) 4 units	er 1s its velocity will be d) 7 units
399. The	e angle between the cui 30°	$y^2 = 4x + 4$ and $y^2 = 4x + 4$ and $y^2 = 4x + 4$	36(9 - x) is	d) 90°
400. If th	he slope of the tangent	to the curve $y = e^x \cos x$ is	minimum at $x = a, 0 \le a$	$\leq 2\pi$, then the value of <i>a</i> is
a) ()	b) π	c) 2π	d) $3\pi/2$
401. If <i>f</i>	$f(x) = 2x^3 + 9x^2 + \lambda x$	+ 20 is a decreasing functi	on of x in the largest possi	ble interval $(-2, -1)$, then
7 – a) 1	12	h) –12	c) 6	d) None of these
402. Let	$f(x) = \begin{cases} x^3 + x^2 + 3x \\ 0 \end{cases}$	$x + \sin x \left \left(3 + \sin \frac{1}{x} \right), x \neq 0 \right $, then number of points (w	where $f(x)$ attains its
mir	nimum value) is	$\lambda = 0$		
a) 1	1	b) 2	c) 3	d) Infinite many
403. In t	the interval (-3, 3) the f	Function $f(x) = \frac{x}{3} + \frac{3}{x}, x \neq 0$	0 is	
a) i	ncreasing		b) Decreasing	

c) Neither increasing	nor decreasing	d) Party increasing and	party decreasing
404. A particle is moving i	n a straight line such that the	e distance described 's' and	the time taken ' t ' are given
by $t = as^2 + bs + c$, a	> 0. If <i>v</i> is the velocity of the	e particle at any time <i>t</i> , the	n acceleration is
a) –2 <i>av</i>	b) $-2av^{2}$	c) $-2av^{3}$	d) None of these
405. In the interval [0, 1], tl	the function $x^2 - x + 1$ is		
a) Increasing		b) Decreasing	
c) Neither increasing	nor decreasing	d) Do not say anything	
406. A spherical balloon is	being inflated so that its volu	ime increase uniformly at t	he rate of 40cm ³ /minute.
The rate of increase in	its surface area when the ra	idius is 8 cm is	
a) 10 cm ³ /minute	b) 20 cm ³ /minute	c) 40 cm ³ /minute	d) None of these
407. The radius of a circle i	s increasing at the rate of 0.1	cm/s. When the radius of	the circle is 5 cm, the rate of
change of its area, is	b) $10 - am^2/a$	a) $0.1 - am^2/a$	$d) = am^2/a$
a) $-\pi cm^2/s$	DJ $10\pi cm^2/s$	c) $0.1\pi cm^2/s$	a) $\pi cm^2/s$
408. The product of the left	gths of subtangent and subh	b) Square of the ordinat	/e is
a) Square of the abscis	isa	d) None of these	e
400 The function f(w) = w	1/x is	u) None of these	
a) Increasing in $(1 \ \infty)$	/* 15	h) Decreasing in (1 co)	
a) increasing in $(1, \infty)$	and decreasing in (a, ∞)	d) Decreasing in $(1, \infty)$	nd increasing in (a, ∞)
410 K the fraction $f(x)$	$and uccreasing in (e, \infty)$ ax+b	(1, c) a	In the metric asing in (e, ∞)
If the function $f(x) =$	$\overline{(x-1)(x-4)}$ has an extremum	at $P(2, -1)$, then	
a) $a = 0, b = 1$	b) $a = 0, b = -1$	c) $a = 1, b = 0$	d) $a = -1, b = 0$
411. Moving along the $x - a$	ixis there are two points with	h $x = 10 + 6t, x = 3 + t^2$.T	he speed with which they are
reaching from each ot	ner at the time of encounter	is	
in cm and t is in secon	ds)		
a) 16 cm/s	b) 20 cm/s	c) 8 cm/s	d) 12 cm/s
412. Let f, g and h be real-	valued functions defined on t	the interval $[0, 1]$ by $f(x) =$	$=e^{x^2}+e^{-x^2},g(x)=$
$xe^{x^2} + e^{-x^2}$ and $h(x) =$	$x^{2}e^{x^{2}} + e^{-x^{2}}$. If <i>a</i> , <i>b</i> and <i>c</i> of	denote respectively, the abs	solute maximum of f , g and h
on [0, 1], then			
a) $a = b$ and $c \neq b$	b) $a = c$ and $a \neq b$	c) $a \neq b$ and $c \neq b$	d) $a = b = c$
413. The points of contact of	of the tangents drawn from t	he origin to the curve $y = s$	sin <i>x</i> lie on the curve
a) $x^2 - y^2 = xy$	b) $x^2 + y^2 = x^2 y^2$	c) $x^2 - y^2 = x^2 y^2$	d) None of these
414. The angle between the	e curves , $y = x^2$ and $y^2 - x =$	= 0at the point (1,1), is	
a) $\frac{\pi}{2}$	b) $\tan^{-1}\frac{4}{-1}$	c) $\frac{\pi}{2}$	d) $\tan^{-1}\frac{3}{-1}$
² 415 If some of these second base	3 - i - (thii	· 3	4
415. If sum of two numbers	3 is 6, the minimum value of 1	2	5 IS 1
a) $\frac{6}{5}$	b) $\frac{3}{4}$	c) $\frac{2}{3}$	d) $\frac{1}{2}$
416. For what values of x , the function of x is the function of	the function $f(x) = x^4 - 4x^3$	$+4x^{2}+40$ is monotonic d	ecreasing?
a) 0 < <i>x</i> < 1	b) $1 < x < 2$	c) 2 < <i>x</i> < 3	d) $4 < x < 5$
417. The point on the curve	$y^2 = x$, the tangent at which	h makes an angle 45° with	<i>x</i> -axis is
$(1 \ 1)$	$(1 \ 1)$	(1 1)	$(1 \ 1)$
$\left(\frac{1}{4}, \frac{1}{2}\right)$	$\left(\frac{1}{2},\frac{1}{4}\right)$	$\left(\frac{1}{2},-\frac{1}{2}\right)$	$\left(\frac{1}{2},\frac{1}{2}\right)$
418. If the function $f(x) =$	$\cos x - 2 ax + b$ increases	along the entire number sc	ale, the range of a is given by
a) $a \leq b$	b) $a = \frac{b}{-}$	c) $a < -\frac{1}{2}$	d) $a > -\frac{3}{2}$
410 The distances moved l	2 av a particle in time t cocond	$\frac{2}{2}$	$\frac{2}{15t + 12}$ The velocity of
the particle when acco	Jy a particle in time t second	is is given by $s = t^2 - 6t^2 - 6t^2$	-15t + 12. The velocity of
a) 15	-27	c) 6/5	d) None of these
aj 13 420 The radius and height	of a cylinder are equal. If the	cj U/J a radius of the sphere is oau	a) none of these
cylinder, then the ratio	o of the rates of increase of th	he volume of the sphere and	d the volume of the cylinder

	is			
	a) 4 : 3	b) 3 : 4	c) $4:3\pi$	d) 3π : 4
421.	For the function $f(x) = x$	$+\frac{1}{x}, x \in [1,3]$, the value of	f <i>c</i> for the Lagrange's mean	value theorem, is
	a) 1	b) √ <u>3</u>	c) 2	d) None of these
422.	The minimum value of $4e^{\frac{1}{2}}$	$e^{2x} + 9e^{-2x}$ is		
	a) 11	b) 12	c) 10	d) 14
423.	The abscissa of the points,	, where the tangent to the	curve $y = x^3 - 3x^2 - 9x + 3x^2 - 9x^2 - 9x + 3x^2 - 9x^2 + 3x^2 - 9x^2 + 3x^2 - 3x^2 - 3x^2 + 3x^2$	5 is parallel to <i>x</i> -axis, are
	a) $x = 0$ and 0	b) $x = 1$ and -1	c) $x = 1$ and -3	d) $x = -1$ and 3
424.	$Let f(x) = 1 + 2x^2 + 2^2x^4$	$x^{4} + \ldots + 2^{10}x^{20}$. Then, $f(x)$	has	
	a) More than one minimum	m	b) Exactly one minimum	
	c) at least one maximum		d) None of the above	
425.	Let $y = x^2 e^{-x}$, then the in	terval in which y increases	s with respect to <i>x</i> is	
	a) (−∞,∞)	b) (-2, 0)	c) (2,∞)	d) (0, 2)
426.	The function $f(x) = a \sin x$	$x + \frac{1}{2} \sin 3x$ has maximum	value at $x = \frac{\pi}{2}$. The value of	a is
	a) 3	3 h) 1/3	3 c) 2	d) 1/2
427	If the distance 's' metres to	raversed by a narticle in <i>t</i>	seconds is given by s — t^3 -	$-3t^2$ then the velocity of
чΔ/.	the narticle when the acce	deration is zero in metre/s	second is	St , then the velocity of
	a) 3	h -2	c) -3	d) 2
428	If m and <i>M</i> respectively de	enote the minimum and ma	ey gravinum of $f(r) = (r-1)^2$	$+ 3 for x \in [-31]$ then
120.	the ordered nair (m M) is		$\frac{1}{2} = \begin{pmatrix} x & 1 \end{pmatrix}$	
	a) (-3.19)	b) (3.19)	c) (-193)	d) (-19 -3)
429	The function $f(x) = x^{1/x}$	is increasing in the interva	1	u)(1), 3)
127.	The function $f(x) = x^{-1}$	b) $(-\infty e)$	(-a, a)	d) None of these
430	a) (e,∞)	$(-\infty, e)$		u) None of these
450.	The equation of the tangen	nt to the curve $y = 4e + a$	at the point where the curve	e crosses y-axis is equal to
	a) $3x + 4y = 16$	b) $4x + y = 4$	c) $x + y = 4$	d) $4x - 3y = -12$
431.	In interval [1, e], the great	test value of $x^2 \log x$ is		
	a) <i>e</i> ²	b) $\frac{1}{e} \log \frac{1}{\sqrt{e}}$	c) $e^2 \log \sqrt{e}$	d) None of these
432.	The line which is parallel	to <i>x</i> -axis and crosses the cu	urve $y = \sqrt{x}$ an angle of 45°	, is
	a) $v = \frac{1}{2}$	b) $y = \frac{1}{2}$	c) $v = 1$	d) $v = 4$
	$\frac{1}{4}$	2		
433.	The angle between the cu	rves $y = \sin x$ and $y = \cos x$	s x is	·· · · -
	a) $\tan^{-1}(2\sqrt{2})$	b) $\tan^{-1}(3\sqrt{2})$	c) $\tan^{-1}(3\sqrt{3})$	d) $\tan^{-1}(5\sqrt{2})$
434.	For a particle moving in a	straight line, if time t be re	egarded as a function of vel	ocity <i>v</i> , then the rate of
	change of the acceleration	a is given by	- 2	
	a) $a^2 \frac{d^2 t}{d^2 t}$	b) $a^3 \frac{d^2 t}{d^2 t}$	c) $-a^3 \frac{d^2 t}{d^2 t}$	d) None of these
405	dv^2	dv^2	dv^2	
435.	The minimum value of 27	$1032x \cdot 81^{3112x}$, 1S		1) 4 /0
426	a) 1/243	DJ = 5	c) 1/5	a) 1/3
436.	The minimum value of px	$+ qy$ when $xy = r^2$, is		d) Nama af thana
	a) $2r\sqrt{pq}$	b) $2pq \sqrt{r}$	c) $-2 r\sqrt{pq}$	a) None of these
437.	If $f'(x) = (x - a)^{2n}(x - b)^{2n}(x - b)$	p) ^{2 p+1} where n and p are p	positive integers, then	
	a) $x = a$ is a point of minimum and $x = a$ is a point of minimum and $x = a$ is a point of minimum and $x = a$ is a point of minimum and $x = a$ is a point of minimum and $x = a$ is a point of minimum and $x = a$ is a point of minimum and $x = a$.	mum		
	b) $x = a$ is a point of maxi	mum		
	c) $x = a$ is not a point of n	naximum or minimum		
	d) None of these			
438.	Let $f(x) = (x - 4)(x - 5)$	(x - 6)(x - 7) then		
	a) $f'(x) = 0$ has four root	S	-	
	b) Three roots of $f'(x) =$	0 lie in (4, 5) ∪ (5, 6) ∪ (6,	7)	

c) The equation f'(x) = 0 has only one root d) Three roots of f'(x) = 0 lie in (3, 4) \cup (4, 5) \cup (5, 6) 439. The set of values of *a* for which the function $f(x) = 2e^x - ae^{-x} + (2a+1)x - 3$ is increasing on *R*, is b) $(-\infty, 0)$ a) (0,∞) c) $(-\infty,\infty)$ d) None of these 440. A particle is moving along the curve $x = at^2 + bt + c$. If $ac = b^2$, then particle would be moving with uniform a) rotation b) velocity c) acceleration d) retardation 441. Function $f(x) = \frac{\lambda \sin x + 6 \cos x}{2 \sin x + 3 \cos x}$ is monotonic increasing, if a) $\lambda > 1$ 442. If x + y = 8, then maximum value of $x^2 y$ is b) $\frac{2048}{3}$ c) $\frac{2048}{3}$ c) λ < 4 d) $\lambda > 4$ c) $\frac{2048}{3}$ d) $\frac{2040}{27}$ at (2, 3) then c) p = -2, q = -7 d) p = 2, q = 7b) $\frac{2048}{81}$ 443. If y = 4x - 5 is a tangent to the curve $y^2 = px^3 + q$ at (2, 3) then b) p = -2, q = 7a) p = 2, q = -7444. The function $f(x) = \tan^{-1} x - x$ is decreasing on the set b) (0,∞) c) $R - \{0\}$ d) None of these a) R 445. The function *f* defined by $f(x) = x^3 - 6x^2 - 36x + 7$ is increasing. if a) x > 2 and also x > 6b) x > 2 and also x < 6c) x > -2 and also x < 6d) x < -2 and also x > 6446. The length of the normal at point 't' of the curve $x = a(t + \sin t), y = a(1 - \cos t)$ is a) $a \sin t$ b) $2a \sin^3(t/2) \sec(t/2)$ c) $2a \sin(t/2) \tan(t/2)$ d) $2a \sin(t/2)$ 447. The values of 'x' for which the function $(a + 2)x^3 - 3ax^2 + 9ax - 1$ decreases monotonically throughout for all real *x* are b) a > -2c) -3 < a < 0d) $-\infty < a \leq -3$ a) a < -2448. The distance travelled by a particle upto time x is given by $f(x) = x^3 - 2x + 1$. The time c at which the velocity of the particle is equal to its average velocity between times x = 1 sec and x = 2 sec, is a) 1.5 sec b) $\frac{3}{2}$ sec c) $\sqrt{3}$ sec d) $\frac{7}{3}$ sec 449. The number of points on the curve $y = x^3 - 2x^2 + x - 2$ where tangents are parallel to *x*-axis, is b) 1 d) 3 a) 0 c) 2 450. The maximum value of $f(x) = \frac{x}{4+x+x^2}$ on [-1, 1] is c) $\frac{1}{4}$ a) $-\frac{1}{3}$ b) $-\frac{1}{4}$ d) $\frac{1}{6}$ 451. The maximum value of $x^{1/x}$ is a) 1/e^e c) $e^{1/e}$ b) e d) 1/e 452. The sides of an equilateral triangle are increasing at the rate of 2cm/s.The rate at Which the area increases, when the side is 10cm is d) $\frac{10}{\sqrt{2}}$ cm²/s a) $\sqrt{3}$ cm²/s b) $10 \text{ cm}^2/\text{s}$ c) $10\sqrt{3}$ cm²/s 453. If $f(x) = x^3 + bx^2 + cx + d$ and $0 < b^2 < c$, then in $(-\infty, \infty)$ a) f(x) is strictly increasing function b) f(x) has a local maxima d) f(x) is bounded c) f(x) is strictly decreasing function 454. Twenty two meters are available to fence a flower bed in the form of a circular sector. If the flower bed should have the greatest possible surface area, the radius of the circle must be a) 4 m b) 3 m d) 5 m c) 6 m 455. The greatest value of the function $f(x) = xe^{-x}$ in $[0, \infty]$, is

a) 0	b) 1/e	c) <i>-e</i>	d) <i>e</i>
456. C	Consider the following state $\frac{1}{2}$	tements :		1
1.	In the function $x + \frac{1}{x}(x + \frac{1}{x})$	≠ 0) is a non-increasing fu	nction in the interval $[-1,]$.]
11 T1	I. The maximum and mill II. The function $r^2 \log r$ is	nimum values of the function the function of the interval has a point of the second seco	on $ \sin 4x + 3 $ are 2, 4	
V	Which of the statement gives $f(x) = \frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{2} \int_{-\infty$	ven above is/are correct?	n maxima	
a) (1)only	b) Only (2)	c) Only (3)	d) All (1), (2) and (3)
457. If	f α and $\beta(\alpha < \beta)$ are two	distinct roots of the equat	ion $ax^2 + bx + c = 0$, then	
a) $\alpha > -\frac{b}{2a}$	b) $\beta < -\frac{b}{2a}$	c) $\alpha < -\frac{b}{2a} < \beta$	d) $\beta < -\frac{b}{2a} < \alpha$
458. T	The function f defined by	$f(x) = 4x^4 - 2x + 1$ in ine	creasing for	1
a) <i>x</i> < 1	b) $x > 0$	c) $x < \frac{1}{2}$	d) $x > \frac{1}{2}$
459. T	The function $f(x) = x^2 e^{-1}$	$2^{2x}, x > 0$. Then, the maximum	um value of $f(x)$ is	-
a	$)\frac{1}{1}$	b) $\frac{1}{2}$	c) $\frac{1}{r^2}$	d) $\frac{4}{4}$
460. T	be function $f(x) = 1 - x$.3	e-	e
a) Increases everywhere		b) Decreases in $(0, \infty)$	
C) Increases in $(0, \infty)$		d) None of these	
461. If	f the function $f(x) = \frac{a}{x} + \frac{a}{x}$	x^2 has a maximum at $x = \frac{1}{2}$	-3, then $a =$	
a) -1	b) 16	c) 1	d) 4
462. V v	When the tangent to the cr alue of <i>x</i> is	urve $y = x \log x$ is parallel	to the chord joining the po	ints $(1, 0)$ and (e, e) , the
a) $e^{1/1-e}$	b) $e^{(e-1)(2e-1)}$	c) $e^{\frac{2e-1}{e-1}}$	d) $\frac{e-1}{e}$
463. If f	f the normal to curve $y = \frac{y'}{3}$ is	f(x) at the point (3,4) mal	kes an angle $3\pi/4$ with the	positive x-axis , then
a) 1	b) -1	c) $-\frac{3}{4}$	d) $\frac{3}{4}$
464. T	'he tangent and the norm	al drawn to the curve $y = x$	$x^2 - x + 4$ at $P(1, 4)$ cut th	e x-axis at A and B
r	espectively. If the length	of the subtangent drawn to	the curve at <i>P</i> is equal to t	he length of the
S	ubnormal, then the area o	of the triangle <i>PAB</i> in sq ur	nits is	
a) 4	b) 32	c) 8	d) 16
465. T T	'he distance ' <i>s'</i> meters cov 'he body will stop after	vered by a body in t second	Is, is given by $s = 3t^2 - 8t^2$	+ 5.
a) 1 s	a^{3}	$(1) \frac{4}{5}$	d) 4 s
166 I	f = 0	³ 4 ³ El and differentiable in (1	5) 3^{-1}	> 0 for all $\alpha \in (1, \mathbb{F})$ then
400. L	f(5) > 33	b) $f(5) > 36$	$(x) = -5 \operatorname{and} f(x)$	$2 = 9 \text{ for all } x \in (1, 5), \text{ then}$ d) $f(5) > 9$
467. L	et <i>P</i> be the point (other t	han the origin) of intersect	tion of the curves $v^2 = 4ax$	and $av^2 = 4x^3$ such that
tl	he normals to the two cu	rves meet x-axis at G_1 and	G_2 respectively. Then, G_1G_2	
a) 2a	b) 4 <i>a</i>	c) a	d) None of these
468. T	The function $y = x^3 - 3x$	$x^{2} + 6x - 17$		
a) Increases everywhere			
b) Decreases everywhere	and dographics for positive	o <i>M</i>	
c d) increases for positive x	and decreases for nositive	e X	
469. If	f the function $f(x) = ax^3$	$+bx^2 + 11x - 6$ satisfies	the condition of Rolle's the	orem in [1, 3] and
f	$\frac{1}{2}\left(2+\frac{1}{\sqrt{2}}\right) = 0$, then the v	values of <i>a</i> , <i>b</i> are respective	ely	
a) -1, 6	b) -2, 1	c) 1,-6	. 1
	· ·			$a_{j} - 1, \frac{1}{2}$

470. If the distance 's' metres	traversed by a particle in t	seconds is given by	
$s = t^3 - 3t^2$, then the vel	locity of the particle when t	he acceleration is zero inm	<i>/s</i> is
a) 3	b) —2	c) -3	d) 2
471. The function $f(x)$ given	by	-	-
x+1 1 1			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	is increasing on		
a) <i>R</i>	b) (-2, 0)	c) <i>R</i> − [−2, 0]	d) None of these
472. Let $g(x) = f(x) - 2\{f(x) = f(x) - 2\}$	$\{x\}^{2} + 9\{f(x)\}^{3} \text{ for all } x \in \mathbb{R}^{3}$. Then,	
a) $g(x)$ and $f(x)$ increas	es and decrease together		
b) $g(x)$ increases whene	ever $f(x)$ decreases and vice	e-versa	
c) $g(x)$ increases for all .	$x \in R$		
d) $g(x)$ decreases for all	$x \in R$		
473. If $y = \frac{x+c}{1+x^2}$ where c is a c	constant, then when y is stat	tionary, <i>xy</i> is equal to	
a) $1/2$	b) 3/4	c) 5/8	d) 1
474. The equation $x \log_{2} x =$	3 - x has in the interval (1)	3)	~) _
a) Exactly one root	b) At most one root	c) At least one root	d) No root
475 If there is 2% error in m	easuring the radius of sphere	re then will be the nercer	tage error in the surface
2702	casuling the radius of spile	ie, then whi be the percer	ltage error in the surface
$\frac{1}{2}$	h) 1%	c) 4%	d) 2%
476 The function $f(x) = x \pm$	0) 170 COS 7 is	c) 170	u) 270
a) always increasing	CO3 x 13	h) always docroasing	
a) Increasing for cortain	range of r	d) None of the above	
477 If the curve $y = ax^2 + b$	$\frac{1}{2} a n a constant b cough the new first the new fir$	u) Notic of the above $x = x$	r touchoc it at the origin
477. If the curve y = ux + b.	x + c passes un ough the po	f(1, 2) and the line $y = 2$	t touches it at the origin,
$a_{1}^{2} = 1 b_{2} = 1 c_{2} = 0$	b) $a = 1, b = 1, c = 0$	a) $a = 1 b = 1 a = 0$	d) Nora of these
a) $a = 1, b = -1, c = 0$	b) $a = 1, b = 1, c = 0$	c) $a = -1, b = 1, c = 0$	d) None of these
478. The function $f(x) = \sin \theta$	$x + \cos^2 x$ increases, in		
a) $0 < x < \pi/8$	b) $\pi/4 < x < 3\pi/8$	c) $3\pi/8 < x < 5\pi/8$	a) $5\pi/8 < x < 3\pi/4$
4/9. The length of the normal	l at any point on the catenar	$ry y = c \cos h\left(\frac{x}{c}\right) \text{ varies as}$	
a) (abscissa) ²	b) (ordinate) ²	c) Abscissa	d) Ordinate
480. The normal to a curve at	P(x, y) meets the x-axis at	G. If the distance of G from	the origin is twice the
abscissa of <i>P</i> , then the cu	irve is a		
a) Ellipse	b) Parabola	c) Circle	d) Hyperbola
481. Let $p(x) = a_0 + a_1 x^2 + a_1 x^2 + a_2 x^2 + a_2 x^2 + a_1 x^2 + a_2 x^2 + a_2 x^2 + a_1 x^2 + a_2 x^2 + a_2 x^2 + a_1 x^2 + a_2 x^2 + a_2 x^2 + a_1 x^2 + a_2 x^2 + a_2 x^2 + a_1 x^2 + a_2 x^2 + a_2 x^2 + a_1 x^2 + a_2 x^2 + a_1 x^2 + a_2 x^2 + a_2 x^2 + a_1 x^2 + a_$	$a_2 x^4 + \dots + a_n x^{2^n}$ be a poly	xnomial in a real variable x	with $0 < a_0 < a_1 < a_2 \dots < a_2 \dots < a_1 < a_2 \dots < a_2$
a_n . The function $p(x)$ has	S		
a) Neither a maximum n	or a minimum	b) Only one maximum	
c) Only one minimum		d) Only one maximum an	d onlv one minimum
482. The value of c in Rolle's t	theorem for the function $f($	$(x) = x^3 - 3x$ in the interval	$1[0\sqrt{3}]$ is
a) 1	h -1	c) 3/2	d) 1/3
492	$a^2 h^2$	cj 5/2	u) 1/5
^{403.} The minimum radius vec	ctor of the curve $\frac{w}{x^2} + \frac{y}{y^2} = 1$	is of length	
a) <i>a</i> – <i>b</i>	b) <i>a</i> + <i>b</i>	c) 2 <i>a</i> + <i>b</i>	d) None of these
484. The first and second ord	er derivatives of a function	f(x) exist at all points in (a	(a, b) with $f'(c) = 0$, where
a < c < b. Furthermore,	if $f'(x) < 0$ at all points on	the immediate left of <i>c</i> and	d f'(x) > 0 for all points on
the immediate right of <i>c</i> ,	then at $x = c, f(x)$ has a		
a) Local maximum	b) Local minimum	c) Point of inflexion	d) None of these
485. Let $f(x) = \cos x \sin 2x$. T	Then, min $ f(x): -\pi \le x \le x$	π is greater than	
a) -9/7	b) 9/7	c) −1/9	d) -2/9
486. In $(-4, 4)$ the function f	$(x) = \int_{-4t}^{x} (t^4 - 4) e^{-4t} dt$	nas	
a) No ovtrome	J_{-10} J_{-10} J_{-10} J_{-10}	c) Two overome	d) Four outrome
aj no extrema	b) one extremum	cj i wo extrema	uj roui extrema

487. If the polynomial equation $a_0x^n + a_{n-1}x^{n-1} + a_{n-2}x^{n-2} + \dots + a_2x^2 + a_1x + a_0 = 0$ *n* positive integer, has two different real roots α and β , then between α and β , the equation $n a_n x^{n-1} + (n-1)a_{n-1}x^{n-2} + \dots + a_1 = 0$ has a) Exactly one root c) At least one root b) Almost one root d) No root 488. The function $f(x) = \sin^4 x + \cos^4 x$ increasing, if a) $0 < x < \frac{\pi}{8}$ b) $\frac{\pi}{4} < x < \frac{3\pi}{8}$ c) $\frac{3\pi}{8} < x < \frac{5\pi}{8}$ d) $\frac{5\pi}{8} < x < \frac{3\pi}{4}$ 489. The point of the curve $y = x^2$ which is closest to $\left(4, -\frac{1}{2}\right)$, is a) (1, 1) c) $\left(\frac{2}{3}, \frac{4}{9}\right)$ d) $\left(\frac{4}{2}, \frac{16}{9}\right)$ b) (2, 4) 490. The equation of the tangent to the curve $y = (1 + x)^y + \sin^{-1}(\sin^2 x)at x = 0$ is a) x - y + 1 = 0b) x + y + 1 = 0c) 2x - y + 1 = 0d) x + 2y + 2 = 0491. A circular sector of perimeter 60 m with maximum area is to be constructed .The radius the circular are in metre must be a) 20 b) 5 c) 15 d) 10 492. If f(x) and g(x) are differentiable functions for $0 \le x \le 1$ such that f(0) = 2, g(0) = 0, f(1) = 6, g(1) = 62, then in the interval (0, 1)a) f'(x) = 0 for all x b) f'(x) = 2 g'(x) for at least one x c) f'(x) = 2 g'(x) for at most one x d) None of these 493. The function $f(x) = 2x^3 - 3x^2 - 12x + 4$ has a) No maxima and minima b) One maximum and one minimum d) Two minima c) Two maxima 494. The function $f(x) = \frac{|x-1|}{x^2}$ is monotonically decreasing on c) $(-\infty, 1) \cup (2, \infty)$ a) (2,∞) b) (0, 1) d) $(-\infty,\infty)$ 495. The tangent drawn at the point (0, 1) on the curve $y = e^{2x}$, meets *x*-axis at the point c) (2,0) d) (0, 0) b) $\left(-\frac{1}{2},0\right)$ a) $\left(\frac{1}{2}, 0\right)$ 496. Let $f(x) = \cot^{-1}{g(x)}$, where g(x) is an increasing function on the interval $(0, \pi)$. Then, f(x) is a) Increasing on $(0, \pi)$ b) Decreasing on $(0, \pi)$ c) Increasing on $(0, \pi/2)$ and decreasing on $(\pi/2, \pi)$ d) None of these 497. The radius of a cylinder is increasing at the rate of 3m/s and its altitude is decreasing at the rate of 4m/s. The rate of change of volume when radius is 4m and altitude is 6m, is a) 80π cu m/s b) $144\pi \ cu \ m/s$ c) 80 cu m/s d) 64 *cu m/s* 498. The Rolle's theorem is applicable in the interval $-1 \le x \le 1$ for the function b) $f(x) = x^2$ a) f(x) = xc) $f(x) = 2x^3 + 3$ d) f(x) = |x|499. If a > b > 0, then maximum value of $\frac{ab(a^2 - b^2)\sin x \cos x}{a^2 \sin^2 x + b^2 \cos^2 x}$, $x \in (0, \pi/2)$ is a) $a^2 - b^2$ b) $\frac{a^2 - b^2}{2}$ c) $\frac{a^2 + b^2}{2}$ c) $\frac{a^2 + b^2}{2}$ d) None of these ^{500.} If f(x) satisfies the condition for Rolle's theorem is [3, 5], then $\int_3^5 f(x) dx$ equals b) -1 c) 0 d) -4/3 a) 2 501. If there is an error of a% in measuring the edge of a cube, then percentage error in its surface is b) $\frac{a}{2}$ % d) None of these c) 3a % a) 2a % 502. The range of values of *a* for which the function $f(x) = (a^2 - 7a + 12) \cos x + 2(a - 4)x + 3e^5$ does not possess critical points, is

	a) (1, 5)	b) (1, 4) ∪ (4, 5)	c) (1, 4)	d) None of these
503	. Rolle's theorem is applica	ble in case of $\phi(x) = a^{\sin x}$, $a > 0$ in	
	a) Any interval	b) The interval $[0, \pi]$	c) The interval $(0, \pi/2)$	d) None of these
504	The line $\frac{x}{a} + \frac{y}{b} = 1$ touches	s the curve $y = be^{-x/a}$ at the curve $y $	he point	
	a) $\left(a, \frac{b}{a}\right)^{a}$	b) $\left(-a, \frac{b}{a}\right)$	c) $\left(a, \frac{a}{b}\right)$	d) None of these
505	If the line $ax + by + c = 0$) <i>is</i> a tangent to the curve <i>x</i>	xy = 4, then	
	a) <i>a</i> < 0, <i>b</i> > 0	b) $a \le 0, b > 0$	c) <i>a</i> < 0, <i>b</i> < 0	d) <i>a</i> ≤ 0, <i>b</i> < 0
506	 The length of the subtang 	ent to the curve $\sqrt{x} + \sqrt{y} =$	= 3 at the point (4, 1) is	
	a) 2	b) 1/2	c) 3	d) 4
507	• The maximum value of $\frac{\log n}{r}$	$\frac{1}{2}$ in (2, ∞), is		
	a) 1	b) 2/e	c) <i>e</i>	d) 1/e
508	• The maximum value of $\frac{\log 1}{2}$	⁵ <i>x</i> , is		
	a) 1/e	b) <i>e</i>	c) 2/ <i>e</i>	d) 1
509	. If an error of $k \%$ is made	in measuring the radius of b) $3k$ %	a sphere, then percentage c) $2k$ %	error in its volume is d) $k/3$ %
510	. The point (s) on the curve	$y^{3} - 3x^{2} = 12y$, where the	ie tangent is vertical (paral	lel to y-axis), is (are)
	$\left(\begin{array}{c} 4 \\ -2 \end{array} \right)$	$\sqrt{11}$	c) (0, 0)	$\left(\left(\begin{array}{c} 4 \\ -2 \end{array} \right) \right)$
	a) $(\pm \frac{1}{\sqrt{3}}, -2)$	b) $\left(\pm \frac{1}{3}, 1\right)$		d) $\left(\pm \frac{1}{\sqrt{3}}, 2\right)$
511	If $y = a \log x + bx^2 + x$ has	as its extremum at $x = -1$	and $x = 2$, then	
	a) $a = 2, b = \frac{1}{2}$	b) $a = 2, b = -\frac{1}{2}$	c) $a = \frac{1}{2}, b = 2$	d) $a = -\frac{1}{2}, b = 2$
512	. If the area of the triangle i	included between the axes	and any tangent to the curv	$x^n y = a^n \text{ is constant,}$
	then <i>n</i> is equal to			
	a) 1	b) 2	c) 3/2	d) 1/2
513	For the curve $xy = c^2$ the	subnormal at any point va	ries as	D.
F1 4	a) x^3	b) x^2	C) y^3	(d) ∞
514	at which the radius increa	a spherical ballon at the raises when it reaches the val	lue 15 ft, is	ate
	a) $\frac{1}{30\pi}$ ft/min	b) $\frac{1}{15\pi}$ ft/min	c) $\frac{1}{20}$ ft/min	d) $\frac{1}{15}$ ft/min
515	A ladder 10 m long rests a end of the ladder is pulled	against a vertical wall with along the ground away fro	the lower end on the horizont the wall at the rate of 3 of the second se	ontal ground. The lower cm/s. The height of the
	a) $4\sqrt{3}m$	b) $5\sqrt{2m}$	c) $5\sqrt{2}m$	d) 6 m
516	The number of values of k	for which the equation r^3	-3x + k = 0 has two dist	inct roots lying in the
510	interval (0, 1) are	tor which the equation x	5x + k = 0 has two use	linet roots lying in the
	a) Three			
	b) Two			
	c) Infinitely many			
	d) New value of k satisfies	s the requirement		
517	. The critical points of the f	unction		
	$f(x) = 2\sin^2\left(\frac{x}{6}\right) + \sin\left(\frac{x}{3}\right)$	$\left(\frac{x}{3}\right) - \left(\frac{x}{3}\right)$		
	Whose coordinates satisfy	x the inequality $x^2 - 10 < 10$	-19.5x, is	
	a) -6π	b) 6π	c) $\frac{9\pi}{2}$	d) -4π
518		$c \in c^{X} \sin t$		
	\cdot The points of extrema of j	$f(x) = \int_0^{\infty} \frac{dt}{t} dt$ in the dom	x > 0 are	
	The points of extrema of <i>j</i> a) $(2n + 1)\frac{\pi}{2}, n = 1, 2,$	$f(x) = \int_0^{\infty} \frac{dt}{t} dt$ in the dom	hain $x > 0$ are b) $(4n + 1)\frac{\pi}{2}, n = 1, 2,$	

c) $(2n+1)\frac{\pi}{4}, n = 1, 2,$		d) $n\pi$, $n = 1, 2,$	
519. The distance travelled by a mo	otor car in <i>t</i> seconds af	ter the brakes are applied i	s s feet. where
$s = 22t - 12t^2$. The distance t	ravelled by the car bef	fore it stops, is	
a) 10.08 ft b) 1	10 ft	c) 11 ft	d) 11.5 ft
520. If $a < 0$, the function $(e^{ax} + e^{ax})$	ax) is a decreasing fu	nction for all values of x . w	here
a) $r < 0$ b) a	c > 0	c) $r < 1$	d) $r > 1$
521 A condition for a function $v =$	f(x) to have an inverse	se is that it should be	
a) Defined for all x) (0) 00 1140 0 411 111 010		
b) Continuous everywhere			
c) Strictly monotone and cont	inuous in the domain		
d) An even function			
522. Which one of the following is a	correct?		
If $y = x^5 - 5x^4 + 5x^3 - 1$, the	'n		
a) v is maximum at $x = 3$ and	minimum at $x = 1$	b) v is minimum at $x = 1$	
c) v is neither maximum nor r	ninimum at $x = 0$	d) None of the above	
523. If $f(x) = x^{2-1}$ for a second secon			
If $f(x) = \frac{1}{x^2 + 1}$, for every real x	, then the maximum va	alue of <i>f</i>	
a) Does not exist because <i>f</i> is	unbounded		
b) Is not attained even though	<i>f</i> is bounded		
c) Is equal to 1			
d) Is equal to -1			
524. If $f(x) = x + \frac{1}{x}$, $x > 0$, then its	greatest value is		
a) -2 b) ()	c) 3	d) None of these
525 (1) $2x^2$,	,
The maximum value of $\left(\frac{z}{x}\right)$,	, is		
a) <i>e</i> b) f	ve √e	c) 1	d) <i>e</i> ^{1/<i>e</i>}
526. The length of the subtangent t	o the curve $x^2 + xy + y$	$y^2 = 7$ at $(1, -3)$ is	
a) 3 b) 5	5	c) 3/5	d) 15
527. The absolute maximum of x^{40}	$-x^{20}$ on the interval	[0, 1] is	
a) -1/4 b) ()	c) 1/4	d) 1/2
528. The function $f(x) = x\sqrt{ax - x}$	$(c^2), a > 0$		
a) Increases on the interval (0	(3a/4)		
b) Decreases on the interval (3	3a/4, a)		
c) Decreases on the interval (((3a/4)		
d) Increases on the interval (3	a/4,a)		
529. If there is an error of 0.01 cm i	in the diameter of a spl	here, then percentage erroi	rs in surface area when the
radius = 5 cm, is	-		
a) 0.005% b) (0.05%	c) 0.1%	d) 0.2%
530. The side of a square is equal to	o the diameter of a circ	le. If the side and radius ch	ange at the same rate, then
the ratio of the change of their	area is		C
a) $1:\pi$ b) τ	$\tau:1$	c) 2 : π	d) 1 : 2
531. The scalar of a formula ish the for	$(\tan^{-1}\alpha)$	$a - 3x^2, 0 < x < 1$	
The value of a for which the fu	$f(x) = \{$	$-6x, x \ge 1$ has a mass	aximum at $x = 1$, is
a) 0 b) 1	l	c) 2	d) -1
532. Tangent of the angle at which	the curves $y = a^x$ and	$y = b^x (a \neq b > 0)$ interse	ect, is given by
$\log ab$	$\log \frac{a}{b}$	log ab	d) None of these
a) $\frac{1}{1 + \log ab}$ b) $\frac{1}{1}$	$\frac{b}{1 + (\log a)(\log b)}$	$\frac{1}{1 + (\log a)(\log b)}$	
533. In a right triangle <i>BAC</i> $\angle A = \frac{\pi}{2}$	$\frac{1}{2}$ and $a + b = 8$. The ar	rea of the triangle is maxim	um when $\angle C$, is
a) $\pi/2$	$\frac{1}{2}$	$c) \pi/6$	d) $\pi/2$
מן וון ס דען	ι/ Τ	<i>cj n</i> /0	uj n/ 2

551	An isosceles triangle of ve	er ticar aligie 26 is ilisci ibeu	in a circle of faulus <i>a</i> . The	n area of the triangle is
	maximum when $\theta =$) /0	
	a) $\pi/6$	b) $\pi/4$	c) $\pi/3$	d) $\pi/2$
535.	a) $2 e^t (\cos t + \sin t)$	the equation of motion of a b) 2 $e^t(\cos t - \sin t)$	moving particle, then accel c) $e^t(\cos t - \sin t)$	leration at time t is given by d) $e^t(\cos t + \sin t)$
536	If from Lagrange's mean	value theorem, we have		
	$f'(x_1) = \frac{f'(b) - f(a)}{b - a}$, th	nen		
	a) $a < x_1 \le b$	b) $a \le x_1 < b$	c) $a < x_1 < b$	d) $a \le x_1 \le b$
537.	The slope of the tangent t quadrant is	to the curve $y = x^2 - x$ at t	he point where the line <i>y</i> =	= 2 cuts the curve in the first
	a) 2	b) 3	c) -3	d) None of these
538	The function $f(x) = x(x)$	$(+3)e^{-1(1/2)x}$ satisfies the o	conditions of Rolle's therory	em in [-3, 0]. The value of <i>c</i>
	IS	1.) 1	.) 0	
F 20		DJ-1 224	c) -2	a)-3
539.	a line length of the subtang	gent to the curve $x^2y^2 = a^2$	at $(-a, a)$ is	a
	a) $\frac{a}{2}$	b) 2 <i>a</i>	c) a	d) $\frac{\alpha}{3}$
540	The equation of the tange	ent top the curve $v = 1 - e^{2}$	x/2 at the point on intersect	tion with the <i>v</i> -axis is
	a) $x + 2y = 0$	b) $2x + y = 0$	c) $x - y = 2$	d) None of these
541	If the volume of a sphere	is increasing at a constant i	rate, then the rate at which	its radius is increasing is
	a) A constant	0	b) proportional to the rad	lius
	c) Inversely proportional	l to the radius	d) Inversely proportional	to the surface area
542.	The function $f(x)$ given by	$py f(x) = \begin{vmatrix} x - 1 x + 1 2x \\ x + 1 x + 3 2x \\ 2x + 1 2x - 14 \end{vmatrix}$	+1 +3 has	
		$12\lambda + 12\lambda + 17\lambda$	V I	
	a) One point of maximum	n and one point of minimum	1	
	a) One point of maximumb) One point of maximum	n and one point of minimum n only	1	
	a) One point of maximumb) One point of maximumc) One point of minimum	n and one point of minimum n only n only	1	
	a) One point of maximumb) One point of maximumc) One point of minimumd) None of above	n and one point of minimum n only n only	1	
543.	a) One point of maximumb) One point of maximumc) One point of minimumd) None of aboveThe perimeter of a sector	n and one point of minimum n only n only r is a constant. If its area is t	n to be maximum, the sectoria	al angle is
543	a) One point of maximum b) One point of maximum c) One point of minimum d) None of above The perimeter of a sector $a) \pi^{c}$	and one point of minimum only only r is a constant. If its area is t	to be maximum, the sectoria	al angle is
543	a) One point of maximum b) One point of maximum c) One point of minimum d) None of above The perimeter of a sector a) $\frac{\pi^c}{6}$	a and one point of minimum a only a only t is a constant. If its area is t b) $\frac{\pi^c}{4}$	n to be maximum, the sectoria c) 4 ^c	al angle is d) 2 ^c
543. 544.	a) One point of maximum b) One point of maximum c) One point of minimum d) None of above The perimeter of a sector a) $\frac{\pi^c}{6}$ The interval in which the	and one point of minimum only only is a constant. If its area is t b) $\frac{\pi^{c}}{4}$ function x^{3} increases less	to be maximum, the sectorian c) 4^c rapidly than $6x^2 + 15x + 15$	al angle is d) 2 ^c 5, is
543. 544.	a) One point of maximum b) One point of maximum c) One point of minimum d) None of above The perimeter of a sector a) $\frac{\pi^c}{6}$ The interval in which the a) $(-\infty, -1)$	an and one point of minimum only only is a constant. If its area is t b) $\frac{\pi^c}{4}$ function x^3 increases less b) (-5, 1)	to be maximum, the sectorian c) 4^c rapidly than $6 x^2 + 15 x +$ c) $(-1, 5)$	al angle is d) 2^c 5, is d) (5,∞)
543. 544. 545.	a) One point of maximum b) One point of maximum c) One point of minimum d) None of above The perimeter of a sector a) $\frac{\pi^c}{6}$ The interval in which the a) $(-\infty, -1)$ If a particle is moving suc covered ,then its acceleration	and one point of minimum only only t is a constant. If its area is t b) $\frac{\pi^c}{4}$ function x^3 increases less b) (-5, 1) ch that the velocity acquire ition is	to be maximum, the sectorian c) 4^c rapidly than $6x^2 + 15x +$ c) $(-1, 5)$ d is proportional to the squ	al angle is d) 2^c 5, is d) (5,∞) nare root of the distance
543. 544. 545.	a) One point of maximum b) One point of maximum c) One point of minimum d) None of above The perimeter of a sector a) $\frac{\pi^c}{6}$ The interval in which the a) $(-\infty, -1)$ If a particle is moving suc covered ,then its accelera a) a constant	and one point of minimum only only is a constant. If its area is t b) $\frac{\pi^c}{4}$ function x^3 increases less b) (-5, 1) that the velocity acquirent on is b) $\propto s^2$	to be maximum, the sectorian c) 4^c rapidly than $6 x^2 + 15 x +$ c) $(-1, 5)$ d is proportional to the squ	al angle is d) 2^c 5, is d) (5, ∞) hare root of the distance d) $\propto s$
543. 544. 545.	a) One point of maximum b) One point of maximum c) One point of minimum d) None of above The perimeter of a sector a) $\frac{\pi^c}{6}$ The interval in which the a) $(-\infty, -1)$ If a particle is moving suc covered ,then its accelera a) a constant	and one point of minimum only only is a constant. If its area is t b) $\frac{\pi^c}{4}$ function x^3 increases less b) (-5, 1) that the velocity acquirention is b) $\propto s^2$	to be maximum, the sectoria c) 4^c rapidly than $6x^2 + 15x +$ c) $(-1, 5)$ d is proportional to the squ c) $\propto \frac{1}{s^2}$	al angle is d) 2^c 5, is d) (5, ∞) hare root of the distance d) $\propto s$
543. 544. 545. 546.	a) One point of maximum b) One point of maximum c) One point of minimum d) None of above The perimeter of a sector a) $\frac{\pi^c}{6}$ The interval in which the a) $(-\infty, -1)$ If a particle is moving suc covered ,then its accelera a) a constant The coordinates of the point an angle $\frac{\pi}{4}$ to the <i>x</i> -axis and	an and one point of minimum only only is a constant. If its area is t b) $\frac{\pi^c}{4}$ function x^3 increases less b) (-5, 1) that the velocity acquirent ition is b) $\propto s^2$ bint on the curve $x = a(\theta + re)$	to be maximum, the sectoria c) 4^c rapidly than $6 x^2 + 15 x +$ c) $(-1, 5)$ d is proportional to the sque c) $\propto \frac{1}{s^2}$ $\sin \theta$, $y = a(1 - \cos \theta)$ where	al angle is d) 2^c 5, is d) (5, ∞) hare root of the distance d) $\propto s$ here tangent is inclined at
543. 544. 545. 546.	a) One point of maximum b) One point of maximum c) One point of minimum d) None of above The perimeter of a sector a) $\frac{\pi^c}{6}$ The interval in which the a) $(-\infty, -1)$ If a particle is moving suc covered ,then its accelera a) a constant The coordinates of the point an angle $\frac{\pi}{4}$ to the <i>x</i> -axis and a) (a, a)	an and one point of minimum only only is a constant. If its area is t b) $\frac{\pi^c}{4}$ function x^3 increases less b) (-5, 1) that the velocity acquirent ition is b) $\propto s^2$ bint on the curve $x = a(\theta + t)$ c b) $(a(\pi/2 - 1), a)$	to be maximum, the sectorian c) 4^c rapidly than $6x^2 + 15x +$ c) $(-1, 5)$ d is proportional to the square c) $\propto \frac{1}{s^2}$ sin θ), $y = a(1 - \cos \theta)$ where c ($a(\pi/2 + 1), a$)	al angle is d) 2^c 5, is d) $(5, \infty)$ hare root of the distance d) $\propto s$ here tangent is inclined at d) $(a, a(\pi/2 + 1))$
543. 544. 545. 546. 546.	a) One point of maximum b) One point of maximum c) One point of minimum d) None of above The perimeter of a sector a) $\frac{\pi^c}{6}$ The interval in which the a) $(-\infty, -1)$ If a particle is moving suc covered ,then its accelera a) a constant The coordinates of the point an angle $\frac{\pi}{4}$ to the <i>x</i> -axis and a) (a, a) For the function $f(x) = x$	an and one point of minimum only only t is a constant. If its area is t b) $\frac{\pi^c}{4}$ function x^3 increases less b) (-5, 1) th that the velocity acquirent on is b) $\propto s^2$ bint on the curve $x = a(\theta + t)$ c b) $(a(\pi/2 - 1), a)$ e^x the point	to be maximum, the sectorian c) 4^c rapidly than $6x^2 + 15x +$ c) $(-1, 5)$ d is proportional to the square c) $\propto \frac{1}{s^2}$ $\sin \theta$, $y = a(1 - \cos \theta)$ where $x = a(1 - \cos \theta)$ are $x = a(1 - \cos \theta)$ where $x = a(1 - \cos \theta)$ are $x = a(1 - \cos \theta)$ and $x = a(1 - \cos \theta)$ are $x = a(1 - \cos \theta)$ and $x = a(1 - \cos \theta)$ are $x = a(1 - \cos \theta)$ and $x = a(1 - \cos \theta)$ are $x = a(1 - \cos \theta)$ and $x = a(1 - \cos \theta)$ are $x = a(1 - \cos \theta)$ and $x = a(1 - \cos \theta)$ are $x = a(1 - \cos \theta)$ and $x = a(1 - \cos \theta)$ are $x = a(1 - \cos \theta)$ and $x = a(1 - \cos \theta)$ are $x = a(1 - \cos \theta)$ and $x = a(1 - \cos \theta)$ are $x = a(1 - \cos \theta)$ and $x = a(1 - \cos \theta)$ are $x = a(1 - \cos \theta)$ are $x = a(1 - \cos \theta)$ and $x = a(1 - \cos \theta)$ are $x = $	al angle is d) 2^c 5, is d) $(5, \infty)$ hare root of the distance d) $\propto s$ here tangent is inclined at d) $(a, a(\pi/2 + 1))$
543. 544. 545. 546. 547.	a) One point of maximum b) One point of maximum c) One point of minimum d) None of above The perimeter of a sector a) $\frac{\pi^c}{6}$ The interval in which the a) $(-\infty, -1)$ If a particle is moving suc covered ,then its accelera a) a constant The coordinates of the point an angle $\frac{\pi}{4}$ to the <i>x</i> -axis and a) (a, a) For the function $f(x) = x$ a) $x = 0$ is a maximum	an and one point of minimum only only is a constant. If its area is t b) $\frac{\pi^c}{4}$ function x^3 increases less b) $(-5, 1)$ that the velocity acquirent is b) $\propto s^2$ bint on the curve $x = a(\theta + t)$ c b) $(a(\pi/2 - 1), a)$ e^x the point	to be maximum, the sectoria c) 4^c rapidly than $6x^2 + 15x +$ c) $(-1, 5)$ d is proportional to the sque c) $\propto \frac{1}{s^2}$ sin θ), $y = a(1 - \cos \theta)$ wh c) $(a(\pi/2 + 1), a)$ b) $x = 0$ is a minimum	al angle is d) 2^c 5, is d) $(5, \infty)$ hare root of the distance d) $\propto s$ here tangent is inclined at d) $(a, a(\pi/2 + 1))$
543. 544. 545. 546. 547.	a) One point of maximum b) One point of maximum c) One point of minimum d) None of above The perimeter of a sector a) $\frac{\pi^c}{6}$ The interval in which the a) $(-\infty, -1)$ If a particle is moving suc covered ,then its accelera a) a constant The coordinates of the point an angle $\frac{\pi}{4}$ to the <i>x</i> -axis and a) (a, a) For the function $f(x) = x$ a) $x = 0$ is a maximum c) $x = -1$ is a maximum	an and one point of minimum n only only is a constant. If its area is t b) $\frac{\pi^c}{4}$ function x^3 increases less t b) (-5, 1) that the velocity acquirent ition is b) $\propto s^2$ bint on the curve $x = a(\theta + t)$ c b) $(a(\pi/2 - 1), a)$ ce^x the point	to be maximum, the sectorian c) 4^c rapidly than $6x^2 + 15x + c$; $(-1, 5)$ d is proportional to the sque c) $\propto \frac{1}{s^2}$ $\sin \theta$, $y = a(1 - \cos \theta)$ which c) $(a(\pi/2 + 1), a)$ b) $x = 0$ is a minimum d) $x = -1$ is a minimum	al angle is d) 2^c 5, is d) $(5, \infty)$ hare root of the distance d) $\propto s$ here tangent is inclined at d) $(a, a(\pi/2 + 1))$
543. 544. 545. 546. 547. 548.	a) One point of maximum b) One point of maximum c) One point of minimum d) None of above The perimeter of a sector a) $\frac{\pi^c}{6}$ The interval in which the a) $(-\infty, -1)$ If a particle is moving suc covered ,then its accelera a) a constant The coordinates of the point an angle $\frac{\pi}{4}$ to the <i>x</i> -axis and a) (a, a) For the function $f(x) = x$ a) $x = 0$ is a maximum The circumference of a ci	and one point of minimum only only to only this a constant. If its area is the b) $\frac{\pi^c}{4}$ function x^3 increases less the b) $(-5, 1)$ that the velocity acquirent tion is b) $\propto s^2$ bint on the curve $x = a(\theta + t)$ the b) $(a(\pi/2 - 1), a)$ ce^x the point	to be maximum, the sectorian c) 4^c rapidly than $6x^2 + 15x + c$; $(-1, 5)$ d is proportional to the squading c) $\propto \frac{1}{s^2}$ $\sin \theta$, $y = a(1 - \cos \theta)$ which $x = 0$ is a minimum d) $x = -1$ is a minimum with an error 0.02 cm. The properties of the sector of	al angle is d) 2^c 5, is d) $(5, \infty)$ hare root of the distance d) $\propto s$ here tangent is inclined at d) $(a, a(\pi/2 + 1))$ percentage error in its area
543. 544. 545. 546. 547. 548.	a) One point of maximum b) One point of maximum c) One point of minimum d) None of above The perimeter of a sector a) $\frac{\pi^c}{6}$ The interval in which the a) $(-\infty, -1)$ If a particle is moving suc covered ,then its accelera a) a constant The coordinates of the point an angle $\frac{\pi}{4}$ to the <i>x</i> -axis and a) (a, a) For the function $f(x) = x$ a) $x = 0$ is a maximum The circumference of a ci is	an and one point of minimum nonly only is a constant. If its area is t b) $\frac{\pi^c}{4}$ function x^3 increases less b) $(-5, 1)$ that the velocity acquirent tion is b) $\propto s^2$ bint on the curve $x = a(\theta + t)$ ce b) $(a(\pi/2 - 1), a)$ e^x the point rcle is measured as 56 cm v	to be maximum, the sectoria c) 4^c rapidly than $6x^2 + 15x +$ c) $(-1, 5)$ d is proportional to the sque c) $\propto \frac{1}{s^2}$ $\sin \theta$, $y = a(1 - \cos \theta)$ wh c) $(a(\pi/2 + 1), a)$ b) $x = 0$ is a minimum d) $x = -1$ is a minimum with an error 0.02 cm. The p	al angle is d) 2^c 5, is d) $(5, \infty)$ hare root of the distance d) $\propto s$ here tangent is inclined at d) $(a, a(\pi/2 + 1))$ percentage error in its area
 543. 544. 545. 546. 547. 548. 549. 	a) One point of maximum b) One point of maximum c) One point of minimum d) None of above The perimeter of a sector a) $\frac{\pi^c}{6}$ The interval in which the a) $(-\infty, -1)$ If a particle is moving suc covered ,then its accelera a) a constant The coordinates of the point an angle $\frac{\pi}{4}$ to the <i>x</i> -axis and a) (a, a) For the function $f(x) = x$ a) $x = 0$ is a maximum The circumference of a ci is a) $1/7$ If $f(x) = \sin x/e^x$ in $[0, \pi]$	an and one point of minimum only only this a constant. If its area is the b) $\frac{\pi^c}{4}$ function x^3 increases less the b) $(-5, 1)$ that the velocity acquirent it on is b) $\propto s^2$ bint on the curve $x = a(\theta + t)$ the b) $(a(\pi/2 - 1), a)$ ce^x the point rcle is measured as 56 cm we b) $1/28$ r], then $f(x)$	to be maximum, the sectorian c) 4^c rapidly than $6x^2 + 15x + c$) $(-1, 5)$ d is proportional to the sque c) $\propto \frac{1}{s^2}$ $\sin \theta$, $y = a(1 - \cos \theta)$ which c) $(a(\pi/2 + 1), a)$ b) $x = 0$ is a minimum d) $x = -1$ is a minimum with an error 0.02 cm. The pro- c) $1/14$	al angle is d) 2^c 5, is d) $(5, \infty)$ hare root of the distance d) $\propto s$ here tangent is inclined at d) $(a, a(\pi/2 + 1))$ percentage error in its area d) $1/56$

	b) Does not satisfy Rolle's Theorem but $f'\left(\frac{\pi}{4}\right) > 0$											
	c) Satisfies Rolle's Theorem but $f'\left(\frac{\pi}{4}\right) = 0$											
	d) Satisfies Lagrange's Mean Value Theorem but $f'\left(\frac{\pi}{4}\right) \neq 0$											
550. For the curve $xy = c^2$, the subnormal at any point varies												
	a) <i>x</i> ²	b) <i>x</i> ³	c) y ²	d) y ³								
551. The minimum value of $e^{(2x^2-2x+1)\sin^2 x}$ is												
	a) 0	b) 1	c) 2	d) 3								
552. A stone is thrown vertically upwards from the top of a tower 64 m high according to the law s=48t-												
	$16t^2$. The greatest height attained by the stone above ground is											
	a) 36 m	b) 32 m	c) 100 m	d) 64 m								
553. $2x^3 - 6x + 5$ is an increasing function, if												
	a) 0 < <i>x</i> < 1	b) $-1 < x < 1$	c) $0 < -1$ or $x > 1$	d) $-1 < x < -\frac{1}{2}$								
554. The set of all values of the parameter <i>a</i> for which the points of minimum of the function $y = 1 + a^2 x - x^3$												
	satisfy the inequality $\frac{x^2+x+2}{x^2+5x+6} \le 0$, is											
	a) An empty set		b) $(-3\sqrt{3}, -2\sqrt{3})$									
	c) (2√3, 3√3)		d) $(-3\sqrt{3}, -2\sqrt{3}) \cup (2\sqrt{3}, 3\sqrt{3})$									
555. If <i>m</i> be the slope of the tangent to the curve $e^{2y} = 1 + 4x^2$, then												
	a) <i>m</i> < 1	b) $ m \le 1$	c) $ m > 1$	d) None of these								
556. The minimum value of $2^{(x^2-3)^3+27}$, is												
	a) 2 ²⁷	b) 2	c) 1	d) 4								
557. The equation of the tangent to the curve $(1 + x^2)y = 2 - x$, where it crosses the <i>x</i> -axis, is												
	a) $x + 5y = 2$	b) $x - 5y = 2$	c) $5x - y = 2$	d) $5x + y - 2 = 0$								

6.APPLICATION OF DERIVATIVES

						: ANS	W	ER K	EY						
1)	b	2)	а	3)	С	4)	С	189)	а	190)	а	191)	d	192)	a
5)	С	6)	а	7)	С	8)	С	193)	b	194)	d	195)	b	196)	a
9)	a	10)	b	, 11)	С	12)	С	197)	а	198)	b	199)	a	200)	b
13)	С	14)	а	15)	С	16)	b	201)	b	202)	С	203)	d	204)	С
17)	b	18)	d	19)	b	20)	а	205)	d	206)	а	207)	с	208)	b
21)	С	22)	b	23)	a	24)	С	209)	a	210)	d	211)	b	212)	d
25)	С	26)	b	27)	d	28)	d	213)	b	214)	d	215)	a	216)	d
29)	а	30)	b	31)	d	32)	с	217)	d	218)	b	219)	d	220)	С
33)	d	34)	С	35)	с	36)	а	221)	b	222)	d	223)	а	224)	а
37)	а	38)	b	39)	с	40)	С	225)	С	226)	d	227)	b	228)	С
41)	С	42)	а	43)	С	44)	b	229)	d	230)	b	231)	С	232)	С
45)	с	46)	а	47)	b	48)	а	233)	С	234)	с	235)	b	236)	а
49)	с	50)	а	51)	d	52)	а	237)	b	238)	а	239)	а	240)	а
53)	d	54)	b	55)	b	56)	С	241)	b	242)	b	243)	а	244)	d
57)	с	58)	d	59)	а	60)	d	245)	b	246)	а	247)	d	248)	С
61)	а	62)	С	63)	b	64)	d	249)	С	250)	С	251)	d	252)	а
65)	а	66)	С	67)	а	68)	а	253)	а	254)	а	255)	b	256)	d
69)	а	70)	b	71)	а	72)	b	257)	b	258)	b	259)	b	260)	а
73)	d	74)	d	75)	d	76)	b	261)	d	262)	С	263)	а	264)	а
77)	b	78)	а	79)	b	80)	b	265)	d	266)	С	267)	С	268)	b
81)	С	82)	а	83)	d	84)	С	269)	С	270)	а	271)	d	272)	а
85)	а	86)	d	87)	а	88)	а	273)	b	274)	С	275)	d	276)	d
89)	С	90)	b	91)	а	92)	d	277)	b	278)	а	279)	С	280)	d
93)	а	94)	b	95)	b	96)	а	281)	а	282)	С	283)	d	284)	а
97)	а	98)	b	99)	b	100)	а	285)	d	286)	d	287)	d	288)	а
101)	С	102)	d	103)	b	104)	а	289)	d	290)	а	291)	а	292)	b
105)	с	106)	b	107)	а	108)	а	293)	С	294)	b	295)	b	296)	d
109)	b	110)	а	111)	С	112)	b	297)	b	298)	С	299)	d	300)	а
113)	b	114)	а	115)	С	116)	b	301)	а	302)	b	303)	b	304)	d
117)	b	118)	b	119)	d	120)	b	305)	С	306)	С	307)	С	308)	С
121)	а	122)	d	123)	а	124)	С	309)	С	310)	b	311)	а	312)	а
125)	d	126)	а	127)	d	128)	С	313)	d	314)	d	315)	b	316)	b
129)	b	130)	d	131)	d	132)	b	317)	С	318)	d	319)	b	320)	d
133)	b	134)	С	135)	d	136)	b	321)	С	322)	С	323)	b	324)	С
137)	С	138)	а	139)	а	140)	а	325)	b	326)	d	327)	d	328)	b
141)	b	142)	b	143)	b	144)	а	329)	d	330)	b	331)	С	332)	а
145)	а	146)	С	147)	b	148)	а	333)	d	334)	а	335)	а	336)	а
149)	d	150)	а	151)	а	152)	d	337)	b	338)	С	339)	b	340)	С
153)	С	154)	С	155)	d	156)	b	341)	d	342)	С	343)	а	344)	b
157)	а	158)	С	159)	С	160)	b	345)	С	346)	С	347)	а	348)	d
161)	С	162)	b	163)	d	164)	d	349)	С	350)	С	351)	d	352)	С
165)	b	166)	b	167)	b	168)	а	353)	b	354)	а	355)	d	356)	С
169)	b	170)	d	171)	b	172)	d	357)	b	358)	а	359)	а	360)	d
173)	d	174)	b	175)	b	176)	b	361)	С	362)	d	363)	b	364)	а
177)	а	178)	d	179)	a	180)	С	365)	а	366)	С	367)	d	368)	С
181)	а	182)	С	183)	d	184)	d	369)	d	370)	а	371)	b	372)	b
185)	С	186)	С	187)	а	188)	С	373)	d	374)	d	375)	a	376)	d
377)	С	378)	С	379)	С	380)	d								
------	---	------	---	------	---	------	---	--							
381)	d	382)	b	383)	d	384)	b								
385)	С	386)	d	387)	b	388)	b								
389)	d	390)	b	391)	а	392)	а								
393)	а	394)	С	395)	b	396)	а								
397)	а	398)	а	399)	d	400)	b								
401)	а	402)	а	403)	b	404)	с								
405)	с	406)	а	407)	d	408)	b								
409)	с	410)	С	411)	с	412)	d								
413)	с	414)	d	415)	с	416)	b								
417)	а	418)	С	419)	b	420)	а								
421)	b	422)	b	423)	d	424)	а								
425)	d	426)	С	427)	С	428)	b								
429)	d	430)	С	431)	а	432)	b								
433)	а	434)	С	435)	а	436)	а								
437)	С	438)	b	439)	а	440)	С								
441)	d	442)	d	443)	a	444)	С								
445)	d	446)	С	447)	d	448)	С								
449)	С	450)	d	451)	С	452)	С								
453)	а	454)	d	455)	b	456)	а								
457)	С	458)	d	459)	С	460)	b								
461)	d	462)	а	463)	а	464)	d								
465)	С	466)	а	467)	b	468)	а								
469)	С	470)	С	471)	С	472)	а								
473)	а	474)	С	475)	С	476)	а								
477)	b	478)	b	479)	b	480)	d								
481)	С	482)	а	483)	b	484)	b								
485)	а	486)	С	487)	С	488)	b								
489)	а	490)	а	491)	С	492)	b								
493)	b	494)	С	495)	b	496)	b								
497)	а	498)	b	499)	b	500)	d								
501)	а	502)	b	503)	b	504)	d								
505)	С	506)	b	507)	d	508)	а								
509)	b	510)	d	511)	b	512)	а								
513)	С	514)	а	515)	d	516)	d								
517)	b	518)	d	519)	a	520)	а								
521)	С	522)	С	523)	d	524)	d								
525)	b	526)	d	527)	b	528)	а								
529)	а	530)	С	531)	d	532)	b								
533)	а	534)	а	535)	a	536)	С								
537)	b	538)	С	539)	С	540)	а								
541)	d	542)	d	543)	d	544)	С								
545)	a	546)	С	547)	d	548)	С								
549)	С	550)	d	551)	b	552)	С								
553)	С	554)	С	555)	b	556)	с								
557)	a														

: HINTS AND SOLUTIONS :

4

5

6

7

1

2

3

(b) We have, $f(x) = x(x-1)^2$ $\Rightarrow f''(x) = (x-1)^2 + 2x(x-1)$ $\Rightarrow f''(x) = (x-1)(3x-1)$ The changes in the signs of f''(x) are shown in diagram $\begin{array}{c|c} + & - & + \\ \hline - & & & + \\ \hline - & & & + \\ \hline - & & & & +$ Clearly, f(x) attains a local maximum at $x = \frac{1}{3}$ and a local minimum at x = 1 \therefore Maximum value of $f(x) = f\left(\frac{1}{3}\right) = \frac{4}{27}$ (a) Since, $2\pi k - \frac{\pi}{2} \le \sin x \le 2\pi k + \frac{\pi}{2}$ y = 1 x $\frac{\pi}{2}$ y = -1For k = 0 $-\frac{\pi}{2} < \sin x < \frac{\pi}{2}$ Which increase from -1 to 1. Similarly, for other values of k it is increase from -1 to 1. (c) Volume of cone, $V = \frac{\pi}{2}r^2h$ h $V = \frac{\pi}{3}r^2\sqrt{l^2 - r^2}$ ⇒

On differentiating w.r.t. *r*, we get $\frac{dV}{dr} = \frac{\pi}{3} \left[2r\sqrt{l^2 - r^2} + \frac{r^2}{2\sqrt{l^2 - r^2}} \left(-2r\right) \right]$ Put $\frac{dV}{dr} = 0$ $\Rightarrow 2r\sqrt{(l^2-r^2)} - \frac{r^3}{\sqrt{l^2-r^2}} = 0$

$$\Rightarrow r[2(l^{2} - r^{2}) - r^{2}] = 0$$

$$\Rightarrow r = \pm l \sqrt{\frac{2}{3}}, \frac{d^{2}v}{dr^{2}} < 0, \text{ maxima}$$

$$\therefore h = \sqrt{l^{2} - \frac{2}{3}l^{2}} = \frac{l}{\sqrt{3}}$$

In $\triangle ABC$, $\tan \theta = \frac{r}{h} = \frac{l \sqrt{\frac{2}{3}}}{\frac{l}{\sqrt{3}}} = \sqrt{2}$
(c)
Given that $f(x) = \sin x - bx + c$
 $\therefore f'(x) = \cos x - b$
For decreasing, $f'(x) < 0$, for all $x \in R$.
 $\Rightarrow \cos x < b$ for all $x \in R \Rightarrow b > 1$.
(c)
Given, $f(x) = 2x^{3} + 3x^{2} - 12x + 1$
 $\Rightarrow f'(x) = 6x^{2} + 6x - 12$
For $f(x)to$ be decreasing, $f'(x) < 0$
 $\Rightarrow 6(x^{2} + x - 2) < 0$
 $\Rightarrow (x + 2)(x - 1) < 0$
 $\Rightarrow x \in (-2,1)$
(a)
We have,
 $f(x) = 2 - \frac{1}{1 + x^{2}}$
 $+ \frac{1}{\sqrt{1 + x^{2}} - x} (\frac{x}{\sqrt{1 + x^{2}}} - 1)$
 $\Rightarrow f'(x) = \frac{1 + 2x^{2}}{1 + x^{2}} - \frac{\sqrt{(1 + x^{2})}}{1 + x^{2}}$
 $\Rightarrow f'(x) = \frac{1 + 2x^{2}}{1 + x^{2}} - \frac{\sqrt{(1 + x^{2})}}{1 + x^{2}}$
 $\Rightarrow f'(x) = \frac{x^{2} + \sqrt{1 + x^{2}} {\sqrt{1 + x^{2}} - 1}}{1 + x^{2}}$
 $\Rightarrow f'(x) = \frac{x^{2} + \sqrt{1 + x^{2}} {\sqrt{1 + x^{2}} - 1}}{1 + x^{2}}$
 $\Rightarrow f'(x) = \frac{x^{2} + \sqrt{1 + x^{2}} {\sqrt{1 + x^{2}} - 1}}{1 + x^{2}}$
 $\Rightarrow f'(x) = \frac{x^{2} + \sqrt{1 + x^{2}} {\sqrt{1 + x^{2}} - 1}}{1 + x^{2}}$
 $\Rightarrow f'(x) = \frac{x^{2} + \sqrt{1 + x^{2}} {\sqrt{1 + x^{2}} - 1}}{1 + x^{2}}$
 $\Rightarrow f'(x) = \frac{x^{2} + \sqrt{1 + x^{2}} {\sqrt{1 + x^{2}} - 1}}{1 + x^{2}}}$

ಂ,∞) and in particular on $(0, \infty)$

(c)
We have,

$$f(x) = 3\cos^2 x + 4\sin^2 x + \cos\frac{x}{2} + \sin\frac{x}{2}$$

 $\Rightarrow f(x) = 4 - \cos^2 x + \cos\frac{x}{2} + \sin\frac{x}{2}$
 $\Rightarrow f'(x) = \sin 2x - \frac{1}{2} \left(\sin\frac{x}{2} - \cos\frac{x}{2} \right) \quad \dots(i)$

$$\Rightarrow f'(x) = 2 \sin x \cos x - \frac{1}{2} \left(\sin \frac{x}{2} - \cos \frac{x}{2} \right)$$

$$\Rightarrow f'(x) = 2 \sin x \left(\sin^2 \frac{x}{2} - \cos^2 \frac{x}{2} \right)$$

$$+ \frac{1}{2} \left(\sin \frac{x}{2} - \cos \frac{x}{2} \right)$$

$$\Rightarrow f'(x) = \left(\cos \frac{x}{2} - \sin \frac{x}{2} \right) \left\{ 2 \sin x \left(\cos \frac{x}{2} + \sin \frac{x}{2} \right) + \frac{1}{2} \right\}$$

$$\Rightarrow f'(x) = \left(\cos \frac{x}{2} - \sin \frac{x}{2} \right) \left\{ 2\sqrt{2} \sin x \sin \left(\frac{x}{2} + \frac{\pi}{4} \right) + \frac{1}{2} \right\}$$

For local maximum or minimum, we must have f'(x) = 0 $\Rightarrow \cos \frac{x}{2} - \sin \frac{x}{2} = 0$

$$\Rightarrow \cos \frac{2}{2} - \sin \frac{2}{2} = 0$$

$$\Rightarrow \cos \frac{2}{2} = \sin \frac{x}{2} \Rightarrow \tan \frac{x}{2} = 1 \Rightarrow \frac{x}{2} = \frac{\pi}{4} \Rightarrow x = \frac{\pi}{2}$$
Now,
$$f''(x) = 2\cos 2x - \frac{1}{4}\left(\cos \frac{x}{2} + \sin \frac{x}{2}\right) \quad [\text{Using (i)}]$$

$$\Rightarrow f''\left(\frac{\pi}{2}\right) = 2\cos \pi - \frac{1}{4}\left(\cos \frac{\pi}{4} + \sin \frac{\pi}{4}\right)$$

$$= -2 - \frac{1}{2\sqrt{2}} < 0$$

Thus, f(x) attains a local maximum at $x = \frac{\pi}{2}$ Local maximum value $= f\left(\frac{\pi}{2}\right) = 4 + \frac{2}{\sqrt{2}} = 4 + \sqrt{2}$ (c)

 $y = \left(\frac{c^{6} - a^{2}x^{4}}{b^{2}}\right)^{\frac{1}{4}}$ Let $f(x) = xy = \left(\frac{c^{6}x^{4} - a^{2}x^{8}}{b^{2}}\right)^{\frac{1}{4}}$ $\Rightarrow f'(x) = \frac{1}{4}\left(\frac{c^{6}x^{4} - a^{2}x^{8}}{b^{2}}\right)^{-3/4}$ $\left(\frac{4x^{3}c^{6}}{b^{2}} - \frac{8x^{7}a^{2}}{b^{2}}\right)$ Put f'(x) = 0 $\Rightarrow x = \pm \frac{c^{3/2}}{2^{1/4}\sqrt{a}}$ $\therefore f\left(\frac{c^{3/2}}{c^{1/4}\sqrt{a}}\right) = \frac{c^{3}}{\sqrt{2ab}}$ (a)

9

8

Let the radius of the circular wave ring by r cm at any time t. Then, $\frac{dr}{dt} = 30$ cm/sec (given) Let A be the area of the enclosed ring. Then, $A = \pi r^2$ $\Rightarrow \frac{dA}{dt} = 2\pi r \frac{dr}{dt}$ $\Rightarrow \frac{dA}{dt} = 2\pi \times 50 \times \frac{30}{100}$ m²sec = $30\pi^2$ m²/sec 10 **(b)** We have, $x = t \cos t$ and $y = t \sin t$ $\therefore \frac{dx}{dt} = \cos t - t \sin t \text{ and } \frac{dy}{dx} = \sin t + t \cos t$ At the origin, we have $x = 0, y = 0 \Rightarrow t \cos t = 0$ and $t \cos t = 0 \Rightarrow t = 0$ The slope of the tangent at t = 0 is $\frac{dy}{dx} = \left(\frac{\frac{dy}{dt}}{\frac{dx}{dt}}\right)_{t=0} = \left(\frac{\sin t + t\cos t}{\cos t - t\sin t}\right)_{t=0} = 0$ So, the equation of the tangent at the origin is $t - 0 = 0(x - 0) \Rightarrow y = 0$ 11 (c) Surface area of sphere $S = 4\pi r^2$ and $\frac{dr}{dt} = 2$ $\therefore \frac{dS}{dt} = 4\pi \times 2r \frac{dr}{dt} = 8\pi r \times 2 = 16\pi r$ $\Rightarrow \frac{dS}{dt} \propto r$ 12 (c) Let $f(x) = \left(\frac{1}{x}\right)^{x} = x^{-x} = e^{-x \log x}$. Then, $f'(x) = -\left(\frac{1}{x}\right)^x (\log x + 1) = -x^{-x}(\log x + 1)$ Now, f'(x) = 0 $\Rightarrow -x^{-x}(\log x + 1) = 0$ $\Rightarrow \log x + 1 = 0 \Rightarrow \log x = -1 \Rightarrow x = e^{-1}$ Clearly, f''(x) < 0 at $x = e^{-1}$ Hence, $f(x) = x^{-x}$ is maximum for $x = e^{-1}$. The maximum value is $e^{1/e}$ 13 (c) Given, $f(x) = 2x^3 - 21x^2 + 36x - 30$ $\Rightarrow f'(x) = 6x^2 - 42x + 36$ For maxima or minima, put f'(x) = 0 $\Rightarrow 6x^2 - 42x + 36 = 0 \Rightarrow x = 6, 1$ And f''(x) = 12x - 42f''(1) = -30 and f''(6) = 30Hence, f(x) has maxima at x = 1 and minima at x = 614 (a) Let *l*be the length of an edge and *V*be the volume of cue at any time t. $: V = t^3$ $\therefore \frac{dV}{dt} = 3l^2 \frac{dl}{dt}$ $= 3 \times 5^2 \times 10 cm^3/s$ $= 750 cm^3/s.$ 15 (c)

We have, $\frac{dy}{dx} = \frac{-\sin\theta}{1-\cos\theta}$ Clearly, $\frac{dy}{dx} = 0$ for $\theta = (2k+1)\pi$ So, the tangent is parallel to *x*-axis i.e. y = 0

16 **(b)** We have, $5x^5 - 10x^3 + x + 2y + 6 = 0$...(i) Differentiating with respect to *x*, we get $25x^4 - 30x^2 + 1 + 2\frac{dy}{dx} = 0$ $\Rightarrow \frac{dy}{dx} = -\frac{1}{2}(25x^4 - 30x^2 + 1)$ $\Rightarrow \left(\frac{dy}{dx}\right)_{(0,-3)} = -\frac{1}{2}$ The equation of the normal at (0, -3) is $y + 3 = 2(x - 0) \Rightarrow 2x - y - 3 = 0$ Solving (i) and (ii), we obtain the coordinates of their points of intersection as P(0, -3), (1, -1)and (-1, -5)Hence, the normal at P(0, -3) meets the curve again at (1, -1) and (-1, -5)17 **(b)** We have, $\frac{dx}{d\theta} = a \left(-\sin\theta + \sin\theta + \theta\cos\theta \right) = a \theta\cos\theta$ and, $\frac{dy}{d\theta} = a(\cos\theta - \cos\theta + \theta\sin\theta) = a\,\theta\sin\theta$ $\therefore \frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} = \tan \theta \Rightarrow -\frac{1}{\underline{dy}} = -\cot \theta$ Hence, the slope of the normal varies as θ The equation of the normal at any point is $y - a(\sin\theta - \theta\cos\theta)$ $= -\cot\theta \{x - a(\cos\theta + \theta\sin\theta)\}\$ $\Rightarrow x \cos \theta + y \sin \theta = a$ Clearly, it is a line at a constant distance |a| from the origin 18 **(d)** We have, $f(x) = \begin{cases} 3x^2 + 12x - 1, & -1 \le x \le 2\\ 37 - x, & 2 < x \le 3 \end{cases}$ Clearly, $\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{+}} f(x) = f(2)$ So, f(x) is continuous at x = 2Hence, it is continuous on [-1, 3]Thus, option (b) is correct We find that f'(x) = 6x + 12 > 0 for all $x \in [-1, 2]$ \Rightarrow *f*(*x*) is increasing on [-1, 2] Thus, option (a) is correct Also, f'(x) < 0 for all $x \in (2,3]$ \Rightarrow *f*(*x*) is decreasing on (2, 3]

Hence, f(x) is attains the maximum value at x = 2

Given, $f(x) = x^3 - 3x^2 + 2x$ $\Rightarrow f'(x) = 3x^2 - 6x + 2$ Now, f(a) = f(0) = 0And $f(b) = f\left(\frac{1}{2}\right)$ $=\frac{1}{2}\left(\frac{1}{2}-1\right)\left(\frac{1}{2}-2\right)=\frac{3}{8}$ By Lagrange's Mean Value Theorem $\frac{f(b) - f(a)}{b - a} = f'(c)$ $\Rightarrow \frac{\frac{3}{8} - 0}{\frac{1}{2} - 0} = 3c^2 - 6c + 2$ $\Rightarrow 12c^2 - 24x + 5 = 0$ This is a quadratic equation in c. $c = \frac{24 \pm \sqrt{576 - 240}}{24}$ $=1\pm\frac{\sqrt{21}}{6}$ But c lies between 0 to $\frac{1}{2}$ \therefore we take, $c = 1 - \frac{\sqrt{21}}{6}$ 20 (a) Since, $f(x) = kx - \sin x$ is monotonically increasing for all $x \in R$. Therefore, f'(x) > 0 for all $x \in R$ $\Rightarrow K - \cos x > 0$ $\Rightarrow K > \cos x$ $\Rightarrow K > 1$ [: maximum value of cos x is 1] 21 (c) We have, f(-1) < 0So, f(x) > 0 for all $x \in R$ is not true Now, $f'(x) = x^3 - 6x^2 + 15x + 3$ $\Rightarrow f'(x) = 3x^2 - 12x + 15$ $\Rightarrow f'(x) = 3(x^2 - 4x + 5) = 3\{(x - 2)^2 + 1\} > 0$ for all $x \in R$ \Rightarrow f(x) is strictly increasing on R $\Rightarrow f(x)$ is invertible on R 22 **(b)** Let D denotes the diagonal of the square. Given, $\frac{dD}{dt} = \frac{0.5cm}{s} \quad \dots \quad (i)$ Since, A=400= $\frac{1}{2}D^2 \Rightarrow D = 20\sqrt{2}$ ($\therefore = \frac{D^2}{2}$) On differentiating w.r.t.t, we get $\frac{dA}{dt} = \frac{d}{dt} \left(\frac{D^2}{2} \right)$ $= 20\sqrt{2} \times 0.5$ $=10\sqrt{2}cm^2/s$

So, option (c) is correct

23 (a)

Consider the function f(x) given by $f(x) = ax^2 + \frac{b}{r} - c, x > 0$ Clearly, $f(x) \ge 0$ for all x > 0 [: $ax^2 + \frac{b}{x} \ge c$ (Given)] Also, $f'(x) = 2ax - \frac{b}{x^2}$ and $f''(x) = 2a + \frac{2b}{x^3}$ For points of local maximum/minimum, we must have $f'(x) = 0 \Rightarrow 2ax^3 = b \Rightarrow x = \left(\frac{b}{2a}\right)^{1/2}$ Now, $f''\left\{\left(\frac{b}{2a}\right)^{1/3}\right\} = 2a + 4a = 6a > 0$ Therefore, f(x) attains a local minimum at $x = \left(\frac{b}{2a}\right)^{1/3}$ Now, $f\left\{\left(\frac{b}{2a}\right)^{1/3}\right\} = a\left(\frac{b}{2a}\right)^{2/3} + b\left(\frac{2a}{b}\right)^{1/3} - c$ $\Rightarrow f\left\{\left(\frac{b}{2a}\right)^{1/3}\right\} = \frac{b^{2/3}a^{1/3}}{2^{2/3}} + b^{2/3}(2a)^{1/3} - c$ But, $f(x) \ge 0$ for all x > 0 $\frac{b^{2/3}a^{1/3}}{2^{2/3}} + b^{2/3}(2a)^{1/3} - c \ge 0$ $\Rightarrow (b^2 a)^{1/3} \left(\frac{1}{2^{2/3}} + 2^{1/3} \right) \ge c$ $\Rightarrow 3(b^2a)^{1/3} \ge 2^{2/3}c \Rightarrow 27ab^2 \ge 4c^3$ 24 (c) Suppose the tangent from the point (2, 0) to $y = x^4$ touches the curve at (x_1, y_1) . The equation of the tangent at (x_1, y_1) is $y - y_1 = 4x_1^3(x - x_1)$ If it passes through (2, 0), then $0 - y_1 = 4x_1^3(2 - x_1)$ \Rightarrow $y_1 = 4x_1^3(x_1 - 2)$ $\Rightarrow x_1^4 = 4x_1^3(x_1 - 2)$ [:: (x_1, y_1) lies on $y = x^4$:. $y_1 = x_1^4$] $\Rightarrow 3x_1^4 - 8x_1^3 = 0$ $\Rightarrow x_1^3(3x_1-8) = 0$ $\Rightarrow x_1 = 0 \text{ or, } x_1 = 8/3$ Now, $x_1 = 0$, and $y_1 = x_1^4 \Rightarrow y_1 = 0$ $x_1 = 8/3$, and $y_1 = x_1^4 \Rightarrow y_1 = \left(\frac{8}{3}\right)^4 = \frac{4096}{81}$ Thus the points of tangency are (0, 0) and (8/3,4096/81) Hence, the equations of the tangents are y = 0 and $y = -\frac{4096}{81} = \frac{2048}{27} \left(x - \frac{8}{3} \right)$ 26 **(b)** The equation of given curve is $\sqrt{x} + \sqrt{y} = \sqrt{a}$

 $\therefore \frac{1}{2\sqrt{x}} + \frac{1}{2\sqrt{y}}\frac{dy}{dx} = 0$ $\Rightarrow \frac{dy}{dx} = -\frac{\sqrt{y}}{\sqrt{x}}$ The normal is parallel to *x*-axis, if $\left(\frac{dx}{dy}\right)_{(x_1,y_1)} = 0 \quad \Rightarrow \quad x_1 = 0$: From equation of curve, $y_1 = a$ \therefore Required point is (0, a)27 (d) Let $f(x) = 2x^3 - 9x^2 + 12x + 4$ $\Rightarrow f'(x) = 6x^2 - 18x + 12$ f'(x) < 0 for function to be decreasing $\Rightarrow 6(x^2 - 3x + 2) < 0$ $\Rightarrow (x^2 - 2x - x + 2) < 0$ $\Rightarrow (x-2)(x-1) < 0$ $\Rightarrow 1 < x < 2$ 28 (d) Given that, $f(x) = 1 - x^3 - x^5$ On differentiating w.r.t. x, we get $f'(x) = -3x^2 - 5x^4$ $\Rightarrow f'(x) = -(3x^2 + 5x^4)$ \Rightarrow f'(x) < 0 for all values of x 29 (a) We have, $y = \{x(x - 3)\}^2$ $\therefore \frac{dy}{dx} = 2x(x-3)(2x-3)$ Clearly, $\frac{dy}{dx} > 0$ for $0 < x < \frac{3}{2}$ Hence, *y* is increasing for 0 < x < 3/230 (b) We have, $y = -3 \log_e(9 + x^2)$ $\Rightarrow \frac{dy}{dx} = -\frac{6x}{9+x^2}$ $\Rightarrow -\frac{dy}{dx} = \frac{9+x^2}{6x} \Rightarrow m = \frac{9+x^2}{6x} \Rightarrow |m| = \frac{9+|x|^2}{6|x|}$ Now. A. M. \geq G. M. $\Rightarrow \frac{9+|x|^2}{2} \ge \sqrt{9|x|^2}$ $\Rightarrow \frac{9+|x|^2}{2} \ge 3|x|$ $\Rightarrow \frac{9+|x|^2}{6|x|} \ge 1 \Rightarrow |m| \ge 1 \Rightarrow m \in R - (-1,1)$ 31 (d) We have $f(x) = \frac{x^2 - 1}{x^2 + 1} = 11 - \frac{2}{x^2 + 1}$

Clearly, f(x) will be minimum when $\frac{2}{x^2+1}$ is

maximum i.e. when $x^2 + 1$ is minimum. Obviously, $x^2 + 1$ is minimum at x = 0 \therefore Minimum value of f(x) is f(0) = -1

32 (c)

Thus, *f* has infinite points if minimum, if r = pIn case, $p \neq r$, then x = 0 is point of minimum, if r > p and $x = \frac{q}{p}$ is point of minimum, if r < p

33 **(d)**

Since $f(x) = \frac{K \sin x + 2 \cos x}{\sin x + \cos x}$ is increasing for all x $\therefore f'(x) > 0$ for all x $\Rightarrow \frac{K-2}{(\sin x + \cos x)} > 0$ for all x $\Rightarrow K - 2 > 0 \Rightarrow K > 2$

 $\tan \theta = \frac{6}{r+v}$

34 **(c)**

In
$$\triangle ADC$$
 ,

$$\begin{array}{c}
6m \\
A \\
\hline
 y \\
B \\
\hline
 x \\
C
\end{array}$$

And in $\triangle BCE$, $\tan \theta = \frac{2}{x}$ $\therefore \frac{2}{x} = \frac{6}{x+y} \Rightarrow y = 2x$

On differentiating w. r. t. *t*, we get $\frac{dy}{dt} = 2\frac{dx}{dt} \Rightarrow \frac{dx}{dt} = 3km/h \quad \left[\because \frac{dy}{dt} = 6, \text{ given}\right]$

36 **(a)**

Using Mean value theorem,

$$f'(c) = \frac{f(3) - f(1)}{3 - 1}$$

$$\Rightarrow \frac{1}{c} = \frac{\log_e 3 - \log_e 1}{1}$$

 $\Rightarrow c = \frac{2}{\log_2 3} = 2 \log_3 e$ 37 **(a)** Let $f(x) = ax + \frac{b}{x}$. Then, $ax + \frac{b}{x} \ge c$ for all x > 0 $\Rightarrow f(x) \ge c$ for all x > 0 \Rightarrow *c* is the smallest value of *f*(*x*) Now. $f'(x) = 0 \Rightarrow a - \frac{b}{x^2} = 0 \Rightarrow x = \pm \sqrt{\frac{b}{a}}$ and, $f''(x) = \frac{2b}{x^3} > 0$ for $x = \sqrt{\frac{b}{a}}$ Thus, f(x) attains a local minimum at $x = \sqrt{\frac{b}{a}}$ $\Rightarrow f\left(\sqrt{\frac{b}{a}}\right) \ge c$ [: *c* is the smallest value of f(x) $\Rightarrow \sqrt{ab} + \sqrt{ab} \ge c$ $\Rightarrow 2\sqrt{ab} \ge c \Rightarrow ab \ge \frac{c^2}{4}$ [:: *a*, *b*, *c* are all positive] 38 **(b)** We have. $f(x) = \int_{-\infty}^{\infty} \frac{\cos t}{t} dt, x > 0 \Rightarrow f'(x) = \frac{\cos x}{x}, x > 0$ $\therefore f'(x) = 0 \Rightarrow \frac{\cos x}{x} = 0$ $\Rightarrow \cos x = 0 \Rightarrow x = (2n+1)\frac{\pi}{2}, n \in \mathbb{Z}$ $f'(x) = \frac{\cos x}{x}$ $\Rightarrow f''(x) = -\frac{x\sin x - \cos x}{x^2}$ $\Rightarrow f''\left((2\,n+1)\frac{\pi}{2}\right) = -\frac{2}{(2\,n+1)\pi}(-1)^n$ $=\frac{2(-1)^{n+1}}{(2\,n+1)\pi}$ $\Rightarrow f''\left((2n+1)\frac{\pi}{2}\right) > 0 \text{ for } n = -2, -4, -6, \dots$ < 0 for n = 0, 2, 4, 6, ...> 0 for n = 1, 3, 5, ...< 0 for n = -1, -3, -5, ...Hence, f(x) attains respectively minima, maxima, minima and maxima 39 (c) We have, $\left(\frac{x}{a}\right)^n + \left(\frac{y}{b}\right)^n = 2$

$$\Rightarrow \frac{n x^{n-1}}{a^n} + \frac{n y^{n-1}}{b^n} \frac{dy}{dx} = 0$$

$$\Rightarrow \frac{dy}{dx} = -\frac{b^n x^{n-1}}{a^n y^{n-1}} \Rightarrow \left(\frac{dy}{dx}\right)_{(a,b)} = -\frac{b}{a} \text{ for all } n$$

The equation of the tangent at (a, b) is

$$y - a = -\frac{b}{a} (x - a) \Rightarrow \frac{x}{a} + \frac{y}{b} = 2$$

Thus, $\frac{x}{a} + \frac{y}{b} = 2$ touches the curve (i) at (a, b) for
all n
40 (c)
We have,

$$PV^{1/4} = \lambda \text{ (constant)}$$

$$\Rightarrow \log P + \frac{1}{4} \log V = \log \lambda$$

$$\Rightarrow \frac{1}{P} \frac{dP}{dV} + \frac{1}{4V} = 0$$

$$\Rightarrow \frac{dP}{dV} = -\frac{1}{4} \frac{P}{V}$$

$$\therefore \Delta P = \frac{dP}{dV} \Delta V$$

$$\Rightarrow \Delta P = -\frac{1}{4} \frac{P}{V} \Delta V$$

$$\Rightarrow \Delta P = -\frac{1}{4} \frac{P}{V} \Delta V$$

$$\Rightarrow \frac{\Delta P}{P} \times 100 = -\frac{1}{4} \frac{\Delta V}{V} \times 100$$

$$\Rightarrow \frac{\Delta P}{P} \times 100 = -\frac{1}{4} \times -\frac{1}{2}$$

$$= \frac{1}{8} \left[\because \frac{\Delta V}{V} \times 100 = \frac{1}{2} \text{ (given)} \right]$$

41 (c)

41

From mean value theorem $f'(c) = \frac{f(b) - f(a)}{b-a}$ Given, $a = 0 \Rightarrow f(a) = 0$ and $b = \frac{1}{2} \Rightarrow f(b) = \frac{3}{8}$ Now, f'(x) = (x - 1)(x - 2) + x(x - 2) + x(x - 2)x(x-1)∴ f'(c) = (c-1)(c-2) + c(c-2) + c(c-1) $= c^2 - 3c + 2 + c^2 - 2c + c^2 - c$ $\Rightarrow f'(c) = 3c^2 - 6c + 2$ By definition of mean value theorem $f'(c) = \frac{f(b) - f(a)}{b - a}$ $\Rightarrow 3c^2 - 6c + 2 = \frac{\left(\frac{3}{8}\right) - 0}{\left(\frac{1}{2}\right) - 0} = \frac{3}{4}$ $\Rightarrow 3c^2 - 6c + \frac{5}{4} = 0$ This is a quadratic equation in *c* $\therefore \quad c = \frac{6 \pm \sqrt{36 - 15}}{2 \times 3} = \frac{6 \pm \sqrt{21}}{6} = 1 \pm \frac{\sqrt{21}}{6}$ Since, 'c' lies between $\left[0, \frac{1}{2}\right]$ $\therefore \quad c = 1 - \frac{\sqrt{21}}{6} \quad \left(\text{neglecting } c = 1 + \frac{\sqrt{21}}{6} \right)$

42 (a)

 $\therefore f(x) = \frac{1}{4x^2 + 2x + 1}$ On differentiating w.r.t. *x*, we get $f'(x) = \frac{-(8x+2)}{(4x^2+2x+1)^2}$...(i) For maxima or minima put f'(x) = 0 $\Rightarrow 8x + 2 = 0 \Rightarrow x = -\frac{1}{4}$ Again differentiating w.r.t. x of Eq. (i), we get $f''(x) = -\frac{\left[\binom{(4x^2+2x+1)^2(8)-(8x-2)2\times}{(4x^2+2x+1)(8x+2)}\right]}{(4x^2+2x+1)^4}$ At $x = -\frac{1}{4}$, $f''\left(-\frac{1}{4}\right) = -\text{ve}$ f(x) is maximum at $x = -\frac{1}{4}$ \therefore maximum value of f(x) $f\left(-\frac{1}{4}\right)_{\max} = \frac{1}{4 \times \frac{1}{4} - 2 \times \frac{1}{4} + 1}$ $=\frac{1}{\frac{1}{\frac{1}{4}-\frac{2}{4}}+1}$ $=\frac{4}{1-2+4}=\frac{4}{2}$ 44 **(b)** Let f(x) = 2x + 3y $f(x) = 2x + \frac{18}{x} \quad [\because xy = 6, \text{ given}]$ $\Rightarrow \quad f'(x) = 2 - \frac{18}{x^2}$ Put f'(x) = 0 for maxima or minima $\Rightarrow 0 = 2 - \frac{18}{x^2} \quad \Rightarrow \qquad x = \pm 3$ And $f''(x) = \frac{36}{x^3} \implies f''(3) = \frac{36}{3^3} > 0$ \therefore At x = 3, f(x) is minimum. The minimum value is f(3) = 1245 (c) On differentiating given curve w. r. t. x, we get $4 y^3 \frac{dy}{dx} = 3ax^2$ $\Rightarrow \left(\frac{dy}{dx}\right)_{(a,a)} = \frac{3a^3}{4a^3} = \frac{3}{4}$ \therefore Equation of normal at point (*a*, *a*) is $y-a=-\frac{4}{3}(x-a)$ $\Rightarrow 4x + 3y = 7a$ 47 **(b)** Let $f(x) = x^3 - px + q$ Then $f'(x) = 3x^2 - p$ Put $f'(x) = 0 \Rightarrow x = \sqrt{\frac{p}{3}}, -\sqrt{\frac{p}{3}}$ Now, f''(x) = 6x

:. At $x = \sqrt{\frac{p}{3}}$, $f''(x) = 6\sqrt{\frac{p}{3}} > 0$, minima And at $x = -\sqrt{\frac{p}{3}}$, f''(x) < 0, maxima 48 (a) For x = p, $y = ap^2bp + c$ And for x = q, $y = aq^2 + bq + c$ Slope = $\frac{aq^2 + bq + c - ap^2 - bp - c}{q - p}$ =a(q+p)+b $\frac{dy}{dx} = 2ax + b = a(q+p) + b$ (according to the equation) $\therefore x = \frac{q+p}{2}$ 49 (c) Clearly, f(x) is continuous and differentiable on the intervals [0, 3] and (0, 3) respectively for all $n \in N$ Also, f(0) = f(3) = 0It is given that Rolle's theorem for the function f(x) defined on [0, 3] is applicable with $c = \frac{3}{4}$ $\therefore f'(c) = 0$ $\Rightarrow 2(c-3)^{n} + 2nc(c-3)^{n-1} = 0$ $[\because f(x) = 2x(x-3)^n \therefore f'(x)$ $= 2(x-3)^{n} + 2nx(x-3)^{n-1}$ $\Rightarrow 2(c-3)^{n-1}(c-3+nc) = 0$ $\Rightarrow \frac{3}{4} - 3 + \frac{3}{4}n = 0 \Rightarrow n = 3 \quad \left[\because c = \frac{3}{4} \right]$ 50 (a) Given, y - x = 1 $\Rightarrow y = x + 1$ $\frac{dy}{dx} = 1$ And $y^2 = x$ $\Rightarrow 2y \frac{dy}{dx} = 1$ $\Rightarrow \frac{dy}{dx} = \frac{1}{2y}$ $\therefore \quad 1 = \frac{1}{2y}$ $\Rightarrow 2y = 1$ $\Rightarrow y = \frac{1}{2}$ \therefore point on the curve is $\left(\frac{1}{4}, \frac{1}{2}\right)$ ∴ required shortest distance $= \left| \frac{\frac{1}{4} - \frac{1}{2} + 1}{\sqrt{2}} \right| = \frac{3}{4\sqrt{2}} = \frac{3\sqrt{2}}{8}$

51 (d)

 $\Rightarrow \quad \frac{d^2s}{dt} = 3k^2s^5 \qquad [from Eq.(i)]$ Hence, acceleration of particle is proportional to s^5 . 52 (a) Given, $s = t^3 + 2t^2 + t$ $\Rightarrow v = \frac{ds}{dt} = 3t^2 + 4t + 1$ Speed of the particle after 1 s $v_{(t=1)} = \left(\frac{ds}{dt}\right)_{(t=1)}$ $= 3 \times 1^{2} + 4 \times 1 + 1 = 3 + 5 = 8$ cm/s 54 **(b)** Given, $y = a^x \Rightarrow \frac{dy}{dx} = a^x \log a$ Now, length of subtangent at any point (x_1, y_1) $=\frac{y}{dy/dx}=\frac{a^{x_1}}{a^{x_1}\log a}=\frac{1}{\log a}$ 56 (c) Let AB = xm, BC = ym and AC = 10m $\therefore x^2 + y^2 = 100$...(i) On differentiating w.r.t *t*, m we get $2x\frac{dx}{dt} + 2y\frac{dy}{dt} = 0$ $\Rightarrow 2x(3) - 2y(4) = 0$ $\Rightarrow x = \frac{4y}{2}$ On putting this value in Eq. (i), we get $\frac{16}{9}y^2 + y^2 = 100$ $\Rightarrow y^2 = \frac{100 \times 9}{25} = 36 \Rightarrow y = 6m$ 57 (c) Since f(x), which is of degree 3, has relative minimum/maximum at x = -1 and $x = \frac{1}{3}$. Therefore x = -1, $x = \frac{1}{2}$ are roots of f'(x) = 0. Thus, x + 1 and 3x - 1 are factors of f'(x)Consequently, we have $f'(x) = \lambda(x+1)(3x-1) = \lambda(3x^2 + 2x - 1)$ $\Rightarrow f(x) = \lambda(x^3 + x^2 - x) + c$ Now, f(-2) = 0[Given] $\Rightarrow c = 2\lambda$...(i) Page | 44

Since, $s^3 \propto v \Rightarrow \frac{ds}{dt} = ks^3$(i)

 $\Rightarrow \frac{d^2s}{dt^2} = 3ks^2\frac{ds}{dt}$

We have,

$$\int_{-1}^{1} f(x) dx = \frac{14}{3}$$

$$\Rightarrow \int_{-1}^{1} [\lambda(x^{3} + x^{2} - x) + c] dx = \frac{14}{3}$$

$$\Rightarrow \lambda \int_{-1}^{1} x^{2} + \int_{-1}^{1} c \, dx = \frac{14}{3} \Rightarrow \frac{2\lambda}{3} + 2 \, c = \frac{14}{3} \Rightarrow \lambda + 3 \, c = 7 \quad ...(ii)$$
Solving (i) and (ii), we get $\lambda = 1, c = 2$
Hence, $f(x) = x^{3} + x^{2} - x + 2$
58 (d)
$$f(x) = \cos x + \frac{1}{2} \cos 2x - \frac{1}{3} \cos 3x$$

$$\Rightarrow f'(x) = -\sin x \cdot \sin 2x + \sin 3x$$
Put $f'(x) = 0$

$$\Rightarrow 2 \sin \frac{3x}{2} \cos \frac{x}{2} = 2 \sin \frac{3x}{2} \cos \frac{3x}{2}$$

$$\Rightarrow \sin \frac{3x}{2} = 0, \cos \frac{3x}{2} = \cos \frac{x}{2}$$

$$\Rightarrow x = \frac{2\pi\pi}{3}, \frac{3x}{2} = 2\pi\pi \pm \frac{x}{2}$$

$$\Rightarrow At x = 0, \frac{2\pi\pi}{3}, \frac{3x}{2} = 2\pi\pi \pm \frac{x}{2}$$

$$\Rightarrow At x = 0, \frac{2\pi\pi}{3}, \frac{3x}{2} = 2\pi\pi \pm \frac{x}{2}$$

$$\Rightarrow At x = 0, \frac{2\pi\pi}{3}, \frac{3x}{2} = 2\pi\pi \pm \frac{x}{2}$$

$$\Rightarrow At x = 0, \frac{2\pi\pi}{3}, \frac{3\pi}{2} = 2\pi\pi \pm \frac{x}{2}$$

$$\Rightarrow At x = 0, \frac{2\pi\pi}{3}, \frac{3\pi}{2} = 2\pi\pi \pm \frac{x}{2}$$

$$\Rightarrow At x = 0, \frac{2\pi\pi}{3}, \frac{3\pi}{2} = 2\pi\pi \pm \frac{x}{2}$$

$$\Rightarrow At x = 0, \frac{2\pi\pi}{3}, \frac{3\pi}{2} = 2\pi\pi \pm \frac{x}{2}$$

$$\Rightarrow At x = 0, \frac{2\pi\pi}{3}, \frac{3\pi}{2} = 2\pi\pi \pm \frac{x}{2}$$

$$\Rightarrow At x = 0, \frac{2\pi\pi}{3}, \frac{3\pi}{2} = 2\pi\pi \pm \frac{x}{2}$$

$$\Rightarrow At x = 0, \frac{2\pi\pi}{3}, \frac{3\pi}{2} = 2\pi\pi \pm \frac{\pi}{2}$$

$$\Rightarrow At x = 0, \frac{2\pi\pi}{3}, \frac{3\pi}{2} = 2\pi\pi \pm \frac{\pi}{2}$$

$$\Rightarrow At x = 0, \frac{2\pi\pi}{3}, \frac{3\pi\pi}{3} = 2\pi\pi \pm \frac{\pi}{2}$$

$$\Rightarrow At x = 0, \frac{2\pi\pi}{3}, \frac{3\pi\pi}{3} = 2\pi\pi \pm \frac{\pi}{2}$$

$$\Rightarrow At x = 0, \frac{2\pi\pi}{3}, \frac{\pi}{3}, \frac{\pi}{3} = 2\pi\pi \pm \frac{\pi}{3}$$

$$\Rightarrow At x = 0, \frac{2\pi\pi}{3}, \frac{\pi}{3}, \frac{\pi}{3} = 2\pi\pi \pm \frac{\pi}{3}$$

$$\Rightarrow At x = 0, \frac{\pi}{3}, \frac{\pi}{3} = 2\pi\pi \pm \frac{\pi}{3}$$

$$\Rightarrow At x = 0, \frac{\pi}{3}, \frac{\pi}{3} = 2\pi\pi \pm \frac{\pi}{3}, \frac{\pi}{3}, \frac{\pi}{3} = 2\pi\pi \pm \frac{\pi}{3}, \frac{$$

 $\therefore f(x) \le 1, \text{ for all } x \quad \left[\because -\frac{3}{4} \sin^2 2x < 0 \right]$ and, $f(x) > 1 - \frac{3}{4} = \frac{1}{4} \text{ for all } x \quad \left[\because -\frac{3}{4} \sin^2 2x \ge -34 \right]$

61 (a)
Let
$$y = x^3 - 12x \Rightarrow \frac{dy}{dx} = 3x^2 - 12$$

Put $\frac{dy}{dx} = 0$, $3x^2 - 12 = 0$
 $\Rightarrow x = \pm 2$
At $x = 2$, $y = 2^3 - 12(2) = -16$
At $x = -2$, $y = (-2)^3 - 12(-2) = 16$
Hence, option (a) is correct
62 (c)
We have,
 $xy = a^2$ and $S = b^2x + c^2y$
 $\Rightarrow S = b^2x + \frac{c^2a^2}{x^2}$
 $\Rightarrow \frac{ds}{dx} = b^2 - \frac{c^2a^2}{x^2}$ and $\frac{d^3s}{dx^2} = \frac{2c^2a^2}{x^3}$
For local maximum or minimum, we must have
 $\frac{dS}{x} = 0 \Rightarrow b^2 - \frac{c^2a^2}{x^2} = 0 \Rightarrow x^2 = \frac{c^2a^2}{b^2} \Rightarrow x$
 $= \pm \frac{ca}{b}$
Clearly, $\frac{d^2s}{dx^2} > 0$ for $x = \frac{ca}{b}$
So, $x = \frac{ca}{b}$ is the point of local minimum
Local minimum value of $S = b^2 \left(\frac{ca}{b}\right) + c^2 \left(\frac{a^2b}{ca}\right) = 2abc$
63 (b)
We have,
 $g(x) = f(x) + f(1 - x)$
 $\therefore g'(x) = f'(x) - f'(1 - x)$ for all $x \in [0,1]$
Now, $f''(x) < 0$ for $0 \le x \le 1$
 $\Rightarrow f'(x)$ is a decreasing function on $[0, 1]$
 $\Rightarrow f'(x) > f'(1 - x)$ if $x > 1 - x$
and,
 $f'(x) < f'(1 - x)$ if $x > 1 - x$
 $\Rightarrow f'(x) > 0$ if $x \in (0, 1/2)$
and,
 $f'(x) < 0$ if $x \in (0, 1/2)$
and,
 $\Rightarrow g'(x) > 0$ if $x \in (1/2, 1)$
 $\Rightarrow g(x)$ decreases on $[1/2, 1]$ and increases on $[0, 1/2]$
64 (d)
Since, $f(x) = xe^{1-x}$
 $f'(x) = -xe^{1-x} + e^{1-x}$
 $= e^{1-x}(1 - x)$

 $\Rightarrow f'(x) < 0, \forall (1,\infty)$ 65 (a) Consider the function $\phi(x) = a_0 \frac{x^{n+1}}{n+1} + a_1 \frac{x^n}{n} + a_2 \frac{x^{n-1}}{n-1} + \cdots$ $+a_{n-1}\frac{x^2}{2}+a_nx$ Since $\phi(x)$ is a polynomial. Therefore, it is continuous on [0, 1] and differentiable on (0, 1)Also, $\phi(0) = 0$ and, $\phi(1) = \frac{a_0}{n+1} + \frac{a_1}{n} + \frac{a_2}{n-2} + \dots + a_n$ = 0 [Given] $\therefore \phi(0) = \phi(1)$ Thus, $\phi(x)$ satisfies conditions of Rolle's theorem on [0, 1] Consequently, there exist $c \in (0, 1)$ such that $\phi'(c) = 0$ i.e. $c \in (0, 1)$ is a zero of $\phi'(x) =$ $a_0 x^n + a_1 x^{n-1} + \dots + a_n = f(x)$ 66 **(c)** Given. $x = at^2 + bt + c$ \Rightarrow (speed) $\frac{dx}{dt} = 2at + b$ \Rightarrow (acceleration) $\frac{d^2x}{dt^2} = 2a$ \therefore The particle will moving with Uniform acceleration. 69 (a) On differentiating given equation w. r. t. x, we get $\frac{dx}{dt} = 100 - \frac{25}{2} \cdot (2t) = 100 - 25t$ At maximum height, velocity $\frac{dx}{dt} = 0$ $100 - 25t = 0 \implies t = 4$ $\therefore x = 100 \times 4 - \frac{25 \times 16}{2} = 200m$ 70 **(b)** We have, $y = \int_0^x |t| \, dt \quad \dots(i)$ $\Rightarrow \frac{dy}{dx} = |x|$ Let $P(x_1, y_1)$ be a point on the curve (i) such that the tangent at *P* is parallel to the line y = 2x \therefore (Slope of the tangent at *P*) = 2 $\Rightarrow \left(\frac{dy}{dx}\right)_{(x_1, y_1)} = 2 \Rightarrow |x_1| = 2 \Rightarrow x_1 = \pm 2$ Now, $y = \int_0^x |t| dt$ $y = \begin{cases} \int_{0}^{x} t dt = \frac{x^{2}}{2}, & \text{if } x \ge 0\\ -\int_{0}^{x} t dt = -\frac{x^{2}}{2}, & \text{if } x < 0 \end{cases}$

 $\therefore x_1 = 2 \Rightarrow y_1 = 2 \text{ and } x_1 = -2 \Rightarrow y_1 = -2$ Thus, the two points on the curve are (2, 2) and (-2, -2)The equations of the tangents at these two points are y - 2 = 2(x - 2) and y + 2 = 2(x + 2)respectively Or, 2x - y - 2 = 0 and 2x - y + 2 = 0respectively These tangents cut off intercepts -2 and 2 respectively on y-axis 71 (a) We have, $f'(x) = \sec^2 x - 1 \ge 0$ for all $x [\because |\sec x| \ge$ 1 for all xHence, f(x) always increases 72 **(b)** Let P = xy. Then, P = x(8 - x) $[\because x + y = 8 \text{ (given)}]$ $\Rightarrow P = 8x - x^2 \Rightarrow \frac{dP}{dx} = 8 - 2x$ and $\frac{d^2P}{dx^2} = -2$ For maximum and minimum, we must have $\frac{dP}{dx} = 0 \Rightarrow 8 - 2x = 0 \Rightarrow x = 4$ Clearly, $\frac{d^2 P}{dx^2} = -1 < 0$ for all x Hence, *P* is maximum when x = y = 4. The maximum value of *P* is given by $P = 4 \times 4 = 16$ (d) Given curve is $y = 2x^2 - x + 1$...(i) $\Rightarrow \frac{dy}{dx} = 4x - 1$ Since, tangent to the curve is parallel to the given liney = 3x + 9. Then, slopes will be equal \therefore 4x - 1 = 3 $\Rightarrow x = 1$ From Eq. (i), $y = 2(1)^2 - 1 + 1 = 2$ Hence, required point is (1, 2)74 (d) Let $P(x_1, y_1)$ be a point on $y^2 = 2x^3$ such that the tangent at *P* is perpendicular to the line 4x - 3y + 2 = 0 $\therefore \left(\frac{dy}{dx}\right)_{(x_1,y_1)} \times \left(\frac{-4}{-3}\right) = -1 \Rightarrow \left(\frac{dy}{dx}\right)_{(x_1,y_1)} = \frac{3}{4}$...(i) Now. $v^2 = 3x^3$ $\Rightarrow 2y \frac{dy}{dx} = 6 x^2 \Rightarrow \left(\frac{dy}{dx}\right)_{(x_1, y_1)} = \frac{3x_1^2}{y_1} \quad \dots \text{(ii)}$ From (i) and (ii), we get $\frac{3x_1^2}{y_1} = \frac{3}{4} \Rightarrow y_1 = 4x_1^2$...(iii)

73

Since
$$(x_1, y_1)$$
 lies on $y^2 = 2x^3$
 $\therefore y_1^2 = 2x_1^3$...(iv)
Solving (iii) and (iv), we get
 $(4x_1)^2 = 2x_1^3 \Rightarrow x_1 = 0, x_1 = 1/8$
Putting the values of x_1 in (iv), we get
 $y_1 = 0, y_1 = \pm \frac{1}{16}$
Hence, the required points are (0, 0), (1/8, 1/16),
(1/8, -1/16)
75 (d)
We have,
 $x = e^t \cos t$ and $y = e^t \sin t$
 $\Rightarrow \frac{dx}{dt} = e^t (\cos t - \sin t)$ and $\frac{dy}{dt}$
 $= e^t (\sin t + \cos t)$
 $\therefore \frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{\sin t + \cos t}{\cos t - \sin t} \Rightarrow \left(\frac{dy}{dx}\right)_{t=\pi/4} = \infty$
So, tangent at $t = \frac{\pi}{4}$ subtends a right angle with x-
axis
76 (b)
We have,
 $y^2 = 4a \left(x + a \sin \frac{x}{a}\right)$...(i)
 $\Rightarrow 2y \frac{dy}{dx} = 4a \left(1 + \cos \frac{x}{a}\right)$
For points at which the tangents are parallel to x-

For points at which the tangents are parallel to *x*-axis, we must have

$$\frac{ay}{dx} = 0$$

$$\Rightarrow 4a \left(1 + \cos\frac{x}{a}\right) = 0 \Rightarrow \cos\frac{x}{a} = -1 \Rightarrow \frac{x}{a}$$

$$= (2n+1)\pi$$

For these values of x, we have $\sin\frac{x}{a} = 0$

Putting $\sin \frac{x}{a} = 0$ in (i), we get $y^2 = 4ax$ Therefore, all these points lie on the parabola $y^2 = 4ax$

77 **(b)**

Given
$$y = x^{5/2}$$

 $\therefore \frac{dy}{dx} = \frac{5}{2}x^{3/2}, \frac{d^2y}{dx^2} = \frac{15}{4}x^{1/2}$
At $x = 0, \frac{dy}{dx} = 0, \frac{d^2y}{dx^2} = 0$
and $\frac{d^3y}{dx^3}$ is not defined
When $x = 0, y = 0$
81 (c)

$$p(t) = 1000 + \frac{1000t}{100 + t^2}$$

$$\Rightarrow \quad p'(t) = 0 + \frac{(100 + t^2)(1000) - 1000t (2t)}{(100 + t^2)^2}$$

$$= 1000 \frac{(100 - t^2)}{(100 + t^2)^2}$$

 \therefore (0, 0) is a point of inflexion 78 **(a)** Let f(x) = 2x + 3y and xy = 6 $\Rightarrow f(x) = 2x + \frac{18}{x}$ On differentiating w.r.t. *x*, we get $f'(x) = 2 - \frac{18}{x^2}$ Put f'(x) = 0 for maxima or minima $\Rightarrow 0 = 2 - \frac{18}{x^2} \Rightarrow x = \pm 3$ and $f''(x) = \frac{36}{x^3}$ $\Rightarrow f''(3) = \frac{36}{3^3} > 0$ \therefore At x = 3, f(x) is minimum The minimum value of f(x) is f(3) = 2(3) + 3(2) = 1279 **(b)** Given, $f(x) = x^2 - 2x + 4$ f'(x) = 2x - 2By applying Mean value theorem f'(c) = 2c - 2 = 0 $\Rightarrow c = 1$ 80 **(b)**

> By the algebraic meaning of Rolle's theorem between any two roots of a polynomial there is always a root of its derivative

Put
$$p'(t) = 0$$
 for maxima or minima
 $\Rightarrow 100 - t^2 = 0$
 $\Rightarrow t = \pm 10$
Now, $p''(t) = 1000$
 $\times \left[\frac{(100 + t^2)^2(-2t) - (100 - t^2)2(100 + t^2)2t}{(100 + t^2)^4} \right]$
 $= 1000t \frac{[(100 + t^2)(-2) - (100 - t^2)(4)]}{(100 + t^2)^3}$
 $= -1000t \frac{[600 - 2t^2]}{(100 + t^2)^3}$
At $t = 10$, $p''(t) < 0$
 \therefore The maximum value is
 $p(10) = 1000 + \frac{10000}{100 + 100}$
 $= 1000 + \frac{10000}{200} = 1050$

82 (a)

We have, $f'(x) = (x - a)^{2n}(x - b)^{2m+1}$ $\therefore f'(x) = 0 \Rightarrow x = a, b$ For x = b - h, we have $f'(x) = (b - h - a)^{2n}(-h)^{2m+1} < 0$ and for x = b + h, we have $f'(x) = (b + h - a)^{2n} h^{2m+1} > 0$ Thus, as x passes through b, f'(x) changes sign from negative Hence, x = b is a point of minimum 83 (d)

Given equation of curve is $y = 4 - 2x^2$ $\Rightarrow \frac{dy}{dt} = -4x \frac{dx}{dt}$ Given $\frac{dx}{dt} = -5$, at point (1,2) $\therefore \frac{dy}{dt} = -4(1)(-5) = 20$ unit/s 84 (c) Given $y^2 = 2(x - 3)$ $\Rightarrow \quad 2y \frac{dy}{dx} = 2 \quad \Rightarrow \quad \frac{dy}{dx} = \frac{1}{y}$ Slope of the normal = $\frac{-1}{(dy/dx)} = -y$ Slope of the given line=2 $\therefore y = -2$ From Eq. (i), x = 5 \therefore Required point is (5, -2)85 (a) Given, $f(x) = \frac{x}{1+|x|}$ $\therefore f'(x) = \frac{(1+|x|) \cdot 1 - x \cdot \frac{|x|}{x}}{(1+|x|)^2}$

 $= \frac{1}{(1+|x|)^2} > 0 \forall x \in R$ $\Rightarrow f(x) \text{ is strictly increasing}$ 86 (d) Given, $f(x) = 2x^2 - 3x^2 + 90x + 174$ $\therefore f'(x)6x^2 - 6x + 90$ Now, $D = b^2 - 4ac = 36 - 4 \times 6 \times 90 < 0$ $\therefore f'(x) > 0 \forall x \in (-\infty, \infty)$ 87 (a)

Given,

$$f(x) = \begin{cases} |x|, & \text{for } 0 < |x| \le 2\\ 1, & \text{for } x = 0 \end{cases}$$

It is clear from the graph that $f(x)$

It is clear from the graph that f(x) has local maximum.

88 (a)

We have, $f(x) = x^2 + ax + 1$ $\Rightarrow f'(x) = 2x + a$ For f(x) to be increasing on [1, 2], we must have f'(x) > 0 for all $x \in R$ Now, f'(x) = 2x + a $\Rightarrow f''(x) = 2 > 0$ for all $x \in R$ $\Rightarrow f'(x)$ is increasing for all $x \in R$ $\Rightarrow f'(x)$ is increasing on [1, 2] $\Rightarrow f'(1)$ is the minimum value of f(x) in [1, 2]

Thus. f'(x) > 0 for all $x \in [1, 2]$ $\Rightarrow f'(1) > 0$ $\Rightarrow 2 + a > 0 \Rightarrow a > -2 \Rightarrow a \in (-2, \infty)$ 89 **(c)** $\frac{dx}{dt} = \frac{dy}{dt}$ Since, ... (i) Given equation of curve is $y = x^2 + 2x$ $\Rightarrow \frac{dy}{dt} = (2x+2)\frac{dx}{dt}$ $\Rightarrow 1 = 2x + 2$ [from Eq.(i)] $\Rightarrow x = -1/2, y = -3/4$ \therefore point on the curve is $\left(-\frac{1}{2}, -\frac{3}{4}\right)$. 90 **(b)** Given, $p(x) = x^4 + ax^3 + bx^2 + cx + d$ $\Rightarrow p'(x) = 4x^3 + 3ax^2 + 2bx + c$ \therefore x = 0 is a solution for p'(x)=0, $\Rightarrow c = 0$ $\therefore p(x) = x^4 + ax^3 + bx^2 + d$...(i) Also, we have p(-1) < p(1) \Rightarrow 1 - a + b + d < 1 + a + b + d $\Rightarrow a > 0$ \therefore p'(x) = 0, only when x=0 and p(x) is differentiable in (-1,1), we should h at the *points* x = -1,0 and 1 only Also ,we have p(-1) < p(1) $\therefore \text{ Maximum of } p(x) = \max\{p(0), p(1)\}\$ And minimum of $P(x) = Min \{P(-1), P(0)\}$ In the interval [0,1] $p'(x) = 4x^3 + 3ax^2 + 2bx$ $= x(4x^2 + 3ax + 2b)$ $\therefore p'(x)$ has only one rootx = 0, then $4x^{2} + 3ax + 2b = 0$ has No real roots. \therefore $(3a)^2 - 32b < 0$ $\Rightarrow \frac{3a^2}{32} < b$ $\therefore b > 0$ Thus , we have a>0 and b>0 ∴ $p'(x) = 4x^3 + 4ax^2 + 2bx > 0, \forall x \in (0,1)$ Hence p(x) = p(1)Similarly,p(x) is decreasing in [-1,0]. Therefore, Minimum p(x) does not occur at x = -1.91 (a) Let $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x$. It is given that α is a positive root of f(x) = 0. Also, we observe that f(0) = 0. Thus, x = 0 and $x = \alpha$ are two roots of f(x)

By Rolle's theorem, f'(x) = 0 has at least one real root between 0 and α $\therefore n \, a_n x^{n-1} + (n-1)a_{n-1} x^{n-2} + \dots + a_1 = 0$ Has at least one real root between 0 and α 92 (d) $\therefore A = \pi r^2$ $\Rightarrow \log A = \log \pi + 2 \log r$ $\Rightarrow \frac{\Delta A}{A} 100 = 2 \times \frac{\Delta r}{100}$ $= 2 \times 0.05$ = 0.1%94 **(b)** Equation of tangent at $(3\sqrt{3}, \cos\theta, \sin\theta)$ is $\frac{x\cos\theta}{3\sqrt{3}} + \frac{y\sin\theta}{1} = 1$ Thus, sum of intercepts = $(3\sqrt{3} \sec \theta + \csc \theta) =$ $f(\theta)$ [say] $\Rightarrow f'(\theta) = \frac{3\sqrt{3}\sin^3\theta - \cos^3\theta}{\sin^2\theta\cos^2\theta}$ Put $f'(\theta) = 0$ $\therefore \sin^3 \theta = \frac{1}{3^{3/2}} \cos^3 \theta$ $\Rightarrow \tan \theta = \frac{1}{\sqrt{2}} \Rightarrow \theta = \frac{\pi}{6}$ Also, for $0 < \theta < \frac{\pi}{6}, \frac{dz}{d\theta} < 0$ and for $\frac{\pi}{6} < \theta < \frac{\pi}{2}, \frac{dz}{d\theta} > 0$ \therefore Minimum at $\theta = \frac{\pi}{c}$ 95 **(b)** Since, $f(x) - |x|, \forall -2 \le x \le 2$ = $\begin{cases} -x, \ \forall -2 \le x < 0 \\ x, \ \forall 0 \le x \le 2 \end{cases}$ This function is not derivable at x = 0, therefore Rolle's theorem is not applicable 96 (a) Given equation of curve is $y = a(e^{\frac{x}{a}} + e^{-x/a})$ $\Rightarrow \frac{dy}{dx} = a\left(e^{x/a} \cdot \frac{1}{a} - e^{-x/a} \cdot \frac{1}{a}\right)$ Since, the tangent is parallel to *x*-axis, $\therefore \quad \frac{dy}{dx} = 0$ $\Rightarrow \quad \left(e^{x/a} - e^{-x/a}\right) = 0$ $e^{2x/a} = 1 \implies x = 0$ ⇒ 97 **(a)** Given, $f(x) = \sin x - \cos x - ax + b$ On differentiating w.r.t. x, we get $f'(x) = \cos x + \sin x - a$ For decreasing function, f'(x) < 0 $\cos x + \sin x - a < 0$ ⇒ ⇒ $a > \cos x + \sin x$

Since, $-\sqrt{2} \le \cos x + \sin x \le \sqrt{2}$ $\therefore a > \sqrt{2}$ 98 **(b)** $f(x) = 1 + 2x^2 + 2^2x^4 + \ldots + 2^{10}x^{20}$ $f'(x) = 4x + 4.2^2 x^3 + \ldots + 20.2^{10} x^{19}$ $= x(4 + 4.2^{2}x^{2} + ... + 20.2^{10}x^{18})$ For a maximum or minimum, put f'(x) = 0x = 0⇒ But $4 + 12.2^2 + x^2 + \dots + 20.19.2^{10}x^{18} > 0$ For $x < 0 \Rightarrow f'(x) < 0$ and $x > 0 \Rightarrow$ f'(x) > 0∴ Exactly one minimum. 99 **(b)** We have, Length of the subnormal = $y \frac{dy}{dx}$ Now, $y = a^{1-n}x^n \Rightarrow \frac{dy}{dx} = n a^{1-n}x^{n-1}$: Length of the subnormal = $y na^{1-n}x^{n-1}$ = $n(a^{1-n})^2 x^{2n-1}$ Since the subnormal is of constant length $\therefore 2n - 1 = 0 \Rightarrow n = 1/2$ 100 (a) Given, $x = a(1 + \cos \theta)$, $y = a \sin \theta$ $\Rightarrow \quad \frac{dx}{d\theta} = a(-\sin\theta), \qquad \frac{dy}{d\theta} = a\cos\theta$ $\therefore \quad \frac{dy}{dx} = \frac{-\cos\theta}{\sin\theta}$ Equating of normal at the given point is $y - a\sin\theta = \frac{\sin\theta}{\cos\theta} [x - a](1 + \cos\theta)]$ It is clear that in the given options normal passes through the point (a, 0)101 (c) We have, $x = at^2 \Rightarrow \frac{dx}{dt} = 2at$ and $y = 2at \Rightarrow \frac{sy}{st} = 2a$ $\therefore \text{ Slope of tangent } \frac{dy}{dx} = \frac{2a}{2at} = \frac{1}{t}$ $\Rightarrow \frac{1}{t} = \infty$ \Rightarrow $t = 0 \Rightarrow$ Point of contact is (0, 0) 102 (d) Curve is $y^2 = px^3 + q$ $\therefore 2y \frac{dy}{dx} = 3px^2$ $\Rightarrow \left(\frac{dy}{dx}\right)_{(2,3)} = \frac{3p.4}{2.3}$ \Rightarrow 4 = 2p $\Rightarrow p = 2$ Also, curve is passing through (2, 3) $\therefore 9 = 8p + q$

 $\Rightarrow q = -7$ \therefore (p,q) is (2,-7) 103 **(b)** Given, $x = t - 6t^2 + t^3$ On differentiating, w. r. t. x, we get $\frac{dx}{dt} = 1 - 12t + 3t^2$ Again, differentiating, we get $\frac{d^2x}{dt^2} = -12 + 6t$ When $\frac{d^2x}{dt^2} = 0 \Rightarrow t = 2$ units time 104 (a) Given equation of curve is $v^2 = px^3 + q$ $\therefore 2y \frac{dy}{dx} = 3px^2$ $\therefore \quad \left(\frac{dy}{dx}\right)_{(2,2)} = \frac{3p(2)^2}{2x^3} = 2p$ The equation of tangent at (2, 3) is (y-3) = 2p(x-2) $\Rightarrow y = 2px - (4p - 3)$ This is similar to y = 4x - 5 \therefore 2p = 4 and 4p - 3 = 5 $\Rightarrow p = 2$ and p = 2Since, the point (2, 3) lies on the curve .. $9 = 8p + q \implies q = -7 \quad [\because p = 2]$ 105 (c) Given, $g(u) = 2 \tan^{-1}(e^u) - \frac{\pi}{2}$, for $u \in (-\infty, \infty)$ Now, $g(-u) = 2 \tan^{-1}(e^{-u}) - \frac{\pi}{2}$ $= 2(\cot^{-1}(e^u)) - \frac{\pi}{2}$ $= 2\left(\frac{\pi}{2} - \tan^{-1}(e^u)\right) - \frac{\pi}{2}$ = -g(u) \therefore g(u) Is an odd function. Also, $g'(u) = 2 \frac{1}{1 + (e^u)^2} \cdot e^u - 0 > 0$ Which is strictly increasing in $(-\infty, \infty)$ 106 **(b)** Given curve is $y = 2x^2 - x + 1$ Let the coordinate of *P* are (h, k)On differentiating w.r.t. x, we get $\frac{dy}{dx} = 4x - 1$ At the point (h, k), the slope $=\left(\frac{dy}{dx}\right)_{(h\,k)}=4h-1$ Since, the tangent is parallel to the given line y = 3x + 4 \Rightarrow 4h - 1 = 3 \Rightarrow h = 1, k = 2 \therefore Coordinates of point *P* are (1, 2)

107 (a) Let $f(x) = ax^2 + \frac{b}{x^2} - c$, where a, b, c > 0 and x > 0Then, $f'(x) = 2ax - \frac{2b}{r^3}$ and $f''(x) = 2a + \frac{6b}{r^4}$ For local maximum or minimum, we must have $f'(x) = 0 \Rightarrow x^4 = \frac{b}{a} \Rightarrow x = \pm \left(\frac{b}{a}\right)^{1/4}$ Clearly, $f'' \left\{ \pm \left(\frac{b}{a}\right)^{1/4} \right\} = 2a + 6a > 0$ Therefore, $x = \pm \left(\frac{b}{a}\right)^{1/4}$ are points of local minimum Local minimum value of f(x) is given by $f\left\{\left(\frac{b}{a}\right)^{1/4}\right\} = a\left(\frac{b}{a}\right)^{1/2} + b\left(\frac{a}{b}\right)^{1/2} - c = 2\sqrt{ab} - c$ But, it is given that $\left[\because ax^2 + \frac{b}{r^2} \ge c \right]$ $f(x) \ge 0$ for all x $\therefore 2\sqrt{ab} - c \ge 0 \Rightarrow 4ab \ge c^2$ 108 (a) Since $f(x) = x^4 - 62x^2 + ax + 9$ attains its maximum at x = 1 $\therefore f'(x) = 0$ at x = 1 $\Rightarrow f'(x) = 4 x^3 - 124 x + a = 0 \text{ at } x = 1$ $\Rightarrow 4 - 124 + a = 0 \Rightarrow a = 120$ 109 **(b)** On differentiating given curve w.r.t. *x*, we get $\frac{1}{2\sqrt{x}} + \frac{1}{2\sqrt{y}} \cdot \frac{dy}{dx} = 0$ $\Rightarrow \frac{dy}{dx} = -\frac{\sqrt{y}}{\sqrt{x}}$ The normal is parallel to *x*-axis, if $-\left(\frac{dx}{dy}\right)_{(x_1,y_1)} = 0 \quad \Rightarrow \quad \sqrt{\frac{x_1}{y_1}} = 0 \quad \Rightarrow \quad x_1 = 0$...(ii) Since, the point (x_1, y_1) lies on a curve $\therefore \quad \sqrt{x_1} + \sqrt{y_1} = \sqrt{a}$ $\Rightarrow 0 + \sqrt{y_1} = \sqrt{a}$ [from Eq. (ii)] $y_1 = a$ \Rightarrow \therefore Required point is (0, a)110 (a) $y = (2x - 1)e^{2(1-x)}$ $\Rightarrow \frac{dy}{dx} = 2e^{2(1-x)} - 2(2x-1)e^{2(1-x)}$ $=2e^{2(1-x)}(2-2x)$ $=4e^{2(1-x)}(1-x)$ Put, $\frac{dy}{dx} = 0 \Rightarrow x = 1$ Now, $\frac{d^2y}{dx^2} = -8e^{2(1-x)}(1-x) - 4e^{2(1-x)}$

 $\Rightarrow \left(\frac{d^2 y}{dx^2}\right)_{x=4} = -4 < 0$ So, *y* is maximum at x = 1, when x = 1, y = 1. Thus, the point of maximum is (1,1). The equation of the tangent at (1,1) is $y - 1 = 0(x - 1) \Rightarrow y = 1$ 111 (c) If f'''(a) > 0, then it is not an extreme point 112 **(b)** Given function is $f(x) = x + \sin x$ On differentiating w.r.t. x, we get $f'(x) = 1 + \cos x$ For maxima or minima put f'(x) = 0 \Rightarrow 1 + cos x = 0 \Rightarrow cos x = -1 \Rightarrow x = π Again differentiating w.r.t. *x*, we get $f''(x) = -\sin x$, $at \ x = \pi f''(\pi) = 0$ Again differentiating w.r.t. *x*, we get f'''(x) = $-\cos x$ $f'''(\pi) = 1$ At $x = \pi$, f(x) is minimum 113 (b) Let $V = \frac{4}{3}\pi r^3 \Rightarrow \frac{dV}{dt} 4\pi r^2 \frac{dr}{dt}$ $\Rightarrow \frac{dr}{dt} = \frac{30}{4 \times \pi \times 15 \times 15}$ $=\frac{1}{30\pi}ft/\min\left[\div\frac{dV}{dt}=30,r=15\right]$ 114 (a) Given, $\frac{x^2}{2} - \frac{y^2}{2} = 1$...(i) $\Rightarrow \frac{2x}{3} - y\frac{dy}{dx} = 0$ $\Rightarrow \frac{dy}{dx} = \frac{2x}{3y}$ Now, slope of the line y = x is 1 Since, tangent is parallel to given line, then $\frac{2x}{3y} = 1 \quad \Rightarrow \quad x = \frac{3y}{2} \quad \dots \text{(ii)}$ From Eqs. (i) and (ii), we get $y = \pm 2$ \therefore Points of contact are (3, 2) and (-3, -2) \therefore equations of tangents are $y-2 = (x-3) \Rightarrow x-y-1 = 0$ and $y + 2 = x + 3 \implies x - y + 1 = 0$ 115 (c)

The two curves are

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \quad ...(i) \quad \text{and}, \frac{x^2}{l^2} - \frac{y^2}{m^2} = 1 \quad ...(ii)$$
Differentiating with respect to *x*, we get
$$\left(\frac{dy}{dx}\right)_{c_1} = -\frac{b^2 x}{a^2 y}, \left(\frac{dy}{dx}\right)_{c_2} = \frac{m^2 x}{l^2 y}$$
The two curves intersect orthogonally, iff.

$$\begin{pmatrix} \frac{dy}{dx} \\ \frac{dy}{dx} \end{pmatrix}_{C_1} \begin{pmatrix} \frac{dy}{dx} \\ \frac{dy}{dx} \end{pmatrix}_{C_2} = -1 \Rightarrow -\frac{b^2}{a^2} \frac{x}{y} \times \frac{m^2}{l^2} \frac{x}{y} = -1 \Rightarrow m^2 b^2 x^2 = a^2 l^2 y^2 \quad ...(iii) \text{Subtracting (ii) from (i), we get} x^2 \left(\frac{1}{a^2} - \frac{1}{l^2}\right) + y^2 \left(\frac{1}{b^2} + \frac{1}{m^2}\right) = 0 \quad ...(iv) \text{From (iii) and (iv), we get} \frac{1}{m^2 b^2} \left(\frac{1}{a^2} - \frac{1}{l^2}\right) = -\frac{1}{a^2 l^2} \left(\frac{1}{b^2} + \frac{1}{m^2}\right) \Rightarrow l^2 - a^2 = -b^2 - m^2 \Rightarrow a^2 - b^2 = l^2 + m^2$$

116 **(b)**

We have,

$$\frac{dy}{dt} > \frac{dx}{dt}, \frac{dy}{dt} > 0 \text{ and } \frac{dx}{dt} > 0$$
Now, $12y = x^3$
 $\Rightarrow 12\frac{dy}{dt} = 3x^2\frac{dx}{dt} \Rightarrow 3\left(x^2\frac{dx}{dt} - 4\frac{dy}{dt}\right) = 0$
 $\Rightarrow x^2\frac{dx}{dt} = 4\frac{dy}{dt}$
We have,

$$\frac{dy}{dt} > \frac{dx}{dt}$$

$$\Rightarrow \frac{x^2}{4} \frac{dx}{dt} > \frac{dx}{dt}$$

$$\Rightarrow (x^2 - 4) \frac{dx}{dt} > 0 \Rightarrow x^2 - 4 > 0 \Rightarrow x$$

$$\in (-\infty, -2) \cup (2, \infty)$$

117 **(b)**

Let the centre of circle on y-axis be (0.k). Let $d = \sqrt{(7-0)^2 + (3-k)^2}$ $\Rightarrow \qquad d^2 = 7^2 + (3-k)^2 = D$ (say) On differentiating w. r. t. \boldsymbol{k} , we get our understanding with a k (-1) $\frac{dD}{dk} = 0 + 2(3 - k)(-1)$ Put $\frac{dD}{dk} = 0 \Rightarrow k = 3$ Now, $\frac{d^2D}{dk^2} = 2 > 0$ minima, \therefore *Minimum* value at k=3 is d=7 Hence, minimum circle of radius 7.

118 **(b)**

 $f(x) = e^x \sin x$ $f'(x) = e^x \cos x + \sin x e^x$ $f''(x) = -e^x \sin x + \cos x e^x + e^x \cos x + e^x \sin x$ $2e^x cosx$ For maximum slope $f^{\prime\prime}(x)=0$ $\Rightarrow 2e^x \cos x = 0$ $\cos x = 0$ ⇒

$$\Rightarrow x = \frac{\pi}{2}, \frac{3\pi}{2}, \forall x \in [0,2\pi]$$

$$f'''(x) = 2 \qquad [-e^{x} \sin x + e^{x} \cos x]$$
at $x = \frac{\pi}{2}, f'''(x) < 0$
and at $x = \frac{3\pi}{2}f'''(x) > 0$
 \therefore slop is maximum at $x = \frac{\pi}{2}$
119 (d)
$$Perimeter of a sector = p$$
Let *AOB* be the sector with radius r
$$\int e^{x} e^{y} e^{y} e^{y}$$
If angle of the sector be θ radius, then area of sector,
$$A = \frac{1}{2}r^{2}\theta \quad ...(i)$$
And length of arc, $s = r\theta$
 $\Rightarrow \theta = \frac{s}{r}$
 \therefore perimeter of the sector
$$p = r + s + r = 2r + s \quad ...(ii)$$
On subtracting $\theta = \frac{s}{r}$ in Eq. (i), we get
$$A = \left(\frac{1}{2}r^{2}\right)\left(\frac{s}{r}\right) = \frac{1}{2}rs$$
 $\Rightarrow s = \frac{2A}{r}$
Now, on substituting the value of s in Eq. (ii), we get
$$p = 2r + \left(\frac{2A}{r}\right) \Rightarrow 2A = pr - 2r^{2}$$
On differentiating w.r.t. r, we get
$$2\frac{dA}{dr} = p - 4r$$
For the maximum area, put
$$2\frac{dA}{dr} = 0 \Rightarrow p - 4r = 0 \Rightarrow r = \frac{p}{4}$$
120 (b)
Given, $y^{2} = x^{3}$
On differentiating w.r.t x, we get
$$2y\frac{dy}{dx} = 3x^{2}$$
 $\Rightarrow \frac{dy}{dx} = \frac{3x^{2}}{2y} \Rightarrow \left(\frac{dy}{dx}\right)_{(1,1)} = \frac{3}{2}$
 \therefore Equation of normal at point (1, 1) is
$$y - 1 = -\frac{2}{3}(x - 1)$$
 $\Rightarrow 2x + 3y = 5$
Hence, the equation of line parallel to above line
will be

in option (b), *ie*, 2x + 3y = 7

121 (a) Given that, $s = \sqrt{t}$ $\therefore \frac{ds}{dt} = \frac{1}{2\sqrt{t}}$ $\Rightarrow v = \frac{1}{2\sqrt{t}} \Rightarrow \frac{dv}{dt} = -\frac{1}{2.2t^{3/2}}$ $\Rightarrow a = -\frac{2}{\left(2\sqrt{t}\right)^3}$ $\Rightarrow a = -2v^3$ $\Rightarrow a \propto v^3$ 122 (d) Let PQ = a and PR = b, then $\Delta = \frac{1}{2}ab\sin\theta$ $\therefore -1 \le \sin \theta \le 1$ \therefore Area is maximum when $\sin \theta = 1 \Rightarrow \theta = \frac{\pi}{2}$ 123 (a) $f'(x) = -a \sin x + b \sec^2 x + 1$ Now, f'(0) = 0 and $f'(\frac{\pi}{6}) = 0$ $\Rightarrow b + 1 = 0 \text{ and } -\frac{a}{2} + \frac{4b}{3} + 1 = 0$ $\Rightarrow b = -1, a = -\frac{2}{2}$ 124 (c) Given curve is $y = e^{2x} + x^2$ At x = 0, y = 1: Any point on the curve is $\frac{dy}{dx} = 2e^{2x} + 2x$ Slope of normal at $(0,1) = -\frac{1}{2+0} = -\frac{1}{2}$ ∴ Equation of normal is $y-1 = -\frac{1}{2}(x-0)$ $\Rightarrow 2y - 2 = -x$ $\Rightarrow x + 2y - 2 = 0$ Required distance= $\left|\frac{0+0-2}{\sqrt{1+4}}\right|$ $=\frac{2}{\sqrt{5}}$ 125 (d) We have, $f(x) = x e^{1-x}$ $\Rightarrow f'(x) = e^{1-x}(1-x) < 0 \text{ for all } x \in (1,\infty)$ So, f(x) strictly decreases in $(1, \infty)$ 126 (a) Let $x_1, x_2 \in R$ such that $x_1 < x_2$. Then, $x_1 < x_2$ $f(x_1) > f(x_2)$ [: *f* is a decreasing function] $\Rightarrow g(f(x_1)) < g(f(x_2))$ [: *g* is a decreasing function] $\Rightarrow gof(x_1) < gof(x_2)$ 127 (d)

 $v^2 = 4ax$ $\therefore \frac{dy}{dx} = \frac{2a}{y}$ Length of subnormal= $y \frac{dy}{dx} = y \frac{2a}{v} = 2a$ 128 (c) Given, $x = at^2$ and y = 2at $\therefore \quad \frac{dx}{dt} = 2at \text{ and } \frac{dy}{dt} = 2a$ \therefore Slope of tangent, $\left(\frac{dy}{dx}\right) = \frac{2a}{2at} = \frac{1}{t}$ $\Rightarrow \frac{1}{t} = \infty, \Rightarrow t = 0$ [given] \therefore Point of contact is (0, 0)129 (b) We have, $av^2 = x^3$ $\Rightarrow 2 ay \frac{dy}{dx} = 3 x^2$ $\Rightarrow \frac{dy}{dx} = \frac{3x^2}{2ay}$ Let (x_1, y_1) be a point on $ay^2 = x^3$. Then, $ay_1^2 = x_1^3$...(i) The equation of the normal at (x_1, y_1) is $y - y_1 = -\frac{2ay_1}{3x_1^2}(x - x_1)$ This meets the coordinate axes at $A\left(x_{1}+\frac{3x_{1}^{2}}{2a},0\right)$ and $B\left(0,y_{1}+\frac{2ay_{1}}{3x_{1}}\right)$ Since the normal cuts off equal intercepts with the coordinate axes $\therefore x_1 + \frac{3 x_1^2}{2 a} = y_1 + \frac{2 a y_1}{3 x_1}$ $\Rightarrow x_1 \frac{(2a+3x_1)}{2a} = y_1 \frac{(3x_1+2a)}{3x_1}$ $\Rightarrow 3x_1^2 = 2ay_1$ $\Rightarrow 9x_1^4 = 4a^2y_1^2$...(ii) From (i) and (ii), we get $9x_1^4 = 4a^2 \left(\frac{x_1^3}{a}\right) \Rightarrow x_1 = \frac{4a}{9}$ 130 (d) Given, $y = 2x^2 - 6x - 4 \Rightarrow \frac{dy}{dx} = 4x - 6$ Since, $\frac{dy}{dx} = 0 \implies \frac{dy}{dx} = 4x - 6 = 0 \implies$ $x = \frac{3}{2}$ $\Rightarrow y = 2.\frac{9}{4} - 6.\frac{3}{2} - 4 = -\frac{17}{2}$ \therefore Required point is $\left(\frac{3}{2}, -\frac{17}{2}\right)$ 131 (d) $\therefore f(x) = x^3 - 6x^2 + ax + b$ On differentiating w.r.t. x, we get $f'(x) = 3x^2 - 12x + a$

By the definition of Rolle's theorem

$$f'(c) = 0 \implies f'\left(2 + \frac{1}{\sqrt{3}}\right) = 0$$

$$\implies 3\left(2 + \frac{1}{\sqrt{3}}\right)^2 = -12\left(2 + \frac{1}{\sqrt{3}}\right) + a = 0$$

$$\implies 3\left(4 + \frac{1}{3} + \frac{4}{\sqrt{3}}\right) - 12\left(2 + \frac{1}{\sqrt{3}}\right) + a = 0$$

$$\implies 12 + 1 + 4\sqrt{3} - 24 - 4\sqrt{3} + a = 0$$

$$\implies a = 11$$

132 **(b)**

For the point (3, log 2), we take $y = g(x) = \log(x - 1)$ $\frac{dy}{dx} = \frac{1}{(x - 1)} \Rightarrow \left(\frac{dy}{dx}\right)_{(3, \log 2)} = \frac{1}{2}$ \therefore Equation of normal is $y - \log 2 = -2(x - 3)$ $\Rightarrow y + 2x = 6 + \log 2$

134 (c)

Let *T* be the processing time. The number of batches is $\frac{N}{x}$ and the processing time of one batch is $\alpha + \beta x^2$ seconds $\therefore T = \frac{N}{x} (\alpha + \beta x^2) = N \left(\frac{\alpha}{x} + \beta x\right) \Rightarrow \frac{dT}{dx}$

$$= N \left(-\frac{\alpha}{x^2} + \beta \right)$$

For fast processing *T* must be least for which

 $\frac{dT}{dx} = 0$

$$\therefore N\left(-\frac{\alpha}{x^2} + \beta\right) = 0 \Rightarrow x = \sqrt{\frac{\alpha}{\beta}}$$

Clearly, $\frac{d^2T}{dx^2} = N\frac{2\alpha}{x^3} > 0$ for $x = \sqrt{\frac{\alpha}{\beta}}$
Hence, *T* is least when $x = \sqrt{\frac{\alpha}{\beta}}$

135 **(d)**

Let (x, y) be the point on the curve $2x^2 + y^2 - 2x = 0$. Then its distance from (a, 0) is given by $S = \sqrt{(x-a)^2 + y^2}$ $\Rightarrow S^2 = x^2 - 2ax + a^2 + 2x - 2x^2$ [Using $2x^2 + y^2 - 2x = 0$] $\Rightarrow S^2 = -x^2 + 2x(1-a) + a^2$...(i) $\Rightarrow 2S\frac{dS}{dx} = -2x + 2(1-a)$ For *S* to be maximum, we must have, $\frac{dS}{dx} = 0 \Rightarrow -2x + 2(1-a) = 0 \Rightarrow x = 1-a$ It can be easily checked that $\frac{d^2S}{dx^2} < 0$ for x = 1-aHence, *S* is maximum for x = 1 - aPutting x = 1 - a in (i), we get $S = \sqrt{1 - 2a + 2a^2}$

136 **(b)** Given curve is $y = x^2 - 3x + 2$ $\frac{dy}{dx} = 2x - 3$ $(2x - 3) \times 1 = -1$ 2x - 3 = -1⇒ 2x = 2x = 1⇒ y = 0:. \Rightarrow Required point is(1,0). 137 (c) The equations of the tangent and normal to $y^2 = 4ax$ at $P(at^2, 2at)$ are $ty = x + at^2$...(i) and, $y + tx = 2 at + at^3$...(ii) Liens (i) and (ii) meet the *x*-axis at $T(-at^2, 0)$ and $G(2 a + at^2, 0)$ respectively Since *PT* is perpendicular to *PG*. Therefore, *TG* is the diameter of the circle through P, T, G Hence, the equation of the circle is $(x + at^{2})(x - 2a - at^{2}) + (y - 0)(y - 0) = 0$ $\Rightarrow x^2 + y^2 - 2ax - at^2(2a + at^2) = 0$ $\Rightarrow 2x + 2y \frac{dy}{dx} - 2a = 0$ $\Rightarrow \frac{dy}{dx} = \frac{a-x}{y}$ $\Rightarrow m_1 = \left(\frac{dy}{dx}\right)_p = \frac{a - at^2}{2at} = \frac{1 - t^2}{2t} \quad \dots (i)$ $\Rightarrow v^2 = 4ax$ $\Rightarrow \left(\frac{dy}{dx}\right) = \frac{2a}{v}$ $\Rightarrow m_2 = \left(\frac{dy}{dx}\right)_p = \frac{2a}{2at} = \frac{1}{t}$...(ii) Let θ be the angle between the tangents at *P* to the parabola and the circle. Then, $1 \quad 1 - t^2$

$$\tan \theta = \frac{m_2 - m_1}{1 + m_1 m_2} = \frac{\frac{1}{t} - \frac{1}{2t}}{1 + \frac{1 - t^2}{2t^2}} = t \Rightarrow \theta = \tan^{-1} t$$

Given,
$$x = a(\cos \theta + \theta \sin \theta)$$

And $y = a(\sin \theta - \theta \cos \theta)$
 $\Rightarrow \frac{dx}{d\theta} = a(-\sin \theta + \sin \theta + \theta \cos \theta)$
 $\Rightarrow \frac{dx}{d\theta} = a\theta \cos \theta$
And $\frac{dy}{d\theta} = a(\cos \theta - \cos \theta + \theta \sin \theta)$
 $\Rightarrow \frac{dy}{d\theta} = a\theta \sin \theta$
 $\therefore \frac{dy}{dx} = \tan \theta$
So, equation of normal is

 $y - a\sin\theta + a\theta\cos\theta = -\frac{\cos\theta}{\sin\theta}(x - a\cos\theta)$ ⇒ $-a\theta\sin\theta$ $y\sin\theta - a\sin^2\theta + a\theta\cos\theta\sin\theta$ $= -x\cos\theta + a\cos^2\theta + a\theta\sin\theta\cos\theta$ ⇒ $x\cos\theta + y\sin\theta = a$ It is always at a constant distance 'a' from origin. 139 (a) \therefore $f(x) = xe^{x(1-x)}$ On differentiating w.r.t. *x*, we get $f'(x) = e^{x(1-x) + x \cdot e^{x(1-x)}} \cdot (1-2x)$ $= e^{x(1-x)} \{1 + x(1-2x)\}$ $=e^{x(1-x)}.(-2x^2+x+1)$ It is clear that $e^{x(1-x)} > 0$ for all xNow, by sign rule for $-2x^2 + x + 1$ f'(x) > 0, if $x \in \left[-\frac{1}{2}, 1\right]$ So, f(x) is increasing on $\left|-\frac{1}{2}, 1\right|$ 140 (a) $f(x) = 2x^3 - 15x^2 + 36x + 4$ On differentiating w.r.t. *x*, we get $f'(x) = 6x^2 - 30x + 36$...(i) For maxima or minima f'(x) = 0 $\Rightarrow 6x^2 - 30x + 36 = 0$ $\Rightarrow x^2 - 5x + 6 = 0$ $\Rightarrow (x-2)(x-3) = 0 \Rightarrow x = 2,3$ Again differentiating Eq. (i), we get f''(x) = 12x - 30 $\Rightarrow f''(2) = 24 - 30 = -6 < 0$ Therefore, f(x) is maximum at, x = 2141 **(b)** We have. $y^2 = 4ax$ $\Rightarrow 2y \frac{dy}{dt} = 4a \frac{dx}{dt}$ $\Rightarrow y \frac{dy}{dt} = 2a \frac{dx}{dt}$ $\Rightarrow y \frac{d^2 y}{dt^2} + \left(\frac{dy}{dt}\right)^2 = 2a \frac{d^2 x}{dt^2}$ $\Rightarrow y \times 0 + (\text{Constant})^2$ $=2a\frac{d^2x}{dt^2}\left[\because\frac{dy}{dt}=\text{Constant}\right]$ $\Rightarrow \frac{d^2x}{dt^2} = \text{Constant}$ \Rightarrow Projection (x, 0) of any point (x, y) on X-axis moves with constant acceleration 142 **(b)** We have,

$$\varphi(x) = \int_{1}^{x} e^{-t^{2}/2} (1-t^{2}) dt \Rightarrow \varphi'(x)$$

$$= e^{-x^{2}/2} (1-x^{2})$$
Now,

$$\varphi'(x) = 0 \Rightarrow 1 - x^{2} = 0 \Rightarrow x = \pm 1$$
Hence, $x = \pm 1$ are points of extremum of $\varphi(x)$
143 (b)
Given, $x = 80t - 16t^{2}$

$$\Rightarrow \quad \frac{dx}{dt} = 80 - 32t$$
At maximum height $\frac{dx}{dt} = 0$
 $\therefore \quad t = 25s$
144 (a)
Let $f(x) = ax^{2} + bx + 4$
On differentiating w. r. t, we get
 $f'(x) = 2ax + b$
For minimum, put $f'(x) = 0 \Rightarrow x = -\frac{b}{2a}$
Since, it is given that at $x = 1$ minimum value is -1
 $\therefore \quad 1 = -\frac{b}{2a} \Rightarrow 2a + b = 0$...(i)
And $f(1) = a + b + 4 = -1$
 $\Rightarrow \quad a + b + 5 = 0$...(ii)
On solving Eqs. (i) and (ii), we get $a = 5, b = -10$
145 (a)
Given, $g(x)1 + x) - \frac{2x}{2+x}$
 $\therefore f'(x) = \frac{1}{1+x} - \frac{(2+x)2 - 2x}{(2+x)^{2}}$
 $= \frac{x^{2}}{(1+x)(x+2)^{2}}$
Clearly $f'(x) > 0$ for all $x > 0$.
146 (c)
Let m be the slope of the curve $y = f(x)$. Then,
 $m = \frac{dy}{dx}$
 $\Rightarrow m = e^{x}(\sin x + \cos x)$
 $\Rightarrow \frac{dm}{dx} = e^{x}(\cos x - \sin x)$
 $\Rightarrow \frac{dm}{dx} = 2e^{x} \cos x$
 $\Rightarrow \frac{d^{2}m}{dx^{2}} = 2e^{x}(\cos x - \sin x)$
For maximum/minimum value of m , we must have
 $\frac{dm}{dx} = 0 \Rightarrow \cos x = 0 \Rightarrow x = \frac{\pi}{2}, \frac{3\pi}{2}$ etc.
Clearly, $\frac{d^{2}m}{dx^{2}} < 0$ for $x = \frac{\pi}{2}$
Hence, m is maximum when $x = \frac{\pi}{2}$
147 (b)

We have,

 $y = \sqrt{9 - x^2}$...(i) Clearly, *y* is positive and defined for $x \in [-3, 3]$ For the points whose ordinates and abscissae are same i.e. y = x, we have $x = \sqrt{9 - x^2} \Rightarrow 2x^2 = 9 \Rightarrow x = \pm \frac{3}{\sqrt{2}}$ $\therefore y = \pm \frac{3}{\sqrt{2}} \quad [\because y = x]$ But, y > 0. Therefore, $xy = y = \frac{3}{\sqrt{2}}$ So, the point is $P\left(\frac{3}{\sqrt{2}}, \frac{3}{\sqrt{2}}\right)$ Now, $y = \sqrt{9 - x^2} \Rightarrow \frac{dy}{dx} = \frac{-x}{\sqrt{9 - x^2}} \Rightarrow \left(\frac{dy}{dx}\right)_n = -1$ 148 (a) We know that $\cos x$ is decreasing on $(0, \pi/2)$ and $\sin x < x \text{ for } 0 < x < \frac{\pi}{2}$ $\therefore \cos(\sin x) > \cos x \text{ for } 0 < x < \frac{\pi}{2}$ Also, $0 < \cos x < 1 < \frac{\pi}{2}$ for $0 < x < \frac{\pi}{2}$ and, $\sin x < x$ for $0 < x < \frac{\pi}{2}$ $\therefore \sin(\cos x) < \cos x \text{ for } 0 < x < \frac{\pi}{2}$ Hence, $\cos(\sin x) > \cos x$ and $\sin(\cos x) < \cos x$ for $0 < x < \frac{\pi}{2}$ 149 (d) Given, f(b) - f(a) = (b - a)f'(c) $\Rightarrow f'(c) = \frac{f(b) - f(a)}{b - a} = \frac{3 - 2}{9 - 4}$ $\Rightarrow f'(c) = \frac{1}{c}$ $\Rightarrow \frac{1}{2}c^{-1/2} = \frac{1}{5}$ $\Rightarrow c = \left(\frac{5}{2}\right)^2 = 6.25$ 150 (a) We have, $f(x) = (2a - 3)(x + 2\sin 3)$ $+ (a - 1)(\sin^4 x + \cos^4 x) + \log 2$ $\Rightarrow f'(x) = 2a - 3 + 4(a - 1)\sin x \cos x (\sin^2 x)$ $-\cos^2 x$ $\Rightarrow f'(x) = 2a - 3 - (a - 1)\sin 4x$ If f(x) does not have critical points, then f'(x) = 0 must not have any solution in R \Rightarrow (2a - 3) - (a - 1) sin 4x = 0 must have no solution in R $\Rightarrow \sin 4x = \frac{2a-3}{a-1}$ must have no solution in R

$$\Rightarrow \left|\frac{2a-3}{a-1}\right| > 1$$

$$\Rightarrow \frac{2a-3}{a-1} < -1 \text{ or, } \frac{2a-3}{a-1} > 1$$

$$\Rightarrow \frac{3a-4}{a-1} < 0 \text{ or, } \frac{a-2}{a-1} > 0$$

$$\Rightarrow a \in (1, 4/3) \text{ or, } a \in (-\infty, 1) \cup (2, \infty)$$

$$\Rightarrow a \in (-\infty, 1) \cup (1, 4/3) \cup (2, \infty)$$

For $a = 1$, we have
 $f'(x) = -1 \neq 0$

$$\Rightarrow f(x) \text{ has no critical point for $a = 1$
Hence, $a \in (-\infty, 4/3) \cup (2, \infty)$
152 (d)
Given, curve is $y = x^2 \Rightarrow \frac{dy}{dx} = 2x$

$$\Rightarrow \left(\frac{dy}{dx}\right)_{(1,1)} = 2 = m_1 \text{ (say)}$$

And $x = y^2 \Rightarrow 1 = 2y\frac{dy}{dx}$

$$\Rightarrow \frac{dy}{dx} = \frac{1}{2y} \Rightarrow \left(\frac{dy}{dx}\right)_{(1,1)} = \frac{1}{2} = m_2 \text{ (say)}$$

 $\therefore \text{ Angle of intersection at the point (1, 1) is given by}$
 $\tan \theta = \frac{m_1 - m_2}{1 + m_1 m_2} = \frac{2 - \frac{1}{2}}{1 + 2 \times \frac{1}{2}} = \frac{3}{4}$
 $\Rightarrow \theta = \tan^{-1}\left(\frac{3}{4}\right)$
153 (c)
Let volume of sphere $V = \frac{4}{3}\pi r^3$
 $\Rightarrow \frac{dV}{dt} = 4\pi r^2 \frac{dr}{dt} = 4\pi r^2. (2) \quad [\because \frac{dr}{dt} = 2]$
 $\therefore \frac{dV}{dt} = 8\pi (5)^2 = 200\pi \text{ cm}^3 / \min \quad [\because r = 5\text{ cm}]$
154 (c)
Let area of circle, $A = \pi r^2$
 $\Rightarrow \frac{dA}{dt} = 2\pi r \frac{dr}{dt} \Rightarrow \frac{dA}{dt} = 2\pi . 20.2$
 $\Rightarrow \frac{dA}{dt} = 80\pi \text{ cm}^2 / s$
155 (d)
Given, $y = x^3 - 3x^2 - 9x + 5$
 $\Rightarrow \frac{dy}{dx} = 3x^2 - 6x - 9$
We know that, this equation gives the slope of the tangent to the curve. The tangent is parallel to x-avis$$

1

 $\therefore \ \frac{dy}{dx} = 0 \quad \Rightarrow \quad 3x^2 - 6x - 9 = 0$ x = -1, 3⇒ 156 (b)

 $f(x) = x^3 - 6x^2 + 9x + 3$ On differentiating w.r.t. x, we get

$$\Rightarrow f'(x) = 3(x^2 - 4x + 3)$$
For decreasing, $f'(x) < 0$

$$\Rightarrow (x - 3)(x - 1) < 0,$$

$$\therefore x \in (1, 3)$$
157 (a)
We have,
 $y = ax^3 + bx^2 + cx$...(i)
 $\Rightarrow \frac{dy}{dx} = 3ax^2 + 2bx + c$...(ii)
It is given that
 $\left(\frac{dy}{dx}\right)_{(0,0)} = \tan 45^\circ \Rightarrow c = 1$
Also,
 $\left(\frac{dy}{dx}\right)_{(1,0)} = 0 \Rightarrow 3a + 2b + c = 0 \Rightarrow 3a + 2b + 1$
 $= 0 [\because c = 1]$
Clearly, $a = 1$ and $b = -2$ satisfy this equation
Hence, $a = 1, b = -2$ and $c = 1$
158 (c)
Let $f(x) = 1 + x \log_e(x + \sqrt{x^2 + 1}) - \sqrt{1 + x^2}$
Clearly, $f(x)$ is defined for all $x \in R$
Now,
 $f'(x) = \log_e\left(x + \sqrt{x^2 + 1}\right) + \frac{x}{\sqrt{x^2 + 1}} - \frac{x}{\sqrt{x^2 + 1}}$
 $\Rightarrow f'(x) = \log_e\left(x + \sqrt{x^2 + 1}\right) + \frac{x}{\sqrt{x^2 + 1}} - \frac{x}{\sqrt{x^2 + 1}}$
 $\Rightarrow f'(x) > 0$ for all $x \in R$ [$\because x + \sqrt{x^2 + 1} \ge 1$
for all $x \in R$]
 $\Rightarrow f(x)$ is increasing on R
 $\Rightarrow f(x) \ge f(0)$ for all $x \ge 0$
 $\Rightarrow 1 + x \log_e\left(x + \sqrt{x^2 + 1}\right) - \sqrt{1 + x^2}$
for all $x \ge 0$
159 (c)
Given, $f(x) = x^{-x}$
 $\Rightarrow \log f(x) = -x \log x$
On differentiating w.r.t. x, we get
 $\frac{1}{f(x)} \cdot f'(x) = -\log x - 1$
 $\Rightarrow f'(x) = -f(x)(1 + \log x)$
Put $f'(x) = 0$
 $\Rightarrow \log x = -1 \Rightarrow x = e^{-1}$
 $\therefore f''(x) = -f'(x)(1 + \log x) - f(x)\frac{1}{x}$
 $= f(x)(1 + \log x)^2 - \frac{f(x)}{x}$
At $x = \frac{1}{e'}$,
 $f''(x) = -ef(\frac{1}{e}) < 0$, maxima

 $f'(x) = 3x^2 - 12x + 9$

Hence, at $x = \frac{1}{e}$, f(x) is maximum. 160 **(b)** $f(x) = x(x-1)^2$ $f'(x) = 2x(x-1) + (x-1)^2$ $f'(x) = 2x(x-1) + (x-1)^{2}$ = (x-1)(2x + x - 1) = (x-1)(3x-1) $\therefore \quad f'(c) = \frac{f(2) - f(0)}{2 - 0}$ $\Rightarrow \quad (c-1)(3c-1) = \frac{2 - 0}{2} = 1$ $\Rightarrow \quad 3c^{2} - 4c = 0$ $\Rightarrow \quad c(3c-4) = 0$ $\Rightarrow c = 0 \text{ or } c = \frac{4}{3}$ $\therefore \text{ The value of c in (0, 2) is } \frac{4}{3}$ 161 (c)

1

Let *r* be the base radius and *h* be the height of the cone. Then, 2r = h. Let *V* be the volume of the cone. Then,

$$V = \frac{1}{3}\pi r^{2}h = \frac{4\pi r^{3}}{3}$$

$$\Rightarrow \frac{dV}{dr} = 4\pi r^{2}$$

$$\therefore \Delta V = \frac{dV}{dr}\Delta r$$

$$\Rightarrow \Delta V = 4\pi r^{2}\Delta r$$

$$\Rightarrow \frac{\Delta V}{V} \times 100 = \frac{4\pi r^{2}\Delta r}{\frac{4}{3}\pi r^{3}} \times 100 = 3\left(\frac{\Delta r}{r} \times 100\right)$$

$$= 3\lambda$$

Given,
$$f'(x) < 0, \forall x \in R$$

$$\Rightarrow \sqrt{3}\cos x + \sin x - 2a < 0, \forall x \in R$$

$$\Rightarrow \frac{\sqrt{3}}{2}\cos x + \frac{1}{2}\sin x < a, \forall x \in R$$

$$\Rightarrow \sin\left(x + \frac{\pi}{3}\right) < a, \forall x \in R$$

$$\Rightarrow a \ge 1 \left[\because \sin\left(x + \frac{\pi}{3}\right) \le 1\right]$$

163 (d)

We have,

$$f(x) = \cos\left(\frac{\pi}{x}\right) \Rightarrow f'(x) = \frac{\pi}{x^2}\sin\left(\frac{\pi}{x}\right)$$
For $f(x)$ to be increasing, we must have

$$f'(x) > 0$$

$$\Rightarrow \frac{\pi}{x^2}\sin\left(\frac{\pi}{x}\right) > 0$$

$$\Rightarrow \sin\left(\frac{\pi}{x}\right) > 0$$

$$\Rightarrow 2n\pi < \frac{\pi}{x} < (2n+1)\pi$$

$$\Rightarrow \frac{1}{2n} > x > \frac{1}{2n+1} \Rightarrow x \in \left(\frac{1}{2n+1}, \frac{1}{2n}\right)$$
164 (d)

Given curves are
$$\frac{x^2}{a^2} + \frac{y^2}{12} = 1$$

$$\Rightarrow \frac{2x}{a^2} + \frac{2y}{12} \cdot \frac{dy}{dx} = 0$$

$$\Rightarrow \frac{dy}{dx} = -\frac{12x}{a^2y} = m_1 \quad (say)$$
And $y^3 = 8x \Rightarrow 3y^2 \frac{dy}{dx} = 8$

$$\Rightarrow \frac{dy}{dx} = \frac{8}{3y^2} = m_2 \quad (say)$$
For $\theta = \frac{\pi}{2}, 1 + m_1m_2 = 0$

$$\Rightarrow 1 + \left(\frac{-12x}{a^2y}\right) \left(\frac{8}{3y^2}\right) = 0$$

$$\Rightarrow 3a^2(8x) - 96x = 0$$

$$\Rightarrow a^2 = 4$$
165 (b)
Consider the function $\phi(x) = f(x) - 2g(x)$
defined on $[0, 1]$
As $f(x)$ and $g(x)$ are differentiable for $0 \le x \le 1$.
Therefore, $\phi(x)$ is differentiable on $(0, 1)$ and
continuous on $[0, 1]$
We have,
 $\phi(0) = f(0) - 2g(0) = 2 - 0 = 2$
 $\phi(1) = f(1) - 2g(1) = 6 - 2g(1)$
Now, $\phi'(x) = f'(x) - 2g'(x)$
 $\Rightarrow \phi'(c) = f'(c) - 2g'(2) = 0$ [Given]
Thus, $\phi(x)$ satisfies Rolle's theorem on $[0, 1]$
 $\therefore \phi(0) = \phi(1)$
 $\Rightarrow 2 = 6 - 2g(1) \Rightarrow g(1) = 2$
166 (b)
 $\phi'(x) = f'(x) + a$
 $\therefore \phi'(0) = 0$
 $\Rightarrow f'(0) + a = 0$
 $\Rightarrow a = 0 \quad (\because f'(0) = 0)$
Also, $\phi'(0) > 0 \quad (\because f''(0) > 0)$
 $\Rightarrow \phi'(x)$ has relative minimum at $x = 0$ for all b if
 $a = 0$
167 (b)
Given curve is $y = 2x^2 - x + 1$
On differentiating w.r.t. x , we get
 $\frac{dy}{dx} = 4x - 1$
Since, this is parallel to the given curve
 $y = 3x + 9$
 \therefore These slopes are equal
 $\Rightarrow 4x - 1 = 3 \Rightarrow x = 1$
At $x = 1$, $y = 2(1)^2 - 1 + 1 \Rightarrow y = 2$
Thus, the point is $(1, 2)$.
168 (a)
Given, $y = -x^3 + 3x^2 + 2x - 27$
 $\Rightarrow \frac{dy}{dx} = -3x^2 + 6x + 2$

Let slope $z = \frac{dy}{dx} = -3x^2 + 6x + 2$ Then, $\frac{dz}{dx} = -6x + 6$ For maximum or minimum put $\frac{dz}{dx} = 0$ $\Rightarrow -6x + 6 = 0$ $\Rightarrow x = 1$ Now, $\frac{d^2z}{dx^2} = -6 < 0$, maxima The maximum value of *z* at x = 1, is given by z = -3 + 6 + 2 = 5169 **(b)** For the curve $y^n = a^{n-1}x$ $ny^{n-1}y.\frac{dy}{dx} = a^{n-1}$::Length of subnormal= $y = \frac{dy}{dx}$ = $y \times \frac{a^{n-1}}{ny^{n-1}} = \frac{a^{n-1}}{ny^{n-2}}$ For constant subnormal, *n* should be 2 170 (d) We have, $f(x) = 2 x^{2} - \log |x|$ $\Rightarrow f(x) = \begin{cases} 2 x^{2} - \log x, & x > 0 \\ 2 x^{2} - \log(-x), & x < 0 \end{cases}$ $\Rightarrow f''(x) = 4x - \frac{1}{x}$ for all $x \neq 0$ For f(x) to be increasing, we must have f''(x) > 0 $\Rightarrow 4 x - \frac{1}{x} > 0$ $\Rightarrow \frac{4x^2 - 1}{x} > 0$ - + - + -∞ -1/2 0 1/2 $\Rightarrow \frac{(2x-1)(2x+1)}{x} > 0$ $\Rightarrow x(2x-1)(2x+1) > 0$ $\Rightarrow x \in (-1/2, 0) \cup (1/2, \infty)$ 171 **(b)** Let $P(x_1, y_1)$ be the point on the curve $ay^2 = x^3$ where the normal cuts off equal intercepts from the coordinate axes. Therefore, Slope of the normal at $P = \pm 1$ 1

$$\Rightarrow -\frac{dy}{\left(\frac{dy}{dx}\right)_{P}} = \pm 1$$

$$\Rightarrow \left(\frac{dy}{dx}\right)_{P} = \pm 1$$

$$\Rightarrow \frac{3x_{1}^{2}}{2ay_{1}} = \pm 1 \qquad \left[\because ay^{2} = x^{3} \Rightarrow 2ay\frac{dy}{dx} = 3x^{2}\right]$$

$$\Rightarrow 9x_{1}^{4} = 4a^{2}y_{1}^{2}$$

 $\Rightarrow 9x_1^4 = 4ax_1^3$ [:: (x_1, y_1) lies on $ay^2 = x^3 = 0$ $\therefore ay_1^2 = x_1^3$] $\Rightarrow x_1 = 0, x_1 = \frac{4a}{\alpha}$ At $(x_1 = 0, y_1 = 0)$, the normal is *y*-axis So, the required point is (x_1, y_1) , where $x_1 = \frac{4a}{q}$ 172 (d) \therefore $f(x) = \sin x - \cos x$ On differentiating w.r.t. *x*, we get $f'(x) = \cos x + \sin x$ $=\sqrt{2}\left(\frac{1}{\sqrt{2}}\cos x+\frac{1}{\sqrt{2}}\sin x\right)$ $=\sqrt{2}\left(\cos\frac{\pi}{4}\cos x + \sin\frac{\pi}{4}\sin x\right)$ $=\sqrt{2}\left[\cos\left(x-\frac{\pi}{4}\right)\right]$ For decreasing, f'(x) < 0 $\frac{\pi}{2} < \left(x - \frac{\pi}{4}\right) < \frac{3\pi}{2}$ (within $0 \le x \le 2\pi$) $\Rightarrow \frac{\pi}{2} + \frac{\pi}{4} < \left(x - \frac{\pi}{4} + \frac{\pi}{4}\right) < \frac{3\pi}{2} + \frac{\pi}{4}$ $\Rightarrow \frac{3\pi}{4} < x < \frac{7\pi}{4}$ 173 (d) Since, $f(x) = \frac{x}{2} + \frac{2}{x}$ $\therefore \quad f'(x) = \frac{1}{2} - \frac{2}{r^2}$ For maxima or minima, put f'(x) = 0 $\therefore \quad \frac{1}{2} - \frac{2}{x^2} = 0 \quad \Rightarrow \quad x = \pm 2$ Now, $f''(x) = \frac{4}{x^3}$ \Rightarrow $f''(2) = \frac{4}{9} = \frac{1}{2} > 0$, minima And $f''(-2) = -\frac{4}{8} = -\frac{1}{2} < 0$, maxima Hence, f(x) has local minimum at x = 2174 (b) We have, $f(x) = \tan^{-1} x - \frac{1}{2} \log_e x$ $\Rightarrow f'(x) = \frac{1}{1+x^2} - \frac{1}{2x}$ $\Rightarrow f'(x) = \frac{2x - 1 - x^2}{2x(1 + x^2)}$ $\therefore f'(x) = 0 \Rightarrow 2x - 1 - x^2 = 0 \Rightarrow x^2 - 2x + 1$ $= 0 \Rightarrow x = 1$

Now,

 $f(1) = \tan^{-1} 1 = \frac{\pi}{4}, f\left(\frac{1}{\sqrt{3}}\right) = \frac{\pi}{6} - \frac{1}{2}\log_e\left(\frac{1}{\sqrt{3}}\right)$ $= \frac{\pi}{6} + \frac{1}{4}\log_e 3$ and, $f\left(\sqrt{2}\right) = \frac{\pi}{3} - \frac{1}{4}\log_e 3$ Hence, the least value of f(x) is $\frac{\pi}{3} - \frac{1}{4}\log_e 3$

175 (b) The given equation of curve is xy = 1 $\Rightarrow \quad x \frac{dy}{dx} = -y \quad \Rightarrow \quad \frac{dy}{dx} = -\frac{y}{r}$ Let $\left(t, \frac{1}{t}\right)$ be any point on the curve at which normal to the curve can be drawn $\therefore \quad \left(\frac{dy}{dx}\right)_{\left(t,\frac{1}{2}\right)} = -\frac{1}{t^2}$ So, slope of normal= t^2 Therefore, the given line ax + bx + c = 0 will be normal to the curve, if $t^2 = \frac{-b}{a}$ Since, $t^2 > 0$ \therefore Either b > 0, a < 0or a > 0, b < 0176 (b) Given, $\frac{dy}{dt} \propto y$, where y is the position of village $\Rightarrow \frac{1}{y} dy = k dt$ $\Rightarrow \log y = \log c + kt$ [on integrating] $\Rightarrow \log \frac{y}{c} = kt \Rightarrow y = ce^{kt}$ 177 (a) Given , $x^2 - 2xy + y^2 + 2x + y - 6 = 0$ On differentiating w.r.t.x, we get $2x - 2\left(y + x\frac{dy}{dx}\right) + 2y\frac{dy}{dx} + 2 + \frac{dy}{dx} = 0$ At (2,2) $4 - 2\left(2 + 2\frac{dy}{dx}\right) + 4\frac{dy}{dx} + 2 + \frac{dy}{dx} = 0$ $\Rightarrow \frac{dy}{dx} = -2$ \therefore Equation of tangent at (2,2) is (y-2) = -2(x-2) $\Rightarrow 2x + y = 6$ 178 (d) Given curves are $x = a(\theta + \sin\theta), y = a(1 - \cos\theta)$ $\therefore \quad \frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta}$ $=\frac{a(\sin\theta)}{a(1+\cos\theta)}$ $=\frac{2\sin\frac{\theta}{2}\cos\frac{\theta}{2}}{2\cos^2\frac{\theta}{2}}$ $= tan \frac{\theta}{2}$ $\Rightarrow \quad \left(\frac{dy}{dx}\right)_{\left(\theta=\frac{\pi}{2}\right)} = \tan\frac{\pi}{4} = 1$

At $\theta = \frac{\pi}{2}$, $y = a\left(1 - \cos\frac{\pi}{2}\right) = a$ \therefore length of normal = $y \sqrt{1 + \left(\frac{dy}{dx}\right)^2}$ $=a\sqrt{1+(1)^2}=\sqrt{2}a$ 179 (a) Given, $f(x) = \sin x \left(1 + \cos x\right)$ $f(x) = \sin x + \frac{1}{2}\sin 2x$ On differentiating w.r.t. *x*, we get $f'(x) = \cos x + \cos 2x$ Put f'(x) = 0 $\cos x + \cos 2x = 0$ $\Rightarrow 2\cos\left(\frac{3x}{2}\right)\cos\left(\frac{x}{2}\right) = 0$ $\Rightarrow \cos\frac{x}{2} = 0, \quad \cos\frac{3x}{2} = 0$ $\Rightarrow x = \pi, x = \frac{\pi}{2}$ Now, $f''(x) = -\sin x - 2\sin 2x$ At $x = \frac{\pi}{3}$, $f''(x) = -\sin\frac{\pi}{3} - 2\sin\frac{2\pi}{3}$ $=-\frac{\sqrt{3}}{2}-\sqrt{3}<0$, maxima ∴ maximum value $f\left(\frac{\pi}{2}\right) = \sin\left(\frac{\pi}{2}\right)\left(1 + \cos\frac{\pi}{2}\right)$ $=\frac{\sqrt{3}}{2}\left(1+\frac{1}{2}\right)$ $=\frac{3\sqrt{3}}{4}=\frac{3^{3/2}}{4}$ 180 (c Let $y = 2x^2 + x - 1$ y = 4x + 1For maxima or minima, put y' = 0 $x = -\frac{1}{4}$ ⇒ Now, y'' = 4 = + vey is minimum at $x = -\frac{1}{4}$ Thus, minimum value = $2\left(-\frac{1}{4}\right)^2 + \left(-\frac{1}{4}\right) - 1 =$ $-\frac{9}{8}$ Alternate Here a > 0 \therefore Minimum value= $\frac{4ac-b^2}{4a}$ $=\frac{4 \times 2(-1) - 1}{4 \times 2} = -\frac{9}{8}$ 181 (a) \therefore $x = t^2$ and y = 2t \therefore At t = 1, x = 1 and y = 2

Now, $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{2}{2t} = \frac{1}{t}$ $\Rightarrow \left(\frac{dy}{dx}\right)_{(1,2)} = 2$ ∴ Equation of normal is y - 2 = -1(x - 1) $\Rightarrow x + y - 3 = 0$ 183 (d) Let $y = a \sec \theta - b \tan \theta$ $\Rightarrow \quad \frac{dy}{d\theta} = a \sec\theta \tan\theta - b\sec^2\theta$ Put $\frac{dy}{d\theta} = 0 \Rightarrow sec\theta(a \ tan\theta - bsec\theta) = 0$ $\Rightarrow \sin\theta = \frac{b}{a} \quad (\because \sec\theta \neq 0)$ Now, $\frac{d^2y}{d\theta^2} > 0$, at $\sin\theta = \frac{b}{a}$ ∴minimum value is $y = a \frac{a}{\sqrt{a^2 - b^2}} - b \frac{b}{\sqrt{a^2 - b^2}}$ $=\sqrt{a^2 - b^2}$ 184 (d) We have, $v = x^n$ $\Rightarrow \log y = n \log x$ $\Rightarrow \frac{1}{y} \frac{dy}{dx} = \frac{n}{x} \Rightarrow \frac{dy}{dx} = \frac{ny}{x}$ $\therefore \Delta y = \frac{dy}{dx} \Delta x$ $\Rightarrow \Delta y = \frac{ny}{x} \Delta x \Rightarrow \frac{\Delta y}{y} = \left(\frac{\Delta x}{x}\right) \times n \Rightarrow \frac{\Delta y}{y} \div \frac{\Delta x}{x} = n$ 185 (c) Let $f(x) = x^7 + 14x^5 + 16x^3 + 30x - 560$ $f'(x) = 7x^6 + 70x^4 + 48x^2 + 30 > 0, \forall x \in R$ $\therefore f(x)$ is increasing \therefore f(x) = 0 has only one solution 186 (c) Given, $f(x) = x^3 + ax^2 + bx + c$, $a^2 \le 3b$ On differentiating w.r.t. x, we get $f'(x) = 3x^2 + 2ax + b$ Put f'(x) = 0 $\Rightarrow 3x^2 + 2ax + b = 0$ $\Rightarrow x = \frac{-2a \pm \sqrt{4a^2 - 12b}}{2 \times 3}$ $=\frac{-2a\pm 2\sqrt{a^2-3b}}{6}$ Since, $a^2 \leq 3b$, \therefore x Has an imaginary value. Hence, no extreme value of *x* exist. 188 (c) We have, $xy^n = a^{n+1} \Rightarrow y^n + n xy^{n-1} \frac{dy}{dx} = 0 \Rightarrow \frac{dy}{dx} = -\frac{y}{nx}$

Let (x_1, y_1) be a point on $x y^n = a^{n+1}$. The equation of the tangent at (x_1, y_1) is $y = y_1 = -\frac{y_1}{nx_1} (x - x_1)$ This meets with the coordinate axes at $A((n+1)x_1, 0)$ and $B(0, \frac{(n+1)y_1}{n})$ $\therefore \text{ Area of } \Delta OAB = \frac{1}{2}(n+1)x_1 \cdot \left(\frac{n+1}{n}\right)y_1$ \Rightarrow Area of $\triangle OAB = \frac{1}{2} \frac{(n+1)^2}{n} x_1 y_1$...(i) Since (x_1, y_1) lies on $xy^n = a^{n+1}$ $\therefore x_1 y_1^n = a^{n+1}(x_1, y_1) \Rightarrow x_1 = \frac{a^{n+1}}{v_1^n}$ Putting the value of x_1 in (i), we get Area of $\triangle OAB = \frac{1}{2} \frac{(n+1)^2}{n} a^{n+1} y_1^{-n+1}$ This will be a constant, if n = 1189 (a) The area of circular plate is $A = \pi r^2$ $\Rightarrow \frac{dA}{dt} = 2\pi r \cdot \frac{dr}{dt}$ $\Rightarrow \frac{dA}{dt} = 2\pi(12)(0.01) = 0.24\pi \text{ sq cm/s}$ 190 (a) $\therefore g(x) = \min(x, x^2)$ It is clear from the graph that g(x) is an increasing function 191 (d) The point of intersection of given curve is (0, 1). On differentiating given curves, we get

$$\frac{ay}{dx} = a^{x} \log a, \frac{ay}{dx} = b^{x} \log b$$

$$\Rightarrow \quad m_{1} = a^{x} \log a, m_{2} = b^{x} \log b$$
At (0,1) $m_{1} = \log a, m_{2} = \log b$

$$\therefore \quad \tan \theta = \frac{m_{1} - m_{2}}{1 + m_{1} m_{2}}$$

$$\Rightarrow \quad \theta = \tan^{-1} \left| \frac{\log a - \log b}{1 + \log a \log b} \right|$$

192 (a)

The graph of cosec x is opposite in interval $\left(\frac{\pi}{2}, \frac{3\pi}{2}\right)$

193 (b) Given, $f(x) = x^{25}(1-x)^{75}$ $\Rightarrow f'(x) = 25x^{24} (1-x)^{75} - 75x^{25} (1-x)^{74}$ $= 25x^{24}(1-x)^{74}(1-4x)$ Put, $f'(x) = 0 \Rightarrow x = 0, 1, \frac{1}{4}$ If $x < \frac{1}{4}$, then $f'(x) = 25x^{24} (1-x)^{74} (1-4x) > 0$ And if $x > \frac{1}{4}$, then $f'(x) = 25x^{24} (1-x)^{24} (1-4x) < 0$ Thus, f'(x) changes its sign from positive to negative as x passes through 1/4 from left to right. Hence, f(x) attains its maximum at x=1/4194 (d) Given, $f(x) = e^x \sin x$, $x \in [0, \pi]$ At x = 0, f(0) = 0And at $x = \pi$, $f(\pi) = 0$ Also, it is continuous and differentiable in the given interval. Hence, it satisfies the Rolle's theorem. Hence, option (d) is the required answer 195 (b) Given curve is $xy = c^2 \Rightarrow y = \frac{c^2}{r^2}$ Let $f(x) = ax + by = ax + \frac{bc^2}{r^2}$ On differentiating w.r.t. x, we get $f'(x) = a - \frac{bc^2}{r^2}$ For a maximum or minima, put f'(x) = 0 $\Rightarrow ax^2 - bc^2 = 0$ $\Rightarrow x^2 = \frac{bc^2}{a} \Rightarrow x = \pm c \int_{a}^{b} \frac{b}{a}$ Again on differentiating, we get $f''(x) = \frac{2bc^2}{x^3}$ At6 $x = c \sqrt{\frac{b}{a}}, f''(x) > 0$ \therefore f(x) is minimum at $x = c \sqrt{\frac{b}{a}}$ The minimum value at $x = c \sqrt{\frac{b}{a}}$ is

 $\therefore f\left(c\sqrt{\frac{b}{a}}\right) = a.c\sqrt{\frac{b}{a} + \frac{bc^2}{c}}.\sqrt{\frac{a}{b}}$ $=\frac{abc+abc}{\sqrt{ab}}=\frac{2abc}{\sqrt{ab}}=2c\sqrt{ab}$ 196 (a) Given, x - 2y = 4Let $A = xy \Rightarrow A = 2y^2 + 4y$ $\Rightarrow \frac{dA}{dy} = 4 + 4y$ For extremum value, $\frac{dA}{dy} = 0$ $\Rightarrow v = -1$ Now, $\frac{d^2A}{dv^2} = 4 > 0$, minima At y = -1, x = 4 + 2(-1) = 2 $\therefore A = xy = 2(-1) = -2$: Minimum value of xy is -2197 (a) Given. $f(x) = (9 - x^2)^2$ $\Rightarrow f''(x) = 2(9 - x^2)(-2x)$ Now, put f''(x) = 0 $\Rightarrow 2(9-x^2)(-2x) = 0 \Rightarrow x = 0, \pm 3$ $f'(\mathbf{x}) \xrightarrow{-} + - +$ \therefore f''(x) is increasing in $(-3, 0) \cup (3, \infty)$ 198 (b) Let $f(x) = x + \frac{1}{x} \implies f'(x) = 1 - \frac{1}{x^2}$ For maxima and minima, put f'(x) = 0 $\Rightarrow 1 - \frac{1}{x^2} = 0 \Rightarrow x = \pm 1$ Now, $f''(x) = \frac{2}{x^3}$ At x = 1, $f''(x) = \frac{2}{x^3}$ At x = 1, f''(x) = + ve, minima And at x = -1, f''(x) = -ve, maxima Thus, f(x) attains minimum value at x = 1199 (a) We have, $12v = x^3$ $\Rightarrow 12 \frac{dy}{dt} = 3x^2 \frac{dx}{dt}$ $\Rightarrow 12 = 3x^2$ $\left[:: \frac{dy}{dt} = \frac{dx}{dt}\right]$ $\Rightarrow x = \pm 2$ $\therefore 12y = x^3 \Rightarrow y = \pm \frac{2}{2}$ Hence, the points are (2, 2/3) and (-2, -2/3)200 (b) Let $R(x_1, y_1)$ be the point on the parabola $y^2 = 2x$ such that tangent at *R* is parallel to the chord *PQ*

 $\therefore \left(\frac{dy}{dx}\right)_{p} = \text{Slope of } PQ$ $\Rightarrow \frac{1}{y_1} = \frac{-1-2}{\frac{1}{2}-2} \quad \left[\because y^2 = 2x \Rightarrow 2y\frac{dy}{dx} = 2 \Rightarrow \frac{dy}{dx}\right]$ $=\frac{1}{2}$ $\Rightarrow \frac{1}{y_1} = 2 \Rightarrow y_1 = \frac{1}{2}$ Since (x_1, y_1) lies on $y^2 = 2x$ $\therefore y_1^2 = 2x_1 \Rightarrow x_1 = \frac{1}{8} \quad [\because y = 1/2]$ Hence, the required point is (1/8, 1/2)201 (b) Given curve is $f(x) = \frac{1}{x+1} - \log(1+x)$ On differentiating w.r.t. x, we get $f'(x) = -\frac{1}{(x+1)^2} - \frac{1}{1+x}$ $\Rightarrow f'(x) = -\left[\frac{1}{x+1} + \frac{1}{(x+1)^2}\right]$ \Rightarrow f'(x) = -ve, when x > 0 \therefore f(x) is a decreasing function 202 (c) Given curves are $x = 2\cos^3\theta$ and $y = 3\sin^3\theta$ $\therefore \ \frac{dx}{d\theta} = -6\cos^2\theta\sin\theta,$ $\frac{dy}{d\theta} = 9\sin^2\theta\cos\theta$ $\therefore \quad \frac{dy}{dx} = -\frac{9\sin^2\theta\cos\theta}{6\cos^2\theta\sin\theta} = -\frac{3}{2}\tan\theta$ At $\theta = \frac{\pi}{4}$, $\frac{dy}{dx} = -\frac{3}{2} \tan \frac{\pi}{4} = -\frac{3}{2}$ Also, at $\theta = \frac{\pi}{4}$, $x = 2\cos^3\frac{\pi}{4} = -\frac{1}{\sqrt{2}}$ And $y = 3\sin^2\theta = 3\left(\frac{1}{\sqrt{2}}\right)$ $=\frac{3\sqrt{2}}{4}$ Equation of tangent at $\left(\frac{1}{\sqrt{2}}, \frac{3\sqrt{2}}{4}\right)$ is $\left(y - \frac{3\sqrt{2}}{4}\right) = -\frac{3}{2}\left(x - \frac{1}{\sqrt{2}}\right)$ $\Rightarrow 4y - 3\sqrt{2} = -6x + 3\sqrt{2}$ $\Rightarrow 3x + 2y = 3\sqrt{2}$ 203 (d) Given curve is $x^2 + xy + y^2 = 7$ $\Rightarrow \quad 2x + x\frac{dy}{dx} + y + 2y\frac{dy}{dx} = 0$ $\Rightarrow \quad \frac{dy}{dx} = -\frac{(2x+y)}{x+2y}$ $\Rightarrow \left(\frac{dy}{dx}\right)_{(1-3)} = \frac{-(2-3)}{(1-6)} = -\frac{1}{5}$: Length of subtangent = $\frac{y}{\frac{dy}{dt}} = \frac{-3}{\frac{1}{1}} = 15$

204 (c) Let the point of contact be (x_1, y_1) The equation of curve is $\frac{x^n}{a^n} + \frac{y^n}{b^n} = 2$ $\Rightarrow \quad \left(\frac{dy}{dx}\right)_{(x_1,y_1)} = -\frac{b^n}{a^n} \cdot \frac{x_1^{n-1}}{y_1^{n-1}}$...(i) The equation of line is $\frac{x}{a} + \frac{y}{b} = 2$ $\Rightarrow \qquad \left(\frac{dy}{dx}\right)_{(x_1, y_1)} = -\frac{b}{a}$...(ii) From Eqs. (i) and (ii), we get $-\frac{b}{a} = -\frac{b^n}{a^n} \cdot \frac{x_1^{n-1}}{y_1^{n-1}} \quad \Rightarrow \quad x_1 = \frac{ay_1}{b}$...(iii) Also, (x_1, y_1) lies on the given line $\therefore \quad \frac{ay_1}{ab} + \frac{y_1}{b} = 2$ $y_1 = b$ and $x_1 = a$ 205 (d) $\therefore y = x^3 - 6x^2 + 9x + 4$ Now, $\frac{dy}{dx} = 3x^2 - 12x + 9$ Let $u = \frac{dy}{dx} = 3x^2 - 12x + 9$ Now, $\frac{du}{dx} = 6x - 12$ Put $\frac{du}{dx} = 0$ for maximum or minimum $\therefore 6x - 12 = 0$ $\Rightarrow x = 2$ Now, at x = 0, u = 9at x = 2, u = -3and at x = 5, u = 24Thus, the maximum of u(x), $0 \le x \le 5$ is u(5)Hence, x = 5206 (a) Given, $x = a(\theta + \sin \theta)$ and $y = a(1 - \cos \theta)$ $\Rightarrow \frac{dx}{d\theta} = a(1 + \cos \theta) \text{ and } \frac{dy}{d\theta} = a \sin \theta$ $\therefore \quad \frac{dy}{dx} = \frac{a\sin\theta}{a(1+\cos\theta)} = \tan\frac{\theta}{2}$ Now, length of subtangent = $\left|\frac{y}{dy/dx}\right|$ $\therefore \quad ST = \frac{a(1 - \cos \theta)}{\tan(\theta/2)} = a \sin \theta$ \Rightarrow Length of suntangent at $\theta = \frac{\pi}{2}$, $ST = a \sin \frac{\pi}{2} = a$ And length of subnormal = $y \frac{dy}{dx}$ \Rightarrow $SN = a(1 - \cos \theta) \cdot \tan \frac{\theta}{2}$ $= a. 2 \sin^2 \frac{\theta}{2} \tan \frac{\theta}{2}$ \Rightarrow Length of subnormal at $\theta = \frac{\pi}{2}$, SN + a. 2.1.2 = a

Hence, SN = ST207 (c) We have, $y = 2x^2 + 4x^3 + 7x + 9$ $\Rightarrow \frac{dy}{dx} = 10x^4 + 12x^2 + 7 > 0 \text{ for all } x \in R$ Thus, any tangent to the given curve makes an acute angle with *x*-axis 209 (a) At the point where the given curve crosses *x*-axis, we have v = 0 $\Rightarrow ax^2 = 1$ [Putting y = 0 in $ax^2 + 2hxy + bxy +$ $by^2 = 1$] $\Rightarrow x = \pm \frac{1}{\sqrt{2}}$ Thus, the given curve cuts *x*-axis at $P[(1/\sqrt{a}, 0)]$ and $Q(-1/\sqrt{a}, 0)$ Now. $ax^2 + 2hxy + by^2 = 1$ $\Rightarrow 2ax + 2h\left(x\frac{dy}{dx} + y\right) + 2by\frac{dy}{dx} = 0$ $\Rightarrow \frac{dy}{dx} = -\frac{ax + hy}{hx + hy}$ $\Rightarrow \left(\frac{dy}{x}\right)_{p} = -\frac{a}{h} \operatorname{and} \left(\frac{dy}{dx}\right)_{p} = -\frac{a}{h} \Rightarrow \left(\frac{dy}{dx}\right)_{p}$ $=\left(\frac{dy}{dx}\right)_{0}$ Hence, the tangents are parallel 210 (d) 8-x

Given,
$$y = \frac{1}{2}$$

Let $p = xy = \frac{8x - x^2}{2}$
 $\Rightarrow \quad \frac{dp}{dx} = \frac{1}{2}(8 - 2x)$
For maxima or minima, put $\frac{dp}{dx} = 0$
 $\therefore \quad 8 - 2x = 0$
 $\Rightarrow \quad x = 4$
Again, $\frac{d^2p}{dx^2} = -1$
 $\Rightarrow \qquad \left(\frac{d^2p}{dx^2}\right) = -1 < 0$
Thus, function is maximum at $x = 4$

Thus, function is maximum at x = 4 and y = 2Therefore, maximum value of $p = 4 \times 2 = 8$ 211 **(b)**

$$\int_{1}^{2} f'(x) \, dx = [f(x)]_{1}^{2} = f(2) - f(1) = 0$$

[:: f(x) satisfies the condition of Rolle's theorem] :. f(2) = f(1)212 (d)

We have,

$$y^2 = 2ax$$
 ...(i)
 $\Rightarrow \frac{dy}{dx} = \frac{a}{y}$
Putting $x = \frac{a}{2}$ in (i), we get $y = \pm a$
Thus, the two points on the curve (i) are $P(a/2, a)$
and $Q(a/2, -a)$
 $\therefore \left(\frac{dy}{dx}\right)_p = 1$ and $\left(\frac{dy}{dx}\right)_q = -1$
Clearly, $\left(\frac{dy}{dx}\right)_p \times \left(\frac{dy}{dx}\right)_q = -1$
Hence, the angle between the tangents at P and Q
is a right angle
213 (b)
We have,
 $v^2 = a^2 + s^2$
 $\Rightarrow 2v \frac{dv}{ds} = 2s \Rightarrow v \frac{dv}{ds} = s \Rightarrow$ Acceleration = s
214 (d)
Since, $f(x) = 2x^3 - 9x^2 = 12x + 4$
 $\Rightarrow f'(x) = 6x^2 - 18x + 12$
For function to be decreasing $f'(x) < 0$
 $\Rightarrow 6(x^2 - 3x + 2) < 0$
 $\Rightarrow 1 < x < 2$
215 (a)
Let the numbers be $x, y,$,
 $\therefore x + y = 20 \Rightarrow y = 20 - x$
Let $S = x^3 (20 - x)^2$
 $\Rightarrow \frac{dS}{dx} = 2x^3 (20 - x)(-1) + 3x^2(20 - x)^2$
For maximum or minimum, put $\frac{ds}{dx} = 0$
 $\Rightarrow x^2(20 - x)(-2x + 60 - 3x) = 0$
 $\Rightarrow x = 0, x = 12 \text{ or } x = 20$
 $x \text{ cannot be 0 or 20}$
Now $\frac{ds}{dx} = x^2(20 - x)^2[60 - 5x]$
For $0 < x < 12, \frac{ds}{dx} > 0$ and $12 < x < 20, \frac{ds}{dx} < 0$
 $\therefore S$ is maximum at $x = 12$
For $x = 12$, then $y = 20 - 12 = 8$
The required numbers are 12, 8
216 (d)
Given curve is $y = x\log x$
On differentiating w.r.t. x , we get
 $\frac{dy}{dx} = 1 + \log x$
The slope of the normal $= -\frac{1}{(dy/dx)} = \frac{-1}{1 + \log x}$
The slope of the given line $2x - 2y = 3$ is 1
Since, these lines are parallel

0

2

2

 $\therefore \frac{-1}{1 + \log x} = 1 \implies \log x = -2 \implies x = e^{-2}$ and $y = -2e^{-2}$: Coordinates of the point are $(e^{-2} - 2, -2e^{-2})$ 218 (b) $f'(x) = (ab - b^2 - 2) + \cos^4 x + \sin^4 x < 0$ $= ab - b^2 - 2 + (\sin^2 x + \cos^2 x)^2$ $-2\sin^2 x\cos^2 x < 0$ $\Rightarrow ab - b^2 - 1 < \left(\frac{1}{2}\right) \sin^2 2x < \frac{1}{2}$ $\Rightarrow 2ab - 2b^2 - 2 < 0$ $\Rightarrow 2b^2 - 2ab + 3 > 0$ $\therefore (-2a^2) - 4.2.3 < 0$ $\Rightarrow a^2 < 6$ $\Rightarrow -\sqrt{6} < a < \sqrt{6}$ 219 (d) We know that, sin x and cos x decrease in $\frac{\pi}{2} < x < \pi$, so the statement S is correct The statement *R* is incorrent which is clear from the graph that f(x) is differentiable in (a, b)Also, $a < x_1 < x_2 < b$ But $f''(x_1) = \tan \phi_1 < \tan \phi_2 = f''(x_2)$ \Rightarrow Derivate is increasing 220 (c) Given that, $f(x) = \int e^x (x-1)(x-2) dx$ On differentiating w.r.t. *x*, we get $f''(x) = e^x(x-1)(x-2)$ - + -Since, f(x) is decreasing ∴ $f''(x) < 0 \Rightarrow e^x(x-1)(x-2) < 0$ $\Rightarrow (x-1)(x-2) < 0 \quad \Rightarrow \quad 1 < x < 2$ 221 **(b)** Let volume of sphere(V) = $\frac{4}{3}\pi r^3$ $\Rightarrow \frac{dV}{dt} 4\pi r^2 \frac{dr}{dt} \Rightarrow \frac{dr}{dt} = \frac{35}{4\pi r^2}$ Let surface area of sphere(S) = $4\pi r^2$ $\Rightarrow \frac{dS}{dt} = 2 \times a\pi r \frac{dr}{dt}$ $= 2 \times 4\pi r \times \frac{35}{4\pi r^2}$ $\therefore \quad \frac{dS}{dt} = 10 sq \text{ cm/min}$ 223 (a)

The equations of the tangents at the origin can be obtained by equating the lowest degree term to zero. So, the required tangents given by

224 (a)

Given,
$$s = \sqrt{at^2 + 2bt + c}$$

 $\Rightarrow \frac{ds}{dt} = \frac{2at + 2b}{2\sqrt{at^2 + 2bt + c}} = \frac{at + b}{\sqrt{at^2 + 2bt + c}}$

 $y^2 - x^2 = 0 \Rightarrow y = \pm x$

$$\frac{d^2s}{dt^2} = \frac{\left[\frac{-(at+b)\frac{(2at+2b)}{2\sqrt{at^2+2bt+c}}}{(\sqrt{at^2+2bt+c})^2}\right]}{(\sqrt{at^2+2bt+c})^2}$$
$$\Rightarrow \frac{d^2}{dt^2} = \frac{ac-b^2}{s^3} \Rightarrow \text{Acceleration} \propto \frac{1}{s^3}$$

225 **(c)**

we have,

$$t = as^{2} + bs + c$$

$$\Rightarrow 1 = (2as + b)\frac{ds}{dt}$$

$$\Rightarrow \frac{ds}{dt} = \frac{1}{2as + b} \Rightarrow \frac{d^{2}s}{dt^{2}} = -\frac{2a}{(2as + b)^{2}}\frac{ds}{dt}$$

$$= -2a\left(\frac{ds}{dt}\right)^{3}$$

226 (d)

We have, $f(x) = x^{3} - 6x^{2} + 12x - 3$ $\Rightarrow f'(x) = 3x^{2} - 12x + 12, f'(x) = 6x - 12 \text{ and}$ f'''(x) = 6We observe that f'(2) = 0, f''(2) = 0 but $f'''(2) \neq 0$ So, x = 2 is neither a point of local maximum nor

a point of local minimum. In fact, it is a point of inflexion

227 **(b)**

For f(x) to be decreasing for all x, we must have f'(x) < 0 for all x

$$\Rightarrow 5\left(\frac{\sqrt{a+4}}{1-a} - 1\right)x^4 - 3 < 0 \text{ for all } x$$
$$\Rightarrow \left(\frac{\sqrt{a+4}}{1-a} - 1\right)x^4 < \frac{3}{5} \text{ for all } x$$
$$\Rightarrow \left(\frac{\sqrt{a+4}}{1-a} - 1\right) \le 0 \Rightarrow \frac{\sqrt{a+4}}{1-a} \le 1$$
This inequality is trivially true for all a s

This inequality is trivially true for all a satisfying a > 1 i.e. $a \in (1, \infty)$ So let us take a < 1Since $\sqrt{a+4}$ is real, therefore a > -4Thus, we have $-4 \le a < 1$ For these values of *a*, we must have

$$\frac{\sqrt{a+4}}{1-a} \le 1$$

$$\Rightarrow \sqrt{a+4} \le 1-a$$

$$\Rightarrow (a+4) \le 1+a^2-2a$$

$$\Rightarrow 0 \le a^2-3a-3$$

$$\Rightarrow a \ge \frac{3+\sqrt{21}}{2} \text{ or, } a \le \frac{3-\sqrt{21}}{2}$$

$$\Rightarrow -4 \le a \le \frac{3-\sqrt{21}}{2} \quad [\because a \ge -4]$$

Hence, $a \in \left[-4, \frac{3-\sqrt{21}}{2}\right] \cup (1, \infty)$

228 (c)

231

Let x be the radius and V be the volume of the sphere. Then, $V = \frac{4}{3}\pi x^3$ $\therefore \frac{dV}{dx} = 4\pi x^2$ We have, x = 100 and $x + \Delta x = 98$ $\therefore \Delta x = -2$ Now, $\Delta V = \frac{dV}{dx}\Delta x$ $\Rightarrow \Delta V = 4\pi \times 100^2$ $\times -2\left[\because \left(\frac{dV}{dx}\right)_{x=100} = 4\pi \times 100^2\right]$ $\Rightarrow \Delta V = -80000\pi$

 $\Rightarrow \Delta V = -80000\pi$ Hence, decrease in volume is 80000π mm³ 230 **(b)**

On differentiating given curves respectively

$$2x = -9A\frac{dy}{dx} \implies \left(\frac{dy}{dx}\right)_{c_1} = -\frac{2x}{9A}$$

And $2x = A\frac{dy}{dx}$
$$\Rightarrow \left(\frac{dy}{dx}\right)_{c_2} = \frac{2x}{A}$$

For orthogonally,
 $\left(\frac{dy}{dx}\right)_{c_1} \left(\frac{dy}{dx}\right)_{c_2} = -1$
$$\Rightarrow \left(-\frac{2x}{9A}\right) \left(\frac{2x}{A}\right) = -1 \quad ...(i)$$

From given curves,
 $9A(9 - y) = A(y + 1) \implies y = 8$
Since, $x^2 = 9A(9 - y)$
$$\Rightarrow x^2 = 9A(9 - 8) = 9A$$

From Eq. (i), $\frac{4x^2}{9A^2} = 1$
$$\Rightarrow \frac{4.9A}{9A^2} = 1 \implies A = 4$$

(c)
Equation of the curve is $x^2y^2 = a^4$
On differentiating w.r.t. x, we get
 $x^2 2y\frac{dy}{dx} + y^2 2x = 0$

$$\Rightarrow \frac{dy}{dx} = \frac{-y}{x}$$

$$\Rightarrow \left(\frac{dy}{dx}\right)_{(-a,a)} = -\left(\frac{a}{-a}\right) = 1$$
Therefore, length of subtangent at the point $\left(-a,a\right)$

$$= \frac{y}{\left(\frac{dy}{dx}\right)} = \frac{a}{1} = a$$
232 (c)
Let $A = x + \frac{1}{x} \Rightarrow \frac{dA}{dx} = 1 - \frac{1}{x^2}$
Put $\frac{dA}{dx} = 0$ for maxima or minima
 $1 - \frac{1}{x^2} = 0 \Rightarrow x = -1, 1$
Again on differentiating w.r.t. *x*, we get
 $\frac{d^2A}{dx^2} = \frac{2}{x^3} \Rightarrow \left(\frac{d^2A}{dx^2}\right)_{x=1} = 2 > 0$
 $\therefore A$ is minimum at $x = 1$
233 (c)
Given, $y = x \log_e x$
 $\Rightarrow \frac{dy}{dx} = \frac{x}{x} + \log x = 1 + \log x$
 \therefore Slope of normal= $\frac{1}{a^2} = \frac{-1}{1 + \log x}$
And given line is $2x - 2y + 3 = 0 \Rightarrow \frac{dy}{dx} = 1$
Since, normal line is parallel to the given line
 $\therefore -\frac{1}{1 + \log x} = 1 \Rightarrow x = e^{-2}$
Now, intersecting point of given curve and
 $x = e^{-2}$ is $(e^{-2}, -2e^{-2})$
 \therefore Required equation of line is
 $y + 2e^{-2} = 1(x - e^{-2}) \Rightarrow x - y = 3e^{-2}$
234 (c)
Consider the function $\phi(x) = f(x) - g(x)$ on the
interval $[x_0, x]$. Clearly, $\phi(x)$ satisfies conditions
of Lagrange's theorem on $[x_0, x]$. Therefore, there
exists $c \in (x_0, x)$ such that
 $\phi(x) - \phi(x_0) = \phi'(c)(x - x_0)$
 $\Rightarrow \phi(x) = f'(x) - g'(x)$
 $\Rightarrow \phi'(x) = f'(x) - g'(x)$
 $\Rightarrow f(x) - g(x) > 0$ for all $x > x_0$
235 (b)

Let *r* be the radius of the base, *h* the height and *l* slant height of the cone with semi-vertical angle 45°. Then,

$$r = h \text{ and } l^{2} = r^{2} + h^{2} = 2r^{2}$$

Let V be the volume. Then,
$$V = \frac{1}{3}\pi r^{2}h = \frac{1}{3}\pi r^{3}$$
$$\Rightarrow \frac{dv}{dt} = \pi r^{2}\frac{dr}{dt} = \text{Area of the base} \times \frac{dr}{dt}$$

236 **(a)**

We have,

$$y = x e^x \Rightarrow \frac{dy}{dx} = e^x + x e^x$$

For maximum or minimum, we must have

$$\frac{dy}{dx} = 0 \Rightarrow e^{x}(1+x) = 0 \Rightarrow x = -1$$

Now, $\frac{d^{2}y}{dx^{2}} = 2e^{x} + x e^{x}$
 $\Rightarrow \left(\frac{d^{2}y}{dx^{2}}\right)_{x=-1} = e^{-1}(2-1) > 0$

Hence, x = -1 is a point of local minimum 237 **(b)**

We have, $f(x) + f(-x) = \log 1 = 0 \Rightarrow f(-x) = -f(x)$ So, f(x) is an odd function Now,

$$f(x) = \log\left(x^3 + \sqrt{x^6 + 1}\right)$$

$$\Rightarrow f'(x) = \frac{1}{x^3 + \sqrt{x^6 + 1}} \left\{ 3x^2 + \frac{6x^5}{2\sqrt{x^6 + 1}} \right\}$$

$$= \frac{3x^2}{\sqrt{x^6 + 1}} > 0$$

 \Rightarrow *f*(*x*) is increasing

238 (a) Given curve is $x = 3t^{2} + 1$, $y = t^{3} - 1$ For x = 1, $3t^2 + 1 = 1 \implies t = 0$ $\therefore \ \frac{dx}{dt} = 6t, \frac{dy}{dx} = 3t^2$ Now, $\frac{dy}{dx} = \left(\frac{\frac{dy}{dt}}{\frac{dx}{dt}}\right) = \frac{3t^2}{6t} = \frac{t}{2}$ $\therefore \left(\frac{dy}{dx}\right)_{(t=0)} = \frac{0}{2} = 0$

239 (a)

 \therefore $f(x) = \tan x - x$ On differentiating w.r.t. *x*, we get $f'(x) = \sec^2 x - 1 = \frac{1}{\cos^2 x} - 1 = \frac{1 - \cos^2 x}{\cos^2 x}$ Since, $0 \le \cos^2 x \le 1$ for all values of *x* \therefore f'(x) > 0 for all values of x. Thus, f(x) always increases 240 (a)

Let
$$f(x) = 4\cos(x^2)\cos\left(\frac{\pi}{3} + x^2\right)\cos\left(\frac{\pi}{3} - x^2\right)$$

 $= 2\cos(x^2)\left[\cos\left(\frac{2\pi}{3}\right) + \cos(2x^2)\right]$
 $\left[\because 2\cos A\cos B = \cos(A + B) + \cos(A - B)\right]$
 $= 2\cos(x^2)\left[-\frac{1}{2} + \cos(2x^2)\right]$
 $= -\cos(x^2) + 2\cos(x^2)\cos(2x^2)$
 $= -\cos(x^2) + \cos(3x^2) + \cos(x^2)$
 $\Rightarrow f(x) = \cos(3x^2) \dots(i)$
 $\Rightarrow f'(x) = -[\sin(3x^2)](6x)$
For extremum, put $f'(x) = 0$
 $\Rightarrow x = 0, \sqrt{\pi}$
Put $x = 0, \sqrt{\pi}$ in Eq. (i), we get
 $f(0) = \cos(0) = 1$
And $f(\pi) = \cos(3\pi) = -1$
241 (b)
 $\frac{d}{d\theta}(\sin\theta) = k \Rightarrow \cos\theta = k$
 $\therefore \frac{d}{d\theta}(\tan\theta) = \sec^2\theta = \frac{1}{k^2}$
242 (b)
Let $f(x) = \frac{ax^2 + 2bx + c}{Ax^2 + 2Bx + c}$
Let $P(x_1, y_1)$ be a point on the curve $y = f(x)$
where y is maximum or minimum. Then, at P
 $\frac{dy}{dx} = 0$ and $\frac{d^2y}{dx^2} \neq 0$
The equation of the tangent at $P(x_1, y_1)$ is
 $y - y_1 = \left(\frac{dy}{dx}\right)_p (x - x_1) \Rightarrow y$
 $= y_1 \left[\because \left(\frac{dy}{dx}\right)_p = 0\right]$
Putting $y = y_1$ in $y = \frac{ax^2 + 2bx + c}{Ax^2 + 2Bx + c'}$ we get the x -
coordinate of P . This means that $y = \frac{ax^2 + 2bx + c}{Ax^2 + 2Bx + c}$
gives only one value of x
This is possible only when $ax^2 + 2bx + c - y(Ax^2 + 2Bx + C)$ is a perfect square
243 (a)
Since, $y = x^2 - 5x + 6$
 $\therefore \frac{dy}{dx} = 2x - 5$
Now, $m_1 = \left(\frac{dy}{dx}\right)_{(2,0)} = 4 - 5 = -1$
And $m_2 = \left(\frac{dy}{dx}\right)_{(3,0)} = 6 - 5 = 1$
Now, $m_1m_2 = -1 \times 1 = -1$
Hence, angle between the tangents is $\frac{\pi}{2}$
244 (d)
We have,
 $f(x) = 2x + \cos x$

 $\Rightarrow f'(x) = 2 - \sin x > 0$ for all $x \in R$ \Rightarrow *f*(*x*) is an increasing function 245 (b) Given curve are $x = t^2 - 3t - 8$, $y = 2t^2 - 2t - 5$...(i) When x = 2, then $2 = t^2 + 3t - 8$ $\Rightarrow t^2 + 3t - 10 = 0 \Rightarrow t = 2, -5$...(ii) When y = -1, then $-1 = 2t^2 - 2t - 5$ $\Rightarrow 2t^2 - 2t - 4 = 0 \Rightarrow t = -1, 2$...(iii) From Eqs. (ii) and (iii), t = 2On differentiating Eq. (i) w.r.t. t respectively, we get $\frac{dx}{dt} = 2t + 3$ and $\frac{dy}{dt} = 4t - 2$ $\therefore \quad \frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{4t-2}{2t+3}$ $\Rightarrow \quad \left(\frac{dy}{dx}\right)_{(t=2)} = \frac{8-2}{4+3} = \frac{6}{7}$ 246 (a) Let $f(x) = x\sqrt{1 - x^2}$ $\Rightarrow f'(x) = \frac{1 - 2x^2}{\sqrt{1 - x^2}}$ \Rightarrow For maxima or minima, put $\frac{dy}{dx} = 0$ $x = \pm \frac{1}{\sqrt{2}}$ But x > 0, therefore we have $x = \frac{1}{\sqrt{2}}$ Now, $f''(x) = \frac{\sqrt{1-x^2}(-4x) - (1-2x^2)\frac{-x}{\sqrt{1-x^2}}}{(1-x^2)}$ $=\frac{2x^3-3x}{(1-x^2)^{3/2}}$ $\Rightarrow f''\left(\frac{1}{\sqrt{2}}\right) = -ve$, maximum. 248 (c) We have, $s = 6t^2 - \frac{t^3}{2} \Rightarrow \frac{ds}{dt} = 12t - \frac{3t^2}{2}$ and $\frac{d^2s}{dt^2} = 12 - 3t$ When the particle is momentarily at rest, we have $\frac{ds}{dt} = 0$ and $\frac{d^2s}{dt^2} \neq 0$ Now. $\frac{ds}{dt} = 0 \Rightarrow t = 0, t = 8$ Clearly, $\frac{d^2s}{dt^2} \neq 0$ for t = 0, 8249 (c) Given, $f(x) = x^2 + 4x + 1$ $\Rightarrow f'(x) = 2x + 4$ For maxima or minima, put f'(x) = 0 \Rightarrow 2x + 4 = 0 \Rightarrow x = -2

Now, f''(x) = 2 > 0250 (c) $f(x) = \cot^{-1} x + x$ $\Rightarrow f'(x) = -\frac{1}{1+x^2} + 1$ $=\frac{x^2}{1+x^2}$, clearly, f'(x) > for all x. So, f(x) increases in $(-\infty, \infty)$. 251 (d) Slope of the curve at an angle $\theta = \frac{3\pi}{4}$ is $\frac{dy}{dx} = \tan \frac{3\pi}{4} = -1$ Slope of the normal = $\frac{-1}{d\nu/dx}$ $\therefore \left(\frac{dy}{dx}\right)_{(3.4)} = 1$ $\Rightarrow f'(3) = 1$ 252 (a) Let $f(x) = \int_{0}^{x} te^{t^{2}} dt$ \Rightarrow $f'(x) = [xe^{x^2}]$ [by Leibnitz rule] For maxima or minima, put $f'(x) = 0 \Rightarrow x = 0$ Now, $f''(x) = e^{x^2} + 2x e^{x^2}$ f''(0) = 1 > 0 \therefore f(x) is minimum at x = 0:. f(0) = 0253 (a) Given $s = 2t^3 - 9t^2 + 12t \Rightarrow \frac{ds}{dt} = 6t^2 - 18t +$ 12 Again, $\frac{d^2s}{dt^2} = 12t - 18 = \text{acceleration}$ If acceleration becomes zero, then $0 = 12t - 18 \Rightarrow t = \frac{3}{2}s$ Hence, acceleration will be zero after $=\frac{3}{2}s$. 254 (a) Let $f(x) = x^2 + \frac{1}{1+x^2}$ $f'(x) = 2x - \frac{1}{(1+x^2)^2} \cdot 2x$ For a minimum, put $f'(x) = 0 \Rightarrow x = 0$ So, the function has minimum value at x = 0. 255 (b) Let the length of an edge of the cube be *x* units. Let S_1 and S_2 be the surface areas of the cube and sphere respectively. Then, $S_1 = 6x^2$ and $= S_2 = 4\pi x^2$ $\Rightarrow \frac{dS_1}{dt} = 12x \frac{dx}{dt} \text{ and } S_2 = 8\pi x \frac{dx}{dt} \Rightarrow \frac{\frac{dS_1}{dt}}{\frac{dS_2}{dt}} = \frac{3}{2\pi}$ 256 **(d)**

We have,

 $f(x) = \int_{0}^{\infty} t(e^{t} - 1) (t - 1)(t - 2)^{3} (t - 3)^{5} dt$ $\Rightarrow f'(x) = x(e^{x} - 1)(x - 1)(x - 2)^{3}(x - 3)^{5}$ Now, $f'(x) = 0 \Rightarrow x = 0, 1, 2, 3$ Clearly, f'(x) changes its sign from negative to positive in the neighbourhood of x = 3So, x = 3 is a point of local minimum 257 (b) Given, $x = 3t^2 + 1$ and $y = t^3 - 1$ $\therefore \quad \frac{dx}{dt} = 6t \text{ and } \quad \frac{dy}{dt} = 3t^2$ $\therefore \quad \frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{dx} = \frac{t}{2}$ Since, $x = 1 \implies 1 - 3t^2 + 1$ $\Rightarrow t = 0$ $\therefore \frac{dy}{dx} = 0$ 258 **(b)** (Slope) $f'(x) = e^x \cos x + \sin x e^x$ $=e^{x}\sqrt{2}\sin(x+\pi/4)$ $f''(x) = \sqrt{2} e^{x} \{\sin x + \pi/4\} + \cos\{x + \pi/4\}$ $= 2 e^{x} . \sin(x + \pi/2)$ For maximum slope put, f''(x) = 0 $\Rightarrow \sin(x + \pi/2) = 0$ $\Rightarrow \cos x = 0$ $\therefore x = \pi/2, 3\pi/2$ $f'''(x) = 2e^x \cos(x + \pi/2)$ $f'''(\pi/2) = 2e^{x} \cos \pi = -ve$ Maximum slope is at $x = \pi/2$ 259 (b) We have, $y = e^{-2|x|} = \begin{cases} e^{2x}, x < 0\\ e^{-2x}, x \ge 0 \end{cases}$ The line x = 1/2 cuts this curve at the point $P(1/2, e^{-1})$ Also, $\frac{dy}{dx} = \begin{cases} 2e^{2x}, x < 0\\ -2e^{-2x}, x > 0 \end{cases}$ $\therefore \left(\frac{dy}{dx}\right)_{x=1/2} = -\frac{2}{e}$ The equation of the normal at *P* is $y - \frac{1}{a} = \frac{e}{2}\left(x - \frac{1}{2}\right)$ $\Rightarrow 4(ey - 1) = e^2(2x - 1) \Rightarrow 2e(ex - 2y)$ $= e^2 - 4$ 260 (a) For Lagrange's Mean value theorem we know,

f(x) should be continuous in [a, b] and differentiable in] a, b [.

(a) Given,
$$f(x) = \begin{cases} \frac{1}{2} - x, \ x < \frac{1}{2} \\ (\frac{1}{2} - x)^2, \ x \ge \frac{1}{2} \end{cases}$$

Which is clearly not differentiable at $x = \frac{1}{2}$; as RHD at $(x = 1/2) = -1$ and LHD at $(x = 1/2) = 0 \Rightarrow$ Lagrange's Mean Value is not applicable.
Where option, (b), (c), (d) are continuous and differentiable.
261 (d)
The point of intersection of given curves are (2, -1)
On differentiating the given curves respectively $x \frac{dy}{dx} + y = 0 \Rightarrow \frac{dy}{dx} = -\frac{y}{x}$
 $\Rightarrow m_1 = \left(\frac{dy}{dx}\right)_{(2,-1)} = \frac{1}{2}$
And $2x + 4\frac{dx}{dx} = 0$
 $\Rightarrow m_2 = \left(\frac{dy}{dx}\right)_{(2,-1)} = -1$
 $\therefore \tan \theta = \left|\frac{\frac{1}{2} + 1}{1 - \frac{1}{2}}\right| = \left|\frac{\frac{3}{2}}{\frac{1}{2}}\right| = 3$
262 (c)
Given, $s = 490t - 4.9t^2$
 $\Rightarrow \frac{ds}{dt} = 490 - 9.8t$
A stone is reached the maximum height when $\frac{ds}{dt} = 0$
 $\Rightarrow 490 - 9.8t = 0 \Rightarrow t = 50$
 \therefore Maximum height at $t = 50$
 $s = 490(50) - 4.9(50)^2 = 12250$
263 (a)
We know that sin x, cos x and tan x are continuous on $[a, b]$ and differentiable on (a, b) . Therefore, $f(x)$ is continuous on $[a, b]$ and differentiable on (a, b) . Also, $f(a) = f(b) = 0$
Therefore, by Rolle's theorem there exists at least one $c \in (a, b)$ such that $f'(c) = 0$
Hence, $f'(x) = 0$ has at least one root in (a, b)
264 (a)
Since $\phi(x)$ is continuous at $x = \alpha$ such that $\phi(\alpha) < 0$. Therefore, $\phi(x) < 0$ for all x in the neighbourhood of $x = \alpha$
Now, $f'(x) = (ax - a^2 - x^2)\phi(x)$ for all x in the nbd of $x = \alpha$

 $\Rightarrow f'(x) = -(x^2 - ax + a^2)\phi(x)$ for all x in the

nbd of $x = \alpha$ \Rightarrow f'(x) > 0 for all x in the *nbd* of $x = \alpha$ $[\because x^2 - ax + a^2 > 0 \text{ for all } x]$ \Rightarrow *f*(*x*) is increasing in the *nbd* of *x* = α 265 (d) Given curve is $y = x^3$ $\Rightarrow \frac{dy}{dx} = 3x^2$ Since, the tangent is parallel to *x*-axis $\therefore \quad \frac{dy}{dx} = 0 \quad \Rightarrow \quad 3x^2 = 0 \quad \Rightarrow \quad x = 0, y = 0$ 266 (c) We have, $f(x) = \cot^{-1} x + x \Rightarrow f'(x) = \frac{-1}{1 + x^2} + 1$ $=\frac{x^2}{1+x^2}$ Clearly, f'(x) > 0 for all x So, f(x) increases in $(-\infty, \infty)$ 267 (c) Since f(x) satisfies conditions of Rolle's Theorem on. Therefore, f(1) = f(3) $\Rightarrow 1 - 6 + a + b = 27 - 54 + 3a + b$ $\Rightarrow 2 a = 22 \Rightarrow a = 11$ As f(1) = f(3) is independent of *b*. Therefore, a = 11 and $b \in R$ 268 (b) Since, $f(x) = \tan^{-1}(\sin x + \cos x)$ $\Rightarrow f'(x) = \frac{1}{1 + (\sin x + \cos x)^2} (\cos x - \sin x)$ $=\frac{\sqrt{2}\cos\left(x+\frac{\pi}{4}\right)}{1+(\sin x+\cos x\,)^2}$ For f(x) to be increasing, $-\frac{\pi}{2} < x\frac{\pi}{4} < \frac{\pi}{2}$ $\Rightarrow -\frac{3\pi}{4} < x < \frac{\pi}{4}$ Hence, option (b) is correct, which lies in the above interval. 269 (c) Let *h* be the height of the cylinder. Then, its volume *V* is given by $V = \pi h^3$ $[\because r = h]$ $\Rightarrow \frac{dV}{dh} = 3\pi h^2$ $\therefore \Delta V = \frac{dV}{dh} \Delta h$

 $\Rightarrow \Delta V = 3\pi h^2 \Delta h$

$$\Rightarrow \frac{\Delta V}{V} \times 100 = \frac{3\pi h^2}{\pi h^3} \Delta h \times 100 = 3\left(\frac{\Delta h}{h} \times 100\right)$$
$$= 3\alpha$$

270 **(a)**

Given, $f(x) = x^3 + px^2 + qx + r$ $\Rightarrow f'(x) = 3x^2 + 2xp + q \text{ or } f'(x) < 0$ Clearly, f'(x) > 0Now, $b^2 - 4ac < 0$ $\Rightarrow 4p^2 - 4 \times 3 \times q < 0$ $\Rightarrow p^2 < 3q$

271 **(d)**

We have,
$$f(x) = \int_{x^2}^{x^2+1} e^{-t^2} dt$$

 $\Rightarrow f'(x) = 2xe^{-(x^2+1)^2} - 2xe^{-x^4}$
 $\Rightarrow f'(x) = 2x \left\{ -e^{(x^2+1)^2} - e^{-x^4} \right\}$
For $f(x)$ to be increasing, we must have
 $f'(x) > 0$
 $\Rightarrow 2x \left\{ -e^{(-x^2+1)^2} - e^{-x^4} \right\} > 0$
 $\Rightarrow x < 0 \qquad [\because e^{-(x^2+1)^2} < e^{-x^4}]$
 $\Rightarrow x \in (-\infty, 0)$
Hence, $f(x)$ is increasing on $(-\infty, 0)$

272 (a)

Let *H* be the height of the cone and α be its semivertical angle. Suppose that *x* is the radius of the inscribed cylinder and *h* be its height

$$\therefore h = QL = 0L - 0Q$$

= $H - x \cot \alpha$
 $V = Volume of the cylinder$
= $\pi x^2 (H - x \cot \alpha)$
Also, $p = \frac{1}{3}\pi (H \tan \alpha)^2 H$...(i)
 $\frac{dV}{dx} = \pi (2Hx - 3x^2 \cot \alpha)$
 $\therefore \frac{dV}{dx} = 0 \implies x = 0,$
 $x = \frac{2}{3}H \tan \alpha$
 $\Rightarrow \frac{d^2V}{dx^2}\Big|_{x=\frac{2}{3}H \tan \alpha} = -2\pi H < 0$
 $\bigvee \frac{1}{2}H \tan \alpha$
 $\Rightarrow \frac{d^2V}{dx^2}\Big|_{x=\frac{2}{3}H \tan \alpha} = -2\pi H < 0$
 $\bigvee \frac{1}{2}H \tan \alpha$
And $q = V_{\max} = \pi \frac{4}{9}H^2 \tan^2 \alpha \frac{1}{3}H$
 $= \frac{4}{9}p$ [from Eq. (i)]
Hence, $p: q = 9: 4$

273 (b) Clearly, f(x) is defined for all x > 0We have, $f'(x) = -\frac{\log x}{x^2} + \frac{1}{x^2} = \frac{1 - \log x}{x^2}$ For f(x) to be increasing, we must have f'(x) > 0 $\Rightarrow \frac{1 - \log x}{r^2} > 0 \Rightarrow 1 - \log x > 0 \Rightarrow \log x < 1 \Rightarrow x$ $< e^1$ Also f(x) is defined for x > 0. Hence, f(x) is increasing in the interval (0, e)274 (c) Given, $f(x) = x^3 - 3x$ $\therefore f'(x) = 3x^2 - 3$ For maxima, f'(x) = 6x \Rightarrow 3x² - 3 = 0 \Rightarrow x = +1 $x = 1 \in [0, 2]$ At x = 1, f''(x) > 0, minima f(0) = 0, f(1) = -2 and f(2) = 2Hence, maximum value is 2 275 (d) Given, $f(x) = ax + \frac{b}{x}$ On differentiating w.r.t. *x*, we get $f'(x) = a - \frac{b}{x^2}$ For maxima or minima, put f'(x) = 0 $\Rightarrow x = \sqrt{\frac{b}{a}}$ Again, differentiating w.r.t. *x*, we get $f''(x) = \frac{2b}{x^3}$ At $x = \sqrt{\frac{b}{a}}$, f''(x) = +ve \Rightarrow f(x) is minimum at $x = \sqrt{\frac{b}{a}}$ \therefore f(x) has the least value at $x = \sqrt{\frac{b}{a}}$ 276 (d) Area of rectangle, $A = 2x \cdot 2\sqrt{r^2 - x^2}$ $=4x\sqrt{r^2-x^2}$ $\frac{dA}{dx} = \frac{4(r^2 - 2x^2)}{\sqrt{r^2 - x^2}}$ For maximum or minimum put $\frac{dA}{dx} = 0$

$$\Rightarrow \qquad x = \frac{r}{\sqrt{2}}$$

It can be easily checked that $\frac{d^2A}{dx^2} < 0$ for $x = \frac{r}{\sqrt{2}}$ The maximum value of *A* is given by

$$A = 4\frac{r}{\sqrt{2}}\sqrt{r^2 - \frac{r^2}{2}} = 2r^2$$

277 (b)

Since $f(x) = k x^3 - 9 x^2 + 9 x + 3$ is increasing on R $\therefore f'(x) > 0$ for all $x \in R$ $\Rightarrow 3 k x^2 - 18 x + 9 > 0$ for all $x \in R$ $\Rightarrow k x^2 - 6 x + 3 > 0$ for all $x \in R$ $\Rightarrow k > 0$ and $36 - 4(k)(3) < 0 \Rightarrow k > 0$ and $k > 3 \Rightarrow k > 3$

278 **(a)**

Given,
$$\frac{dv}{dt} = 100\pi cm^3/min$$

 $\therefore \frac{d}{dt} \left(\frac{4}{3}\pi r^3\right) = 100\pi \Rightarrow 3r^2 \frac{dr}{dt} = \frac{300\pi}{4\pi}$
 $\Rightarrow \left(\frac{dr}{dt}\right)_{r=5} = \frac{300}{4 \times 3 \times 25} = 1cm/min$

279 **(c)**

Let
$$f(\alpha) = \left(1 + \frac{1}{\sin^n \alpha}\right) \left(1 + \frac{1}{\cos^n \alpha}\right)$$

 $\Rightarrow f(\alpha) = 1 + \frac{1}{\sin^n \alpha} + \frac{1}{\cos^n \alpha} + \frac{1}{\sin^n \alpha \cos^n \alpha}$
 $\Rightarrow f'(\alpha) = -\frac{n \cos \alpha}{\sin^{n+1} \alpha} + \frac{n \sin \alpha}{\cos^{n+1} \alpha}$
 $-\frac{n \{\cos^2 \alpha - \sin^2 \alpha\}}{\sin^{n+1} \alpha \cos^{n+1} \alpha}$
Now, $f'(\alpha) = 0 \Rightarrow \cos \alpha = \sin \alpha \Rightarrow \alpha = \pi/4$

Clearly, $f(\alpha)$ is maximum at $\alpha = 0$ and $\alpha = \pi/2$ and between two maxima there is one minima Hence, $\alpha = \pi/4$ gives the minimum value of $f(\alpha)$ and is given by $f\left(\frac{\pi}{4}\right) = \left(1 + 2^{n/2}\right)^2$

280 (d)

We have,
$$f(x) = |x|(x-1)(x-2)(x-3)$$

$$= \begin{cases} x(x-1)(x-2)(x-3), x \ge 0 \\ -x(x-1)(x-2)(x-3), x < 0 \end{cases}$$

It is clear from the figure that, there are four critical points

We have,

 $s = at^2 + bt + c$...(i) $\Rightarrow \frac{ds}{dt} = 2at + b$...(ii) $\Rightarrow \frac{d^2s}{dt^2} = 2a$ (iii) At t = 1, we have s = 16 $\therefore a + b + c = 16$ At t = 2, we have $\frac{ds}{dt} = 24$ and $\frac{d^2s}{dt^2} = 8 \Rightarrow 2a + b = 24$ and 2a = 8Solving these equations, we get a = 4, b = 8 and c = 4282 (c) Given curve is $x^3 - 8a^2 y = 0$. On differentiating w.r.t. x, we get $3x^2 - 8a^2 \frac{dy}{dx} = 0$ $\Rightarrow \frac{dy}{dx} = \frac{3x^2}{8a^2}$ \therefore Slope of the normal $= -\frac{1}{\left(\frac{dy}{dx}\right)} = -\frac{1}{\frac{3x^2}{2}} = -\frac{8a^2}{3x^2}$ Given, $\frac{-8a^2}{3x^2} = \frac{-2}{3} \Rightarrow x^2 = 4a^2 \Rightarrow x = \pm 2a$ At $x = \pm 2a$, $y = \pm a$ \therefore (x, y) = (2a, a)283 (d) Given equation of curve is $y = be^{-x/a}$ Since, the curve crosses *y*-axis *ie*, x = 0 \Rightarrow $y = be^{-0}$ \Rightarrow y = bOn differentiating Eq. (i) w.r.t. x, we get $\frac{dy}{dx} = \frac{-b}{a} e^{-x/a}$ At point (0, *b*), $\left(\frac{dy}{dx}\right)_{(0,b)} = \frac{-b}{a}e^{-0/a} = \frac{-b}{a}$ ∴ Required equation of tangent is $y-b = \frac{-b}{a}(x-0)$ $\Rightarrow \frac{y}{h} - 1 = -\frac{x}{a}$ $\Rightarrow \frac{x}{a} + \frac{y}{b} = 1$ 284 (a) Given, $f(x) = x^2 e^{-x}$ $\Rightarrow f'(x) = 2xe^{-x} - x^2e^{-x}$ For f(x) To be increasing, f'(x) > 0 $\Rightarrow 2xe^{-x} - x^2e^{-x} > 0$ $\Rightarrow e^{-x}(2-x) > 0$ $\Rightarrow x \in (0,2)$ 285 (d) The graph of $y = \cos^{-1}(\cos x)$ is shown diagram Clearly, $y = \cos^{-1}(\cos x) = -x$ for $-\pi < x < 0$ $\therefore \frac{dy}{dx} = -1$ at $x = -\frac{\pi}{4}$

	$\log(e+x) = \log(\pi+x)$
	$f'(x) = \frac{\pi + x}{\pi + x} \frac{e + x}{e + x}$
	$\{\log(e+x)\}^2$
	$\Rightarrow f'(x)$
	$= \frac{(e+x)\log(e+x) - (\pi+x)\log(\pi+x)}{(\pi+x)}$ (i)
	$(\pi + x)(e + x)\{\log(e + x)\}^2$
	Let $g(x) = x \log x$ for $x > 0$. Then, $g'(x) = (1 + y)$
	$\log x$)
	Now,
	$g'(x) > 0 \Rightarrow 1 + \log x > 0 \Rightarrow \log x > -1 \Rightarrow x$
	$> e^{-1} = \frac{1}{-1}$
	e Thus
	$a(r)$ is increasing on $(1/a \infty)$
	$\Rightarrow a(\pi + r) > a(\rho + r)$ for all $r > 0$
	= g(n + x) > g(e + x) for all x > 0 $f:: \pi + x > e + x > 1/e^{1}$
	$\begin{bmatrix} n & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}$
	$\Rightarrow (\pi + x) \log(\pi + x) > (e + x) \log(e + x)$ for all
	x > 0(ii)
	From (i) and (ii), we find that
	$f'(x) < 0$ for all $x \in [0, \infty)$
	Hence, $f(x)$ is decreasing on $[0, \infty)$
293	(c)
	Given, $f(x) = x^3$
	$\therefore f(x+h) = (x+h)^3$
	Now, $f(x) = 3x^2$
	$\therefore f(x+\theta h) = 3(x+\theta h)^2$
	Given, $\frac{f(x+h)-f(x)}{h} = f'(x+\theta h)$
	$(x+h)^3 - x^3$
	$\Rightarrow \frac{x}{h} = 3(x+\theta h)^2$
	$x^3 + h^3 + 3xh(x+h) - x^3$
	\Rightarrow
	$=3(x^2+\theta^2h^2+2x\theta h)$
	$\Rightarrow h^2 + 3x^2 + 3xh = 3x^2 + 3\theta^2h^2 + 6x\theta h$
	$\Rightarrow h + 3x = 3\theta^2 h + 6x\theta$
	Taking limit on both sides, we get
	$\lim_{h \to 0} (h + 3x) = \lim_{h \to 0} (3\theta^2 h + 6x\theta)$
	$\Rightarrow 3x = 6x \lim_{h \to 0} \theta$
	$\Rightarrow \lim_{h \to 0} \theta = \frac{1}{2} = 0.5$
294	(b)
	We have,
	$y^2 - 4ar \Rightarrow 2y \frac{dy}{dx} - 4a \Rightarrow \frac{dy}{dx} - \frac{2a}{dx}$
	$y = 1ax \Rightarrow 2y dx = 1a \Rightarrow dx = y$
	: Length of the subtangent = $\frac{y}{dy} = \frac{y}{2a} = \frac{y^2}{2a}$
	$\frac{1}{dx} \frac{1}{y} = 2u$
	$\frac{1}{2a} = 2x$
	So, subtangent : Abscissa = $2x : x = 2 : 1$
295	(b)
	Given,
$ab = 2a + 3b \Rightarrow (a - 3)b = 2a \Rightarrow b = \frac{2a}{a - 3}$ Now, let $z = ab = \frac{2a^2}{a^2}$ On differentiating w.r.t. *x*, we get $\frac{dz}{sa} = \frac{2[(a-3)3a-a^2]}{(a-3)^2} = \frac{2[a^2-6a]}{(a-3)^2}$ For a minimum, put $\frac{dz}{da} = 0$ $\Rightarrow a^2 - 6a = 0 \Rightarrow a = 0, 6$ At a = 6, $\frac{d^2 z}{da^2} = +ve$ When, a = 6, b = 4 $\therefore (ab)_{\min} = 6 \times 4 = 24$ 296 (d) For the function $f(x) = |x|, f'(0) \neq 0$ but f(x)has a minimum at x = 0. So, none of the options is correct 297 (b) We have, $y = \cos(x + y)$ $\Rightarrow \frac{dy}{dx} = -\sin(x+y)\left(1+\frac{dy}{dx}\right)$...(i) Since the tangent is parallel to x + 2 y = 0 \therefore Slope of the tangent = $-\frac{1}{2}$ $\Rightarrow \frac{dy}{dx} = -\frac{1}{2}$ Putting $\frac{dy}{dx} = -\frac{1}{2}$ in (i), we get $-\frac{1}{2} = -\sin(x+y)\left(1-\frac{1}{2}\right)$ $\Rightarrow \sin(x + y) = 1$ (ii) Now, $y = \cos(x + y)$ and $1 = \sin(x + y)$ $\Rightarrow y^2 + 1 = 1 \Rightarrow y^2 = 0 \Rightarrow y = 0$ Putting y = 0 in $y = \cos(x + y)$ and $\sin(x + y) =$ 1, we get $\sin x = 1$ and $\cos x = 0 \Rightarrow x = -\frac{\pi}{2}, -\frac{3\pi}{2}$ Thus, the points on the curve $y = \cos(x + y)$ where tangents are parallel to x + 2y = 0 are $(\pi/2,0), (-3\pi/2,0)$ The equation of the tangent at $(\pi/2, 0)$ is $y - 0 = -\frac{1}{2}\left(x - \frac{\pi}{2}\right) \Rightarrow x + 2y = \frac{\pi}{2}$ 298 (c) Given, $f(x) = a \sin x + \frac{1}{3} \sin 3x$ has minimum value at $x = \frac{\pi}{3}$, then f'(x) = 0 at $x = \frac{\pi}{3}$ $\Rightarrow f'(x) = a \cos x + \cos 3x$ $\Rightarrow f'\left(\frac{\pi}{3}\right) = a\cos\frac{\pi}{3} + \cos\left(3\times\frac{\pi}{3}\right) = 0$ $\Rightarrow a \times \frac{1}{2} + \cos(\pi) = 0$

 $\Rightarrow \frac{a}{2} - 1 = 0 \Rightarrow a = 2$ 299 (d) Given. $v = x^2 + x - 1$ $\therefore \quad \frac{dy}{dx} = 2x + 1$ At (1, 1), $\frac{dy}{dx} = 3 = m$ ∴ Length of tangent $A = \left| \frac{y_1 \sqrt{1 + m^2}}{m} \right| = \left| \frac{1\sqrt{1 + 9}}{3} \right| = \frac{\sqrt{10}}{3}$ Length of subtangent, $B = \left| \frac{y_1}{m} \right| = \frac{1}{2}$ Length of normal, $C = \left| y_1 \sqrt{1 + m^2} \right| = \left| 1 \sqrt{1 + 9} \right| = \sqrt{10}$ And length of subnormal, $D = |y_1m| = 3$ Now, increasing order is *B*, *A*, *D*, *C*. 301 (a) Given, 2a + 3b + 6c = 0Let $f'(x) = ax^2 + bx + c$ $f(x) = \frac{ax^3}{2} + \frac{bx^2}{2} + cx$ $\Rightarrow f(x) = \frac{2ax^3 + 3bx^2 + 6cx + 6d}{c}$ Now, $f(1) = \frac{2a+3b+6c}{c} = 0$ And f(0) = 0 $\therefore f(0) = f(1)$ There 0 and 1 are the roots of the polynomial f(x). So by Rolle's theorem, there exists at least one root of the polynomial f'(x) lying between 0 and 1. 302 (b) Let at any point *t*, the length of a side of the square be x. Then, $A = Area = x^2$ and P = Perimeter = 4x $\Rightarrow \frac{dA}{dt} = 2x \frac{dx}{dt}$ and $\frac{dP}{dt} = 4 \frac{dx}{dt}$ It is given that $\frac{dA}{dt} = \frac{dP}{dt} \Rightarrow 2x\frac{dx}{dt} = 4\frac{dx}{dt} \Rightarrow x = 2$ 303 (b) Since, $f(x) = 3x^4 + 4x^3 - 12x^2 + 12$ $f'(x) = 12x^3 + 12x^2 - 24x$ = 12x(x-1)(x+2)For above it is clear that f'(x) increasing in (-2,0) and in (1,∞) 304 (d) By Lagrange's mean value theorem there exists $c \in (1, 6)$ such that $f'(c) = \frac{f(6) - f(1)}{c}$

$$\Rightarrow \frac{f(6) + 2}{5} = f'(c)
\geq 2 [: f'(x) \ge 2 \text{ for all } x \in [1, 6]]
\Rightarrow f(6) + 2 \ge 10 \Rightarrow f(6) \ge 8
305 (c)
Given, $f(x) = x^3 - 6x^2 - 36x + 2
f'(x) = 3x^2 - 12x - 36
For decreasing, $f'(x) < 0
\Rightarrow 3(x^2 - 4x - 12) < 0
\Rightarrow (x - 6)(x + 2) < 0
\Rightarrow -2 < x < 6
\Rightarrow x \in (-2, 6)
306 (c)
Let (x_1, y_1) be one of the points of contact. Then, the equation of the tangent at (x_1, y_1) is
 $y - y_1 = \left(\frac{dy}{dx}\right)_{(x_1, y_1)} (x - x_1) \Rightarrow y - y_1 = -\sin x_1 (x - x_1)$
This passes through the origin
 $\therefore 0 - y_1 = -\sin x_1 (0 - x_1) \Rightarrow y_1 = x_1 \sin x_1 \dots (i)$
Also point (x_1, y_1) lies on $y = \cos x$
 $y_1 = \cos x_1 \dots (ii)$
From (i) and (ii), we have $\sin^2 x_1 + \cos^2 x_1 = \frac{y_1^2}{x_1^2} + y_1^2 \Rightarrow x_1^2 = y_1^2 + y_1^2 x_1^2$
Hence, the locus of (x_1, y_1) is $x^2 = y^2 + y^2 x^2$
307 **(c)**
We have, $f(x) = \int_{x^2}^{x^2+1} e^{-t^2} dt$
 $\Rightarrow f'(x) = (2x + 1)e^{-(x^2+1)^2} - 2x e^{-x^4}$ [Using Leibnitz's rule]
 $\Rightarrow f'(x) > 0$ for all $x \in (-\infty, 0)$
 $\Rightarrow f(x)$ is increasing on $(-\infty, 0)$
308 **(c)**
 $f(x) = (x + 1)^{1/3} - (x - 1)^{1/3}$
 $f'(x) = \frac{1}{3}(x + 1)^{-2/3} = \frac{1}{3}(x - 1)^{-2/3}$
Now, put $f'(x) = 0$
 $\Rightarrow \frac{1}{3}(x + 1)^{-2/3} = \frac{1}{3}(x - 1)^{-2/3}$
 $\Rightarrow (x - 1)^2 = (x + 1)^2$
 $\Rightarrow x = 0$
 $At x = 0, f''$ is negative, so it is maximum.
 \therefore The greatest value of $f(x) = (0 + 1)^{1/3} - (0 - 1)^{1/3} = 2$
309 **(c)**
Given, $\frac{d}{dt}(\frac{4}{3}\pi r^3) = -50$
 $\Rightarrow \frac{dt}{dt} = -\frac{50}{4\pi r^2}$$$$$

 $\Rightarrow \left(\frac{dr}{dt}\right)_{r=15} = -\frac{50}{4\pi \times 225} = -\frac{1}{18\pi} \text{ cm/min}$ Hence, the thickness of ice decrease by $1/18\pi$ cm/min 310 **(b)** Given equation of curve is $y = 2x^3 + ax^2 + bx + c$...(i) \Rightarrow 0 = 2(0) + a(0) + b(0) + c [passes through (0, 0)] $\Rightarrow c = 0$...(ii) On differentiating Eq. (i), we get $\frac{dy}{dx} = 6x^2 + 2ax + b$ Since, the tangent at x = -1 and x = 2 are parallel to x-axis $\therefore \quad \frac{dy}{dx} = 0$ At x = -1, $6(-1)^2 + 2a(-1) + b = 0$ $\Rightarrow 6-2a+b=0$...(iii) At x = 2, $6(2)^2 + 2a(2) + b = 0$ $\Rightarrow 24 + 4a + b = 0$...(iv) On solving Eqs. (iii) and (iv), we get a = -3, b = -12 and c = 0311 (a) The equation of the tangent at point $P(\cos\theta, b\sin\theta)$ to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is $\frac{x}{a}\cos\theta + \frac{y}{b}\sin\theta = 1$ This cuts the coordinate axes at $A(a \sec \theta, 0)$ and $B(0, \operatorname{cosec} \theta)$ $\therefore AB^2 = a^2 \sec^2 \theta + b^2 \csc^2 \theta$ Let $Z = a^2 \sec^2 \theta + b^2 \csc^2 \theta$. Then, $\frac{dZ}{d\theta} = 2a^2 \sec^2 \theta \tan \theta - 2b^2 \csc^2 \theta \cot \theta$ $\Rightarrow \frac{dZ}{d\theta} = 2a^2 \frac{\sin\theta}{\cos^3\theta} - \frac{2b^2\cos\theta}{\sin^3\theta}$ $\Rightarrow \frac{dZ}{d\theta} = \frac{2a^2 \sin^4 \theta - 2b^2 \cos^4 \theta}{\sin^3 \theta \cos^3 \theta}$ $\therefore \frac{dZ}{d\theta} = 0 \Rightarrow \tan^2 \theta = \frac{b^2}{a^2} \Rightarrow \tan \theta = \pm \sqrt{\frac{b}{a}}$ Now, $\frac{d^2 Z}{d\theta^2} = 2a^2 \left(\sec^4 \theta + 2\sec^2 \theta \tan^2 \theta\right) +$ $2b^{2}(\operatorname{cosec}^{4}\theta + 2\operatorname{cosec}^{2}\theta\operatorname{cot}^{2}\theta) > 0$ for all θ $\therefore Z$ is minimum when $\tan \theta = \pm \sqrt{\frac{b}{a}}$ For this value of θ , we have $Z = a^2 \left(1 + \frac{b}{a} \right) + b^2 \left(1 + \frac{a}{b} \right) = (a+b)^2 \Rightarrow AB$ = a + b312 (a)

Given equation is

$$y - e^{xy} + x = 0$$

 $\Rightarrow e^{xy} = x + y$
On taking log on both sides, we get
 $\log(x + y) = xy$
On differentiating w.r.t. x, we get
 $\frac{1}{x + y} + \left(1 + \frac{dy}{dx}\right) = x\frac{dy}{dx} + y$
 $\Rightarrow \frac{dy}{dx} \left(\frac{1}{y + x} - x\right) = y - \frac{1}{y + x}$
 $\Rightarrow \frac{dy}{dx} = \frac{y(y + x) - 1}{1 - x(y + x)}$
Since, the curve has a vertical tangent
 $\therefore \frac{dy}{dx} = \infty \Rightarrow 1 - x(x + y) = 0$
Which is satisfied by the point (1, 0)
313 (d)
We have,
 $f(x) = x e^{2-x} \Rightarrow f'(x) = e^{2-x}(1 - x)$
For $f(x)$ to be increasing, we must have
 $f'(x) > 0 \Rightarrow e^{2-x}(1 - x) > 0 \Rightarrow x > 1$
Hence, $f(x)$ is increasing on $(-\infty, 1)$
314 (d)
Since, $f(x)$ satisfies all the conditions of Rolle's
theorem in [3,5]
Let $f(x) = (x - 3)(x - 5) = x^2 - 8x + 15$
Now, $\int_3^5 f(x) dx = \int_3^5 (x^2 - 8x + 15) dx$
 $= \left[\frac{x^3}{3} - \frac{8x^2}{2} + 15x\right]_3^5$
 $= \left(\frac{125}{3} - 100 + 75\right) - (9 - 36 + 45)$
 $= \frac{50}{3} - 18 = -\frac{4}{3}$
315 (b)
Let x be the length of a side of the triangle. Then,
its area A is given by
 $A = \frac{\sqrt{3}}{4}x^2 \Rightarrow \frac{dA}{dx} = \frac{\sqrt{3}}{2}x$
 $\therefore \Delta A = \frac{dA}{dx}\Delta x$
 $\Rightarrow \Delta A = \frac{\sqrt{3}}{2}x \Delta x$
 $\Rightarrow \Delta A = \frac{\sqrt{3}}{2}x \Delta x$
 $\Rightarrow \frac{\Delta A}{A} = \frac{\sqrt{3}}{2}x \Delta x$
 $\Rightarrow \frac{\Delta A}{A} = \frac{\sqrt{3}}{2}x \Delta x$
 $\Rightarrow \frac{\Delta A}{A} = \frac{\sqrt{3}}{2}x \Delta x$
 $\Rightarrow 2k$

The equation of given circle is $x^2 + y^2 = 1$ On differentaing w.r.t. t, we get

3

3

 $2x\frac{dx}{dt} + 2y\frac{dy}{dt} = 0$ But we have, $x = \frac{1}{2}$, $y = \frac{\sqrt{3}}{2}$ and $\frac{dy}{dt} = -3$, then $\frac{1}{2}\frac{dx}{dt} + \frac{\sqrt{3}}{2}(-3) = 0 \quad \Rightarrow \quad \frac{dx}{dt} = 3\sqrt{3}$ 317 (c) Let (x, y) be any point on the parabola $2y = x^2$ Let $f(x) = (x - 0)^2 + (y - 3)^2 = x^2 + (y -$ $\left(\frac{x^2}{2}-3\right)^2$ $\Rightarrow f'(x) = 2x + 2\left(\frac{x^2}{2} - 3\right)(x)$ Put $f'(x) = 0 \Rightarrow 2x \left(1 + \frac{x^2}{2} - 3\right) = 0$ $\Rightarrow x = 0, \pm 2$ Now, $f''(x) = 2 + 2\left(\frac{x^2}{2} - 3\right) + 2x(x)$ At x = 0, f''(x) = 2 - 6 < 0, maximum At x = 2, f''(x) > 0, minimum At x = -2, f''(x) > 0, minimum \therefore At $x = \pm 2 \Rightarrow y = 2$ \therefore Required point is $(\pm 2, 2)$ 318 (d) We have, $y = x - \cot^{-1} x - \log\left(x + \sqrt{1 + x^2}\right)$ $\Rightarrow \frac{dy}{dx} = 1 + \frac{1}{1+x^2} - \frac{1}{\sqrt{1+x^2}}$ $\Rightarrow \frac{dy}{dx} = \frac{1 + x^2 + 1 - \sqrt{1 + x^2}}{\sqrt{1 + x^2}}$ $\Rightarrow \frac{dy}{dx} = \frac{\sqrt{1 + x^2}(\sqrt{1 + x^2} - 1)}{\sqrt{1 + x^2}} + 1 \ge 0 \text{ for all } x$ Thus, the given function is increasing for all $x \in (-\infty, \infty)$ 319 (b) Let *P*(*x*, *y* be a point of the curve $x = a \sin t - b \sin \left(\frac{at}{b}\right)$, $y = a \cos t - b \cos \left(\frac{at}{b}\right)$ and, O be the origin. Then, $OP^{2} = \left\{ a \sin t - b \sin \left(\frac{at}{b}\right) \right\}^{2}$ $+\left\{a\cos t - b\cos\left(\frac{at}{b}\right)\right\}^{2}$ $\Rightarrow OP^2 = a^2 + b^2 - 2ab\cos\left(\frac{a-b}{h}\right)t$ Clearly, OP^2 is maximum when $\cos\left(\frac{a-b}{t}\right)t$ minimum *i*. *e*. equal to -1In that case, we have $OP^{2} = a^{2} + b^{2} + 2ab = (a + b)^{2} \Rightarrow OP = a + b$ 320 (d) $\therefore f(x) = -x^3 + 4ax^2 + 2x - 5$

 $f'(x) = -3x^{2} + 8ax + 2$ Since, f(x) is decreasing. ∀x, therefore f'(x) < 0 $⇒ -3^{2} + 8ax + 2 < 0$ $⇒ 3x^{2} - 8ax - 2 > 0$ $Now, D = (-8a)^{2} - 4(3)(-2) < 0$ $⇒ 64a^{2} + 24 < 0$ $⇒ a^{2} < -\frac{3}{8}$

Hence, no value of a exist.

322 **(c)**

Clearly, $e^{(x^4 - x^3 + x^2)}$ will be minimum when $x^4 - x^3 + x^2$ is minimum Now, $x^4 - x^3 + x^2 = x^2(x^2 - x + 1)$ $= x^2 \left\{ \left(x - \frac{1}{2}\right)^2 + \frac{3}{4} \right\} \ge 0$ for all $x \in R$ So, the minimum value of $x^4 - x^3 + x^2$ is 0

Hence, the minimum value of $x^{-1} - x^{-1} + x^{-1}$ is $e^{0} = 1$

323 **(b)**

Let
$$f(x) = x^2 - 2x + 3$$

Since, $f'(c) = \frac{f(\frac{3}{2}) - f(1)}{\frac{3}{2} - 1}$ [given]
 $\Rightarrow 2c - 2 = \frac{\frac{9}{4} - \frac{6}{2} + 3 - (1 - 2 + 3)}{\frac{3}{2} - 1} = \frac{1}{2}$
 $\Rightarrow c = \frac{5}{4} \in \left[1, \frac{3}{2}\right]$

324 (c)

Given,
$$y = \frac{\sin(x+a)}{\sin(x+b)}$$

$$\Rightarrow \frac{dy}{dx}$$

$$= \frac{\sin(x+b)\cos(x+a) - \sin(x+b)\cos(x+a)}{\sin^2(a+b)}$$

$$\Rightarrow \frac{dy}{dx} = \frac{\sin(b-a)}{\sin^2(x+b)}$$
For maxima or minima put, $\frac{dy}{dx} = 0$
Sin $(b-a) = 0$
It means no value of x, it is neither maxima nor

It means no value of *x*, it is neither maxima nor minima.

325 **(b)**

We have,

$$f(x) = e^{ax} + e^{-ax}$$

$$\Rightarrow f'(x) = a\{e^{ax} - e^{-ax}\}$$

$$\Rightarrow f'(x) = 2a\left\{ax + \frac{a^3x^3}{3!} + \frac{a^5x^5}{5!} + \cdots\right\}$$

$$\Rightarrow f'(x) = 2a^2x\left\{1 + \frac{a^2x^2}{3!} + \frac{a^4x^4}{5!} + \cdots\right\}$$
Now,

$$f'(x) < 0 \Rightarrow x < 0 \left[\because 2a^2 \left\{ 1 + \frac{a^2 x^2}{3!} + \frac{a^4 x^4}{5!} + \cdots \right\} > 0 \right]$$

Hence, f(x) is decreasing on $(-\infty, 0)$

326 **(d)**

The point of intersection of given curve is (-2, -1)

On differentiating the given curve respectively, we get

$$x \frac{dy}{dx} + y = 0 \implies \frac{dy}{dx} = -\frac{y}{x}$$

$$\Rightarrow \quad m_1 = \left(\frac{dy}{dx}\right)_{(-2,-1)} = -\frac{1}{2}$$

And
$$2x + 4 \frac{dy}{dx} = 0$$

$$\Rightarrow \quad \frac{dy}{dx} = -\frac{x}{2}$$

$$\Rightarrow \quad m_2 = \left(\frac{dy}{dx}\right)_{(-2,-1)} = 1$$

$$\therefore \quad \tan \theta = \left|\frac{m_1 - m_2}{1 + m_1 m_2}\right| = \left|\frac{-\frac{1}{2} - 1}{1 - \frac{1}{2}}\right| = 3$$

327 **(d)**

We have,

$$2x^{2} - 3y^{2} = 36 \Rightarrow 4x - 6y\frac{dy}{dx} = 0 \Rightarrow \frac{dy}{dx} = \frac{2x}{3y}$$

The slope of the given line is $-1/2$
If the tangent is parallel to the given line then
$$\frac{dy}{dx} = -\frac{1}{2} \Rightarrow \frac{2x}{3y} = -\frac{1}{2} \Rightarrow x = -\frac{3y}{4}$$

Putting $x = -\frac{3y}{4}$ in $2x^{2} - 3y^{2} = 36$, we get
 $2\left(\frac{9y^{2}}{16}\right) - 3y^{2} = 36 \Rightarrow y^{2} = -\frac{288}{15}$
This does not given real values
Hence, the required tangent does not exist

328 **(b)**

We have, $f(x) = x^3 + 3(a-7)x^2 + 3(a^2 - 9)x - 1$ $\Rightarrow f'(x) = 3x^2 + 6x(a-7) + 3(a^2 - 9)$ If the function f(x) has a positive point of minimum, then f'(x) = 0 must have positive roots $\Rightarrow x = 0$ is less than the roots of f'(x) = 0 $\Rightarrow f'(0) > 0$ and Discriminant ≥ 0 $\Rightarrow 4(a-7)^2 - 4(a^2 - 9) \ge 0$ and $3(a^2 - 9) > 0$ $\Rightarrow 7a - 29 \le 0$ and $a^2 - 9 > 0$ $\Rightarrow a < \frac{29}{7}$ and $(a < -3 \text{ or } a > 3) \Rightarrow a \in (-\infty, -3) \cup (3, 29/7)$ 330 **(b)**

Given, $f(x) = x + \frac{1}{x}$ $\Rightarrow f'(x) = 1 - \frac{1}{x^2}$ ⇒ For local maxima or local minima, put f'(x) = 0 $\Rightarrow 1 - \frac{1}{r^2} = 0$ $\Rightarrow x = +1$ Now, $f''(x) = \frac{2}{x^3}$ At x = 1, $f''(x) = \frac{2}{1^3} > 0$, local minima At x = -1, $f''(x) = \frac{2}{(-1)^3}$ = -2 < 0, local maxima 331 (c) Given curve is $y = f(x) = x^2 + bx - b$ On differentiating, we get $\frac{dy}{dx} = 2x + b$ The equation of the tangent at (1, 1) is $y - 1 = \left(\frac{dy}{dx}\right)_{(1,1)} = (x - 1)$ \Rightarrow y - 1 = (b + 2)(x - 1) \Rightarrow (2+b)x - y = 1 + b $\Rightarrow \frac{x}{\frac{(1+b)}{(2+b)}} - \frac{y}{1+b} = 1$ So, $OA = \frac{1+b}{2+b}$ and OB = -(1 + b)Now, area of $\triangle AOB = \frac{1}{2} \cdot \frac{1+b}{2+b} \cdot [-(1+b)] = 2$ (given) $\Rightarrow 4(2+b) + (1+b)^2 = 0$ $\Rightarrow 8+4b+1+b^2+2b=0$ $\Rightarrow b^2 + 6b + 9 = 0$ $\Rightarrow (b+3)^2 = 0 \Rightarrow b = -3$ 332 (a) Let $f(x) = 3 \sin x - 4 \sin^3 x = \sin 3x$ Since, sin x is increasing in the interval $\left|-\frac{\pi}{2},\frac{\pi}{2}\right|$ $\therefore -\frac{\pi}{2} \le 3x \le \frac{\pi}{2} \implies -\frac{\pi}{6} \le x \le \frac{\pi}{6}$ Thus, length of interval = $\left|\frac{\pi}{6}\left(-\frac{\pi}{6}\right)\right| = \frac{\pi}{3}$ 333 (d) To satisfy Rolle's theorem, it should be continuous in [0, 1]. $\Rightarrow \lim_{n \to 0^+} f(x) = f(0)$

 $\Rightarrow \lim_{n \to 0^+} \frac{\log x}{x^{-a}} = 0$

 $\Rightarrow \lim_{n \to 0^+} \frac{1/x}{-\alpha x^{-a-1}} = 0 \quad [\text{using L'Hospital's rule}]$ $\Rightarrow \lim_{n \to 0^+} - \frac{1}{\alpha x^{-\alpha}} = 0$ $\Rightarrow \lim_{n \to 0^+} - \frac{1}{\alpha} x^{\alpha} = 0$ Which shows $\alpha > 0$ otherwise, it would be discontinuous also when $\alpha > 0$, f(x) is differentiable in (0,1) and f(1)= f(0) = 0.Clearly $\alpha > 0$, thus $\alpha = \frac{1}{2}$ is the possible answer. 334 (a) Consider the function $f(x) = \frac{a x^3}{3} + \frac{b x^2}{2} + cx$ we have, f(0) = 0 and, $f(1) = \frac{a}{3} + \frac{b}{2} + c = \frac{2a+3b+6c}{6} = \frac{0}{6}$ = 0 [:: 2 a + 3 b + 6 c = 0]Therefore, 0 and 1 are roots of the polynomial f(x)Consequently, there exists at least one root of the polynomial $f'(x) = a x^2 + bx + c$ lying between 0 and 1 335 (a) The time period *T* of simple pendulum of length *l* is given by $T = 2\pi \left| \frac{l}{g} \right|$ $\Rightarrow \log T = \log 2\pi + \frac{1}{2}(\log l - \log g)$ $\Rightarrow \frac{1}{T} \frac{dT}{dl} = \frac{1}{2l} \Rightarrow \frac{dT}{dl} = \frac{T}{2l}$ It is given that $\frac{\Delta l}{l} \times 100 = 2$ Now, $\Delta T = \frac{dT}{dl} \Delta l$ $\Rightarrow \Delta T = \frac{T}{2l} \Delta l$ $\Rightarrow \frac{\Delta T}{T} \times 100 = \frac{1}{2} \left(\frac{\Delta l}{l} \times 100 \right) = \frac{1}{2} \times 2 = 1$ 336 (a) $\therefore g(x) = \min(x, x^2)$ \therefore g(x) is an increasing function

337 **(b)**

The graph of $y = \sin^{-1}(\sin x)$ is shown in diagram It is evident from the graph that

$$\frac{dy}{dx} = -1 \text{ for all } x \in \left(\frac{\pi}{2}, \frac{3\pi}{2}\right)$$

Hence, the slope of the tangent at $x = \frac{3\pi}{4}$ is -1

Given, $f(x) = 2x^3 - 9ax^2 + 12a^2x + 1$ attains maximum and minimum at *p* and *q* respectively. : f'(p) = 0, f'(q) = 0f''(p) < 0 and f''(q) > 0Since, f'(p) = 0 and f'(q) = 0 $6p^2 - 18ap + 12a^2 = 0$ \Rightarrow And $6q^2 - 18aq + 12a^2 = 0$ $\Rightarrow p^2 - 3ap + 2a^2 = 0$ And $q^2 - 3aq + 2a^2 = 0$ $\Rightarrow p = a, 2a; q = a, 2a$...(i) Now, f''(p) < 0 $\Rightarrow \quad 12p - 18a < 0 \quad \Rightarrow \quad p < \frac{3}{2}a \quad ...(ii)$ And $f''(q) > 0 \implies 12q - 18a > 0 \implies q >$ $\frac{3}{2}a$...(iii) From Eqs. (i), (ii), (iii), we get p = a, q = 2aNow, $p^2 = q$ $\Rightarrow \quad a^2 = 2a \quad \Rightarrow \quad a = 0,2$ But for a = 0, $f(x) = 2x^3 + 1$ which does not attains a maximum or minimum for any value of х. Hence, a = 2339 **(b)** Let $f(x) = -x^3 + 3x^2 + 9x - 27$ The slope of this curve $f'(x) = -3x^2 + 6x + 9$ Let $g(x) = f'(x) = -3x^2 + 6x + 9$ On differentiating w.r.t. *x*, we get g'(x) = -6x + 6For maxima or minima put $g'(x) = 0 \Rightarrow x = 1$ Now, g''(x) = -6 < 0 and hence, at x = 1, g(x)(slope) will have maximum value $\therefore [g(1)]_{\text{max}} = -3 \times 1 + 6(1) + 9 = 12$ 340 (c) Given, $a^2x^4 + b^2y^4 = c^6$

$$\Rightarrow y = \left(\frac{c^6 - a^2 x^4}{b^2}\right)^{1/4}$$

and let $f(x) = xy = x \left(\frac{c^6 - a^2 x^4}{b^2}\right)^{1/4}$
$$\Rightarrow f(x) = \left(\frac{c^6 x^4 - a^2 x^8}{b^2}\right)^{1/4} \left(\frac{4x^3 c^6}{b^2} - \frac{8x^7 a^2}{b^2}\right)$$

On differentiating w.r.t. x, we get
 $f'(x) = \frac{1}{4} \left(\frac{c^6 x^4 - a^2 x^8}{b^2}\right)^{1/4} \left(\frac{4x^3 c^6}{b^2} - \frac{8x^7 a^2}{b^2}\right)$
For maxima or minimum, put $f'(x) = 0$
$$\Rightarrow \frac{4x^3 c^6}{b^2} = \frac{8x^7 a^2}{b^2} = 0$$

$$\Rightarrow \frac{4x^3}{b^2} (c^6 - 2a^2 x^4) = 0$$

$$\Rightarrow x^4 = \frac{c^6}{2a^2} \Rightarrow \pm \frac{c^{3/2}}{c^{1/4} \sqrt{a}}$$

At $x = \frac{c^{3/2}}{2^{1/4} \sqrt{a}}$, $f(x)$ will be maximum
$$\therefore f\left(\frac{c^{3/2}}{2^{1/4} \sqrt{a}}\right) = \left(\frac{c^{12}}{2a^2b^2} - \frac{c^{12}}{4a^2b^2}\right)^{1/4}$$

$$= \left(\frac{c^{12}}{4a^2b^2}\right)^{1/4} = \frac{c^3}{\sqrt{2ab}}$$

(d)
Given that, $\frac{dV}{dt} = k$ (say)
$$\therefore V = \frac{4}{3}\pi R^3$$

$$\Rightarrow \frac{dv}{dt} = 4\pi R^2 \frac{dR}{dt}$$
$$\Rightarrow \frac{dR}{dt} = \frac{k}{4\pi R^2}$$

 \Rightarrow Rate of increasing radius is inversely proportional to its surface area

343 **(a)**

341

Given, $s = 16 - 2t + 3t^3$

$$\Rightarrow \qquad \frac{ds}{dt} = -2 + 9t^2 \quad \Rightarrow \frac{d^2s}{dt^2} = 18t$$

At $t = 2s$, acceleration $a = \frac{d^2s}{dt^2} = 18 \times 2 = 36m/s^2$
344 **(b)**
We have,
 $y = \frac{1}{x}$
 $\Rightarrow \frac{dy}{dx} = -\frac{1}{x^2}$
 \Rightarrow Slope of the normal at any point $= \frac{-1}{\frac{dy}{dx}} = x^2$
 > 0
Clearly, slopes of the lines given in options (b)

Clearly, slopes of the lines given in options (b) and (d) are positive

345 (c)

Let surface area of sphere,

$$S = \frac{4}{3}\pi r^{3} \implies \frac{dS}{dt} = 4\pi r^{2}\frac{dr}{dt}$$
$$\Rightarrow \frac{dS}{dt} = 4\pi r^{2}(2) = 8\pi r^{2} \quad \therefore \frac{dS}{dt} \propto r^{2}$$

346 **(c)**

Given equation of curves are $y = x^2$ and $6y = 7 - x^3$ $\therefore \quad m_1 = \left(\frac{dy}{dx}\right)_{(1,1)} = 2(1) = 2$

And
$$m_2 = \left(\frac{dy}{dx}\right)_{(1,1)} = -\frac{1}{2}$$

Now, $m_1 m_2 = 2 \times \left(-\frac{1}{2}\right) = -1$

347 **(a)**

On differentiating the given curves respectively

$$\therefore \quad \left(\frac{dy}{dx}\right)_{C_1} = \frac{x^2 - y^2}{2xy} = m_1 \quad (\text{say})$$

And $\left(\frac{dy}{dx}\right)_{C_2} = \frac{-2xy}{x^2 - y^2} = m_2 \quad (\text{say})$
 $m_1 \times m_2 = -1$
Hence, the two curves cut at right angles

348 (d)

Since,
$$s \propto v^2 \Rightarrow v = k\sqrt{s}$$

Now, acceleration $\frac{dv}{dt} = k \frac{1}{2\sqrt{s}} \frac{ds}{dt}$
 $=k \frac{1}{2\sqrt{s}} \cdot k\sqrt{s}$ [:: $v = \frac{ds}{dt} = k\sqrt{s}$]
 $= \frac{k^2}{2} = \text{constant}$

349 **(c)**

Let P(x, y) be the point on the curve $x^2 = 2y$ such that it is nearest to the point A(0, 3). Then, $AP^2 = x^2 + (y - 3)^2$ $\Rightarrow AP^2 = 2y + (y - 3)^2 = y^2 - 4y + 9$ $= (y - 2)^2 + 5 \ge 5$ Clearly, AP^2 is minimum when y = 2 and the minimum value of AP is $\sqrt{5}$

Putting y = 2 in $x^2 = 2y$ we get $x = \pm 2$ Hence, the required points are (2, 2) and (-2, 2) 351 (d)

Equation of parabola is
$$y^2 = 18x....(i)$$

 $\Rightarrow 2y \frac{dy}{dt} = 18 \frac{dx}{dt} \Rightarrow 2.2y = 18 \qquad \left[\therefore \frac{dy}{dt} = 2 \frac{dx}{dt} \right]$
 $\Rightarrow y = \frac{9}{2}$
 $\therefore From Eq.(i), \left(\frac{9}{2}\right)^2 = 18x \Rightarrow x = \frac{9}{8}$
 $\therefore Point is \left(\frac{9}{8}, \frac{9}{2}\right).$

352 (c)

Given curves are $y^2 = x$ and $x^2 = y$ On differentiating w.r.t. x, we get $2y \frac{dy}{dx} = 1$ and $2x = \frac{dy}{dx}$ $\Rightarrow \frac{dy}{dx} = \frac{1}{2y}$ and $\frac{dy}{dx} = 2x$ At (0,0) $m_1 = \frac{dy}{dx} = \infty$ ad $m_2 = \frac{dy}{dx} = 0$ $\therefore \quad tan\theta = \frac{m_2 - m_1}{1 + m_1 m_2} = \infty$ $\Rightarrow \quad \theta = \frac{\pi}{2}$

353 **(b)**

Let
$$f(x) = (1 + x)^n - (1 + x^n)$$
. Then,
 $f'(x) = n(1 + x)^{n-1} - nx^{n-1}$
 $\Rightarrow f'(x) = n\{(1 + x)^{n-1} - x^{n-1}\}$
 $\Rightarrow f'(x) = n\left\{\frac{1}{(1 + x)^{1-n}} - \frac{1}{x^{1-n}}\right\} < 0,$
if $n \ge 0, 1 - n \ge 0$ and $x > 0$
 $\Rightarrow f(x)$ is decreasing when $x > 0, 0 \le n \le 1$
 $\Rightarrow f(x) < f(0)$
 $\Rightarrow (1 + x)^n - (1 + x^n) < 0$
 $\Rightarrow (1 + x)^n < 1 + x^n$, if $0 \le n \le 1$ and $x > 0$

354 **(a)**

We have,

$$f(x) = \int_{1}^{x} \{2(t-1)(t-2)^{3} + 3(t-1)^{2}(t-2)^{2}\} dt$$

$$\Rightarrow f(x) = \int_{1}^{x} (t-1)(t-2)^{2}(5t-7) dt$$

$$\Rightarrow f'(x) = (x-1)(x-2)^{2}(5x-7)$$
For maximum or minimum, we must have

$$f'(x) = 0 \Rightarrow x = 1, 2, 7/5$$
Now,

$$f''(x) = (x-2)^{2}(5x-7) + 5(x-1)(x-2)^{2} + 2(x-2)(x-1)(5x-7)$$

$$\Rightarrow f''(1) < 0, f''(7/5) > 0 \text{ and } f''(2) = 0$$

Hence, f(x) attains its maximum at x = 1355 (d) The curve $y = e^{-|x|}$ cuts the line x = 1 at (1, 1/e) $y = e^{-|x|} = \begin{cases} e^x, x < 0\\ e^{-x}, x > 0 \end{cases}$ $\therefore \frac{dy}{dx} = \begin{cases} e^x, x < 0\\ -e^{-x}, x > 0 \end{cases}$ $\Rightarrow \left(\frac{dy}{dx}\right)_{r-1} = -e^{-1} = -\frac{1}{e}$ The equation of the tangent at (1, 1/e) is $y - \frac{1}{a} = -\frac{1}{a}(x-1) \Rightarrow ey - 1 = -x + 1 \Rightarrow x + ey$ 356 (c) Given, $x = t^2 + 1$ and $y = t^2 - t - 6$ $\therefore \quad \frac{dx}{dt} = 2t \quad \text{and} \quad \frac{dy}{dx} = 2t - 1$ $\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{2t-1}{2t}$ When, it , meet *x*-axis, then y = 0 $\therefore \quad t^2 - t - 6 = 0$ y = 3, -2 \Rightarrow $\therefore \quad \left(\frac{dy}{dx}\right)_{at\,t=3} = \frac{6-1}{6} = \frac{5}{6} = m_1$ [say] And $\left(\frac{dy}{dx}\right)_{at\ t=-2} = \frac{5}{4} = m_1$ [say] $\therefore \text{ Required angle} = \pm \tan^{-1} \left\{ \left| \frac{\frac{3-3}{6}}{1+25} \right| \right\}$ $=\pm \tan^{-1}\left\{\frac{10}{40}\right\}$ 357 (b) Given curve is $x^2y = x^2 - 3x + 6$...(i) At x = 3, $3^2(y) = 3^2 - 3(3) + 6$ $\Rightarrow y = \frac{2}{2}$ On differentiating Eq. (i) w.r.t. x, we get $2xy + x^2 \frac{dy}{dx} = 2x - 3$ $\Rightarrow \frac{dy}{dx} = \frac{2x - 3 - 2xy}{r^2}$ $\Rightarrow \left(\frac{dy}{dx}\right)_{(3,\frac{2}{3})} = \frac{6-3-2\times3\times\frac{2}{3}}{3^2} = -\frac{1}{3^2}$ ∴ Equating of normal is $y - \frac{2}{3} = 3^2(x - 3)$ 27x - 3y = 79⇒ 358 (a) Let $x_1, x_2 \in R$ such that $x_1 < x_2$. Then, $x_1 < x_2$ $\Rightarrow f(x_1) < f(x_2)$ [: is an increasing function] $\Rightarrow g(f(x_1)) < g(f(x_2))$

[: g is an increasing function] $\Rightarrow gof(x_1) < gof(x_2)$ Hence, gof is an increasing function 359 (a) Let $y = x^x$ On differentiating w.r.t. x , we get $\frac{dy}{dt} = x^x (1 + \log x)$ For increasing function, $\frac{dy}{dx} > 0$ $\Rightarrow x^{x}(1 + \log x) > 0) \Rightarrow 1 + \log x > 0$ $\Rightarrow \log_e x > \log_e \frac{1}{\rho} \Rightarrow x > \frac{1}{\rho}$ Function is increasing when $x > \frac{1}{2}$ 360 (d) We have , $y = x + \frac{4}{r^2}$ On differencing with respect to x, we get $\frac{dy}{dx} = 1 - \frac{8}{x^3}$ Since, the tangent is parallel to x - axis, therefore $\frac{dy}{dx} = 0$ $x^3 = 8 \Rightarrow x = 2 and y = 3$ 361 (c) The two curves are $y = x^2$ and $6y = 7 - x^3$. These two intersect at (1, 1)Now, $y = x^2 \Rightarrow \frac{dy}{dx} = 2x \Rightarrow m_1 = \left(\frac{dy}{dx}\right)_{(1,1)} = 2$ and, $y = y - x^3 \Rightarrow \frac{dy}{dx} = -\frac{x^2}{2} \Rightarrow m^2 = \left(\frac{dy}{dx}\right)_{(1,1)} =$ $-\frac{1}{2}$ Clearly, $m_1 m_2 = -1$ Thus, the angle of intersection of two curves is $\pi/2$ 362 (d) $f(x) = \frac{x^2 - 1}{x^2 + 1}$ (for every real number *x*) $f'(x) = \frac{(x^2 + 1)(2x) - (x^2 - 1)2x}{(x^2 + 1)^2}$ $\Rightarrow f'(x) = \frac{4x}{(x^2+1)^2}$...(i) For minima or maxima, put f'(x) = 0 $\therefore \quad \frac{4x}{(x^2+1)^2} = 0 \quad \Rightarrow \quad x = 0$ Now, $f''(x) = \frac{(x^2+1)^2 4 - (4x)2(x^2+1)2x}{(x^2+1)^4}$ $f''(x) = \frac{12x^2 + 4}{(x^2 + 1)^3}$ At x = 0

$$f''(0) = \frac{-12 \times 0^2 + 4}{(0^2 + 1)^3} > 0, \text{ minima}$$

Then, minimum value of $f(x)$ at $x = 0$ is
$$f(0) = \frac{0^2 - 1}{0^2 + 1} = -1$$

(b)

363 **(b)**

We have,

$$f(x) = |x| + |x - 1| + |x - 2|$$

$$= \begin{cases} -3x + 3, & x < 0 \\ -x + 3, & 0 \le x < 1 \\ x + 1, & 1 \le x < 2 \\ 3x - 3, & x \ge 2 \end{cases}$$

$$\Rightarrow f''(x) = \begin{cases} -3, & x < 0 \\ -1, & 0 < x < 1 \\ 1, & 1 < x < 2 \\ 3, & x > 2 \end{cases}$$

Clearly, f(x) is not differentiable at x = 0, 1, 2It is evident from the definition that f(x) attains a minimum at x = 1 but it does not have a maximum or minimum at x = 0, 2

364 (a)

After time t the distance covered by X is 4t and Y is 3t.

Let shortest distance between *X* and *Y* is *A*. Then , by cosine law

$$B = \frac{1}{120^{\circ}} C$$

$$A^{2} = (4t)^{2} + (3t)^{2} - (4t)(3t)^{2} \cos 120^{\circ}$$

$$A^{2} = 16t^{2} + 9t^{2} - 24t^{2} \left(-\frac{1}{2}\right) = 37t^{2} \dots (i)$$

$$A = \sqrt{37t}$$
If $t = 1h$, then $A = \sqrt{37}km$
Now, differentiating Eq.(i)w. r. t. t, we get
$$2AA'' = 37(2t)$$
After $t = 1h$, we get
$$2\sqrt{37}A'' = 2(37)$$

$$A = \sqrt{37}km/h$$

365 (a) $\because y = a(1 - \cos x)$ On differentiating w.r.t. x, we get $y' = a \sin x \quad \dots(i)$ Put y' = 0 for maxima or minima $\Rightarrow \sin x = 0$ $\Rightarrow x = 0, \pi$ Again differentiating w.r.t. x of Eq. (i) we get $y'' = a \cos x \Rightarrow y''(0) = 0$ and $y''(\pi) = -a$ Hence, *y* is maximum when $x = \pi$ 366 (c) $x^4 - x^3 + x^2 = x^2(x^2 - x + 1)$ $=x^{2}\left[\left(x-\frac{1}{2}\right)^{2}+\frac{3}{4}\right]$ $\therefore \quad f(x) = e^{x^4 - x^3 + x^2}$ will attain minimum At x = 0 \Rightarrow Minimum of f(x) = 1367 (d) To satisfy Rolle's theorem it should be continuous in [0, 1] *ie*, RHL= f(0) $\Rightarrow \lim_{x \to 0^+} \frac{\log x}{x^{-\alpha}} = 0$ $\Rightarrow \lim_{x \to 0^+} \frac{\frac{1}{x}}{-\alpha x^{-\alpha - 1}} = 0 \quad (\text{using L'Hospital's rule})$ $\Rightarrow \lim_{x \to 0^+} \frac{1}{\alpha x^{-\alpha}} = 0$ $\Rightarrow \lim_{x \to 0^+} \frac{x^{\alpha}}{\alpha} = 0$ Which shows $\alpha > 0$ otherwise it would be continuous also When $\alpha > 0$, f(x) is differentiating in (0, 1) and f(1) = f(0) = 0Clearly, $\alpha > 0$, thus $\alpha = \frac{1}{2}$ is the possible answer 368 (c) Let $y = f(x) = \log_e x$, x = 4 and $x + \Delta x = 4.01$ Then. $\frac{dy}{dx} = \frac{1}{x}$ and $\Delta x = 0.01 \Rightarrow \left(\frac{dy}{dx}\right)_{x=4} = \frac{1}{4}$ $\Delta y = \frac{dy}{dx} \Delta x = \frac{1}{4} \times 0.01 = 0.0025$ $\therefore \log_e 4.01 = y + \Delta y$ $= \log_e 4 + 0.0025$ = 1.3868 + 0.0025= 1.3893369 (d) Given error in diameter= ± 0.04 : Error in radius, $\delta r = \pm 0.02$ ∴percent error in the volume of sphere

$$= \frac{\delta V}{V} \times 100 = \frac{\delta \left(\frac{4}{3}\pi r^{2}\right)}{\frac{4}{3}\pi r^{3}} \times 100 = \frac{3\delta}{r} \times 100$$
$$= \frac{3 \times \pm 0.02}{10} \times 100 = \pm 0.6$$

370 (a)

For
$$x > 0$$
 or $x < 0$
 $f'(x) = \frac{a}{x} + 2bx + 1$
 $\therefore f'(1) = 0 \implies a + 2b + 1 = 0$...(i)
And $f'(3) = 0 \implies \frac{a}{3} + 6b + 1 = 0$...(ii)
On solving Eqs. (i) and (ii), we get
 $a = -3/4$, $b = -1/8$

371 (b)

We have,

$$\frac{x}{2} = \frac{a}{2 \sin A}$$
 [Using : $R = \frac{a}{2 \sin A}$]
 $\Rightarrow a = x \sin A$

$$\Rightarrow \frac{du}{dt} = x \cos A \frac{dA}{dt}$$
$$\Rightarrow \frac{x}{2} \frac{dA}{dt} = x \cos A \frac{dA}{dt} \quad \left[\frac{da}{dt} = \frac{x}{2} \frac{dA}{dt} \text{ (given)}\right]$$
$$\Rightarrow \cos A = \frac{1}{2} \Rightarrow A = \frac{\pi}{3}$$

372 **(b)**

Given curve is $y = 4xe^{x}$ $\frac{dy}{dx} = 4e^{x} + 4xe^{x}$ At $(-1, -\frac{4}{e}), (\frac{dy}{dx})_{(-1, -\frac{4}{e})} = 4e^{-1} + 4(-1)e^{-1} =$

0

∴ Equation of tangent is

$$\left(y + \frac{4}{e}\right) = 0(x+1)$$
$$\Rightarrow \quad y = -\frac{4}{e}$$

373 (d)

Given,
$$f(x) = \int_{x^2}^{x^2+1} e^{-t^2} dt$$

 $\Rightarrow f'(x) = e^{-(x^2+1)^2} 2x - e^{-(x^2)^2} 2x$
 $= 2xe^{-(x^4+2x^2+1)} \{1 - e^{2x^2+1}\}$
Here, $e^{2x^{2+1}} > 1$

And $e^{-(x^4+2x^21)} > 0$ for all x For f'(x) > 0, x < 0

374 (d)

There is only one function in option (a), whose critical point $\frac{1}{2} \in (0, 1)$ but in other parts critical point $0 \notin (0, 1)$. Then, we can say that functions in options (b), (c) and (d) are continuous on [0, 1] and differentiable in (0, 1)

Now, for $f(x) = \begin{cases} \frac{1}{2} - x, & x < \frac{1}{2} \\ \left(\frac{1}{2} - x\right)^2, & x \ge \frac{1}{2} \end{cases}$ Here, $Lf'\left(\frac{1}{2}\right) = -1$ And $Rf'\left(\frac{1}{2}\right) = 2\left(\frac{1}{2} - \frac{1}{2}\right)(-1) = 0$ $\therefore Lf'\left(\frac{1}{2}\right) \neq Rf'\left(\frac{1}{2}\right)$ \Rightarrow *f* is non-differentiable at $x = \frac{1}{2} \in (0, 1)$: LMVT is NOT applicable to f(x) in [0, 1]375 (a) Given, $f(x) = \frac{e^{2x} - 1}{e^{2x} + 1}$ $\therefore \quad f(-x) = \frac{e^{-2x} - 1}{e^{-2x} + 1} = -f(x)$ \therefore f(x) is an odd function Now, $f'(x) = \frac{4e^{2x}}{(1+e^{2x})^2} > 0, \forall x \in \mathbb{R}$ \Rightarrow f(x) is an increasing function 376 (d) The curves xy = k and $x = y^2$ intersect at $P(k^{2/3}, k^{1/3})$ Now, $xy = k \Rightarrow x \frac{dy}{dx} + y = 0 \Rightarrow \frac{dy}{dx} = -\frac{y}{x} \Rightarrow$ $\left(\frac{dy}{dx}\right)_n = -\frac{1}{k^{1/3}}$ $x = y^2 \Rightarrow 2y \frac{dy}{dx} = 1 \Rightarrow \frac{dy}{dx} = \frac{1}{2y} \Rightarrow \left(\frac{dy}{dx}\right)_n = \frac{1}{2k^{1/3}}$ If given curves intersect orthogonally, then $\left(\frac{dy}{dx}\right)_{c_{\star}} \times \left(\frac{dy}{dx}\right)_{c_{\star}} = -1 \Rightarrow \frac{-1}{k^{1/3}} \times \frac{1}{2k^{1/3}} = -1$ $\Rightarrow 8k^2 = 1$ 377 (c) We have, $x^{1/3} + y^{1/3} = a^{1/3}$ $\Rightarrow \frac{1}{3}x^{-2/3} + \frac{1}{3}y^{-2/3}\frac{dy}{dx} = 0$ $\Rightarrow \frac{dy}{dx} = -\left(\frac{x}{y}\right)^{-2/3} = -\left(\frac{y}{x}\right)^{2/3} \Rightarrow \left(\frac{dy}{dx}\right)_{p} = -1$ The equation of the tangent at *P* is $y - \frac{a}{8} = -1\left(x - \frac{a}{8}\right) \Rightarrow x + y = \frac{a}{4}$ This cuts intercepts $\frac{a}{4}$ and $\frac{a}{4}$ with each of the coordinate axes

 $\therefore \frac{a^2}{16} + \frac{a^2}{16} = 2 \Rightarrow a^2 = 16 \Rightarrow a = 4$ 378 (c) Slope of the normal = $-\frac{1}{\left(\frac{dy}{dx}\right)}$ This is parallel to *x*-axis $\Rightarrow -\frac{1}{\left(\frac{dy}{dx}\right)} = 0 \Rightarrow \frac{dx}{dy} = 0$ 379 (c) Given equation is $a + bv^2 = x^2$ On differentiating with respect to t, we get $0 + b\left(2v\frac{dv}{dt}\right) = 2x\frac{dx}{dt}$ $\Rightarrow vb\frac{dv}{dt} = x\frac{dx}{dt}$ $\Rightarrow \frac{dv}{dt} = \frac{x}{vb} \cdot \frac{dx}{dt}$ $\Rightarrow \frac{dv}{dt} = \frac{x}{b} \left(\because \frac{dx}{dt} = v \right)$ 380 (d) Surface area, $S=2\pi rh + \pi r^2$...(i) $V = \pi r^2 h$ And ... (ii) From Eq. (i), $h = \frac{S - \pi r^2}{2\pi r}$ $\therefore \quad \text{From Eq. (ii), } V = \frac{r}{2}(S - \pi r^2)$ $\Rightarrow \frac{dV}{dr} = \frac{1}{2}(S - 3\pi r^2) = 0$ [say] \Rightarrow $S - 3\pi r^2 = 0 \Rightarrow S = 3\pi r^2$ On putting the value of S in Eq.(i), we get $3\pi r^2 = 2\pi rh + +\pi r^2 \Rightarrow r = h$ 381 (d) Given curve is $x^2 + y^2 = a^2$ $\therefore 2x + 2y \frac{dy}{dx} = 0$ $\Rightarrow \frac{dy}{dx} = -\frac{x}{y}$ Given, $\frac{dy}{dx} = 0$ $\Rightarrow -\frac{x}{v}=0$ $\Rightarrow x = 0$ $\therefore y = \pm a$ But $y \ge 0$ given *:*. y = a \Rightarrow Required point is (0, a)Alternate It is clear from the graph, tangent is parallel to x-axis for y > 0 is at (0,a)

387 (b)

Since $f(x) = \frac{a \sin x + b \cos x}{c \sin x + d \cos x}$ is decreasing for all x

$$\therefore f'(x) < 0 \text{ for all } x$$

$$\Rightarrow \frac{ad - bc}{(c \sin x + d \cos x)^2} < 0 \text{ for all } x$$

$$\Rightarrow ad - bc < 0$$

388 (b)

Clearly, $f(x) = \log \sin x$ is continuous on $[\pi/6, 5 \pi/6]$ and differentiable on $(\pi/6, 5 \pi/6)$. Therefore, there exists $c \in (\pi/6, 5 \pi/6)$ such that

$$f'(c) = \frac{f\left(\frac{5\pi}{6}\right) - f\left(\frac{\pi}{6}\right)}{\frac{5\pi}{6} - \frac{\pi}{6}}$$

$$\Rightarrow \cot c = \frac{-\log_e 2 + \log_e 2}{\frac{2\pi}{3}}$$

$$\Rightarrow \cot c = 0 \Rightarrow c = \frac{\pi}{2} \in (\pi/6, 5\pi/6)$$

389 (d)

Let $f(x) = 2x^3 - 3x^2 - 12 + 5$ \therefore $f'(x) = 6x^2 - 6x - 12$ For maxima or minima, put f'(x) = 0 \therefore $6x^2 - 6x - 12 = 0$ \Rightarrow x = -1, 2Now, f''(x) = 12x - 6 f''(-1) = -12 - 6 = -18 < 0, maxima \therefore f(x) is maximum at x = -1At x = -1, f(x) = -2 - 3 + 12 + 5 = 12At x = 4, f(x) = 128 - 48 - 48 + 5 = 37Hence, largest value of f(x) in the given interval is 4

390 **(b)**

Let the number be *x*, then $f(x) = \frac{x}{x^2 + 16}$ On differentiating w.r.t. *x*, we get $f'(x) = \frac{(x^2 + 16) \cdot 1 - x(2x)}{(x^2 + 16)^2}$ $=\frac{x^2+16-2x^2}{(x^2+16)^2}=\frac{16-x^2}{(x^2+16)^2}\quad ...(i)$ Put f'(x) = 0 for maxima or minima $f'(x) = 0 \implies 16 - x^2 = 0 \implies x = 4, -4$ Again, on differentiating w.r.t. *x*, we get f''(x) $=\frac{(x^2+16)^2-(-2x)-(16-x^2)2(x^2+16)2x}{(x^2+16)^4}$ At x = 4, f''(x) < 0 \therefore f(x) is maximum at x = 4And at x = -4, f''(x) > 0 f(x) is minimum $\therefore \text{ Least value of } f(x) = \frac{-4}{16+16} = -\frac{1}{8}$ 391 (a) Given , $s = \sqrt{t}$ $\therefore \ \frac{ds}{dt} = \frac{1}{2\sqrt{t}} \qquad \Rightarrow v = \frac{1}{2\sqrt{t}}$

$$\Rightarrow \frac{av}{dt} = -\frac{1}{2.2t^{3/2}} \Rightarrow a = \frac{2}{(2\sqrt{t})^3}$$

$$\Rightarrow a = -2v^3 \Rightarrow a \propto v^3$$
392 (a)
Let $y = \sin^3 x + \cos^3 x$
 $\frac{dy}{dx} = 3\sin^2 x \cos x - 3\cos^2 x \sin x$
 $= 3\sin x \cos x (\sin x - \cos x)$
Put, $\frac{dy}{dx} = 0$, $3\sin x \cos x (\sin x - \cos x) = 0$
 $\Rightarrow x = 0 \frac{\pi}{2} \text{ or } \frac{\pi}{4}$
Now, y has its maximum value at $x = 0$ or $\frac{\pi}{2}$ and $y_{\text{max}} = 1$
393 (a)
Let the diameter of the sphere is $AE = 2r$
 A
 $AD = y$
Since, $BD^2 = AD$. DE
 $\Rightarrow x^2 = y(2r - y)$...(i)
Volume of cone,
 $V = \frac{1}{3}\pi x^2 y = \frac{1}{3}\pi y(2r - y)y$
 $= \frac{1}{3}\pi (2ry^2 - y^3)$
On differentiating w.r.t. y, we get
 $\frac{dV}{dy} = \frac{1}{3}\pi (4ry - 3y^2)$
For maxima and minima, put $\frac{dV}{dy} = 0$
 $\Rightarrow y = \frac{4}{3}r$, 0
Again on differentiating w.r.t. y, we get
 $\frac{d^2V}{dy^2} = \frac{1}{3}\pi (4r - 6y)$
At $y = \frac{4}{3}r$, $\frac{d^2V}{dy^2} = \frac{1}{3}\pi (4r - 8r) = -ve$
 \therefore Volume of cone is maximum at $y = \frac{4}{3}r$.
Now, required ratio $= \frac{\text{height of cone}}{\text{Diameter of sphere}}$

dn

On differentiating w.r.t. *x*, we get $f'(x) = \frac{4 + x + x^2 - x(1 + 2x)}{(4 + x + x^2)^2}$ For maximum, put $f'(x) = 0 \Rightarrow \frac{4-x^2}{(4+x+x^2)^2} = 0$ $\Rightarrow x = 2, -2$ Both the values of *x* are not in the interval [-1, 1] $\therefore f(-1) = \frac{-1}{4-1+1} = \frac{-1}{4}$ $f(1) = \frac{1}{4+1+1} = \frac{1}{6}$ (maximum) 395 (b) Given, $2v^4 = x^5$ $\Rightarrow 8y^3 \frac{dy}{dx} = 5x^4$ $\Rightarrow \left(\frac{dy}{dx}\right)_{(2,2)} = \frac{5(2)^4}{8(2)^3} = \frac{5}{4}$ \therefore Length of subtangent = $\frac{y}{dy/dx} = \frac{2}{5/4} = \frac{8}{5}$ 397 (a) $f(x) = \int_0^x \sin t \, dt, x \ge 0$ $\Rightarrow f'(x) = \sin x$ Now, f'(x) > 0in $0 < x < \frac{\pi}{2}$ \therefore f(x) is increasing in $0 < x < \frac{\pi}{2}$. 398 (a) Given, $x = 3 + 8t - 4t^2$, On differentiating, w. r. t. x, we get $v = \frac{dx}{dt} = 8 - 8t$ At t = 1, v = 8 - 8 = 0 unit 399 (d) Curves $y^2 = 4x + 4$ and $y^2 = 36(9 - x)$ intersect at P(8, 6) and Q(8, -6)Now, $y^2 = 4x + 4 \Rightarrow 2y \frac{dy}{dx} = 4 \Rightarrow \left(\frac{dy}{dx}\right)_c \frac{2}{y}$ and $y^2 = 36(9 - x) \Rightarrow 2y \frac{dy}{dx} = -36 \Rightarrow \left(\frac{dy}{dx}\right)_{c} =$ $\therefore \left(\frac{dy}{dx}\right)_{c_1} \times \left(\frac{dy}{dx}\right)_{c_2} = -\frac{36}{y^2}$ Clearly, this product is -1 at P(8, 6) and Q(8, -6)Hence, given curves intersect at right angle 400 (b) Let *m* be the slope of the tangent to the curve $y = e^x \cos x$. Then, $m = \frac{dy}{dx} = e^x(\cos x - \sin x)$ $\Rightarrow \frac{dm}{dx} = e^x(\cos x - \sin x) + e^x(-\sin x - \cos x)$ $= -2e^x \sin x$

and.

 $\frac{d^2m}{dx^2} = -2e^x(\sin x + \cos x)$ $\therefore \frac{dm}{dx} = 0 \Rightarrow \sin x = 0 \Rightarrow x = 0, \pi, 2\pi$ Clearly, $\frac{d^2m}{dx^2} > 0$ for $x = \pi$ Thus, *m* is maximum at $x = \pi$. Hence, $a = \pi$ 401 (a) Since f(x) is decreasing in the interval (-2, -1) \therefore f'(x) < 0 for all $x \in (-2, -1)$ $\Rightarrow 6x^2 + 18x + \lambda < 0$ for all $x \in (-2, -1)$ $\Rightarrow x = -2$ and x = -1 must lie between the roots of the polynomial $6x^2 + 18x + \lambda$ But, (-2, -1) is the largest possible interval in which g(x) < 0. Therefore, x = -2 and x = -1are the roots of polynomial g(x) \therefore Product of the roots = $(-2) \times (-1)$ $\Rightarrow \frac{\lambda}{6} = 2 \Rightarrow \lambda = 12$ 402 (a) f(x) $=\begin{cases} |x^{3} + x^{2} + 3x + \sin x| \left(3 + \sin\left(\frac{1}{x}\right)\right), & x \neq 0\\ 0, & x = 0 \end{cases}$ Let $g(x) = x^3 + x^2 + 3x + \sin x$ $g'(x) = 3x^2 + 2x + 3 + \cos x$ $=3\left(x^{2}+\frac{2x}{2}+1\right)+\cos x$ $= 3\left\{ \left(x + \frac{1}{3}\right)^2 + \frac{8}{9} \right\} + \cos x > 0$ And $2 < 3 + \sin(\frac{1}{r}) < 4$ Hence, minimum value of f(x) is 0 at x = 0Hence, number of points=1 403 (b) Given, $f(x) = \frac{x}{2} + \frac{3}{x} \Rightarrow f''(x) = \frac{1}{2} - \frac{3}{x^2}$ Put $f''(x) = 0 \Rightarrow x = \pm 3$ + - - + + 2 O 3Thus, f(x) is decreasing in the interval (-3,3). 404 (c) Given, $t = as^2 + bs + c$ $\Rightarrow 1 = 2as \frac{ds}{dt} + b \frac{ds}{dt}$ [differentiating] $\Rightarrow 1 = 2asv + bv$...(i) $\Rightarrow 0 = 2a \frac{ds}{dt}v + 2as \frac{dv}{dt} + b \frac{dv}{dt}$ [differentiating] $\Rightarrow \frac{dv}{dt}(2as+b) = -2av^2$ $\Rightarrow \frac{dv}{dt}\left(\frac{1}{v}\right) = -2av^2$ [from Eq.(i)] $\Rightarrow \frac{dv}{dt} = -2av^3$

405 (c)
Let
$$f(x) = x^2 - x + 1$$

 $\Rightarrow f'(x) = 2x - 1$
 $\Rightarrow f'(0) = -1$
And $f'(1) = 1$
Thus, function is neither increasing nor
decreasing.

407 (d)

Let area,
$$A = \pi r^2$$

 $\Rightarrow \frac{dA}{dt} 2\pi r \frac{dr}{dt}$
 $\therefore \frac{dA}{dt}\Big|_{r=5} = 10\pi \times 0.1 = \pi \frac{cm^2}{s} [\because \frac{dr}{dt} = 0.1cm/s]$

408 (b)

Length of subtangent = $y \frac{dx}{dy}$ and length of subnormal= $y \frac{dy}{dx}$ \therefore Product = y^2 \Rightarrow Required product is the square of the ordinate 409 (c) Let $y = x^{1/x}$ On taking log on both sides, we get $\log y = \frac{1}{x} \log x$ $\Rightarrow \frac{1}{y} \frac{dy}{dx} = \frac{1}{x^2} - \frac{\log x}{x^2} = \frac{1 - \log x}{x}$ $\Rightarrow \frac{dy}{dx} = x^{1/x} \left(\frac{1 - \log x}{x}\right)$ Now, $x^{1/x} > 0$ for all positive values of xAnd $\frac{1 - \log x}{x^2} < 0$ in (1, e)And $\frac{1 - \log x}{x^2} < 0$ in (e, ∞) \therefore f(x) is increasing in (1, e) and decreasing in (e, ∞)

410 (c)

We have,

$$f(x) = \frac{ax+b}{(x-1)(x-4)} \quad \dots(i)$$

$$\Rightarrow f'(x) = \frac{a(x-1)(x-4) - (ax+b)(2x-5)}{(x-1)^2(x-4)^2}$$

It is given that f(x) has an extremum at P(2, -1). Therefore,

$$-1 = \frac{2a+b}{(2-1)(2-4)} \text{ and } 0 = \frac{-2a+(2a+b)}{(2-1)^2(2-4)^2}$$

$$\Rightarrow 2a+b=2 \text{ and } b = 0 \Rightarrow a = 1, b = 0$$

411 (c)

They will encounter if $10 + 6t = 3 + t^2 \implies t^2 - 6t - 7 = 0 \implies t$ = 7At t = 7s, moving in a first point

 $v_1 = \frac{d}{dt}(10 + 6t) = 6 \text{ cm/s}$ At t = 7s, moving in a second point $v_2 = \frac{d}{dt}(3+t^2)$ $= 2t = 2 \times 7 = 14$ cm/s \therefore Resultant velocity = $v_2 - v_1 = 14 - 6 = 8 \text{ cm/s}$ 412 (d) Given function $f(x) = e^{x^2} + e^{-x^2}$ $g(x) = xe^{x^2} + e^{-x^2}$ and $h(x) = x^2 e^{x^2} + e^{-x^2}$ Are strictly increasing on [0, 1]. Hence, at x = 1, the given function attains absolute maximum all equal to $e + \frac{1}{a}$ 413 (c) Let (h, k) be a point of contact of the tangents drawn from the origin to $y = \sin x$. Then, (h, k)lies on $y = \sin x$ $\therefore k = \sin h$...(i) Now. $y = \sin x$, $\Rightarrow \frac{dy}{dx} = \cos x \Rightarrow \left(\frac{dy}{dx}\right)_{(h,k)} = \cos h$ The equation of the tangent at (h, k) is $y - k = (\cos h)(x - h)$ This passes through (0, 0) $\therefore -k = -h \cos h \Rightarrow \frac{k}{h} = \cos h$...(ii) From (i) and (ii), we get $k^2 + \frac{k^2}{k^2} = 1$ [Squaring and adding] $\Rightarrow h^2 - k^2 = k^2 h^2$ Hence, the locus of (h, k) is $x^2 - y^2 = x^2y^2$ 414 (d) Given, $v = x^2$ $\frac{dy}{dx} = 2x$ $m_1 = \left(\frac{dy}{dx}\right)_{(1,1)}$ and $y^2 = x$ $\Rightarrow 2y \frac{dy}{dx} = 1$ $\Rightarrow \frac{dy}{dx} = \frac{1}{2y}$ $m_2 = \left(\frac{dy}{dx}\right)_{(1,1)} = \frac{1}{2}$ If θ be the angle between the two curves $\therefore \quad \tan \theta = \left| \frac{m_1 - m_2}{1 + m_1 + m_2} \right| = \left| \frac{2 - \frac{1}{2}}{1 + 2 \times \frac{1}{2}} \right| = \frac{3}{4}$ $\Rightarrow \theta = \tan^{-1}\left(\frac{3}{4}\right)$ 415 (c)

Let two numbers be x and y, then x + y = 6...(i) Let $z = \frac{1}{r} + \frac{1}{r}$...(ii) $\Rightarrow z = \frac{1}{x} + \frac{1}{6-x}$ On differentiating w. r. t. x, we get $\frac{dz}{dx} = -\frac{1}{x^2} + \frac{1}{(6-x)^2}$ $\operatorname{Put}\frac{dz}{dx} = 0 \Rightarrow -\frac{1}{x^2} + \frac{1}{(6-x)^2} = 0$ $\therefore -(6-x)^2 + x^2 = 0$ $\Rightarrow 12x - 36 = 0$ ⇒ x = 3Now, $\frac{d^2z}{dx^2} = \frac{2}{x^3} + \frac{2}{(6-x)^3}$ At x = 3, $\frac{d^2z}{dx^2} > 0$, minimum Hence, minimum value at x = 3 is $z = \frac{1}{2} + \frac{1}{2} = \frac{2}{2}$ 416 (b) $f(x) = x^4 - 4x^3 + 4x^2 + 40$ $f''(x) = 4x^3 - 12x^2 + 8x$ For monoatonic decreasing f''(x) < 0 $x(4x^2) - 12x + 8 < 0$ $x(x^2 - 3x + 2) < 0$ $\Rightarrow x(x-1)(x-2) < 0$ $\Rightarrow x \in (-\infty, 0) \cup (1, 2)$ 417 (a) Given, $y^2 = x$...(i) $\Rightarrow 2y \frac{du}{dx} = 1$ $\Rightarrow \frac{dy}{dx} = \frac{1}{2y} = \text{slope}$ Also, slope $\tan 45^\circ = 1$ $\Rightarrow \frac{1}{2\nu} = 1$ $\Rightarrow y = \frac{1}{2}$ From Eq. (i), if $y = \frac{1}{2}$, then $x = \frac{1}{4}$ 418 (c) We have, $f(x) = \cos|x| - 2ax + b$ $\Rightarrow f(x) = \cos x - 2ax + b \quad [\because \cos(-x) = \cos x]$ $\Rightarrow f'(x) = -\sin x - 2a$ Now. f(x) is increasing for all $x \in R$ $\Rightarrow f'(x) > 0$ for all $x \in R$

$$\Rightarrow f'\left(\frac{\pi}{2}\right) > 0 \Rightarrow -\sin\frac{\pi}{2} - 2a > 0 \Rightarrow -1 - 2a > 0$$
$$\Rightarrow a < -1/2$$

420 **(a)**

Let *r* be the radius of the cylinder. Let V_1 and V_2 be the volumes of the sphere and cylinder respectively. Then, $V_1 = \frac{4}{2}\pi r^3$ and $V_2 = \pi r^3$ [: h = r] $\Rightarrow \frac{dV_1}{dt} = 4\pi r^2 \frac{dr}{dt} \text{ and } \frac{dV_2}{dt} = 3\pi r^2 \frac{dr}{dt} \Rightarrow \frac{\frac{dv_1}{dt}}{\frac{dV_2}{dt}} = 4:3$ 422 (b) Let $y = 4e^{2x} + 9e^{-2x} \Rightarrow \frac{dy}{dx} = 8e^{2x} - 18e^{-2x}$ $\Rightarrow \quad \frac{d^2 y}{dx^2} = 16e^{2x} + 36e^{-2x}$ For minimum, put $\frac{dy}{dx} = 0 \Rightarrow 8e^{2x} - 18e^{-2x} =$ $\Rightarrow e^{4x} = \frac{9}{4} \Rightarrow x = \frac{1}{4} \log \frac{9}{4}$ At $x = \frac{1}{4} \log \frac{9}{4}, \ \frac{d^2 y}{dx^2} > 0$ \therefore Minimum value at $x = \frac{1}{4}\log\frac{9}{4}$ is $v = 4e^{2\left(\frac{1}{4}\log\frac{9}{4}\right)} + 9e^{-2\left(\frac{1}{4}\log\frac{9}{4}\right)}$ $= 4e^{\log(\frac{9}{4})^{1/2}} + 9e^{\log(\frac{9}{4})^{-1/2}}$ $=4.\frac{3}{2}+9.\frac{2}{3}=12$ 423 (d) $\therefore y = x^3 - 3x^2 - 9x + 5$ On differentiating w.r.t. *x*, we get $\frac{dy}{dx} = 3x^2 - 6x - 9$ Since, tangent is parallel to x-axis $\therefore \ \frac{dy}{dx} = 0 \quad \Rightarrow \quad 3x^2 - 6x - 9 = 0$ $\Rightarrow (x+1)(x-3) = 0 \Rightarrow x = -1.3$ 424 (a) $f'(x) = 4x + 16x^3 + \ldots + 2^{10} \cdot 20 \cdot x^{19}$ $= 4x(1 + 4x^2 + ... + 5.2^{10}x^{18})$...(i) $\Rightarrow f''(x) = 4 + 48x^2 + \dots + 2^{10}380.x^{18} > 0$ \therefore f(x) is minimum at x = 0. [from Eq. (i)] 425 (d) We have, $y = x^2 e^{-x} \Rightarrow \frac{dy}{dx} = 2 x e^{-x} - x^2 e^{-x}$ For y to be increasing, we must have $\frac{dy}{dx} > 0 \Rightarrow e^{-x}(-x^2 + 2x) > 0 \Rightarrow -x^2 + 2x > 0$ $\Rightarrow x \in (0,2)$ Hence, y is increasing on (0, 2)426 (c)

Since,
$$f(x) = a \sin x + \frac{1}{3} \sin 3x$$
 has maximum at
 $x = \frac{\pi}{3}$
 $\therefore f'(\frac{\pi}{3}) = 0 \Rightarrow a \cos \frac{\pi}{3} + \cos \pi = 0$
 $\Rightarrow a = 2$
427 (c)
Given, $s = t^3 - 3t^2$
 $\Rightarrow \frac{ds}{dt} = 3t^2 - 6t$...(i)
 $\Rightarrow \frac{d^2}{dt^2} = 6t - 6 = 0$ [given]
 $\Rightarrow t = 1$
On putting value of $t = 1$ in Eq. (i), we get
 $\frac{ds}{dt} = 3 \times 1 - 6 \times 1 = -3m/s$

428 (b)

Given, $f(x) = (x - 1)^2 + 3, x \in [-3, 1]$ $\Rightarrow f'(x) = 2(x - 1)$ For maxima and minima, put $f'(x) = 0 \Rightarrow x = 1$ Now, f''(x) = 2, minima $\forall x \in R$ At x = 1, $f(1) = (1 - 1)^2 + 3 = 3$ At x = -3, $f(-3) = (-3 - 1)^2 + 3 = 19$ Here, m = 3 and M = 19

429 (d)

We have, $f(x) = x^{1/x}$ Clearly, f(x) is defined for all $x \in (0, \infty)$ Now, $f(x) = x^{1/x}$ $\Rightarrow f(x) = e^{(1/x)\log_e x}$ $\Rightarrow f'(x) = x^{1/x} \left(-\frac{1}{x^2}\log_e x + \frac{1}{x^2} \right)$ $= \frac{x^{1/x}(1 - \log_e x)}{x^2}$

For f(x) to be increasing, we must have f'(x) > 0 $\Rightarrow \frac{x^{1/x}(1 - \log_e x)}{x^2} > 0$

$$\Rightarrow 1 = \log_e x > 0$$

$$\Rightarrow \log_e x < 1 \quad [\because x^{1/x} \text{ and } x^2 \text{ are positive}]$$

$$\Rightarrow x < e \Rightarrow x \in (0, e)$$

430 (c)

As the curve crosses y-axis *ie*, x = 0 $\therefore \quad y = 4e^{-0} \Rightarrow y = 4$ Given, $y = 4e^{-\frac{x}{4}}$ $\Rightarrow \quad \frac{dy}{dx} = 4e^{-\frac{x}{4}} \left(-\frac{1}{4}\right) = -e^{-\frac{x}{4}}$ $\Rightarrow \quad \left(\frac{dy}{dx}\right)_{(0,4)} = -e^{-0} = -1$ \therefore Equation of tangent at (0,4) is

y - 4 = -1(x - 0) \Rightarrow x + y = 4431 (a) Given, $f(x) = x^2 \log x$ On differentiating w.r.t. x, we get $f'(x) = (2\log x + 1)x$ For a maximum put f'(x) = 0 $\Rightarrow (2\log x + 1)x = 0 \Rightarrow x = e^{-1/2}, 0$ $: 0 < e^{-1/2} < 1$ None of these critical points lies in the interval [1, e] So, we only compute the value of f(x) at the end points 1 and e We have, f(1) = 0, $f(e) = e^2$ Hence, greatest value of $f(x) = e^2$ 432 (b) Let y = k be a line parallel to *x*-axis It crosses the curve $y = \sqrt{x}$ at $P(k^2, k)$ Now, $y = \sqrt{x} \Rightarrow \frac{dy}{dx} = \frac{1}{2\sqrt{x}} \Rightarrow \left(\frac{dy}{dx}\right)_n = \frac{1}{2k}$ It is given that y = k crosses the curve $y = \sqrt{x}$ at an angle of 45° $\therefore \left(\frac{dy}{dx}\right)_n = \tan 45^\circ \Rightarrow \frac{1}{2k} = 1 \Rightarrow k = \frac{1}{2k}$ Hence, the required line is $y = \frac{1}{2}$ 433 (a) Equation of given curves are $y = \sin x \dots (i)$ and $y = \cos x$...(ii) On solving Eqs. (i) and (ii), we get $x = \frac{\pi}{4}$ \therefore Point of intersection of curves is $\left(\frac{\pi}{4}, \frac{1}{\sqrt{2}}\right)$ For $y = \sin x$, $\frac{dy}{dx} = \cos x$ $\Rightarrow \left(\frac{dy}{dx}\right)_{x=\pi/4} = \frac{1}{\sqrt{2}} = m_1$ (say) For $y = \cos x \Rightarrow \frac{dy}{dx} = -\sin x$ $\Rightarrow \left(\frac{dy}{dx}\right)_{x=\pi/4} = -\frac{1}{\sqrt{2}} = m_2$ (say) $\therefore \tan \theta = \frac{m_1 - m_2}{1 + m_1 m_2} = \frac{\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}}{1 - \frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}}} = \frac{\frac{2}{\sqrt{2}}}{\frac{1}{2}}$ $\Rightarrow \tan \theta = 2\sqrt{2} \Rightarrow \theta = \tan^{-1}(2\sqrt{2})$ 434 (c) Let t = f(v, then) $\frac{dt}{dv} = f'(v) \Rightarrow \frac{dv}{dt} = \frac{1}{f'(v)}$ $\Rightarrow a = \frac{1}{f'(v)} \Rightarrow af'(v) = 1$

$$\Rightarrow af''(v) \frac{dv}{dt} + \frac{da}{dt} f'(v) = 0$$

$$\Rightarrow a^2 f''(v) + \frac{da}{dt} \times \frac{1}{a} = 0 \Rightarrow \frac{da}{dt} = -a^3 \frac{d^2 t}{dv^2}$$
435 (a)
Let $f(x) = 27^{\cos 2x} \times 81^{\sin 2x}$. Then,
 $f(x) = 3^{3\cos 2x+4\sin 2x}$
Clearly, $f(x)$ will be minimum when 3 cos $2x + 4\sin 2x$ is minimum
We know that
 $-\sqrt{a^2 + b^2} \le a \cos x + b \sin x \le \sqrt{a^2 + b^2}$
 $\therefore -5 \le 3 \cos 2x + 4\sin 2x \le 5$
 \therefore The minimum value of $f(x)$ is $3^{-5} = \frac{1}{243}$
436 (a)
Let $Z = px + qy$. Then,
 $Z = px + \frac{qr^2}{x}$ [: $xy = r^2$]
 $\Rightarrow \frac{dZ}{dx} = p - \frac{qr^2}{x^2}$
For maximum or minimum, we must have
 $\frac{dZ}{dx} = 0 \Rightarrow x = \pm \sqrt{\frac{qr^2}{p}}$, we have
 $\frac{d^2Z}{dx^2} = \frac{2qr^2}{x^3} > 0$
Hence, Z is minimum for $x = \sqrt{\frac{qr^2}{p}}$ with the
minimum value given by
 $Z = p\sqrt{\frac{qr^2}{p}} + \frac{qr^2}{\sqrt{\frac{qr^2}{p}}} = 2r\sqrt{pq}$
437 (c)
We have,
 $f'(x) = (x - a)^{2n}(x - b)^{2p+1}$
 $\therefore f'(x) = 0 \Rightarrow x = a, b$
When, $x = a - h$, we have
 $f'(x) = h^{2n}(a + h - b)^{2p+1}$
We have,
 $f'(x) = h^{2n}(a + h - b)^{2p+1}$
We have,
 $f'(x) = h^{2n}(a + h - b)^{2p+1}$
We have,
 $f'(x) = h^{2n}(a + h - b)^{2p+1}$
We have,
 $f'(x) = h^{2n}(a + h - b)^{2p+1}$
We have,
 $f'(x) = (x - 4)(x - 5)(x - 6)(x - 7)$
Clearly, $f(4) = f(5) = f(6) = f(7) = 0$

By Rolle's theorem, there exist $\alpha_1 \in (4, 5), \alpha_2 \in$

 $(5, 6), \alpha_3 \in (6, 7)$ such that $f'(\alpha_i) = 0, i = 1, 2, 3$ Since f'(x) is a cubic polynomial. Therefore, $\alpha_1, \alpha_2, \alpha_3$ are the only roots of f'(x) = 0439 (a) We have, $f(x) = 2e^x - ae^{-x} + (2a+1)x - 3$ $\Rightarrow f'(x) = 2e^x + ae^{-x} + (2a+1)$ For f(x) to be increasing on *R*, we must have f'(x) > 0 for all $x \in R$ $\Rightarrow 2e^x + ae^{-x} + (2a+1) > 0$ for all $x \in R$ $\Rightarrow 2(e^x)^2 + (2a+1)e^x + a > 0 \text{ for all } x \in R$ $\Rightarrow 2y^{2} + (2a + 1)y + a > 0$ for all $y = e^{x} > 0$ Thus, the vertex of the parabola given by $y = 2x^2(2a + 1)x + a$ must be on the left side of the origin and the ordinate at x = 0 must be positive $\therefore -\left(\frac{2a+1}{4}\right) < 0 \text{ and } a$ $> 0 \left[\text{Using:} \frac{-b}{2a} > 0 \text{ and } f(0) > 0 \right]$ $\Rightarrow a > -\frac{1}{2}$ and $a > 0 \Rightarrow a > 0 \Rightarrow a \in (0, \infty)$ 440 (c) Given curve is $x = at^2 + bt + c$ On differentiating w.r.t. t, we get $\frac{dx}{dt} = 2at + b$ Again on differentiating, we get $\frac{d^2x}{dt^2} = 2a$ 441 (d) $\therefore f(x) = \frac{\lambda \sin x + 6 \cos x}{2 \sin x + 3 \cos x}$ On differentiating w.r.t. *x*, we get $f'(x) = \frac{\left[(2\sin x + 3\cos x)(\lambda\cos x - 6\sin x) \right]}{(-(\lambda\sin x + 6\cos x)(2\cos x - 3\sin x)]}$ The function is monotonic increasing, if f'(x) > 0 $\Rightarrow 3\lambda \left(\sin^2 x + \cos^2 x\right) - 12\left(\sin^2 x + \cos^2 x\right) > 0$ $\Rightarrow 3\lambda - 12 > 0 \quad (\because \sin^2 x + \cos^2 x = 1)$ $\Rightarrow \lambda > 4$ 442 (d) Let $A = x^2 y = x^2 (8 - x)$ [given, x + y = 8] $A = 8x^2 - x^3$ ⇒ $\Rightarrow \quad \frac{dA}{dx} = 16x - 3x^2$ For maxima or minima, put $\frac{dA}{dx} = 0$ $\Rightarrow \quad 16x - 3x^2 = 0 \quad \Rightarrow \qquad x = 0, \frac{16}{3}$ Now, $\frac{d^2A}{dx^2} = 16 - 6x$

 $\left(\frac{d^2A}{dx^2}\right)_{x=\frac{16}{2}} = 16 - 32 < 0$, maxima : Maximum value = $8\left(\frac{16}{3}\right)^2 - \left(\frac{16}{3}\right)^3 = \frac{2048}{27}$ 443 (a) Since (2, 3) lies on $y^2 = px^3 + q$. Therefore, 9 = 8p + q ...(i) Now, $y^2 = px^3 + q$ $\Rightarrow 2y \frac{dy}{dx} = 3px^2$ $\Rightarrow \frac{dy}{dx} = \frac{3px^2}{2y} \Rightarrow \left(\frac{dy}{dx}\right)_{(2,3)} = \frac{12p}{6} = 2p$ Since y = 4x - 5 is tangent to $y^2 = px^3 + q$ at (2, 3) $\therefore \left(\frac{dy}{dx}\right)_{(2,3)} = \text{Slope of the line } y = 4x - 5$ $\Rightarrow 2p = 4 \Rightarrow p = 2$ Putting p = 2 in (i), we get q = -7444 (c) We have, $f(x) = \tan^{-1} x - x$ $\Rightarrow f'(x) = \frac{1}{1+x^2} - 1 = \frac{-x^2}{1+x^2} < 0$ for all $x \in R - \{0\}$ Hence, f(x) is decreasing on $R - \{0\}$ 445 (d) Given $f(x) = x^3 - 6x^2 - 36x + 7$ $\Rightarrow f'(x) = 3x^2 - 12x = 36$ For f(x) to be increasing, f'(x) > 0 $\Rightarrow 3(x^2 - 4x - 12) > 0$ $\Rightarrow (x-6)(x+2) > 0$ $\Rightarrow x > 6$ And x < -2446 (c) Given curve is $x = a(t + \sin t), y = a(1 - \cos t)$ $\Rightarrow \frac{dx}{dt} = a(1 + \cos t), \frac{dy}{dt} = a(\sin t)$ $\therefore \frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{a(\sin t)}{a(1 + \cos t)}$ $=\frac{2\sin\frac{t}{2}\cos\frac{t}{2}}{2\cos^2\frac{t}{2}}=\tan\frac{t}{2}$ Length of the normal = $y \sqrt{1 + \left(\frac{dy}{dx}\right)^2}$ $= a(1-\cos t) \left| 1+\tan^2\left(\frac{t}{2}\right) \right|$ $= a(1 - \cos t) \sec\left(\frac{t}{2}\right)$ $= 2a\sin^2\left(\frac{t}{2}\right)\sec\left(\frac{t}{2}\right)$ $= 2a\sin\left(\frac{t}{2}\right)\tan\left(\frac{t}{2}\right)$

447 (d) If $f(x) = (a + 2)x^3 - 3ax^2 + 9ax - 1$ decreases monotonically for all $x \in R$, then $f'(x) \leq 0$ for all $x \in R$ $\Rightarrow 3(a+2)x^2 - 6 ax + 9 a \le 0 \text{ for all } x \in R$ \Rightarrow $(a+2)x^2 - 2ax + 3a \le 0$ for all $x \in R$ $\Rightarrow a + 2 < 0$ and Discriminant ≤ 0 $\Rightarrow a < -2$ and $4a^2 - 12a(a+2) \le 0$ $\Rightarrow a < -2$ and $-8a^2 - 24a \le 0$ $\Rightarrow a < -2$ and $a(a + 3) \ge 0$ $\Rightarrow a < -2$ and $a \leq -3$ or $a \geq 0$ $\Rightarrow a \leq -3 \Rightarrow -\infty < a \leq -3$ 448 (c) By Mechanical interpretation of Lagrange's mean value theorem, the time c at which the velocity of the particle is equal to its average velocity between times x = 1 sec and x = 2 sec is given by $f'(c) = \frac{f(2) - f(1)}{2 - 1}$ $\Rightarrow 3c^2 - 2 = \frac{7 - 0}{2 - 1} \quad [\because f(x) = x^3 - 2x + 1 \ \therefore f'x]$ $= 3x^2 - 2$] $\Rightarrow 3c^2 = 9 \Rightarrow c = \sqrt{3}$ sec 449 (c) We have, $y = x^3 - 2x^2 + x - 2$ $\Rightarrow \frac{dy}{dx} = 3x^2 - 4x + 1$ At the points where tangents are parallel to *x*axis, we must have $\frac{dy}{dx} = 0 \Rightarrow 3x^2 - 4x + 1 \Rightarrow x = 1, \frac{1}{3}$ Thus, there are two points on the curve where tangents are parallel to x-axis 450 (d) Given, $f(x) = \frac{x}{4+x+x^2}$ Let $f(x) = \frac{1}{u}$, then $u = \frac{4+x+x^2}{x}$ $=\frac{4}{x}+1+x$ $\therefore \frac{du}{dx} = -\frac{4}{x^2} + 1, \quad \frac{d^2u}{dx^2} = \frac{8}{x^3}$ For maximum or minimum, put $\frac{du}{dx} = 0$ $\Rightarrow 1 - \frac{4}{x^2} = 0 \Rightarrow x = \pm 2$: At x = -2, $\frac{d^2 u}{dx^2} = -\frac{8}{(2)^3} < 0$, maximum At x = -2, $\frac{d^2u}{dx^2} = 1 > 0$, minima \therefore At x = 2, f(x) is maxima And at x = -2, f(x) is minima It is increasing function in the given interval

 $\therefore \text{ The maximum value at } x = 1 \text{ is}$ $f(1) = \frac{1}{4+1+1} = \frac{1}{6}$ 451 (c) Given, $y = x^{1/x}$ $\log y = \frac{1}{x}\log x = f(x)$ [say] $\therefore f'(x) = \frac{1-\log x}{x^2}$ For maxima and minima, $\frac{1-\log x}{x^2} = 0$ $\Rightarrow 1-\log x = 0$ $\Rightarrow x = e$ Now, $f''(x) = \frac{-x-2(1-\log x)x}{(x^2)^2}$ At x = e f''(x) = -ve < 0 f(x) is maximum and maximum value of $x^{1/x} = e^{1/e}$.

452 **(c)**

453

If *x* is the side of an equilateral triangle and *A* is its area, then $A = \frac{\sqrt{3}}{4}x^2 \implies \frac{dA}{dt} = \frac{\sqrt{3}}{4}2x\frac{dx}{dt}$

$$A = \frac{\sqrt{3}}{4} 2(10)^2 = \frac{10\sqrt{3}}{4} cm^2/s$$
(a)

Here, $f(x) = x^3 + bx^2 + cx + d$ $\Rightarrow f'(x) = 3x^2 + 2bx + c$ (As we know, if $ax^2 + bx + c > 0$ for all x $\Rightarrow a > 0$ and D < 0) Now, $D = 4b^2 - 12c = 4(b^2 - c) - 8c$ (where $b^2 - c < 0$ and c > 0) $\therefore D = (-ve)or D < 0$. $\Rightarrow f'(x) = 3x^2 + 2bx + c > 0$ for all $x \in (-\infty, \infty)$ Hence, f(x) is strictly increasing function.

455 **(b)**

We have, $f(x) = xe^{-x}$ $\Rightarrow f'(x) = e^{-x}(1-x)$ $\therefore f'(x) = 0 \Rightarrow x = 1$ Now, f(0) = 0and, $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} xe^{-x} = \lim_{x \to \infty} \frac{x}{e^x} = \lim_{x \to \infty} \frac{1}{e^x} = 0$

Hence, the greatest value of f(x) is $\frac{1}{a}$

457 **(c)**

By Rolle's theorem, between any two roots of a polynomial f(x) there is a root of its derivative f'(x). Therefore,

2ax + b = 0 has a root between α and β $\Rightarrow \alpha < -\frac{b}{2a} < \beta \qquad \left[\because 2ax + b = 0 \Rightarrow x \right]$ $=-\frac{b}{2a}$ 458 (d) Given, $f(x) = 4x^4 - 2x + 1$ $\Rightarrow f'(x) = 16x^3 - 2$ For maxima and minima, put f'(x) = 0 $\Rightarrow 16x^3 - 2 = 0$ $\Rightarrow x = \frac{1}{2}$ In interval $\left(\frac{1}{2}, \infty\right)$, put x=1f'(1) = 16 - 2 = 14 [increasing] 459 (c) Given, $f(x) = x^2 e^{-2x}$: $f'(x) = 2xe^{-2x} - 2x^2e^{-2x}$ $= 2x(1-x)e^{-2x}$ For maxima or minima, put f'(x) = 0 $2x(1-x)e^{-2x} = 0$ $\Rightarrow x = 0.1$ Now, $f''(x) = 2x(-1)e^{-2x} + 2(1-x)e^{-2x} -$ $2.2x(1-x)e^{-2x}$ $f''(0) = 0 + 2e^0 = 2 > 0$, minima And $f''(1) = -2e^{-2} + 0 - 0 = -\frac{2}{e^2} < 0$, maxima Thus, maximum value is f(1) = 1. $e^{-2} = \frac{1}{e^2}$ 460 **(b)** Given, $f(x) = 1 - x^3$ $f'(x) = -3x^2 < 0, \forall x \in \mathbb{R}$ So, f(x) is decrease in $(-\infty, \infty)$ Hence, option (b) is correct. 461 (d) We have, $f(x) = \frac{a}{x} + x^2 \Rightarrow f'(x) = -\frac{a}{x^2} + 2x$ and $f''(x) = \frac{2a}{x^3} + 2$ If f(x) has a maximum at x = -3, then f'(-3) = 0 and f''(-3) < 0Now, $f'(-3) = 0 \Rightarrow -\frac{a}{9} = 0 \Rightarrow a = -54$ But, $f''(-3) = \frac{-108}{-27} + 2 > 0$ Thus, there is no value of *a* for which f(x) has a maximum at x = -3464 (d) Given equation of curve is $y = x^2 - x + 4$ Slope of tangent at P(1, 4) is $\left(\frac{dy}{dx}\right) = 2x - 1 \quad \Rightarrow \quad \left(\frac{dy}{dx}\right)_{(1,4)} = 1$ ∴ Equation of tangent is

 $y - 4 = 1(x - 1) \Rightarrow y - x = 3$...(i) And equation of normal at point P(1, 4) is $y - 4 = -1(x - 1) \Rightarrow x + y = 5$...(ii) Since the tangent cuts *x*-axis at A(-3, 0)And the normal cuts x-axis at B(5,0): Area of $\Delta PAB = \frac{1}{2} \begin{vmatrix} 1 & 4 & 1 \\ -3 & 0 & 1 \\ 5 & 0 & 1 \end{vmatrix}$ $=\frac{1}{2}|[-4(-3-5)]| = 16$ sq units 465 (c) Given, $s = 3t^2 - 8t + 5$ and $v = \frac{ds}{dt} = 6t - 8$ The body will be stopped when velocity is zero $\Rightarrow 6t - 8 = 0 \Rightarrow t = \frac{4}{2}s$ 466 (a) By Mean value theorem $f'(x) = \frac{f(5) - f(1)}{5} \ge 9$ $\Rightarrow \frac{f(5)+3}{4} \ge 9 \Rightarrow f(5) \ge 33$ 467 (b) We have, $y^2 = 4ax$...(i) and, $ay^2 = 4x^3$...(ii) Solving the two equations, the points of intersection of the two curves are (0, 0), (a, 2a)and (a, -2a)Let us take the point (a, 2a) as point *P* Now, $y^{2} = 4ax \Rightarrow 2y \frac{dy}{dx} = 4a \Rightarrow \frac{dy}{dx} = \frac{2a}{y} \Rightarrow \left(\frac{dy}{dx}\right)_{p} = 1$ So, the equation of the normal to (i) at P(a, 2a) is $y - 2a = -1(x - a) \Rightarrow x + y - 3a = 0$... (iii) Now, $ay^2 = 4x^3 \Rightarrow 2ay \frac{dy}{dx} = 12x^2 \Rightarrow \left(\frac{dy}{dx}\right)_p = \frac{12a^2}{4a^2}$ So, the equation of the normal to (ii) at P(a, 2a) is $y - 2a = -\frac{1}{2}(x - a) \Rightarrow x + 3y - 7a = 0$...(iv) Clearly, (iii) and (iv) cut x-axis at $G_1(3a, 0)$ and $G_2(7a, 0)$ $\therefore G_1 G_2 = 4a$ 468 (a) We have, $y = x^3 - 3x^2 + 6x - 17$ $\Rightarrow \frac{dy}{dx} - 3x^2 - 6x + 6 = 3\{(x-1)^2 + 1\}$ > 0 for all x Hence, y increases for all values of x 469 (c)

By Rolle's theorem, f(1) = f(3) $\Rightarrow a + b + 11 - 6 = 27a + 9b + 33 - 6$ $\Rightarrow 13a + 4b + 11 = 0$...(i) Now, $f'(x) = 3ax^2 + 2bx + 11$ $\Rightarrow f'\left(2+\frac{1}{\sqrt{2}}\right)$ $= 3a\left(2+\frac{1}{\sqrt{3}}\right)+2b\left(2+\frac{1}{\sqrt{3}}\right)$ $\Rightarrow 0 = 3a\left(4 + \frac{1}{3} + \frac{4}{\sqrt{3}}\right) + 4b + \frac{2b}{\sqrt{3}} + 11$ $\Rightarrow \quad 13a + 4b + \frac{12a}{\sqrt{3}} + \frac{2b}{\sqrt{3}} + 11 = 0$ $-11 + \frac{12a}{\sqrt{3}} + \frac{2b}{\sqrt{3}} + 11 = 0$ [from Eq.(i)] $\Rightarrow 6a + b = 0$...(ii) From Eq. (i) and (ii), a = 1, b = -6470 (c) We have, $s = t^3 - 3t^2$ On differentiating with respect to t, we get $\frac{ds}{dt} = 3t^2 - 6t \quad \dots(i)$ Again differentiating Eq. (i), we get $\frac{d^2s}{dt^2} = 6t - 6 = 0 \implies t = 1$ On putting the value of t = 1 in Eq. (i), we get $\frac{ds}{dt} = 3 \times 1 - 6 \times 1 = 3 - 6 = -3 \text{ m/s}$ 471 (c) We have, $f(x) = \begin{vmatrix} x+1 & 1 & 1 \\ 1 & x+1 & 1 \\ 1 & 1 & x+1 \end{vmatrix}$ $\Rightarrow f'(x) = \begin{vmatrix} 1 & 0 & 0 \\ 1 & x+1 & 1 \\ 1 & 1 & x+1 \end{vmatrix}$ $+ \begin{vmatrix} x+1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & x+1 \end{vmatrix}$ $+ \begin{vmatrix} x+1 & 1 & 1 \\ 1 & x+1 & 1 \\ 0 & 0 & 1 \end{vmatrix}$ $\Rightarrow f'(x) = 3\{(x+1)^2 - 1\} = 3(x^2 + 2x)$ For f(x) to be increasing, we must have f'(x) > 01 $\Rightarrow 3(x^2 + 2x) > 0$ $\Rightarrow x^2 + 2x > 0 \Rightarrow x < -2 \text{ or } x > 0 \Rightarrow x$ $\in R - [-2, 0]$ 472 (a) We have, $g(x) = f(x) - 2\{f(x)\}^2 + 9\{f(x)\}^3$ for all $x \in R$

 $\Rightarrow g'(x) = f'(x) - 4f(x)f'(x) + 27\{f(x)\}^2 f'(x)$

for all $x \in R$

 $\Rightarrow g'(x) = [1 - 4f(x) + 27\{f(x)\}^2]f'(x)$ for all $x \in R$ Clearly, $27{f(x)}^2 - 4f(x) + 1$ is a quadratic expression with discriminant less than zero. So, its sign is same as that of the coefficient of $\{f(x)^2\}$ i.e. positive for all $x \in R$ Thus, g'(x) and f'(x) have the same sign Hence, g(x) and f(x) increase and decrease together 473 (a) We have, $y = \frac{x+c}{1+r^2}$ For stationary values of *y*, we must have, $\frac{dy}{dx} = 0$ $\Rightarrow \frac{(1+x^2) - (x+c)(2x)}{(1+x^2)^2} = 0$ $\Rightarrow 1 + x^2 - 2 cx - 2 x^2 = 0 \Rightarrow x^2 + 2 cx - 1 = 0$...(i) Now $y = \frac{x+c}{1+x^2}$ $\Rightarrow xy = x \left(\frac{x+c}{1+x^2}\right) = \frac{x^2 + cx}{1+x^2}$ $\Rightarrow xy = \frac{1 - 2cx + cx}{1 + 1 - 2cx} \quad [Putting x^2 \text{ from (i)}]$ $\Rightarrow xy = \frac{1 - cx}{2(1 - cx)} = \frac{1}{2}$ 474 (c) Let $f(x) = (x - 3) \log_e x$ Clearly, f(x) is continuous on [1, 3] and differentiable on (1, 3)Also, f(1) = 0 = f(3)Hence, by Rolle's theorem there exists at least one $c \in (1,3)$ such that f'(c) = 0 $\Rightarrow \log_e c + \frac{(c-3)}{c} = 0 \Rightarrow c \log_e c = 3 - c$ $\Rightarrow x = c$ is a root of $x \log_e x = 3 - x$, where $c \in (1, 3)$

475 (c)

Given, $\frac{\delta r}{r} \times 100 = 2 \Rightarrow \delta r = \frac{2r}{100}$ Surface area, $S = 4\pi r^2$ $\delta S = 4\pi 2r$. δr $8\pi r. \frac{2r}{100} = \frac{16\pi r^2}{100}$ Now percentage error in surface area $\frac{\delta S}{s} \times 100 = \frac{16\pi r^2}{100} \times \frac{1}{4\pi r^2} \times 100 = 4\%$

476 **(a)**

 $f(x) = x + \cos x$ On differentiating, we get $f'(x) = 1 - \sin x$

f'(x) > 0 for all values of x (: $\sin x$ is lying between -1 to +1) \therefore f(x) is always increasing 477 (b) We have, $y = ax^2 + bx + c \quad \dots (i)$ $\Rightarrow \frac{dy}{dx} = 2ax + b$...(ii) The curve (i) passes through (1, 2) $\therefore 2 = a + b + c$...(iii) The line y = x touches the curve (i) at the origin $\therefore \left(\frac{dy}{dx}\right)_{(0,0)} = (\text{Slope of the line } y = x)$ $\Rightarrow b = 1$ Putting b = 1 in (iii), we get a + c = 1Also, the curve (i) passes through the origin $\therefore c = 0$ Hence, a = 1, b = 1 and c = 0478 (b) We have, $f(x) = \sin^4 x + \cos^4 x = \frac{3}{4} + \frac{1}{4}\cos 4x$ $\Rightarrow f'(x) = -\sin 4x$ For f(x) to be increasing, we must have f'(x) > 0 $\Rightarrow -\sin 4x > 0$ $\Rightarrow \sin 4x < 0 \Rightarrow \pi < 4x < 2\pi \Rightarrow \pi/4 < x < \pi/2$ 479 (b) The length of the normal at (x, y) to a curve is given by $y \left| 1 + \left(\frac{dy}{dx}\right)^2 \right|$ Here, $y = c \cosh\left(\frac{x}{c}\right) \Rightarrow \frac{dy}{dx} = \sinh \frac{x}{c}$ \therefore Length of the normal $= y \sqrt{1 + \sin h^2 \frac{x}{c}} = y \cos h \left(\frac{x}{c}\right)$ $=\frac{y^2}{c}$ $\left[\because y = c \cos h \frac{x}{c}\right]$ Thus, length of the normal varies as the square of the ordinate 480 (d) Let the equation of normal is $Y - y = -\frac{dx}{dy}(X - x)$ It meets the *x*-axis at*G*. Therefore, coordinates of $G \operatorname{are}\left(x+y\frac{dy}{dx},0\right)$ According to given condition,

 $x + y \frac{dy}{dx} = 2x \quad \Rightarrow \ y \ dy = x \ dx$

On integrating, we get $\frac{y^2}{2} = \frac{x^2}{2} + c \quad \Rightarrow \qquad x^2 - y^2 = 2c$ 481 (c) $P(x) = a_0 + a_1 x^2 + a_2 x^4 + \dots + a_n x^{2n}$ Where, $a_n > a_{n-1} > a_{n-2} \dots > a_2 > a_1 > a_0 > 0$ $\Rightarrow P'(x) = 2a_1x + 4a_2x^3 + \dots + 2na_nx^{2n-1}$ $= 2x\{a_1 + 2a_2x^2 + \dots + na_nx^{2n-2}\} \quad \dots \quad (i)$ Where. $(a_1 + 2a_2x^2 + 3a_3x^4 + \dots + na_nx^{2n-2}) > 0$ For all $x \in R$ Thus, $\begin{cases} P'(x) > 0, \text{ when } x > 0 \\ P'(x) < 0, \text{ when } x > 0 \end{cases}$ *ie* P'(x) changes sign from (-ve) to (+ve) at x = 0Hence, P(x) attains minimum at x = 0 \Rightarrow Only one minimum at x = 0. 483 (b) Let radius vector is r \therefore $r^2 = x^2 + y^2$ $\Rightarrow r^{2} = \frac{a^{2}y^{2}}{v^{2} - h^{2}} + y^{2} \quad \left(\because \frac{a^{2}}{x^{2}} + \frac{b^{2}}{v^{2}} = 1 \right)$ For minimum value of *r* $\frac{d(r^2)}{dy} = 0 \implies \frac{-2yb^2a^2}{(y^2 - b^2)^2} + 2y = 0$ $\Rightarrow y^2 = b(a+b)$ $\therefore x^2 = a(a+b)$ $\Rightarrow r^2 = (a+b)^2$ \Rightarrow r = a + b485 (a) We have, $f(x) = \cos x \sin 2x = 2 \sin x - 2 \sin^3 x$ Let sin x = t. Then, for $x \in [-\pi, \pi]$, we have $t \in [-1, 1]$ Let $g(t) = 2 t - 2 t^3$. Then, $\min f(x) = \min g(t)$ where $t \in [-1, 1]$ Now, $g'(t) = 2 - 6 t^2 = 0 \Rightarrow t = \pm \frac{1}{\sqrt{2}}$ We have, g''(t) = -12 tClearly q''(t) > 0 for $t = -1/\sqrt{3}$ Hence, g(t) attains its minimum value at t = -1/3. The minimum value of g(t) is given by $g\left(-\frac{1}{\sqrt{3}}\right) = -\frac{2}{\sqrt{3}} + \frac{2}{3\sqrt{3}} = -\frac{4}{3\sqrt{3}} > -\frac{7}{9} > -\frac{9}{7}$ Hence, the minimum value of f(x) is $-\frac{4}{2\sqrt{2}} >$ $-\frac{7}{2} > -\frac{9}{7}$ 486 (c) Given, $f(x) = \int_{10}^{x} (t^4 - 4)e^{-4t} dt$ On differentiating w.r.t. *x*, we get $f'(x) = (x^4 - 4)e^{-4x}$

For maxima or minima, put f'(x) = 0 $\Rightarrow x = \pm \sqrt{2}, \pm \sqrt{2}$ Again on differentiating w.r.t. x, we get $f''(x) = -4(x^4 - 4)e^{-4x} + 4x^3 e^{-4x}$ At $x = \sqrt{2}$ and $x = -\sqrt{2}$, the given function has two extreme values 488 **(b)** $f(x)\sin^4 x + \cos^4 x$ $= (\sin^2 x + \cos^2 x)^2 - 2\sin^2 x \cos^2 x$ $= 1 - \frac{\sin^2 2x}{2} = 1 - \left(\frac{1 - \cos 4x}{4}\right)$ $=\frac{3}{4}+\frac{1}{4}\cos 4x$ For f(x) to be increasing, f'(x) > 0 $\Rightarrow -\sin 4x > 0$ $\Rightarrow \sin 4x < 0$ $\Rightarrow \pi < 4x < \frac{3\pi}{2}$ $\Rightarrow \frac{\pi}{4} < x < \frac{3\pi}{8}$ 489 (a) Let the required point be (x, y) on the curve So, $d = \sqrt{(x-4)^2 + (y+\frac{1}{2})^2}$ should be minimum Let $D = (x - 4)^2 + \left(y + \frac{1}{2}\right)^2$ $\therefore D = (x-4)^2 + (x^2 + \frac{1}{2})^2$ $\Rightarrow D = x^4 + 2x^2 - 8x$ $\therefore D' = 4x^3 + 4x - 8$ Put D' = 0 for maxima or minima $\therefore x^3 + x - 2 = 0 \quad \Rightarrow \quad x = 1$ Now, $D'' = 12x^2 + 4$ at x = 1, D'' = 16 > 0 \therefore *D* is minimum when x = 1Hence, the required point is (1, 1)490 (a) Given, $y = (1 + x)^y + \sin^{-1}(\sin^2 x)$ At x = 0, y = 1Let y = u + v where $u = (1 + x)^{y}$, v = $\sin^{-1}(\sin^2 x)$ $\Rightarrow \log u = y \log(1+x)$ $\Rightarrow \quad \frac{du}{dx}\frac{1}{u} = \frac{y}{1+x} + \log(1+x)\frac{dy}{dx}$ and $\frac{dv}{dx} = \frac{1}{\sqrt{1-\sin^2 x}} \cdot 2\sin x \cos x$ $\therefore \frac{dy}{dx} = (1+x)^y \left[\frac{y}{1+x} + \log(1+x) \frac{dy}{dx} \right]$ $+\frac{\sin 2x}{\cos x}$

 $\Rightarrow \quad \frac{dy}{dx} [1 - (1+x)^y \log(x+1)]$ $=\frac{(1+x)^{y}y}{1+x}+\frac{\sin 2x}{\cos x}$ $\therefore \left. \frac{dy}{dx} \right|_{(0,1)} = \frac{1}{1+0} = 1$ ∴ Equation of tangent is $(y-1) = 1(x) \Rightarrow x-y+1 = 0$ 491 (c) Perimeter of sector= $2r + r\theta$ ⇒ $60 = 2r + r\theta$ [given] $\Rightarrow \theta = \frac{60 - 2r}{r}$ Area of sector, $A = \frac{\pi r^2 \theta}{360^\circ} = \frac{\pi r^2 (60-2r)}{r^{3} 60^\circ}$ $=\frac{\pi r}{180^{\circ}}(30-r)$ $\Rightarrow \frac{dA}{dr} = \frac{\pi}{180^{\circ}}(30 - 2r)$ For maximum area, $\frac{dA}{dr} = 0 \implies r = 15$ Now, $\frac{d^2 A}{dr^2} = \frac{\pi}{180^\circ} (0-2) = -\frac{\pi}{90} < 0$ \therefore It is maximum at r = 15 m 492 **(b)** Let $\phi(x) = f(x) - 2 g(x), x \in [0, 1]$ Clearly, $\phi(x)$ is continuous on [0,1] and differentiable on (0, 1) as f(x) and g(x) are differentiable on [0, 1] Also, $\phi(0) = f(0) - 2g(0) = 2 - 0 = 2$ and, $\phi(1) = f(1) - 2g(1) = 6 - 2 \times 2 = 2$ $\therefore \phi(0) = \phi(1)$ Thus, $\phi(x)$ satisfies all the three conditions of Rolle's theorem. Consequently, there exists a point $c \in (0, 1)$ such that $\phi'(c) = 0 \Rightarrow f'(c) - 2g'(c) = 0 \Rightarrow f'(c) = 2g'(c)$ 493 (b) Given, $f(x) = 2x^3 - 3x^2 - 12x + 4$ On differentiating w.r.t. *x*, we get $f(x) = 6x^2 - 6x - 12$ For maxima or minima put f'(x) = 0 $\Rightarrow x^2 - x - 2 = 0 \Rightarrow x = 2, -1$ Again differentiating, we get f''(x) = 12x - 6 $\Rightarrow f''(2) = +ve$, f''(-1) = -ve: Given function has one maximum and one minimum 494 (c) We have,

$$f(x) = \frac{|x-1|}{x^2} = \begin{cases} \frac{1-x}{x^2}, & x < 1, x \neq 0\\ \frac{x-1}{x^2}, & x \ge 1 \end{cases}$$

Clearly, $f(x)$ is not differentiable at $x = 1$. Also,
$$f'(x) = \begin{cases} \frac{1}{x^2} - \frac{2}{x^3}, & x < 1, x \neq 0\\ \frac{2}{x^3} - \frac{1}{x^2}, & x > 1, \end{cases}$$

 $\left(\frac{x-2}{x^3}, & x < 1, x \neq 0 \end{cases}$

x > 1

is

$$= \begin{cases} x \\ \frac{2-x}{x^3}, \end{cases}$$

Now,

$$f'(x) < 0$$

$$\Rightarrow \begin{cases} \frac{x-2}{x^3} < 0 \text{ given that } x < 1 \\ \frac{2-x}{x^3} < 0 \text{ given that } x > 1 \end{cases}$$

$$\Rightarrow x < 1 \text{ or } x > 2$$

$$\Rightarrow x \in (-\infty, 1) \cup (2, \infty)$$

495 (b)

Given curve is
$$y = e^{2x}$$

On differentiating w.r.t. *x*, we get
 $\frac{dy}{dx} = 2e^{2x} \Rightarrow \left(\frac{dy}{dx}\right)_{(0,1)} = 2e^0 = 2$
Equation of tangent at (0, 1) with slope 2

 $y - 1 = 2(x - 0) \Rightarrow y = 2x + 1$ This tangent meets *x*-axis $\therefore y = 0$

$$\Rightarrow 0 = 2x + 1 \Rightarrow x = -\frac{1}{2}$$

 \therefore Coordinates of the point on x-axis is $\left(-\frac{1}{2},0\right)$

496 **(b)**

We have, $f(x) = \cot^{-1}{g(x)}$ $\Rightarrow f'(x) = -\frac{1}{1 + {g(x)}^2}g'(x)$ $\Rightarrow f'(x) < 0 \text{ for all } x \in (0, \pi)$ $\begin{bmatrix} \because g(x) \text{ is an increasing} \\ \text{ function on } (0, \pi) \\ \because g'(x) > 0 \text{ for all } x \in (0, \pi) \end{bmatrix}$ $\Rightarrow f(x) \text{ is decreasing on } (0, \pi)$

497 **(a)**

Let *h* and *r* be the height and radius of cylinder. Given that $\frac{dr}{dt} = 3m/s$, $\frac{dh}{dt} = -4m/s$ Let volume of cylinder, $V = \pi r^2 h$ $\Rightarrow \frac{dV}{dt} = \pi \left[r^2 \frac{dh}{dt} + h \cdot 2r \frac{dr}{dt} \right]$ At r = 4mAnd h = 6m

 $\therefore \ \frac{dV}{dt} = \pi [-64 + 144] = 80\pi cu \ m/s$ 498 (b) Let $f(x) = x^2$, $\therefore f(1) = f(-1) = 1$ Also, f(x) is continuous and differentiable in the given interval 499 (b) Let $f(x) = \frac{ab(a^2 - b^2)\sin x \cos x}{a^2 \sin^2 x + b^2 \cos^2 x}$ Then, $f(x) = \frac{ab(a^2 - b^2)}{a^2 \tan x + b^2 \cot x}$ $\Rightarrow f(x) = \frac{ab(a^2 - b^2)}{\left(a\sqrt{\tan x} - b\sqrt{\cot x}\right)^2 + 2ab}$ Clearly, f(x) will be maximum, when $(a\sqrt{\tan x} - b\sqrt{\cot x})^2$ is minimum. But, the minimum value of $a\sqrt{\tan x} - b\sqrt{\cot x}$ is zero. Therefore, Maximum value of $f(x) = \frac{a^2 - b^2}{2}$ 500 (d) Given f(x) satisfy Rolle's theorem in [3, 5]. \therefore *f*(*x*) is continuous in [3,5] And f(x) is differentiable in [3,5[And f(a) = f(b) = 0ie, f(3) = f(5) = 0Let f(x) = (x - 3)(x - 5) $f(x) = x^2 - 8x + 15$ $\therefore \int_{3}^{5} (x^2 - 8x = 15) dx = \left[\frac{x^3}{3} - \frac{8x^2}{2} + 15x\right]^{5}$ $=\left(\frac{50}{2}-18\right)=-\frac{4}{2}$ 501 (a) Let *x* be the length of an edge of a cube and *S* be its surface area. Then,

$$S = 60x^{2} \Rightarrow \frac{dS}{dx} = 12x$$

$$\therefore \Delta S = \frac{dS}{dx} \Delta x$$

$$\Rightarrow \Delta S = 12x \Delta x$$

$$\Rightarrow \frac{\Delta S}{S} \times 100 = \frac{12x \Delta x}{6x^{2}} \times 100 = 2\left(\frac{\Delta x}{x} \times 100\right)$$

$$= 2a$$

502 **(b)**

We have, $f(x) = (a^2 - 7a + 12) \cos x + 2(a - 4)x + \log 2$ $\Rightarrow f'(x) = -(a - 4)(a - 3) \sin x + 2(a - 4)$ $\Rightarrow f'(x) = (a - 4)\{-(a - 3) \sin x + 2\}$ If f(x) does not have any critical point, then f'(x) = 0 does not have any solution in R $\therefore a - 4 \neq 0$ and $\sin x = \frac{2}{a - 3}$ is not solvable in R

 $\Rightarrow a \neq 4 \text{ and } \left| \frac{2}{a-3} \right| > 1$ $\Rightarrow a \neq 4 \text{ and } |a - 3| < 2$ $\Rightarrow a \neq 4 \text{ and } 1 < a < 5 \Rightarrow a \in (1,4) \cup (4,5)$ 504 (d) \therefore $y = be^{-x/a}$...(i) $\therefore \frac{dy}{dx} = -\frac{b}{a} e^{-x/a} = -\frac{b}{a} \left(\text{slope of } \frac{x}{a} + \frac{y}{b} = 1 \right)$ $\Rightarrow e^{-x/a} = 1 = e^0$ $\therefore x = 0$ From Eq. (i), y = bHence, point of contact is (0, b)505 (c) Given curve is xy = 4 $\Rightarrow y = \frac{4}{r}$ $\therefore \frac{dy}{dx} = -\frac{4}{x^2}$ $\Rightarrow -\frac{4}{x^2} = -\frac{a}{b}$ $\Rightarrow x^2 = \frac{4b}{a} > 0$ Which is true when a > 0, b > 0 or a < 0, b < 0506 (b) We have, $\sqrt{x} + \sqrt{y} = 3$ $\Rightarrow \frac{1}{2\sqrt{x}} + \frac{1}{2\sqrt{y}}\frac{dy}{dx} = 0 \Rightarrow \frac{dy}{dx} = -\frac{\sqrt{y}}{\sqrt{x}} \Rightarrow \left(\frac{dy}{dx}\right)_{(4,1)}$ = -2: Length of the subtangent = $\left|\frac{y}{dy/dx}\right| = \frac{1}{2}$ 507 (d) Let $y = \frac{\log x}{x}$ $\frac{dy}{dx} = \frac{x \cdot \frac{1}{x} - \log x \cdot 1}{x^2} = \frac{1 - \log x}{x^2}$ For maxima, put $\frac{dy}{dx} = 0$ $\Rightarrow \quad \frac{1 - \log x}{r^2} = 0 \quad \Rightarrow \quad x = e$ Now, $\frac{d^2 y}{dx^2} = \frac{x^2 \left(-\frac{1}{x}\right) - (1 - \log x) 2x}{(x^2)^2}$ At $x = e, \frac{d^2y}{dx^2} \le 0$, maxima \therefore The maximum value at x = e is $y = \frac{1}{2}$ 508 (a) Let $f(x) = \frac{\log x}{x}$. Clearly, f(x) is defined for x > 0Now. $f(x) = \frac{\log x}{x} \Rightarrow f'(x) = \frac{1 - \log x}{x^2}$ For maximum or minimum, we must have

 $f'(x) = 0 \Rightarrow \log x = 1 \Rightarrow x = e$

f'(x) > 0 for x < e and f'(x) < 0 for x > eThus, f'(x) changes its sign from positive to negative in the neighbourhood of x = eSo, x = e is the point of local maximum Now, $f(e) = \frac{\log e}{e} = \frac{1}{e}$

509 **(b)**

Let *x* be the radius and *V* be the volume of the sphere. Then,

$$V = \frac{4}{3}\pi x^{3} \Rightarrow \frac{dV}{dx} = 4\pi x^{2}$$

We have,
$$\frac{\Delta x}{x} \times 100 = k$$
$$\therefore \Delta V = \frac{dV}{dx} \Delta x$$
$$\Rightarrow \Delta V = 4\pi x^{2} \Delta x$$
$$\Rightarrow \frac{\Delta V}{V} \times 100 = \frac{4\pi x^{2} \Delta x}{\frac{4}{3} \pi x^{3}} \times 100 = 3\left(\frac{\Delta x}{x} \times 100\right)$$
$$= 3k$$

510 (d)

Given curve is $y^3 + 3x^2 = 12y$ On differentiating w.r.t. y, we get $3y^2 \frac{dy}{dx} + 6x = 12 \frac{dy}{dx}$ $\Rightarrow \frac{dy}{dx}(3y^2 - 12) + 6x = 0$ $\Rightarrow \frac{dy}{dx} = \frac{6x}{12 - 3y^2}$ $\Rightarrow \frac{dx}{dy} = \frac{12 - 3y^2}{6x}$ Since, tangent is parallel to y-axis $\frac{dy}{dx} = 0 \Rightarrow 12 - 3y^2 = 0$ $\Rightarrow y^2 = 4 \Rightarrow y = \pm 2$ Then, $x = \pm \frac{4}{\sqrt{3}}$ At y = -2, x cannot be real \therefore The required point is $(\pm \frac{4}{\sqrt{3}}, 2)$ 511 **(b)** Given, $y = a \log x + bx^2 + x$ $\Rightarrow \frac{dy}{dx} = \frac{a}{x} + 2bx + 1$

At x = -1 and x = 2, y has its extrema. $\therefore -a - 2b + 1 = 0 \implies a + 2b = 1$...(i) And $\frac{a}{2} + 4b + 1 = 0 \implies a + 8b = -2$...(ii) On solving Eqs. (i) and (ii), we get $a = 2, b = -\frac{1}{2}$ 512 (a)

Let $P(x_1, y_1)$ be any point on the curve $x^n y = a^n$ Then,

 $x_1^n y_1 = a^n \qquad \dots (i)$ Now, $x^n v = a^n$ $\Rightarrow n x^{n-1}y + x^n \frac{dy}{dx} = 0 \Rightarrow \frac{dy}{dx} = -\frac{ny}{x}$ $\therefore \left(\frac{dy}{dx}\right)_{(x_1,y_1)} = \frac{-ny_1}{x_1} \Rightarrow \left(\frac{dy}{dx}\right)_{(x_1,y_1)} = -\frac{na^n}{x_1^{n+1}}$ [Using (i)] The equation of the tangent at $P(x_1, y_1)$ is $y - y_1 = -\frac{n a^n}{x_1^{n+1}} (x - x_1)$ This meets the coordinates axes at $A\left(\frac{x_1^{n+1}y_1}{n a^n}+\right)$ x1, 0 and B0, y1+n anx1n respectively : Area of $\triangle AOB = \frac{1}{2}(OA \times OB)$ $\Rightarrow \text{Area of } \Delta AOB = \frac{1}{2} \left(\frac{x_1^{n+1} y_1}{n a^n} + x_1 \right) \left(y_1 + \frac{n a^n}{x_1^n} \right)$ \Rightarrow Area of $\triangle AOB = \frac{1}{2} \left(\frac{x_1}{n} + x_1 \right) \left(\frac{a^n}{x^n} + \frac{n a^n}{x^n} \right)$ [Using (i) \Rightarrow Area of $\triangle AOB = \frac{1}{2} \frac{(n+1)^2}{n} a^n x_1^{1-n}$ Clearly, the area will be constant if 1 - n =0 i.e.n = 1513 (c) Given, $y = \frac{c^2}{r}$ $\Rightarrow \frac{dy}{dx} = c^2 \left(-\frac{1}{x^2}\right)$: Subnormal at any point = $y \cdot \frac{dy}{dx}$ $= y \times \left(-\frac{c^2}{r^2}\right) = \frac{-y^3}{c^2}$ \therefore Subnormal $\propto y^3$ 514 (a) Given that, $\frac{dv}{dt} = 30$ ft³/ min and r = 15 ft Volume of spherical balloon $V = \frac{4}{3}\pi r^2 \Rightarrow \frac{dV}{dt} = 4\pi r^2 \frac{dr}{dt}$ $\Rightarrow 30 = 4\pi r^2 \frac{dr}{dt}$ $\Rightarrow \frac{dr}{dt} = \frac{30}{4 \times \pi \times 15 \times 15} = \frac{1}{30\pi} \text{ ft/min}$ 515 (d) Let AB = xm, BC = ym and AC = 10m $x^2 + y^2 = 100$...(i) 10

$$\Rightarrow 2x\frac{dx}{dt} + 2y\frac{dy}{dt} = 0$$

$$\Rightarrow 2x(3) - 2y(4) = 0$$

$$\left[Given = \frac{dx}{dt} = 3m/s, \frac{dy}{dt} = -4m/s\right]$$

$$\Rightarrow x = \frac{4y}{3}$$

On putting this value in Eq.(i),we get $\frac{16}{9}y^2 + y^2 = 100 \Rightarrow y = 6m$

516 **(d)**

Let there be a value of k for which $x^3 - 3x + k = 0$ has two distinct roots between 0 and 1 Let a, b be two distinct roots of $x^3 - 3x + k = 0$ lying between 0 and 1 such that a < bLet $f(x) = x^3 - 3x + k$. Then, f(a) = f(b) = 0Since between any two roots of a polynomial f(x)there exists at least one roots of its derivative f'(x). Therefore, $f'(x) = 3x^2 - 3$ has at least one root between a and b. But, f'(x) = 0 has two roots equal to ± 1 which do not lie between a and b

Hence, f(x) = 0 has no real roots lying between 0 and 1 for any value of k

517 **(b)**

$$\therefore f'(x) = 2\left(\frac{1}{3}\right)\sin\left(\frac{x}{6}\right)\cos\left(\frac{x}{6}\right) + \left(\frac{1}{3}\right)\cos\frac{x}{3} - \left(\frac{1}{3}\right)$$
$$= \left(\frac{1}{3}\right)\left[2\sin\left(\frac{x}{6}\right)\cos\left(\frac{x}{6}\right) - 2\sin^2\left(\frac{x}{6}\right)\right]$$
$$= \left(\frac{2}{3}\right)\sin\left(\frac{x}{6}\right)\cos\left(\frac{x}{6}\right) - 2\sin\left(\frac{x}{6}\right)$$
Put $f'(x) = 0 \iff \sin\left(\frac{x}{6}\right) = 0$
$$\Rightarrow \tan\left(\frac{x}{6}\right) = 1$$
$$\Rightarrow \frac{x}{6} = k\pi, k \in I \text{ or } \frac{x}{6} = n\pi + \frac{\pi}{4}, \quad n \in I$$
$$x^2 - 10 < -19.5 x$$
$$\Leftrightarrow (x + 9.75)^2 < 105.0625$$
$$\Leftrightarrow (x - 0.5)(x + 20) < 0$$
$$\Leftrightarrow -20 < x < 0.5$$
So, the critical points satisfying the last inequality will be $0, 6\pi, -\frac{9\pi}{2}$

518 (d)

Given curve is $f(x) = \int_0^x \frac{\sin t}{t} dt$ On differentiating w.r.t. x, we get $f'(x) = \frac{\sin x}{x}$ For point of extreme, put f'(x) = 0 $\Rightarrow \frac{\sin x}{x} = 0 \Rightarrow \sin x = 0$ $\Rightarrow x = n\pi, n = 1, 2, 3, ...$ 519 (a)

Given ,
$$s = 22t - 12t^2$$

 $\therefore v = \frac{ds}{dt} = 22 - 24t$
When the car stop, $v = 0,22 - 24t = 0$
 $\Rightarrow t = \frac{11}{12}$
 $\therefore s = 22\left(\frac{11}{12}\right) - 12\left(\frac{11}{12}\right)^2 = 10.08 \text{ ft}$

520 (a)

Let $f(x) = e^{ax} + e^{-ax}$, a < 0Now, $f'(x) = ae^{ax} - ae^{-ax}$ For decreasing, $f'(x) < 0 \Rightarrow a(e^{ax} - e^{-ax}) < 0$ $\Rightarrow a(e^{2ax} - 1) < 0$ $\Rightarrow e^{2ax} > 1 \Rightarrow x < 0 \quad [\because a < 0]$ 523 (d)

We have,

$$f(x) = \frac{x^2 - 1}{x^2 + 1}$$

$$\Rightarrow f(x) = \frac{x^2 + 1 - 2}{x^2 + 1}$$

$$\Rightarrow f(x) = 1 - \frac{2}{x^2 + 1} \Rightarrow f'(x) = \frac{4x}{(x^2 + 1)^2}$$

Clearly, $f'(x) = 0$ for $x = 0$
Also, $f'(x) < 0$ for $x < 0$ and $f'(x) > 0$ for x

Also, f'(x) < 0 for x < 0 and f'(x) > 0 for x > 0Therefore, x = 0 is a point of minimum with the local minimum f(0) = -1

524 **(d)**

525

$$f(x) = x + \frac{1}{x}$$

On differentiating w.r.t. x, we get
$$f'(x) = 1 - \frac{1}{x^2}$$

For maximum put $f'(x)=0$
 $\therefore x^2 - 1 = 0 \Rightarrow x = \pm 1$
Again differentiating, we get
$$f'(x) = \frac{2}{x^3}$$

Since, $x > 0$, so we can check only at $x = 1$
At $y x = 1$, $f''(x) > 0$
 $\Rightarrow f(c)$ is minimum at $x = 1$
At $x = 1$, $f''(x) > 0$
 $\Rightarrow f(x)$ is minimum at $x = 1$
 \therefore No maximum value can be found
(b)
Let $f(x) = \left(\frac{1}{x}\right)^{2x^2}$
Clearly, $f(x)$ is defined for all $x > 0$
Now,
 $f(x) = e^{-2x^2 \log_e x}$

 $\Rightarrow f'(x) = \left(\frac{1}{2}\right)^{2x^2} \{-4x \log_e x - 2x\}$ $\Rightarrow f'(x) = -\left(\frac{1}{x}\right)^{2x^2} 2x \left(2\log_e x + 1\right)$ For local maximum, we must have $f'(x) = 0 \Rightarrow 2x(\log_e x + 1) = 0 \Rightarrow x$ $= e^{-1/2} [\because x > 0]$ It can be checked that $f''(e^{-1/2}) < 0$ Therefore, f(x) attains maximum value at $x = e^{-1/2}$. The maximum value of f(x) is given by $f(e^{-1/2}) = (e^{1/2})^{2/e} = e^{1/e}$ 527 (b) Given, $y = x^{40} - x^{20}$ $\therefore \quad \frac{dy}{dx} = 40x^{39} - 20x^{19}$ Now, put $\frac{dy}{dx} = 0$ ie, $20x^{19}(2x^{20} - 1) = 0$ \Rightarrow x = 0 or $x^{20} = \frac{1}{2}$ When x = 0, y = 0And $x^{20} = \frac{1}{2}$ $y = \left(\frac{1}{2}\right)^2 - \frac{1}{2} = -\frac{1}{4}$ Also, x = 1, y = 0Hence, absolute maximum value of y is 0 528 (a) We have, $f(x) = x\sqrt{ax - x^2}$ Clearly, f(x) exist for 0 < x < aNow, $=\frac{2\sqrt{ax-x^2}}{2\sqrt{ax-x^2}}$ $=\frac{2ax-2x^2+ax-2x^2}{2\sqrt{ax-x^2}}$ $\Rightarrow f'(x) = \frac{3ax-4x^2}{2\sqrt{ax-x^2}}$ For f(x) $f'(x) = \sqrt{ax - x^2} + \frac{x(a - 2x)}{2\sqrt{ax - x^2}}$ For f(x) to be increasing, we must have $f'(x) > 0 \Rightarrow \frac{3ax - 4x^2}{2\sqrt{ax - x^2}} > 0 \Rightarrow 3ax - 4x^2 > 0$ $\Rightarrow 0 < x < \frac{3a}{4}$ 530 (c) Let *x* be the length of a side of the square and *r* be the radius of the circle. Then, x = 2r [Given] and $\frac{dx}{dt} = \frac{dr}{dt}$ Let A_1 and A_2 be the areas of the square and circle

Let A_1 and A_2 be the areas of the square and circle respectively. Then

$$A_1 = x^2 \text{ and } A_2 = \pi r^2$$

$$\Rightarrow \frac{dA_1}{dt} = 2x \frac{dx}{dt} \text{ and } \frac{dA_2}{dt} = 2\pi r \frac{dr}{dt}$$

$$\Rightarrow \frac{\frac{dA_1}{dt}}{\frac{dA_2}{dt}} = \frac{2x\frac{dx}{dt}}{2\pi r\frac{dr}{dt}} = \frac{2}{\pi} \quad \left[\because x = 2r \text{ and } \frac{dx}{dt} = \frac{dr}{dt}\right]$$

531 **(d)**

We have, $f(x) = \begin{cases} \tan^{-1} a - 3x^2, 0 < x < 1 \\ -6x, x \ge 1 \end{cases}$ If f(x) attains a maximum at x = 1, then f'(1)must exist and should be zero. This means that f(x) must be continuous and differentiable at x = 1We observe that f(x) will be continuous at x = 1, if $\tan^{-1} a = -3$ But, (LHD at x = 1) = (RHD at x = 1) = $-6 \ne 0$ for any value of aHence, there is no value of a for which f(x) has a maximum at x = 1

532 **(b)**

The equations of given curves are $y = a^x$...(i) And $y = b^x$...(ii) From Eq. (i) $m_1 = \frac{dy}{dx} = a^x \log a$ And from Eq. (ii) $m_2 = \frac{dy}{dx} = b^x \log b$ From Eqs. (i) and (ii), we get $a^x = b^x \Rightarrow x = 0$ Let α be the angle at which the two curves intersect $\dots = m_1 - m_2$

$$\therefore \tan \alpha = \frac{m_1 - m_2}{1 + m_1 m_2}$$
$$= \frac{a^x \log a - b^x \log b}{1 + a^x b^x (\log a) (\log b)}$$
$$= \frac{\log \frac{a}{b}}{1 + (\log a) (\log b)}$$

533 **(a)**

Let
$$\angle C = \theta$$
. Then, $b = a \cos \theta$
 $\therefore a + b = 8 \Rightarrow a(1 + \cos \theta) = 8 \Rightarrow a = \frac{8}{1 + \cos \theta}$
Let Δ be the area of ΔABC . Then,
 $\Delta = \frac{1}{2}ab \sin \theta$
 $\Rightarrow \Delta = \frac{1}{2}\frac{8}{1 + \cos \theta} \times \frac{8 \cos \theta}{1 + \cos \theta^2} \times \sin \theta$
 $\Rightarrow \Delta = \frac{32\cos \theta \sin \theta}{(1 + \cos \theta)^2} = \frac{16 \sin 2\theta}{(1 + \cos \theta)^2}$
 $\Rightarrow \frac{d}{d}(\Delta) = 16\left\{\frac{2\cos 2\theta (1 + \cos \theta)^2 + 2\sin \theta (1 + \cos \theta) \sin 2\theta}{(1 + \cos \theta)^4}\right\}$
 $\Rightarrow \frac{d}{d}(\Delta) = 32\left\{\frac{\cos 2\theta (1 + \cos \theta) + 2 \sin^2 \theta \cos \theta}{(1 + \cos \theta)^3}\right\}$
 $\Rightarrow \frac{d}{d}(\Delta) = 32\left\{\frac{(2\cos^2 \theta - 1)(1 + \cos \theta) + 2\cos \theta - 2\cos^3 \theta}{(1 + \cos \theta)^3}\right\}$
 $\Rightarrow \frac{d}{d}(\Delta) = \frac{32(2\cos^2 \theta + \cos \theta - 1)}{(1 + \cos \theta)^3}$
 $\Rightarrow \frac{d}{d}(\Delta) = \frac{32(2\cos^2 \theta + \cos \theta - 1)}{(1 + \cos \theta)^3}$
For maximum or minimum, we must have
 $\frac{d}{d}(\Delta) = 0 \Rightarrow 2\cos \theta = 1 \Rightarrow \cos \theta = \frac{1}{2} \Rightarrow \theta = \frac{\pi}{3}$
Clearly, $\frac{d}{d}(\Delta) > 0$ in the left neighbourhood of $\theta = \pi/3$ and $\frac{d}{d}(\Delta) < 0$ in the right neighbourhood of
 $\theta = \pi/3$
So, Δ maximum when $\theta = \pi/3$
S34 (Θ)
We have,
 $AD = a + a \cos 2\theta$ and $BC = 2BD = 2a \sin 2\theta$.
Therefore, area Δ of the triangle ABC is given by

$$\Delta = \frac{1}{2}BC \times AD = \frac{2}{2}a^{2}(\sin 2\theta + \sin 2\theta \cos 2\theta)$$
$$\Rightarrow \Delta = a^{2}\sin 2\theta + \frac{1}{2}a^{2}\sin 4\theta$$

 $\frac{d \Delta}{d \theta} = 0 \Rightarrow \cos 2 \theta = -\cos 4 \theta \Rightarrow 2\theta = \pi - 4\theta$ $\Rightarrow \theta = \frac{\pi}{\epsilon}$ For this value of θ , we find that $\frac{d^2 \Delta}{d\theta^2} < 0$ Hence, Δ is maximum for $\theta = \pi/6$ 537 (b) The equation of the curve is $y = x^2 - x$...(i) The abscissae of the points of intersection of (i) and the line y = 2 are the roots of the equation $2 = x^2 - x$ $\Rightarrow x^2 - x - 2 = 0$ $\Rightarrow (x-2)(x+1) = 0$ $\Rightarrow x = -1.2$ $\Rightarrow x = 2$ [: Point of intersection is in first quadrant] Putting x = 2 in (i), we get y = 2Thus, the required point of intersection is P(2, 2)From (i), we have $\frac{dy}{dx} = 2x - 1 \Rightarrow \left(\frac{dy}{dx}\right)_{x} = 4 - 1 = 3$ 538 (c) Given, $f(x) = (x^2 + 3x)e^{-(1/2)x}$ $\therefore \quad f'(x) = (x^2 + 3x) e^{-(1/2)x} \cdot \left(-\frac{1}{2}\right)$ $+(2x+3)e^{-(1/2)x}$ $= -\frac{1}{2}e^{-(1/2)x}\{x^2 - x - 6\}$ Since, f(x) satisfies the Rolle's theorem $\therefore f'(c) = 0 \implies -\frac{1}{2}e^{-(c/2)}(c^2 - c - 6) = 0$ $\Rightarrow c = 3, -2$ But $c = 3 \notin [-3, 0]$ $\therefore c = -2$ 539 (c) Given, $y^2 = \frac{a^4}{r^2}$ $\Rightarrow 2y \frac{dy}{dx} = \frac{-2a^4}{x^3}$ $\Rightarrow \frac{dy}{dx} = \frac{-a^4}{x^3 y}$ At (-a, a), $\frac{dy}{dx} = \frac{-a^4}{-a^3 a} = 1$ Now, length of subtangent to the given curve at (-a, a) is $\frac{y}{dy/dx} = \frac{a}{1} = a$ 540 (a) For *y*-axis, x = 0 $\therefore y = 1 - e^0 = 1 - 1 = 0$

 $\Rightarrow \frac{dy}{dx} = 0 - \frac{1}{2} e^{x/2} \Rightarrow \left(\frac{dy}{dx}\right)_{(0,0)} = -\frac{1}{2}$ ∴ Equation of tangent is $y - 0 = -\frac{1}{2}(x - 0)$ $\Rightarrow x + 2y = 0$ 541 (d) Given, $\frac{dV}{dt} = k$ [say]...(i) $: V = \frac{4}{2}\pi r^3$ $\Rightarrow \frac{dV}{dt} = 4\pi r^2 \frac{dr}{dt}$ $\therefore \qquad \frac{dr}{dt} = \frac{k}{4\pi r^2}$ [from Eq.(i)] \Rightarrow Rate of increasing radius is inversely proportional to its surface area 542 (d) We have, $f(x) = \begin{vmatrix} x-1 & x+1 & 2x+1 \\ x+1 & x+3 & 2x+3 \\ 2x+1 & 2x-1 & 4x+1 \end{vmatrix}$ $\Rightarrow f(x)$ $= \begin{vmatrix} x - 1 & x + 1 & 2x + 1 \\ 2 & 2 & 2 \\ 3 & -3 & -1 \end{vmatrix} \begin{bmatrix} \text{Applying } R_2 \to R_2 - R \\ R_3 \to R_3 - 2R_1 \end{bmatrix}$ $= \begin{vmatrix} x - 1 & 2 & 3 \\ 2 & 0 & -2 \\ 3 & -6 & -7 \end{vmatrix} \quad \begin{bmatrix} \text{Applying } C_2 \to C_2 - C_1 \\ C_3 \to C_3 - 2C_1 \end{bmatrix}$ $\Rightarrow f(x) = -12(x-1) - 2(-14+6) + 3(-12)$ $\Rightarrow f(x) = -12x - 8$ Clearly, $f'(x) \neq 0$ for any $x \in R$ So, f(x) has no point of maximum or minimum 543 (d) Let length of sector is *l* and radius of sector is*r*. $\therefore \quad l = \frac{2\pi r\theta}{360^{\circ}}$ Perimeter of sector $P = \frac{2\pi r\theta}{360^{\circ}} + 2r$ $\Rightarrow \quad r = \frac{p}{\left(\frac{2\pi r\theta}{360^{\circ}} + 2\right)}$ $\therefore \quad A = \frac{\pi r^2 \theta}{360^\circ} = \frac{\pi}{360^\circ} \left| \frac{P^2}{\left(\frac{2\pi\theta}{260^\circ} + 2\right)^2} \right| \theta$ $\Rightarrow A = \frac{\pi P^2}{360^{\circ}} \left| \frac{\theta}{\left(\frac{2\pi\theta}{260^{\circ}} + 2\right)^2} \right|$ $\frac{dA}{d\theta} = \frac{\pi P^2}{360^\circ} \left[\frac{\left(\frac{2\pi\theta}{360^\circ} + 2\right)^2 - \theta \cdot 2\left(\frac{2\pi\theta}{360^\circ} + 2\right)\frac{2\pi}{360^\circ}}{\left(\frac{2\pi\theta}{360^\circ} + 2\right)^4} \right]$ For maxima for minima, put $\frac{dA}{d\theta} = 0$

$$\left(\frac{2\pi\theta}{360^{\circ}} + 2\right) - \frac{4\theta\pi}{360^{\circ}} = 0$$

$$\Rightarrow \frac{2\pi\theta}{360^{\circ}} = 2 \quad \Rightarrow \quad \theta = 2 \text{ rad}$$

Thus, area of sector will be maximum, if sectorial angle is of 2 rad.

544 (c)

Let $f(x) = x^3$ and $g(x) = 6x^2 + 15x + 5$ It is given that the rate of increase of f(x) is less than that g(x). Therefore,

l nerefore,

$$\frac{u}{dx}(f(x)) < \frac{u}{dx}(g(x))$$

$$\Rightarrow 3x^{2} < 12x + 15$$

$$\Rightarrow x^{2} - 4x - 5 < 0$$

$$\Rightarrow (x - 5)(x + 1) < 0 \Rightarrow -1 < x < 5 \Rightarrow x$$

$$\in (-1, 5)$$

545 (a)

If velocity acquired by the particle is proportional to the square root of the distance covered, then its acceleration is a constant

546 **(c)**

We have, $x = a(\theta + \sin \theta), y = a(1 - \cos \theta)$ $\therefore \frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{a \sin \theta}{a(1 + \cos \theta)} = \tan \frac{\theta}{2}$

Since the tangent is inclined at an angle $\pi/4$ with *x*-axis

$$\therefore \tan \frac{\theta}{2} = \tan \frac{\pi}{4} \Rightarrow \theta = \frac{\pi}{2}$$

Putting, $\theta = \frac{\pi}{2}$, the point on the curve is $\left(a\left(\frac{\pi}{2}+1\right), a\right)$

547 **(d)**

Given, $f(x) = xe^{x}$ $\Rightarrow f'(x) = e^{x} + xe^{x}$ $\Rightarrow f''(x) = e^{x} + xe^{x} + e^{x} = 2e^{x} + xe^{x}$ For maxima or minima, put f'(x) = 0 $\Rightarrow e^{x}(1+x) = 0$ $\Rightarrow x = -1$ At x = -1, f''(x) > 0 \therefore At x = -1, f(x) is minimum. 548 (c) Given circumference of a circle $S = 2\pi R = 56$ $\Rightarrow R = \frac{28}{\pi}$ \therefore Error $\delta S = 2\pi \ \delta r = 0.02$ $\Rightarrow \delta r = \frac{0.02}{2\pi}$ Let area of circle, $A = \pi r^{2}$ \therefore Percentage error in $A = \frac{\delta A}{4} \times 100$

$$= 2 \times \frac{\delta r}{r} \times 100$$
$$= 2 \times \frac{0.02 \times \pi}{2\pi \times 28} \times 100 = \frac{1}{14}$$

549 (c)

Given, $f(x) = \frac{\sin x}{e^x}$ Here, f(0) = 0, $f(\pi) = 0$ Also. f(x)Is continuous in $[0, \pi]$ Since, every exponential function and trigonometric function is continuous in their domain and it is differentiable in the open interval. Now, $f'(x) = \frac{e^{x}(\cos x - \sin x)}{e^{x}}$ $\operatorname{Put} f'(x) = 0$ $\Rightarrow \cos x - \sin x = 0 \Rightarrow x = \frac{\pi}{4}$ $\therefore f'\left(\frac{\pi}{4}\right) = 0$ 550 (d) Given curve is $xy = c^2$ On differentiating w.r.t. x, we get $\frac{dy}{dx} = \frac{-c^2}{x^2}$ Length of subnormal = $y \frac{dy}{dx}$ $= \frac{y \times (-c)^2}{x^2} = \frac{-yc^2}{\left(\frac{c^2}{y}\right)^2} \left[\text{from Eq. (i), } x = \frac{c^2}{y} \right]$ $=\frac{-yc^2y^2}{c^4}=\frac{-y^3}{c^2}$: Subnormal varies as y^3 551 (b) Given, $y = e^{(2x^2 - 2a + 1)\sin^2 x}$ For minimum or maximum, put $\frac{dy}{dx} = 0$ $\therefore e^{(2x^2-2x+1)\sin^2 x}[(4x-2)\sin^2 x]$ $+2(2x^{2}-2x+1)\sin x\cos x]=0$ \Rightarrow (4x - 2) sin² x + 2(2x² - 2x + 1) sin x cos x = 0 $\Rightarrow 2 \sin x [(2x-1) \sin x + (2x^2 - 2x + 1) \cos x]$ = 0 $\Rightarrow \sin x = 0$ \therefore *y* is minimum for sin *x* = 0 Thus, minimum value of $v = e^{(2x^2 - 2x + 1)(0)} = e^0 = 1$ Alternate Let $f(x) = e^{(2x^2 - 2x + 1)\sin^2 x}$ Since $\sin^2 x \ge 0$ And $2x^2 - 2x + 1 \ge \frac{4(2)(1) - 2^2}{4(2)}$ (: minima = 4ac-b24a

 $\Rightarrow 2x^2 - 2x + 1 \ge \frac{1}{2}$ $\therefore \quad (2x^2 - 2x + 1)\sin^2 x \ge 0$ $\therefore f(x)_{\min} = e^0 = 1$ 552 (c) Given $s = 48t - 16t^2$ $\Rightarrow \frac{ds}{dt} = 48 - 32t$ At the greatest height, $v = \frac{ds}{dt} = 0$ \Rightarrow 48-32t=0 $\Rightarrow t = \frac{3}{2}$ $\therefore s = 48 \times \frac{3}{2} - 16 \left(\frac{3}{2}\right)^2 = 36m$ \therefore Total height = 64 + 36 = 100m 553 (c) Let $f(x) = 2x^3 - 6x + 5$ On differentiating w.r.t. x, we get $f'(x) = 6x^2 - 6$ Since, it is increasing function $\Rightarrow 6x^2 - 6 > 0$ $\Rightarrow (x-1)(x+1) > 0$ $\Rightarrow x > 1$ or x < -1554 (c) $\frac{dy}{dx} = a^2 - 3x^2 = 0 \iff x = \pm \frac{a}{\sqrt{3}}$ Since, $\frac{d^{2y}}{dx^2} = -6x$, so *y* is minimum for $x = -\frac{a}{\sqrt{3}}$ Since, $x^2 + x + 2 > 0$ for all *x*, so for $\frac{x^2 + x + 2}{x^2 + 5x + 6} \le 0$, we must have $x^{2} + 5x + 6 < 0$. If $x = -\frac{a}{\sqrt{2}}$, we have, $\frac{a^2}{3} - \frac{5a}{\sqrt{3}} + 6 < 0$ $\Rightarrow a^2 - 5\sqrt{3}a + 18 < 0$ $\Rightarrow (a-2\sqrt{3})(a-3\sqrt{3}) < 0$ $\Rightarrow a \in (2\sqrt{3}, 3\sqrt{3}).$ 555 **(b)** We have, $e^{2y} = 1 + 4x^2$ $\Rightarrow e^{2y} \cdot 2 \frac{dy}{dx} = 8x$ $\Rightarrow (1+4x^2)\frac{dy}{dx} = 4x$ $\Rightarrow \frac{dy}{dx} = \frac{4x}{1 + 4x^2} \Rightarrow m = \frac{4x}{1 + 4x^2} \Rightarrow |m|$ $=\frac{4|x|}{1+4|x|^2}$ Now, A.M. \geq G.M.

 $\Rightarrow \frac{1+4|x|^2}{2} \ge \sqrt{4|x|^2}$ $\Rightarrow 1 + 4|x|^2 \ge 4|x|$ $\Rightarrow 1 \ge \frac{4|x|}{1+4|x|^2} \Rightarrow 1 \ge |m| \Rightarrow |m| \le 1$ 556 (c) Function $2^{(x^2-3)^3+27}$ is minimum when $(x^2 - 3)^3 + 27$ is minimum Clearly, $27 + (x^2 - 3)^3 = x^2 \left\{ \left(x^2 - \frac{9}{2} \right)^2 \right\} \ge 0$ for all x Therefore, the minimum value of $(x^2 - 3)^3 + 27$ is zero for x = 0. Hence, the minimum value of the given function is $2^0 = 1$ 557 (a) The given curve is $(1 + x^2)y = 2 - x$...(i) It meets *x*-axis, where $y = 0 \Rightarrow 0 = 2 - x \Rightarrow x =$ So, Eq. (i) meets *x*-axis at the point at the point (2, 0) Also, from Eq. (i), $y = \frac{2-x}{1+x^2}$ On differentiating w.r.t. x, we get $\frac{dy}{dx} = \frac{(1+x^2)(-1) - (2-x)(2x)}{(1+x^2)^2}$ $\Rightarrow \frac{dy}{dx} = \frac{x^2 - 4x - 1}{(1 + x^2)^2}$: Slope of tangent at (2, 0) = $\frac{2^2 - 4(2) - 1}{(1 + 2^2)^2}$ $=\frac{4-8-1}{(1+4)^2}=-\frac{5}{25}=-\frac{1}{5}$: Equation of tangent at (2, 0) with slope $-\frac{1}{5}$ is $y - 0 = -\frac{1}{5}(x - 2)$ $\Rightarrow 5y = -x + 2$ $\Rightarrow x + 5y = 2$