12.ALDEHYDES, KETONES AND CARBOXYLIC ACIDS

Single Correct Answer Type

1.	On heating with aqueous alkali, chloroform yields: a) HCHO b) HCOOH	c) CH ₃ OH	d) CO ₂ and H ₂ O
2.	A keto ester (A) with molecular formula $C_6H_{10}O_3$ or on boiling with dilute KOH gives a compound (B) w acidification followed by heating undergoes decarbo	ith molecular formula C_4H_5 exylation to give acetone. T	$_{5}O_{3}K$ which upon
	a) CH ₃ COCH ₂ CH ₂ COOCH ₃	b) CH ₃ COCH ₂ COOC ₂ H ₅	NOTI.
3.	c) CH ₃ CH ₂ OCH ₂ COOCH ₃	d) $CH_3 - COCH(CH_3)COC$	JCH ₃
	In the reaction, HCHO + NH ₃ \rightarrow X, X is a) <i>meta</i> -formaldehyde b) <i>para</i> -formaldehyde	c) urotropine	d) None of these
4.	$CH_3CH_2 - CHO \xrightarrow{Dil.} product$		
	The product in the above reaction is		
	a) CH ₃ CH ₂ COOH	b) $CH_3CH_2 - CH_2OH$	
	CH ₃ -CH ₂ -CH-CH ₂ -CHO c) OH	CH ₃ -CH ₂ -CH-CH d)	H—CHO
	ÓН	ü) ÖH Ċŀ	H_3
5.	One mole of an organic compound requires $0.5\ \text{mole}$	e of oxygen to produce an a	cid. The compound may be:
	a) Alcohol b) Ether	c) Ketone	d) Aldehyde
6.	Acetic acid reacts with PCl ₅ to form		
_	a) CH ₂ ClCOOH b) CHCl ₂ COOH	c) CH ₃ COCl	d) CH ₃ COOCl
7.	The calcium salt of the final oxidation product of eth	•	
0	a) Formaldehyde Coal tania obtained as by product during	c) Acetone	d) Formic acid
8.	Coal-tar is obtained as by product during : a) Destructive distillation of wood		
	b) Destructive distillation of coal		
	c) Destructive distillation of bones		
	d) None of the above		
9.	CH ₃ COOH and C ₆ H ₅ COOH can be distinguished by:		
	a) Flame test b) Solubility in water	c) Physical state	d) All of these
10.	The reaction \rightarrow =O+Ph ₃ P=CH ₂ produces:		
	The reaction ——O+T1131 —C112 produces.		
	a) CH_3 b) CH_2	c) CH ₃	d) CH ₂ OH
11.	Methylene chloride on hydrolysis yields:		
12.	a) HCHO b) CH ₃ CHO	c) CH ₃ COCl	d) None of these
	$\frac{\text{Na/NH}_3/ROH}{}$?		
	Product is		
	COOH COOH	ĊООН	∠COOH
	a) b) [c) [d) [

c) Picric acid

13. Which of the following compounds does not have a carboxyl group?

a) Methanoic acid

14. 2,4-dichlorophenoxy acetic acid is used as a:

b) Ethanoic acid

d) Benzoic acid

	a) Fungicide	b) Insecticide	c) Herbicide	d) Moth repellent
15.		ng is reduced with zinc and	hydrochloric acid to give the	ne corresponding
	hydrocarbon?	15.4	.	D.D
1.0	a) Ethyl acetate	b) Acetic acid	c) Acetamide	d) Butan-2-one
16.	=	-	oxide in the presence of ace	_
17.	a) 3-pentanalBakelite is obtained from	b) 2-pentanal	c) 3-pentanone	d) 2-pentanone
17.	a) HCHO	b) (CH ₂ OH) ₂	c) CH ₃ CHO	d) CH ₃ COCH ₃
18.	,	cid on refluxing with an alk	•	aj dii3dodii3
	a) Acid	b) Ester	c) Ether	d) Amine
19.	In the reaction, <i>P</i> is:	•		,
	CH_3 $CO \xrightarrow{SeO_2} P + Se + I$	1.0		
	CH_3 $P + Se + I$	H ₂ O		
	a) CH ₃ COCHO	b) CH ₃ COOCH ₃	c) CH ₃ COCH ₂ OH	d) None of these
20.		$OH \longrightarrow [X]$		
	C C C	J H · · ·		
	Product is			
	F P F		┌──┐ OH OH ┌	
	a)		b) C-C-	
	, О, П	O	´ `O´ H H	,O,
	OH			OLL
	c) C		d) C<	UH
	COOH		") `O´	_COOH
21.	Which will give Hofmann	bromamide reaction?		
	φ CHCONH ₂			d) All of these
	a) OH	b) CH ₃ CONH ₂	c) H ₂ NCONH ₂	•
22.		e following processes exce	pt:	
	a) Change of state	b) Boiling	c) Condensation	d) Evaporation
23.	$[A]$ $\stackrel{\text{NaBH}_4}{\longleftarrow}$ H_2C	$ = O \frac{B_2H_6/H_2O_2}{OH^-} = [B],$		-
	[A]	OH^-		
	[A] and [B] are			
	2)	HO /	b) H_2C \longrightarrow O,H_2C	√
	a) $H_2C = \bigcirc$ OH, H_2	C—(O	b) H ₂ C — — O,H ₂ C · OH	
			OH	
	c) both $H_2C = \langle \rangle -O$	Н	d) both $H_2 \stackrel{\downarrow}{C} - \swarrow$	
24	The reaction			
24.	The reaction, $CH_3CHO + H_2N - NH_2 \rightarrow$	CHaCH=N·NHais		
	a) Elimination	b) Addition	c) Addition-elimination	d) None of these
25.	•	ould undergo aldol conden	=	, -
	J	CH_3		d) HCHO
	a) CCl ₃ CHO	b) CH ₃ —C—CHO	c) CH ₃ CH ₂ CHO	
	u, ddigdilo		0, 011301120110	
		CH_3		

- 26. Acetalsehyde reacts with:
 - a) Only nucleophiles

b) Both electrophiles and nucleophiles

- c) Only electrophiles
- d) Only free radicals

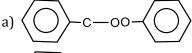
27.
$$CH_3CH = CH_2 + CO + H_2O \xrightarrow{H_3PO_4} CH_3 - CH - COOH CH_3$$

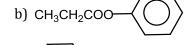
This reaction is called

a) The Stevens reaction

b) The carbonylation reactionc

c) The Koch reaction

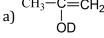

- d) Oxidation
- 28. Which of the following statement is correct?
 - a) Acidity increases with increase in carbon atoms in carboxylic acids.
 - b) Solubility of carboxylic acid increases with increase in carbon atoms.
 - c) Boiling points of acids are higher than corresponding alcohols.
 - d) None of the above.
- 29. The best reagent to convert pent-3-en-2-ol into pent-3-en-2-one is
 - a) Pyridinium chloro-chromate


b) Chromic anhydride in glacial acetic acid

c) Acidic dichromate

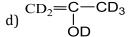
- d) Acidic permanganate
- 30. The catalyst used in Rosenmund reaction is
 - a) Zn/Hg
- b) Pd/BaSO₄
- c) Raney Ni
- d) Na in ethanol

31. Claisen condensation is not given by


d)
$$\bigcirc$$
 COOCH₂CH₂CH₃

- 32. Which of the following is a flavouring agent called 'oil of winter green'?
 - a) Olive oil
- b) Vinegar
- c) Methyl acetate
- d) Methyl salicylate

The following reaction is known by the name of:


CH₃COCl + H₂
$$\xrightarrow{[H]}$$
 CH₃CHO + HCl Xylene

- a) Stephen's reduction
- b) Rosenmund's reaction
- c) Cannizzaro's reaction
- d) None of these
- 34. The enol form of acetone, after treatment with D₂O gives

 $CH_3-C=CH_2$ CH_3-C-CH_3 CH_3-C-CH_3 CH_3-C-CH_3

 $CH_2 = C - CH_2D$

 $CH_3COOH \xrightarrow{NH_3} \stackrel{\Delta}{\longrightarrow} ?$

The product of the reaction is isomeric with

b) $CH_3CH = NHO$

c) HCONH - CH₃

d) All of these

- 36. The acid formed when propyl magnesium bromide is treated with CO₂ is:
 - a) C₃H₇COOH
- b) C₂H₅COOH
- c) Both (a) and (b)
- d) None of these

- 37. Tamarind contains
 - a) (+) tartaric acid
- b) (–) tartaric acid
- c) ± tartaric acid
- d) None of the above

- 38. The splitting of an ester by an alcohol is known as:
 - a) Acidolysis
- b) Alcoholysis
- c) Ammonolysis
- d) Hydrolysis
- 39. The product formed when hydroxylamine condenses with a carbonyl compound is called
 - a) Hydrazide
- b) Oxime
- c) Hydrazine
- d) Hydrazone
- 40. Φ CHO undergoes Claisen condensation with another aldehyde to give cinnamaldehyde. The aldehyde is
 - a) Formaldehyde

b) Acetaldehyde

	c) Crotonaldehyde	d) Propanaldehyde
41.	Two mole of acetic acid are heated with P_2O_5 . The	product formed is:
	a) 2 mole of ethyl alcohol	
	b) Formic anhydride	

- c) Acetic anhydride
- d) 2 mole of methyl cyanide
- 42. The nitrogen content in the proteins can be quantitatively estimated by:
 - a) Carius method
 - b) Kjeldahl's method
 - c) Victor Meyer's method
 - d) Rast method
- 43. Correct order of reducing power of the following carbonyl compounds
 - a) $HCHO > CH_3COCH_3 > \phi CHO$

b) $CH_3COCH_3 > \phi CHO > HCHO$

c) HCHO > ϕ CHO > CH₃COCH₃

d) $CH_3COCH_3 > HCHO > \phi CHO$

44. Cyanohydrin of which of the following forms lactic acid?

- a) HCHO
- b) CH₃COCH₃
- c) CH₃CHO
- d) CH₃CH₂CHO

- 45. Ethyl acetate on reaction with a Grignard reagent gives,
 - a) Alcohol
- b) Aldehyde
- c) Acid

- 46. Acetaldehyde reacts with HCN followed by hydrolysis forms a compound which shows:
 - a) Optical isomerism
 - b) Geometrical isomerism
 - c) Metamerism
 - d) Tautomerism
- 47. Carboxylic acids dissolve in *aq*. NaOH because the acids undergo:
 - a) Protonation
- b) Deprotonation
- c) Carboxylation
- d) Decarboxylation

- 48. Which of the acids cannot be prepared by Grignard reagent?
 - a) Acetic acid
- b) Succinic acid
- c) Formic acid
- d) All of these
- 49. Compound A when treated with ethyl magnesim iodide in dry ether forms an addition compound which on hydrolysis form compound *B*. The compound *B* on oxidation form 3-pentanone. Hence, the compound A and B are
 - a) Propanol, 3-pentanol b) Pentanol, 3-pentanol
- c) Ethanal, pentanal
- d) Acetone, 3-pentanol
- 50. Suggest appropriate structures for the missing final compound. (The number of carbon atom remains the same throughout the reaction.)

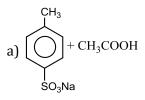
$$CH_3$$
 CH_3
 CH_3
 CH_3
 O

- 51. Lactic acid on heating with conc. H₂SO₄ gives
 - a) Acetic acid
- b) Formic acid
- c) Acrylic acid
- d) Propionic acid

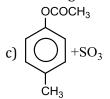
- 52. Urea can be detected by
 - a) Benedict test
- b) Molisch test
- c) Ninhydrine test
- d) Biurate test
- 53. Which of the following does not give brick red precipitate with Fehling's solution?
 - a) Acetaldehyde
- b) Formalin
- c) D-glucose
- d) Acetone

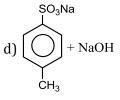
- 54. Which of the following statements is wrong?
 - a) Formic acid is stronger than acetic acid
 - b) o-bromobenzoic acid is weaker than o-chlorobenzoic acid
 - c) Lactic acid does not answer the silver mirror test

- d) Benzaldehyde does not reduce Fehling's solution
- 55. Pick out the reaction in which formic and acetic acid differs from each other:
 - a) Sodium replaces hydrogen from the compound
 - b) Forms esters with alcohols
 - c) Reduces solution of ammoniacal silver nitrate or Fehling's solution of dil. acid KMnO₄
 - d) Turns red litmus blue
- 56. An organic substance from its aqueous solution can be separated by:
 - a) Solvent extraction
- b) Steam distillation
- c) Distillation
- d) Fractional distillation

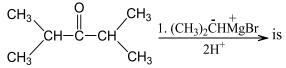

- 57. The strongest acid amongst the following compounds is
 - a) CH₃COOH
- b) HCOOH
- c) $CH_3CH_2CH(Cl)CO_2H$
- d) ClCH2CH2CH2COOH
- 58. What is obtained what acetyl chloride is heated with benzene in presence of anhydrous AlCl₃
 - a) Acetyl benzoic acid
- b) Anisol
- c) Acetonephenone
- d) Chlolorobenzene


- 59. Reaction of formaldehyde and ammonia gives
 - a) Hexamethylene tetramine


b) Bakelite


c) Urea

- d) Triethylene tetramine
- 60. 4-methyl benzene sulphonic acid reacts with sodium acetate to give


- 61. An acyl halide is formed when PCl₅ reacts with an:
 - a) Acid

- b) Alcohol
- c) Amine
- d) Ester
- 62. Generally it is more difficult to purify organic compounds than inorganic compounds because:
 - a) They are very unstable
 - b) Their m. p. and b. p. are low
 - c) Organic compounds have low solubility
 - d) Physical constants of organic compounds and the impurities associated with them are very close to each other
- 63. The acetophenone can be converted to ethylbenzene by reaction with
 - a) LiAlH₄
- b) H₂NOH
- c) $Pd/BaSO_4 H_2$
- d) Zn Hg/HCl
- 64. When propionic acid is treated with aqueous sodium bicarbonate, CO_2 is liberated. The C from CO_2 comes from
 - a) Methyl group

b) Carboxylic acid group

c) Methylene group

- d) Bicarbonate
- 65. Boiling points of carboxylic acid are:
 - a) Lower than corresponding alcohols
 - b) Higher than corresponding alcohols
 - c) Equal to that of corresponding alcohols
 - d) None of the above
- 66. The —COOH group in a carboxylic acid can be replaced by 'H' by heating the acid with:
 - a) Zn with HCl
 - b) H₂ in presence of nickel
 - c) Sodalime
 - d) Bromine and concentrated aqueous alkali
- 67. The product obtained in the reaction

$$CH_3$$
 OH CH_3 $CH-C-CH$ CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 OH

b)
$$CH_3$$
 $CH-CH_2(OH)-CH$ CH_3 $+$ $CH_3-CH=CH_2$ CH_3

- d) There is no reaction
- 68. Which of the following would produce secondary alcohol?
 - a) $C_6H_5COCH_3 \xrightarrow{1. CH_3MgBr}$
 - b) $C_6H_5COCH_3 \xrightarrow{1. \text{LiAlH}_4}$
 - c) $C_6H_5CHO \xrightarrow{1. CH_3MgBr}$
 - d) $CH_3CHO \xrightarrow{1. LiAlH_4}$
- 69. Which factor/s will increase the reactivity of >C=0 group?
 - I. Presence of a group with positive inductive effect.
 - II. Presence of a group with negative inductive effect.
 - III. Presence of large alkyl group.
 - a) Only (i)
- b) Only (ii)
- c) (i)and(iii)
- d) (ii) and (iii)

70. $CH_3CH_2COOH \xrightarrow{Red P/Br_2} CH_3CH_2CH-COOH$

This reaction is called the

a) Cannizaro reaction

b) Schrodinger reaction

c) Hell-Volhard-Zelinsky reaction

- d) Reimer-Tiemann reaction
- 71. $(CH_3)_2C=CHCOCH_3$ can be oxidised to $(CH_3)_2C=CHCOOH$ by:
 - a) Cu at 300°C
- b) KMnO₄
- c) Chromic acid
- d) NaOI
- 72. The correct order of decreasing boiling points of CH₃CONH₂ (A), CH₃COCl (B), CH₃COOH (C) and $(CH_3CO)_2O$ (D) is:
 - a) A > D > C > B
- b) A > B > C > D c) D > C > B > A
- d) None of these

73. Rate of reaction,

$$R \longrightarrow C <$$
 $Z + Nu^{-} \longrightarrow R \longrightarrow C <$
 $Nu + Z^{-}$

is fastest when Z is

a) Cl

b) NH₂

- c) OC_2H_5
- d) OCOCH₃
- 74. Which is useful for separating benzoic acid from a mixture of benzoic acid and methyl benzoate?
 - a) NaHCO₃(aq.)
- b) Dil. HCl
- c) Dil. H₂SO₄
- d) Dil. HNO₃

75. The compound *X*, in the reaction is

$$X \xrightarrow{\text{CH}_3 \text{CHO}} Y \xrightarrow{\text{Hydrolysis}} \text{Mg(OH)I} + \text{CH}_3 \text{COOH}$$

b) CO_2

- c) $(CH_3)_2CO$
- d) HCHO

- 76. Which of the following does not undergo polymerization?
 - a) CH₃CHO
- b) HCHO
- c) CH₃COCH₃
- d) None of these

77. The reaction,

 $RCOOAg + Br_2 \xrightarrow{CCl_4} RBr + AgBr + CO_2$ is called:


- a) HVZ reaction
- b) Hunsdiecker reaction c) Hofmann's reaction
- d) Carbylamine reaction

78.	Methyl ketones are chara	cterised through:		
	a) The Tollen's reagent			
	b) The iodoform test			
	c) The Schiff's test			
	d) The Benedict's reagent	-		
79.	An organic compound <i>X</i> c	ontains Y and Z impuritie	s. Their solubility differs sl	ightly. They may be
	separated by:			
	a) Simple crystallization			
	b) Fractional crystallizati	on		
	c) Sublimation			
	d) Fractional distillation			
80.	Which of the following re	actants on reaction with o	conc. NaOH followed by acid	dification gives following
	lactone as the product			
	Ö			
	C			
	CH ₂			
	-	, COOH	, ∠CHO	, COOH
	COOCH₃		CHO	
	a) Coou	b) OHO	c) O	d) Occur
0.1	COOH	CHO	CHO CON N	COOH
81.			reated with excess of CH ₃ N	
). Ozonolysis of (B) gave a l	ketone with molecular
		vs positive iodoform test.	, ,	
	a) $C_6H_5COOC_2H_5$		b) C ₆ H ₅ COOC ₆ H ₅	זזר
02	c) C ₆ H ₅ COOCH ₃	and reagent to form	d) p -H ₃ CO - C ₆ H ₄ - COC	лП ₃
02.	Acetone reacts with Grigra a) 3° alcohol	b) 2° alcohol	c) Ether	d) No reaction
02		•	vapours evolved will be rich	d) No reaction
03.	-	-	c) Diesel	
Ω1.	Decarboxylation of malor	=	c) Diesei	u) Lubi ication on
04.	a) CH ₄	b) CH ₃ COOH	c) Both (a) and (b)	d) None of these
85	What is the product in the	, ,	c) both (a) that (b)	a) None of these
00.	$CH_3CONH_2 \xrightarrow{NaOH_2/HCl} 2$			
	$CH_3CONH_2 \longrightarrow \lambda$	<i>X</i> ?		
	a) CH ₃ COOH	b) + CH ₃ CONH ₃ Cl ⁻	c) CH ₃ NH ₂	d) CH ₃ CHO
0.6		5 5		
86.	-	bstances cannot be used for	or the replacement of —OH	l group in organic
	compounds by Cl?	1.) (0.01) DCI	l) pol
07	a) S ₂ Cl ₂	b) SOCl ₂	c) PCl ₃	d) PCl ₅
87.	•	<u>-</u>		D. Data and January
00	a) Nitrogen pentoxide	b) Nitric acid	c) Nitrous acid	d) Potassium nitrate
88.	Which one is not prepare		a) Eabling/a calution	d) Doghallagalt
QΩ	a) Tartar emeticThe reagent used in Clem	b) Fenton's reagent	c) Fehling's solution	d) Rochelle salt
υJ.	a) Conc. H ₂ SO ₄	b) Zn–Hg /conc.HCl	c) aq. KOH	d) alc.KOH
90.				uj aic.KUII
70.	In the reaction, C ₆ H ₅ COO	$H + CH_3 {}_0^* H \xrightarrow{H^+} Ester + wa$	ter	
	Isotopically labeled ox	ygen (0^{18}) is present in		ton
	a) water		b) 0^{18} is present with es	tei
	c) 0^{18} shifts from acid to	alcohol	d) No reaction takes plac	ce
91.	The technique of gas chro	omatography is suitable fo	or compounds which are:	

- a) Liquids
- b) Highly volatile
- c) Soluble in water
- d) Vaporise without decomposition
- 92. There are several criteria of purity of organic compounds. Which is considered to be the best?
 - a) Melting point
 - b) Mixed melting point
 - c) Colour
 - d) Microscopic examination
- 93. ϕ CHO + NH₃ \rightarrow ? Product is

b) ϕ CH = NH

94. The ease of hydrolysis with an alkali in the compounds

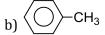
$$CH_3COCI$$
 $CH_3CO - O - COCH_3$

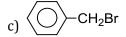
CH₃COOC₂H₅

CH₃CONH₂

Ш

Is of the order


- a) I>II>III>IV
- b) IV>III>II>I
- c) I>II>IV>III
- d) II>I>IV>III


- 95. What is the formula of adipic acid?
 - a) $COOH(CH_2)_4COOH$
- b) $CH_2(COOH)CH_2COOH$ c) $COOH(CH_2)_3COOH$
- d) None of the above
- 96. CH₃CHO and C₆H₅CH₂CHO can be distinguished chemically by:
 - a) Tollen's reagent test
- b) Fehling solution test
- c) Benedict test
- d) Iodoform test

- 97. Acrolein on complete reduction gives:
 - a) Allyl alcohol
- b) Propanol
- c) Propanal
- d) None of these

98. Identify the starting material of the following reaction

$$A \xrightarrow{\text{Mg/Ether}} (\text{i) CO}_2 \longrightarrow (\text{ii) H}_3\text{O}^+ \longrightarrow (\text{CH}_2\text{COOH})$$

- 99. Which one of the following is not a fatty acid?
 - a) Stearic acid
- b) Palmitic acid
- c) Oleic acid
- d) Phenyl acetic acid

 $\xrightarrow{\text{diazomethane}} B$ 100. $CH_3CN \stackrel{H_2O}{\longrightarrow} A$

A and B are

- a) Acetamide, N-methyl acetamide
- b) Acetic acid, ethyl ethanoate

c) Acetic acid, methyl acetate

- d) Acetamide, acetone
- 101. Tartronic acid is obtained from tartaric acid by:
 - a) HBr

- c) Tollen's reagent
- d) PCl₅

102. + CH₂=CHCOOH $\stackrel{\triangle}{\longrightarrow}$?

Product is

COOH

103. A compound, containing only carbon, hydrogen and oxygen, has a molecular weight of 44. On complete oxidation it is converted into a compound of molecular weight 60. The original compound is

a) An aldehyde	b) An acid	c) An alcohol	d) An ether
104. Which of the following re	eagents is useful for separat	ing aniline from a mixture	of aniline and
nitrobenzene?			
a) NaOH(<i>aq</i> .)	b) H ₂ O	c) $NaHCO_3(aq.)$	d) $HCl(aq.)$
105. How will you separate a			
a) Sublimation	b) Filtration	c) Distillation	d) Crystallization
106. An organic compound ha The compound is:	s C and H percentage in the	ratio 6 : 1 and C and O per	centage in the ration 3: 4.
a) HCHO	b) CH ₃ OH	c) CH ₃ CH ₂ OH	d) (COOH) ₂
107. Potassium cyanate is hea		· · · ·	, , , , , ,
a) Urea	b) Ammonia	c) Potassium sulphate	d) Ammonium cyanide
108. 2-pentanone and 3-petan	=		· , · · · · · · · · · · · · · · · · · ·
a) Cannizaro's reaction		b) Aldol condensation	
c) Iodoform reaction		d) Clemmensen's reduction	on
109. Acetyl bromide reacts wi	th excess of CH ₂ MgI follow	=	
gives	• ••••• •. • ₃ g. . • • · ·		
a) Acetone	b) Acetamide	c) 2-methyl-2-propanol	d) Acetyl iodide
110. Formalin is	b) nectainae	c) 2 methyr 2 propunor	a) necey notifice
a) Solution of fructose		b) 40% aq. sol. Of HCHO	
c) 40% HCHO + 60% CH	CHO	d) None of the above	
111. Aldol condensation is giv	·	a) None of the above	
a) Trimethylacetaldehyd	•	b) Acetaldehyde	
c) Benzaldehyde	C	d) Formaldehyde	
112. Which reaction is used fo	or detecting the presence of	•	
a) Reaction with hydrazin	- -	carbonyi group:	
b) Reaction with phenyl l			
c) Reaction with phenyl			
d) All of the above	amme		
113. The product obtained in	the reaction		
	the reaction		
$CH_3CH_2CO_2H \xrightarrow{Cl_2/P} is$			
CH₂CHCO₂H		Cl	
CH ₃ CHCO ₂ H a) Cl	b) ClCH ₂ CH ₂ CO ₂ H	CI c) CH ₃ -C-CO ₂ H CI	d) Cl ₂ CHCH ₂ CO ₂ H
Cl		т СП ₃ —С—СО ₂ Н	
114. An organic compound co			llysis gave, C, 38.71% and
= = = = = = = = = = = = = = = = = = =	formula of the compound w		
a) CH ₂ O	b) CHO	c) CH ₄ O	d) CH ₃ O
115. $CH_3COCl \xrightarrow{Pd/BaSO_4} A$			
The isomers of CH ₃ COCl	and A will be respectively		
a) CH ₂ ClCHO, oxirane		b) Chloral, vinyl alcohol	
c) α -chloro ethyl alcohol,	, epoxy ethane	d) None of the above	
116. Acid chlorides react with	Grignard's reagents to give	2:	
a) Esters	b) Ethers	c) Carbonyl compounds	d) None of these
117. Which of the following gi	ve an explosive RDX, on nit	ration?	
a) Toluene	b) Benzene	c) Guanidine	d) Urotropine
118. The conversion of —COO			
a) Wurtz reaction	b) Claisen condensation		d) Schmidt reaction
119. In question 178 step (2)	=	-	
a) Neutralization	,		

- b) Electrophilic attack at the carbonyl carbon
- c) Nucleophilic attack of *N*-lone pair at the carbonyl carbon leading to substitution
- d) Nucleophilic addition reaction
- 120. Acetaldehyde forms a white crystalline precipitate on mixing with asolution of
 - a) Acidic,Zn Hg

b) Alcoholic, Na₂SO₃

c) Saturated aqueous, NaHSO₃

d) Aqueous, NaCl

- 121. Fehling's solution is:
 - a) Acidified copper sulphate solution
 - b) Ammoniacal cuprous chloride solution
 - c) Copper sulphate, Rochelle salt + NaOH
 - d) None of the above
- 122. Stephen's reduction is used to prepare aldehyde from
 - a) Alcohol
- b) Alkyl cyanides
- c) Alkanones
- d) Acid chlorides

- 123. Benzyl alcohol can be prepared from benzaldehyde by
 - a) Friedel-Craft's reaction

b) Cannizaro's reaction

c) Kolbe's reaction

- d) Reimer-Tiemann reaction
- 124. The mechanism of ester formation in acidic medium is as follows

$$R-C-OH \xrightarrow{H^+}$$

$$\begin{bmatrix} HO^{+} & HO \\ \parallel & | \\ R-C-OH & \longrightarrow R-C-OH \end{bmatrix}$$

$$+R'OH;-H^+$$
 $R-C-OH$
 COP'

$$\frac{H^{+}}{\overline{\text{Step (iii)}}} R - C - OH \xrightarrow{-H_{2}O} \overline{\overline{\text{Step (iv)}}}$$

$$R - C - OR' \xrightarrow{Step(y)} R - C - OR'$$

The slowest step in the above mechanism is

- a) Step (i)
- b) Stem (ii)
- c) Step (iii)
- d) Step (iv)

- 125. Ammonolysis of an ester gives:
 - a) Amine
- b) Amide
- c) Uride
- d) None of these

- 126. Acetic anhydride can easily be prepared by:
 - a) Distilling a mixture of anhydrous sodium acetate and acetyl chloride
 - b) Heating acetic acid
 - c) Partial hydrolysis of acetyl chloride
 - d) Oxidation of ethanol
- 127. When one of the following hydrocarbons is burnt in excess of oxygen, the volume of ${\rm CO_2}$ evolved is just double to that of hydrocarbon taken. The hydrocarbon is:
 - a) CH₄

b) C_2H_6

c) C_3H_8

d) C_3H_6

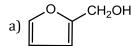
128. Identify the compound Z. In this reaction sequence

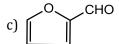
CH₃CH₂COOH
$$\xrightarrow{\text{NH}_3} X \xrightarrow{\text{Br}_2 + \text{KOH}} Y \xrightarrow{\text{HNO}_2} Z;$$

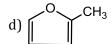
- a) CH2OH
- b) CH₃CH₂NH₂
- c) CH₃CH₂OH
- d) CH₃CH₂CH₂OH
- 129. Arrange the following carboxylic acids in order of decreasing acidity

Oxalic acid Malonic acid Succinic acid

- 130. Oppenauer oxidation is the reverse process of:
 - a) Wolff-Kishner's reduction
 - b) Rosenmund's reduction
 - c) Clemmensen's reduction
 - d) Meerwein-Ponndorf Verley reduction
- 131. Indicate the organic structure for product expected when 2-methyl propene is heated with acetyl chloride in presence of anhydrous ZnCl₂:


- 132. A mixture of benzaldehyde and formaldehyde on heating with aqueous NaOH solution gives
 - a) Benzyl alcohol and sodium formate
- b) Sodium benzoate and methyl alcohol
- c) Sodium benzoate and sodium formate
- d) Benzyl alcohol and methyl alcohol


133. Identify *X*;


$$\begin{array}{c} CH_3 \\ | \\ H_3C - C = O \xrightarrow{CH_3MgI} A \xrightarrow{H_2O} X \end{array}$$

- b) CH₃CH₂OH
- c) CH₃CHOHCH₃
- d) $CH_3C(OH)(CH_3)_2$

134. $X \xrightarrow{\text{Conc.NaOH}} \text{Furoic acid} + \text{Furyl alcohol.}$

- 135. Decarboxylation of which will yield 1,1,2,2-tetra bromoethane:
 - a) CH₃COOH
- b) CH₂BrCBr₂COOH
- c) HCBr₂CBr₂COOH
- d) CH₂BrCHBrCOOH

- 136. Fehling's solution is used in the detection of:
 - a) Ketonic group
- b) Alcoholic group
- c) Aldehydic group
- d) Carboxylic group

137. $RCOOH + N_3H \xrightarrow{\text{H}_2SO_4} RNH_2 + CO_2 + N_2$

The above reaction is called:

- a) HVZ reaction
- b) Hunsdiecker reaction
- c) Schmidt reaction
- d) Decarboxylation reaction

- 138. Butanol on reaction with one of the following will produce banana odour: b) CH₃COCl c) CH₃OCH₃ a) PCl₅ d) NH₃ 139. CHO
- $\xrightarrow{OH} X$; the product X is :
- b) CH₂OH— COO⁻ c) $CH_3OH + HCOOH$ d) 00C-C00a) $CH_3OH + CH_3OH$ 140. Some organic compounds are purified by distillation at low pressure because the compounds are:
 - a) Low boiling liquids
 - b) High boiling liquids
 - c) Highly volatile
 - d) Dissociated before reaching their boiling points
- 141. A compound 'A' has a molecular formula C₂Cl₃OH. A reduces Fehling solution and on oxidation produces a monocarboxylic acid B. A can also be obtained by the action of Cl₂ on ethanol. A is
 - a) Chloral
- b) CHCl₃
- c) CH₃Cl
- d) Chloroacetic acid

142. Predict the products in the given reaction.

CHO
$$CH_{2}OH + COO^{-}$$
a)
$$CH_{2}OH + COO^{-}$$

$$CH_{2}OH + CH_{2}COO^{-}$$

$$CH_{2}OH + CH_{2}COO^{-}$$

$$CH_{2}OH + CH_{2}COO^{-}$$

$$CH_{2}OH + OH$$

143. In the scheme given below, the total number of intramolecular aldol condensation products formed from "Y" is

$$\underbrace{\begin{array}{c} \text{(i) O}_{3} \\ \text{(ii) Xn, H}_{2}\text{O} \end{array}}_{} Y \underbrace{\begin{array}{c} \text{(i) NaOH(aq)} \\ \text{(ii) heat} \end{array}}_{}$$

a) 1

b) 2

c) 3

d) 4

- 144. Calcium propanoate on refluxing yields:
 - a) Propanol-2
- b) Propanone-2
- c) Pentanone-3
- d) Pentanone-2
- 145. When a mixture of one mole of benzoic acid and one mole of phenol in water is treated with one mole of NaHCO₃, the product formed will consist of
 - a) φCOOH + φONa
- b) φC00Na + φ0Na
- c) φCOONa + φOH
- d) ϕ COO ϕ + ϕ COOCO ϕ

- 146. Aldehyde not showing Cannizaro's reaction is
 - a) Paraldehyde
- b) Chloral
- c) Formaldehyde
- d) Acetaldehyde
- 147. Compound (A) (molecular formula C₃H₈O) is treated with acidified potassium dichromate to form a

product B (molecular formula C_3H_6O).' B' forms a shining silver mirror on warming with ammonical silver nitrate. 'B' when treated with an aqueous solution of H2NCONHNH2. HCl and sodium acetate gives a product 'C'. Identify the structure of 'C'.

a) $CH_3CH_2CH = NNHCONH_2$

b) $(CH_3)_2C = NNHCONH_2$

c) $(CH_3)_2C = NCONHNH_2$

- d) $CH_3CH_2CH = NCONHNH_2$
- 148. Methyl cyanide can be converted into acetic acid by:
 - a) Reduction
- b) Hydrolysis
- c) Electrolysis
- d) Decarboxylation
- 149. A product obtained by the reaction of *X* with hydroxylamine and on further reduction gives

$$H$$
 NH_2 C_2H_5 $-C$ $-C(CH_3)_3$. Hence, the compound X can be

a) 2,2-dimethyl-3-pentanone

b) 3,3-dimethyl-3-butanone

c) 1-methyl-3-pentanone

- d) Diethyl ketone
- 150. The main reason for the fact than carboxylic acids can undergo ionization is:
 - a) Absence of α-H-atom
 - b) Resonance stabilization of carboxylate ion
 - c) High reactivity of α-H-atom
 - d) Hydrogen bonding
- 151. Acetamide reacts with maximum ease with:
 - a) C_2H_5OH
- b) $C_2H_5NH_2$
- c) H_2O

d) aq. NaOH

- 152. Formalin is the commercial name of
 - a) Formic acid

- b) Fluroform
- c) 40% aqueous solution of methanal
- d) para formaldehyde
- 153. Which of the following carboxylic acids is not reduced to the corresponding 1° alcohol byLiAlH₄?
 - a) BrCH₂CH₂CH₂COOH

b) Cyclohexane carboxylic acid

c) (Z) $- CH_3CH = CHCH_2COOH$

- d) CH₃CH(CH₃)CH₂COOH
- 154. The weakest acid amongst the following is
 - a) ClCH₂COOH
- b) HCOOH
- c) FCH₂CH₂COOH
- d) CH₂(I)COOH

155. Identify (X) in the sequence,

$$C_4H_7OC1 \xrightarrow{NH_3} C_4H_9ON \xrightarrow{Br_2/KOH} CH_3CH_2CH_2NH_2$$

- c) CH₃—CH₂—CH₂—COCl
- d) OHC-CH₂-CH₂-CH₂-Cl
- 156. Which compound is oxidised to prepare ethyl methyl ketone?
 - a) Propanol-2
- b) Butanol-1
- c) Butanol-2
- d) Tert-butyl alcohol

157. The product obtained in the reaction

$$\begin{array}{c} O \\ \parallel \\ R \ CH-CH_2C-OH \xrightarrow{Heat} \\ OH \end{array}$$

a)
$$\begin{array}{cccc} R & CH - CH_2 \\ & & & | & | \\ & O - C - C \end{array}$$

c) RCH = CHCOOH

d) None of the above

158. OD NaOH [Intermediate]
$$\frac{\text{(i) CO}_2}{\text{(ii) D}^+} A$$

d) Reaction not possible

159. Acetone is treated with excess of ethanol in the presence of hydrochloric acid. The product obtained is:

- 160. When acetaldehyde is heated with Fehling's solution, it gives a red precipitate of:
 - a) Cu

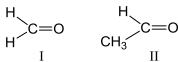
b) CuO

- c) $Cu + Cu_2O + CuO$
- d) Cu_2O

- 161. Simple distillation can be used to separate:
 - a) A mixture of benzene (b. p. 80 °C) and toluene (b. p. 110 °C)
 - b) A mixture of ether (b. p. 35°C) and toluene (b. p. 110°C)
 - c) A mixture of ethanol (b. p. 78°C) and water(b. p. 100°C)
 - d) None of the above
- 162. Acetyl bromide reacts with excess of CH₃MgI followed by treatment with a saturated solution of NH₄Cl gives
 - a) Acetone
- b) Acetamide
- c) 2-methyl-2-propanol
- d) Acetyl iodide
- 163. Aldol condensation between the following compounds followed by dehydration gives methyl vinyl ketone:
 - a) HCHO and CH₃COCH₃
 - b) HCHO and CH₃CHO
 - c) Two molecules of CH₃CHO
 - d) Two molecules of CH₃COCH₃

164. $R-{\rm CH_2-CH_2OH}$ can be converted into The correct sequence of reagent is, $R-{\rm CH_2-CH_2-H}$

- a) KCN, H⁺
- b) PBr₃, KCN, H₂
- c) HCN, PBr₃, H⁺
- d) PBr, KCN, H+
- 165. The acid which does not form an anhydride when treated with P_2O_5 is:
 - a) Formic acid
- b) Acetic acid
- c) Propionic acid
- d) Benzoic acid
- 166. Prior to the seventeenth century people knew the processes except:
 - a) Dyeing
- b) Preparation of wines
- c) Organic synthesis
- d) Fermentation

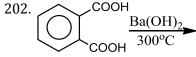

- 167. Molecular weight of acetic acid is 60. Its empirical formula is:
 - a) CH_2O
- b) $C_2H_4O_2$
- c) $C_3H_6O_3$
- d) $C_2H_4O_3$

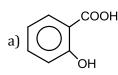
168. Ketones can be obtained in one step by:

	a) Hydrolysis of ester		
	b) Oxidation of primary alcohols		
	c) Reaction of acid halide with alcohols		
	d) Oxidation of secondary alcohol		
169	The scientist who gave chromatography concept:		
	a) Berzelius b) Avogadro	c) Tswett	d) Lavoisier
170	$RCOOH \rightarrow RCH_2COOH$. This conversion is known as in	reaction	
	a) Arndt-Eistert reaction	b) Favorskii reaction	
	c) Mannich reaction	d) Schmidt reaction	
171	Nucleophilic addition reaction will be most favoured	•	
	a) CH ₃ CH ₂ CHO		
	b) CH ₃ CHO		
	c) CH ₃ · CH ₂ · CH ₂ COCH ₃		
	d) (CH ₃) ₂ C=0		
172	. 0.2 g of an organic compound containing C, H and O	on combustion yielded 0.3	147 g CO_2 and 0.12 g water.
	The percentage of oxygen in it is:	,	3 2
	a) 73.34% b) 78.45%	c) 83.23%	d) 89.50%
173	Aliphatic aldehydes react with Fehling's solution to g	•	•
	precipitate with Fehling's solution because:	,	y
	a) Of a bulky ring, —CHO is hinderer		
	b) Or resonance, oxidation of benzaldehyde is difficu	lt	
	c) —CHO is present in cyclic structure	- •	
	d) Of all the above statements		
174	The identical C—O bond lengths in carboxylate ions	are due to:	
	a) Resonance		
	b) Presence of carbonyl group		
	c) Presence of alkyl group		
	d) None of the above		
175	Which one of following can be oxidised to the corresp	nonding carbonyl compou	nd?
	a) 2-hydroxypropane	b) <i>Ortho-</i> nitrophenol	
	c) Phenol	d) 2-methyl-2-hydroxypr	onane
176	A compound does not react with 2, 4 dinitrophenyl h		
1,0	a) Acetone b) Acetaldehyde	c) CH ₃ OH	d) CH ₃ CH ₂ COCH ₃
177	When CH ₃ COOH reacts with CH ₃ – MgX		u) 01130112000113
	a) CH ₃ COX is formed	b) Hydrocarbon is formed	1
	c) Acetone is formed	d) Alcohol is formed	•
178	. 13 g of a hydrocarbon contains 1.0 g of hydrogen. Its	•	
170	a) C_2H_2 b) C_2H_3	c) C ₃ H ₄	d) C ₄ H ₇
179	2-pentanone and 3-pentanone can be distinguished by	<i>y</i> 3 1	u) 0411/
1,,	a) Tollen's reagent b) Fehling's solution	c) Schiff's test	d) Iodoform test
180	Ethyl acetate is obtained by acetaldehyde in one step		a) rodororm test
100	a) Condensation using $Ba(OH)_2$	b) Using aluminium ethox	zide
	c) Oxidation	d) Reduction	auc
181	On reaction with hydroxylamine, aldehydes produce	•	
101	a) Ketoxime b) Hydrazone	c) Semicarbazone	d) Aldoxime
182	The solvent which can dissolve all the carboxylic acid		u) Aldoxillic
102	a) Water b) Dilute HCl	c) Conc. H ₂ SO ₄	d) Dilute NaOH
183	. 0.759 g of a silver salt of a dibasic organic acid on ign	- -	
100	weight of acid is:	inion fert 0.100 g metaille s	mver. The equivalent
	a) 70 b) 108	c) 60	d) 50
19/	Acetone and acetaldehyde can be distinguished by	c) 00	u) 50

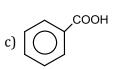
a) Molisch test			
	b) Tollen's test	c) Schiff's test	d) Iodoform test
185. Hydroxamic acid test is e	employed to detect		
a) Ketones	b) Aldehydes	c) Esters	d) amides
186. When $CH_2 = CH - COOH$	I is reduced with LiAlH4, the	e compound obtained will l	oe
	b) $CH_2 = CH - CH_2OH$	· -	d) CH ₃ CH ₂ CHO
187. Conversion of benzaldeh			,,,
	b) Claisen condensation		d) Aldol condensation
-	=	=	
188. Dry distillation of calcium		=	
a) CH ₃ OH, HCOOK	b) CH ₃ CHO, HCOOK	с) НСНО, НСООК	d) None of these
189. The main component of	-		
a) Salicylic acid	b) Methyl salicylate	c) Acetyl salicylic acid	d) salicylaldehyde
190. Acetic acid is manufactur	red by the fermentation of:		
a) Ethanol	b) Methanol	c) Ethanal	d) Methanal
191. Which is/are hydroxy ac	id (s)?		
a) Lactic acid	b) Tartaric acid	c) Citric acid	d) All of these
192. When cyclohexanone is t	reated with N_3H (hydrazoi	c acid)	
a) Caprolactum is obtain		b) Caprolactone is obtain	ed
c) Caproserum is obtaine		d) No reaction	
193. Which of the following w			treated by an acid?
193. Which of the following w	in not give cyclic products i		
O a) CH ₃ CHCH ₂ CH ₂ CH ₂ CO OH		b) CH ₃ CH ₂ CHCH ₂ CH ₂ CO OH	
a) CH ₃ CHCH ₂ CH ₂ CH ₂ CO	ЭH	h) CH ₃ CH ₂ CHCH ₂ CH ₂ CC)H
OH		OH	
OH		OH	
C)	(ി
	1011		
c) CH ₃ CH ₂ CH ₂ CHCH ₂ C	ЮН	d) $CH_3CH_2CH_2CH_2CH_2$	COH
ÓΗ		ÓH	
CH ₃ CH ₂ CH ₂ CHCH ₂ COH		d) CH ₃ CH ₂ CH ₂ CH ₂ CH ₀ CH ₀ OH	
ÓН 194. СН ₂ СНО + СО ₂ (СООН)	$\xrightarrow{\text{Pyridine}} X \colon X \text{ is:}$	ÓН	
194. $CH_3CHO + CO_2(COOH)$	$ \xrightarrow{\text{Pyridine}} X; X \text{ is:} $	о́н	
194. $CH_3CHO + CO_2(COOH)_2$ a) CH_3COOH	$ \frac{\text{Pyridine}}{\triangle} X; X \text{ is:} $	о́н	
194. $CH_3CHO + CO_2(COOH)$	$ \xrightarrow{\text{Pyridine}} X; X \text{ is:} $	ÓН	
194. $CH_3CHO + CO_2(COOH)_2$ a) CH_3COOH	$ \begin{array}{c} $	о́н	
194. $CH_3CHO + CO_2(COOH)$ a) CH_3COOH b) C_2H_5COOH	$ \begin{array}{c} $	ÓН	
194. $CH_3CHO + CO_2(COOH)$ a) CH_3COOH b) C_2H_5COOH c) $CH_3CH=CHCOOH$	$ \frac{\text{Pyridine}}{\Delta} X; X \text{ is:} $ H)		
194. $CH_3CHO + CO_2(COOH)$ a) CH_3COOH b) C_2H_5COOH c) $CH_3CH=CHCOOH$ d) $(COOH)CH=CH(COOH)$	$ \frac{\text{Pyridine}}{\Delta} X; X \text{ is:} $ H)		
194. $CH_3CHO + CO_2(COOH)$ a) CH_3COOH b) C_2H_5COOH c) $CH_3CH=CHCOOH$ d) $(COOH)CH=CH(COOH)$ 195. The most suitable reagendary carbon is	$ \frac{\text{Pyridine}}{\Delta} X; X \text{ is:} $ H)	nary alcohol into aldehyde	
a) CH ₃ CHO + CO ₂ (COOH) a) CH ₃ COOH b) C ₂ H ₅ COOH c) CH ₃ CH=CHCOOH d) (COOH)CH=CH(COOH 195. The most suitable reagen carbon is a) Acidified K ₂ Cr ₂ O ₇	$ \frac{\text{Pyridine}}{\Delta} X; X \text{ is:} $ H)	nary alcohol into aldehyde b) Acidified KMnO4	with the same number of
a) CH ₃ CHO + CO ₂ (COOH) a) CH ₃ COOH b) C ₂ H ₅ COOH c) CH ₃ CH=CHCOOH d) (COOH)CH=CH(COOH 195. The most suitable reager carbon is a) Acidified K ₂ Cr ₂ O ₇ c) Alkaline KMnO ₄	Pyridine $X; X$ is: A) Int for the conversion of print	nary alcohol into aldehyde b) Acidified KMnO ₄ d) Pyridinium chlorochro	with the same number of
a) CH ₃ CHO + CO ₂ (COOH) a) CH ₃ COOH b) C ₂ H ₅ COOH c) CH ₃ CH=CHCOOH d) (COOH)CH=CH(COOH 195. The most suitable reagen carbon is a) Acidified K ₂ Cr ₂ O ₇ c) Alkaline KMnO ₄ 196. Give the order of ease of	Pyridine $X; X \text{ is:}$ All $X : X : X : X : X : X : X : X : X : X $	nary alcohol into aldehyde b) Acidified KMnO ₄ d) Pyridinium chlorochro	with the same number of
a) CH ₃ CHO + CO ₂ (COOH) a) CH ₃ COOH b) C ₂ H ₅ COOH c) CH ₃ CH=CHCOOH d) (COOH)CH=CH(COOH 195. The most suitable reager carbon is a) Acidified K ₂ Cr ₂ O ₇ c) Alkaline KMnO ₄ 196. Give the order of ease of CH ₃ COOH CH ₂ =CH-C	Pyridine $X; X$ is: A) In the formula of the following the conversion of the conversion o	nary alcohol into aldehyde b) Acidified KMnO ₄ d) Pyridinium chlorochro	with the same number of
a) CH ₃ CHO + CO ₂ (COOH); a) CH ₃ COOH b) C ₂ H ₅ COOH c) CH ₃ CH=CHCOOH d) (COOH)CH=CH(COOH 195. The most suitable reager carbon is a) Acidified K ₂ Cr ₂ O ₇ c) Alkaline KMnO ₄ 196. Give the order of ease of CH ₃ COOH CH ₂ =CH-C	Pyridine $X; X$ is: A) In the formula of the following the conversion of the conversion o	nary alcohol into aldehyde b) Acidified KMnO ₄ d) Pyridinium chlorochro	with the same number of
a) CH ₃ CHO + CO ₂ (COOH) a) CH ₃ COOH b) C ₂ H ₅ COOH c) CH ₃ CH=CHCOOH d) (COOH)CH=CH(COOH 195. The most suitable reager carbon is a) Acidified K ₂ Cr ₂ O ₇ c) Alkaline KMnO ₄ 196. Give the order of ease of CH ₃ COOH CH ₂ =CH-C	Pyridine $X; X$ is: A) In the formula of the following the conversion of the conversion o	nary alcohol into aldehyde b) Acidified KMnO ₄ d) Pyridinium chlorochro	with the same number of
a) CH ₃ CHO + CO ₂ (COOH) a) CH ₃ COOH b) C ₂ H ₅ COOH c) CH ₃ CH=CHCOOH d) (COOH)CH=CH(COOH 195. The most suitable reagen carbon is a) Acidified K ₂ Cr ₂ O ₇ c) Alkaline KMnO ₄ 196. Give the order of ease of CH ₃ COOH CH ₂ =CH-C I NO ₂	Pyridine $X; X$ is: A) In the formula of the following the conversion of the conversion o	nary alcohol into aldehyde b) Acidified KMnO ₄ d) Pyridinium chlorochro	with the same number of
a) CH ₃ CHO + CO ₂ (COOH); a) CH ₃ COOH b) C ₂ H ₅ COOH c) CH ₃ CH=CHCOOH d) (COOH)CH=CH(COOH 195. The most suitable reager carbon is a) Acidified K ₂ Cr ₂ O ₇ c) Alkaline KMnO ₄ 196. Give the order of ease of CH ₃ COOH CH ₂ =CH-C	Pyridine $X; X$ is: A) In the formula of the following the conversion of the conversion o	nary alcohol into aldehyde b) Acidified KMnO ₄ d) Pyridinium chlorochro	with the same number of
a) CH ₃ CHO + CO ₂ (COOH) a) CH ₃ COOH b) C ₂ H ₅ COOH c) CH ₃ CH=CHCOOH d) (COOH)CH=CH(COOH 195. The most suitable reager carbon is a) Acidified K ₂ Cr ₂ O ₇ c) Alkaline KMnO ₄ 196. Give the order of ease of CH ₃ COOH CH ₂ =CH-C I NO ₂ O ₂ N——COOH NO ₂	Pyridine $X; X$ is: A) In the formula of the following the conversion of the conversion o	nary alcohol into aldehyde b) Acidified KMnO ₄ d) Pyridinium chlorochro	with the same number of
a) CH ₃ CHO + CO ₂ (COOH) a) CH ₃ COOH b) C ₂ H ₅ COOH c) CH ₃ CH=CHCOOH d) (COOH)CH=CH(COOH 195. The most suitable reagen carbon is a) Acidified K ₂ Cr ₂ O ₇ c) Alkaline KMnO ₄ 196. Give the order of ease of CH ₃ COOH CH ₂ =CH-C I NO ₂	Pyridine $X; X$ is: A) In the formula of the following the conversion of the conversion o	nary alcohol into aldehyde b) Acidified KMnO ₄ d) Pyridinium chlorochro	with the same number of
a) CH ₃ CHO + CO ₂ (COOH) a) CH ₃ COOH b) C ₂ H ₅ COOH c) CH ₃ CH=CHCOOH d) (COOH)CH=CH(COOH 195. The most suitable reagen carbon is a) Acidified K ₂ Cr ₂ O ₇ c) Alkaline KMnO ₄ 196. Give the order of ease of CH ₃ COOH CH ₂ =CH-C I NO ₂ O ₂ N—COOH NO ₂ C IV	Pyridine $X; X$ is: A) In the formula of the following the conversion of the conversion o	nary alcohol into aldehyde b) Acidified KMnO ₄ d) Pyridinium chlorochro wing acids	with the same number of
a) CH ₃ CHO + CO ₂ (COOH) a) CH ₃ COOH b) C ₂ H ₅ COOH c) CH ₃ CH=CHCOOH d) (COOH)CH=CH(COOH 195. The most suitable reagen carbon is a) Acidified K ₂ Cr ₂ O ₇ c) Alkaline KMnO ₄ 196. Give the order of ease of CH ₃ COOH CH ₂ =CH-C I NO ₂ O ₂ N—COOH NO ₂ C IV	Pyridine $X; X \text{ is:}$ A) The property of the conversion of prints of the conversion of the following the conversion of the following that $CH_2(COOH)_2$ and $CH_2(COOH)_2$ and $CH_2(COOH)_2$ and $CH_2(COOH)_2$ and $CH_2(COOH)_2$ and $CH_2(COOH)_2$ are solved the conversion of the following that $CH_2(COOH)_2$ are solved the conversion of the following that $CH_2(COOH)_2$ are solved that $CH_2(COOH)_2$ and $CH_2(COOH)_2$ are solved that $CH_2(COOH)_2$ and $CH_2(COOH)_2$ are solved that	nary alcohol into aldehyde b) Acidified KMnO ₄ d) Pyridinium chlorochrowing acids c) IV > III > II > I	with the same number of
a) CH ₃ CHO + CO ₂ (COOH) a) CH ₃ COOH b) C ₂ H ₅ COOH c) CH ₃ CH=CHCOOH d) (COOH)CH=CH(COOH 195. The most suitable reager carbon is a) Acidified K ₂ Cr ₂ O ₇ c) Alkaline KMnO ₄ 196. Give the order of ease of CH ₃ COOH CH ₂ =CH-C I NO ₂ O ₂ N—COOH NO ₂ C IV a) I > II > III > IV 197. Which is used as a prese	Pyridine $X; X$ is: A) If the conversion of print decarboxylation of the following the second of	nary alcohol into aldehyde b) Acidified KMnO ₄ d) Pyridinium chlorochrowing acids c) IV > III > II > I nens?	with the same number of smate $ d) I > III > II > IV $
a) CH ₃ CHO + CO ₂ (COOH) a) CH ₃ COOH b) C ₂ H ₅ COOH c) CH ₃ CH=CHCOOH d) (COOH)CH=CH(COOH 195. The most suitable reager carbon is a) Acidified K ₂ Cr ₂ O ₇ c) Alkaline KMnO ₄ 196. Give the order of ease of CH ₃ COOH CH ₂ =CH-C I NO ₂ O ₂ N—COOH NO ₂ C IV a) I > II > III > IV 197. Which is used as a prese a) Formalin	Pyridine $X; X$ is: A) Int for the conversion of print decarboxylation of the following the second of the following that H_2 COOH CH_2 (COOH)2 III b) III > $IV > II > I$ rvative for biological specime b) Formic acid	nary alcohol into aldehyde b) Acidified KMnO ₄ d) Pyridinium chlorochrowing acids c) IV > III > II > I nens? c) Liquid NH ₃	with the same number of
a) CH ₃ CHO + CO ₂ (COOH) a) CH ₃ COOH b) C ₂ H ₅ COOH c) CH ₃ CH=CHCOOH d) (COOH)CH=CH(COOH 195. The most suitable reager carbon is a) Acidified K ₂ Cr ₂ O ₇ c) Alkaline KMnO ₄ 196. Give the order of ease of CH ₃ COOH CH ₂ =CH-C I NO ₂ O ₂ N—COOH NO ₂ C IV a) I > II > III > IV 197. Which is used as a prese	Pyridine $X; X$ is: A) Int for the conversion of print decarboxylation of the following the second of the following that H_2 COOH CH_2 (COOH)2 III b) III > $IV > II > I$ rvative for biological specime b) Formic acid	nary alcohol into aldehyde b) Acidified KMnO ₄ d) Pyridinium chlorochrowing acids c) IV > III > II > I nens? c) Liquid NH ₃	with the same number of smate $ d) I > III > II > IV $

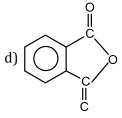
- b) It forms covalent bonds
- c) It has a strong tendency of catenation
- d) Compounds are combustible
- 199. What will be the order of reactivity of the following carbonyl compounds with Grignard's reagent?

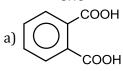


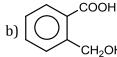

$$CH_3$$
 $C=0$ $CH_3)_3C$ $C=0$ $CH_3)_3C$ $C=0$

- a) I > II > III > IV
- b) IV > III > II > I
- c) II > I > IV > III
- d) III > II > IV
- 200. By which of the following reagents can the following conversion be affected?

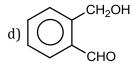

a) 2CH₃MgBr and H₃O⁺


- b) $\frac{\text{HOCH}_2}{-\text{CH}_2\text{OH}, \text{H}^+, \text{LiAlH}_4, \text{ether}, 2\text{CH}_3\text{MgBr}, \text{H}_3\text{O}^+}$
- c) $HOCH_2 CH_2OH$, H^+ , $2CH_3MgBr$, H_3O^+
- d) $HOCH_2 CH_2OH, H^+, H_2, Pt, CH_3OH, H^+$
- 201. Which of the following does not give HVZ reaction?
 - a) CH₃CH₂COOH
- b) CH₃COOH
- c) HCOOH
- d) (CH₃)₂CHOH






- 203. Which of the following on treatment with Baeyer's reagent will give meso-tartaric acid?
 - a) Fumaric acid
- b) Maleric acid
- c) Both (a) and (b)
- d) None of these


- 204. Wolff-Kishner's reaction is:
 - a) Reduction of carbonyl compound into hydrocarbons
 - b) Reduction of carbonyl compound into alcohols
 - c) Reduction of nitrobenzene into aniline
 - d) Reduction of carbohydrates to alcohols
- 205. Colouration of Br₂/CCl₄ will be discharged by
- a) Cinnamic acid
- b) Benzoic acid
- c) o-phthalic acid
- d) acetophenone

206. (i) Conc.NaOl

- 207. Aldehydes and ketones both give addition reaction with:
 - a) HCN

- b) NaHSO₃
- c) Both (a) and (b)
- d) None of these
- 208. Identify the organic compound which, on heating with strong solution of NaOH, partly converted into an, acid salt and partly into alcohol.

a) Benzyl alcohol	b) Acetaldehyde	c) Acetone	d) Benzaldehyde
209. Which of the following	will undergo Cannizzaro's r	eaction?	
a) CH ₃ CHO	b) CH ₃ CH ₂ CHO	c) $(CH_3)_2CHCHO$	d) None of these
210. Long chain carboxylic a	icids are called fatty acids be	ecause:	
a) The molecule is very	r fatty		
b) The molecules were	first found in natural fat		
c) They have fattering	effect		
d) None of the above			
211. Which of the following	reagents can form a hydrazo	one with alkanone?	
a) NH ₃ OHCl	b) PhNHNH ₂	c) NH ₂ NHCONH ₂	d) HCN
212. Identify X in the sequent	nce:		
$X \xrightarrow{1. \text{ CH}_3 \text{MgCl}} \text{C}_5 \text{H}_{12} \text{O}_{-}$	$\frac{\text{Cu}}{575 \text{ K}} \cdot \text{C}_5 \text{H}_{10}$:		
a) \parallel	b) CH ₃ CH ₂ CH ₂ CHO	c) (CH ₂) ₂ CHCHO	d) CH ₃ CH ₂ CH ₂ CH ₂ OH
O	5) 5113 5112 5112	0) (0113)/20110110	a) 0113 0112 0112 0112 011
213. The reaction of HCOOH	with conc. H ₂ SO ₄ gives:		
a) CO ₂	b) CO	c) Oxalic acid	d) Acetic acid
214. Which of the following	will react with water?		
a) CHCl ₃	b) CCl ₃ CHO	c) CCl ₄	d) $CH_2Cl \cdot CH_2Cl$
215. Ph— $C \equiv C - CH_3$ $\frac{Hg^{2+}/H}{2}$	+ → Δ Δ is:		
0	, 11,11 13.	ОН	Ph
Dh	Ph—C\	N /	111——
a) Fii—C	b) =O	c) Ph	d) >—OH
H ₃ C	H_3C	H ₃ C	$\mathrm{H_{3}C}^{\prime}$
216. \ CH ₂)	N T	J	
	× ^{N2} → ?		
Product is			
1 Toddet 15	\wedge		
A 2001		\wedge	
$a)$ \longrightarrow COOH	b) \(\frac{1}{2}\)	c) \bigcirc COOCH ₃	d)
V	ĊООН	0000.13	
045 11	1		
217. Ketones are first oxidat	<u>-</u>) D:1 1 1 1 1	15 m -1 1 - 1 1 1
a) Primary alcohols	b) Secondary alcohols	c) Dihydric alcohols	d) Trihydric alcohols
218. Which does not react w	=	-) C II O	4) IICOOII
a) CH ₃ CHO	b) C ₆ H ₅ CHO	c) $C_6H_{12}O_6$	d) HCOOH
219. When sucrose is heated	1 '41 HMO 41 1		
a) Cuamaga mitmata	d with conc. HNO ₃ ,the produ		d) Citruia a aid
a) Sucrose nitrate	b) Formic acid	c) Oxalic acid	d) Citric acid
220. Amides are formed by	b) Formic acid the reaction of acid chloride	c) Oxalic acid with	-
220. Amides are formed by a) NH ₂ NH ₂	b) Formic acidthe reaction of acid chlorideb) NH₃	c) Oxalic acid	d) Citric acid d) C ₆ H ₅ NHNH ₂
 220. Amides are formed by the a) NH₂NH₂ 221. The product formed in 	 b) Formic acid the reaction of acid chloride b) NH₃ aldol condensation is: 	c) Oxalic acid with	-
 220. Amides are formed by a) NH₂NH₂ 221. The product formed in a) A β-hydroxy aldehyd 	b) Formic acid the reaction of acid chloride b) NH ₃ aldol condensation is: de or a β-hydroxy ketone	c) Oxalic acid with	-
220. Amides are formed by α a) NH_2NH_2 221. The product formed in a) A β -hydroxy aldehyd b) An α -hydroxy aldehyd	b) Formic acid the reaction of acid chloride b) NH ₃ aldol condensation is: de or a β-hydroxy ketone yde or ketone	c) Oxalic acid with	-
 220. Amides are formed by α a) NH₂NH₂ 221. The product formed in a) A β-hydroxy aldehyd b) An α-hydroxy aldehyd c) An α,β-unsaturated 	b) Formic acid the reaction of acid chloride b) NH ₃ aldol condensation is: de or a β-hydroxy ketone yde or ketone	c) Oxalic acid with	-
 220. Amides are formed by θ a) NH₂NH₂ 221. The product formed in a) A β-hydroxy aldehyd b) An α-hydroxy aldehyd c) An α,β-unsaturated α d) A β-hydroxy acid 	b) Formic acid the reaction of acid chloride b) NH ₃ aldol condensation is: de or a β-hydroxy ketone yde or ketone ester	c) Oxalic acid with	-
 220. Amides are formed by θ a) NH₂NH₂ 221. The product formed in a) A β-hydroxy aldehy b) An α-hydroxy aldehy c) An α,β-unsaturated θ d) A β-hydroxy acid 222. Tartaric acid is not use 	b) Formic acid the reaction of acid chloride b) NH ₃ aldol condensation is: de or a β-hydroxy ketone yde or ketone ester d in:	c) Oxalic acid with c) NH ₂ OH	d) C ₆ H ₅ NHNH ₂
 220. Amides are formed by the a) NH₂NH₂ 221. The product formed in a) A β-hydroxy aldehydd b) An α-hydroxy aldehydd c) An α,β-unsaturated d) A β-hydroxy acid 222. Tartaric acid is not used a) Dyeing of clothes 	b) Formic acid the reaction of acid chloride b) NH ₃ aldol condensation is: de or a β-hydroxy ketone yde or ketone ester d in: b) Cosmetics	c) Oxalic acid with c) NH ₂ OH c) Photography	-
 220. Amides are formed by α a) NH₂NH₂ 221. The product formed in a) A β-hydroxy aldehy b) An α-hydroxy aldehy c) An α,β-unsaturated α d) A β-hydroxy acid 222. Tartaric acid is not use a) Dyeing of clothes 223. Acetaldehyde on treatment 	b) Formic acid the reaction of acid chloride b) NH ₃ aldol condensation is: de or a β-hydroxy ketone yde or ketone ester d in: b) Cosmetics nent of few drops of H ₂ SO ₄	c) Oxalic acid with c) NH ₂ OH c) Photography gives:	d) C ₆ H ₅ NHNH ₂ d) Medicines
 220. Amides are formed by the a) NH₂NH₂ 221. The product formed in a) A β-hydroxy aldehydd b) An α-hydroxy aldehydd c) An α,β-unsaturated d) A β-hydroxy acid 222. Tartaric acid is not used a) Dyeing of clothes 	b) Formic acid the reaction of acid chloride b) NH ₃ aldol condensation is: de or a β-hydroxy ketone yde or ketone ester d in: b) Cosmetics nent of few drops of H ₂ SO ₄ b) Ethyl alcohol	c) Oxalic acid with c) NH ₂ OH c) Photography gives: c) Ethyl methylamine	d) C ₆ H ₅ NHNH ₂

a) Catalysis	, ,	c) Hydrolysis	d) Crystallization
225. Liquid obtained by disti) II	
a) Formaline	•	c) Formic acid	d) Formyl chloride
226. Monocarboxylic acids sl			D 411 1 1
a) Esters	b) Alcohols	c) Ethers	d) Aldehydes
227. $CH_3CH = CHCHO \frac{[(CH_3)]}{+(CI_3)}$	$\xrightarrow{\text{H}_3)_3\text{CHOH}}$ CH ₃ CH = CHO	CH ₂ OH is	
a) Baeyer-Villiger react		b) Meerwein-Ponndo	rff Verley reduction
c) Vilsmeier-Hack react		d) None of the above	•
228. The product formed in t	he reaction <i>n</i> -hexanamid	$e + Br_2 + KOH$, is	
a) Hexanamine		c) Butanamine	d) pentanamine
229. Semicarbazide is:			
a) NH ₂ CONH ₂	b) NH ₂ —NH ₂	c) NH ₂ CONHNH ₂	d) None of these
230. Which statement is corr	ect?		
a) RCOOOH is stronger	acid than RCOOH	b) Maleic acid is stror	nger than fumaric acid
c) Both (a) and (b)		d) None of the above	
231. Which gives lactic acid of	on hydrolysis after reactii	ng with <i>HCN</i> ?	
а) НСНО	b) CH ₃ CHO	c) C ₆ H ₅ CHO	d) CH ₃ COCH ₃
232. The IUPAC name of the	$e CH_3COCH(CH_3)_2$ is:		
a) 4-methyl isopropyl k	etone		
b) 3-methyl-2-butanone			
c) Isopropylmethyl keto			
d) 2-methyl-3-butanone			
233. Which of the following v			
a) $RCOOK \xrightarrow{Electrolysis}$	b) $RCOOAg \xrightarrow{I_2}$	c) $CH_3CH_3 \xrightarrow{Cl_2} h_v$	d) $(CH_3)_2CCl_2 \xrightarrow{C_2H_2OH}$
234. In which of the following	g C=O and C=C		
reactions are not simila	r?		
a) Hydrogenation	b) Elimination	c) Oxidation	d) None of these
235. Hydrogenation of benzo	=	=	-
a) Benzyl alcohol	b) Benzaldehyde	c) Benzonic acid	d) Phenol
236. On treatment of citric ac	cid with fuming $\mathrm{H_2SO_4}$, w	hich of the following is pro	oduced?
a) Acetone			
b) Dihydroxy acetone			
c) Citraconic anhydride			
d) Acetone dicarboxylic	acid		
237. Base catalysed aldol cor	idensation occurs with:		
a) Propionaldehyde			
b) Benzaldehyde			
c) 2,2-dimethyl propion	aldehyde		
d) None of the above			
238. When HCHO is treated v			
			OONad) HCOONa and C ₆ H ₅ CH ₂ O
239. When formaldehyde is l	neated with ammonia the	compound formed is:	
a) Methyl amine			
b) Amino formaldehyde			
c) Hexamethylene tetra	mine		
d) Formalin	aOH HCN		
$240. \text{ CH}_3\text{CHO} + \text{HCHO} \xrightarrow{\text{Dil.No.}}$	$A \xrightarrow{H_3O^+} B$.		
The structure of compo	· ·		

$$CH_2 = CH - CH - OH$$
b) |
$$CN$$

$$CH_3 - CH - COOH$$
d) |
$$OH$$

- a) CH₃CH₂OH
- b) CH₃CH₂CN
- c) $CH_2 = CH.COOH$ d) $CH_2CHClCOOH$

242. The reaction of acetamide with water is an example of:

- a) Alcoholysis
- b) Hydrolysis
- c) Ammonolysis
- d) Saponification

243. The most acidic among the following is:

- a) CH₃CH₂OH
- b) C_6H_5OH
- c) CH₃COOH
- d) CH₃CH₂CH₂OH

a) CH_3CH_2OH b) C_6H_5 244. $A \xrightarrow{HCl} (CH_3)_2C = CHCOCH_3, A$ is

- b) Acetaldehyde
- c) Propionaldehyde
- d) Formaldehyde

245. When citric acid is heated at 150°C, the main product formed is:

- a) Acetone
- b) Aconitic acid
- c) Ethanal
- d) None of these

246. The general formula $(RCO)_2O$ represents:

- a) A ketone
- b) An ether
- c) An acid anhydride
- d) An ester

247. Formaldehyde on condensation in presence of Ca(OH)₂ gives:

- a) Formose
- b) Fructose
- c) Maltose
- d) Xylose

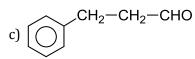
248. The correct formula of the product of reaction between φCHO and propanoic anhydride in presence of sodium propionate is

a)
$$\phi$$
 – CH = CHCH₂COOH
 ϕ — CH=C—COOH
c) $\stackrel{|}{C}$ CH₃

b)
$$\phi$$
CH = CH - CH₂COOC₂H₅
 ϕ - CH=C-COOC₂H₅
d) CH₃

249. Which of the following compounds neither forms semicarbazone nor oxime?

d)
$$CH_3$$
— CH — CHC
 CH_3


250. When a mixture of calcium benzoate and calcium acetate is dry distilled, the resulting compound is

- a) Acetophenone
- b) Benzaldehyde
- c) Benzophenone
- d) Acetaldehyde

251. An organic compound (A) with molecular formula $C_9H_{10}O$ forms an orange-red precipitate with 2,4-DNP reagent and gives yellow precipitate on heating with iodine and NaOH. It does not reduce Tollen reagent or Fehling solution nor it decolourises bromine water as Baeyer's reagent. On drastic oxidation with chromic acid, it gives a carboxylic acid having molecular formula $C_7H_6O_2$. Identify the compound (A)

a)
$$CH_2$$
 CH_2
 CH_3

$$\begin{array}{c}
O \\
\parallel \\
C - CH_2 - CH_3
\end{array}$$

$$d$$
) CH=CH $-C-H$

252. Ethanoic acid or CH₃COOH is a weak acid because:

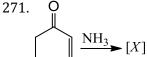
- a) It is highly ionized
- b) It has no replaceable hydrogen
- c) It is slightly ionized
- d) It is insoluble in water

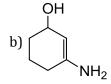
253. Paraldehyde is:

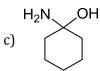
	a) A trimer of formaldehy	⁄de					
	b) A trimer of acetaldehy	de					
	c) A hexamer of formalde	ehyde					
	d) A hexamer of acetaldel	hyde					
254.	Calcium formate on distil						
	а) НСООН	b) CH ₃ COOH	c) (CH ₃ CHO	d) H	СНО	
255.	Alkaline hydrolysis of 1,1		,	3	,		
	a) Alkanal	b) Alkanol	c) A	Alkanone	d) Al	kyne	
256.	•	cted with ethanoyl chloride	-			-	ction
	is	Tod With othanoyi emoriae		compound that is pr	caacca	in the above real	00101
	_	b) 2-butanone	c) F	Ethyl chloride	d) Ft	thyl ethanoate	
257	•	rboxylic acids undergoes d	-	-	ај Бе	iny i centarioace	
237.	winen of the following ca	Tboxylic acids undergoes c			C	.H.CHCOOH	
	.) C II COCII COOII	l) C II COCOOII		C ₆ H ₅ CH -COOH	d)	₆ H ₅ CHCOOH NH ₂	
	a) $C_6H_5COCH_2COOH$	b) C ₆ H ₅ COCOOH	cj	OH	aj	$\dot{N}H_2$	
258.	Which of the following co	empound cannot formed an	ı optic	cally active cyanohyo	drins on	reaction with HC	N?
	a) CH ₃ CHO	b) Benzaldehyde	_	2-pentanone		pentanone	
259.	The weakest acid among	,	,	1	,	•	
	a) CH ₃ COOH	b) CH ₃ CH ₂ COOH	c) ((CH ₂) ₂ CHCOOH	d) (C	CH ₂) ₂ C, COOH	
260.	Reaction of acid with alco	· · · ·	-) ((3)2) (-	3/3	
	a) Esterification	b) Saponification	c) <i>A</i>	Alkalisation	d) No	one of these	
261	•	when C_6H_5 – CHO condens	-		-		
201.	a) Concentrated H ₂ SO ₄			Sodium metal		nhydrous ZnCl ₂	
262	A mixture of water and N		c) c	Jourum metar	u) III	iliyarous zirciz	
202 .	a) Sublimation	=	a) I	Filtration	4) D	ecantation	
262	,	gas burnt in excess of oxy	-		-		
203.							
	= ,	sured at the same tempera		= -		=	111 15
264	a) C_3H_6	b) C ₂ H ₄	-	C ₅ H ₁₂	d) CI	Π_4	
264.	•	clic ester on treatment with		аон <i>?</i> С—С—С—С—СО	\circ		
	C-C-C-COOP	7		U-U-U-U-U-U	ОП		
	a) Br		b)	Вr			
	C-C-C-COO	Н	d) A	All of these			
	c) Br						
265	Which reduces corbourdie	a a aid dina atly to primary a	laaha	la?			
203.		c acid directly to primary a			4) 41	l of those	
266	a) LiAlH ₄	b) Na + C ₂ H ₅ OH	-	NaBH ₄	=	l of these	
200.		ormed when acetone is rea	ctea v	_	ae soiut	.1011 ?	
	0 CH ₃			0			
		211	13.6		CH		
	a) $CH_3 - C - CH_2 - C - C$	∠H ₃	b) ($CH_3 - C - CH - CH -$	- CH ₃		
	ОН			CH ₃ OH			
	0			ОН ОН			
	c) $CH_3 - C - CH - CH -$	CH ₃	d) ($CH_3 - C - C - CH_3$			
	OH CH ₃	•		$CH_3 CH_3$			

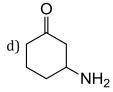
the product formed is

267.






- 268. A colourless water soluble organic liquid decomposes sodium carbonate and liberates CO₂. It produces black precipitate with Tollen's reagent. The liquid is:
 - a) CH₃CHO
- b) CH₃COOH
- c) HCHO
- d) HCOOH
- 269. The formation of cyanohydrin from a ketones is an example of:
 - a) Electrophilic addition
 - b) Nucleophilic addition
 - c) Nucleophilic substitution
 - d) Electrophilic substitution
- 270. Aldehyde are the first oxidation product of
 - a) Primary alcohol
- b) Secondary alcohol
- c) Tertiary alcohol
- d) Dihydric alcohols



. Product is

- 272. Urea is preferred to ammonium sulphate as a nitrogenous fertilizer because
 - a) It is more soluble in water

b) It is cheaper than ammonium sulphate

c) It is quite stable

d) It does not cause acidity in the soil

- 273. Boiling point of acetone is:
 - a) 100°C
- b) 60°C

c) 56°C

d) 90°C

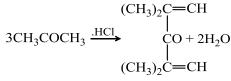
- 274. Which of the following is correct?
 - a) All aldehydes undergo Cannizzaro's reaction
 - b) Aldehydes are less susceptible to oxidation than ketones
 - c) Aldehydes are more susceptible to oxidation than ketones
 - d) Formaldehyde forms CH₂(OH)NH₂with NH₃
- 275. Acetone may be produced from starch by the action of:
 - a) Acid

- b) Certain bacteria
- c) Oxidising agents
- d) None of these

- 276. Benzaldehyde condense with acetaldehyde to produce
 - a) Cinnamic acid
- b) Benzoic acid
- c) Cinnamaldehyde
- d) Acetic anhydride
- 277. Formic acid cannot be halogenated with chlorine in presence of red P, but acetic acid can be halogenated in the same way, because:
 - a) Formic acid is weaker than acetic acid
 - b) Formic acid has no α -H-atom in its molecule
 - c) Both (a) and (b)
 - d) None of the above
- 278. Treatment of acetaldehyde with ethyl magnesium bromide and subsequent hydrolysis gives:
 - a) l-butanol
- b) 2-butanol
- c) l-propanol
- d) tert.-butanol
- 279. C₂H₅CHO and CH₃COCH₃ can be distinguished by testing with:
 - a) Phenyl hydrazine
- b) Hydroxylamine
- c) Fehling's solution
- d) Sodium bisulphate
- 280. Kjeldahl's method cannot be used for the estimation of nitrogen in:
 - a) Pyridine
- b) Nitrocompounds
- c) Azo compounds
- d) All of these

281. Acetic anhydride reacts with diethyl ether in the presence of anhydrous AlCl₃ to give: a) Ethyl acetate b) Methyl propionate c) Methyl acetate d) Propionic acid 282. Formaldehyde is not used in: a) Adhesives b) Bakelite c) Tooth powders d) Explosives 283. Acetic acid will be obtained on oxidation of d) Glyoxal a) Ethanol b) Propanal c) Methanal 284. Acetamide is a) Highly acidic c) Neutral d) Amphoteric b) Highly basic 285. Which reagent can convert acetic acid into ethanol? a) Na + alcohol b) LiAlH₄ + ether c) $H_2 + Pt$ d) Sn + HCl 286. Which reaction, intermediate is formed during the condensation reaction between acetaldehyde and formaldehyde? b) ⁺CH₂CHO c) $^{+}_{\text{CH}_2\text{OH}}$ d): CHCHO a) : $\overline{C}H_2CHO$ 287. Write the product of the following reaction d) None of the above 288. Which of the following regent can effectively carried out the following conversion? c) $H_2/Pd - C$ a) LiAlH₄ d) H₂/Raney Ni 289. Which of the following on heating with aqueous KOH, produces acetaldehyde? a) CH₃CH₂Cl b) CH₂ClCH₂Cl c) CH₃CHCl₂ d) CH₃COCl 290. Which carbonyl compound does not undergo aldol condensation? a) HCHO b) CH₃CHO c) CH₃CH₂CHO d) CH₃COCH₃ 291. Which of the following reagents reacts in same manner with HCHO, CH₃CHO, CH₃COCH₃? b) NH₂OH c) $C_6H_5NHNH_2$ d) All of these 292. Which of the following has most acidic proton? a) CH₃COCH₃ b) $(CH_3)_2C = CH_2$

- c) CH₃COCH₂COCH₃
- d) $(CH_3, CO)_3CH$


293. What are the organic products formed in the following reaction?

$$C_6H_5-COO-CH_3 \xrightarrow{1. \text{LiAlH}_4}$$

- a) C₆H₅—CH₂—OH and CH₃—OH
- b) C₆H₅—OH and CH₃—OH

- c) C₆H₅—CH₃ and CH₃—OH
- d) C₆H₅—CH₂—OH and CH₄
- 294. Which on oxidation will not give a carboxylic acid with the replacement of carbon atoms?
- a) CH₃COCH₃
- b) CCl₃CH₂CHO
- c) CH₃CH₂CH₂OH
- d) CH₃CH₂CHO

295.

This polymer is obtained when acetone is saturated with hydrogen chloride gas. Polymer is:

- a) Phorone
- b) Formose
- c) Diacetonyl alcohol
- d) Mesityl oxide

- 296. Which of the following does not react with NaHSO₃?
 - a) CH₃COCH₃
- b) CH₃CHO
- c) HCHO
- d) None of these

- 297. Which one is a polyprotic acid?
 - a) Acetic acid
- b) Oxalic acid
- c) Benzoic acid
- d) Salicylic acid

- 298. Halogens can be estimated by:
 - a) Duma's method
- b) Carius method
- c) Liebig's method
- d) None of these

- 299. Ethyl isocyanide on acidic hydrolysis generates
 - a) Ethylamine salt and methanoic acid
- b) Propanoic acid and ammonium salt
- c) ethanoic acid and ammonium salt
- d) Methyl amine salt and ethanoic acid
- 300. A carbonyl compound reacts with hydrogen cyanide to form cyanohydrin which on hydrolysis forms a racemic mixture of α -hydroxy acid. The carbonyl compound is:
 - a) Diethyl ketone
- b) Formaldehyde
- c) Acetaldehyde
- d) Acetone

- 301. Which would undergo aldol condensation?
 - a) ϕ CHO + CH₃COCH₃ $\xrightarrow{\text{OH}^-}$
 - c) \$\(\text{OH}^{-} \) \(\text{OH}^{-} \) \(\text{OH}^{-} \) \(\text{OH}^{-} \) \(\text{OH}^{-} \)

- p) $CCl^3CHO + HCHO \xrightarrow{OH_-}$
- d) $\stackrel{\text{CHO}}{\downarrow} \xrightarrow{\text{OH}^-}$

302. ÇOOH

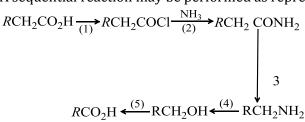
Product is

- b) COOH
- COOH Br
- COOH

- 303. Aldehydes can be oxidised by
 - a) Tollen's reagent
- b) Fehling solution
- c) Benedict solution
- d) All of these
- 304. Which can be oxidised to the corresponding carbonyl compound?
 - a) Propan-2-ol
- b) Ortho-nitro-phenol
- c) Phenol
- d) 2-methylpropan-2-ol
- 305. When ethanal reacts with CH₃MgBr and C₂H₅OH /dry HCl, the product formed are
 - a) Ethyl alcohol and 2-propanol

b) Ethane and hemiacetal

c) 2-propanol and acetal


- d) Propane and methyl acetate
- 306. In the context of the rearrangement of an oxime of a ketone to an amide (represented below)

In the context of the rearrange
$$R-C-R'$$
 \parallel
 $N-OH$
 PCl_5
 $O=C-R'$
 $N+R$

Which of the following statement is/are correct?

- a) It is the *cis* hydrocarbon radical (*R*) with respect to the OH group that migrates
- b) The group that migrates never gets completely detached from the remainder of the molecule during the transformation

- c) The rearrangement is intermolecular d) None of the above 307. In presence of dry HCl gas, CH₃CHO condenses with C₂H₅OH to give: b) Paraldehyde c) Ethyl acetate d) Acetal 308. Which of the following acids combines the properties of acid and aldehyde? b) Formic acid c) Benzoic acid d) Oxalic acid a) Acetic acid 309. Stephen's reaction is reduction of: a) Alkyl cyanide with LiAlH4 b) Alkyl cyanide with SnCl₂and HCl c) Alkyl isocyanide with Na and alcohol d) Acyl halide in the presence of Pd/BaSO₄ 310. The order or reactivity of phenyl magnesium bromide with the following compound is a) (II)>(III)>(I)b) (I)>(III)>(II)d) All react with the same rate c) (II)>(I)>(III)311. Alkaline hydrolysis of R_2 C. Cl_2 forms: a) Propanone b) Propane c) Alkanone d) Alkanal 312. Dry distillation of barium salt of Hexane-1,2-dicarboxylic acid gives: 313. Which is liquid at room temperature? a) Acetamide b) Formamide c) Methane thiol d) CH₃Cl 314. The key step in Cannizaro's reaction is the intermolecular shift of d) Hydrogen band a) Proton b) Hydride ion c) Hydronium ion 315. Identify the final product of the reaction $\frac{O_3}{Zn, H_2O} \rightarrow A \frac{OH}{Aldol, \triangle} B$ 316. Which acid on heating gives CO and CO₂ both? a) HCOOH b) CH₃COOH $RCH_2CO_2H \xrightarrow{(1)} RCH_2COCl \xrightarrow{NH_3} RCH_2 CONH_2$
- 317. A sequential reaction may be performed as represented below,

The appropriate reagent for step (3) is:

- a) Bromine alone
- b) Bromine and alkali
- c) HBr

c) Carboxylic acid

d) P_2O_5

- 318. Osazone formation is used to characterise:
- a) Polymers
- b) Sugars

d) Alcohol

319.
$$C_8H_6O_4 \xrightarrow{\Delta} X \xrightarrow{NH_3} Y$$

The compound *X* is

- a) o-xylene
- b) Phthalic acid
- c) Phthalic anhydride
- d) Salicylic acid

320. The products obtained in the reaction

$$\begin{array}{ccc}
O & O \\
\parallel & \parallel \\
CH_3CH_2C - CH - COH \xrightarrow{\triangle} \text{ are } \\
CH_3
\end{array}$$

- d) None of the above
- 321. Acetic acid vapours when passed over aluminium phosphate forms:
 - a) CH₃CHO
- b) Ketene
- c) C_2H_6

- d) C_2H_4
- 322. A mixture contains four solid organic compounds *A,B,C,D*. On heating only *C* changes from solid to vapour state. *C* can be separated from others present in a mixture by:
 - a) Distillation
- b) Crystallization
- c) Sublimation
- d) Fractional distillation
- 323. What is the end product in the following sequences of operations;

Acetamide $\stackrel{P_2O_5}{\longrightarrow}$ $A \stackrel{4H}{\rightarrow} B$?

- a) CH₃NH₂
- b) C₂H₅NH₂
- c) CH₃CN
- d) CH₃COONH₄

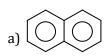
324. The appropriate reagent for the transformation

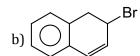
- a) Zn(Hg), HCl
- b) NH₂ NH₂, OH⁻
- c) H₂/Ni
- d) NaBH₄
- 325. Which of the following compounds will undergo self aldol condensation in presence of cold dilute alkali?
 - a) C_6H_5CHO
- b) CH₂=CH—CHO
- c) CH₃CH₂CHO
- d) None of these
- 326. Which of the following would undergo Hofmann reaction to give a primary amine?
 - a) RCOCl
- b) RCONHCH₃
- c) RCONH₂
- d) RCOOR'

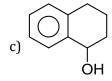
- 327. In kjeldahl's method, nitrogen present is estimated as:
 - a) N_2

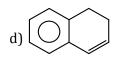
330.

b) NH₃


c) NO₂


- d) None of these
- 328. Correct order of reactivity of acid derivatives towards a nucleophile is
 - a) $RCOCl > (RCO)_2O > RCOOR > RCONH_2$
- b) $RCOOR > RCOCl > RCONH_2 > (RCO)_2O$
- c) $RCONH_2 > (RCO)_2O > RCOOR > RCOCl$
- d) $(RCO)_2O > RCOCl > RCOOR > RCONH_2$
- 329. Methylethyl ketone can be reduced to *n*-butane by
 - a) The Meerwein-Ponndroff reduction
- b) The Wolf-Kishner reduction

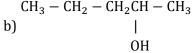

d) All of the above


- c) $Mg Hg, H_2O$
- (G) Alcoholic KOH (F) NBS (E) Conc $H_2SO_4(D)$

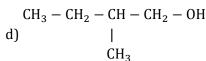
Show the final product of the reaction

331. O O \parallel \parallel $2CH_3-C-H \longrightarrow CH_3-C-OCH_2CH_3$

The name of the reaction and reagent used for it is


a) Cannizaro reaction, NaOH

b) Aldon condensation, OH-


c) Tischenko reaction, Al(OC₂H₅)₃

- d) Perkin reaction, (CH₃CO)₂O
- 332. Which statement is incorrect in the case of acetaldehyde and acetone?
 - a) Both react with hydroxylamine to form oximes
 - b) Both react with sodium bisulphite to form addition product
 - c) Both reduce ammoniacal silver nitrate to silver
 - d) Both react with hydrazine to form hydrazones
- 333. A compound 'A' having the molecular formula $C_5H_{12}O$, on oxidation gives a compound 'B' with molecular formula $C_5H_{12}O$. Compound 'B' gave a 2, 4-dinitrophenylhydrazine derivative but did not answer haloform test or silver mirror test. The structure of compound 'A'

a)
$$CH_3 - CH_2 - CH_2 - CH_2 - CH_2 - OH$$

$$CH_3 - CH_2 - CH - CH_2 - CH_3$$

c) |

- 334. Acetone is used:
 - a) As a solvent
 - b) In nail polishes
 - c) For storing acetylene under pressure
 - d) All are correct
- 335. Which of the following will form two isomers with semi carbazide?
 - a) Benzaldehyde
- b) Acetone
- c) Benzoquinone
- d) Benzophenone
- 336. 15 mL of a gaseous hydrocarbon required 45mL of oxygen for complete combustion. 30 mL of $\rm CO_2$ is formed. The formula of the hydrocarbon is:
 - a) C_2H_6

b) C₂H₄

c) C_3H_6

d) C_2H_2

- 337. First Noble Prize winner in chemistry is:
 - a) Van't Hoff
- b) Rutherford
- c) Pasteur
- d) Madam Curie

- 338. Which cannot be used as acylating agent?
 - a) RCOBr
- b) $(RCO)_2O$
- c) RCH2COCl
- d) RCONH₂

339. COOH Malonic acid H_2C on heating gives:

- a) Formic acid
- b) Acetic acid $+CO_2$
- c) Oxalic acid
- d) Acetaldehyde
- 340. With hot conc. KOH brown black resinous product is given by:
 - a) CH₃CHO
- b) C₂H₅OH
- c) HCHO
- d) CH₃COCH₃
- 341. Acetamide and ethyl amine are distinguished by reacting with
 - a) Br₂ water
- b) Acidic KMnO₄
- c) aq. NaOH and heat
- d) aq. HCl and heat

- 342. General formula of saturated carboxylic acid is:
 - a) $C_nH_{2n+1}COOH$
- b) $C_n H_{2n} O_2$
- c) Both (a) and (b)
- d) None of these
- 343. The reagent which can be used to distinguish acetophenone from benzophenone is:
 - a) 2,4-dinitrophenyl hydrazine
 - b) Aqueous NaHSO₃

- c) Benedict's solution
- d) I₂ and Na₂CO₃
- 344. Acetaldehyde is not obtained in the reactions

a)
$$CH_2 = CH - CH_2 \xrightarrow{1.0_3} \frac{1.0_3}{2.2n_1H_2O}$$

o)
$$CH_3CH = \underbrace{\frac{1. O_3}{2. Zn, H_2O}}$$

c) HC
$$\equiv$$
 CH + H₂O $\xrightarrow{\text{H gSO}_4}$ $\xrightarrow{\text{H}_2\text{SO}_4}$

d)
$$CH_3COCl + H_2 \xrightarrow{Pd-BaSO_4}$$

- 345. The acid present in tomatoes is:
 - a) Lactic acid
- b) Oxalic acid
- c) Citric acid
- d) Tartaric acid

346. Identify *A* and *B* in the following reaction

$$CH_3 - CH_3 \stackrel{B}{\longleftarrow} CH_3COOH \stackrel{A}{\longrightarrow} CH_3CH_2OH$$
A
B

- a) HI + red P LiAlH₄

- b) Ni/ Δ
- LiAlH₄

- c) LiAlH₄
- HI + red P

- d) $Pd BaSO_4$
- Zn + HCl
- 347. A ketone reacted with C₂H₅MgBr reagent followed by hydrolysis gave a product which on dehydration gives an alkene. The alkene on ozonolysis gave diethyl ketone and acetaldehyde. The ketone is:
 - a) Dimethyl ketone
- b) Ethyl methyl ketone
- c) Diethyl ketone
- d) Ethyl propyl ketone

- 348. Cross aldol condensation occurs between
 - a) Two same aldehydes

- b) Two same ketones
- c) Two different aldehydes and ketones
- d) None of the above
- 349. The increasing order of the rate of HCN addition to compounds *A-D* is:
 - (*A*) HCHO
- (B) CH₃COCH₃
- (C) PhCOCH₃
- (D) PhCOPh
 - b) D < B < C < A c) D < C < B < A d) C < D < B < A

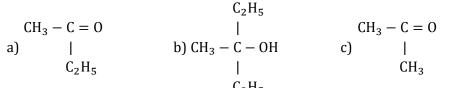
a)
$$A < B < C < D$$
 b) $D < B < C < A$
350.

$$CH_{3}MgX \xrightarrow{O} A \xrightarrow{Na} B \xrightarrow{C_{2}H_{5}OH} C$$

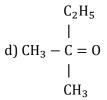
C is

b)
$$(CH_3)_3C - O - C_2H_5$$
 c) $C_2H_5OC_2H_5$

c)
$$C_2H_5OC_2H_5$$


 $\begin{array}{ccc} CH_3-C-OC_2H_5 \\ d) & || \end{array}$

- 351. Which method cannot be used for purification of liquids?
 - a) Chromatographic


 $CH_3 - C - CH_3$

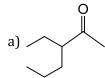
- b) Steam distillation
- c) Sublimation
- d) Distillation

352. CH₃COOC₂H₅ with excess of C₂H₅MgBr and hydrolysis gives

- 353. Aniline is purified by:
 - a) Steam distillation
 - b) Simple distillation
 - c) Vacuum distillation
 - d) Extraction with a solvent
- 354. Percentage of Se(at. mass = 78.4) in peroxidase anhydrase enzyme is 0.5% by weight, then minimum molecular mass of peroxidase anhydrase enzyme is:
 - a) 1.576×10^4
- b) 1.576×10^3
- c) 15.76
- d) 2.136×10^4
- 355. Which reagent is most suitable for the following for the synthesis of HOCH₂CH₂COOH fromHOCH₂CH₂CH₂Br?
 - a) Grignard reagent
- b) KCN/H_3O^+
- c) $HgSO_4/H_2SO_4$
- d) PCl₅

- 356. The IUPAC name of acrolein is:
 - a) Propanal
- b) Prop-2-en-l-al
- c) Propan-2-ol
- d) Prop-l-en-2-al
- 357. An organic compound contains hydrogen, oxygen, a single carbon atom and responds positively to Tollen's reagent. The compound is:
 - a) HCHO
- b) CH₃OH
- c) CH₃CHO
- d) CH₃COOH
- 358. The reagent with which both acetaldehyde and acetophenone react easily are
 - a) Fehling's solution

b) Schiff's reagent


c) Tollen's reagent

- d) 2, 4-dinitrophenylhydrazine
- 359. $CH_3COOH \xrightarrow{LiAlH_4} A + CH_3COOH \xrightarrow{H_3O^+} B + H_2O$

In the above reactions 'A' and 'B' respectively are

- a) CH₃COOC₂H₅, C₂H₅OH b) CH₃CHO, C₂H₅OH
- c) C₂H₅OH, CH₃CHO
- d) C₂H₅OH, CH₃COOC₂H₅
- 360. Formaldehyde gives an additive product with methyl magnesium iodide which on aqueous hydrolysis gives:
 - a) Isopropyl alcohol
 - b) Ethyl alcohol
 - c) Methyl alcohol
 - d) Propyl alcohol
- 361. In Kjeldahl's method of estimation of nitrogen, K₂SO₄ acts as:
 - a) Oxidizing agent
- b) Catalytic agent
- c) Hydrolysing agent
- d) Boiling point elevator

362. The compound that doesn't undergo aldol condensation

363. Which of the following products is formed when adipic acid is heated?

364. O $K_2Cr_2O_7/H^+ \rightarrow B + C$

Here B and C are

- d) None of the above
- 365. A silver salt of fatty acid on heating with an alkyl halide gives:
 - a) Ether
- b) Alcohol
- c) Aldehyde
- d) Ester
- 366. For hydrolysis of the following functional groups, the decreasing order of reactivity is:

- a) $RCOOR > RCOCl > RCONH_2$
- b) $RCOCl > RCOOR > RCONH_2$
- c) $RCOCl > RCONH_2 > RCOOR$
- d) $RCOOR > RCONH_2 > RCOCl$
- 367. The organic compounds A and B react with sodium metal and release H₂ gas. A and B react with each other to give ethyl acetate. *A* and *B* are:
 - a) CH₃COOH and C₂H₅OH
 - b) HCOOH and C₂H₅OH
 - c) CH₃COOH and CH₃OH
 - d) CH₃COOH and HCOOH

368. $A \xrightarrow{\text{Dil.NaOH}} (\text{CH}_3)_2\text{C} = \text{CHCOCH} = \text{C(CH}_3)_2$

- - b) Formaldehyde c) Acetone
- d) Propionaldehyde

- 369. The hydrolysis product of $CH_3COCH_3 + CH_3MgBr$ is
 - a) n -butyl alcohol

a) Acetaldehyde

b) Tertiary butyl alcohol

c) Secondary butyl alcohol

- d) Isopropyl alcohol
- 370. Aldehyde used in the manufacture of perfumes is:
 - a) HCHO
- c) C_6H_5CHO
- d) CCl₃CHO

371.
$$\begin{matrix} \mathsf{O} \\ \mathsf{II} \\ \mathsf{R}-\mathsf{C}-\mathsf{OH_2}^+ & \xrightarrow{\mathsf{H_2SO_4}} R\mathsf{COOH} \end{matrix} \xrightarrow{\mathsf{H_2SO_4}} \begin{matrix} \mathsf{^+OH} \\ \mathsf{II} \\ \mathsf{R}-\mathsf{C}-\mathsf{OH} \end{matrix}$$

Which is more stable?

a) X

b) Y

c) Both are equally stable

- d) Can't be predicted
- 372. When sodium formate is heated it gives:
 - a) Hydrogen
- b) Water
- c) Sodium hydroxide
- d) Carbon dioxide

- 373. In esterification, the reactivity of alcohols is:
 - a) $3^{\circ} > 2^{\circ} > 1^{\circ}$
- b) $1^{\circ} > 2^{\circ} > 3^{\circ}$
- c) Same in all cases.
- d) None of these
- 374. Separation of organic compounds by column chromatography is due to:
 - a) Selective adsorption
 - b) Selective absorption
 - c) Solubilities
 - d) Selective adsorption and selective absorption
- 375. To determine the weight of halogen in the organic compound, the compound is heated with fuming HNO₃ in presence of:
 - a) Ag

- b) $AgNO_3$
- c) AlCl₃

d) Ag_2SO_4

- 376. Cannizzaro's reaction involves:
 - a) Conversion of aldehyde into acid only
 - b) Conversion of aldehyde into alcohol only
 - c) Redox system reaction
 - d) Aromatic transformation

377.

CHO OHC
$$(i) \text{ NaOH/100°C} \longrightarrow A + ...$$
CHO OHC

The major product *A* is:

- 378. Which one of the following compounds on treatment with LiAlH₄ will give a product that will give a positive iodoform test?
 - a) CH₃CH₂CHO
- b) CH₃CH₂COOCH₃
- c) CH₃CH₂OCH₂CH₃
- d) CH₃COCH₃
- 379. An aldehyde can be distinguished from a ketone by the use of the reagent:
 - a) Grignard reagent
- b) Schiff's reagent
- c) Hydroxylamine
- d) Hydrazine
- 380. A compound A has molecular formula C_2Cl_3OH . It reduces Fehling's solution and on oxidation gives a monocarboxylic acid B. A is obtained by action of Cl_2 on ethyl alcohol. A is:
 - a) Chloral
- b) CHCl₃
- c) CH₃Cl
- d) Chloro acetic acid
- 381. Halogenation of silver salt of carboxylic acid using CCl₄ as solvent to form alkyl halide is an example of:
 - a) Free radical halogenation
 - b) Nuclear halogenation
 - c) Hunsdiecker reaction
 - d) HVZ reaction
- 382. Anhydrous CaCl₂ is used as drying agent because it:
 - a) Adsorbs water molecules
 - b) Absorbs water molecules
 - c) Adsorbs and absorbs water molecules
 - d) none of the above

383. '
$$A'$$
 Acid hydrolysis $CH_3COCHCOOC_2H_5$ Ketonic hydrolysis CH_3

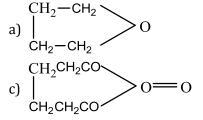
"A" and "B" are

a) CH₃CH₂COOH, CH₃COCH₂CH₃

b) CH₃CH₂COOH, CH₃COOH

c) CH₃COOH, CH₃COCH₃

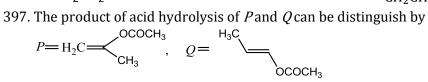
- d) CH₃COOH, C₂H₅COC₂H₅
- 384. Aldol condensation between the following compounds followed by dehydration gives methyl vinyl ketone:
 - a) Methanal and ethanal
 - b) Two mole of formaldehyde
 - c) Methanal and propanone
 - d) Two mole of ethanol
- 385. In a reaction RCHO is reduced to RCH_3 using amalgamated zinc and concentrated HCI and warming the solution. The reaction is known as
 - a) Meerwein-Ponndorf reaction


b) Clemmensen's reduction

c) Wolff-Kishner reduction

d) Schiff's reaction

	 a) Increases the con b) Decomposes Na₂ c) Helps in the prec d) Increases the solu 	ract is boiled with conc. HNO ₃ centration of NO ₃ ions S and NaCN, if formed ipitation of AgCl ability product of AgCl $\xrightarrow{(i)CO_2 \atop (ii)H_3O^+} B \xrightarrow{HgSO_4/H_2SO_4} D$		By doing so it:
		(ii)H ₃ O ⁺	(ii)H ⁺	
	In the given reaction a) c	-	$_{\text{c}}$ $_{\text{CH}_2-\text{CH}_2}$ $_{\text{CH}_2-\text{CH}_2}$ $_{\text{C}}$	СН ₂ — СО
		^{b)} cH₂−cooн	^{c) CH₂-CH₂}	^{d)} CH ₂ —O
388	Among the following	g compounds which will react	t with acetone to give a proc	luct containing
389	a) C ₆ H ₅ NH ₂	b) C ₆ H ₅ NHNH ₂ o distinguish aldehydes and l		d) C ₆ H ₅ NHC ₆ H ₅
		b) H ₂ SO ₄ solution		d) NH ₃
	H-C-	СООН		
	a) Maleic acid	b) Fumaric acid		d) Succinic acid
391.	=	in Cannizzaro's reaction is the		
392.	a) ProtonGiven below are sona) It is weaker acid	 b) H-atom ne statements concerning for than acetic acid 	c) Hydride ionmic acid, which of them is tr	d) Hydronium ion rue?
	b) It is reducing age			
	=	salt is heated, it forms a keto	ne	
202	d) It is an oxidising		aification of aubatanasa in 1	(75 the authorough not lynevyn
373.	among the following		Silication of Substances In 1	675 the substance not known
	a) Cane sugar	b) Wine	c) Iron	d) Penicillin
394	Formalin is:	~, ·······	·, ····	,
	a) Formaldehyde			


- b) Formaldehyde + methanol
- c) Formaldehyde + methanol + water
- d) Formaldehyde + water
- 395. Chloral belongs to the class of:
 - a) Alcohols
- b) Aldehydes
- c) Amides
- d) Ketones
- 396. Which one of the following product is formed when calcium salt of adipic acid is heated?

b)
$$\begin{vmatrix} CH_2 - CH_2 \\ CH_2 - CH_2 \end{vmatrix} O = O$$

 CH_2CH_2COOH

d) | CH₂CH₂COOH

- a) Lucas reagent
- b) 2, 4-DNP
- c) Fehling's solution
- d) NaHSO₃

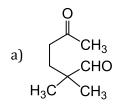
398. Which gives positive haloform test and positive Fehling's solution test? b) Acetaldehyde c) Ethanol d) Formaldehyde a) Acetone 399. Acetone when saturated with dry acid gives: a) Diacetone alcohol b) Mesityl oxide c) Mesitylene d) Propane 400. —COOH group of a compound does not react with NaHSO₃ even though it has C=O group because of: a) Acid character b) Resonance c) Cyclic structure d) The attached organic group 401. Aceto acetic ester behaves as: a) An unsaturated hydroxyl compound b) A keto compound c) Both of these ways d) None of the above 402. When benzoic acid is treated with PCl₅ at 100^oC, it gives a) Benzoyl chloride b) *o*-chlorobenzoic acid c) p-chlorobenzoic acid d) Benzyl chloride 403. $CH_3 COOCH_3 + excess PhMgBr \rightarrow Product \xrightarrow{H^+} X$ Th product X is a) 1, 1-diphenylethanol b) 1, 1-diphenylethanol c) Methyl phenylethanol d) Methyl phenylketone 404. The major product obtained in the reaction, d) None of the above 405. The end product *B* in the sequence of reactions, $R - X \xrightarrow{CN^-} A \xrightarrow{NaOH} B$ is: a) An alkane b) A carboxylic acid c) Sodium salt of carboxylic acid d) A ketone 406. The correct order of acidic strengths of the carboxylic acids is a) Formic acid < benzoic acid < acetic acid b) Formic acid < acetic acid < benzoic acid

c) Acetic acid < formic acid < benzoic acid

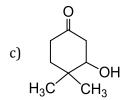
d) Acetic acid < benzoic acid < formic acid

407. When formic acid reacts with PCl₃, it forms:

b) Acetyl chloride a) Formyl chloride


c) Methyl chloride

d) Propionyl chloride


408. Carboxylic acids react with diazomethane to yield:

d) Amides

a) Amines b) Alcohols c) Esters 409. $Me_2CHCHO + CH_2 = CHCOCH_3 \xrightarrow{(i)Michael addition} [X]$ product is

b) CHO COCH₃

d) H₃C CHO

410. Tamarind contains:

- a) (+) tartaric acid
- b) (-) tartaric acid
- c) Citric acid
- d) Lactic acid

411. Which of the following, compounds is the reactant in Rosenmund's reduction?

- a) CH₃CO₂H
- b) CH₃CHO
- c) CH₃CH₂Cl
- d) CH₃COCl

412. Aldol condensation will not take place in

- a) HCHO
- b) CH₃CH₂CHO
- c) CH₃CHO
- d) CH₃COCH₃

413. Benzaldehyde reacts with methyl amine to give

- a) $C_6H_5NH_2$
- b) C₆H₅CH₂NH₂
- c) $C_6H_5CH = NCH_3$
- d) C₆H₅CONH₂

414. The reagent with which both acetaldehyde and acetone react easily is:

- a) Fehling's solution
- b) Grignard reagent
- c) Schiff's reagent
- d) Tollen's reagent

415. $0.20~{\rm g}$ of a hydrocarbon on combustion gave $0.66~{\rm g}$ ${\rm CO_2}$. The percentage of hydrogen in the hydrocarbon is about :

a) 33

b) 45

c) 10

d) 90

416. Which of the following is hydroxy acid?

- a) Malic acid
- b) Lactic acid
- c) Tartaric acid
- d) All of these

417. Which one of the following undergoes reaction with 50% sodium hydroxide solution to give the corresponding alcohol and acid?

- a) Phenol
- b) Benzaldehyde
- c) Butanal
- d) Benzoic acid

418. Amides may be converted into amines by reaction named after:

- a) Perkin
- b) Claisen
- c) Hofmann
- d) Kekule

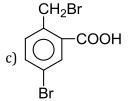
419. The correct order of decreasing acid strength of trichloroacetic acid, (A), trifluoroacetic (B), acetic acid (C) and formic acid (D) is:

- a) A > B > C > D
- b) A > C > B > D
- c) B > A > D > C
- d) B > D > C > A

420. Which of the following is the strongest acid?

- a) HCOOH (pK_a 3.77)
- b) C_6H_5COOH (p K_a 4.22)
- c) CH₃COOH (pK_a 4.71)
- d) $CH_3CH_2COOH (pK_a 4.88)$

421. In Lassaigne's test sodium metal is used because:

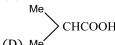

- a) It is a very reactive
- b) Its melting point is low
- c) Its compounds are soluble in water
- d) all of the above

422. A process that involves the union of two or more molecules to form a new molecular aggregate without losing any simple molecule is known as:

- a) Polarisation
- b) Polymerisation
- c) Photosensitization
- d) None of these

423. o-toluic acid on reaction with Br_2 + Fe gives

CH₃
COOH



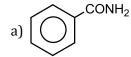
CH₃ COOH Br

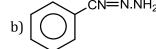
424. The correct order of increasing acid strength of the compounds

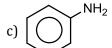
- (A) CH₃COOH
- (B) MeOCH₂COOH

(C) CF_3COOH

is


- a) B < D < A < C
- b) D < A < C < B
- c) D < A < B < C
- d) A < D < C < B
- 425. Acetic acid and P₂O₅ reacts to produce which of the following?
 - a) Acetic anhydride
- b) Acetaldehyde
- c) Phosphoric acid
- d) Acetone


- 426. Which of the following is an example of aldol condensation?
 - a) $2CH_3CHO \xrightarrow{Dil. NaOH} CH_3CHOHCH_2CHO$
 - b) HCHO $\xrightarrow{\text{Dil. NaOH}}$ CH₃OH
 - c) $C_6H_5CHO + HCHO \xrightarrow{Dil. NaOH} C_6H_5CH_2OH$
 - d) $2CH_3COCH_3 \xrightarrow{Conc. NaOH} CH_3C(OH)(CH_3)CH_2COCH_3$
- 427. Aldehydes behave as:
 - a) Oxidising agent
 - b) Reducing agent
 - c) Dehydrating agent
 - d) Oxidizing as well as reducing agent
- 428. Acetone is prepared by:
 - a) Pyrolysis of acetic acid
 - b) Oxidation of acetic acid
 - c) Pyrolysis of calcium acetate
 - d) Oxidation of *n*-propyl alcohol
- 429. Benzaldehyde gives a positive test with
 - a) Tollen's reagent
- b) Fehling's solution
- c) Benedict's solution
- d) All of these
- 430. Isopropyl alcohol on passing over heated copper at 300°C gives:
 - a) Propylene
- b) Acetaldehyde
- c) Acetone
- d) None of these


- 431. Vinegar contains:
 - a) 10 to 20% acetic acid b) 10% acetic acid
- c) 6 to 10% acetic acid
- d) 100% acetic acid

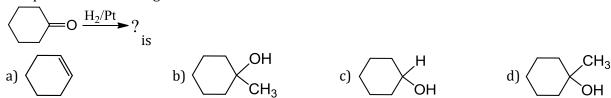
432. What product is formed in the reaction

$$\begin{array}{c}
O \\
\parallel \\
C - H \\
+ NH_2.NH_2 \xrightarrow{C_2H_5ONa}
\end{array}$$

d) None of these

- 433. Acetaldehyde is the rearrangement product of:
 - a) Ethyl alcohol
- b) Vinyl alcohol
- c) Allyl alcohol
- d) Methyl alcohol
- 434. When sodium extract is prepared, generally the substance ignites:
 - a) Na

b) H₂


- c) Organic compound
- d) 0_2
- 435. The compound which forms acetaldehyde when heated with dilute NaOH, is
 - a) 1, 1-dicholoroethane

b) 1, 1, 1-trichloroethane

c) 1-chloroethane

- d) 1, 2-dichloroethane
- 436. CH2OH COONa
- a) Crossed Cannizzaro reaction
 - b) Intermolecular Cannizzaro reaction

c) Intramolecular Cannizzaro reaction	on
d) Either of the above	011
. The product of following reaction	
H_2/Pt	

438. Tollen's reagent is:

437

- a) Ammoniacal cuprous chloride
- b) Ammoniacal cuprous oxide
- c) Ammoniacal silver nitrate
- d) Ammoniacal silver nitrite
- 439. Which structural unit is possessed by aldehyde and not ketone?
 - a) α-H-atom
 - b) H-atom and carbonyl group
 - c) OH and carbonyl group
 - d) None of the above
- 440. CH₃CH₂CHO is produced when the following is hydrolysed:
 - a) CH₃CH₂CH₂Cl
- b) CH₃CHClCH₂Cl
- c) CH₃CH₂CHCl₂
- d) $CH_3C \cdot Cl_2 \cdot CH_3$
- 441. Acetaldehyde undergoes self condensation in presence of aluminium ethoxide to give ethyl acetate. This reaction is called:
 - a) Perkin reaction
- b) Tischenko's reaction
- c) Cannizzaro's reaction d) Aldol condensation
- 442. Formaldehyde polymerises from 6 to 100 molecules to form:
 - a) Formalin
- b) Metaldehyde
- c) Para formaldehyde
- d) None of these

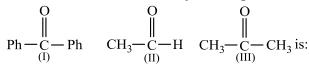
- 443. Magenta is:
 - a) Alkaline phenolphthalein
 - b) Red litmus
 - c) p-rosaniline hydrochloride
 - d) Methyl red
- 444. Aldehyde which is formed during photosynthesis of plants is
 - a) Methanal
- b) Acetaldehyde
- c) Propanal
- d) Phenylmethanal
- 445. Which of the following carboxylic acids undergoes decarboxylation easily?

$$\begin{array}{c|c} C_6H_5-CH-COC \\ d) & | \\ NH_2 \end{array}$$

- 446. The salicylic acid reacts with both the neutral FeCl₃ solution and in esterification reaction because it contains:
 - a) Both an acid group and an alcoholic group
 - b) Both an acid group and an aldehydic group
 - c) Both an acid group and a phenolic group
 - d) Both an acid and ester group
- 447. Consider the following reaction:

$$\begin{array}{c} \text{COCl} \\ \hline \\ \hline \\ \text{Pd-BaSO}_4 \end{array} \text{'}A\text{'}$$

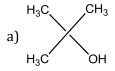
The product '*A*' is:

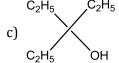

- a) C₆H₅CHO
- b) C_6H_5OH
- c) $C_6H_5COCH_3$
- d) C_6H_5Cl
- 448. Ink stains can be removed from clothes by treating them with:
 - a) Formic acid
- b) Acetic acid
- c) Benzoic acid
- d) Oxalic acid

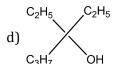
449. Identify 'acetaldoxime'

- a) $CH_3CH = N NH_2$
- b) $CH_3CH = N OH$
- c) $(CH_3)_2C = N OH$ d) $CH_2 = N OH$

- 450. Benzaldehyde and acetaldehyde can be distinguished by:
 - a) Iodoform test
 - b) 2: 4 DNP test
 - c) NH₃ reaction
 - d) Wolff-Kishner's reduction
- 451. Ethyl benzoate reacts with PCl₅ to give
 - a) $C_2H_5Cl + C_6H_5COCl + POCl_3 + HCl$
- b) $C_2H_5Cl + C_6H_5COCl + POCl_3$ d) $C_2H_5Cl + C_6H_5COOH + POCl_3$


- c) $CH_3COCl + C_6H_5COCl + POCl_3$
- 452. Lactic acid extracted from muscles is:
 - a) laevo-rotatory
 - b) dextro-rotatory
 - c) Similar with synthetic lactic acid
 - d) None of the above
- 453. Phenol is soluble in:
 - a) Dilute HCl
 - b) Both NaOH solution and dilute HCl
 - c) NaHCO₃ solution
 - d) NaOH solution
- 454. The correct order of reactivity of PhMgBr with,




- a) I > II > III
- b) III > II > I
- c) II > III > I
- d) II > I > III
- 455. Reactions between organic compounds are generally slow because they are:
 - a) Ionic

- b) Covalent
- c) Metallic
- d) None of these

 $\xrightarrow{\text{CH}_3\text{MgBr}} P$, the product 'P will be

457. ÇOOH (i) 2C₂H₅OH СООН

What is "Y"?

- 458. Lemon gives sour taste because of
 - a) Citric acid
- b) Tartaric acid
- c) Oxalic acid
- d) Acetic acid
- 459. On warming formic acid with ammoniacal silver nitrate, the product formed is:
 - a) Silver oxide
- b) Metallic silver
- c) Silver formate
- d) Formaldehyde
- 460. Simple distillation is used to separate liquids which differ in their boiling point by:

b) 10°C

- c) $30^{\circ} 80^{\circ}$ C
- d) Less than 20°C

- 461. Maximum percentage of chlorine is in:
 - a) Pyrene
- b) PVC

- c) Chloral
- d) Ethylidene chloride

- 462. Which of the following aldehydes give red precipitated with Fehling solution?
 - a) Benzaldehyde
- b) Salicylaldehyde
- c) Acetaldehyde
- d) None of these

	a) 2,3-diffietily1-2,3-butain	10101		
	b) 3,3-dimethyl-2-propan	one		
	c) 3-methyl butan-2-ol			
	d) None of the above			
464.	$CH_3CHO \xrightarrow{HCN} A \xrightarrow{HOH} E$	o mla a a na		
			N. 7. 11. 13.	15 34 11 11
	a) Malonic acid	b) Glycolic acid		d) Malic acid
465.		ate and calcium formate on	= =	
	a) CH ₃ COCH ₃	b) CH ₃ CHO	c) HCHO	d) All of these
466.	Which of the following car	n be used to differentiate b	etween aldehyde and ketor	ne?
	a) Ammoniacal AgNO ₃			
	b) Ammoniacal AgNO ₃ in	presence of tartarate ion		
	c) I ₂ in the presence of ba	se		
	d) Ammoniacal AgNO ₃ in	the presence of citrate ion		
467.		=	and H are to be estimated tl	he combustion tube at the
	exit should contain a:	,		
		b) Silver spiral	c) Lead spiral	d) Iron spiral
468	A ketone on reduction giv		of Boar spiral	a) non opnar
100.	a) Primary alcohol	CS.		
	b) Secondary alcohol			
	•			
	c) A dihydric alcohol	J		
1.00	d) A mixture of above all t			
469.	Which is least soluble in w) D	D.D
	a) Phenol	b) Ethanol	c) Benzene	d) Benzoic acid
470.		onic acid yielded a compou	$\operatorname{nd} D$.	
	$CH_3CH_2COOH \xrightarrow{SOCl_2} B$	$C \xrightarrow{\text{KOH}} D$		
	The structure of D would	be:		
	a) CH ₃ CH ₂ NHCH ₃	b) CH ₃ CH ₂ NH ₂	c) CH ₃ CH ₂ CH ₂ NH ₂	d) CH ₃ CH ₂ CONH ₂
471.	Acetals are:			
	a) Aldehyde	b) Diethers	c) Ketones	d) Hydroxy aldehydes
472.	Hexamethylene tetramine	•		
	a) Analgesic	b) Antipyretic	c) Urinary antiseptic	d) All of these
473	, ,	ves an aldehyde on dry dist		a) 1111 01 011000
170.	a) Calcium formate + calc	-	b) Calcium acetate + calci	um henzoate
	c) Calcium acetate	rain acctate	d) Calcium benzoate	um benzoate
171		e obtained by Rosenmund's	•	
4/4.	•	•		d) All of those
475	a) CH ₃ CHO	b) HCHO	c) CH ₃ CH ₂ CHO	d) All of these
4/5.	Which is tribasic acid?	13.6%	N 1	1) m 1
	a) Malonic acid	b) Citric acid	c) Valeric acid	d) Tartaric acid
476.	-	heating with aqueous KOH	= =	1) 011 01101
	a) CH ₃ COCl	b) CH ₃ CH ₂ Cl	c) CH ₂ ClCH ₂ Cl	d) CH ₃ CHCl ₂
477.	Fruits are preserved by us	-		
	a) Aldehydes	b) Sodium benzoate	c) Formic acid	d) Salicylic acid
478.	End product of the follow	ing reaction is		
	$CH_3CH_2COOH \xrightarrow{Cl_2} X \xrightarrow{A}$	lc.KOH		
	red P	·		
	CH ₃ CH ₂ COOH	CH ₂ CH ₂ COOH		CH ₂ CHCOOH
	a)	b)	c) $CH_2 = CHCOOH$	d)
	ОН	ОН		Cl OH
479.	Predict the product for the	e following		

$$\begin{array}{c}
OH^{-} \\
\hline
Aldil
\end{array}$$

condensation

c)
$$CH_3$$
 $CH=C$

d)
$$C-CH_3$$

480. Ketones can be prepared by:

- a) Rosenmund's reduction
- b) Stephen's reduction
- c) Both (a) and (b)
- d) None of the above

481. The percentage of nitrogen in urea is about:

a) 64.6

b) 46.7

c) 35.8

d) 28

482. Collin's reagent is used to convert

b)
$$- CH_2OH \rightarrow CHO$$

c)
$$-$$
 CHO $\rightarrow -$ COOH

d)
$$-$$
 CHO $\rightarrow -$ CH₂OH

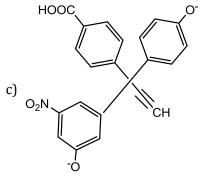
483. Which of the following reactant give Tollen's reagent and Fehling's solution test?

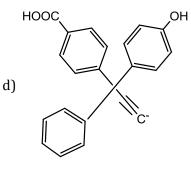
$$CH_3 - C - CH_3$$

a) CH₃CHO

b) CH₃COOH

d) $CH_3 - CH_2COOH$


484. Reduction of aldehydes and ketones into hydrocarbons using Zn - Hg HCl conc. is called?


- a) Cope reaction
- b) Dow reaction
- c) Wolff-Kishner reaction
- d) Clemmensen reduction

485. How will you convert butan-2-one to propanoic acid?

- a) Tollen's reagent
- b) Fehling solution
- c) NaOH I_2/H^+
- d) NaOH/NaI/H+

COOH 486. 2 moles of NaNH₂

- 487. When vapours of acetic acid are passed over 300°C we get acetone.
 - a) Al_2O_3
- b) CuO

c) MoO

- d) Cu
- 488. Which product is obtained on reduction of methanal in the presence of concentrated NaOH?
 - a) Formic acid and methyl alcohol

c) Methyl alcohol

d) Formic acid

b) $CO + H_2$

- 489. Which of the following doesn't give Fehling solution test?
 - a) Acetone
- b) Propanal
- c) Ethanal
- d) Butanal

- 490. Which gives smell of burnt sugar on charring?
 - a) Tartaric acid
- b) Formic acid
- c) Oxalic acid
- d) Acetic acid

- 491. Hydrated oxalic acid contains:
 - a) 5 water molecules
- b) 1 water molecule
- c) 2 water molecules
- d) 4 water molecules

- 492. Cacodyl test is used for identification of:
 - a) HCOOH
- b) CH₃COOH
- c) Oxalic acid
- d) Tartaric acid
- 493. During hydrogenation of oils vegetable ghee is formed. In this process:
 - a) Hydrogen is dissolved in the oil
 - b) Hydrogen combines with O_2 of the oil
 - c) Esters of unsaturated fatty acids are reduced to those of saturated acids
 - d) Hydrogen drives off impurities from the oil
- 494. Hydrogenation of C₆H₅CHOH COOH over Rh Al₂O₃ catalyst in methanol gives
 - a) C₆H₅CH₂COOH
- b) C₆H₁₁CH₂COOH
- c) C₆H₅CHOH.CH₂OH
- d) $C_6H_{11}CHOH COOH$
- 495. Formaldehyde can be distinguished from acetaldehyde by the use of:
 - a) Schiff's reagent
- b) Tollen's reagent
- c) Fehling's solution
- d) NaOH and iodine
- 496. Which of the following carbonyl compounds on condensation gives an aromatic compound?
 - a) CH₃CHO
- b) HCHO
- c) $(CH_3)_2CO$
- d) CH₃CH₂CHO

- 497. Mild oxidation of carboxylic acids occurs at.....position.
 - a) a

b) γ

c) B

- d) δ
- 498. The compound obtained by the reduction of propional dehyde by Zn/Hg and conc. HCl is:
 - a) Propanol
- b) Propane
- c) Propene
- d) None of these

- 499. Almost all amides exist in:
 - a) Solid state
 - b) Liquid state
 - c) Gaseous state
 - d) Liquid and gaseous state
- 500. In public urinals, we observe some nascent smell. This smell is due to:
 - a) Hydrolysis of urea of urine by urease of atmosphere into $\mathrm{NH_3}$ and $\mathrm{CO_2}$
 - b) Formation of sulphamic acid by urea of urine
 - c) Reaction of CO₂ of atmosphere with urea mononitrate in urine
 - d) Hydrogen present in air reacts with nitrogen forming NH₃
- 501. Trichloroacetaldehyde was subjected to Cannizaro's reaction by using NaOH. The mixture of the products contains sodium trichloroacetate ion and another compound. The other compound is
 - a) 2, 2, 2-trichlorethanol

b) Trichloromethanol

c) 2, 2, 2-trichloropropanol

d) Chloroform

503	a) PhCO ₂ H, PhCH ₂ OH . Turpentine oil can be pu	,	c) PhCH ₂ OH, PhCOCH ₃	d) PhCO ₂ H, PhCOCH ₃
505	a) Vacuum distillation	=	c) Steam distillation	d) Simple distillation
504				3 is added. The white ppt
	obtained is of:		Ü	J 11
	a) AgCN	b) Ag_2SO_4	c) AgCl	d) Cl·CH ₂ COOAg
505	. An ester $(A)C_{11}H_{14}O_2$ wa	as treated with LiAlH $_4$ to give	ve compound $(B)C_9H_{12}O$ as	$\operatorname{nd}(C)C_2H_6O.B$ on slight
	heating with an acid form	$ns(D)C_9H_{10}$. Compound D of	on vigorous oxidation with	KMnO ₄ gives terephthalic
	acid. The compound (A) ,	is		
			CH-COO	CoHe
	$_{a)}$ $H_3C-\langle \bigcirc \rangle$ - CH_2CO	OC_2H_5	b) 5.12555	2/ 15
			H ₃ C	
	, H ₂ C \rightarrow CH ₂ CH	₂COOCH ₃	$\begin{array}{c} \text{d)} & \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	OOCH ₃
	c) 1.30 ()	200001.3	· /	
	-1 4 1.		H ₃ C	
506	. Elements found in explos			D 0
507	a) S	b) N	c) Both S and N	d) C
507	. Which acid forms Zwitte		a) Dhthalia agid	d) Culphanilia agid
EVO	 a) CH₃COOH Acetaldehyde cannot sho 	b) Salicylic acid	c) Phthalic acid	d) Sulphanilic acid
300	a) Iodoform test	b) Lucas test	c) Benedict's test	d) Tollen's test
509		S and halogens, the organic	•	uj ronen s test
507	a) Fused with sodium	s and harogens, the organic	compound is.	
	b) Dissolved with sodam	ide		
	c) Extracted with sodam			
	d) Fused with calcium			
510	. The number of aldehyde	s of molecular formula C ₅ H ₂	₁₀ 0 is:	
	a) 2	b) 3	c) 4	d) 5
511	. Which of the following co	ompound a would have the	smallest value of pK_a ?	
		b) CH ₃ CH ₂ CF ₂ COOH		
512			e acid reduces Fehling's so	lution. Oxidation of alcohol
	B gives acid A. The ester			
= 40	a) Methyl formate	b) Ethyl formate	c) Methyl acetate	d) Ethyl acetate
513	. Weakest acid among the	-) (((1)) ((1)((0)(1)	l) agl goog
Г1 4	a) CH ₃ COOH	b) CH ₂ ClCOOH	c) (CH ₃) ₂ CHCOOH	d) CCl ₃ COOH
514	. what is the product in io	llowing cross Claisen conde	ensation?	
	$C_2H_5COOC_2H_5 + $	$\frac{C_2H_5ONa}{}$?		
	$COOC_2$	H ₅ H'	000000	
	COOC ₂ H ₅		COCOOC ₂	₂ H ₅
	COOC ₂ H ₅ + $\begin{vmatrix} COOC_2 \\ C_2H_5COOC_2H_5 + \\ COOC_2 \end{vmatrix}$ a) CH ₃ CH $\begin{vmatrix} COOC_2H_5 \\ COOC_2H_5 \end{vmatrix}$		b) CH_3-CH $COCOOC_2$ $COCOOC_2$ $COCOC_2H$ COC_2H_5	₂ H ₅
		11	000001	1
	c) CH ₃ CH COCOOC ₂	.⊓ ₅	CH2-CH	1 5
	$^{\text{c})}$ COOC ₂ H ₅		d) COC_2H_5	
	0.00			
515		and $C_x H_y O$ which occupied	112 mL at NTP and on com	ibustion gave $0.44 \mathrm{g} \mathrm{CO}_2$.
	The ratio of X to Y in the	-) 1 2	1) 4
	a) 1 : 1	b) 1 : 2	c) 1 : 3	d) 1 : 4

 $502. \ The\ end\ products$ in the Cannizaro reaction of benzaldehyde is

516	Rata	of the	reaction
OIO.	Nate	or the	Tacuon

$$R - C = \begin{pmatrix} O \\ + Nu \end{pmatrix} + R - C = \begin{pmatrix} O \\ + Z \end{pmatrix} + R - C = \begin{pmatrix} O \\ + Z \end{pmatrix}$$

- a) OCOCH₃
- b) NH₂

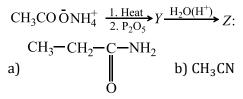
- c) $0C_2H_5$
- d) Cl

- 517. Among the following acids which has the lowest p K_a value?
 - a) CH₃CH₂COOH
- b) $(CH_3)_2CH COOH$
- c) HCOOH
- d) CH₃COOH
- 518. The reaction of an organic compound with ammonia followed by nitration of the product gives a powerful explosive, called RDX. The organic compound is
 - a) Phenol
- b) Toluene
- c) Glycerine
- d) Formaldehyde
- 519. The decreasing order of solubility of methanal (A), propanaldehyde (B), benzaldehyde (C) and acetophenone (D):
 - a) A > B > C > D
- b) D > C > B > A
- c) D > A > B > C
- d) B > A > C > D
- 520. Why —OH group in ethyl alcohol is neutral, while it is acidic in acetic acid?
 - a) In acetic acid —OH group is attached with electronegative carbonyl group
 - b) Ethyl alcohol molecules get associated
 - c) Acetic acid has much stronger hydrogen bonding
 - d) All of the above
- 521. The class of compounds that are reduced to primary alcohols and also respond to Fehling's solution are known as:
 - a) Aliphatic aldehydes
- b) Aliphatic ketones
- c) Aromatic amines
- d) Aromatic ketones

- 522. $CH_3 CHO + HCN \rightarrow A.Compound A$ on hydrolysis gives
 - a) $CH_3 CH_2 COOH$

b) CH₃ – CH₂ – CH₂ – NH₂

$$CH_3 - CH - COOH$$

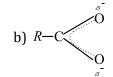

c)
$$CH_3 - CO - COOH$$

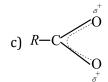
- 523. Which of the following aldehydes on chlorination will give a product, which can be used for the synthesis of DDT?
 - a) HCHO
- b) CH₃CHO
- c) CH₃CH₂CHO
- d) C_6H_5CHO
- 524. The relation of the isoelectric point for an amino acid to solubility is:
 - a) The two are not related
 - b) An amino acid is the least soluble at the isoelectric point
 - c) An amino acid has the maximum solubility at the isoelectric point
 - d) Solubilities of only some amino acids depend on it
- 525. The discovery that shocked the vital force theory was:
 - a) Stereoisomerism
 - b) Synthesis of indigo
 - c) Wöhler's synthesis of urea from NH₄CNO
 - d) Fermentation of sugars
- 526. α-chloropropionic acid on treatment with alcoholic KOH followed by acidification gives:
 - a) CH_3 —CH(OH)—COOH
 - b) CH₂=CH—COOH
 - c) HO-CH₂-CH₂-COOH
 - d) None of the above
- 527. A mixture of camphor and NaCl can be separated by:
 - a) Sublimation
- b) Evaporation
- c) Filtration
- d) Decantation
- 528. When CH₂=CH—COOH is reduced by LiAlH₄, the compound obtained is:
 - a) CH₃CH₂COOH
- b) CH₂=CHCH₂OH
- c) CH₃CH₂CH₂OH
- d) CH₃CH₂CHO
- 529. Among the given compounds, the most susceptible to nucleophile attack at the carbonyl group is:
 - a) MeCOCl
- b) MeCHO
- c) MeCOOMe
- d) MeCOOCOMe

 $530. \ In \ Tischenko's reaction an aldehyde is heated with catalyst:$

- a) NaOH
- b) $Al(OC_2H_5)_3$
- c) Al_2O_3
- d) Mg/Hg
- 531. Identify *Z* in the sequence,

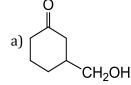

$$CH_3CO \ \overline{O}NH_4^+ \xrightarrow{1. \ \text{Heat}} Y \xrightarrow{H_2O(H^+)} Z$$




- c) CH₃COOH
- d) $(CH_3CO)_2O$
- 532. In the α -halogenation of aliphatic acids (HVZ reaction) the catalyst used is:

c) FeCl₃

- d) AlCl₃
- 533. Distillation under reduced pressure in principle resembles with:
 - a) Steam distillation
 - b) Fractional distillation
 - c) Azeotropic distillation
 - d) All of these
- 534. Which of the following does the best represent the structure of the carboxylate ion?

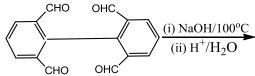

d) None of these

- 535. Acetic acid is obtained when:
 - a) Glycerol is heated with sulphuric acid
 - b) Methyl alcohol is oxidized with potassium permanganate
 - c) Acetaldehyde is oxidized with potassium dichromate and sulphuric acid
 - d) Calcium acetate is distilled in presence of calcium formate

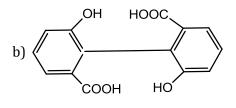
536.

$$CH_2Br \xrightarrow{OH^-} ?$$

Product is



- 537. Acetophenone is used in:
 - a) Toilet soaps
 - b) Preparation of hypnotic drug
 - c) Perfumery
 - d) Phenacyl chlorine preparation used in tear gas shells
- 538. In organic compounds sulphur is estimated as:
 - a) H₂SO₄
- b) BaSO₄
- c) SO_2


d) BaCl₂

539.

Major product is

- 540. Malonic acid and succinic acid are distinguished by:
 - a) Heating
- b) NaHCO₃
- c) Both (a) and (b)
- d) None of these

- 541. Pleasant odours of common fruits is due to:
 - a) Alcohol
- b) Fats

- c) Sugars
- d) Esters
- 542. Which one of the following pairs gives effervescence with aq. NaHCO₃?

CH₃COCl

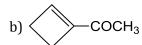
CH₃COCH₃

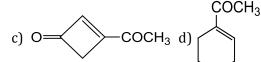
(I)

(II)

 $\mathrm{CH_{3}COOCH_{3}}$

CH₃COOCOCH₃


(III) (IV)


- a) I and II
- b) I and IV
- c) II and III
- d) I and III
- 543. The reduction of aldehydes and ketones to the corresponding alkanes in presence of alkaline hydrazine solution is called:
 - a) MPV reaction
 - b) Stephen reduction
 - c) Wolff-Kishner's reduction
 - d) Cannizzaro's reaction
- 544. The acid showing salt like structure in aqueous solution is:
 - a) Acetic acid
- b) Benzoic acid
- c) Formic acid
- d) α-aminoacetic acid

- 545. Cannizaro reaction is given by
 - a) HCHO
- b) C(OH)COOH
- c) \searrow CHCH₂CHO
- d) CH₃CH₂OH
- 546. Acetone on addition to methyl magnesium bromide forms a complex, which on decomposition with acid gives *X* and Mg(OH)Br. Which one of the following is *X*?
 - a) CH₃OH
- b) $(CH_3)_3COH$
- c) $(CH_3)_2CHOH$
- d) CH₃CH₂OH

547. $OHC(CH_2)_3COCH_3 \xrightarrow{OH^-}$? Major product is

548. $\text{CH}_3\text{CH}_2\text{OH} \xrightarrow{\text{Cu},573 \text{ K}} X \xrightarrow{[0]} Y \xrightarrow{\text{Br}_2,P} \text{BrCH}_2\text{COOH}$

Reaction I, II and III respectively are

- a) Reduction, oxidation and substitution
- b) Dehydration, oxidation and substitution
- c) Dehydrogenation, oxidation and substitution
- d) Dehydration, oxidation and elimination
- 549. Chromatographic techniques of purification can be used for:
 - a) Coloured compounds b) Liquids
- c) Solids
- d) All of these

- 550. Decarboxylation of malonic acid gives:
 - a) HCHO
- b) COOH-COOH
- c) CH₃COOH
- d) CH₄

551.	Which of following reaction a) Wolff-Kishner reaction	-	ydrocarbon having same nu b) Hofmann reaction	mber of carbon atoms?
	c) Grignard reaction		d) Reduction with LiAlH ₄	
552.		•	l group, gives a negative tes	· ·
	= =	_	s normal pentane. Identify t	-
EEO	a) 3-pentanone	b) 2-pentanone	c) 1,5-pentanediol	d) None of these
555.	Fruity smell is given by	b) Alcohols	a) Chlaraform	d) Asid anhydridas
C C 4	a) Esters	,	,	d) Acid anhydrides
554.			s of CO_2 with NaHCO ₃ . The	
	a) <i>R</i> —COOH	b) NaHCO ₃	c) Both (a) and (b)	d) None of these
555.	Hydrolysis of HCN gives:	12.5	N A	D. T
	a) Acetic acid	b) Formaldehyde	,	d) Formic acid
556.	_	an example of aldol conder		
	a) $2CH_3COCH_3 \xrightarrow{Dil.NaOH} CH$	H ₃ COHCH ₃ CH ₂ COCH ₃	b) 2HCHO $\xrightarrow{\text{Dil.NaOH}}$ CH ₃ Ol	Н
	c) $C_6H_5CHO + HCHO \xrightarrow{Dil.N}$		d) None of the above	
C C 7				
557.	Benedict's solution provid		c) Ba ²⁺	+: 1 (L
550	a) Ag ⁺	b) Cu ²⁺	,	d) Li ⁺
558.	• •	oduct is formed in the reac	tion	
	$CH_3MgBr \xrightarrow{(i)CO_2} ?$			
	a) Acetic acid	b) Methanoic acid	c) Methanol	d) Ethanal
559.	The Cannizaro reaction is	•	.,	.,
	a) Trimethyl acetaldehyd	= -	b) Acetaldehyde	
	c) Benzaldehyde		d) Formaldehyde	
560.	•	issolve in aqueous sodium	bicarbonate, liberating car	bon dioxide. Which one of
	the following is correct?	and a second a second and a second a second and a second	sion someto, no or doing our	
	•	d its conjugate base are of	comparable stability.	
	•	d is more stable than its co	•	
			stable than the free carboxy	vlic acid.
			stable than the free carboxy	
561.		_	ence of AgNO $_3$ in Carius tub	
-	washing the precipitate of			
	a) AgNO ₃	b) AgCl	c) Ag ₂ SO ₄	d) ClCH ₂ COOA _g
562	,	· -	0) 1182004	u)zg
302.	The correct order of reactive	vity of CO group		
	in given compounds is:			
	CH ₃ \ CH ₃ \	C_2H_5		
	a) $CO > CH_3$	CH ₃ CO		
	C ₂ H ₅ \ CH ₃ \	CH ₃		
	b) 2 CO> CO)> \C0		
	CH ₃ CH ₃	H		
	CH ₃ \ CH ₃ \	C_2H_5		
	c) $CO>$ $CO>$	> CO		
	CH ₃ H	CH ₃		
	d) CH_3 C_2H_5	CH ₃ ×		
) CO> 2 3 CC)>		
	CH_3 CH_3	H'		
563.			nce of glucose in urine with	
	a) Nessler's reagent	b) Fehling's solution	c) Fenton's reagent	d) Silver nitrate solution

	h reaction is used fo imer-Tiemann react		paration of acetopl		-Fittig reaction	
-	iedel-Craft's reaction			-	zaro's reaction	
-	665. Carbonyl group undergoes:					
	a) Electrophilic addition reactions					
b) Nucleophilic addition reactions						
c) Bo	th (a) and (b)					
d) No	one of the above					
566. Carb	on shows maximum	capacity o	of catenation beca	use:		
a) Ca	rbon shows variable	e valency				
b) In	carbon there is one	extra emp	ty d -orbital			
c) C-	–C bond strength is	very low				
=	–C bond strength is					
	enol form of acetone					
H_3	$-C = CH_3$	H ₃ C -	$-C-CD_3$	$H_2C =$	$C - CH_2D$	$H_2C = C - CHD_2$
a)		b)	II	c)		d)
	OD		0		ОН	ОН
	-	acetone is	s autocondensatio	n in prese	nce of concentra	ted sulphuric acid to give
	romatic compound					
=	esitylene	b) Mesit	yl oxide	c) Trioxa	n	d) Phorone
569. Aceta		13.54.4			•	15 ** 1 11 1
=	tones	b) Dieth	ers	c) Aldeh	yde	d) Hydroxy aldehydes
	tropes are:	1: .:1 1	1.			
=	quid mixture, which			ition		
=	quids mixed in equal					
=	dium which form so		-	ion		
=	seous mixture, whic name glacial acid is g		-			
	low 16.6°C it is whit	•	ire acetic aciu:			
=	forms ice like solid b	=	.°C			
=	is mixed with metha		C			
-	re acetic acid above					
-	conversion of CH ₃ OH		OOH can be broug	ht in hv		
	Cr ₂ O ₇ /H ⁺	b) CO +	_	c) KMnO	4	d) H ₃ PO ₄
-	UPAC name of tartai	-		·, ·	4	
	B-dihydroxy butane-					
=	I-dihydroxy butane-		=			
	tane-1-4-dicarboxyl					
d) No	one of the above					
574. The I	UPAC name of capro	oic acid is:				
a) Pe	ntanoic acid	b) Hexa	noic acid	c) Hepta	noic acid	d) Octanoic acid
575. An az	eotropic mixture of	ethanol a	nd water is first tr	eated wit	h before subj	ecting for fractional
distil	lation to separate th	em.				
a) Ar	hydrous lime	b) C ₆ H ₆		c) Both ((a) and (b)	d) None of these
576. Aceta	aldehyde on oxidatio	n with Se	O ₂ gives:			
=	I ₃ COOH	b) C_2H_5	OH	c) CHO·C	НО	d) None of these
	aldehyde is used:					
=	the preparation of d	=				
=	the preparation of c					
	the preparation of p	araldehyo	le			
d) Al	are correct					

578. Consider the following reactions,

$$CH_3COOH \xrightarrow{CaCO_3} A \xrightarrow{Heat} B$$

Compound *B* is:

- a) An ether
- b) An alcohol
- c) An aldehyde
- d) A ketone

579. Ethanal reacts with alkali to give 3-hydroxybutanal. This reaction is:

- a) Polymerisation
- b) Claisen condensation
- c) Reimer-Tiemann reaction
- d) Aldol condensation

580. When acetic acid is dissolved in benzene its molecular mass:

- a) Decreases
- b) Increases
- c) Either decreases or increases
- d) Suffers no change

581. Chloral is prepared industrially by the chlorination of:

- a) Propanone
- b) Formaldehyde
- c) Ethanol
- d) Chloroform

582. Paraldehyde is used as a:

- a) Soporific
- b) Poison
- c) Polymer
- d) Dye

583. Identify the final product (*D*) of the reaction

$$\begin{array}{c|c}
& & Br_2/FeBr_3 \\
\hline
& A & Mg/Ether
\end{array}$$

$$\begin{array}{c}
& B(i) \text{ Dry ice} \\
& (ii) \text{ H}_3O^+
\end{array}$$

$$\begin{array}{c}
& HNO_3 \text{ (conc)} + \\
& H_2SO_4 \text{ (conc)}
\end{array}$$

$$\begin{array}{c} O_2N & OH \\ O_2N & NO_2 \end{array}$$

584. Ketones are prepare by:

- a) Clemmensen's reduction
- b) Rosenmund's reduction
- c) Oppenauer's oxidation
- d) Cannizzaro's reaction

585. The correct sequence of decreasing order of reactivity of hydrolysis of acid chlorides is

- a) PhCOCl > $p O_2NC_6H_4COCl$

- a) $> p CH_3OC_6H_4COCI$ c) $p O_2NC_6H_4COCI > PhCOCI$ $> p CH_3OC_6H_4COCI$
- b) $\begin{array}{c} {\rm PhCOCl} > p {\rm CH_3OC_6H_4COCl} \\ > p {\rm O_2NC_6H_4COCl} \\ {\rm d)} \\ {\rm p-O_2NC_6H_4COCl} > p C{\rm H_3OC_6H_4COCl} \\ > {\rm PhCOCl} \end{array}$

586. When acetamide is treated with Br₂ and caustic soda, the product formed is

- a) N-bromamide
- b) Bromoacetic acid
- c) Methanamine
- d) Ethanamine

587. The product (A) of the following reaction

588. Nitration of salicylic acid will give:

- a) 2,4,6-trinitophenol
- b) 2,4,6-trinitrobenzoic acid
- c) 2,4,6-trinitrobenzene
- d) None of the above
- 589. In Dumas' method of estimation of nitrogen 0.35 g of an organic compound gave 55mL of nitrogen collected at 300 K temperature and 715 mm pressure. The percentage composition of nitrogen in the compound would be:

(Aqueous tension at 300 K = 15 mm)

- a) 14.45
- b) 15.45
- c) 16.45
- d) 17.45

590. A powerful sedative made from acetaldehyde is:

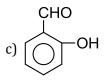
- a) Acetic anhydride
- b) Paraldehyde
- c) Acetic acid
- d) Acetamide
- 591. An organic compound of molecular formula C₃H₆O did not give a silver mirror with Tollen's reagent, but gave an oxime with hydroxylamine, it may be
 - a) $CH_3 CO CH_3$

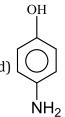
b) C₂H₅CHO

c) $CH_2 = CH - CH_2 - OH$

- d) $CH_3 O CH = CH_2$
- 592. Trichloroacetaldehyde was subjected to Cannizzaro's reaction by using NaOH. The mixture of the products conatains sodium trichloroacetate ion and another compound. The other compound is:
 - a) 2,2,2-Trichloroethanol
 - b) Trichloromethanol
 - c) 2,2,2-Trichloropropanol
 - d) Chloroform
- 593. Acetic anhydride is prepared in the laboratory by heating sodium acetate with
 - a) Ethyl chloride
- b) Acetyl chloride
- c) Conc. H₂SO₄
- d) Zinc dust


594.


The compound B is



595. Which one of the following compound gives aspirin on reacting with acetic anhydride in presence of H_2SO_4 ?

- 596. The acid which contains the aldehyde group is
 - a) Acetic acid
- b) Formic acid
- c) Benzoic acid
- d) Propionic acid
- 597. When acetyl chloride reacts with any amine, the reaction is known as:
 - a) Saponification
- b) Esterification
- c) Acetylation
- d) Condensation

- 598. Fehling solution is
 - a) CuSO₄+lime
- b) $CuSO_4 + NaOH(aq)$ c) $CuSO_4 + Na_2CO_3$
- d) None of these

599. In the Rosenmund's reaction

$$RCOCl + H_2 \xrightarrow{Pd/BaSO_4} RCHO + HCl BaSO_4 here$$

- a) Promotes catalytic activity of Pd
- b) Removes the HCl formed in the reaction

c) Deactivates palladium

- d) Activates palladium
- 600. Formaldehyde can be manufactured from:

 a) Natural gas 601. Which of the following m a) C₆H₅COOH, (CH₃)₂SO 602. The boiling and melting a) Hydrogen bonding 603. Complete the following m 	₄ , b) C ₆ H ₅ COCl, C ₂ H ₅ OH points of carboxylic acids do b) Polarization	c) $C_6H_5COOH, CH_2N_2, \Delta$	d) None of these $_{5}$ H $_{5}$ COOCH $_{3}$? d) C $_{6}$ H $_{5}$ COOC $_{2}$ H $_{5}$, CH $_{3}$ OH, I d) All of these
a) Acid anhydride 604. Which of the following d a) Benzaldehyde c) <i>p</i> -methoxybenzaldehy 605. The strongest acid amon	<i>y</i> de	b) 2-methylpropanal d) 2,2-dimethylpropanal	d) Ester
a) CH_3COOH 606. Phthalic acid $\Delta \downarrow$ $A \xrightarrow{NH_3} B \xrightarrow{NaOH} C \xrightarrow{Br_2/KOH}$	b) HCOOH	c) CH ₃ CH ₂ CH(Cl)COOH	d) ClCH ₂ CH ₂ CH ₂ COOH
In this reaction, the prod a) <i>o</i> -nitrobenzoic acid	b) Salicylic acid	c) Anthranilic acid	d) Crotonic acid
607. In the Lassaigne's test th		= =	
	s sp -hybridised s sp^3 -hybridised ched to the carbonyl carbon ched to the carbonyl carbon	n lie in the same plane n lie in different planes	d) Na ₂ S
a) Tollen's reagent610. Oxidation of which comp	b) Fehling's solution bound is not possible?	c) Ferric chloride	d) NaHCO ₃
a) CH ₃ – COOH 611. Which type of isomerism	b) $CH_3 - CO - CH_3$ is not common in carboxyl		d) $CH_3 - CH_2 - OH$
a) Chain	b) Functional	c) Metamer	d) Optical
612. The acidity of the compo	ounds RCOOH, H ₂ CO ₃ , C ₆ H ₅ (OH, ROH decreases in the or	der
a) $RCOOH > H_2CO_3 > C$ c) $ROH > C_6H_5OH > RC$		b) $C_6H_5OH > RCOOH > H$ d) $H_2CO_3 > RCOOH > C_6$	- *
613. Which one of the followi	_ *		
a) Ethoxybenzene	b) Chlorobenzene	c) Ethyl benzoate	d) Phenol
614. When acetamide is hydr	olysed by boiling with acid,	•	
a) Acetic acid	b) Ethyl amine	c) Ethanol	d) acetamide
615. $CH_3COOH \xrightarrow{Br_2/P} Y \xrightarrow{(i)l}$	$\xrightarrow{\text{KCN}} X \text{ Here,} X \text{ is}$		
a) Glycollic acidc) Succinic acid616. Lemon is sour due to:		b) α —hydroxy propionic d) Malonic acid	acid
a) Citric acid	b) Tartaric acid	c) Oxalic acid	d) Acetic acid
617. Both acetaldehyde and k a) Ammoniacal AgNO ₃ b) Rochelle salt c) 2,4-dinitro phenylhyd	retone react with:	.,	.,

- d) All of the above
- 618. Self condensation of two moles of ethyl acetate in presence of sodium ethoxide yields:
- a) Methyl acetoacetate b) Ethyl propionate
- c) Ethyl butyrate
- d) Acetoacetic ester

- 619. $Me_2CHCOC_2H_5 \xrightarrow[Villiger]{Baeyer}$? Productc
 - a) Me₂CHCOOC₂H₅
- b) C_2H_5COOCH CH_3 $CH_3-COO-C$ CH_3 CH_3
- 620. Salicylic acid is treated with bromine under two different conditions.

$$[Y] \xrightarrow{\operatorname{Br}_2} \operatorname{COOH} \xrightarrow{\operatorname{Br}_2 \text{ in}} [X]$$

Predict the nature of [X] and [Y] in the above reactions,

$$a) \xrightarrow{\mathsf{OH}} \overset{\mathsf{OH}}{\longleftrightarrow} \overset{\mathsf{OH}}{\longleftrightarrow} \overset{\mathsf{COOH}}{\longleftrightarrow} ; \xrightarrow{\mathsf{Br}} \overset{\mathsf{OH}}{\longleftrightarrow} \overset{\mathsf{COOH}}{\longleftrightarrow}$$

$$(c) \bigcup_{\mathsf{Br}}^{\mathsf{OH}} \bigcup_{\mathsf{COOH}}^{\mathsf{OH}} \bigcup_{\mathsf{Br}}^{\mathsf{OH}} \bigcup_{\mathsf{Br}}^{\mathsf{COOH}}$$

- 621. Acetic acid on warming with hydrazoic acid in presence of conc. H₂SO₄ gives:
 - a) CH₃CONH₂
- b) CH₃NH₂
- c) CH₃COONH₄
- d) CH₃CH₂NH₂

- 622. Electrolytic reduction with lead cathode of oxalic acid yields:
 - a) Glycollic acid
 - b) Glyoxalic acid
 - c) Glycollic acid + glyoxalic acid
 - d) CH₃COOH

623. CHO
$$+ CH_2$$
 COOR $\frac{\text{Pipridine}}{\triangle \text{ HOH}}$?

Final product and the name of the reaction is

d) None of the above

624. Complete the following reaction,

COOH
$$\stackrel{\text{(1) PCl}_5}{\longrightarrow}$$
 $\stackrel{\text{(2) (CH}_3CH_2)_2Cd}{\longrightarrow}$

$$a)$$
 $\langle \bigcirc \rangle$ C OCH_2CH_3

$$_{\mathrm{b})}$$
 $\left\langle \bigcirc \right\rangle$ $_{\mathrm{C}}^{\mathrm{O}}$ $_{\mathrm{CH_{2}CH_{3}}}^{\mathrm{O}}$

$$_{\mathrm{C})}$$
 $\stackrel{\mathrm{O}}{\bigcirc}$ $\stackrel{-}{\bigcirc}$ $-\mathrm{CH_{2}CH_{2}CH_{3}}$

625. In the following reaction

$$RCH_2COOH \xrightarrow{Br_2/P} X \xrightarrow{Excess NH_3} Y$$

The major amounts of X and Y are

a) RCHBrCONH₂; RCH(NH₂)COOH

b) RCHBrCOOH; RCH(NH₂)COOH

c) RCH2COBr; RCH2COONH4

- d) RCHBrCOOH; RCH2CONH2
- 626. Benzaldehyde and acetone can be best distinguished using
 - a) Fehling's solution

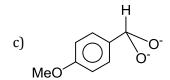
b) Sodium hydroxide solution

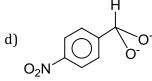
c) 2, 4-DNP

d) Tollen's reagent

627.
$$CH_3COOH \xrightarrow{LiAlH_4} X \xrightarrow{Su} Y \xrightarrow{NaOH} Z$$
. In the above reaction Z is

- a) Butanol


c) Ketol


d) Acetal

628. Give the order of ease of the esterification of the following acids

$$O_2N$$
—COOH

- a) I > II > III > IV
- b) IV > III > II > I
- c) II > I > IV > III d) I > II > III > IV
- 629. Which of the following statements is/are correct?
 - a) Magnesium citrate is used as antacid
 - b) Tartar emetic is used to produce nausea and vomiting in the treatment of poisoning
 - c) Cream of tarter (pot. Hydrogen tartrate) is used in baking powder
 - d) All of the above
- 630. Which of the following reaction is a condensation reaction?
 - a) HCHO → Para-formaldehyde
 - b) $CH_3CHO \rightarrow Paraldehyde$
 - c) $CH_3COCH_3 \rightarrow Mesityl$ oxide
 - d) $CH_2 = CH_2 \rightarrow Polyethylene$
- 631. In Duma's method for determining the nitrogen content of an organic compound, the nitrogen content is determined in the form of:
 - a) Gaseous NH₃
- b) NaCN
- c) Gaseous N₂
- d) $(NH_4)_2SO_4$
- 632. An organic compound containing C, H and O gives red colouration with sodium nitroprusside solution but does not reduce Tollen's reagent and yields chloroform on treating with NaOH and Cl2. The compound is
 - a) CH₃CH₂OH
- b) CH₃-CH-CH₃ OH
- c) CH₃COCH₃
- d) $(CH_3)_2CH CHO$
- 633. In a Cannizaro reaction, the intermediate that will be best hydride donor is

- $634.\,0.58\,g$ of hydrocarbon on combustion gave $0.9\,g$ water. The percentage of carbon is about :
 - a) 75.8

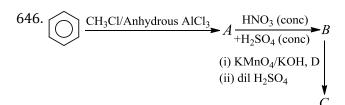
b) 82.7

- c) 27.85
- d) 68.8

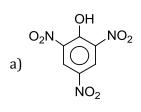
- 635. $C_6H_5CHO + HCN \rightarrow C_6H_5CH(CN)OH$; the product is:
 - a) Optically active
 - b) A meso compound
 - c) Racemate
 - d) Mixture of distereoisomers
- 636. Which is the most reactive of the following?
 - a) Ethyl acetate
- b) Acetic anhydride
- c) Acetamide
- d) Acetyl chloride
- 637. When acetamide is hydrolysed by boiling with acid, the product formed is:
 - a) Acetic acid
- b) Ethyl amine
- c) C₂H₅OH
- d) Acetamide
- 638. The most reactive compound towards formation of cyanohydrin on treatment with HCN followed by acidification is
 - a) Benzaldehyde

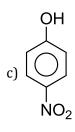
b) *p*-nitrobenzaldehyde

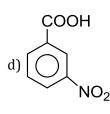
c) Phenylacetaldehyde


- d) p-hydroxybenzaldehyde
- 639. Which one of the following aldehydes will not form an aldol when treated with dil. NaOH?
 - a) CH₃CHO
- b) CH₃CH₂CHO
- c) $(CH_3)_3CCHO$
- d) C₆H₅CH₂CHO
- 640. Wacker method is used to convert alkene into corresponding......using PbCl₂
 - a) Alcohol
- b) Ketone
- c) Aldehyde
- d) Acid
- 641. The figure given below describes a condensation polymer which can be obtained in two ways. Either treating 3 molecules of acetone (CH_3COCH_3) with conc. H_2SO_4 or passing propyne ($CH_3C\equiv CH$) through a red hot tube. The polymer is:

- a) Phorone
- b) Mesityl oxide
- c) Diacetonyl alcohol
- d) Mesitylene
- 642. 0.5 g of an organic compound containing nitrogen on Kjeldahlising required 29 mL of $N/5~H_2SO_4$ for complete neutralization of ammonia. The percentage of nitrogen in the compound is:
 - a) 34.3


b) 16.2


c) 21.6


- d) 14.8
- 643. A nitrogen containing organic compound gave an oily liquid on heating with bromine and potassium hydroxide solution. On shaking the product with acetic anhydride, an antipyretic drug was obtained. The reactions indicate that the starting compound is
 - a) Aniline
- b) benzamide
- c) acetamide
- d) nitrobenzene
- 644. Acid hydrolysis of *X* yields two different organic compounds. Which one of the following is *X*?
 - a) CH₃COOH
- b) CH₃CONH₂
- c) CH₃COOC₂H₅
- d) $(CH_3CO)_2O$
- 645. An alcohol, on oxidation, produces a ketone with the same number of carbon atoms. When the ketone is oxidized, it yields an acid with a lesser number of carbon atoms. The alcohol could be a
 - a) Primary alcohol
- b) Secondary alcohol
- c) Tertiary alcohol
- d) None of these

In this reaction, C is

- 647. At room temperature formaldehyde is:
 - a) Gas

- b) Liquid
- c) Solid

d) None of these

- 648. Positive Beilstein test shows that:
 - a) Halogens are surely present
 - b) Halogens are absent
 - c) Halogens may be present
 - d) None of the above
- 649. Among the following, the most acidic is
 - a) CH₃COOH
- b) ClCH₂COOH
- c) Cl₂CHCOOH
- d) Cl₂CHCH₂COOH
- 650. In question 178 step (4) cab be carried out with $NaNO_2$ + dil. HCl. The other products of the step are:
 - a) NO₂

b) NH₃

- c) $N_2 + H_2 O$
- d) RCH₂NO₂

- 651. In question 178 an intermediate involved in step (3) is:
 - a) R— CH_2CO_2H
- b) R— CH_2COONH_4
- c) $R CH_2CN$
- d) $R CH_2 N = C = 0$

- 652. Acetyl chloride is reduced to acetaldehyde by:
 - a) Na $-C_2H_5OH$
- b) LiAlH₄
- c) $H_2/Pd BaSO_4$
- d) H₂/Ni

- 653. The compound having least solubility in water is:
 - a) Methanol
- b) Acetaldehyde
- c) Acetone
- d) Acetophenone
- 654. 2-bromopropanoic acid when heated with alcoholic KCN gives an organic compound which on further acid hydrolysis gives the compound *A*. Hence, *A* will be:

a)
$$\overset{\text{CH}_3-\text{CH-COOH}}{\overset{\text{I}}{\text{OH}}}$$

655. CHO COOEt
$$C_2H_5O$$
 H_2O X Aromatic

Identify the final product *X*

- 656. $RCOOH \rightarrow RCH_2OH$. This mode of reduction of an acid to alcohol can be affected only by:
 - a) Zn/HCl
 - b) Na-alcohol
 - c) Aluminium isopropoxide and isopropyl alcohol
 - d) LiAlH₄
- 657. An organic compound *X* is oxidised by using acidified K₂Cr₂O₇. The product obtained reacts with phenyl

hydrazine but does not answer silver mirror test. The possible structure of *X* is

$$CH_3 - C - CH_3$$

- a) CH₃CH₂OH
- b) ||
- c) $(CH_3)_2CHOH$
- d) CH₃CHO

658. Formic acid reduces ammoniacal AgNO₃ solution and Fehling's solution because:

- a) All organic acids do so
- b) Formic acid has aldehyde like structure
- c) Formic acid is an aliphatic acid
- d) None of the above statement is correct

659. Vapour density of a volatile substance is $4(CH_4 = 1)$. Its molecular weight would be:

b) 2

c) 64

d) 128

660. The final product (III) obtained in the reaction

$$CH_3$$
 CH_3
 $C-CHO + CH_3CH_2CHO \xrightarrow{OH} I \xrightarrow{H^+} I$
 CH_3

$$_{a)}^{\text{CH}_{3}}$$
 $_{\text{CH}_{3}}^{\text{CH}_{3}}$ $_{\text{CH}_{3}}^{\text{CH}_{2}}$ $_{\text{CH}_{3}}^{\text{CH}_{2}}$ $_{\text{CH}_{3}}^{\text{CH}_{3}}$

CH₃
a)
$$CH_3$$
—C— $CH=CHCH_2CH_2OH$
 CH_3
 CH_3

$$\begin{array}{c} \mathsf{CH_3} \\ \mathsf{d)} \ \mathsf{CH_3} - \overset{\circ}{\mathsf{C}} - \mathsf{CH_2} - \mathsf{CH_2} \mathsf{CH_2} \mathsf{OH} \\ \mathsf{CH_3} \end{array}$$

661. Which one of the following compounds, each with two carbons will have the highest boiling point?

- a) C_2H_5OH
- b) $CH_3 0 CH_3$
- c) CH₃COOH
- d) CH₃CHO

662. The major product obtained in the reaction

c)
$$\leftarrow$$
 $C-NH_2$

663. In organic chemistry the element which is estimated by difference:

b) 0

d) H

664. In estimation of carbon and hydrogen, the saphnolite resin absorbs:

a) N_2

c) CO_2

d) CO_2 and H_2O_2

665. $(CH_2CO)_2O + RMgX \xrightarrow{H_2O}$?

- a) ROOC(CH₂)COOR b) RCOCH₂CH₂COOH
- c) RCOOR
- d) RCOOH

666. Which reaction is suitable for the preparation of α —chloroacetic acid?

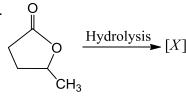
a) Hell-Volhard-Zelinsky reaction

b) Nef reaction

c) Stephen's reaction

d) Perkin condensation

667. A fractionating column is used in:


- a) Sublimation
- b) Distillation
- - c) Fractional distillation d) Chromatography

668. Ni formate is best used as catalyst in:

- a) Preservation of fruits
- b) Esterification
- c) Dyeing wool and cotton fabric
- d) Hydrogenation of oil
- 669. The term carboxylic is a contraction of two terms:
 - a) Carbonyl and amine

- b) Carbonyl and hydroxyl
- c) Hydroxyl and carboxyl
- d) Carboxyl and hydroxyl
- 670. Boiling point of a compound does not depend on:
 - a) Hydrogen bonding in the compound
 - b) Solubility of the compound in water
 - c) Size of the molecule
 - d) Polarity of the molecule

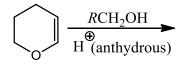
671.

What is "X"?

a)
$$CH_3 - CH_2 - CH_2 - CH_2 - COOH$$

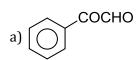
$$H_2C-CH_2-CH_2-COOH$$

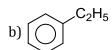
$$\begin{array}{ccc} \mathsf{CH_3-\!CH_2-\!CH-\!CH_2-\!COOH} \\ \mathsf{d)} & \mathsf{OH} \end{array}$$

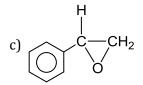

672. In the following reaction,

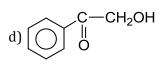
$$CH_3COCl \xrightarrow{BaSO_4} X$$

Identify *X* out of the following


- a) Acetaldehyde
- b) Propionaldehyde
- c) Acetone
- d) Acetic anhydride


- 673. Which acid is an optically active?
 - a) Propionic acid
 - b) 2-chloropropionic acid
 - c) 3-chloropropionic acid
 - d) Acetic acid
- 674. Two substances when separated out on the basis of their extent of adsorption by one material, the phenomenon is:
 - a) Chromatography
 - b) Paper chromatography
 - c) Sublimation
 - d) Steam distillation
- 675. Which of the following statement is correct?
 - o-nitrophenol can be separated from p-nitrophenol because of intermolecular hydrogen bonding in o-nitrophenol
 - b) $\frac{m}{n}$ -nitrophenol vcan be separated from p-nitrophenol because of intermolecular hydrogen bonding in o-nitrophenol
 - o-hydroxybenzoic acid can be separated from p-hydrobenzoic acid because of intramolecular hydrogen bonding in o-hydroxybenzoic acid
 - o-hydroxybenzoic acid can be separated from p-hydrobenzoic acid because of intermolecular hydrogen bonding in o-hydroxybenzoic acid
- 676. The major product of the following reaction is

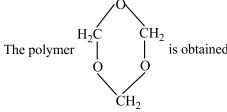



- a) A hemiacetal
- b) An acetal
- c) An ether
- d) An ester
- 677. The molecular formula of chlorinated acetone produced in the distillation with bleaching powder is:

	a) CH ₃ COCl	b) CCl ₃ COCl ₃	c) CH ₂ ClCOOH	d) CCl ₃ COCH ₃
678	. Which one of the followin	g contains acetic acid?		
	a) Vinegar	b) Molasses	c) Coal-tar	d) Butter
679	. The compound which on	reduction with LiAlH ₄ give	s two alcohols:	
	a) CH ₃ COOCH ₃	b) CH ₃ COOC ₂ H ₅	c) CH ₃ COCH ₃	d) CH ₃ CHO
680		, , ,	er green when treated with	· ·
	a) CH ₃ COCl	b) фОН	c) CH ₃ OH	d) PCl ₅
681	. The compound easily solu		-, - 3 -	-) - 3
	a) Stearic acid	b) Benzene	c) Aniline	d) Ethanol
682	. Carbon atom of carbonyl		-,	, , , , ,
-00	a) 1°	b) 2°	c) 3°	d) None of these
683	Identify D in the following	reaction		
000	. 10.0.10.1.	(i) CO ₂		
	CH≡CH + CH ₃ MgBr $\xrightarrow{CH_4}$	$A \xrightarrow{\text{(ii) } \text{H}_3\text{O}^+} B$ $ \text{HgSO}_4 $ $ \text{H}_2\text{SO}_4 $		
	$D^{-\frac{T_i}{\epsilon}}$	automerisation C		
	a) HOOC – CH ₂ – COOH		b) OHC – CH ₂ – COOH	
	c) OHC – CH ₂ – CHO		d) $HO - CH = CH - COOH$	I
684	-	separating benzoic acid fr		
	a) Dilute HCl	b) Dilute H ₂ SO ₄	c) 5% NaOH	d) 5% NaHCO ₃
685	. Acetone and acetophenor			3
	a) Burning the compound	=		
	b) Adding a saturated solu	-		
	c) HCN	3		
	d) All are correct			
686		ll produce only one produc	ct on reduction with LiAlH ₄	?
	a) CH ₃ OCOCH ₂ CH ₃	r · · · · · · · · · · · · · · · · · · ·	b) CH ₃ CH ₂ OCOCH ₂ CH ₃	
	c) CH ₃ CH ₂ OCOCH ₃		d) CH ₃ CH ₂ OCOCH ₂ CH ₂ CH	
687	. Main product of the react	ion .	., . 3 - 2 2 - 2 -	3
	$CH_3CONH_2 + HNO_2 \rightarrow$			
	a) CH ₃ COOH	b) CH ₃ CH ₂ NH ₂	c) CH ₃ NH ₂	d) CH ₃ COONH ₄
688	· ·		nyl acetate interact to form	
	process is known as:			,
	•	b) Claisen condensation	c) Polymerization	d) None of these
689			ich of the following compou	•
	a) CH ₃ COOH	b) CH ₃ CHO	c) CH ₃ COCH ₃	d) All of these
690	. The main source of organ	· · ·	o) anguoung	u) 1 01 01.000
	a) Coal-tar	b) Petroleum	c) Both (a) and (b)	d) None of these
691	. The strongest acid is:	5) 1 001 01001111	o) 2001 (u) unu (s)	
0,1	a) CH ₂ FCOOH	b) CH ₂ ClCOOH	c) CHCl ₂ COOH	d) CHF ₂ COOH
692	= = = = = = = = = = = = = = = = = = =		olysis of ethyl benzoate by	=
0, 2	NaOH solution?	g is the incommon of hy ar	ory or or cony i bonzouce by	remaining with an riqu
	a) Acyl oxygen bond cleav	vage, unimolecular	b) Acyl oxygen bond cleav	age, bimolecular
	c) Alkyl oxygen bond clea		d) Alkyl oxygen bond clea	=
693		$\xrightarrow{OH^-}$ [Y]. Here Y is		5 ·

- 694. Formaldehyde can be distinguished from acetaldehyde by:
 - a) Fehling's solution
- b) Schiff's reagent
- c) Ammonia
- d) Ammoniacal AgNO₃
- 695. 20 mL of CH_4 is burnt with 60 mL of O_2 . If all measurements are made at the same P and T, what is the volume of unreacted oxygen?
 - a) 10 mL
- b) 20 mL
- c) 30 mL
- d) 40 mL
- 696. The aldol condensation of CH₃ CHO results in the formation of

$$CH_3 - C - CH - CH_3$$
a) || |

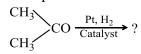

$$CH_3 - CH - CH_2 - CH$$

b) | ||

$$CH_3 - CH_2 - CH - CH$$

d)
$$CH_3 - CH_2OH + CH_3OH$$

- 697. Oxalic acid may be distinguished from tartaric acid by:
 - a) NaHCO₃
 - b) Ammoniacal silver nitrate
 - c) Litmus paper
 - d) Phenolphthalein


698.

When HCHO is allowed to stand. It is a white solid. The polymer is:

- a) Trioxane
- b) Formose
- c) Para formaldehyde
- d) Metaldehyde

- 699. Aldehydes are produced in atmosphere by:
 - a) Oxidation of secondary alcohols
 - b) Reduction of alkenes
 - c) Reaction of oxygen atoms with hydrocarbons
 - d) Reaction of oxygen atoms with O₃
- 700. Main product of the reaction is,

- a) $CH_3COOH + H_2$
- b) CH₃CH₂COOH
- c) CH₃CH(OH)CH₃
- d) CH₃CH₂OH

- 701. Which is not an organic compound?
 - a) Hexane
- b) Urea

- c) Spirit
- d) Ammonium cyanate

- 702. In organic compound phosphorus is estimated as:
 - a) Magnesium pyrophosphate Mg₂P₂O₇
 - b) H₃PO₄
 - c) $Mg_3(PO_4)_2$
 - d) P_2O_5
- 703. Wolff-Kishner reduction, reduces
 - a) -COOH group
- b) $-C \equiv C \text{group}$
- c) -CHO group
- d) -0 group

- 704. *R*Mg*X* on reaction with O₂ followed by hydrolysis gives:
 - a) RH

- b) RCOOH
- c) ROR

d) ROH

705. Aldehyde with NH₂. NH₂ forms

a) Hydrazones 706. Steam distillation is a b	b) Aniline etter method of purification	c) Nitrobenzene n forcompounds.	d) None of these
a) Liquids	b) Steam volatile	c) Non-volatile	d) Miscible with water
707. On mixing ethyl acetate	with aqueous sodium chlo	ride, the composition of tl	ne resultant solution is
a) CH ₃ COOC ₂ H ₅ + NaC]	b) $CH_3COONa + C_2H_5O$	ЭH
c) $CH_3COCl + C_2H_5OH$	+ NaOH	d) $CH_3Cl + C_2H_5COON$	a
708. Liquid benzene burns i	n oxygen according to $2C_6$ I	$H_6 + 150_2 \rightarrow 1200_2 (g)$	$+6H_2O$ (g). How many litre of
O ₂ at STP are needed to	complete the combustion	of 39 g of liquid benzene?	
a) 11.2 litre	b) 22.4 litre	c) 84 litre	d) 74 litre
709. The final product of the	following sequence of reac	ction is	
$ \begin{array}{c} \text{CH}_2 \\ \text{CH}_2 \end{array} \xrightarrow{\text{Br}_2} A \xrightarrow{\text{KCN}} $	$B \xrightarrow{\mathrm{H}^+/\mathrm{H}_2\mathrm{O}} C$		
-		ÇH₂−COOH	CH2-CN
CH ₂ -COOH a) CH ₂ -COOH	b) CH ₋ —Br	CH ₂ -COOH c) CH ₂ -CN	CH_2 – CN d) CH_2 – CN
2 0112 00011	⁵ Ol 12 Di	2 OH2 OH	5 6112 614
710. The product obtained v	vhen		
0			
OH is oxidized	l with HIO ₄	^	^
CHO	b) COOH	COOH	d) CHO
a) CHO	CHO	c) COOH	^{α)} CH₂OH
711. Identify Z in the series,			
$CH_3CHO \xrightarrow{MnO_4} X \xrightarrow{S}$	$Y \xrightarrow{\text{CH}_3\text{COONa}} Z$:		
a) CH ₃ · CO · CH ₂ COONa	a		
b) $(CH_3CO)_2O$			
c) $CH_2Cl \cdot CO \cdot O \cdot COCH$			
d) $CHCl_2CO \cdot O \cdot COCH_3$			
712. When an acyl chloride i			
a) ester	b) Anhydride	c) Alkene	d) Aldehyde
713. Which produces NH ₃ or			
a) Ethyl amine	b) Dimethyl amine	c) Acetamide	d) Aniline
714. The IUPAC name of cro			
a) Propenal	b) But-2-en-l-al	c) Butan-2-en-l-al	d) None of these
715. The elimination of CO_2	<u>-</u>		
a) Hydration	b) Dehydration	c) Decarboxylation	d) Carboxylation
716. Oxidation product of 'X	' (molecular formula C ₃ H ₆ 0	O) is 'y'(molecular formula	a $C_3H_6O_2$). The compound 'y' is
	1) [) D	N.D. () 1
a) Acetic acid	b) Formic acid	c) Propionic acid	d) Butyric acid
717. HVZ reaction leads to the	ne formation of:		
a) Acetic acid			
b) Formic acid	• 1		
c) Chlorosubstituted ac	cids		
d) Oxalic acid			
718. Which of the following			J) All - Call
a) COOH—COOH	b) Tartaric acid	c) Formic acid	d) All of these
719. Which part of —COOH	= =		
a) Only H-atom	b) Only —OH part	c) Both (a) and (b)	d) None of these
720. HCHO and HCOOH are	uisunguisnea by treating w	IUII:	

a) Tollen's reagent b) NaHCO ₃	c) Fehling's solution	d) Benedict solution
721. Formula of diacetone alcohol is:	-	-
a) $(CH_3)_2C(OH)CH_2COCH_3$		
b) CH ₃ CHOHCH ₂ COCH ₃		
c) (CH ₃) ₂ CHOHCH ₂ COCH ₃		
d) None of the above		
722. Mercuric chloride is reduced to mercurous chlorid	e by:	
a) Acetic acid b) Carbon tetrachloride	c) Formic acid	d) Ammonia
723. An organic compound containing C,H and N have t	he percentage 40, 13.33 and	46.67 respectively. Its
empirical formula may be:		
a) C_2H_7N b) $C_2H_7N_2$	c) CH ₄ N	d) CH ₅ N
724. Pick up the correct statement from the following:	, .	, ,
a) Secondary alcohols are oxidized to ketones in w	hich the number of carbon a	toms remains unchanged
b) TEL is a good anti-knock compound		G
c) Both aldehydes and ketones use sp^2 -hybrid car	oon atoms for their formatio	n
d) All of the above		
725. Name the end product in the following series of re-	actions,	
$CH_3COOH \xrightarrow{NH_3} A \xrightarrow{\Delta} B \xrightarrow{P_2O_5} C:$	•	
	a) Aastanituila	d) Ammonium acetato
a) CH ₄ b) CH ₃ OH	c) Acetonitrile	d) Ammonium acetate
726. Certain unripe fruits like green apples and plums of		d) Malia acid
a) H ₂ SO ₄ b) HCl	c) CH ₃ COOH	d) Malic acid
727.		
The reaction OH COOH		
Br		
Di .		
is an example of:		
is an example of: a) Wolf rearrangement		
a) Wolf rearrangement		
a) Wolf rearrangementb) Favorskii rearrangement		
a) Wolf rearrangementb) Favorskii rearrangementc) Steven's rearrangement		
a) Wolf rearrangementb) Favorskii rearrangementc) Steven's rearrangementd) Wagner-Meerwin rearrangement		
a) Wolf rearrangementb) Favorskii rearrangementc) Steven's rearrangementd) Wagner-Meerwin rearrangement728. Which of the following is least acidic?	c) C-H-OH	q) СІСН°СООН
 a) Wolf rearrangement b) Favorskii rearrangement c) Steven's rearrangement d) Wagner-Meerwin rearrangement 728. Which of the following is least acidic? a) C₂H₅OH b) CH₃COOH 	c) C ₆ H ₅ OH	d) ClCH ₂ COOH
 a) Wolf rearrangement b) Favorskii rearrangement c) Steven's rearrangement d) Wagner-Meerwin rearrangement 728. Which of the following is least acidic? a) C₂H₅OH b) CH₃COOH 729. For a compound to be purified by steam distillation 		d) ClCH ₂ COOH
 a) Wolf rearrangement b) Favorskii rearrangement c) Steven's rearrangement d) Wagner-Meerwin rearrangement 728. Which of the following is least acidic? a) C₂H₅OH b) CH₃COOH 729. For a compound to be purified by steam distillation a) Impurities must be non-volatile 	n:	d) CICH ₂ COOH
 a) Wolf rearrangement b) Favorskii rearrangement c) Steven's rearrangement d) Wagner-Meerwin rearrangement 728. Which of the following is least acidic? a) C₂H₅OH b) CH₃COOH 729. For a compound to be purified by steam distillation a) Impurities must be non-volatile b) The liquid must be completely immiscible with 	n: water	d) ClCH ₂ COOH
 a) Wolf rearrangement b) Favorskii rearrangement c) Steven's rearrangement d) Wagner-Meerwin rearrangement 728. Which of the following is least acidic? a) C₂H₅OH b) CH₃COOH 729. For a compound to be purified by steam distillation a) Impurities must be non-volatile b) The liquid must be completely immiscible with c) The vapour pressure of the liquid must be suffice 	n: water	d) CICH ₂ COOH
 a) Wolf rearrangement b) Favorskii rearrangement c) Steven's rearrangement d) Wagner-Meerwin rearrangement 728. Which of the following is least acidic? a) C₂H₅OH b) CH₃COOH 729. For a compound to be purified by steam distillation a) Impurities must be non-volatile b) The liquid must be completely immiscible with c) The vapour pressure of the liquid must be sufficed d) All of the above are correct 	n: water iently high	d) ClCH ₂ COOH
 a) Wolf rearrangement b) Favorskii rearrangement c) Steven's rearrangement d) Wagner-Meerwin rearrangement 728. Which of the following is least acidic? a) C₂H₅OH b) CH₃COOH 729. For a compound to be purified by steam distillation a) Impurities must be non-volatile b) The liquid must be completely immiscible with c) The vapour pressure of the liquid must be sufficed All of the above are correct 730. Acetone + mercaptan HCI / Y; Identify Y' 	n: water iently high in the above sequence	
 a) Wolf rearrangement b) Favorskii rearrangement c) Steven's rearrangement d) Wagner-Meerwin rearrangement 728. Which of the following is least acidic? a) C₂H₅OH b) CH₃COOH 729. For a compound to be purified by steam distillation a) Impurities must be non-volatile b) The liquid must be completely immiscible with c) The vapour pressure of the liquid must be sufficed) All of the above are correct 730. Acetone + mercaptan → HCI / Y; Identify Y' a) Sulphonal b) Trional 	n: water iently high	d) ClCH ₂ COOH d) None of these
 a) Wolf rearrangement b) Favorskii rearrangement c) Steven's rearrangement d) Wagner-Meerwin rearrangement 728. Which of the following is least acidic? a) C₂H₅OH b) CH₃COOH 729. For a compound to be purified by steam distillation a) Impurities must be non-volatile b) The liquid must be completely immiscible with c) The vapour pressure of the liquid must be sufficed) All of the above are correct 730. Acetone + mercaptan HCI / Acetone + Mer	n: water iently high in the above sequence c) Tetronal	d) None of these
 a) Wolf rearrangement b) Favorskii rearrangement c) Steven's rearrangement d) Wagner-Meerwin rearrangement 728. Which of the following is least acidic? a) C₂H₅OH b) CH₃COOH 729. For a compound to be purified by steam distillation a) Impurities must be non-volatile b) The liquid must be completely immiscible with c) The vapour pressure of the liquid must be sufficed) All of the above are correct 730. Acetone + mercaptan → HCI / M → Y; Identify Y' a) Sulphonal b) Trional 731. Amides are: a) Amphoteric b) Acidic 	n: water iently high in the above sequence c) Tetronal c) Basic	
 a) Wolf rearrangement b) Favorskii rearrangement c) Steven's rearrangement d) Wagner-Meerwin rearrangement 728. Which of the following is least acidic? a) C₂H₅OH b) CH₃COOH 729. For a compound to be purified by steam distillation a) Impurities must be non-volatile b) The liquid must be completely immiscible with c) The vapour pressure of the liquid must be sufficed) All of the above are correct 730. Acetone + mercaptan HCI / M → Y; Identify Y' a) Sulphonal b) Trional 731. Amides are: a) Amphoteric b) Acidic 732. Silica gel is used for keeping away the moisture be 	n: water iently high in the above sequence c) Tetronal c) Basic cause it:	d) None of these d) Neutral
a) Wolf rearrangement b) Favorskii rearrangement c) Steven's rearrangement d) Wagner-Meerwin rearrangement 728. Which of the following is least acidic? a) C₂H₅OH b) CH₃COOH 729. For a compound to be purified by steam distillation a) Impurities must be non-volatile b) The liquid must be completely immiscible with c) The vapour pressure of the liquid must be suffice d) All of the above are correct 730. Acetone + mercaptan → X → Y; Identify Y' a) Sulphonal b) Trional 731. Amides are: a) Amphoteric b) Acidic 732. Silica gel is used for keeping away the moisture be a) Absorbs H₂O b) Adsorbs H₂O	n: water iently high in the above sequence c) Tetronal c) Basic	d) None of these
a) Wolf rearrangement b) Favorskii rearrangement c) Steven's rearrangement d) Wagner-Meerwin rearrangement 728. Which of the following is least acidic? a) C₂H₅OH b) CH₃COOH 729. For a compound to be purified by steam distillation a) Impurities must be non-volatile b) The liquid must be completely immiscible with c) The vapour pressure of the liquid must be sufficed) All of the above are correct 730. Acetone + mercaptan HCI / M → Y; Identify Y' a) Sulphonal b) Trional 731. Amides are: a) Amphoteric b) Acidic 732. Silica gel is used for keeping away the moisture be a) Absorbs H₂O b) Adsorbs H₂O 733. Consider the acidity of the carboxylic acids	water viently high in the above sequence c) Tetronal c) Basic cause it: c) Reacts with H ₂ O	d) None of these d) Neutral
a) Wolf rearrangement b) Favorskii rearrangement c) Steven's rearrangement d) Wagner-Meerwin rearrangement 728. Which of the following is least acidic? a) C₂H₅OH b) CH₃COOH 729. For a compound to be purified by steam distillation a) Impurities must be non-volatile b) The liquid must be completely immiscible with c) The vapour pressure of the liquid must be suffice d) All of the above are correct 730. Acetone + mercaptan → X → Y; Identify Y' a) Sulphonal b) Trional 731. Amides are: a) Amphoteric b) Acidic 732. Silica gel is used for keeping away the moisture be a) Absorbs H₂O b) Adsorbs H₂O 733. Consider the acidity of the carboxylic acids (i) PhCOOH (ii) o − NO₂C₀H₄COO	water viently high in the above sequence c) Tetronal c) Basic cause it: c) Reacts with H ₂ O	d) None of these d) Neutral
a) Wolf rearrangement b) Favorskii rearrangement c) Steven's rearrangement d) Wagner-Meerwin rearrangement 728. Which of the following is least acidic? a) C₂H₅OH b) CH₃COOH 729. For a compound to be purified by steam distillation a) Impurities must be non-volatile b) The liquid must be completely immiscible with c) The vapour pressure of the liquid must be sufficed All of the above are correct 730. Acetone + mercaptan HCl X → Y; Identify Y' a) Sulphonal b) Trional 731. Amides are: a) Amphoteric b) Acidic 732. Silica gel is used for keeping away the moisture be a) Absorbs H₂O b) Adsorbs H₂O 733. Consider the acidity of the carboxylic acids (i) PhCOOH (ii) p − NO₂C₀H₄COOH (iii) m − NO₂C₀H₄COOH	water viently high in the above sequence c) Tetronal c) Basic cause it: c) Reacts with H ₂ O	d) None of these d) Neutral
a) Wolf rearrangement b) Favorskii rearrangement c) Steven's rearrangement d) Wagner-Meerwin rearrangement 728. Which of the following is least acidic? a) C₂H₅OH b) CH₃COOH 729. For a compound to be purified by steam distillation a) Impurities must be non-volatile b) The liquid must be completely immiscible with c) The vapour pressure of the liquid must be sufficed d) All of the above are correct 730. Acetone + mercaptan → HCl / A ← [0] / Y; Identify Y' a) Sulphonal b) Trional 731. Amides are: a) Amphoteric b) Acidic 732. Silica gel is used for keeping away the moisture be a) Absorbs H₂O b) Adsorbs H₂O 733. Consider the acidity of the carboxylic acids (i) PhCOOH (ii) p − NO₂C₆H₄COOH (iii) p − NO₂C₆H₄COOH (iv) m − NO₂C₆H₄COOH	water viently high in the above sequence c) Tetronal c) Basic cause it: c) Reacts with H ₂ O OH COOH	d) None of thesed) Neutrald) None of these
a) Wolf rearrangement b) Favorskii rearrangement c) Steven's rearrangement d) Wagner-Meerwin rearrangement 728. Which of the following is least acidic? a) C₂H₅OH b) CH₃COOH 729. For a compound to be purified by steam distillation a) Impurities must be non-volatile b) The liquid must be completely immiscible with c) The vapour pressure of the liquid must be sufficed d) All of the above are correct 730. Acetone + mercaptan HCI X → Y; Identify Y' a) Sulphonal b) Trional 731. Amides are: a) Amphoteric b) Acidic 732. Silica gel is used for keeping away the moisture be a) Absorbs H₂O b) Adsorbs H₂O 733. Consider the acidity of the carboxylic acids (i) PhCOOH (ii) p − NO₂C₀H₄COOH (iii) p − NO₂C₀H₄COOH (iii) p − NO₂C₀H₄COOH (iv) m − NO₂C₀H₄COOH Which of the following order is correct? a) I > II > III > IV b) II > IV > III > I	water viently high in the above sequence c) Tetronal c) Basic cause it: c) Reacts with H ₂ O OH COOH c) II > IV > IN > III	d) None of these d) Neutral
a) Wolf rearrangement b) Favorskii rearrangement c) Steven's rearrangement d) Wagner-Meerwin rearrangement 728. Which of the following is least acidic? a) C₂H₅OH b) CH₃COOH 729. For a compound to be purified by steam distillation a) Impurities must be non-volatile b) The liquid must be completely immiscible with c) The vapour pressure of the liquid must be sufficed d) All of the above are correct 730. Acetone + mercaptan → HCl / A ← [0] / Y; Identify Y' a) Sulphonal b) Trional 731. Amides are: a) Amphoteric b) Acidic 732. Silica gel is used for keeping away the moisture be a) Absorbs H₂O b) Adsorbs H₂O 733. Consider the acidity of the carboxylic acids (i) PhCOOH (ii) p − NO₂C₆H₄COOH (iii) p − NO₂C₆H₄COOH (iv) m − NO₂C₆H₄COOH	water viently high in the above sequence c) Tetronal c) Basic cause it: c) Reacts with H ₂ O OH COOH c) II > IV > IN > III	d) None of thesed) Neutrald) None of these

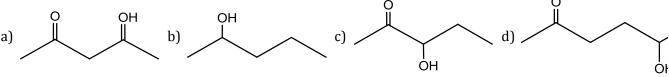
735. A bottle containing two immiscible		= =	_		
a) Fractionating column b) Separ	,	Fractional distillation	d) Steam distillation		
736. Which of the following is obtained by the oxidation of propional dehyde?					
a) Acetic acid					
b) Formic and acetic acid					
c) Propionic acid					
d) n -propyl alcohol					
737. Acetaldehyde and acetone differ in	their reaction with:				
a) NaHSO ₃ b) NH ₃	c) I	PCl ₅	d) Phenyl hydrazine		
738. Which of the following reactions ca	n be used to change b	enzaldehyde to cinnam	ic acid?		
a) Perkin's reaction	b) I	Knoevenagel reaction			
c) Reformatsky reaction and keton	es d) F	Benzoin condensation			
739. In the estimation of nitrogen by Du	ma's method 1.18 g of	f an organic compound	gave 224 mL of N ₂ at NTP		
The percentage of nitrogen in the co	ompound is about:				
a) 20.0 b) 11.8	c) 4	47.5	d) 23.7		
740. p-cresol reacts with chloroform in a	ılkaline medium to giv	ve the compound A whi	ich adds hydrogen cyanide		
to form the compound B . The latter	on acidic hydrolysis	gives chiral carboxylic	acid. The structure of the		
carboxylic acid is					
ÇH₃		ÇH₃			
		CH₂COOH			
a) [b)				
	0) [
CH₂COOH		Ĭ			
ÓН		ОН			
CH₃ I		CH ₃			
	1	CH(OH).COO	4		
c) [d)				
	- (
T CH(OH).COOH HO		 OH			
741. Butan-2-one can be converted to pr	onanoic acid by:	011			
_	= =	NaOH/I ₂ /H ⁺	d) NaOH/NaI/H ⁺		
742. By passing water gas $(CO + H_2)$ thr	•				
a) HCHO b) HCOO	-	CH ₃ CHO	d) CO_2 and H_2O		
743. An organic compound $C_5H_{10}O$ form	•	5			
Kishner reaction to give isopentane		Sives positive lodoloi ili	test and andergoes won		
a) Pentanol b) Penta		Pentan-3-one	d) 3-methylbutan-2-one		
744. Consider the reaction:	11 2 0110 - 6,11	circuit 5 one	a) o memyibacan 2 one		
$RCHO + NH_2NH_2 \rightarrow RCH = N-NH_2$					
What sort of reaction is it?					
a) Electrophilic addition – eliminati	on reaction				
b) Free radical addition – elimination					
c) Electrophilic substitution – elimi					
d) Nucleophilic addition – eliminati					
745. Lindlar's catalyst is:					
_	$CaCO_3 + BaSO_4$ c) H	Hg + BaSO₄	d) Ni + ZnSO ₄		
746. In a Cannizaro's reaction, the comb		= -	.,		
a) $HCHO + HCHO$	•		ĊНО		
b) C ₆ H ₅ (CHO + HCHO c) (CH ₃ CHO + HCHO	d) CHO		
747. When propanone reacts with chlori	ne. it forms:		0.10		
a) Trichloro propanone	,				

	b) Hexachloro propanonec) Trichloro ethanold) Trichloro propanal				
748.		m benzoate is obtained by t	the action of sodiu	m hydroxide	e on benzaldehyde. This
	reaction is known as				
	a) Perkin's reaction		b) Cannizaro's re		
	c) Sandmeyer's reaction		d) Claisen conde	nsation	
749.		the compound isomeric wi		•	
	a) CH ₃ CH ₂ CHO	b) CH ₃ CHO	c) CH ₃ CH ₂ OH	_) None of these
750.		ntains, C, H and S. When C a	and H are to be esti	imated the d	combustion tube at the
	exit should contain a:	h) Cilvon aninal	a) Dotagajum ahl	orido d') I and abromata
751	a) Copper spiral In the preparation of an e	b) Silver spiral ester the commonly used de	c) Potassium chl) Lead chromate
/31.	a) Phosphorus pentoxide	-	enyurating agent is).	
	b) Anhydrous calcium ch				
	c) Anhydrous aluminium				
	d) Concentrated sulphuri				
752.	•	ecular formulaC ₂ Cl ₃ OH.It re	educes Fehling's so	olution and o	on oxidation, gives a
		can be obtained by the act			
	a) Chloroform	•	b) Chloral	-	
	c) Methyl chloride		d) Monochloroac	cetic acid	
753.	In glycine the basic group	is:			
	a) —NH ₂	b) $-NH_3^{\oplus}$	c) —COOH	d)) —000⊖
754.	3-hydroxybutanal is form	ned when (X) reacts with (X)	Y)in dilute (<i>Z</i>) solu	tion. What a	are X, Y and Z?
	X Y	Z			
	a) CH_3CHO , $(CH_3)_2CO$, NaOH	b) CH ₃ CHO,	CH ₃ CHO,	NaCl
	c) $(CH_3)_2CO$, $(CH_3)_2CO$	CO, HCl	d) CH ₃ CHO,	CH ₃ CHO,	NaOH
755.	Which of the following ha	ive high melting points?			
	a) Acids containing even				
	b) Acids containing odd n	number of carbon atoms			
	c) Both (a) and (b)				
	d) None of the above				
756.	$A \xrightarrow{\text{HCN}} B \xrightarrow{\text{H}_3\text{O}^+} \text{lactic ac}$	cid. Identify A			
	a) HCHO	b) CH ₃ CHO	c) C ₆ H ₅ CHO	d)) CH ₃ COCH ₃
757.	Predict the product,				
	O				
	(i) MeMgBr				
	(i) MeMgBr / (ii) H3O+				
	(11) 1130				
	0	Me、 ,OH	ÒН		O
		X			Me
	a) [b) [c) (d)	
	Me				
	IVIC		Me		

- 758. The reverse of esterification is known as:
 - a) Acidolysis

- d) Neutralization

- b) trans-esterification
- c) Hydrolysis
- 759. Identify the reaction which is used to obtain β -hydroxy ketone.
 - a) Condensation reaction


b) Aldol condensation

c) Cross aldol condensation

- d) Cannizaro reaction
- 760. 0.14 g of an acid required 12.5 mL of 0.1 N NaOH for complete neutralization. The equivalent weight of the

acid is: a) 45 b) 56 c) 63 d) 112 761. Which of the following contains pungent odour? b) Higher aldehydes c) Lower aldehydes d) None of these 762. Which of the following cannot reduce Fehling solution? a) HCOOH b) H₃CCOOH c) HCHO d) H₃CCHO 763. Which of the following on treatment with 50% aq. NaOH gives alcohol and acid? b) CH₃CH₂CH₂CHO c) CH₃COCH₃ a) C₆H₅CHO d) C₆H₅CH₂CHO 764. The reaction $C_6H_5CHO + CH_3CHO \rightarrow C_6H_5CH=CHCHO + H_2O$ is called: a) Benzoin condensation b) Claisen condensation c) Aldol condensation d) Condensation 765. Which of the following does not undergo benzoin condensation? a) Benzene carbaldehyde b) p-toluene carbaldehyde c) Phenylethanal d) 4-methoxyhbenzaldehyde 766. When acetaldehyde is heated with Fehling solution, a red precipitate is formed. Which of the following is that? a) Cu₂O b) Cu d) CuSO₄ c) CuO 767. Benzaldehyde reacts with ammonia to form a) Benzaldehyde ammonia b) Urotropine c) Hydrobenzamide d) Ammonium chloride 768. The reactant (X) in the reaction, CH₃COONa Cinnamic acid is COOH CHO CH₂OH 769. Ketones are less reactive than aldehydes because: a) C=0 group is less polar in ketones b) Of electromeric effect c) Of steric hindrance to the attacking reagent d) None of the above 770. Dialkyl cadmium reacts with a compound to form a ketone. The compound is: b) Acid chloride a) Acid c) Ester d) CO 771. The reaction of 1 mole each of p-hydroxyacetophenone and methyl magnesium iodide will give a) CH₄ + IMgO COCH₃ 772. Which of the following has the most acidic hydrogen? a) 3-hexanone b) 2,4-hexanedione c) 2,5-hexanedione d) 2,3-hexanedione

773. Which of the following will be most readily dehydrated under acidic conditions?

774. Sodium salt of formic acid on strong heating followed by acid hydrolysis yields:

b) HCOOH

c) COOH—COOH

d) CH₃CHO

775. $RCOOH \stackrel{H_2O^+}{\longleftarrow} X \stackrel{[H]}{\longrightarrow} RCH_2NH_2$

Identify the *X* in the above sequence

- a) Alkane nitrile
- b) Alkyl isonitrile
- c) Aldoxime
- d) Alkyl nitrile

776. Which of the following acids has the smallest dissociation constant?

a) CH₃CHFCOOH

- b) FCH₂ CH₂ COOH
- c) BrCH₂CH₂COOH
- d) CH₃CHBrCOOH

777. Salol (phenyl salicylate) is used as an:

- a) Insecticide
- b) Analgesic
- c) Ointment
- d) Intestinal antiseptic

778. Aldehydes and ketones will not form crystalline derivatives with:

- a) NaHSO₃
- b) Phenyl hydrazine
- c) Semicarbazide hydrochloride
- d) Dihydrogen sodium phosphate
- 779. Pyruvic acid is obtained by
 - a) Oxidation of acetaldehyde cyanohydrin
- b) Oxidation of formaldehyde cyanohydrin
- c) Oxidation of acetone cyanohydrin
- d) None of the above

780. A compound (A) (molecular formula – C_8H_8O) on treatment with $NH_2OH \cdot HCl$ gives B and C rearrange to give D and E respective on treatment with acid. B, C, D and E are all isomers of molecular formula (C_8H_9NO) . When D is boiled with the alcoholic KOH, an oil F (C_6H_7N) separates out. F reacts rapidly with CH₃COCl to give back D. On the other hand, E on boiling with alkali followed by acidification gives a white solid $G(C_7H_6O_2)$. Identify A

781. On mixing ethyl acetate with aqueous sodium chloride, the composition of the resultant solution is

a) $CH_3COOC_2H_5 + NaCl$

b) $C_3COONa + C_2H_5OH$

c) $CH_3COCl + C_2H_5OH + NaOH$

d) $CH_3Cl + C_2H_5COONa$

782.

Identify the reactant.

a) H_2O

- b) HCHO
- c) CO

d) CH₃CHO

783. Carbon atom of carbonyl gp. in ketone is of:

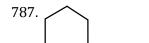
b) 2°

c) 3°

d) None of these

784. Formic acid is not a representative member of the carboxylic acids because:

- a) It is the first member of the series
- b) It does not contain alkyl group
- c) It is a gas
- d) It contains an aldehydic group while the other acids do not have the aldehydic group


785. $CH_3CHO + H_2NOH \rightarrow CH_3 - CH = N - OH$ The above reaction occurs at:

- a) pH = 1
- b) pH = 4.5
- c) Any value of pH
- d) pH = 12

786. β-hydroxy butyraldehyde is an example of:

- a) Aldol
- b) Diol

- c) Hemiacetal
- d) Acetal

a) An ester

b) An anhydride

c) Acetal

d) Hemiacetal

788. Hydrogenation of C₆H₅CHOHCOOH over Rh — Al₂O₃ catalyst in methanol gives:

a) C₆H₅CH₂COOH

b) C₆H₁₁CHOHCOOH

c) C₆H₅CHOHCH₂OH

d) $C_6H_{11}CH_2COOH$

789. CH₃COCH₃ and CH₃CH₂CHO can be distinguished by

a) FeCl₃

b) Tollen's reagent

c) NaHSO₃

d) 2, 4 - DNP

790. The molecular formula of methanoic acid and propanoic acid differs by:

a) C_2H_4

b) CH₃

c) CH₂

d) CH₂CH₂CH₃

791. The most suitable method of separation of 1: 1 mixture of *ortho* and *para* nitrophenols is:

a) Distillation

b) Crystallization

c) Sublimation

d) Chromatography

792. Identify the product *Z* in the series,

$$\mathsf{CH_3CN} \xrightarrow{\mathsf{Na/C_2H_5OH}} X \xrightarrow{\mathsf{HNO_2}} Y \xrightarrow{[\mathsf{O}]} Z \colon$$

a) CH₃CHO

b) CH₃CH₂CONH₂

c) CH₃COOH

d) CH₃CH₂NHOH

793. Which of the following is not true about the urea?

a) It can be stored easily

b) It should be applied at sowing time

c) It cannot be used for all types of crops and soils

d) The cost of production of urea is cheap

794. In the reaction

$$H_3C$$
 NH_2
 (ii)
 $NaOH/Br_2$
 CI

The structure of the product T is

$$\begin{array}{c} H_3C \longrightarrow \begin{array}{c} O & O \\ O - C & \\ \end{array} \\ H_3C \longrightarrow \begin{array}{c} NH \\ C & \\ \end{array} \end{array}$$

795. The term hypnone is used for:

a) Benzophenone

c)

b) Acetophenone

c) Acetaldehyde

d) None of these

796. The end product of CH₃COOH $\xrightarrow{\text{CaCO}_3}$ $A \xrightarrow{\text{Heat}} B \xrightarrow{\text{NH}_2\text{OH}} C$

a) Acetaldehyde

b) Acetoxime

c) Formaldehydeoxime

d) Methyl cyanide

797. The boiling points of aldehydes and ketones lie in between alkanes and alcohols of comparable masses because:

a) Alkanes are polar

b) Aldehydes and ketones are non-polar

Alkanes are non-polar and aldehydes and ketones contain polar

C) C=O group and lower alcohols have H-bonding.

- d) Alkanes are held together by weak van der Waals'
 - forces (being non-polar), aldehydes and ketones contain
 - polar C = 0 group and held together by strong

dipole-dipole attraction and lower alcohols have

H-bonding, which is stronger than

dipole-dipole attraction

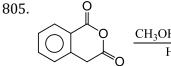
- 798. A compound (60 g) on analysis gave C=24g, H=4g and O=32g. Its empirical formula is:
 - a) $C_2H_4O_2$
- b) C_2H_2O
- c) CH_2O_2
- d) CH_2O

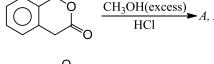
- 799. Alkaline hydrolysis of esters is......than acid hydrolysis.
 - a) Faster
- b) Slower
- c) Equal
- d) None
- 800. Main product obtained from the reaction of ammonia and formaldehyde is
 - a) Formic acid
- b) Methylamine
- c) Methanol
- d) Urotropine

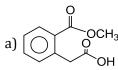
- 801. The gas evolved on heating alkali formate with soda-lime is
 - a) CO

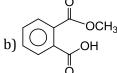
b) CO₂

- c) Hydrogen
- d) Water vapour

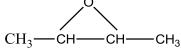

- 802. 2, 4-dichlorophenoxy acetic acid is used as
 - a) Fungicide
- b) Insecticide
- c) Herbicide
- d) Moth repellant
- 803. Benzaldehyde undergoes Claisen's condensation with another aldehyde to give cinnamaldehyde. The aldehyde is:
 - a) Formaldehyde
- b) Acetaldehyde
- c) Crotonaldehyde
- d) Propanaldehyde
- 804. An organic compound *X* gives a red precipitate on heating with Fehling's solution. Which one of the following reactions yields *X* as a major product?


a) HCHO
$$\xrightarrow{(i)CH_3MgI}$$


b)
$$C_2H_5Br + AgOH \xrightarrow{\Delta}$$


c)
$$2C_2H_5Br + Ag_2O \xrightarrow{\Delta}$$

d)
$$C_2H_2 + H_2O \xrightarrow{40\% H_2SO_4 \atop 1\% HgSO_4 \atop 60^{\circ}C}$$



- 806. The Cannizzaro's reaction is not given by:
 - a) Trimethylacetaldehyde
 - b) Acetaldehyde
 - c) Benzaldehyde
 - d) Formaldehyde
- 807. Which of the following represents the correct order of the activity in the given compounds?
 - $_{\rm a)}$ CH₃COOH > BrCH₂COOH > ClCH₂COOH $> FCH_2COOH$
- b) $FCH_2COOH > CH_3COOH > BrCH_2COOH$
- $BrCH_2COOH > ClCH_2COOH > FCH_2COOH$ > CH₃COOH

- 808. Ellution is the process for:
 - a) Crystallization of compound
 - b) Separation of compound
 - c) Extraction of compound
 - d) Distillation of compound
- 809. Pyroligneous acid contains:

- a) 2% acetic acid
- b) 50% acetic acid
- c) 10% acetic acid
- d) 20% acetic acid

810.

is the anhydride in

- a) 1, 2-butane diol
- b) 2, 2-butane diol
- c) 2, 3-butane diol
- d) 1, 1-butane diol

811. O O + NaOH ---

b) OH and $2CO_2$

812. Consider the following reaction;

$$CH_3Br + Mg \xrightarrow{Ether} A \xrightarrow{HCHO} B \xrightarrow{HOH} C$$
 compound C is:

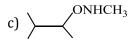
- a) Acetic acid
- b) Acetaldehyde
- c) Ethyl alcohol
- d) Formic acid

813. In the reaction sequence,

$$A \xrightarrow{\text{CH}_3\text{CH}_2\text{MgBr}} B \xrightarrow{\text{H}_3\text{O}} C_5\text{H}_{12}\text{O}$$

Compound 'A' is

- a) 1-propanol
- b) Propanal
- c) Ethanol
- d) 2-propanol


814. Identify *Z* in the sequence

$$CH_3COONH_4 \xrightarrow{\Delta} X \xrightarrow{P_2O_5} Y \xrightarrow{H_2O/H^+} Z$$

- a) CH₃CH₂CONH₂
- b) CH₃CN
- c) CH₃COOH
- d) $(CH_3CO)_2O$
- 815. The major organic product formed in the following reaction is:

$$\begin{array}{c} O \\ \hline \begin{array}{c} \text{(i) CH}_{3}\text{NH}_{2} \\ \hline \\ \text{(ii) LiAlH}_{4} \text{(iii) H}_{2}\text{O} \end{array} \end{array}$$

a)
$$\nearrow$$
 $\stackrel{H}{\sim}_{OH}$
OH

$$_{\text{d)}} \searrow_{\text{NCH}_{3}}$$

- 816. Compound 'A' (molecular formula C_3H_8O) is treated with acidified potassium dichromate to form a product 'B' (molecular formula C_3H_6O). 'B' forms a shining silver mirror on warming with ammoniacal silver nitrate. 'B' when treated with an aqueous solution of $H_2NCONHNH_2$. HCl and sodium acetate gives a product 'C'. Identify the structure of 'C'.
 - a) CH₃CH₂CH=NNHCONH₂

$$\begin{array}{c|c} CH_3-C=NNHCONH_2\\ b) & | \\ CH_3\\ CH_3-C=NCONHNH_2\\ c) & | \\ CH_3\end{array}$$

- d) CH₃CH₂CH=NCONHNH₂
- 817. Which of the following intermediate species is not formed in the reaction of acrylic acid with HBr to give β -bromopropionic acid?

$$(CH_2 = CH - COOH \xrightarrow{HBr} BrCH_2CH_2COOH)$$
?

a)
$$CH_2=CH-C \bigcirc OH$$

$$CH_2 = CH - C \bigcirc H$$

$$_{\mathrm{c})}$$
 $_{\mathrm{CH_2}}=\mathrm{CH-\overset{\Theta}{C}}\overset{\mathsf{OH}}{\overset{O}{\leftarrow}}$

$$_{\rm d)}^{\rm \Theta}$$
 CH₂-CH=C $^{\rm OH}$

- 818. The oxidation of benzyl chloride with lead nitrate gives
 - a) Benzaldehyde

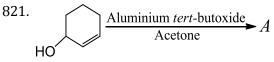
b) Benzyl alcohol

c) p-chloro benzaldehyde

d) Benzoic acid

819.
$$R$$

$$C = O \xrightarrow{HCN} (A) \xrightarrow{NH_3} (B) \xrightarrow{Hydrolysis} (C)$$


Compound (*C*) in above reaction is:

- a) α-hydroxy acid
- b) α-amino acid
- c) α-amino alkanol
- d) α-amino β-hydroxy acid
- 820. The conversion

O
$$CH_3-C-CH_2CH_2CO_2CH_3 \longrightarrow$$
OH
 $CH_3-CH-CH_2CH_2CH_2CH_3$

Can be effected using

- a) LiAlH₄ and then H⁺
- b) NaBH₄ and then H⁺ c) $H_2/Pt C$
- d) None of these

In the above reaction, A is

$$d)$$
 CH_3

822. The major product *H* of the given reaction sequence is:

$$CH_{3}-CH_{2}-CO-CH_{3} \xrightarrow{\Theta_{CN}} G \xrightarrow{95\%H_{2}SO_{4}} H$$

$$CH_{3}-CH=C-COOH$$
a)
$$CH_{3}$$

$$CH_{3}-CH=C-CN$$
b)
$$CH_{3}$$

$$OH$$

$$CH_{3}$$

$$OH$$

$$CH_{3}-CH_{2}-C-COOH$$

$$CH_{3}$$

$$CH_{3}-CH_{2}-C-COOH$$

$$CH_{3}$$

$$CH_{3}-CH=C-CO-NH_{2}$$

$$CH_{3}-CH=C-CO-NH_{2}$$

823. Which of the following compounds is not obtained when phthalic anhydride is treated with N₃H?

$$c$$
) NH $c=0$

- 824. Chlorine does not react with:
 - a) Methanal
- b) CH₃CHO
- c) Propanone
- d) C₆H₅CHO
- 825. An organic acid when heated strongly with P2O5, gave rise to a colourless gas which burns with a pale blue flame. The acid is:
 - a) Acetic acid
- b) Formic acid
- c) Formalin
- d) Benzoic acid

- 826. Bakelite polymer is formed by the polymerization of
 - a) Methanal and salicyaldehyde

b) Methanal and hydroxy benzene

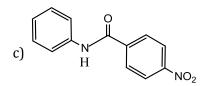
c) Ethanal and hydroxy benzene

- d) Ethanal and cinnamic acid
- 827. Propionic acid with Br₂ | P yields a dibromo product. Its structure would be:

- d) CH₂Br—CH₂—COBr
- 828. The difference between aldol condensation and Cannizzaro's reaction is that:
 - a) The former takes place in the presence of α -H-atom
 - b) The former takes place in the absence of α -H-atom
 - c) The former takes place in the presence of β -H-atom
 - d) None of the above
- 829. Collin's reagent causes the conversion:

a)
$$CO \longrightarrow CHOH$$

b)
$$\c \to -COOH$$
 c) $\c \to -COOH$


c)
$$\langle CHOH \rightarrow \rangle CO$$

- 830. Cyanohydrin of which compound gives lactic acid on hydrolysis?
 - a) Acetone
- b) Acetaldehyde
- c) Propanal
- d) HCHO
- 831. Arrange phenol (I), cyclohexanol (II), 2, 4, 6-trinitrophenol (III) and acetic acid (IV) in order of acidity
 - a) III>IV>I>II
- b) I>II>III>IV
- c) III>I>II>IV
- d) II>IV>III

832. In the following reaction,

The structure of the major product *X* is

$$a) \qquad \bigcap_{H} \qquad \bigcap_{NO_2}$$

- 833. Preparation of β -hydroxy ester is favoured by:
 - a) Cannizzaro's reaction
 - b) Reformatsky reaction
 - c) Claisen condensation
 - d) Wittig reaction
- 834. The enolic form of acetone contains:
 - a) 9 σ -bonds, 1π -bond and 2 lone pairs
 - b) 8 σ -bonds, 2π -bond and 2 lone pairs
 - c) 10 σ -bonds, 1 π -bond and 1 lone pair
 - d) 9 σ -bonds, 2π -bond and 1 lone pairs
- 835. Monocarboxylic acids (saturated) are regarded as.....oxidation products of paraffins.
 - a) First

- b) Second
- c) Third
- d) Fourth
- 836. Which of the following forces explain the boiling point of aldehydes and ketones?
 - a) Hydrogen bonding
 - b) van der Waals' forces
 - c) Dipole-dipole attraction
 - d) None of the above
- 837. Which can reduce $RCOOH \rightarrow RCH_2OH$?
 - a) NaBH₄
- b) Na/C₂H₅OH
- c) $BH_3/THF/H_3O^+$
- d) H₂/ catalyst
- 838. Ethanol vapours are passed over heated copper at 300°C and product is treated with aqueous NaOH. The final product is:
 - a) Aldol
 - b) β-hydroxy butyraldehyde
 - c) Both (a) and (b)
 - d) None of the above
- 839. The refluxing of (CH₃)₂NCOCH₃ with acid gives
 - a) $(CH_3)_2NH + CH_3COOH$

b) $(CH_3)_2NCOOH + CH_4$

c) $2CH_3OH + CH_3CONH_2$

- d) $2CH_3NH_2 + CH_3COOH$
- 840. OCH CHO $\xrightarrow{\text{OH}^{-}}$ HOH₂C COOH. The reaction given is
 - a) Aldol condensation
- b) Knovengel reaction
- c) Cannizaro reaction
- d) None of these

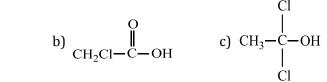
- 841. A distinctive and characteristic functional group in fat is:
 - a) Keto group
- b) Ester group
- c) Basic group
- d) None of these

- 842. Sodium acetamide smells like:
 - a) Garlic
- b) Rotten egg
- c) Pleasant
- d) Reminiscents of mice
- 843. On mixing ethyl acetate with aqueous sodium chloride, the composition of the resultant solution is:
 - a) $CH_3Cl + C_2H_5COONa$
 - b) $CH_3COONa + C_2H_5OH$
 - c) $CH_3COCl + C_2H_5OH + NaOH$
 - d) $CH_3COOC_2H_5 + NaCl$
- 844. The final product formed when acetaldehyde is reduced with sodium and alcohol is:
 - a) Ethylene
- b) Ethyl alcohol
- c) Ethene
- d) All of these

- 845. Oxalic acid when reduced with zinc and H₂SO₄ gives
 - a) Glyoxalic acid
- b) Glyoxal
- c) Glycolic acid
- d) glycol
- 846. Which of the following functional groups, cannot be reduced to alcohol using NaBH₄ in ethanolic solution?
 - a) R 0 R
- b) RCOCl
- c) R COOH
- d) R CHO

847.	17. A carboxylic acid is converted into its anhydride using				
	a) Thionyl chloride	J	b) Sulphur chloride		
	c) Sulphuric acid		d) Phosphorus pentoxide		
848.	Ammonium formate on he	eating yields:			
	a) Ammonia	0,7			
	b) Formamide				
	c) Formic acid				
	d) Ammonium carbonate				
849.	•	ombining the two calcium salts of carboxylic acids we are preparing 2-butanone. Find the correct pair			
	of the following	ř	1 1 0	•	
	a) Calcium formate + calcium propanoatec) Calcium acetate + calcium acetate		b) Calcium acetate + calcium propanoate		
			d) Calcium formate + calcium acetate		
850.	60. Aldehydes and ketones form addition products with:				
	a) Phenyl hydrazine	b) Hydrazine	c) Semicarbazide	d) Hydrogen cyanide	
851.	1. Lactic acid on oxidation with Fenton's reagent gives main product:				
	a) CH ₃ COOH	b) H ₂ C ₂ O ₄	c) CH ₃ COCOOH	d) None of these	
852. An aromatic compound (A), C_8H_9Br reacts with $CH_2(COOC_2H_5)_2$ in then presence of $C_2H_5ON_6$				ace of C_2H_5ONa to give (B)	
	which on refluxing with oil H_2SO_4 gives(C), a monobasic acid. (C)On vigorous oxidation gives benzoic acid. What is the structure of(A)?				
	C∐ Dr			ÇH₂Br	
	CH ₂ Br I	CH ₂ -CH ₂ -Br	Br-CH-CH ₃		
		h)			
	a) ()	b) []	c) [O]	u) V	
	✓ `CH ₃			ĊН ₃	
				v	
853.	Urotropine has the compo	osition:			
	a) $(CH_2)_4N_6$	b) $(CH_2)_5N_5$	c) $(CH_2)_6N_4$	d) $(CH_3)_6N_5$	
854.	$54.0.75\mathrm{g}$ platinic chloride of a mono-acid base on ignition gave $0.245\mathrm{g}$ platinum. The molecular weight of				
	base is:				
	a) 75.0	b) 93.5	c) 100	d) 80.0	
855.	5. An aliphatic hydroxy acid is:				
	a) Maleic acid	b) Mandelic acid	c) Malonic acid	d) Malic acid	
856.	. Carbonyl compounds when treated with sodium bisulphite solution generally a crystalline sodium				
	bisulphite addition product is formed but which of the following carbonyl compound not forms crystalling				

addition product?

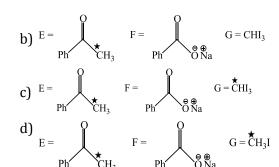

a) HCHO

b) CH₃CHO

c) CH₃COCH₃

d) C₂H₅COC₂H₅

857. In presence of iodine catalyst, chlorine reacts with acetic acid to form:



858. In the following reaction sequence, the correct structures of E, F and G are:

$$\begin{array}{c}
O & O \\
Ph & \\
\end{array}
\xrightarrow{\text{Heat}} [E] \xrightarrow{I_2} [F] + [G]$$

(*implies
13
C labelled carbon)

a) $E =$
 CH_3
 $F =$
 CH_3
 $G = CHI_3$

- 859. Compound having molecular formula C₃H₆O may be:
 - a) Cyclic ether
 - b) Carbonyl compound
 - c) Unsaturated ether or unsaturated alcohol
 - d) All of the above
- 860. In the estimation of nitrogen by Duma's method 0.59 g of an organic compound gave 112 mL nitrogen at NTP. The percentage of nitrogen in the compound is about:
 - a) 23.7

b) 11.8

d) 47.5

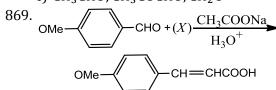
- 861. Propanone does not undergo:
 - a) Oxime formation
 - b) Hydrazone formation with hydrazine
 - c) Cyanohydrin formation with HCN
 - d) Reduction of Fehling's solution
- 862. 2DCDO $\stackrel{\text{OH}^-}{\longrightarrow}$ [X] and [Y] are
 - a) DCOO⁻, D₂CHOH
- b) HCOO⁻, CH₃OH
- c) $HCOO^-$, CD_3OH
- d) DCOO-, CD₃OH
- 863. A typical compound undergoes Cannizzaro's reaction and aldol condensation. It is:
 - a) (CH₃)₂CHCHO
- b) HCHO
- c) C_6H_5CHO
- d) CH₃CHO
- 864. Formaldehyde when reacted with methyl magnesium bromide gives
 - a) C_2H_5OH
- b) CH₃COOH
- c) HCHO
- d) CH₃CHO

- 865. Among the following which has lowest p K_a values:
 - a) CH₃COOH
- b) HCOOH
- c) $(CH_3)_2CHCOOH$
- d) CH₃CH₂COOH

- 866. Ethane can be obtained from ethanal in one step by:
 - a) Na-Hg + water
 - b) Zn-Hg + conc. HCl
 - c) Aluminium isopropoxide and isopropyl alcohol
 - d) LiAlH₄ + ether
- 867. The end product 'C' in the following sequence of chemical reactions is

$$\mathsf{CH_3COOH} \xrightarrow{\mathsf{CaCo}_3} A \xrightarrow{\mathsf{Heat}} B \xrightarrow{\mathsf{NH}_2\mathsf{OH}} C$$

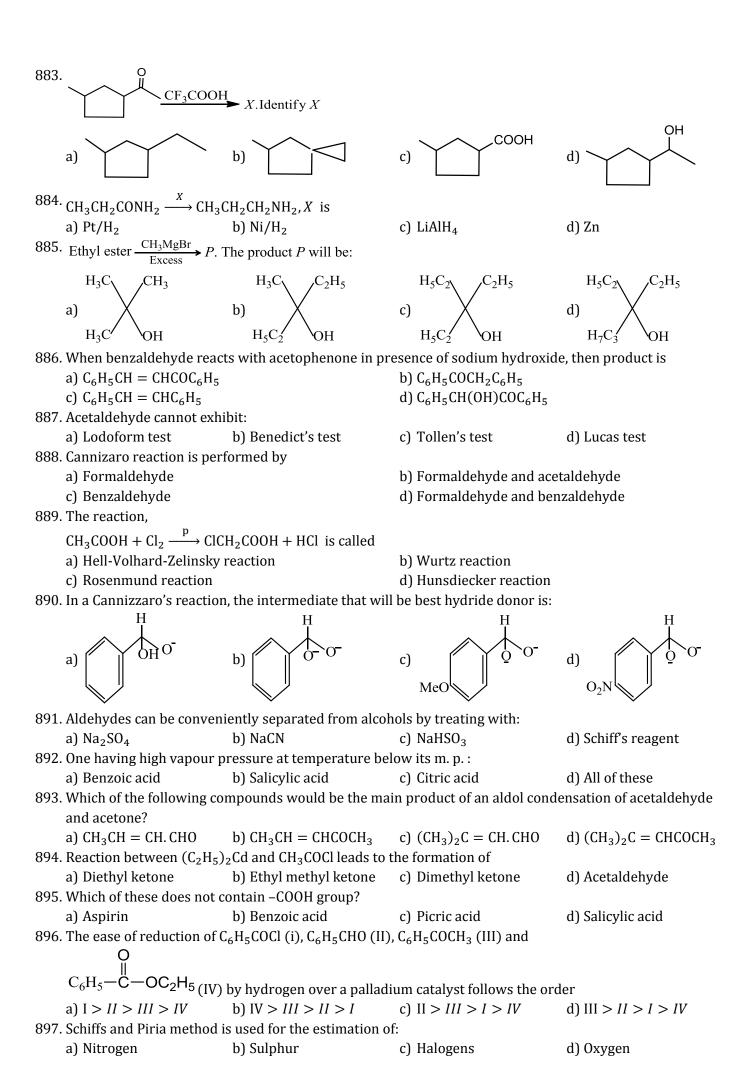
- a) Acetaldehyde oxime b) Formaldehyde oxime c) Methyl nitrate
- d) Acetoxime
- 868. Which set of products is expected on reductive ozonolysis of the following diolefin?

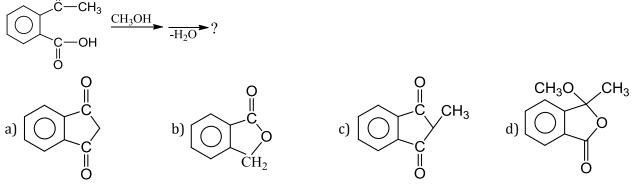

$$\begin{array}{c} \text{CH}_{3} \\ | \\ \text{CH}_{3}\text{CH} = \text{C} - \text{CH} = \text{CH}_{2} \end{array}$$

- a) CH_3CHO ; $CH_3COCH = CH_2$

b) $CH_3CH = C(CH_3)CHO$; CH_2O

c) CH₃CHO; CH₃COCHO; CH₂O


d) CH₃CHO; CH₃COCH₃; CH₂O


The compound (X) is

- a) $CH_3 COOH$
- b) $BrCH_2 COOH$
- c) $(CH_3CO)_2O$
- d) CHO COOH

870. In the sequence, $A \xrightarrow{NH_2OH} CH_3CH = NOH \xrightarrow{Reduction} B$ A and B are a) CH₃CH₂OH, CH₃CH₂NH₂ b) CH_3CHO , $CH_3NH - CH_3$ d) CH₃CH₂OH, CH₃NHCH₃ c) CH₃CHO, CH₃CH₂NH₂ 871. Partial oxidation of methane gives: a) HCHO b) HCOOH c) H₂O and CO₂ d) CO and H₂O 872. Ethyl acetate is obtained when methyl magnesium bromide reacts with b) Ethyl chloroformate c) Acetyl chloride a) Ethyl formate d) Carbon dioxide 873. Collin's reagent is used to convert a) $\geq C = O \longrightarrow \geq CHOH$ b) $-CH_2OH \rightarrow -CHO$ c) $-CHO \rightarrow -COOH$ d) $-CHO \rightarrow -CH_2OH$ 874. CHO + HCHO $\xrightarrow{\text{NaOH}} X+Y$ OMe OMe identify X and YCH₂OH CH₂OH CH₂OH + HCOOH b) + HCOOH CH₃CHO OMe OMe 875. Which can be reduced to corresponding hydrocarbon by Zn/HCl? a) Butan-2-one b) Acetic acid c) Acetamide d) Ethyl acetate 876. The product obtained when acetic acid is treated with phosphorus trichloride is: 877. X and Y respectively are a) Picric acid, 2, 4, 6-tribromophenol b) 5-nitrosalicylic acid, 5-bromosalicylic acid d) 3, 5-dinitrosalicylic acid, 3, 5-dibromosalicylic c) o-nitrophenol, o-bromophenol 878. The final products of oxidation of isopropyl alcohol are: a) $CH_3COCH_3 + HCOOH$ b) $CH_3CH_2COOH + HCOOH$ c) $CH_3COOH + HCOOH$ d) $CH_3COOH + CH_3CH_2COOH$ 879. The main product obtained in the reaction of acetamide and HNO₂ is a) CH₃CN b) CH₃NC c) CH₃NH₂ d) CH₃COOH 880. Which gives a ketone with a Grignard reagent? a) Formaldehyde b) Ethyl alcohol c) Methyl cyanide d) Methyl iodide 881. Self condensation of acetaldehyde, in the presence of dilute alkalies gives a) An acetal b) An aldol c) Mesitylene d) Propionaldehyde 882. Hybridization of carbon in carbonylic group is: a) sp b) sp^2 c) sp^3 d) None of these

898. Select the strongest acid: a) CF₃COOH b) CCl₃COOH c) CH₃COOH d) CBr₃COOH 899. The most acidic of the following is a) ClCH₂COOH b) C_6H_5COOH c) CD₃COOH d) CH₃CH₂COOH 900. The formula of a compound which gives simple whole number atomic ratio in one molecule of a compound is called: a) Structure formula b) Molecular formula c) Empirical formula d) Projection formula 901. Which of the following is a better reducing agent for the following reduction? $RCOOH \rightarrow RCH_2OH$ a) SnCl₂/HCl b) NaBH₄/ether c) H₂/Pd d) B_2H_6/H_30^+ 902. Alkaline hydrolysis of C₄H₈Cl₂ gives a compound which on heating with NaOH and I₂ produces a yellow precipitate of CHI₃. The compound should be a) CH₃CH₂CH₂CHO CH₃CH₂—CH—CH₂OH 903. The most appropriate reagent to distinguish between acetaldehyde and formaldehyde is a) Fehling's solution b) Tollen's reagent c) Schiff's reagent d) Iodine in presence of base 904. Which will form two oximes with NH₂OH? b) CH₃CH₂COCH₃ c) CH₃CH₂COCH₂CH₃ d) C a) CH₃COCH₃ 905. What is the final product of the following reaction?

906. The reaction of acetaldehyde with Tollen's reagent gives

a) Silver acetate

b) Methyl alcohol

c) Formaldehyde

d) Acetic acid

907. Aldol condensation is given by:

a) Aldehydes only having α-hydrogen atom

b) Aldehydes and ketones having α-hydrogen atom

c) Ketones only having α-hydrogen atom

d) Aldehydes having α-hydrogen atom

908. Isoelectric point is the pH at which:

a) An amino acid becomes acidic

b) An amino acid becomes basic

c) Zwitter ion has positive charge

d) Zwitter ion has zero charge

909. Ascorbic acid is a/an:

a) Vitamin C

b) Enzyme

c) Protein

d) None of these

910. Lacrymator or tear gas is:

a) C₆H₅COCl

b) $C_6H_5OC_6H_5$

c) C₆H₅COCH₂Cl

d) C₆H₅COCH₃

- 911. Which acid derivatives on hydrolysis will give brown precipitate with Nessler's reagent?
 - a) Acid chloride
- b) Acid anhydride
- c) Acid amide
- d) All of these

912. In a set of the given reactions, acetic acid yielded a product *C.*

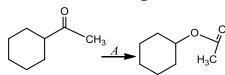
$$CH_3COOH + PCl_5 \rightarrow A$$

$$A \xrightarrow{C_6H_5} B \xrightarrow{C_2H_5MgBr} C$$

Product *C* would be

- a) $CH_3CH(OH)C_6H_5$
- b) \mid c) $CH_3CH(OH)C_2H_5$ d) $CH_3COC_6H_5$ $CH_3 C(OH)C_6H_5$

- 913. Formic acid:
 - a) Is immiscible with water
 - b) Reduces ammoniacal silver nitrate
 - c) Is a weak acid nearly three and a half times weaker than acetic acid
 - d) Is prepared by heating potassium hydroxide
- 914. The number of aldol reaction(s) that occurs in the given transformation is:


a) 1

b) 2

c) 3

d) 4

- 915. Reactivity of acids in esterification follows the order:
 - a) $HCOOH > CH_3COOH > RCH_2COOH > R_2CHCOOH > R_3CCOOH$
 - b) $CH_3COOH > HCOOH > R_3CCOOH > R_2CHCOOH > RCH_2COOH$
 - c) R_3 CCOOH > R_2 CHCOOH > RCH $_2$ COOH > CH $_3$ COOH > HCOOH
 - d) None of the above
- 916. The most suitable reagent A, for the reaction

is/are

a) 0_3

b) H_2O_2

c) $NaOH - H_2O_2$

- d) *m*-chloroperbenzoic acid
- 917. Three of the following four reactions are due to one similar feature of carbonyl compounds, while the fourth one is different. Which one is fourth?
 - a) Aldol condensation

b) Knoevenagel reaction

c) Witting reaction

- d) Haloform reaction
- 918. The relative reactivities of acyl compounds towards nucleophilic substitution are in the order of:
 - a) Ester > Acyl chloride > Amide > Acid anhydride
 - b) Acid anhydride > Amide > Ester > Acyl chloride
 - c) Acyl chloride > Ester > Acid anhydride > Amide
 - d) Acyl chloride > Acid anhydride > Ester > Amide
- 919. With the help of following Grignard synthesis which carboxylic acid is formed?

$$CH_2 = CHCH_2Br \xrightarrow{Mg/Ether} \xrightarrow{(i) CO_2} (ii) H_3O^+ ?$$

- a) $CH_2 = CHCH_2COOH$
- b) CH₃CH₂CH₂COOH
- c) $CH_2 = CHCOOH$
- d) $CH_3CH = CH COOH$

- 920. Oxalic acid on treatment with conc. H₂SO₄ gives:
 - a) $CO + H_2O_2$
- b) $H_2O + CO + CO_2$
- c) $HCOOH + CO_2$
- d) $HCOOH + CO_2 + O_2$
- 921. The reaction product of the compound 'A' with excess of methyl magnesium iodide followed by

acidification yields *t*-butanol. The compound *A* is: b) Ethanal a) Methanal c) Propanal d) Methyl ethanoate 922. The correct order of increasing acid strength of the compounds: $(A)CH_3CO_2H$ (B)MeOCH₂CO₂H $(C)CH_3CO_2H$ Me< (D)-CO₂H is: a) B < D < A < Cb) D < A < C < Bc) D < A < B < Cd) A < D < C < B923. Which is obtained by the oxidation of propionaldehyde? a) Acetic acid b) Formic acid and acetic acid c) Propanoic acid d) *n*-Propyl alcohol 924. Acetone and acetaldehyde can be identified by treatment with: a) NaHSO₃ b) NaCN d) $Ag(NH_3)_2^+$ 925. The presence of carbon in an organic compound can be shown by a) Heating with copper which goes black b) Burning it to produce green edge flame c) Heating it with copper oxide to convert it into CO₂ d) None of the above 926. Choose the incorrect statement a) Carboxylic acids have higher boiling points than those of alcohols of similar molecular weight b) Carboxylic acids have lower boiling points than those of alcohols of similar molecular weight c) Carboxylic acids (C_1 to C_4) are soluble in water d) The melting points of carboxylic acids increase or decrease in an irregular manner 927. The increasing order of the rate of HCN addition to compounds A - D is IV. HCHO V. CH₃COCH₃ VI. PhCOCH₃ VII. PhCOPh a) A < B < C < Db) D < B < C < Ac) D < C < B < Ad) C < D < B < A928. Benzoin is a) Compound containing an aldehyde and a ketonic b) α , β -unsaturated acid group c) α –hydroxy aldehyde d) α –hydroxy ketone 929. Highest pH value among the following is that of: b) Lemon juice c) Human blood d) Pepsi cola a) Gastric juice 930. Molecular weight of phorone is equal to a) $2 \times \text{molecular weight of acetone} - \text{molecular weight of water}$

- b) $3 \times \text{molecular weight of accetone} 2 \times \text{molecular weight of water}$
- c) $3 \times \text{molecular weight of acetone} \text{molecular weight of water}$
- d) $2 \times \text{molecular weight of acetone} 2 \times \text{molecular weight of water}$
- 931. CHO X = X X =

a) H₂/Ni and NaOH

b) H₂/Ni and hydrazine c) H₂/Ni, LAH

d) None of theses

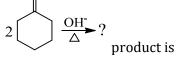
932. OH
$$CH_3$$
 $C=O \frac{\begin{bmatrix} H \\ (CH_3)_2CO \end{bmatrix}_3^A}{CH_3}$

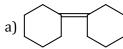
The reaction is known as

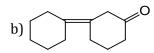
a) MPV reaction

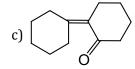
b) Oppanauer oxidation

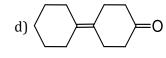
c) Tischenko reaction


- d) Gattermann Koch reaction
- 933. Raw juice in sugar factories is generally concentrated by:
 - a) Vacuum distillation
- b) Steam distillation


- d) Crystallization
- 934. Which of the following converts carbonyl compounds into hydrocarbons?
 - a) H_2 / Pt
- b) LiAlH₄
- c) $K_2Cr_2O_7/H_2SO_4$

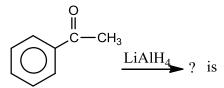

c) Sublimation

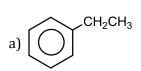

- d) Zn Hg/HCl
- 935. Two molecules of an aldehyde react with a concentrated solution of caustic soda and produces one molecule of an alcohol and acid each, which one is the aldehyde?
 - a) Acetaldehyde
- b) Formaldehyde
- c) Propionaldehyde
- d) Butyraldehyde

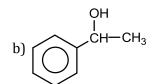

936.

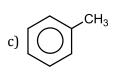
- 937. Schiff's reagent is:
 - a) Magenta solution decolourised with sulphurous acid
 - b) Magenta solution decolourised with chlorine
 - c) Ammoniacal cobalt chloride solution
 - d) Ammoniacal manganese sulphate solution
- 938. The compound which is not formed during the dry distillation of a mixture of calcium formate and calcium acetate is
 - a) Methanal
- b) Propanal
- c) Propanone
- d) Ethanal

939. The reaction

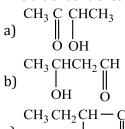

 $RCOOH + N_3H \xrightarrow{Conc.H_2SO_4} RNH_2 + CO_2 + N_2$ is called


- a) Lossen reaction
- b) Schmidt reaction
- c) Curtius reaction
- d) Ullmann reaction


940. The IUPAC name of $H-C-(CH_2)_4COOH$ is:



- a) 6-oxohexanoic acid
- b) Hexan-1-al-6-oic acid
- c) 1-aldo-hexanoic acid
- d) 6-aldo-hexan-1-oic acid
- 941. The product formed in the reaction



d) None of these

- 942. Fuels from crude oil are separated from one another by:
 - a) Fractional distillation b) Crystallization
- c) Steam distillation
- d) Selective adsorption
- 943. Propanoic acid on warming with Cl₂ in presence of red P gives:
 - a) CH₃CH₂COCl
- b) CH₃CH₂Cl
- c) CH₃CHClCOOH
- d) CH2ClCH2COOH
- 944. The aldol condensation of acetaldehyde results in the formation of:

- d) $CH_3CH_2OH + CH_3COOH$
- 945. Which one of the following can produce hydrogen when treated with metallic sodium?
 - a) $(CH_3)_2NH$
- b) CH₃NH₂
- c) $C_6H_5NH_2$
- d) CH₃CONH₂
- 946. Identify the correct order of boiling points of the following compounds,

 $CH_3(CH_2)_2CH_2OH$; $CH_3(CH_2)_2CHO$;

1

 $CH_3(CH_2)_2COOH$:

- a) 1 > 2 > 3
- b) 3 > 1 > 2
- c) 1 > 3 > 2
- d) 3 > 2 > 1
- 947. Organic compounds are studied separately from inorganic compounds because:
 - a) They occur in plants and animals
 - b) These are combustible and have complex structures
 - c) These are the compounds of carbon
 - d) The number of organic compounds is very large
- 948. Give IUPAC name of the product, when acetamide is heated with anhydrous phosphorus pentoxide.
 - a) Ethyl amine
- b) Propane nitrile
- c) Cyano methane
- d) Ethane nitrile
- 949. Acetamide is treated with the following reagents separately. Which one of these would yield methyl amine.
 - a) $NaOH + Br_2$
- b) Sodalime
- c) Hot conc. H₂SO₄
- d) PCl₅

950.

 CH_3

The compounds $CH_3 - C = CH - CH_3$ on reaction with $NalO_4$ in the presence of $KMnO_4$ gives

a) CH₃COCH₃

b) $CH_3COCH_3 + CH_3COOH$

c) $CH_3COCH_3 + CH_3CHO$

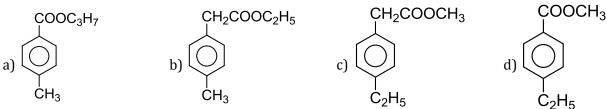
- d) $CH_3CHO + CO_2$
- 951. When a ketone is condensed into an aldol, the reagent used is:

- b) NaHCO₃
- c) Br₂ water
- d) Cl₂
- 952. Amides contain >C=O group, yet they do not give characteristic reactions of >C=O group because
 - a) They dimerise

b) Of resonance

c) They posses cyclic structure

- d) Of attached alkyl group
- 953. Which of the following acids (1 mol) does not give cyclic anhydride on heating
 - a) Adipic acid
- b) Terephthalic acid
- c) Succinic acid
- d) Phthalic acid


- 954. Which of the aldehyde is most reactive?
 - a) C₆H₅CHO

b) CH₃CHO

c) HCHO

d) All are equally reactive

955. An ester (X) molecular formula $C_{11}H_{14}O_2$ was treated with LAH when it forms two compounds (A) and (B) with molecular formula $C_9H_{12}O$ and C_2H_6O respectivity (A) on heating with an acid forms $C_9H_{10}(C)$. (C) on oxidation with KMnO₄ forms terephthalic acid. Compound (X) is

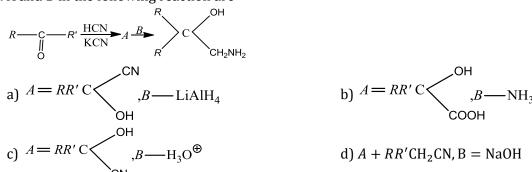
- 956. Which of the following is present in tea as well as in bark of a tree?
 - a) Tannic acid
- b) Oxalic acid
- c) Cellulose
- d) Caffeine

- 957. Waxes are long chain compounds belonging to the class:
 - a) Acids
- b) Alcohols
- c) Esters
- d) Ethers

958. Which of the following is correct for carbonyl compounds?

c)
$$\stackrel{\delta^+}{R} - \stackrel{\delta^-}{C} = O$$

d)
$$\stackrel{\delta^+}{\underset{R'}{\overset{\delta^-}{=}}}$$


- 959. Which of the following has most acidic hydrogen?
 - a) 3-hexanone
- b) 2,4-hexanedione
- c) 2,5-hexanedione
- d) 2,3-hexanedione

- 960. Which acid gives wine red colour with neutral FeCl₃?
 - a) Propanoic acid
- b) Acetic acid
- c) Formic acid
- d) None of these
- 961. An organic compound is fused with fusion mixture and extracted with HNO₃. The extract gives yellow precipitate with ammonium molybdate. It show the presence of which element?
 - a) P
 - b) As
 - c) Both P and As
 - d) May be P or As or both
- 962. Which acid is produced in the following reaction?

$$CH_3-C-H+HCN \longrightarrow A \xrightarrow{H_3O^+} B$$

- a) Maleic acid
- b) Lactic acid
- c) Tartaric acid
- d) Oxalic acid

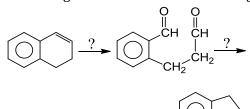
963. A and B in the following reaction are

- 964. Amino acid usually exists in the form of Zwitter ions, which consists of:
 - a) The basic group —NH₂ and the acidic group —COOH
 - b) The basic group —NH $_3^+$ and the acidic group —CO $_2^-$
 - c) The basic group $-CO_2^-$ and the acidic group $-NH_3^+$
 - d) No basic or acidic groups as such
- 965. Which of the following do not form addition compounds with ammonia?
 - a) HCHO
- b) CH₃COCH₃
- c) CH₃CHO
- d) None of these

966. Identify *D* in the following reaction

CH=CH+CH₃MgBr
$$\xrightarrow{\text{CH}_4}$$
 $A \xrightarrow{\text{(i) CO}_2} B$

HgSO₄


H₂SO₄
 $A \xrightarrow{\text{Tautomerisation}} C$

a) $HOOC - CH_2 - COOH$

b) $OHC - CH_2 - COOH$

c) $OHC - CH_2 - CHO$

- d) HO CH = CH COOH
- 967. What reagent would be needed to bring about each step of following synthesis?

- a) Hg^{2+} , H_2SO_4 , OH^-
- b) $KMnO_4/H_2SO_4$, OH^-
- c) $H_2Cr_2O_7$, dry HCl d) O_3 , Zn, H_2O , OH^-
- 968. Etard's reaction involves the preparation of benzaldehyde from
 - a) Toluene
- b) Ethyl benzene
- c) Benzoyl chloride
- d) Sodium benzoate

- 969. The Hell-Volhard-Zelinsky reaction is used for preparing
 - a) β —halo acid
- b) γ –halo acid
- c) α -halo acid
- d) Acid halide
- 970. It acetyl chloride is reduced in presence of BaSO₄ + Pd, the product formed is:
 - a) CH₃CHO
- b) CH₃CH₂OH
- c) CH₃COOH
- d) CH₃COCH₃

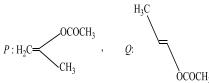
971. The end product of the reaction,

$$CH_3OH \xrightarrow{Cu} A \xrightarrow{NaOH} B$$
 is:

- a) Alkane
- b) Carboxylic acid
- c) Ketone
- d) Sodium slat of carboxylic acid
- 972. Aldehydes on reaction with hydroxylamine gives:
 - a) Aldoxime
- b) Hydrazone
- c) Aminohydroxide
- d) Semicarbazone
- 973. In which of the below reaction do we find α , β unsaturated carbonyl compounds undergoing a ring closure reaction with conjugated dienes?
 - a) Perkin reaction

b) Diels-Alder reaction

c) Claisen rearrangement


- d) Hofmann reaction
- 974. When an aldehyde was heated with alkali, a part of it was converted into alcohol and a part of it into an acid. The aldehyde is:
 - a) An aliphatic aldehyde other than HCHO
 - b) An aliphatic aldehyde or salicylaldehyde
 - c) An aromatic aldehyde other than salicylaldehyde
 - d) An aromatic aldehyde or HCHO
- 975. In the reaction,

$$C_2H_5OC_2H_5 + CO \xrightarrow{BF_3} X$$

What is X?

- a) Diethyl carbonate
- b) Ethyl carbonate
- c) Diethyl peroxide
- d) Ethyl propionate
- 976. The correct order of decreasing acid strength of trichloroacetic acid (A), trifluoroacetic acid (B), acetic acid (C) and formic acid (D) is:
 - a) A > B > C > D
 - b) A > C > B > D

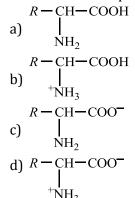
- c) B > A > D > C
- d) B > D > C > A
- 977. The product of acid hydrolysis of *P* and *Q* can be distinguished by:

- a) Lucas reagent
- b) 2,4-DNP
- c) Fehling's solution
- d) NaHSO₃

- 978. Acetone is used in:
 - a) Face creams
 - b) Vanilla
 - c) Nail polishes
 - d) Sweet smelling erasers
- 979. A colourless water soluble organic liquid decomposes sodium carbonate and liberatesCO₂. It produces black precipitate with Tollen's reagent. The liquid is
 - a) Acetaldehyde
- b) Acetamide
- c) Formic acid
- d) Acetone
- 980. The conversion of benzaldehyde into benzyl alcohol takes place by
 - a) Fittig reaction

b) Wurtz Fitting reaction

c) Wurtz reaction


- d) Cannizaro's reaction
- 981. What is the oxidation number of carbonyl carbon in acetophenone?
 - a) +3

b) +1

c) +2

d) Zero

- 982. Acetic acid on heating with urea gives:
 - a) Acetamide, carbon dioxide and ammonia
 - b) Ammonium carbonate and carbon
 - c) Ammonium acetate, acetamide and carbon dioxide
 - d) None of the above
- 983. C₆H₅CHO on reacting with Cl₂ gives:
 - a) C₆H₅CHCl₂
- b) C_6H_5COOH
- c) $C_6H_5CH_2OH$
- d) C₆H₅COCl
- 984. In sodium extract test of organic compounds, the nitrogen of an organic compound is converted into:
 - a) Sodamide
- b) Sodium cyanide
- c) Sodium nitrite
- d) Sodium nitrate
- 985. At the isoelectric point for amino acid the species present are:

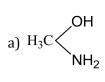
- 986. CH₃COCl reacts with:
 - a) C_6H_5OH
- b) $C_6H_5NH_2$
- c) Salicylic acid
- d) All of these

- 987. Stinges of bees, red ant and wasps contain:
 - a) Formaline
- b) Formic acid
- c) Acetic acid
- d) Formaldehyde
- 988. A colourless organic compound gives brisk effervescences with a mixture of sodium nitrite and dil. HCl. It could be
 - a) Oxalic acid
- b) Acetic acid
- c) Urea

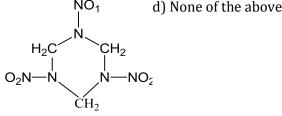
- d) Glucose
- 989. Which of the following on oxidation gives an acid containing two carbon atoms?
 - a) Ethanol
- b) Ethane nitrile
- c) Ethanamide
- d) Ethanamine

990.	. Which of the following ha	s highest b.p.?											
	a) C ₂ H ₅ OH	b) CH ₃ COOH	c) CH ₃ COCH ₃	d) HCOOCH ₃									
991	$C_6H_5CHO \xrightarrow{NH_3}$?												
	a) $(C_6H_5CHN)_2CH.C_6H_5$		c) $C_6H_5CH_2NH_2$	d) $C_6H_5NHC_6H_5$									
992.		ed to reduction by NaBH ₄ . '	-										
	a) Cyclohexane	b) Cyclohexanal	c) Cyclohexadiene	d) Cyclohexanol									
993.	. Alkaline hydrolysis of an	ester is called:											
	a) Neutralization b) Esterification c) Polymerization d) Saponification												
994	4. The reagent used in Gattermann Koch aldehyde synthesis is												
	a) $Pb/BaSO_4$ b) $Alkaline KMnO_4$ c) $Acidic KMnO_4$ d) $CO + HCl$												
995	5. Which is false in case of carboxylic acids?												
	a) They are polar molecules												
	b) They form H-bonds												
	c) They are stronger than	mineral acids											
	d) They have higher b.p. t	han corresponding alcohol	S										
996	MeO - CHO + X = CHO + X	CH ₃ COONa_											
	Meo CHOTX =	$\mathrm{H_{3}O}^{+}$											
	,												
	MeO—(CH=CHCOOH												
	The compound <i>X</i> is	/											
	a) CH ₃ – COOH	b) BrCH ₂ – COOH	c) $(CH_3CO)_2O$	d) CHO – COOH									
997		· -	, , , <u>, , -</u>	,									
	a) CHCl ₃	Acetyl chloride cannot be obtained by treating acetic acid with: a) CHCl ₃ b) SOCl ₂ c) PCl ₃											
998	, ,	ct with phenyl hydrazine to	, ,	d) PCl ₅									
	a) Oxime	b) Phenyl hydrazone	c) Hydrazone	d) Semicarbazone									
999	. Formic acid is obtained w		, .	,									
	a) Calcium acetate is heat	ed with conc. H ₂ SO ₄											
	b) Calcium formate is hea												
	c) Glycerol is heated with												
		ed with $K_2Cr_2O_7$ and H_2SO	4										
100	Benedict's solution is not		•										
0.		·											
	a) Formaldehyde	b) Acetaldehyde	c) Glucose	d) Acetic anhydride									
100	Vinegar is			, ,									
1.	O												
	a) HCHO		b) HCOOH										
	c) CH ₃ CHO		d) CH ₃ COOH										
100		mide (no heating) on react											
2.	O .	()											
	a) Acetic acid	b) Acetyl chloride	c) Acetic anhydride	d) Methyl acetate									
100	Jone's reagent is:		,	, ,									
3.	,												
	a) Acidified KMnO ₄												
	b) $K_2Cr_2O_7 + H_2SO_4$ or cl	nromic acid + H ₂ SO ₄											
	c) Alkaline K ₂ Cr ₂ O ₇	L T											
	d) None of the above												
100	Acetaldehyde reacts with	PCl ₅ , to give:											
4.	, , , , , , , , , , , , , , , , , , ,	Ü Ü											
	a) Ethyl chloride												

	b) Ethylene chloridec) Ethylidene dichlorided) Trichloroacetaldehyde												
100 5.	<i>Trans</i> esterification is the												
	a) Conversion of an aliphatic acid to esterb) Conversion of an aromatic acid to esterc) Conversion of one ester to another esterd) Conversion of an ester into its components namely acid and alcohol												
100 6.	The formation of aldehyd	e from alkyl cyanide is rela	ited with the name										
100 7.	a) Stephen Which of the following su	b) Rosenmund bstances will not react wit	c) Wurtz h PCl ₅ ?	d) HVZ reaction									
100 8.	a) Methyl alcohol Treatment of propionaldo	b) Acetic acid ehyde with dil. NaOH gives	•	d) Ethane									
100 9.	a) $CH_3CH_2COOCH_2CH_2CH_2ch$) $CH_3CH_2CHOHCH_2CH_2Ch$) $CH_3CH_2CHOHCH(CH_3)(d)$ $CH_3CH_2COCH_2CHO$ Fehling's solution consists of two separate alkaline solution. If one is $CuSO_4$, the other is:												
	a) NaHCO $_3$ α , β - unsaturated aldehyd	c) NaKC ₄ H ₆ O ₈ e	d) NaKC ₂ O ₄										
	a) HCHO $\xrightarrow{\text{KOH}(aq)}$		b) $CH_3CHO \xrightarrow{Dil.KOH} A \xrightarrow{\Delta} B$										
	c) $CCl_3 CHO \xrightarrow{KOH (aq)}$		d) CH_3 $-C$ $-CC_2H_5$ $\frac{KO}{C}$	\rightarrow									
101 1.	Which of the following or	ganic compounds answers	to both iodoform test and	Fehling's test?									
101 2.	a) Ethanol In steam distillation, the	b) Methanal vapour pressure of the vola	c) Ethanal itile organic compound is:	d) Propanone									
101	a) Equal to atmospheric pressureb) Less than atmospheric pressurec) More than atmospheric pressured) None of the above												
3.	The correct order of acid a) CH ₃ COOH > CH ₂ ClCOO b) CHCl ₂ COOH > CH ₂ ClC c) CHCl ₂ COOH > CH ₃ CO d) CH ₂ ClCOOH > CH ₃ CO	OH > CHCl ₂ COOH OOH > CH ₃ COOH OH > CH ₂ ClCOOH											
101 4.	· -	rogen and oxygen in 2-met	hyl benzoic acid is:										
101 5.	a) 4 : 4 : 2 Oxalic acid, malonic acid	b) 4 : 4 : 1 and succinic acid can be dis	c) 4 : 2 : 2 stinguished by:	d) 2 : 4 : 1									
	 a) Heat b) Acidified KMnO₄ c) Br₂ water d) NH₃ 												


101 6.	Ketones on reaction with	NH ₂ CONHNH ₂ form well de	efined crystalline compour	ids, called:
0.	a) Hydrazones	b) Schiff's base	c) Oximes	d) Semicarbazones
	In Kjeldahl's method nitro	ogen present is quantitative	ely converted to:	
7.	a) N ₂	b) (NH ₄) ₂ SO ₄	c) NO ₂	d) None of these
101	, <u>-</u>	eacts to produce which one		.,
8.	a) Datassium musmismats		h) Dronyl alach al	
	a) Potassium propionatec) Propionaldehyde		b) Propyl alcohold) Does not react	
101	In a set of reaction acetic	acid yields a product $[D]$. T	•	oe:
9.	$CH_3COOH \xrightarrow{SOCl_2} A \xrightarrow{C_6I}$	$\frac{H_6}{\text{AlCl}_3} B \xrightarrow{\text{HCN}} C \xrightarrow{\text{HOH}} D$		
			ОН	ОН
	a) C ₂ H ₂ CH ₂ -C-CH ₂	CN b) C ₆ H ₅ -C-CH ₃ OH	$C_{6}H_{5}-C-COOH$	d) C _c H ₅ —C—CH ₂
	Benzamide on treatment		СП3	СООН
0.	Denzamine on treatment	with 1 odis gives		
	a) Aniline	•		•
102 1.	Anhydrous formic acid ca	innot be obtained from aque	eous solution by fractional	distillation because:
1.	a) It is soluble in water			
	b) It forms a constant boi	-		
	c) Its boiling point is veryd) There is much different			
102		ooth N and S are present, blo	ood red colour obtained is o	due to the formation of:
2.	<u> </u>	•		
102	•	b) Ferric sulphocyanide	•	d) None of the above
3.	CH_3 CH_3	erfume secreted by musk de	eer) nas tne structure	
	. Its IU	PAC name is:		
	a) 3-methyl cyclopentade	ecanone		
	b) Methyl cyclopentadeca			
	c) 3-methyl cyclotetradeod) 3-methyl cyclohexadeo			
102		with the molecular formula	C ₅ H ₁₀ O yields phenyl hydr	azone and gives a negative
4.	-	test and Tollen's test. It pro	ouduces <i>n</i> -pentane on redu	ction. The compound could
	be a) Pentanal	b) Pentanone-2	c) Pentanone-3	d) Amyl alcohol
102	•	ot reduce Fehling's solution		a) mily aconor
5.				
102	a) Methanal Which of the following co	b) Ethanal mpounds is oxidized to pre	c) Trichloroethanal	d) Benzaldehyde
6.	willen of the following co	impounts is oxitized to pre	pare mearyr earyr ketolle:	
	a) 2-propanol	b) 1-butanol	c) 2-butaonol	d) Tert-butyl alcohol
102	An organic compound is l	poiled with alcoholic potash	n. The product is cooled and	d acidified with HCl. A

7.	white solid separates out.	The starting compound m	ay be									
	a) Ethyl benzoate	b) Ethyl formate	c) Ethyl acetate	d) Methyl acetate								
	The substance used as an	adsorbent in the column cl	hromatography is:									
8.	.) N. O	L) N. CO	.) 41 0	15 41								
102	a) Na ₂ 0	b) Na ₂ SO ₄	c) Al ₂ O ₃	d) Alum								
102 9.	Saturated fatty acids are r	represented by which of the	e formula?									
9.	a) $C_nH_nO_2$	b) $C_nH_{3n}O_2$	c) C U	d) $C_n H_{2n} O_2$								
102			c) C_nH_{2n+1} the presence of which of the	,								
0.	following?	a Retuile is carried out in t	the presence of which of the	•								
0.	-	b) Glycol with KOH	c) 7n-Ho with HCl	d) LiAlH ₄								
103	· -			и) шинц								
1.	3 Which of the following diacid readily gives anhydride on heating?											
Δ.	a) Fumaric	b) Maleic acid	c) Malic acid	d) Terephthalic acid								
103	The conversion	b) Marcie dela	ej mane dela	a) Terephenane acia								
2.	0 0											
	\rightarrow											
	Can be effected by using t	he reagent										
			Ö									
	a) H_2O , H_2SO_4	b) 0 ₂	c) $\begin{array}{c} O \\ \parallel \\ C_6H_5-COOH \end{array}$	d) CrO_3 , H_2SO_4								
102	For data ation of aulubour											
	=	-	dium nitroprusside is adde	a to the soaium extract. A								
3.	violet colour is obtained d		a) Na [Fa(CN) NOC]	d) Na Fo(CN)								
102	a) $Fe(CN)_2$ b) K_3 $Fe(CN)_5$ NS c) $Na_4[Fe(CN)_5NOS]$ d) $Na_4Fe(CN)_6$											
4.	Which of the following acids has the smallest dissociation constant?											
1.	a) CH-CHECOOH	h) FCH-CH-COOH	c) BrCH ₂ CH ₂ COOH	d) CH ₃ CHBrCOOH								
103	• •		rde, the other component us	· ·								
5.	in the conversion of dright	ara reagent into an arachy	de, the other component as	in the second se								
0.	a) Ethyl formate	b) Ethyl acetate	c) Ethyl cyanide	d) Hydrogen cyanide								
103	-		nd gives negative Toolen's a									
6.		on gives <i>n</i> -pentane. Compo										
	a) A primary alcohol	b) An aldehyde	c) A ketone	d) A secondary alcohol								
103		itements regarding amides		·								
7.	_											
	a) Amides do not form sal	ts when treated with aque	ous acids									
	b) The aqueous solutions	of amides are alkaline										
	c) Amides are very poor r	nucleophiles										
	d) Amides are considerab	ly less reactive than acid cl	hlorides									
103	Maleic and fumaric acids:											
8.												
	a) Have identical m.p.											
	b) Have identical solubilit	y in water										
	c) Form the same anhydri	ide on heating										
	d) None of the above											
		by using thio urea contains	s which ion in the solution,	mainly responsible for a								
9.	characteristic test?	12.22		N. 1								
	a) NaCN	b) Na ₂ S	c) NaCNS	d) Na ₂ SO ₄								


104

$$CH_2O + NH_3 \longrightarrow \left[\right] \frac{HNO_3}{Ac_2O} is$$

0. The final product obtained in the reaction

$$\begin{array}{c|c} & H_2C & / & CH_2 \\ \hline b) & & CH_2 & N \\ \hline & N & CH_2 / \\ \hline & H_2C & CH_2 \end{array}$$

104 Both HCHO and CH₃CHO gives similar reactions with all the reagents except

1.

- a) Schiff reagent
- b) Fehling solution
- c) Ammoniacal AgNO₃
- d) Ammonia

104 In the reaction,

2.
$$R - X \xrightarrow{\text{Alcoholic KCN}} A \xrightarrow{\text{Dilute HCl}}$$

The product B is

- a) Alkyl chloride
- b) Aldehyde
- c) Carboxylic acid
- d) Ketone

104 The property which distinguishes formic acid from acetic acid is

3.

- a) Only ammonium salt of formic acid on heating gives amide
- b) When heated with alcohol /H₂SO₄ only acetic acid forms ester
- c) Only acetic acid forms salts with alkali
- d) Only formic acid reduces Fehling's solution

104 Absolute alcohol is prepared from rectified spirit by:

4.

- a) Fractional distillation
- b) Steam distillation
- c) Azeotropic distillation
- d) Vacuum distillation

104 Which of the following gives oxalic acid?

5.

a) Heating of acetic acid

b) Action of nitric acid glucose

c) Acidic hydrolysis of cyanogen

d) Strong heating of sodium formate

104 Urea on slow heating gives

6.

a) NH₂CONHNO₂

b) NH₂CONHCONH₂

c) HCNO

d) NH₂CONH₂. HNO₃

104 The conversion of acetophenone to acetanilide is best accomplished by using

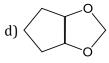
7.

a) Backmann rearrangement

b) Curtius rearrangement

c) Lossen rearrangement

d) Hofmann rearrangement


104 CH₂OH

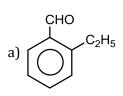
8.
$$+ \text{ cyclopentanone} \longrightarrow [X].$$

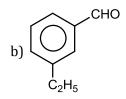
Product is

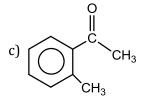
104 An aldehyde which undergoes Cannizzaro's reaction and reduces Schiff's reagent but does not reduce

- 9. Fehling's solution is:
 - a) CH₃CHO
- b) HCHO
- c) C_6H_5CHO
- d) Salicyladehyde

105 Which acid is used in baking powder?


0.


- a) Oxalic acid
- b) Citric acid
- c) Lactic acid
- d) Tartaric acid


105 Which of the following statements are correct for benzoic acid?

- a) Nitration gives o and p-nitrobenzoic acid
- b) Bromination gives o-bromobenzoic acid
- c) The Friedel-Craft's reaction with CH₃COCl/AlCl₃ give m-carboxyaceto-phenone
- d) The reaction with concentrated sulphonic acid gives 3-carboxybenzene sulphonic acid
- 105 An aromatic compound 'X' with molecular formula C₉H₁₀O gives the following chemical tests
- VIII. Forms 2, 4-DNP derivative,
 - IX. Reduces Tollen's reagent,
 - X. Undergoes Cannizaro reaction and,
 - XI. On vigorous oxidation 1, 2-benzenedicarboxylic acid is obtained.

X is

d)
$$CHO$$
 C_2H_6

105 Give stereochemical formula for compound (*D*)

3.

HO
$$C_{1}^{\text{CH}_{3}}$$
 P -TsCl
 C_{2}^{Ho}
 P -TsCl
 C_{2}^{Ho}
 P -TsCl
 C_{3}^{Ho}
 P -TsCl
 P

(*R*)-(-)-2-butanol

$$LiAlH_4
ightharpoonup (D)$$

$$\begin{array}{c} \mathsf{CH}_3\\ \mathsf{HOH}_2\mathsf{C} \\ \mathsf{C}\\ \mathsf{C}\\ \mathsf{C}_2\mathsf{H}_5 \end{array}$$

105 General formula of carbonyl compound is:

- a) $C_nH_{2n}O$
- b) $C_n H_{2n+2} O$
- c) $C_n H_{2n+1} O$
- d) $C_n H_{2n+2} O_2$

- 105 The product *C* of the reaction,
- $CH_3CN \xrightarrow{H_2O} A \xrightarrow{NH_3} B \xrightarrow{\Delta} C$ is:
 - a) Methyl amine
- b) Ammonium acetate
- c) Ethyl amine
- d) Acetamide

105 Formic acid and acetic acid are distinguished by

6.

- a) NaHCO₃
- b) FeCl₃
- c) Victor Meyer test
- d) Tollen's reagent
- 105 Which of the following types of carbonyl groups will produce oxime on reaction with?

7.

- a) \parallel b) \parallel O

105 Aldehydes and ketones can be reduced to hydrocarbon by using

8.

- a) LiAlH₄
- b) $H_2/Pd BaSO_4$
- c) Na-Hg/HCl
- d) $NH_2 NH_2/C_2H_5ONa$

105 Industrial preparation of formic acid involves:

9.

- a) Reaction of CO with aqueous NaOH under pressure
- b) Reaction of CO₂ with aqueous NaOH under pressure

- c) Passing a mixture of CO and H₂ overheated copper at 473 K
- d) Reaction of CO with methanol at 473 K

106 CH₃COCH₃ can be obtained by:

- a) Heating acetaldehyde with methanol
- b) Oxidation of propyl alcohol
- c) Oxidation of isopropyl alcohol
- d) Reduction of propionic acid

106 C—CN group is called 1.

- a) Hydroxy nitrile
- b) Hydroxy cyanide
- c) Cyanohydrin
- d) Hydroxy isocyanide

106 Vinegar is a solution of acetic acid which is

- a) 15-20 %
- b) 20-25 %
- c) 6-8 %
- d) 2-4 %

106 Which of the following is the strongest acid?

- a) CH₃COOH
- b) HCOOH
- c) ClCH₂COOH
- d) Cl₂CHCOOH

106 In the following reaction sequence, the correct structures of *E*, *F* and *G* are

Ph
$$\longrightarrow$$
 OH \longrightarrow $[E] \frac{I_2}{\text{NaOH}} \longrightarrow [F] + [G]$

$$F = Ph$$

$$O = Ph$$

$$O$$

c)
$$E = Ph$$

$$E = Ph$$

$$CH_3 F = Ph$$

$$CH_3 G = CHI_3$$

d)
$$E = Ph$$

*
Ph

ONa $G = CH_3$

106 Which of the following has high vapour pressure at temperature below its melting point?

5.

- a) Citric acid
- b) Benzoic acid
- c) Salicylic acid
- d) All of these

106 Tollen's reagent is

- a) $[Ag(NH_3)_2]NO_3$
- b) $[Ag(NH_3)_2]Br$
- c) Both (a) and (b)
- d) None of these

106 The Sulphur present in an organic compound is oxidized by fuming nitric acid into:

7.

a) SO₂

- c) H_2S

d) S

-COCH₃ +CICH₂COOCH₂CH₃ $\xrightarrow{\text{NaNH}_2} X$ 106

Identify X in the following reaction

a)
$$CH_3$$
 $CH-COOC_2H$

$$\begin{array}{c} OH \\ -CH-C-COOC_2H_5 \\ CH_3 \end{array}$$

$$\frac{106}{9} \text{ CH} \equiv \text{CH} \xrightarrow{\text{HgSO}_4} \text{A} \xrightarrow{\text{Dilute}} \text{R}$$

The compound
$$B$$
 is

$$CH_3 - CH - CH_2 - CHO$$

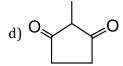
$$CH_3 - CH - CH_2 - COONa$$

107 Aldol condensation of aldehydes and ketones takes place through the formation of:

- a) Carbene
- b) Nucleophile
- c) Electrophile
- d) Free radical

107 Acetic anhydride reacts with ammonia to give:

1.


- a) Acetamide
- b) Formamide
- c) Ethyl amine
- d) Methyl amine

107 Identify the final product in the following reaction sequence

$$A \xrightarrow{\text{1. CH}_3\text{MgI}} B \xrightarrow{\text{H}_2\text{SO}_4} C \xrightarrow{\text{O}_3/\text{H}_2\text{O}/\text{Z}} D$$

107 Petroleum refining involves:

3.

- a) Vacuum distillation
- b) Steam distillation
- c) Fractional distillation
- d) Passing over activated charcoal
- 107 Acetyl bromide reacts with excess of CH₃MgI followed by treatment with a saturated solution of
- NH₄Cl gives:
 - a) Acetyl iodide
- b) Acetamide
- c) 2-methyl propan-2-ol d) Acetone
- 107 Which of the following will not undergo Hell Volhard Zelinsky reaction?

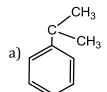
5.

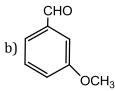
- a) CH₃COOH
- b) CH₃CH₂COOH
- c) 2,2-dimethyl propionic acid
- d) 2-methyl propionic acid
- 107 Which of the following will not undergo aldol condensation?

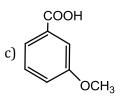
6.

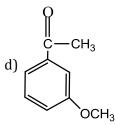
- a) Acetaldehyde
- b) Propanaldehyde
- c) Benzaldehyde
- d) Trideuteroacetaldehyde
- 107 In a compound C, H and N are present in 9:1:3.5 by weight. If molecular weight of the compound is 108,
- the molecular formula of compound is:
- b) C₃H₄N
- c) $C_6H_8N_2$
- d) $C_9H_{12}N_3$

107 Which method is not used in the preparation of ketone?


8.

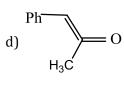

- a) Dehydrogenation of 2° alcohol
- b) Heating Ca salt of an acid


	c) Acid hydrolysis of alky	l cyanide										
	d) Reaction of acid chloric	de with Grignard reagents										
107	In the Cannizzaro's reacti	=										
9.	$2Ph - CHO \xrightarrow{OH^-} Ph - CH_2$	OH + PhCOO ⁻										
	the slowest step is:											
	a) The attack of OH ⁻ at th	ne carbonyl group										
	b) The transfer of hydride to the carbonyl group											
		ton from the carboxylic aci	d									
	d) The deprotonation of F	-										
108	= = = = = = = = = = = = = = = = = = =	icidic nature of the following	ng?									
0.	(i) PhCOOH (ii) o-NO ₂ C ₆ H ₄ COOH											
	(iii) <i>p</i> -NO ₂ C ₆ H ₄ COOH	(iv) $m-NO_2C_6H_4COOH$										
			c) (ii) $>$ (iv) $>$ (i) $>$ (iii)	d) (i) $>$ (ii) $>$ (iii) $>$ (iv)								
108			eating with a carboxylic aci									
1.												
	a) PCl ₅	b) Cl ₂	c) SOCl ₂	d) PCl ₃								
108	Separation of petroleum i	into its components is mos	tly done by:									
2.												
	a) Chromatography											
	b) Sublimation											
	c) Distillation under redu	iced pressure										
	d) Fractional distillation											
108	The product formed in th	e aldol condensation of ace	etaldehyde is									
3.												
			c) $CH_3CH(OH)COCH_3$									
108	8 A compound X undergoes reduction with LiAlH ₄ to yield Y . When vapours of Y are passed over freshly											
4.	reduced copper at 300°C,											
	a) CH ₃ COCH ₃	b) CH ₃ CHO	c) CH ₃ CH ₂ OH	d) CH ₃ OCH ₃								
	Formaldehyde when trea	ted with KOH gives metha	nol and potassium formate.	The reaction is known as:								
5.												
	a) Perkin's reaction											
	b) Claisen's reaction											
	c) Cannizzaro's reaction											
400	d) Knoevenagel's reactio											
	The reagent with which b	oth acetaldehyde and acet	one react is									
6.) T 1 1 1 1 1 1 1 1 1) m 11	1) (1) 1 1 1 1								
100	a) Fehling's solution	b) I ₂ /NaOH	c) Tollen's reagent	d) Carbonic acid								
	The compound obtained	when acetaidenyde reacts	with dilute aqueous sodiun	n nyaroxiae exhibits								
7.	a) Caarra striigalija araa ariiga	_	h) O+ilii									
	a) Geometrical isomerism		b) Optical isomerism	atriaal is a magricus								
100	c) Neither optical nor geo		d) Both optical and geom	eti icai isomei ism								
8.	Consider the acidity of the	e car boxylic acids										
о.	(i) PhCOOH (ii) <i>o</i> – NO ₂ C ₆ H ₄ COOH											
	(iii) $p - NO_2C_6H_4COOH$											
	$(iv)m - NO_2C_6H_4COOH$ (iv)m - NO ₂ C ₆ H ₄ COOH											
	Which of the following or	dar is correct?										
	a) (i) $>$ (ii) $>$ (iii) $>$ (iv)	uci is cullect:	b) (ii) > (iv) > (iii) > (i)									
	c) (ii) $>$ (iv) $>$ (ii) $>$ (iii)		d) (ii) > (iv) > (ii) > (i) d) (ii) > (iii) > (iv) > (i)									
1በዩ	, , , , , , , , , , , ,	ders is wrong with respect	, , , , , , , , , , , , , , , , , , , ,									
100	or the following of	acto to the one with respect	to property maicacca.									


- a) Formic acid > Acetic acid > Propionic acid (Acid strength)
- b) Fluoro acetic acid > Chloro acetic acid > Bromo acetic acid (Acid strength)
- c) Benzoic acid > Phenol > Cyclohexanol (Acid strength)
- d) Aniline > Cyclohexylamine > Benzamide (Base strength)
- 109 The product *P* in the reaction,

0.

c)
$$C-NH_2$$


- 109 What is the product in the reaction
- 2. $CH_3MgBr \xrightarrow{(i)CO_2} X?$
 - a) Acetaldehyde
- b) Acetic acid
- c) Formic acid
- d) Formaldehyde

 $\frac{109}{2} \text{ Ph} - \text{C} \equiv \text{C} - \text{CH}_3 \xrightarrow{\text{Hg}^{2+}/\text{H}^+} A, A \text{ is}$

b) Ph

- 109 Organic compounds are studied separately from others, because:
- 4.
- a) Organic compounds do not confirm to the laws of chemical combination
- b) Organic compounds are all covalent, while inorganic compounds are electrovalent
- c) Special characteristics if carbon compounds like catenation, formation of compounds both with electropositive and electronegative elements and their tendency to show isomerism
- d) It appears a convenient way of study
- 109 Identify the product *Y* in the following reaction sequence

5.
$$CH_2$$
— CH_2 — COO $Ca \xrightarrow{Heat} X \xrightarrow{Zn$ — Hg
 $HCl, heat$

- a) Pentane
- b) Cyclobutane
- c) Cyclopentane
- d) Cyclopentanone
- 109 A liquid was mixed with ethanol and a drop of concentrated H_2SO_4 was added. A compound with a fruity
- 6. smell was formed. The liquid was
 - a) CH₃OH
- b) HCHO
- c) CH₃COCH₃
- d) CH₃COOH

109 Aldehydes are first oxidation product of:

7.

a) Primary alcohols

b) Secondary alcohols

c) Tertiary alcohols

d) Dihydric alcohols

: ANSWER KEY:														
1)	b	2)	b	3)	С		189		190)	a	191)	d	192)	a
5)	d	-) 6)	c	7)	c	8) b	1		194)	С	195)	d	196)	c
9)	d	10)	b	11)	a	12) b			198)	С	199)	a	200)	c
13)	С	14)	С	15)	d	16) c	004		202)	С	203)	b	204)	a
17)	a	18)	b	19)	a	20) c			206)	b	207)	c	208)	d
21)	d	22)	d	23)	b	24) c	209) c	210)	b	211)	b	212)	a
25)	c	26)	b	27)	c	28) c	213) b	214)	b	215)	a	216)	c
29)	b	30)	b	31)	a	32) d	217) b	218)	b	219)	c	220)	b
33)	b	34)	a	35)	d	36) a	221) a	222)	b	223)	d	224)	d
37)	a	38)	b	39)	b	40) b	225) c	226)	a	227)	b	228)	d
41)	c	42)	b	43)	c	44) c	229) c	230)	b	231)	b	232)	b
45)	d	46)	a	47)	b	48) c	233) a	234)	b	235)	b	236)	d
49)	a	50)	a	51)	c	52) d	237) a	238)	d	239)	c	240)	a
53)	d	54)	C	55)	c	56) a	241) c	242)	b	243)	C	244)	a
57)	c	58)	C	59)	a	60) a	245) b	246)	c	247)	a	248)	c
61)	a	62)	d	63)	d	64) d	249) b	250)	a	251)	a	252)	C
65)	b	66)	C	67)	b	68) b	253) b	254)	d	255)	a	256)	d
69)	b	70)	C	71)	d	72) a	257) a	258)	d	259)	d	260)	a
73)	a	74)	a	75)	b	76) c	-		262)	b	263)	c	264)	c
77)	b	78)	b	79)	b	80) c	-		266)	a	267)	b	268)	d
81)	a	82)	b	83)	b	84) b	-		270)	a	271)	d	272)	d
85)	a	86)	a	87)	a	88) b	1 -		274)	c	275)	b	276)	C
89)	b	90)	b	91)	d	92) b	-		278)	b	279)	C	280)	d
93)	C	94)	a	95)	a	96) d	1		282)	d	283)	a	284)	d
97)	b	98)	C	99)	d	100) c	1 -		286)	a	287)	b	288)	b
101)	С	102)	d	103)	a	104) d	1 -		290)	a	291)	d	292)	c
105)	С	106)	a	107)	a	108) c	-		294)	a	295)	a	296)	d
109)	С	110)	b	111)	b	112) d			298)	b	299)	a	300)	С
113)	a	114)	d	115)	a	116) c	_		302)	b	303)	d	304)	a
117)	d	118)	d	119)	C	120) c	_		306)	b	307)	d	308)	b
121)	C h	122)	b	123)	b b	-	309		310)	C b	311)	C	312)	b
125) 129)	b	126)	a	127)	b	128) c	1		314)	b b	315)	d	316)	C h
133)	a d	130) 134)	d	131) 135)	a c	132) a 136) c	321		318) 322)	b	319) 323)	c b	320) 324)	b h
137)	u C	134)	c b	139)	b	-	325		326)	c c	323) 327)	b	324)	b
141)	a	142)	a	143)	a	-	329		330)	a	331)	C	332)	a c
145)	C	146)	d	147)	a	•	333		334)	d	335)	a	336)	b
149)	a	150)	b	151)	d	-	337		338)	d	339)	b	340)	a
153)	a	154)	d	151) 155)	c	-	341		342)	c	343)	d	344)	a
157)	c	158)	c	159)	b	=	345		346)	c	347)	c	348)	c
161)	b	162)	С	163)	a	-	349		350)	b	351)	c	352)	b
165)	a	166)	c	167)	a	-	353		354)	a	35 1)	b	356)	b
169)	c	170)	a	171)	b	-	357		351) 358)	d	359)	d	360)	b
173)	b	174)	a	175)	a	-	361		362)	c	363)	b	364)	c
177)	b	178)	a	179)	d	-	365		366)	b	367)	a	368)	c
181)	d	182)	d	183)	a	-	369		370)	c	371)	b	372)	a
185)	c	186)	b		a	-	373		374)	a	37 5)	b	37 6)	c
	_	,		20,,	•	200, u	13.3	, -			<i>5.0</i> j	~	<i></i>	

377)	b	378)	d	379)	b	380) a	581)	С	582)	a	583)	d	584)	c
381)	c	382)	b	383)	a	384) c	585)	c	586)	c	587)	b	588)	a
385)	b	386)	b	387)	a	388) b	589)	С	590)	b	591)	a	592)	a
389)	a	390)	a	391)	c	392) b	593)	b	594)	a	595)	b	596)	b
393)	d	394)	c	395)	b	396) b	597)	c	598)	d	599)	c	600)	c
397)	c	398)	b	399)	b	400) b	601)	b	602)	a	603)	a	604)	d
401)	c	402)	a	403)	a	404) b	605)	С	606)	c	607)	d	608)	c
405)	c	406)	d	407)	a	408) c	609)	d	610)	a	611)	c	612)	a
409)	c	410)	a	411)	d	412) a	613)	С	614)	a	615)	d	616)	a
413)	c	414)	b	415)	c	416) d	617)	С	618)	d	619)	b	620)	b
417)	b	418)	c	419)	c	420) a	621)	b	622)	С	623)	a	624)	b
421)	d	422)	b	423)	b	424) c	625)	b	626)	d	627)	b	628)	a
425)	a	426)	a	427)	b	428) c	629)	d	630)	С	631)	c	632)	c
429)	a	430)	С	431)	c	432) b	633)	d	634)	b	635)	c	636)	d
433)	b	434)	b	435)	a	436) b	637)	a	638)	b	639)	b	640)	c
437)	c	438)	С	439)	b	440) c	641)	d	642)	b	643)	b	644)	c
441)	b	442)	С	443)	С	444) a	645)	b	646)	b	647)	a	648)	С
445)	a	446)	С	447)	a	448) d	_	С	650)	С	651)	d	652)	c
449)	b	450)	a	451)	b	452) b	·	d	654)	b	655)	a	656)	d
453)	d	454)	С	455)	b	456) a		С	658)	b	659)	С	660)	b
457)	a	458)	a	459)	b	460) c	661)	С	662)	a	663)	b	664)	С
461)	a	462)	С	463)	a	464) c	665)	b	666)	a	667)	С	668)	d
465)	d	466)	a	467)	b	468) b		b	670)	b	671)	С	672)	a
469)	c	470)	b	471)	b	472) c	673)	b	674)	a	675)	С	676)	b
473)	a	474)	b	475)	b	476) d		d	678)	a	679)	a	680)	С
477)	b	478)	c	479)	d	480) d		d	682)	a	683)	b	684)	d
481)	b	482)	a	483)	a	484) d		a	686)	a	687)	a	688)	b
485)	c	486)	a	487)	a	488) a	6000	С	690)	c	691)	d	692)	b
489)	a	490)	a	491)	С	492) b		С	694)	c	695)	b	696)	b
493)	c	494)	d	495)	d	•	697)	b	698)	a	699)	c	700)	c
497)	c	498)	b	499)	a		701)	d	702)	a	703)	С	704)	d
501)	a	502)	a	503)	С	-	705)	a	706)	b	707)	a	708)	С
505)	a	506)	С	507)	d	-	709)	a	710)	b	711)	b	712)	b
509)	a	510)	С	511)	b	-	713)	С	714)	b	715)	c	716)	c
513)	c	514)	С	515)	b	-	717)	С	718)	d	719)	a	720)	b
517)	c	518)	d	519)	a	-	721)	a	722)	С	723)	С	724)	d
521)	a	522)	d	523)	b	-	725)	С	726)	d	727)	b	728)	a
525)	c	526)	b	527)	a	-	729)	d	730)	a	731)	a	732)	b
529)	b	530)	b	531)	С	-	733)	d	734)	d	735)	b	736)	c
533)	a	534)	b	535)	С	=	737)	b	738)	a	739)	d	740)	c
537)	c	538)	b	539)	d	-	741)	С	742)	a	743)	d	744)	d
541)	d	542)	b	543)	c	-	745)	b	746)	c	747)	a	748)	b
545)	a	546)	b	547)	a	-	749)	a	750)	d	751)	d	752)	b
549)	d	550)	d	551)	a	-	753)	a	754)	d	755)	a	756)	b
553)	a	554)	b	55 5)	d	=	757)	b	75 1)	c	759)	b	760)	d
557)	b	558)	a	559)	b	-	761)	c	762)	b	763)	a	764)	b
561)	b	562)	a	563)	b	-	765)	С	766)	a	767)	c	768)	b
565)	b	566)	d	567)	a	-	769)	c	770)	b	771)	a	772)	b
569)	d	570)	a	571)	b	-	773)	a	774)	c	775)	a	77 2) 776)	c
573)	a	574)	b	57 1)	c	•	777)	d	771)	d	779)	a	770) 780)	a
577)	d	578)	d	579)	d	-	781)	a	782)	c	783)	b	784)	d
· <i>)</i>	-	,		,		, 5	,			-	,	_	,	

785)	b	786)	a	787)	d	788) b	945)	d	946)	b	947)	d	948)	d
789)	b	790)	a	791)	a	792) c	949)	a	950)	b	951)	a	952)	b
793)	c	794)	C	795)	b	796) b	953)	b	954)	c	955)	b	956)	d
797)	d	798)	d	799)	a	800) d	957)	c	958)	b	959)	b	960)	b
801)	c	802)	C	803)	b	804) d	961)	d	962)	b	963)	a	964)	c
805)	a	806)	b	807)	d	808) b	965)	a	966)	b	967)	b	968)	a
809)	c	810)	c	811)	a	812) c	969)	c	970)	a	971)	d	972)	a
813)	b	814)	c	815)	d	816) a	973)	b	974)	d	975)	d	976)	c
817)	b	818)	a	819)	b	820) a	977)	c	978)	c	979)	c	980)	d
821)	c	822)	a	823)	a	824) a	981)	c	982)	a	983)	d	984)	b
825)	b	826)	b	827)	a	828) a	985)	d	986)	d	987)	b	988)	c
829)	c	830)	b	831)	a	832) b	989)	a	990)	b	991)	a	992)	d
833)	b	834)	a	835)	C	836) c	993)	d	994)	d	995)	C	996)	c
837)	c	838)	c	839)	a	840) c	997)	a	998)	b	999)	C	1000)	d
841)	b	842)	d	843)	d	844) b	1001)	d	1002)	a	1003)	b	1004)	c
845)	c	846)	a	847)	d	848) b	1005)	c	1006)	a	1007)	d	1008)	c
849)	b	850)	d	851)	C	852) b	1009)	c	1010)	b	1011)	C	1012)	b
853)	c	854)	b	855)	d	856) d	1013)	b	1014)	b	1015)	a	1016)	d
857)	b	858)	C	859)	d	860) a	1017)	b	1018)	a	1019)	d	1020)	b
861)	d	862)	d	863)	a	864) a	1021)	c	1022)	b	1023)	a	1024)	c
865)	b	866)	b	867)	d	868) c	1025)	d	1026)	c	1027)	a	1028)	c
869)	C	870)	c	871)	d	872) b	1029)	d	1030)	c	1031)	b	1032)	c
873)	b	874)	a	875)	a	876) c	1033)	c	1034)	c	1035)	d	1036)	c
877)	a	878)	C	879)	d	880) c	1037)	c	1038)	c	1039)	C	1040)	c
881)	b	882)	b	883)	c	884) c	1041)	d	1042)	c	1043)	d	1044)	c
885)	a	886)	a	887)	d	888) d	1045)	c	1046)	b	1047)	a	1048)	c
889)	a	890)	d	891)	C	892) a	1049)	c	1050)	d	1051)	d	1052)	a
893)	b	894)	b	895)	c	896) a	1053)	b	1054)	a	1055)	d	1056)	d
897)	c	898)	a	899)	a	900) c	1057)	b	1058)	d	1059)	a	1060)	C
901)	d	902)	b	903)	d	904) b	1061)	c	1062)	c	1063)	d	1064)	C
905)	d	906)	d	907)	b	908) d	_		1066)		1067)	b	1068)	a
909)	a	910)	C	911)	C	912) b	1069)	a	1070)	b	1071)	a	1072)	a
913)	b	914)	C	915)	a	-	1073)		1074)	c	1075)		1076)	C
917)	c	918)	d	919)	a	-	1077)		1078)		1079)		1080)	
921)	d	922)	C	923)	C	-	1081)		1082)		1083)	b	1084)	C
925)	c	•	b	927)	C	-	1085)		1086)		1087)		1088)	d
929)	c	-	b	-	b	-	1089)		1090)		1091)		1092)	
933)	a	934)	d	935)		-	1093)		1094)	c	1095)	C	1096)	d
937)	a	938)	b	939)	b	940) d	1097)	a						
941)	b	942)	a	943)	c	944) b								

: HINTS AND SOLUTIONS :

1 **(b)**

 $CHCl_3 \xrightarrow{HOH} CH(OH)_3 \rightarrow HCOOH$

2 **(b**)

$$\begin{array}{c|c} O & O \\ \parallel & \parallel \\ CH_3-C-CH_2-C-OC_2H_5 \end{array} \xrightarrow{NaOH+I_2} \text{no reaction} \\ \text{keto-ester } (A) \\ \downarrow \text{KOH/HOH} \end{array}$$

$$CH_3$$
 $-C$ $-CH_2$ $-C$ $-CH_3$ $-C$ $-CH_4$ $-C$ $-CH_5$ $-$

$$CH_3$$
- C - CH_2
 CH_3 - C - CO_2
 CH_3 - C - CH_3

The keto-ester (A) does not give haloform reaction inspite of the presence of CH_3CO- group in it. The reason is the presence of active methylene group (ie, $-CH_2-$), which prevents the conversion of CH_3CO- to CX_3CO-

3 **(c**

Formaldehyde reacts with $\mathrm{NH_3}$ to form urotropine which is used as medicine to cure urinary infections.

6HCHO + $4NH_3 \rightarrow (CH_2)_6N_4$ Formaldehyde ammonia hexamethylene tetramine urotropine

4 **(d)**

Aldehydes and ketones having $\alpha\text{-hydorgen}$ atom undergo aldol condensation in presence of dilute base

$$\begin{array}{c} \text{CH}_3-\text{CH}_2-\text{CHO} + \text{H-CH-CHO} \xrightarrow{\begin{subarray}{c} \textbf{Dil. alkali} \\ \textbf{CH}_3 \end{subarray}} \\ \text{CH}_3\text{CH}_2-\text{CH-CH-CHO} \\ \text{OH CH}_2 \end{subarray}$$

5 **(d**

 $CH_3CHO \xrightarrow{[0]} CH_3COOH$

6 **(c)**

Acetic acid reacts with PCl₅ to form acetyl chloride

 ${
m CH_3COOH + PCl_5} \longrightarrow {
m CH_3COCl + POCl_3 + HCl}$ acetic acid acetyl chloride

9 **(d)**

 C_6H_5COOH is solid, less soluble in water and burn with smoky flame.

11 (a)

 $CH_2Cl_2 \xrightarrow{HOH} HCHO$

12 **(b)**

When aromatic carboxylic acids are subjected to Birch reduction (ie, Na or K in NH $_3$ and an alcohol), 1, 4-additional of hydrogen takes place and 1, 4-cyclohexadiene carboxylic acids are produced

13 **(c)** Picric acid is 2,4,6-trinitrophenol.

14 **(c**)

Herbicides are the substances that kills plants or inhibit their growth. Selective herbicides affect only particular plant types, making it possible to attack weeds growing among cultivated plants.

15 **(d)**

Carbonyl compounds are reduced to corresponding alkanes with (Zn+ conc.HCl). It is called Clemmensen reduction.

$$\begin{array}{c} \text{O} \\ \text{||} \\ \text{CH}_3\text{CH}_2\text{. C} - \text{CH}_3 \xrightarrow{\text{Zn(Hg)} + \text{HCl}} \text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_3 \end{array}$$

16 (0

Aluminium tertiary butoxide is an oxidising agent used for the oxidation of secondary alcohols into ketones.

$$\begin{array}{c} \operatorname{CH}_3 - \operatorname{CH}_2 - \operatorname{CH} - \operatorname{CH}_2 - \operatorname{CH}_3 \\ | \\ \operatorname{OH} \\ 3\text{-pentanol} \\ \xrightarrow{\operatorname{Al[OCMe}_3]_3/\operatorname{acetone}} \operatorname{CH}_3 - \operatorname{CH}_2 - \operatorname{C} - \operatorname{CH}_2 - \operatorname{CH}_3 \\ | \\ \operatorname{O} \\ 3\text{-pentanone} \end{array}$$

18 (b)

The silver salt of fatty acid on refluxing with an alkyl halide, give an ester.

$$RCOOAg + R'Cl \xrightarrow{\Delta} RCOOR' + AgCl$$
 ester

19

$$CH_3COCH_3 \xrightarrow{SeO_2} CH_3CO \cdot CHO + Se + H_2O$$

20

1, 2 diketone undergoes rearrangement to αhydroxy carboxylic acid in presence of base. This reaction is known as benzilic acid rearrangement

23 (b)

In the given compound, carbonyl group is reduced to - OH group by NaBH₄ and it does not affect double bond. The another is hydroborationoxidation reaction, in which one water molecule is added to double bond

$$\begin{array}{c|c} NaBH_4 & H_2C = \\ & O & B_2H_6, H_2O_2 \\ & OH^* \\ & H_2C = \\ & OH^* \\ & H_2C = \\ & OH^* \\ & O$$

26 (b)

$$CH_3CHO \xrightarrow{Na/C_2H_5OH} CH_3CH_2OH$$

28 (c)

- Acidity decreases with increase in number | 32 1. of carbon atoms in carboxylic acid.
- 2. Solubility of carboxylic acid decrease with increase in number of carbon atoms. Higher acids are insoluble in H_2O .
- 3. Boiling points of acids are higher than corresponding alcohols due to greater extent of hydrogen bonding.

 \therefore (c) is correct answer.

29 (b)

$$H_3C-CH-CH=CH-CH_3$$
|
OH
 $H_3C-C-CH=CH-CH_3$
|
O

Only suitable reagent is chromic anhydride in glacial acetic acid. Other will also effect (C=C) bond.

30 (b)

In the Rosenmund's reaction the acid chlorides are converted to corresponding aldehydes by catalytic reaction. This reaction is carried in the presence of palladium deposited over barium, sulphate.

$$\begin{array}{c} O \\ || \\ CH_3-C-Cl+H_2 \xrightarrow{Pd,BaSO_4} CH_3CHO+HCl \\ Acetyl \ chloride \end{array}$$

31 (a)

In Claisen condensation aromatic aldehydes having no α —hydrogen atom react with aldehyde, ketones or esters having α —hydrogen atom in presence of dilute alkali to form

 α , β —unsaturated carbonyl compound. e.g.,

Claisen condensation is not given by

As it does not contain α —hydrogen atom.

Methyl salicylate an ester has smell of oil of winter green and used as medicine in iodex; the pain reliever of strains in muscles.

33 (b)

Rosenmund's reaction involves reduction of acid chlorides to aldehydes by the action of H2 in presence of Pd/BaSO₄. BaSO₄ acts as poison for Pd and prevents further reduction of aldehydes to alcohol.

34 (a)

After treatment with D_2O , the H^+ ion of -OHgroup is replaced by D+ ion, because of being more reactive than deuterium

$$CH_3 - C = CH_2 \xrightarrow{D_2O} CH_3 - C = CH_2$$

35 **(d)**

$$\mathsf{CH}_3\mathsf{COOH} \xrightarrow{\mathsf{NH}_3} \mathsf{CH}_3\mathsf{COONH}_4 \xrightarrow[-\mathsf{H}_2\mathsf{O}]{\Delta} \mathsf{CH}_3\mathsf{CONH}_2$$

acetic acid $\,$ ammonium acetate $\,$ acetamide The isomers of CH_3CONH_2 is

4. NH₂CH₂CHO

5.
$$CH_3 - CH = NOH$$

6.
$$H - CONH - CH_3$$

38 **(b**)

$$\begin{aligned} \mathsf{CH_3COOCH_3} + \mathsf{C_2H_5OH} &\rightarrow \mathsf{CH_3COOC_2H_5} \\ &+ \mathsf{CH_3OH} \end{aligned}$$

40 **(b**)

Cinnamaldehyde is prepared by the Claisen reaction between benzaldehyde and acetaldehyde

$$C_6H_5CHO + CH_3CHO \xrightarrow{NaOH} C_6H_5OH$$

= $CHCHO + H_2O$

cinnamaldehyde

41 **(c)**

2CH₃COOH
$$\stackrel{P_2O_5}{\longrightarrow}$$
 (CH₃CO)₂O + H₂O P₂O₅ acts as dehydrating agent.

44 **(c)**

Carbonyl compound +

HCN \rightarrow cyanohydrin $\xrightarrow{H_2O/H^+}$ hydroxy acid Latic acid is

$$H_3C-C-H + HCN \xrightarrow{H^+}$$
 acetaldehyde

: Cyanohydrin of acetaldehyde forms lactic acid.

46 (a)

$$\begin{array}{c}
R \\
H
\end{array}
C=0 \xrightarrow{HCN}
\begin{array}{c}
R \\
C
\end{array}
COH$$

$$\xrightarrow{\text{HOH}} \xrightarrow{R} \text{C-OH}$$

Carbon is asymmetric.

48 **(c)**

Carboxylic acids are prepared by reaction of Grignard reagent with CO₂.

- : Formic acid (HCOOH)has only one carbon atom
- ∴ Formic acid cannot be prepared from Grignard reagent.

$$\begin{array}{c} 0 \\ || \\ RMgX + CO_2 \rightarrow R - C - OMgX \xrightarrow{HOH} RCOOH \\ Grignard reagent & acid \end{array}$$

51 **(c)**

Lactic acid on heating with conc. H_2SO_4 to give acrylic acid

CH₃-C-COOH
$$\frac{\Delta}{\text{Conc H}_2\text{SO}_4}$$
 CH₂=CH-COOH acrylic acid lactic acid

52 **(d)**

When urea is heated it gives the biurate which give violet colour with CuSO₄ and NaOH.

56 (a

An immiscible solvent is added to the solution. Some of the solute passes in this solvent maintaining Nernst distribution law $K=\frac{C_1}{C_2}$, where C_1 and C_2 are concentration of solute in two phases.

57 **(c)**

Electron withdrawing group (-Ieffect) stabilizes the anion, and thus increases acidic nature. Thus (c), (d)> (a), (b) acidic Farther the electron withdrawing group from the -COOH group, its effect in increasing acid strength decreases thus (c) with Cl at α -position is stronger than (d) with Cl at γ -position.

58 **(c)**

When, benzene is heated with acetyl chloride, in presence of anhydrous $AlCl_3$, electrophilic substitution takes place and acetophenone is obtained. The reaction is known as Friedel-Craft acylation.

59 (a) : $6HCHO + 4NH_3 \rightarrow (CH_2)_6N_4 + 6H_2O$ hexamethylene tetramine

60 **(a)**

4-methyl benzene sulphonic acid is stronger than acetic acid thus, it will release acetic acid from sodium acetate.

61 **(a)** $RCOOH \xrightarrow{PCl_5} RCOCl.$

63 **(d)**

Clemmensen reduction can be used to convert acetophenone into ethyl benzene as it reduce >C=0 group into $>CH_2$

64 **(d)**

Carboxylic acids reacts with weaker bases such as bicarbonates producing CO_2 . The CO_2 evolved comes from NaHCO₃, not from carboxylic group as shown below :

$$CH_{3}CH_{2}-\overset{\bigcirc{}}{C}-\overset{\bigcirc{}}{O}-\overset{\bigcirc{}}{H}+\overset{\bigcirc{}}{Na^{+}}\overset{\bigcirc{}}{O}-\overset{\bigcirc{}}{C}-OH$$

$$CH_{3}CH_{2}-\overset{\bigcirc{}}{C}-\overset{\bigcirc{}}{O}-\overset{\bigcirc{}}{Na^{+}}+\overset{\bigcirc{}}{H}-\overset{\bigcirc{}}{O}-\overset{\bigcirc{}}{C}-OH$$

$$carbonic acid$$

 $CO_2 + H_2O$

67 **(b)**

Iso-propyl magnesium bromide reduces di-*iso*-propyl ketone to secondary alcohol. However, only – H⁺ ion adds to ketone in spite of bulky alkyl group due to steric hinderance

$$H_3C$$
 CH
 CH
 CH
 CH_3
 CH_3

$$\begin{array}{c|c} & \text{MgBr} \\ \text{CH-CH}_3 \\ \text{(CH}_3)_2 - \text{CH}_2 & || \\ \text{(CH}_3)_2 \text{CH} & \text{H} \end{array}$$

six membered cyclic transition state

$$\begin{array}{c} \text{CH}_2 = \text{CH} - \text{CH}_3 + \\ & \text{(CH}_3)_2 \text{CH} - \text{OMgBr} \\ & \text{(CH}_3)_2 \text{CH} \\ & \text{HOH} \\ & \text{OH} \\ & \text{CH} - \text{CH} - \text{CH} \\ & \text{CH}_3 \\ & \text{CH} - \text{CH} - \text{CH} \\ & \text{CH}_3 \end{array}$$

68 **(b**)

In (a) *t*-alcohol, in (c) initially *s*-alcohol converting to ether. In (d) *p*-alcohol.

69 **(b)**Carbonyl carbon becomes more reactive towards

nucleophilic addition depending upon the magnitude of the positive charge on the carbonyl carbon atom. The introduction of negative inductive effect showing group (-Ieffect) increases the reactivity while introduction of alkyl group (+Ieffect) decreases the reactivity. So, large alkyl group decreases the reactivity of > C=0.

71 **(d)**

Unsaturated ketones may be converted to unsaturated acids by sodium hypohalite, *i.e.*, NaOCl, NaOI, etc.

72 **(a)**

The b.p. are $CH_3CONH_2 > (CH_3CO)_2O > CH_3COOH > CH_3COCI$

222°C 139°C 116°C

52°C

73 **(a)**

Cl⁻ is the best leaving group being the weakest nucleophile out of NH₂-, Cl⁻, O⁻

$$-C_2H_5$$
 and $O^- - C - CH_3$.

74 **(a)**

Former reacts with aq. NaHCO₃.

75 **(b)**

 CO_2 adds to Grignard's reagent to yield acids. $CO_2 \xrightarrow{CH_3MgI} CH_3COOMgI \xrightarrow{H.OH} CH_3COOH + Mg(OH)I$

78 **(b**)

All methyl ketones give iodoform test.

80 **(c)**

This is an example of Cannizaro reaction

$$\begin{array}{c} \bullet \\ \bullet \\ \text{lactone} \end{array} \begin{array}{c} \bullet \\ \bullet \\ \text{CH}_2\text{OH} \end{array}$$

82 **(b)**

Grignard reagent = CH_3MgX Clemmensen reduction=Zn - Hg/Conc HClRosenmund reduction= $H_2/Pd - BaSO_4$ Wolff-Kishner reduction= $N_2H_4/KOH/CH_2OH$

CH₂OH

84 (b)

Decarboxylation of malonic acid give acetic acid

$$CH_2 \stackrel{COOH}{\longleftarrow} CH_3COOH + CO_2$$
malonic acid

85 (a)

> Amides, on treating with HNO_2 , give acids. $CH_3CONH_2 \xrightarrow{NaNO_2/HCl} CH_3COOH + N_2 + H_2O$

87 (a)

> Acetyl nitrate is formed, when acetic anhydride reacts with nitrogen pentoxide.

$$\begin{array}{c|c} \text{CH}_3\text{CO} & + & \text{N}_2\text{O}_5 & \longrightarrow \text{2CH}_3\text{CONO}_2 \\ \text{CH}_3\text{CO} & \text{nitrogen} & \text{acetyl nitrate} \\ \text{acetic anhydride} & \text{pentoxide} \end{array}$$

(b)

Fenton's reagent is $FeSO_4 + H_2O_2$.

89

In Clemmensen's reduction Zn — Hg/conc . HCl is used

$$C=O + 4H\frac{Zn - Hg + conc. HCl}{CH_2 + H_2O}$$

This method is used to convert carbonyl compound into alkane.

91 **(d)**

93 (c)

> Bezaldehyde does not yield a simple addition product with ammonia, but forms a complex product, hydrobenzamide (90%)

$$C_6H_5CHO \xrightarrow{NH_3} C_6H_5 - C - NH_2$$

$$\xrightarrow{-\text{H}_2\text{O}}$$
 C₆H₅-CH=NH

$$C_6H_5$$
-CH=N[H] + HN]=CH-C $_6H_5$ -NH $_3$

$$C_6H_5$$
— CH — N
 CH — C_6H_5
 C_6H_5 — CH — N
hydrobenzamide

94 **(a)**

The order of the acidic characters of acid derivative or their ease of hydrolysis with alkali is given below:

$$CH_3COCl > CH_3CO - O - COCH_3 > CH_3COOC_2H_5$$

> CH_3CONH_2

95 **(a)**

It is adipic acid.

97

$$\mathsf{CH}_2 \!\!=\!\! \mathsf{CHCHO} \xrightarrow{\mathsf{Reduction}} \mathsf{CH}_3 \mathsf{CH}_2 \mathsf{CH}_2 \mathsf{OH}$$

99 **(d)**

Stearic acid (C₁₇H₃₅COOH), palmitic $(C_{15}H_{31}COOH)$ and oleic acid $(C_{17}H_{33}COOH)$; an unsaturated acid) are fatty acids.

102 (d)

The given reaction is an example of Diels-Alder reaction, which is a cycloaddition

$$\begin{array}{c|c} & & CH_2 \\ & & CH-COOH \end{array} \xrightarrow{\Delta} \begin{array}{c} & & \\ & &$$

103 (a)

On complete oxidation the obtained compound shows increment in molecular weight of only 16. It means only one oxygen atom is added here. This condition is fulfilled by only aldehyde which on oxidation gives acid.

$$RCHO \xrightarrow{[O]} RCOOH$$

∴ Original compound must be

$$CH_3CHO \xrightarrow{[0]} CH_3COOH$$

mol. wt. 44 mol.wt.60

104 (d)

Former reacts with *aq*. HCl.

106 (a)

% ratio of C: H::6:1 and C:0::3:4

: % ratio of C : H : O :: 6 : 1 : 8

%/at. wt.

$$\% C = \frac{6}{15} \times 100 = 40$$

$$\% H = \frac{1}{15} \times 100 = 6.66$$

$$\% O = \frac{8}{15} \times 100 = 53.3$$

$$\% Simplest ratio of C : H : 0 : : 1 : 2 : 1 i.e. CHarmonic Characteristics of C : H : 0 : : 1 : 2 : 1 i.e. CHarmonic C : H : 0 : : 1 : 2 : 1 i.e. CHarm$$

 \therefore Simplest ratio of C: H: 0::1:2:1, i. e., CH₂O

107 (a)

$$2KCNO + (NH_4)_2SO_4 \rightarrow 2NH_4CNO + K_2SO_4$$

$$NH_4CNO \xrightarrow{\Delta} NH_2CONH_2$$
urea

108 (c)

2-pentanone and 3-pentanone can be distinguished by iodoform test.

CH₃COCH₂CH₂CH₃(2-pentanone) gives positive iodoform test while CH₃CH₂COCH₂CH₃ (3pentanone) doesn't give iodoform test.

110 **(b)**

A 40% solution of formaldehyde in water, called formalin, is used for the preservation of biological and anatomical species

111 **(b)**

Aldol condensation is given by acetaldehyde due to the presence of α -hydrogen atom.

$$\begin{array}{c} {\rm CH_3CHO} + {\rm H.\,CH_2CHO} \xrightarrow{\rm Dil.NaOH} {\rm CH_3} - {\rm CH} - {\rm CH_2} \\ - {\rm CHO} \end{array}$$

OHaldol

112 (d)

These reactions lead to replacement of oxygen atom of carbonyl group to form hydrazones and

114 (d)

$$C = \frac{38.7}{12} = 3.22 = \frac{3.22}{3.22} = 1$$

$$H = \frac{9.67}{1} = 9.67 = \frac{9.67}{3.22} = 3$$

$$O = \frac{51.63}{16} = 3.22 = \frac{3.22}{3.22} = 1$$

∴ Empirical formula is CH₃O

115 (a)

$$CH_3COC1 \xrightarrow{Pd/BaSO_4} CH_3CHO + HC1$$
(A)

CH₃COCl is the isomer of CH₂ClCHO · CH₃CHO is the isomer of oxirane ie

117 (d)

: Nitration of urotropine gives powerful explosive. 132 (a)

118 (d)

$$RCOOH + N_3H \rightarrow RNH_2 + CO_2 + N_2$$

121 (c)

The solution produces CuO in it.

122 **(b)**

Stephen's reduction Aldehyde can be prepared from alkyl cyanides. e.g.,

$$CH_3 - C \equiv N + 2[H] \xrightarrow{SnCl_2/HCl} CH_3 - CH$$

= NH. HCl

 \downarrow H₂O/H⁺

 $CH_3CHO + NH_4Cl$ acetaldehyde

123 **(b)**

Aldehydes, which have no α -hydrogen atom, undergo Cannizaro reaction is presence of conc. NaOH and yield an alcohol and an acid salt. (Disproportionation).

 $2C_6H_5CHO \xrightarrow{NaOH} C_6H_5CH_2OH + C_6H_5COONa$ benzaldehyde benzvl alcohol

125 **(b)**

$$RCOOR' + NH_3 \rightarrow RCONH_2 + R'OH$$

 $CH_3COCl + NaCOOCCH_3 \rightarrow (CH_3CO)_2O + NaCl$

127 **(b)**

$$C_2H_6 + \frac{7}{2}O_2 \rightarrow 2CO_2 + 3H_2O$$

128 (c)

$$\begin{array}{c} \text{CH}_3\text{CH}_2\text{COOH} \xrightarrow{\text{NH}_3} \text{CH}_3\text{CH}_2\text{CONH}_2 \\ \text{Propionic acid} & \text{propionamide} \\ & (\textit{X}) \\ \hline \xrightarrow{\text{Br}_2 + \text{KOH}} \text{CH}_3\text{CH}_2\text{NH}_2 \xrightarrow{\text{HNO}_2} \text{CH}_3\text{CH}_2\text{OH} \\ & \text{Ethyl amine} & \text{ethyl alcohol} \end{array}$$

(Y)

129 **(a)**

The acidic strength of dicarboxylic acids decreases as the number of methyl groups increases, because of their +I effect

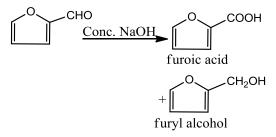
(Z)

130 (d)

Oppenauer oxidation;

Meerwein - Ponndorf - Verley reaction. R_2 CO + [(CH₃)₂CHO]₃Al \rightarrow CH₃COCH₃ + $[R_2CHO]_3Al$

$$less$$
 R_2 CHOH


131 (a)

Addition according to Markownikoff's rule.

In Cannizaro reaction when formaldehyde reacts with other aldehydes lacking α-hydrogen, it is always oxidized and other aldehyde is reduced

HCHO +
$$C_6H_5CHO \xrightarrow{NaOH} HCOO^-Na^+$$

+ $C_6H_5CH_2OH$

134 (c)

It is an example of Cannizaro's reaction.

135 (c)

$$Br_2HCCBr_2COOH \xrightarrow{Sodalime} CHBr_2CHBr_2$$

136 (c)

All aldehydes reduce Fehling's solution to give red ppt. of Cu_2O .

138 **(b)**

CH₃CH₂CH₂COOCH₃; has banana odour.

139 **(b)**

This is internal Cannizzaro's reaction.

143 (a)

$$(i) O_{3}$$

$$(ii) Zn, H_{2}O$$

$$(ii) NaOH (aq)$$

$$(ii) Heat$$

For aldol condensation C-5 and C-7 can attack to C-1 similarly C-2 and C-10 can attack to C-6 but all give same product.

144 **(c)**

$$(CH_3CH_2COO)_2Ca \rightarrow CH_3CH_2COCH_2CH_3 + CaCO_3$$

146 (d)

Aldehyde containing no α -H-atom on reaction with 50% NaOH or KOH, undergo disproportionation to give an alcohol and Na or K salt of an acid. This reaction is called Cannizaro reaction. Acetaldehyde does not show Cannizaro reaction due to presence of α -hydrogen atom

147 (a)

$$\mathsf{CH_3CH_2CH_2OH} \xrightarrow[\mathsf{H_2So_4}]{\mathsf{K_2Cr_2O_7}} \mathsf{CH_3CH_2CHO}$$

155 (c)

$$C_4H_9OCl \xrightarrow{NH_3} C_4H_9ONH_2 \xrightarrow{Br_2^+} CH_3CH_2CH_2NH_2$$

Thus, C_4H_9OCl should be $CH_3CH_2CH_2COCl$.

156 (c)

$$CH_3CH_2CHOHCH_3 \xrightarrow{[0]} CH_3CH_2COCH_3$$

160 **(d)**

$$R \longrightarrow CHO + 2CuO \longrightarrow RCOOH + Cu_2O$$

167 **(a)**

Acetic acid is CH_3COOH or $C_2H_4O_2$. Thus, its empirious

170 (a)

7. (B)

propanol

$$\xrightarrow{\text{H}_2\text{NCONHNH}_2} \text{CH}_3\text{CH}_2\text{CH} = \text{NNHCONH}_2$$
(C)

propanal

148 **(b)**

$$CH_3CN \xrightarrow{HOH} CH_3COOH$$

152 **(c)**

40% aqueous solution of formaldehyde (methanal) is called as formalin.

Note Formalin used as disinfectant and preservative for biological specimens.

153 (a)

 ${\rm LiAlH_4}$ is a strong reducing agent, which reduces carboxylic acids to corresponding primary alcohols as well as alkyl halide to alkenes, but donot reduce double bond

 $BrCH_2CH_2CH_2COOH \xrightarrow{LiAlH_4} CH_3CH_2CH_2CH_2OH$

154 **(d)**

The strength of carboxylic acid depends upon the nature of the electron withdrawing halogen atom. Greater the electron withdrawing influence of the halogen atom stronger will be the acid. The electron withdrawing effect of the halogen decreases as

Hence, $CH_2(I)$. COOH is the weakest acid among these.

The Arndt-Eistert synthesis is used to convert carboxylic acid to the higher acid homologue

 $RCOOH \xrightarrow{\text{(i) SOCl}_2} RCH_2COOH$

171 **(b)**

Less +ve inductive effect on carbonyl group and thus more +ve charge on C^{+} to give nucleophilic

addition.

$$\begin{array}{c} H_3C \\ \longrightarrow \\ C=O \\ \longrightarrow \\ H \end{array} \begin{array}{c} C^+-O^- \\ \end{array}$$

172 (a)

% of C =
$$\frac{12 \times 0.147}{44 \times 0.2} \times 100 = 20$$

% of H = $\frac{2 \times 0.12}{18 \times 0.2} \times 100 = 6.66$
 \therefore % of O = $100 - 20 - 6.66 = 73.34$

174 (a)

Resonance in carboxylate ions give rise to identical bond lengths.

175 **(a)**

2-hydroxypropane or secondary alcohol is oxidised into propanone (corresponding carbonyl compound because in 2-hydroxypropane, secondary alcoholic group is present and it is oxidised into ketone).

$$CH_{3} - CH - CH \xrightarrow{[O]} CH_{3} - C - CH_{3}$$

$$| \qquad | \qquad | \qquad | \qquad \qquad |$$

$$OH \qquad \qquad O$$
2-hydroxyprone propanone
(s-alcohol) (ketone)

176 (c)

Only aldehydes and ketones react with 2, 4-dinitrophenyl hydrazine to give orange coloured ppt. This reaction is used as test for carbonyl group. Alcohols does not give this reaction.

Choice (a), (b) and (d) are carbonyl compounds and they react with 2,4-dnitreophenyl hydrazine $CH_3OH[choice(c)]$ doesn't have carbonyl group. $CH_3OH[choice(c)]$ doesn't react with 2,4-dinitrophenyl hydrazine.

177 **(b)**

Carboxylic acids acids react with Grignard's reagent to give alkanes.

$$CH_3COOH + CH_3MgX \rightarrow CH_3COOMgX + CH_4$$

methane

179 (d)

2-pentanone give positive iodoform test.

180 **(b)**

Ethyl acetate is obtained by acetaldehyde by using aluminium ethoxide. It is a one step process and called Tischenko's reaction

2CH₃CHO
$$\frac{(C_2H_5O)_3Al}{Aluminium ethoxide}$$
 CH₃COOC₂H₅ ethyl acetate

182 (d)

Acids are soluble in bases.

183 **(a)**

Eq. of silver salt = Eq. of Ag $\frac{0.759}{E} = \frac{0.463}{108}$ Eq. wt. of ag salt = 177

 $\therefore \qquad \text{Eq. wt. of ag salt} = 177$

 \therefore Eq. wt. of acid = 177 - 108 +1 = 70

184 **(b)**

Acetaldehyde on heating with Tollen's reagent give silver mirror test while acetone is not oxidised by Tollen's reagent

(Ketones oxidise only under drastic condition).

185 (c)

Hydroxamic acid test is used to detect presence of esters.

In hydroxamic acid test a few crystals or a few drops of the substance is dissolved in 1 mL of 95% ethanol+1 mL of 1 MHCl. Then, a drop of 5% FeCl₃ is added.

Formation of characteristic colour shows the presence of acyl or ester group.

$$R \longrightarrow C \longrightarrow OR + H_2NOH \longrightarrow R \longrightarrow C \longrightarrow NHOH$$

$$FeCl_3 \longrightarrow \begin{bmatrix} O \\ H & C \longrightarrow NOH \end{bmatrix} Fe$$

186 **(b)**

LiAlH₄ reduces – COOH group to – CH₂OH group without affecting C=C bond.

187 (a)

$$\begin{split} \text{Benzaldehyde} & \xrightarrow{\text{Perkin reaction}} 3 - \text{phenyl prop} \\ & - 2\text{ene} - 1 - \text{oic acid.} \\ \text{C}_6\text{H}_5\text{CHO} + (\text{CH}_3\text{CO})_2\text{O} & \xrightarrow{\text{CH}_3\text{COONa}} \text{C}_6\text{H}_5\text{CH} \\ & = \text{CHCOOH} + \text{CH}_3\text{COOH} \\ & & \text{Cinnamic} \end{split}$$

acid

189 **(b)**

Methyl salicylate is the main component of oil of winter green. Its structure is

193 (c)

 α -hydroxy acids form lactides, γ and δ -hydroxy acids form lactones, (cyclic compounds). While β -hydroxy acids form α,β -unsaturated acid on heating

$$\begin{array}{c} \text{CH}_3\text{-CH}_2\text{-CH}_2\text{-CH-CH}_2\text{-C-OH} \xrightarrow{\Delta} \\ \text{OH} \end{array}$$

CH₃-CH₂CH₂CH=CH-C-OH

$$\alpha, \beta$$
 -unsaturated acid

194 (c)

This is Knovengeal reaction.

$$CH_3 \longrightarrow C=O \longrightarrow CH_3 \longrightarrow C-OH$$

$$H \longrightarrow CH_3 \longrightarrow CH_3$$

$$H \longrightarrow C-OH$$

$$CH_2CHO$$

195 (d)

For the conversion of primary alcohol into aldehyde with the same number of carbon, the most suitable reagent is pyridinium chlorochromate (PCC).

$$RCH_2OH \xrightarrow{PCC} RCHO$$

Note PCC is the mixture of pyridine, ${\rm CrO_3}$ and HCl in 1:1:1 ratio.

196 **(c)**

In 2, 4, 6-tri-nitrobenzoic acid, the decarboxylation takes place most easily, because of – I effect of nitro group, whereas in the dicarboxylic acid with one carbon atom having two carboxylic group it is also easier to remove CO_2 . Hence, the order of ease of decarboxylation

$$O_2N$$
 O_2N
 O_2N

$$>$$
 CH $_2$ =CH-CH $_2$ COOH $>$ CH $_3$ COOH

199 (a)

As the number and the size of the alkyl groups increases, reactivity decreases. Hence, the reactivity order is

$$H = O > H_3C = O > H_3C = O$$
 $(CH_3)_3C = O$
 $(CH_3)_3C = O$

200 (c)

Keto group is protected by ethylene glycol being reduced and ester radical of the compound is reduced to tertiary alcohol by reaction with Grignard reagent and subsequent hydrolysis

201 (c)

In Hell-Volhard Zelinsky reaction, when acid reacts with Br_2 or Cl_2 in presence of red phosphorus α -hydrogen atom of the acid is replaced by halogen atom. HCOOH does not give HVZ reaction due to absence of α -hydrogen atom

202 (c) $\frac{\text{Ba(OH)}_2}{300^{\circ}\text{C}} + \text{CO}_2$

Phthalic acid

In presence of Ba(OH)₂ when heated phthalic acid undergoes decarboxylation.

204 (a)

Wolff-Kishner's reaction involves reduction of carbonyl compound into alkane using alkaline hydrazine as reducing agent.

205 (a)

Benzoic acid, o-phthalic acid and acetophenone inspite of having double bonds, does not give unsaturation test (addition with $\mathrm{Br_2/CCl_4}$) as they are aromatic compounds and are quite stable due to large resonance energy. Cinnamic acid, on the other hand has a double bond outside the benzene ring (in the side chain) hence it gives unsaturation test.

206 **(b)**

$$\begin{array}{c|c} \text{CHO} & \text{COONa} \\ \hline \text{CHO} & \text{CH}_2\text{OH} \\ \hline \\ \hline \\ \hline \\ \text{H}^+ & \text{COOH} \\ \hline \\ \\ \text{CH}_2\text{OH} \\ \\ \\ \text{CH}_2\text{OH} \\ \\ \end{array}$$

This reaction is an example of intramolecular Cannizaro's reaction.

207 (c)

$$C=O+HCN \rightarrow C$$
 CN
 $C=O+NaHSO_3 \rightarrow C$
 SO_3Na

Note : only methyl ketones react with NaHSO₃.

208 (d)

Benzaldehyde lacks α —hydrogen atom, hence undergo Cannizaro reaction in which it disproportionate into benzyl alcohol and sodium benzoate.

$$2\mathsf{C}_6\mathsf{H}_5\mathsf{CHO} \xrightarrow{\mathsf{Conc.NaOH}} \mathsf{C}_6\mathsf{H}_5.\,\mathsf{CH}_2\mathsf{OH} + \mathsf{C}_6\mathsf{H}_5\mathsf{COOK}$$

209 **(c)**

Although it has α -H-atom but undergoes Cannizzaro's reaction; an exception.

211 **(b)**

Hydrazines react with alkanones to give an addition-elimination reaction and hydrazones are obtained.

$$C = O + H_2N.NHC_6H_5$$
 C=N.NHC₆H₅ + H₂O phenyl hydrazine phenyl hydrazone

212 **(a)**

 ${\rm C_5H_{12}O}$ must be a tertiary alcohol as it gives alkene on treatment with Cu. Thus ${\rm C_4H_8O}$ is a ketone.

213 **(b)**

$$HCOOH \xrightarrow{H_2SO_4} CO + H_2O$$

214 **(b**)

$$CCl_3CHO \xrightarrow{H_2O} CCl_3CH(OH)_2$$
Chloral hydrate

216 (c)

In the reaction of carboxylic acid with diazomethane, methyl esters are produced with liberation of N_2

217 **(b)**

$$(CH_3)_2CHOH \xrightarrow{[0]} (CH_3)_2CO$$

218 **(b)**

Aromatic aldehyde i.e., C_6H_5CHO are not able to reduce Fehling's solution but it gives Cannizaro's reaction with alkali.

220 **(b)**

$$RCOCl + NH_3 \rightarrow R - CONH_2$$

Acid chloride amide

223 **(d)**

$$3CH_3CHO \xrightarrow{H_2SO_4} (CH_3CHO)_{3Paraldehyde}$$

224 **(d**)

Crystallization of conc. solution separates out salts.

225 **(c)**

By distillation of red ant, formic acid is obtained.

226 (a)

228 **(d)**

When amide is heated with a mixture of Br_2 in the presence of NaOH or KOH amine is formed which has one carbon atom less than original amide. This is called Hofmann's degradation reaction. Hexanamide+ $Br_2 + 4KOH \rightarrow Pentanamine + K_2CO_3 + 2KBr + 2H_2O$

229 **(c)**

Semicarbazide is NH₂NHCONH₂.

230 **(b)**

Maleic acid contains intramolecular hydrogen bonding while Fumaric acid contains iuntermolecular bonding. Thus, maleic acid forms more stable maleate ion after the removal of H⁺. Hence maleric acid is stronger acid than Fumaric acid

233 **(a)**

$$RCOOK(aq.) \xrightarrow{Electrolysis} R - R + CO_2 + KOH + H_2$$

235 **(b)**

This reaction is called Rosenmund's reaction.

238 **(d)**

The reaction is called crossed Cannizzaro's reaction:

$$\mbox{HCHO} + \mbox{C}_6\mbox{H}_5\mbox{CHO} \xrightarrow{\mbox{NaOH}} \mbox{HCOONa} + \mbox{C}_6\mbox{H}_5\mbox{CH}_2\mbox{OH}$$

239 (c)

$$6HCHO + 4NH_3 \rightarrow (CH_2)_6N_4 + 6H_2O$$

242 **(b)**
$$CH_3CONH_2 + HOH \rightarrow CH_3COOH + NH_3$$

243 **(c)**

Acidic order is: $CH_3COOH > CH_3CH_2COOH >$ $C_6H_5OH > C_2H_5OH$.

244 (a)

Acetone (CH₃COCH₃) undergoes condensation reaction in presence of HCl to produce mesityl

$$2\mathsf{CH}_3\mathsf{COCH}_3 \xrightarrow[-\mathsf{H}_2\mathsf{O}]{\mathsf{HCl}} (\mathsf{CH}_3)_2 - \mathsf{C} = \mathsf{CHCOCH}_3$$

4-methyl pent-3en-2one

or mesityl oxide

247 (a)

6HCHO $\xrightarrow{Ca(OH)_2}$ $C_6H_{12}O_6$; formose or α -acrose; 259 **(d)** an isomer of glucose and fructose.

248 (c)

Benzaldehyde condenses with propanoic anhydride to yield α , β - unsaturated acids in the presence of catalytic amount of sodium propionate

249 **(b)**

CH₃CONHCH₃ neither forms semicarbazone nor oxime because it is a substituted amide. While other compounds have carbonyl group hence, they form semicarbazone or oxime

252 **(c)** $CH_3COOH \rightleftharpoons CH_3COO^- + H^+$

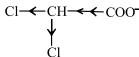
254 **(d)**

Calcium formate on distillation gives HCHO. $(HCOO)_2Ca \xrightarrow{Distillation} HCHO + +CaCO_3$

255 (a)

 $RCH_2HCCl_2 \xrightarrow{HOH} RCH_2CH(OH)_2 \xrightarrow{Unsatble} RCH_2CHO$

256 (d)


This is by S_N reaction. Cl⁻ is a better leaving group than C₂H₅O⁻ and the ethyl ethanoate is formed.

257 (a)

β-keto acids are the carboxylic acids that undergo decarboxylation easily

$$C_6H_5COCH_2$$
COO)H $\xrightarrow{\Delta}$ C₆H₅COCH₃

See the influence of -IE of Cl-atom. The negative charge on carboxy late ion is dispersed more in presence of two Cl-atoms.

260 (a)

Acids react with alcohols give ester, this process is known as esterification.

 $RCOOH + R'OH \rightarrow RCOOR'$ acid alcohol ester

261 **(b)**

When C_6H_5CHO condenses with $(CH_3CO)_2O$ in presence of sodium acetate then cinnamic acid is formed. This reaction is called Perkin reaction.

$$C_6H_5 - CHO + (CH_3CO)_2O \xrightarrow{CH_3COONa} C_6H_5CH$$

= $CHCOOH + CH_3COOH$

benzaldehyde acid

cinnamic

anhydride

263 **(c)**

$$C_{x}H_{y} + \left[x + \frac{y}{4}\right] O_{2} \longrightarrow xCO_{2} + \frac{y}{2}H_{2}O(v)$$

$$500 \qquad 0 \qquad 0$$

$$0 \qquad 500 x \quad \frac{y}{2} \times 500$$
Now, $500 x = 2500 \qquad \therefore x = 5$

$$500 \frac{y}{2} = 3000 \qquad \therefore y = 12$$

 \therefore Alkane is C_5H_{12} .

264 **(c)**

As small rings cannot be formed because of internal strain

265 (d)

 $CH_3COOH \xrightarrow{Reduction} CH_3CH_2OH$ All these do so.

266 (a)

When treated with Ba(OH)₂, acetone undergoes aldol condensation to form diacetone alcohol.

267 **(b)**

The Gattermann-Koch reaction is an example of electrophilic substitution and electrophile is generated as,

generated as,
$$CO + DCl \longrightarrow DCOCl \xrightarrow{AlCl_3} AlCl_4^+ + D C^+$$

$$0$$
(E)

The reaction takes place as,

$$+ CO + DCl \xrightarrow{AlCl_3} + HC$$

269 **(b)**

$$C = O \leftrightarrow C \xrightarrow{\stackrel{\delta}{C}} C \xrightarrow{\stackrel{\delta^+ \stackrel{\delta^-}{C}}{HCN}} C \xrightarrow{C} O \xrightarrow{\stackrel{+}{H}} C \xrightarrow{Fast} C \xrightarrow{C} OH$$

The rate determining step suggest addition of CN⁻

271 (d)

The α , β -unsaturated ketones add on ammonia to form β -amino compounds

272 (d)

Urea is one of the most important fertilizer as it does not change pH of soil. Urea, after hydrolysis gives ammonia and CO_2 . Ammonia is taken up by plants leaving behind $\mathrm{CO}_2.\mathrm{CO}_2$ is a very weak acidic oxide. It doesn't affect pH of soil

$$NH_2CONH_2 \xrightarrow{H_2O} 2NH_3 + CO_2$$
urea

274 (c)

Aldehydes are easily oxidised to respective acids.

276 (c)

This reaction is an example of Claisen Schmidt reaction (Claisen condensation). The reaction is

as fallows

$$CHO + H_2$$
 CH.CHO NaOH -H₂O -CH=CH.CHO cinnamaldehyde

280 (d)

Kjeldahl's method is not used for compounds having nitrogen atom in ring or having N—O and N—N bonds or to say heterocyclic ring with N-atom, azo, azoxy and nitro compounds.

281 **(a)**

$$(CH_3CO)_2O + C_2H_5OC_2H_5 \rightarrow 2CH_3COOC_2H_5$$

282 (d)

In rest all HCHO is used.

283 (a)

Acetic acid is obtained by the oxidation of ethanol with alkaline KMnO₄.

$$C_2H_5OH + [O] \xrightarrow{Alkaline \ KMnO_4} CH_3COOH$$

Ethanol acetic acid

284 (d)

The acid amides are amphoteric in nature. In amides, the lone pair of electrons on N atom remains delocalised (in resonance) with (C=0) group.

 \therefore Amides are not much basic but infact they are amphoteric in nature.

$$R \longrightarrow C \longrightarrow NH_2 \longrightarrow R \longrightarrow C \longrightarrow NH_2$$
structure of acid amide

285 **(b)**

Lithium aluminium hydride is a powerful reducing agent. It reduces acetic acid into ethanol.

$$CH_3COOH \xrightarrow{\text{LiAlH}_4} CH_3CH_2OH$$

286 (a)

The α -hydrogen atoms of acetaldehyde due to -

$$E = c$$

group is slightly acidic in nature. In crossed aldol condensation between formaldehyde and acetaldehyde in the first step OH^- ion (from the base added) abstracts one of these acidic α —hydrogens to form carbanion or enolate ion which is stabilised by resonance.

$$HO^-+H-CH_2$$
 $C-H$ $Slow$ H_2O $+:CH_2$ $C-H$

288 **(b)**

NaBH₄ is a mild reducing agent and can not reduce less reactive ester group

289 (c)
$$CH_3CHCl_2 \xrightarrow{KOH(aq.)} CH_3CH(OH)_{2unstable} \longrightarrow CH_3CHO$$

290 (a) Aldol condensation is shown by the molecules having α -carbon atom.

293 (a)
$$C_6H_5COOCH_3 \xrightarrow{Red} C_6H_5CH_2OH + CH_3OH$$
294 (a)
$$CH_3COCH_3 \xrightarrow{[O]} CH_3COOH + HCOOH$$

$$CH_3COCH_3 \rightarrow CH_3COOH + HCOOH$$

296 **(d)**

Ketones and aldehydes add to NaHSO₃ to give white crystalline bisulphite addition product

$$R > C = O \xrightarrow{\text{NaHSO}_3} R > C < OH \\ \text{SO}_3 \text{Na}$$

297 **(b)** COOHCOOH is dibasic acid. A polyprotic acid donates more than one proton.

302 **(b)** α , β -unsaturated acids add on halogen acids. The mode of addition is contrary to Markownikff's rule and may be described to the inductive effect

of the carboxyl group.

303 (d)

acetal.

Aldehydes are strong oxidising agents. They oxidise Tollen's reagent (ammoniacal AgNO₃ to

Secondary alcohols are oxidised to give ketones.

Ag), Fehling solution (to Cu₂O) and Benedict solution (to Cu₂O). The reactions are used to detect the presence of aldehyde group in compound. 304 (a)

305 (c) Grignard reagent (RMgX) with aldehyde) other than formaldehyde (HCHO) gives 2° alcohol. Aldehyde on reaction with C₂H₅OH/HCl gives

306 **(b)**

This reaction is an example of rearrangement, ie, migration of alkyl group from carbon to adjacent nitrogen atom and the group which is trans to the leaving group (-OH group) migrates leading to the formation of resonance stabilised imine

309 **(b)**

$$R \longrightarrow CN \xrightarrow{SnCl_2 + HCl} RCHO + NH_4Cl + SnCl_4$$
310 **(c)**

 $\left(\begin{array}{cc} \delta - & \delta + \\ Ph & Mg & Br \end{array}\right)^{\delta -}$. In phenyl magnesium bromide attached with that C-atom of carbonyl group which have low electron density (higher electropositive charge) In carbonyl compounds, aldehydes are more

$$C \xrightarrow{\text{Nu}} C \xrightarrow{\text{Nu}} E^{+} C \xrightarrow{\text{Nu}} E^{+}$$

towards nucleophile in nucleophilic addition reaction because in ketones alkyl groups (due to +I effect) decrease the electropositive charge of carbon of carbonyl group. Hence attraction of nucleophile decreases. Moreover in the tetrahedral intermediate aldehyde have less steric repulsion than ketones and also the aldehyde increases the negative charge on oxygen less in comparison of ketones.

Thus, on the basis of above reason the order of reactivity of acetone(I), acetaldehyde (II) and benzaldehyde (III) with PhMgBr is

$$C = O \xrightarrow{PhMgBr} C \xrightarrow{OMgBr} Ph$$

311 (c)

$$R_2 \text{CCl}_2 \xrightarrow{\text{HOH}} R_2 \text{C(OH)}_2 \longrightarrow R_2 \text{CO}$$

313 **(b**)

CH₃CONH₂+ is solid, CH₃Cl and CH₃SH are gas.

314 **(b)**

Cannizaro reaction,

HCHO + NaOH → CH₃OH + HCOONa

This reaction takes place by those compounds which has no α —H atom.

Inter molecular shift of hydride ion is key step of Cannizaro reaction

$$H > C = O + OH \longrightarrow H > C < OH$$

317 **(b)**

This is carbylamine reaction carried out by $Br_2 + NaOH$.

320 **(b)**

p-keto acids are the only carboxylic acids that decarboxylate under mild heat

$$CH_3CH_2-\overset{\bigcirc}{C}-\overset{\bigcirc}{C}H_3\overset{\bigcirc}{C}-\overset{\bigcirc}{C}H_3CH_2-\overset{\bigcirc}{C}-CH_3CH_2$$

321 **(b)**

$$CH_3COOH \xrightarrow{AIPO_4} CH_2 = CO + H_2O$$

323 **(b**)

$$\mathsf{CH_3CONH_2} \xrightarrow{\mathsf{P_2O_5}} \mathsf{CH_3CN} \xrightarrow{\mathsf{4H}} \mathsf{CH_3CH_2NH_2}$$

324 **(b)**

Hydrazine in the presence of strong base also reduces C=0 group to CH_2 (Wolff-Kishner reduction). If there is any base sensitive groups, such as – Br, –Cl,etc in carbonyl compound, this reagent is not advised

$$\begin{array}{c} O \\ \parallel \\ C \\ CH_3 \\ \hline OH^* \text{ or } OR^* \\ \end{array}$$

326 (c)

Hofmann reaction In this reaction acid amide group reacts with Br_2 in presence of NaOH or KOH to give primary amine group. The amine is one carbon less than the parent amide. So, the reaction is known as Hofmann degradation reaction.

$$RCONH_2 + Br_2 + 4KOH \xrightarrow{\Delta} RNH_2 + 2KBr + K_2CO_3 + 2H_2O$$

327 **(b)**

The kjeldahl's method is based on the fact that nitrogen of an organic compound is quantitatively converted to $(NH_4)_2SO_4$ on heating with H_2SO_4 (conc.). The $(NH_4)_2SO_4$ is then treated with KOH to liberate NH_3 , which is absorbed in H_2SO_4 to obtain % of N.

328 (a)

The relative reactivity of the acid derivatives towards nucleophilic acyl substitution reaction follow the order:

 $RCOCl > (RCO)_2O > RCOOR > RCONH_2$ The ease with which these leaving groups depart decreases in the order: $Cl^- > RCOO^- > RCO^- > NH_2^-$. Consequently the relative reactivities of all these acid derivatives decreases in the order: acid chloride > anhydride > ester > amide

329 **(b)**

Hydrazine in the presence of a strong base

reduces
$$>$$
C=O group to $>$ CH₂ group

O
CH₃-C-C₂H₅ $\xrightarrow{NH_2-NH_2}$ CH₃-CH₂-C₂H₅
n-butane

This reaction is called Wolff-Kishner reduction

331 (c)

$$\begin{array}{c|c} O & O \\ & || & || \\ 2CH_3 - C - H \xrightarrow{Al(OC_2H_5)_3} CH_3 - C \\ & - OCH_2CH_3 \end{array}$$

332 (c)

Only aldehydes reduce Tollen's reagent.

333 (c)

Since, the compound 'B' gave a 2,4-dinitrophenylhydrazine derivative but did not answer halogen test or silver mirror test, it must contains a >C=0 group, but it is neither a methyl ketone nor an aldehyde.

Moreover, compound 'B' is obtained by the oxidation of compound 'A' having molecular formula $C_5H_{12}O$, so the compound must be a secondary alcohol.

$$CH_3 - CH_2CH - CH_2 - CH_3 \xrightarrow{[0]} \xrightarrow{-H_2O}$$

$$OH$$

$$2^0 \text{ alcohol}$$
(Compound 'A')

$$CH_3 - CH_2C - CH_2 - CH_3$$

$$|| \\ 0$$

$$Ketone$$
(Compound 'B')

All are facts about CH₃COCH₃.

335 (a)

Benzaldehyde forms two isomeric semicarbazone with semicarbazide.

336 **(b)**

338 (d)

Acid halides and acid anhydrides are acylating agent.

342 **(c)**

A carboxylic acid contains —COOH gp. and an alkyl group.

343 (d)

CH₃COC₆H₅ will show iodoform test.

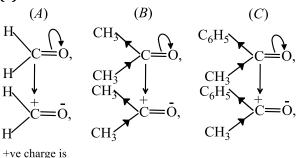
346 **(c)**

Acetic acid on reduction with lithium aluminium hydride (LiAlH $_4$) gives ethyl alcohol while on reduction with HI and red P gives ethane.

$$CH_3COOH \xrightarrow{LiAlH_4} CH_3CH_2OH$$

ethyl alcohol

$$CH_3COOH \xrightarrow{Red P + HI} CH_3 - CH_3$$


Ethane

Hence, reagent A and B are respectively LiAlH₄ and HI/red P.

348 **(c)**

Aldol condensation is given by those aldehydes and ketones which have at least one α —H atom. When this reaction takes place between two different aldehydes and ketones, it is called across aldol condensation, e.g.,

349 **(c)**

 $C_{6}H_{5}$ $C_{6}H_{5}$ $C_{6}H_{5}$ $C_{6}H_{5}$ $C_{6}H_{5}$ $C_{6}H_{5}$ $C_{6}H_{5}$

+ve charge is max. intensified

More intensified is +ve charge on C-atom, more is tendency to attack by nucleophile but due to steric hindrance, this tendency decreases.

352 **(b)**

less intensified

Esters on reaction with excess of Grignard reagent

produce 3° alcohol.

H₃C — C — OC₂H₅ + C₂H₅MgBr

OC₂H₅

H₃C — C — OMgBr
$$\xrightarrow{-Mg(OC_2H_5)Br}$$

CH₃

C — O

C₂H₅

CH₃

C — O

C₂H₅

CH₃

C — O

C₂H₅

C₂H₅

C₂H₅

CH₃

CH

354 (a)

The enzyme must contain at least one atom of Se.

: 0.5 g enzyme, mol. weight = 100

∴ 78.4 g enzyme, mol. weight =
$$\frac{100 \times 78.4}{0.5}$$

= 1.576 × 10⁴

356 **(b)**

CH₂=CH—CHO is acrolein.

357 (a)

HCHO has one carbon and reduces Tollen's reagent.

358 (d)

Aldehydes and ketones both can react with 2, 4-dinitrophenyl hydrazine as

RCH O + H₂ N.NHC₆H₅
$$\longrightarrow$$
RCH N.NHC₆H₅ + H₂O aldehyde phenyl hydrazone

 R_2C O + H₂ N.NHC₆H₅ \longrightarrow R_2C = N.NHC₆H₅ + H₂O ketone phenyl hydrazone

359 **(d)**

$$\begin{array}{c} \text{CH}_3\text{COOH} + 4\text{H} \xrightarrow{\text{LiAlH}_4} \text{CH}_3\text{CH}_2\text{OH} + \text{H}_2\text{O} \\ & (A) \\ \text{CH}_3\text{CH}_2\text{OH} + \text{CH}_3\text{COOH} \xrightarrow{\text{H}_3\text{O}^+} \text{CH}_3\text{COOC}_2\text{H}_5 + \\ \end{array}$$

 H_2O

(B)

361 **(d)**

Addition of K₂SO₄ increases the b. p. of H₂SO₄.

365 **(d)**

 $RCOOAg + R'X \rightarrow RCOOR'$ (ester); this is called Hunsdiecker reaction.

366 **(b)**

The reactivity order of acid derivatives is based on nature of leaving gp.,resonance and inductive effect.

367 **(a)**

 $CH_3COOH + HOC_2H_5 \rightarrow CH_3COOC_2H_5$

370 (c)

Due to bitter almonds odour.

371 **(b)**

In carboxylic acid the oxygen attached to carboxyl carbon is more electronegative and withdraws the electrons of bond

$$\begin{array}{ccc} {\color{red} \bullet} & {\color{red} \circ} \\ {\color{red} \parallel} & {\color{red} \parallel} \\ {\color{red} R-C-OH} & {\color{red} \longleftarrow} & {\color{red} R-C^+-OH} \end{array}$$

Hence, protonation occurs at the carboxyl oxygen

373 **(b)**

$$RCO \overline{OH + H} OR' \longrightarrow RCOOR'$$

Alcohol loses H-atom and thus, reactivity order: $3 < 2^{\circ} < 1^{\circ}$.

375 **(b)**

AgNO₃ gives precipitation of silver halides.

376 (c)

One molecule is oxidised and one is reduced on the cost of other.

377 **(b)**

This is Cannizzaro's reaction.

378 (d)

$$CH_3COCH_3 \xrightarrow{LiAlH_4} CH_3CHOHCH_3;$$

This will give iodoform test.

379 **(b)**

Aldehydes restore pink colour of Schiff's reagent.

380 **(a)**

$$CH_3CH_2OH \xrightarrow{Cl_2} CH_3CHO \xrightarrow{Cl_2} CCl_3CHO$$

381 **(c)**

$$RCOAg + X_2 \longrightarrow RX + AgX + CO_2$$

(CCl₄)

385 **(b)**

In Clemmensen's reduction, aldehyde (RCHO) and ketones (R – CO – R') are reduced into hydrocarbons (R – R').

$$RCHO + 6[H] \xrightarrow{\text{Zn amalgamated}} RCH_3 + 2H_2O$$

386 **(b)**

Na₂S and NaCN are decomposed on heating with HNO₃ to form H₂S and HCN in gaseous phase otherwise they will give precipitate with AgNO₃

$$NaCN + HNO_3 \rightarrow NaNO_3 + HCN \uparrow$$

 $Na_2S + 2HNO_3 \rightarrow 2NaNO_3 + H_2S$

390 (a)

The *cis* form is maleic acid; *trans* form is fumaric acid.

391 (c)

Follow mechanism of Cannizzaro's reaction.

392 **(b)**

Formic acid also act as a reducing agent as it can reduce Tollen's reagent, Fehling solution, mercuric chloride and KMnO₄ etc.

393 (d)

Penicillin, an antibiotic is discovery of 20th century.

394 (c)

HCHO is gas at room temperature. Its aqueous 404 (b) solution called formalin (42% HCHO + 8% CH₃OH) is used as preservative for biological specimens.

395 **(b)**

Chloral is CCl₃CHO, i. e., 2,2,2 – trichloroethanal.

396 **(b)**

Calcium adipate on dry distillation gives cyclopentanone.

$$H_2C-CH_2-COO$$
 H_2C-CH_2-COO
 Ca
 H_2C-CH_2
 H_2C-CH_2
 $CO+CaCO$
 $Colcium adipate cyclopentanone$

398 **(b)**

Acetaldehyde is the only aldehyde which gives +ve iodoform test. Also, only aldehydes reduce Fehling's solution.

401 (c)

Due to tautomerism,

$$CH_3-C-CH_2COOC_2H_5 \Longrightarrow CH_3 C=CHCOOC_2H_5$$

$$0 OH$$

402 (a)

It gives benzoyl chloride (C₆H₅COCl). $\mathsf{C_6H_5COOH} + \mathsf{PCl_5} \xrightarrow{100^{\circ}\mathsf{C}} \mathsf{C_6H_5COCl} + \mathsf{POCl_3} + \mathsf{HCl}$ Benzovl chloride

403 (a)

The reaction occurs as follows

$$\begin{array}{c|c} OH & OMgBr \\ \hline \\ H_3C & C & Ph \\ \hline \\ Ph & Ph \\ \end{array}$$

1,1-diphenyl ethanol

When addition of HCN takes place at α , β unsaturated carbonyl compounds, it gives βcyano compounds

$$CH_2 = CH - C - CH_3 + HCN \xrightarrow{OH^-}$$

405 **(c)**

$$R - X \xrightarrow{CN^{-}} R - CN \xrightarrow{NaOH} RCOONa$$

406 (d)

Acidic strength is the tendency to give H⁺ ions. The correct order of acidic strength of given acids

 $CH_3COOH < C_6H_5COOH < HCOOH$

407 (a) $3HCOOH + PCl_3 \rightarrow 3HCOCl_{(Less stable)} + H_3PO_3$

408 **(c)** $RCOOH + CH_2N_2 \rightarrow RCOOCH_3 + N_2$; methyl esters are formed.

409 **(c)**

The nucleophilic addition of carbanion of α , β unsaturated carbonyl compounds is known as Michael addition

$$\begin{array}{c} \text{H}_{3}\text{C} \\ \text{H}_{3}\text{C} \\ \text{CH-CHO} \xrightarrow{\text{OH}^{-}} \text{H}_{3}\text{C} \\ \text{H}_{3}\text{C} \\ \text{CHO} + \text{CH}_{2} \xrightarrow{\text{CH-C=O}} \text{CH-C=O} \\ \text{H}_{3}\text{C} \\ \text{CH}_{2} \xrightarrow{\text{CH-C=O}} \text{H}^{+} \\ \text{CH}_{3} \\ \text{CHO} \\ \text{CH}_{3} \\ \text{CH}_{4} \\ \text{CH}_{3} \\ \text{CH}_{4} \\ \text{CH}_{5} \\ \text{CH}_$$

$$H_{3}C$$
 CH_{3} C

Tamarind contains *dextro*-rotatory pot. Salt of tartaric acid.

411 (d)

Rosenmund's reduction involves the reduction of acid halide into aldehyde by means of Pd/BaSO₄.

$$CH_3COCl \xrightarrow{Pd/BaSO_4} CH_3CHO + HCl$$

412 (a)

HCHO does not have α C-atom and hence no α H - atom.

Therefore, it doesn't give aldol condensation.

413 (c)

Benzaldehyde reacts with methyl amine to give Schiff's base

$$C_6H_5 - CHO + H_2NCH_3 \rightarrow C_6H_5CH$$

= N. $CH_3 + H_2O$

Schiff's base

415 (c)

% C =
$$\frac{12 \times 0.66 \times 100}{44 \times 0.2}$$
 = 90
∴ %H = 100 - 90 = 10

417 **(b)**

 $A + NaOH \rightarrow alcohol + acid$

Thus, it is Cannizaro reaction. A is thus aldehyde without H at α -carbon.

(like C₆H₅CHO, HCHO)

 $2C_6H_5CHO + NaOH \rightarrow C_6H_5CH_2OH + C_6H_5COONa$ benzaldehyde

418 (c)

$$R$$
— $CONH_2 + Br_2 + 4KOH \rightarrow RNH_2 + K_2CO_3 + 2KBr + 2H_2O$

This is Hofmann's bromamide reaction.

419 (c)

The presence of electron withdrawing gp. in carboxylic acid increases acidic character. Also

electron withdrawing nature of F is more than Cl.

420 (a)

Higher is K_a or lower is pK_a , stronger is acid.

422 **(b**

It is definition of polymerisation.

423 **(b)**

–COOH is meta-directing group

$$CH_3$$
 $COOH_{+Br_2}$
 Fe
 Br_1
 $COOH_{+HBr_2}$

424 **(c)**

-I effect increases acidity.

+I effect decreases acidity.

−CF₃ exerting more-*I* effect than Meo −

 Me_2CH – exerting more +I effect than – CH_3

425 (a)

Acetic acid on dehydration produce acetic anhydride. P_2O_5 is a dehydrating agent it dehydrate CH_3COOH to anhydride.

$$2CH_3COOH \xrightarrow{P_2O_5} (CH_3CO)_2O$$

Acetic acid acetic anhydride

426 (a)

It is better to called aldol condensation.

428 (c)

$$2(CH_3COO)_2Ca \xrightarrow{Dry distillation} 2CH_3COCH_3 + 2CaCO_3$$

429 (a)

Aromatic aldehydes reduce Tollen's reagent. Since they are less reactive they do not reduce Fehling's solution and Benedict's solution.

CHO +
$$Ag_2O$$
 NH₄OH
Tollen's benzoic acid

431 (c)

Vinegar is 6 to 10% aqueous solution of CH_3COOH .

433 **(b)**

$$CH_2 = CHOH \rightleftharpoons CH_3CHO$$

436 **(b**)

This is simple Cannizzaro's reaction, i.e., intermolecular.

438 (c)

Tollen's reagent is ammoniacal AgNO₃.

 $2AgNO_3 + 2NH_4OH \rightarrow 2Ag(OH) + 2NH_4NO_3$ $2Ag(OH) \rightarrow Ag_2O + H_2O$

440 (c)

$$CH_3CH_2CHCl_2 \xrightarrow{HOH} CH_3CH_2CH(OH)_2$$
 $\longrightarrow CH_3CH_2CHO$
Unstable

441 **(b)**

$$CH_3CHO \xrightarrow{(C_2H_5O)_3Al} CH_3COOCH_2$$
. CH_3
This is Tischenko's reaction.

442 (c)

$$n$$
HCHO $\xrightarrow{\text{Polymerisation}}$ (HCHO) n ; $n = 6$ to 100.

443 (c)

Magenta is rosaniline hydrochloride which is decolourised by H₂SO₃ to give Schiff's reagent.

444 (a)

Methanal is formed during photosynthesis of plants.

445 (a)

 β – keto acids are readily decarboxylated.

447 (a)

454 (c)

Carbonyl compound reacts with Grignard reagent following nucleophilic addition. More is +ve charge on C^+ centre of carbonyl group, easier is nucleophilic attack.

Positive charge on C+ is dispersed due to -IE of —CH₃ gp.

$$\begin{array}{c} \text{CH}_{3} \\ \text{CH}_{3} \end{array} \leftarrow \begin{array}{c} \text{CH}_{3} \\ \text{CH}_{3} \end{array} \leftarrow \begin{array}{c} \text{C} \\ \text{CH}_{3} \end{array} \rightarrow \begin{array}{c} \text{C} \\ \text{C} \\ \text{C} \end{array}$$

Positive charge on C^+ is dispersed more due to -IE of two CH_3gp .

$$C_6H_5$$
 $C=0$
 C_6H_5
 $C=0$
 C_6H_5
 $C=0$

Positive charge on C^+ is intensified due to +IE of two C_6H_5 gp. But \nearrow CO gp. is in conjugation with π system of benzene nuleus and the resonance in ring develops electron deficiency at C atom of \nearrow CO and thus deactivates C+ centre towards nuleophilic attack. The -R effect over powers +IE and thus diphenyl ketone is least reactive.

$$\begin{array}{c|c} COC1 & & & O \\ \hline & H_2 & & & C-H \end{array}$$

It is Rosenmund reaction (reduction).

449 **(b)**

Acetaldoxime is the oxime of acetaldehyde.
$$CH_3 - CH - O + H_2NOH \rightarrow CH_3CH$$

= $NOH + H_2O$

Acetaldehyde hydroxyl amine acetaldoxime

451 **(b)**

 PCl_5 is a chlorinating agent. It adds to ethyl benzoate to give ethyl chloride and benzoyl chloride.

$$C_6H_5COOC_2H_5 \xrightarrow{PCl_5} C_6H_5COCl + C_2H_5Cl + POCl_3$$

452 **(b)**

Lactic acid prepared from meat extract of muscles is *dextro*-rotatory and is therefore called sarcolactic acid (Greek word : *sarkos*—flash).

453 **(d)**

Phenols are weak acidic and thus, soluble in strong alkali.

This ketone is further reacted with excess ${\rm CH_3MgBr}$ (Grignard reagent) and to give t-alcohol as the final product. Hence, it is a tertiary butyl alcohol.

457 (a)

The reaction series takes place as $\begin{array}{c|c} \text{COOH} & \text{(i) } 2\text{C}_2\text{H}_5\text{OH} & \text{COOC}_2\text{H}_5 \\ | & \text{COOH} & \text{COOC}_2\text{H}_5 \\ \end{array} \\ \begin{array}{c|c} \text{CONH}_2 & \text{CONH}_2 \\ \text{COOH}_2 & \text{CONH}_2 \\ \end{array}$

$$\frac{P_2O_5}{-2H_2O} > \frac{CN}{CN}$$

458 (a)

Citric acid is found in lemon. Therefore, lemon gives sour taste.

459 **(b)**

$$\text{HCOOH} + \text{Ag}_2\text{O} \longrightarrow \text{H}_2\text{O} + \text{CO}_2 + 2\text{Ag}_{\text{Silver}}$$
Mirror

461 **(a)**

Pyrene is CCl₄; find percentage of Cl in each.

462 (c)

Only aliphatic aldehydes give red ppt of Cu_2O with Fehling solution.

benzaldehyde salicylaldehyde acetaldehyde

Only acetaldehyde gives red not with Fel

∴Only acetaldehyde gives red ppt. with Fehling solution.

465 (d)

All possible products are formed, *i. e.*, acetone from calcium acetate, formaldehyde from calcium formate and acetaldehyde from calcium acetate and calcium formate.

466 (a)

Aldehydes are oxidised by weak oxidising agents like Tollen's reagent (which is ammoniacal $AgNO_3$) but ketones cannot be oxidised by them.

$$\begin{aligned} \text{RCHO} + 2[\text{Ag}(\text{NH}_3)_2]^+ 3\text{OH}^- & \xrightarrow{\text{NH}_4\text{OH}} \text{RCO}\overline{\text{O}} \\ & + 2\text{Ag} \downarrow + 2\text{H}_2\text{O} + 4\text{NH}_3 \end{aligned}$$

Aldehyde Tollen's reagent

silver

mirror

Ketone + Tollen's reagent \rightarrow no reaction.

467 **(b)**

To remove halogen oxides and halogen.

472 **(c)**

Urotropine is hexamethylene tetramine, *i. e.*, $(CH_2)_6N_4$, used as medicine for gout and urine infections.

473 **(a)**

$$(HCOO)_2Ca + (CH_3COO)_2Ca$$

$$\xrightarrow{Dry \text{ distillation}} 2CH_3CHO$$
 $+ 2CaCO_3$

476 (d)

$$0 \qquad 0 \\ || \qquad || \\ CH_3 - C - Cl \xrightarrow{KOH} CH_3 - C - O^- \\ CH_3CH_2Cl \longrightarrow CH_3CH_2OH \\ ClCH_2 - CH_2Cl \longrightarrow HOCH_2 - CH_2OH \\ CH_3CHCl_2 \longrightarrow CH_3 - CH(OH)_2 \\ Intermediate \\ \longrightarrow CH_3 - CH = O \\ Acetaldehyde$$

478 (c)

$$CH_3CH_2COOH \xrightarrow{Cl_2} CH_3CHCOOH$$

$$(HVZ reaction)$$

$$\frac{\text{alcoholic KOH}}{\text{(elimination)}} \text{CH}_2 = \text{CHCOOH}$$

acrylic acid

Cl

480 (d)

Both (a) and (b) are for preparation of aldehydes only.

481 **(b)**

Percentage of N in urea = $\frac{28}{60} \times 100$

482 (a)

Collin's reagents is used to convert $-CH_2OH \rightarrow -CHO$

Only aldehydes react with both Tollen's reagent and Fehling's solution

 CH_3CHO CH_3COOH (a) (b) Aldehyde acid

 $\begin{array}{ccc} \text{CH}_3\text{COCH}_3 & & \text{CH}_3\text{CH}_2\text{COOH} \\ & \text{(c)} & & \text{(d)} \\ & \text{Ketone} & & \text{acid} \end{array}$

 ${
m CH_3CHO}\,$ (ethanal) is the only aldehyde in given choices.

So, it reacts with both Tollen's reagent and Fehling solution.

 $CH_3CHO + Ammonia cal AgNO_3 \rightarrow Ag mirror$ (Tollen's reagent)

 $CH_3CHO + Cu^{2+}ions complexed \rightarrow Cu_2O$ With tartarate anion red ppt.

484 (d)

It is called Clemmensen reduction.

485 (c)

Tollen's reagent, Fehling solution and NaOH/NaI/ H^+ are not able to change butan-2-one (ketone) into propanoic acid because these are mild oxidising agents, so NaOH/ I_2 firstly from iodoform along with C_2H_5COONa with butan-2-one (ethyl methyl ketone). In these C_2H_5COONa reacts with acid (H^+) to give C_2H_5COOH (propanoic acid).

 $\begin{array}{c} 0 \\ || \\ CH_3-C-CH_2-CH_3+3I_2+4NaOH \\ butan-2-one \\ (ethyl methyl ketone) \\ \rightarrow CHI_3 \downarrow +C_2H_5COONa+3NaI+3H_2O \\ iodoform \\ C_2H_5COONa+H^+ \rightarrow C_2H_5COOH+Na^+ \\ Propanoic acid \end{array}$

486 (a)

The acidic strength of the attached group is in the following order :

$$COOH$$
 OH OH OH $> H$ — C $=$ C — $+$

Note Due to attachment of electron attractive group acidic strength increases and carboxylic acids are more acidic than phenols.

The two moles of NH₂ ions will abstract two moles of a most acidic hydrogen out of the four moles of hydrogen present per mole of the given

acidic compounds. Hence, after abstraction of two moles of hydrogen and obtained product will be as shown

488 (a)

HCHO Conc.NaOH HCOOH + CH₃OH methanal formic acid methyl alcohol
Thus, reaction is called Cannizaro's reaction.

489 (a)

Fehling solution is cupric ion complex with tartarate anion. Aldehydes reduce it to red precipitate. The red precipitate is chemically Cu_2O

 $\begin{array}{cccc} & & & & & & & & & \\ & & & & & & & & \\ CH_3-C-CH_3 & & & & & & \\ acetone & & & & & & \\ acetone & & & & & & \\ B. & & & & & & \\ CH_3COH & & & & & \\ CH_3CH_2CH_2CHO & & & \\ ethanal & & & & \\ & & & & \\ & & & & \\ \end{array}$

∴ Only acetone which is ketone not an aldehyde does not give iodoform test.

491 **(c)**

Hydrated oxalic acid is $H_2C_2O_4 \cdot 2H_2O$

493 (c)

 $RCH=CHCOOC_2H_5 \xrightarrow{[H]} RCH_2CH_2COOC_2H_5$

495 (d)

Formaldehyde does not give iodoform reaction.

496 (c)

Acetone gives aromatic compound mesitylene on condensation with conc H₂SO₄

$$3(CH_3COCH_3)$$
 Conc. H_2SO_4 H_3C CH_3 mesitylene

497 (c)

 $CH_3CH_2COOH \xrightarrow{H_2O_2} CH_3(OH)CH_2COOH$

500 (a)

$$NH_2CONH_2 \xrightarrow{Urease} NH_3 + CO_2$$

Cannizaro's reaction is given by aldehydes (RCHO) lacking H at α -carbon or lacking α -carbon (as in HCHO). With NaOH, there is formation of acid salt (RCOO⁻) by oxidation and alcohol (RCH₂OH) by reduction.

a-carbon without H

$$\begin{array}{c|cccc} CI & O & CI \\ I & II \\ CI - C - CONa & + & CI - C - CH_2OH \\ I & & I \\ CI & & CI \\ \end{array}$$
 by oxidation by reduction 2, 2, 2 trichloroethanol

502 (a)

Aldehydes which does not contain α -hydrogen atom undergo self oxidation and reduction on treatment with conc. Solution of alkali. This reaction is called Cannizaro reaction.

504 (a)

 $NaCN + AgNO_3 \rightarrow AgCN + NaNO_3$

506 (c)

It is a fact.

508 **(b)**

Acetaldehyde cannot show Lucas test because Lucas test is given by alcohols only. It is used in the distinction between primary, secondary and tertiary alcohols. Conc. HCl + anhydrous ZnCl₂ is called Lucas reagent.

509 (a)

Lassaigne's tests involves the preparation of sodium extract by fusing organic compounds with Na and then extracting them with water.

510 (c)

 $CH_3CH_2CH_2CH_2CHO$; $(CH_3)_3CCHO$;

511 **(b)**

Out of all alternates pK_a is smallest for $CH_3CH_2CF_2COOH$

512 (a)

HCOOH is reducing agent.

$$HCOOCH_3 \xrightarrow{HOH} HCOOH + CH_3OH$$

$$[O]$$

513 **(c)**

Presence of electron withdrawing atom (-X)increases the acidic nature. Presence of electron repelling gp. $(-CH_3)$ decreases the acidic nature.

515 **(b)**

Mol. wt. of compound =
$$\frac{WRT}{PV}$$

= $\frac{0.22 \times 0.0821 \times 273 \times 1000}{1 \times 112}$ = 44

Now find % of C; % of H = 100 - % of C Now find molecular formula.

516 (d)

The reactivity order for acid derivatives due to better leaving group is:

 $RCOCl > (RCO)_2O > RCOOR > RCONH_2$

517 (c)

Out of the given acids, strongest is HCOOH. highest K_a value Since $pK_a = -\log K_a$ Thus lowest p K_a is of HCOOH.

518 **(d)**

Formaldehyde with ammonia gives a medicinal compound hexamethylene tetramine (urotropine), which on nitration gives one of the most powerful explosive, named cyclonite or RDX.

6HCHO + 4NH₄
$$\rightarrow$$
 (CH₂)₆N₄ + 6H₂O urotropine hexamethylene tetramine

3HNO₂

hexamethylene tetramine

RDX (*sym*-trimethylene trinitramine)

519 (a)

Solubility of organic compounds in water decreases with mol. wt. due to increasing hydrophobic character of alkyl or aryl gps.

520 (a)

The presence of electron attracting gp.

on —OH increases the tendency of oxygen to attract 0—H bond pair more effectively towards it.

523 **(b)**

CCl₃CHO formed from CH₃CHO by the action of Cl₂ is used to prepare DDT.

525 (c)

Prior to Wöhler preparation, organic compounds were assumed to be derived only from living organisms.

526 **(b)**

 $\text{CH}_{3}\text{CHClCOOH} \xrightarrow{\text{KOH alc.}} \text{CH}_{2} \text{=CHCOOH};$ Elimination reaction.

528 **(b)**

LiAlH₄ reduces —COOH to — CH₂OH but does not influence C=C.

529 **(b)**

Acid derivatives do not show nucleophilic 542 (b) addition. Also, CH₃COOCOCH₃ is less reactive than CH_3CHO .

531 **(c)**

Y is CH₃CN; Z is CH₃COOH.

532 **(b)**

HVZ reaction occurs in presence of halogen and P (catalyst).

534 **(b)**

Both C—O bonds are identical and each O possesses partial negative charge.

535 **(c)**

 $CH_3CHO \xrightarrow{[0]} CH_3COOH$

536 (a)

In the given reaction, OH⁻ group replaces the group present in side chain as ketonic group is less reactive

537 **(c)**

Due to pleasant odour, it is used in perfumery and also producing sleeping drug.

538 **(b)**

organic compound + $HNO_3 + BaCl_2 \rightarrow$ BaSO_{4(ppt.)}

539 (d)

Note Cannizaro reaction is due to the absence of α –hydrogen atom.

541 **(d)**

Many fruits contain esters such as pineapple has ethyl butyrate, raspberry has isobutyl methanoate, banana has *n*-pentyl ethanoate, orange has octyl ethanoate, etc.

Due to strong negative inductive effect shown by -Cl and - OCOCH₃ group, acid chloride and acid anhydride are highly reactive among acid derivatives. They react independently with water even in the absence of catalyst to give carboxylic acid.

544 (d)

It exists as zwitter ion, an internal salt structure.

$$CH_2NH_2COOH \longrightarrow NH_3CH_2COO$$

545 **(a)**

Aldehyde, having no α —hydrogen atom, undergoes Cannizaro reaction in which two molecules of the aldehyde are involved, one molecule being converted into the corresponding alcohol, and the other into the acid. The usual reagent for the Cannizaro reaction is aqueous or ethanolic alkali

2HCHO + NaOH → HCOONa + CH₃OH

547 (a)

In the presence of base catalyst, intramolecular aldol condensation and ring closure takes place

$$CH_{3}$$

$$CH_{3} - C = O + H_{2}N. NH_{2} \xrightarrow{-H_{2}O}$$

$$CH_{3} - CH_{3}$$

$$CH_{3} - C = NNH_{2} \xrightarrow{[OH]} CH_{3} - C - H$$

$$H$$

$$Dropane$$

In Wolff-Kishner reduction carbonyl compounds are reduced to alkanes by using NH_2 . NH_2 and $\mathrm{KOH/glycol}$.

552 **(a)**

CH₃-CH₂-CH₂-C-CH₃
$$\rightarrow$$
 gives positive test of

2-pentanone carbonyl group

$$\begin{array}{c|c}
 & & \\
 & & \\
\hline
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 &$$

- (1) Ketone gives negative test with Fehling solution
- (2) Ketone containing COCH₃ group gives positive haloform test
- 553 **(a)**

Esters are pleasant smelling liquids having fruity smell.

554 **(b)**

It is a test for —COOH gp.; R—COOH + NaHCO₃ \rightarrow RCOONa + H₂O + CO₂ \uparrow

555 **(d)**

$$H-C\equiv N \xrightarrow{HOH} HCOOH+NH_3$$

556 (a)

Aldehyde and ketone having α -hydrogen atom undergo aldol condensation in presence of dilute base to give β —hydroxy aldehydes or ketones. Acetone has α -hydrogen atom, hence it will give aldol condensation reaction

557 **(b)**

Benedict solution contains CuSO₄, sodium citrate and sodium carbonate.

559 **(b)**

$$\begin{array}{cccc}
& & & H \\
& & | & C \\
& & | & | \\
& & | & | \\
& & | & | \\
& & | & | \\
& & | & | \\
& & | & | \\
& & | & | & | \\
& & | & | & | \\
& & | & | & | \\
& & | & | & | \\
& & | & | & | \\
& & | & | & | \\
& & | & | & | \\
& & | & | & | \\
& & | & | & | \\
& & | & | & | \\
& & | & | & | \\
& & | & | & | \\
& & | & | & | \\
& & | & | & | \\
& | & | & | & | \\
& | & | & | & | \\
& | & | & | & | \\
& | & | & | & | \\
& | & | & | & | \\
& | & | & | & | \\
& | & | & | & | \\
& | & | & | & | \\
& | & | & | & | \\
& | & | & | & | \\
& | & | & | & | \\
& | & | & | & | \\
& | & | & | & | \\
& | & | & | & | \\
& | & | & | & | \\
& | & | & | & | \\
& | & | & | & | \\
& | & | & | & | \\
& | & | & | & | \\
& | & | & | & | \\
& | & | & | & | \\
& | & | & | & | \\
& | & | & | & | \\
& | & | & | & | \\
& | & | & | & | \\
& | & | & | & | \\
& | & | & | & | \\
& | & | & | & | \\
& | & | & | & | \\
& | & | & | & | \\
& | & | & | & | \\
& | & | & | & | \\
& | & | & | & | \\
& | & | & | & | \\
& | & | & | & | \\
& | & | & | & | \\
& | & | & | & | \\
& | & | & | & | \\
& | & | & | & | \\
& | & | & | & | \\
& | & | & | & | \\
& | & | & | & | \\
& | & | & | & | \\
& | & | & | & | \\
& | & | & | & | \\
& | & | & | & | \\
& | & | & | & | \\
& | & | & | & | \\
& | & | & | & | \\
& | & | & | & | \\
& | & | & | & | \\
& | & | & | & | \\
& | & | & | & | \\
& | & | & | & | \\
& | & | & | & | \\
& | & | & | & | \\
& | & | & | & | \\
& | & | & | & | \\
& | & | & | & | \\
& | & | & | & | \\
& | & | & | & | \\
& | & | & | & | \\
& | & | & | & | \\
& | & | & | & | \\
& | & | & | & | \\
& | & | & | & | \\
& | & | & | & | \\
& | & | & | & | \\
& | & | & | & | \\
& | & | & | & | \\
& | & | & | & | \\
& | & | & | & | \\
& | & | & | & | \\
& | & | & | & | \\
& | & | & | & | \\
& | & | & | & | \\
& | & | & | & | \\
& | & | & | & | \\
& | & | & | & | \\
& | & | & | & | \\
& | & | & | & | \\
& | & | & | & | \\
& | & | & | & | \\
& | & | & | & | \\
& | & | & | & | \\
& | & | & | & | \\
& | & | & | & | \\
& | & | & | & | \\
& | & | & | & | \\
& | & | & | & | \\
& | & | & | & | \\
& | & | & | & | \\
& | & | & | & | \\
& | & | & | & | \\
& | & | & | & | \\
& | & |$$

Cannizaro reaction is given by only those aldehydes which does not have α —hydrogen atom. As such acetaldehyde will not give Cannizaro reaction.

560 (c)

 $RCOOH + NaHCO_3 \rightleftharpoons RCOONa + H_2O + CO_2$ or $RCOOH + HCO_3^- \rightleftharpoons RCOO^- + H_2O + CO_2$ Conjugate base, $RCOO^-$ is more stable. That is why equilibrium shifts in the forward direction.

561 **(b)**

Halogen compounds + $HNO_3 + AgNO_3 \rightarrow AgCl$ (Cl)

562 (a)

Positive *IE* of alkyl gp. decreases positive charge on C^+ centre of carbonyl gp. and thus, reactivity order is, HCHO > CH₃CHO > C₂H₅CHO > CH₃COCH₃

564 (c)

Acetophenone can be prepared by Friedel-Craft's reaction. By treating benzene with acetyl chloride in presence of anhydrous aluminium chloride acetophenone is obtained.

$$C_6H_5H + ClCOCH_3 \xrightarrow{Anhyd.AlCl_3} C_6H_5COCH_3 + HCl$$

Benzene acetyl acetophenone chloride

566 (d)

Bond energy for catenation of carbon is maximum (85 kcal mol^{-1}).

568 **(a)**

Three moles of acetone condense in presence of $conc.H_2SO_4$ to give mesitylene.

Aldehydes and ketones condense with alcohol to give aceta and ketals respectively, *e. g.*,

CH₃CHO + 2C₂H₅OH
$$\xrightarrow{\text{-H}_2\text{O}}$$
 CH₃CH $\xrightarrow{\text{OC}_2\text{H}_5}$ acetal

574 **(b)**

Caproic acid is CH₃(CH₂)₄COOH.

575 (c)

Anhydrous lime or C_6H_6 disturbs the nature of azeotropic mixture of alcohol and water.

576 **(c)**

$$\begin{array}{c|c}
 & \text{CHO} \\
 & \text{CH}_3\text{CHO} \xrightarrow{\text{SeO}_2} | \\
 & \text{CHO}
\end{array}$$

577 (d)

All are facts about CH₃CHO.

578 (d)

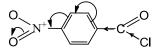
$$CH_3COOH \xrightarrow{CaCO_3} (CH_3COO)_2Ca$$

 $(CH_3COO)_2Ca \xrightarrow{\Delta} CH_3COCH_3 + CaCO_3$

579 (d)

$$CH_3CHO + CH_3CHO \xrightarrow{Alkali} CH_3CH(OH)CH_2CHOH$$

581 (c)


$$CH_3CH_2OH \xrightarrow{Cl_2} CH_3CHO + 3HCl;$$

 $CH_3CHO \xrightarrow{Cl_2} CCl_3CHO$

582 (a)

Paraldehyde is used as hypnotic and soporific (sleep producing) drug.

585 (c)

In p-nitrobenzoyl chloride, $-\mathrm{NO}_2$ group has a -I and -R -effect and this is greater from the p-position than from m-or o-positions. Thus, $-\mathrm{NO}_2$ group reduces the electron density at the carbon atom attached to - Cl atom and facilitate its releasing and hydrolysis of benzoyl chloride

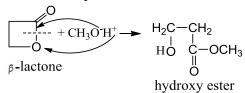
Whereas, CH_3O -group has a strong +R-effect and a weak – I-effect. At p-position CH_3O -group exerts its strong +R effect. As a result, electron density at C-atom attached to – Cl atom increases and the cleavage of C – Cl bond becomes difficult. Hence, the order of reactivity of hydrolysis of acid chlorides:

$$\begin{aligned} \mathbf{p} - \mathbf{O_2NC_6H_4COCl} &> \mathit{PhCOCl} \\ &> p - \mathit{CH_3OC_6H_4COCl} \end{aligned}$$

586 **(c)**

Amides react with bromine and caustic soda to give their corresponding primary amines. Thus, acetamide gives methanamine. This reaction is known as Hofmann's bromamide degradation reaction.

0


$$H_3C - C - NH_2 + Br_2 + 4KOH \xrightarrow{343 \text{ K}} 2KBr + K_2CO_3 + H_3C - NH_2 + 2H_2O$$

acetamide

methanamine

587 **(b)**

The reaction produced as

 $\beta\mbox{-lactone}$ do not exist but can only be made by special method

588 **(a)**

COOH gp. of salicylic acid is replaced during nitrati

589 **(c)**

$$P_{N_2} = 715 - 15 = 700 \text{ mm}$$

$$V = 55\text{mL}$$

$$PV = \frac{w}{m} RT$$

$$\frac{700}{760} \times \frac{55}{1000} = \frac{w_{N_2}}{28} \times 0.0821 \times 300$$

$${}^{w}N_2 = 0.058 \text{ g}$$

$$W_{N_2} = \frac{0.058}{0.35} \times 100 = 16.45$$

590 **(b)**

Paraldehyde is used as hypnotic and soporific (sleep producing) drug.

591 **(a)**

- 9. Organic compound gave an oxime with hydroxyl amine, therefore, it must be an aldehyde or ketone.
- 10. Organic compound did not give silver mirror with Tollen's reagent, therefore, it cannot be an aldehyde.

Therefore, compound is ketone and its molecular formulae with be CH_3COCH_3 .

The cannizzaro product of given reaction yields 2,2,2-trichloroethanol.

593 **(b)**

 $CH_3COCl + CH_3COONa \rightarrow (CH_3CO)_2O + NaCl$ Acetylchloride sod. acetate acetic anhydride

594 (a)

$$\begin{array}{c|c} & & & \\ \hline \\ & & \\ \hline \\ -EtOH \end{array} \begin{array}{c} & & \\ \hline \\ -CO_2 \end{array} \begin{array}{c} \\ \hline \\ \end{array}$$

 β —keto acid undergoes decarboxylation when heated.

595 **(b)**

Salicylic acid gives aspirin on reaction with acetic anhydride in presence of H_2SO_4

OH OCOCH₃

$$+ (CH3CO)2O \xrightarrow{H2SO4} -COOH$$
salicylic acid aspirin

596 **(b)**

597 (c)

well as -CHO group.

$$CH_3NH_2 + CH_3COCl \rightarrow CH_3NHCOCH_3 + HCl$$

598 (d)

Fehling's solution is the solution of CuSO_4 + NaOH + Rochel salt (sodium potassium tartarate). Aldehydes give red precipitate with Fehling's solution.

599 **(c)**

In the Rosenmund's reaction, acid chlorides are converted to corresponding aldehydes by catalytic reduction. The reaction is carried out by passing through a hot solution of the acid chloride in the presence of Pd deposited over BaSO₄.Here, barium sulphate decrease the activity of palladium

$$RCOCl + H_2 \xrightarrow{Pd/BaSO_4} RCHO + HCl$$

602 (a)

Acids shows H-bonding and thus, have higher b.p.

603 (a)

 P_2O_5 is dehydrating agent, hence acid gives anhydrides on dehydration by P_2O_5 .

$$2RCOOH \xrightarrow{P_2O_5} (RCO)_2O$$

604 (d)

2, 3-dimethyl propanal does not undergo Cannizaro's reaction due to absence of α -H atom.

605 **(c)**

 α -chloro butyric acid is more stronger than others due to -I effect of Cl^- .

607 **(d)**

The Sulphur of organic compound gives Na₂S.

608 (c)

In the carbonyl group, carbon atom is in a state of sp^2 hybridisation. One sp^2 hybrid orbital overlap with a unhydridised p-orbital of oxygen to form C-0 σ -bonds. The remaining two sp^2 orbitals of carbon from σ -bonds with s-orbitals of hydrogen or sp^3 -orbitals of carbon of the alkyl groups. The C-0 π -bond is formed by the sideways overlap of p-orbitals of carbon and oxygen. Thus, the three σ -bonds of carbonyl carbon lie in one plane and are 120° aprat

$$X$$
C=O

609 **(d)**

Both show reducing nature and thus, reduce each of the following. The distinction in these two can be however made by $NaHCO_3$ where HCOOH gives effervescences.

610 (a)

Oxidation of CH₃COOH is not possible.

611 (c)

e. g. , $\rm CH_3CH_2CH_2COOH$ and $\rm (CH_3)_2CHCOOH$ are chain isomers $\rm CH_3(CH_2)CHCH_2COOH$ and $\rm CH_3CH_2$ CHCOOH

is optical isomer

CH₃CH₂CH₂COOH and CH₃CH₂COOCH₃ are functional isomers.

612 (a)

Carbonic acid is less acidic than carboxylic acids whereas more acidic than phenols and alcohols. Hence, order of acidic strength.

 $RCOOH > H_2CO_3 > C_6H_5OH > ROH$

614 (a)

In presence of dil. HCl, acetamide is hydrolysed by boiling, the product obtained is acetic acid (CH_3COOH) .

$$\begin{split} & \text{CH}_3\text{CONH}_2 + \text{H}_2\text{O} \rightarrow \text{CH}_3\text{COOH} + \text{NH}_3 \\ & \text{CH}_3\text{CONH}_2 + \text{H}_2\text{O} + \text{HCl} \rightarrow \text{CH}_3\text{COOH} + \text{NH}_4\text{Cl} \end{split}$$

617 (c)

A characteristic test for carbonyl gp., red salt is formed.

618 **(d)**

$$\begin{array}{c} \mathsf{CH_3COOC_2H_5} + \mathsf{CH_3COOC_2H_5} \\ \xrightarrow{\mathsf{C_2H_5ONa}} \mathsf{CH_3COCH_2COOC_2H_5} \end{array}$$

This is Claisen condensation in presence of $NaOC_2H_5$ involving $\alpha\text{-H-atom}$ of ester.

619 **(b)**

This is the example of Baeyer-Villager oxidation and oxy-insertion takes place generally at the alkyl side

$$\begin{array}{c} H_{3}C \\ H_{3}C \\ \end{array} \\ \begin{array}{c} CH - C - C_{2}H_{5} \\ \end{array} \\ \begin{array}{c} H_{1}^{+} \\ H_{3}C \\ \end{array} \\ \begin{array}{c} CH - C - C_{2}H_{5} \\ \end{array} \\ \begin{array}{c} RCOOOH \\ H_{3}C \\ \end{array} \\ \begin{array}{c} CH - C - O - C - C \\ \end{array} \\ \begin{array}{c} RCOOOH \\ H_{3}C \\ \end{array} \\ \begin{array}{c} CH - C - O - C - C - C \\ \end{array} \\ \begin{array}{c} C_{2}H_{5} \\ \end{array} \\ \begin{array}{c} C_{2}H_{5} \\ \end{array} \\ \begin{array}{c} C_{2}H_{5} \\ \end{array} \\ \begin{array}{c} CC_{2}H_{5} \\ \end{array} \\ \begin{array}{c} CC_{2}H_{5}$$

Hence, the migratory group must always be electron rich, ie, migratory aptitude t-butyl $> 2^{\circ}$ alkyl $> 1^{\circ}$ alkyl

620 **(b)**

When some activating group, eg, -OH is present along with -COOH is ortho or para position, substitution occurs with respect to -OH preferably at para-position due to steric factors. In case the reagent used is strong, electrophile enters at all possible positions even with the replacement of -COOH group

621 **(b)**

 $CH_3COOH + N_3H \rightarrow CH_3NH_2 + N_2 + CO_2$

623 (a)

Following is the example of Knoevengel reaction, which is shown by aldehydes and ketones

HC=O
$$+ H_2C$$
 COOR Pipridine $+ H_2C$ COOR $+ H_2C$ COOR $+ H_2C$ COOH $+ H_2C$ COOH

625 **(b)**

When an acid is heated with Br_2 in presence of P, α –H atom of the acid is replaced by bromine atom. This reaction is called Hell-Volhard Zelinsky reaction. NH_2^- is a better nucleophile than Br_- .

$$RCH_{2}COOH \xrightarrow{Br_{2}/P} R \xrightarrow{CH} COOH$$

$$\downarrow Br$$

$$(X)$$

$$excess$$

$$R \xrightarrow{CH} COOH$$

$$\downarrow NH_{2}$$

$$(Y)$$

626 **(d)**

With Fehling's solution, benzaldehyde as well as acetone do not react while with Tollen's reagent, benzaldehyde gives precipitate but acetone done not react. Hence, Tollen's reagent is used to distinguish them.

628 (a)

As - CH $_3$ group has a strong +I effect and - OCH $_3$ group has a weak -I but strong +R effect, hence they increase the electron density on oxygen atom and O - H bond becomes stronger. On the other hand, -NO $_2$ group has a strong -I and -R effect. It withdraws electrons from benzene ring as well as oxygen atom of - OH group and proton is easily removed. Order of esterification is I > II > III > IV

631 (c)

The N_2 evolved during the process is measured at desired P and T.

632 (c)

 ${
m CH_3COCH_3}$ gives red colour with sodium nitroprusside solution but does not reduce Tollen's reagent. Acetone yields chloroform with NaOH/Cl₂

$$\label{eq:ch3} \begin{array}{l} {\rm CH_3COCH_3 + Cl_2} \ \to {\rm Cl_3C - COCH_3} \xrightarrow{\rm NaOH} {\rm CHCl_3} \\ {\rm Acetone} \\ {\rm chloroform} \end{array}$$

633 (d)

The effect of electron-withdrawing substituent in

the benzene ring fastens the Cannizaro reaction

634 **(b)**

First find % of H by = $\frac{2 \times \text{wt. of H}_2 \times 100}{\text{wt. of compound} \times 18}$

Find percentage of C = 100—percentage of H

635 **(c)**

No doubt the reaction involves the synthesis of chiral centre, however; the stereosphecity cannot be controlled and both the enantiomers are formed to give a racemic mixture.

636 **(d)**

The order of reactivity of acid derivatives is as $RCOCl > (RCO)_2O > RCOOR' > RCONH_2$ Hence, acetyl chloride is the most reactive among these.

637 **(a)**

 $CH_3CONH_2 \xrightarrow{HOH} CH_3COOH$

638 **(b)**

Addition of HCN to a carbonyl compound is a nucleophilic addition reaction. $-\mathrm{NO}_2$ group being electron withdrawing increases the polarity (or electron deficiency) of carbonyl carbon and thus, makes the C=0 group of benzaldehyde more reactive towards HCN.

640 **(c)**

 $CH_2=CH_2+PdCl_2+H_2O \xrightarrow{CuCl_2} CH_3CHO+Pd+2HCl;$ This is Wacker method.

642 **(b)**

Meq. of NH₃ formed = $29 \times \frac{1}{5}$; Wt. of NH₃ = $\frac{29}{5} \times \frac{17}{1000}$ g \therefore Wt. of N₂ in NH₃ = $\frac{14}{17} \times \frac{29 \times 17}{5 \times 1000}$ g \therefore % of N = $\frac{14 \times 29 \times 17 \times 100}{17 \times 5 \times 1000 \times 0.5}$ = 16.24

643 **(b)**

Benzamide undergoes Hofmann-bromamide reaction with $\rm Br_2/KOH$ to give aniline. This aniline give paracetamol (antipyretic drug) with acetic anhydride.

$$OCONH_2$$
 $OCONH_2$
 $OCON$

644 **(c)**

$$CH_3COOC_2H_5 + H_2O \longrightarrow CH_3COOH + C_2H_5OH$$
(X)

645 **(b)**

On oxidation, secondary alcohol produces ketone with same number of carbon atom and on further oxidation ketone produces an acid with a lesser number of carbon atoms

number of carbon atoms
$$CH_3-CH-OH\xrightarrow{[O]}CH_3-C=O$$

$$CH_3$$

$$CH_3$$

$$CH_3$$

$$CH_3$$

$$CH_3$$

$$CH_3$$

647 **(a)**

HCHO is gas at room temperature.

648 (c)

Beilstein test (or Cu wire test of halogens) is also given by some other compounds such as urea, thio urea, etc.

649 **(c)**

Proton donors are acids. Electrons withdrawing groups increase acidity. More the number of electrons withdrawing groups more will be acidity. Closer the electrons withdrawing group to proton more will be acidity.

∴ Cl₂CHCOOH, has highest acidity among CH₃COOH, ClCH₂COOH, Cl₂CHCOOH, Cl₂CHCOOH

650 **(c)**

 $RCH_2NH_2 + HONO \rightarrow RCH_2OH + N_2 + H_2O$

651 (d)

The intermediate formed during Hofmann's bromamide reaction is *RCH*₂—N=C=O. Follow mechanism of the reaction.

652 (c)

Rosenmund's reaction.

653 **(d)**

Solubility of organic compounds in water decreases with mol. wt. due to increasing hydrophobic character of alkyl or aryl gps.

655 (a)

Formation of α , β -unsaturated carboxylic acid by the action of acetic anhydride and sodium acetate on aromatic aldehyde as Perkin reaction. The other Perkin like condensation involve condensation of aromatic aldehyde and α -hydrogen containing compound

 $LiAlH_4$ is used for converting —COOH to — CH_2OH .

657 **(c)**

$$H_3C$$
 C=CHOH + [O] $\frac{\text{Acidified}}{K_2\text{Cr}_2\text{O}_7}$ H_3C c=O secondary alcohol (X) acetone

Ketone (*i.e.*, acetone reacts with phenyl hydrazine but does not give silver mirror test.)

659 **(c**)

Given vapour density of $CH_4 = 1$, *i. e.*, 8 = 1.

660 **(b)**

Aldol condensation takes place as,

$$\begin{array}{c} \text{CH}_{3}\text{CH}_{2}\text{CH} \\ \text{OH}_{3}\text{CH}_{2}\text{CH} \\ \text{OH}_{3}\text{CH}_{2}\text{CH} \\ \text{OH}_{3}\text{CH}_{3}\text{CH} \\ \text{OHC}_{4}\text{CH}_{3}\text{CH}_{3}\text{CH}_{3}\text{CH} \\ \text{OHC}_{5}\text{CH}_{6}\text{CH}_{3$$

$$\begin{array}{c} \mathsf{CH_3} \\ \mathsf{CH_3} \\ \mathsf{CH_3} \\ \mathsf{CH_3} \\ \mathsf{CH_3} \\ \mathsf{CH_3} \\ \mathsf{CH_3} \end{array} \xrightarrow{\mathsf{CH_3}} \begin{array}{c} \mathsf{NaBH_4} \\ \\ \mathsf{CH_3} \\ \mathsf{CH_3} \\ \\ \mathsf{CH_3} \\ \end{array}$$

$$CH_3$$
 $H_3C-C-HC=C-CH_2OH$
 CH_3
 CH_3

664 **(c)**

It absorbs only CO₂.

666 (a)

$$CH_3COOH \xrightarrow{Cl_2/Red P} CH_2CICOOH$$

 α – chloroacetic acid

This reaction is called Hell-Volhard-Zelinsky reaction.

667 **(c)**

If two liquids have a difference in their b. p. ≈ 5 °C, a fractionating column is used in distillation

assembly. The lower b. p. liquid comes down when it passes through fractionating column.

668 **(d)**

Ni formate is better catalyst than Ni for hydrogenation of oils.

669 **(b)**

Carbon + xyl = Carboxyl.

671 (c)

The following is the reaction

$$\begin{array}{c}
O \\
\hline
O \\
\hline
O \\
\hline
O \\
CH_3
\end{array}$$

$$\begin{array}{c}
CH_3 - CH - CH_2 - CH_2 - COOH \\
O \\
O \\
O \\
\end{array}$$

672 (a)

$${
m CH_3-COCl+H_2} \xrightarrow{{
m Pd.BaSO_4}} {
m CH_3CHO+HCl}$$
 acetyl chloride acetaldehyde

This reaction is called Rosenmund's reaction.

675 **(c)**

o-hydroxy benzoic acid contain intramolecular hydrogen bonding

677 **(d)**

 $CH_3COCH_3 + Cl_2 \longrightarrow CCl_3COCH_3$; chlorine attacks α -H-atoms of carbonyl compounds.

679 **(a)**

$$CH_3COOCH_3 \xrightarrow{LiAH_4} CH_3CH_2OH + CH_3OH$$

684 **(d)**

 C_6H_5COOH reacts with sodium bicarbonate but phenol not.

685 (a)

Acetophenone burns with sooty flame due to aromatic nature.

686 (a)

Only ethyl acetate undergoes reduction with LiAlH₄ to give only ethyl alcohol, other esters given in option on reduction gives a mixture of alcohols

$$\mathsf{CH_3COOCH_2CH_3} + 2\mathsf{H_2} \xrightarrow[\mathtt{ether}]{\mathsf{LiAlH_4}} 2\mathsf{CH_3CH_2OH}$$

687 **(a)**

$$CH_3CONH_2 \xrightarrow{HNO_2} CH_3COOH + H_2O + N_2$$
; the function of HNO_2 is to convert — NH_2 gp. to — OH gp.

688 **(b)**

$$\begin{array}{c} \text{CH}_3\text{COOC}_2\text{H}_5 + \text{CH}_3\text{COOC}_2\text{H}_5 \\ \xrightarrow{\text{C}_2\text{H}_5\text{ONa}} & \text{CH}_3\text{CO.CH}_2\text{COOC}_2\text{H}_5 \\ + \text{C}_2\text{H}_5\text{OH} \end{array}$$

689 **(c)**

Calcium acetate on distillation produce acetone.

See the influence of -IF of Cl and F-atoms.

692 **(b)**

Ethyl benzoate hydrolyses to give benzoic acid and ethanol in the presence of aqueous acid (H_2SO_4) or aqueous base (NaOH). In both cases the reaction is bimolecular and it is the C-O bond between the acyl group and oxygen that is cleaved

$$\begin{array}{c|c}
O \\
C \\
-OCH_2CH_3
\end{array}$$

$$\begin{array}{c}
O \\
C \\
-OH \\
+ CH_3CH_2OH
\end{array}$$

694 (c)

Formaldehyde and acetaldehyde react to different manner towards NH₃.

695 **(b)**

$${\rm CH_4} \ + 2{\rm O_2} \longrightarrow {\rm CO_2} + 2{\rm H_2O}.$$

The volume ratio is 1:2; Thus, 20 mL of CH_4 will react with 40 mL of O_2 .

696 **(b)**

Two molecules of acetaldehyde gives aldol on aldol condensation.

697 **(b)**

Tartaric acid reduces Tollen's reagent.

698 (a)

Trioxane or trioxyl methylene is a white solid polymer (m. p. 62°C) formed when HCHO gas is allowed to stand at room temperature.

699 (c)

Hydrocarbons are oxidised to aldehydes because only these two are present in atmosphere.

701 **(d)**

NH₄CNO is inorganic compound.

702 **(a)**

Organic compound + conc. HNO_3 + magnesia. mixture $\rightarrow Mg_2P_2O_7$ as precipitate.

705 (a)

Aldehydes and ketones with NH₂. NH₂ forms hydrazones.

$$R$$
CHO + H₂N. NH₂ \rightarrow R CH = N. NH₂ + H₂O alde. hydrazone R_2 CO + H₂N. NH₂ \rightarrow R_2 C = N. NH₂ + H₂O

706 **(b)**

Only steam volatile liquids are purified by steam distillation, *e*. g., aniline, nitrobenzene, benzaldehyde, essential oils, etc.

707 **(a)**

Aqueous NaCl is neutral hence there is no reaction between ethyl acetate and aqueous NaCl.

708 **(c)**

 $2 \times 78 \text{ g C}_6\text{H}_6$ requires 15×22.4 litre O_2 .

710 **(b)**

The characteristic property of periodic acid is the oxidative cleavage of bonds with adjacent oxidisable group such as 1, 2-diols, α -hydroxy carbonyl, 1,2-diketones, etc. The reagent does not react with 1, 3- or 1, 4-diols or carbonyl compounds

714 **(b)**

Crotonaldehyde is CH₃.CH=CH.CHO.

715 **(c**)

Removal of ${\rm CO_2}$ from carboxylic acid is called decarboxylation.

716 **(c)**

The acid with 3 carbon atoms.

717 **(c)**

$$CH_3COOH \xrightarrow{X_2,P} CH_2X$$
 — COOH.

718 **(d)**

Oxalic acid is oxidized as,

$$\begin{array}{c} \text{COOH} \\ | \longrightarrow 2\text{CO}_2 + \text{H}_2\text{O} \\ \text{COOH} \end{array}$$

Tartaric acid oxidizes as:

Formic acid oxidizes as;

$$HCOOH \xrightarrow{[O]} H_2O + CO_2$$

Thus, all are used as reducing agent.

719 **(a**

$$RCOOH + Na \longrightarrow RCOONa + \frac{1}{2} H_2$$

720 **(b)**

HCOOH reacts with NaHCO₃ giving out effervescences of CO₂. Note that HCOOH is also strong reducing agent.

$$CH_3COCH_3 + OC$$
 CH_3
 $Ba(OH)_2$
 CH_3COCH_2C
 CH_3
 CH_3COCH_2C
 CH_3

This is diacetone alcohol.

722 **(c)**

 $CH_3CONH_2 + NaOH \rightarrow CH_3COONa + NH_3$

723 **(c)**

% Relative no. of atoms ratio

Simplest

C 40
$$\frac{40}{12} = 3.33$$
 $\frac{3.33}{3.33} = 1$
H 13.33 $\frac{133.33}{1} = 13.33$ $\frac{13.33}{3.33} = 4$
N 46.67 $\frac{46.67}{14} = 3.33$ $\frac{3.33}{3.33} = 1$

724 (d)

All are facts.

725 **(c)**

 $CH_3COOH + NH_3$

$$\begin{array}{c} \longrightarrow \text{CH}_{3}\text{COONH}_{4} \stackrel{\Delta}{\rightarrow} \text{CH}_{3}\text{CONH}_{2} \\ \stackrel{\text{P}_{2}\text{O}_{5}}{\longrightarrow} \text{CH}_{2}\text{CN} \end{array}$$

CH₃CN is ethane nitrile or acetonitrile or methyl cyanide.

728 (a)

The acidic order is: $ClCH_2COOH > CH_3COOH > C_6H_5OH > C_2H_5OH$.

733 (d)

 $-\mathrm{NO}_2$ group at any position shows electron withdrawing effect, thus acid strength is increased. But $o\text{-}\mathrm{nitro}$ benzoic acid believed to have ortho effect. As a result, resonance gets prevented. Hence, its acid strength is maximum, thus , the order of acid strength

(The effect is more at *para* position than *meta*.)

734 (d)

Benzaldehyde on reaction with alc.KNC undergo condensation reaction to give benzoin.

$$2C_6H_5CHO \xrightarrow{KCN(alc.)} C_6H_5 - CHOH - C - C_6H_5$$
 benzoin

736 (c)

 $CH_3CH_2CHO \xrightarrow{[0]} CH_3CH_2COOH$

737 **(b)**

Acetaldehyde shows addition reaction; whereas ketone shows condensation with NH₃.

738 (a)

When benzaldehyde is heated with acetic anhydride in the presence of sodium acetate,

condensation product is obtained which on hydrolysis give α,β —unsaturated acid (such as cinnamic acid) and the reaction is known as Perkin's reaction.

C₆H₅CHO + H₂CHCOOCOCH₃ benzaldehyde acetic anhydride

$$CH_3COONa$$
 $-H_2O$
 C_6H_5CH
 $CHCOO$
 $COCH_3$
 $H_2O\triangle$
 $-CH_3COOH$
 C_6H_5CH
 $CHCOOH$
 $cinnamic acid$
 C_6H_5CH
 $CHCOOH$
 $cinnamic acid$
 C_6H_5CH

739 **(d)**

% of N =
$$\frac{28 \times 224 \times 100}{22400 \times 1.18}$$
 = 23.72

740 (c)

-OH is more activating than $-CH_3$ in o, p directing thus -CHO goes to ortho w.r.t., -OH group.

741 **(c)**

This is iodoform reaction.

742 (a)

$$\begin{aligned} & \text{CO} + \text{H}_2 \xrightarrow{\text{arc}} \text{HCHO} \\ & \text{CH}_4 + \text{O}_2 \xrightarrow{\text{MoO}} \text{HCHO} + \text{H}_2\text{O} \end{aligned}$$

743 (d)

It forms hydrazone thus, carbonyl compound; gives +ve iodoform test thus has ${\rm CH_3}$ — ${\rm CO}$ —or ${\rm CH_3}$ CHOH— unit. Gives Wolff-Kishner's reaction to form isobutane thus compound is 3-methyl butan-2-one.

$$\begin{array}{c} \operatorname{CH_3COCHCH_3} \stackrel{\operatorname{Red}}{\longrightarrow} \operatorname{CH_3CH_2CHCH_3} \\ | & | \\ \operatorname{CH_3} & \operatorname{CH_3} \end{array}$$

744 (d)

The reaction is nucleophilic addition-elimination reaction.

$$\begin{array}{c|c} H & HH \\ \downarrow_{\mathcal{S}^+} & \downarrow \\ R-C & +: N-NH_2 \\ \downarrow & \downarrow \\ O & H \end{array} \xrightarrow{\text{Nucleophilic addition}}$$

$$\xrightarrow{\text{elimination}} R - \text{CH} = \text{N} - \text{NH}_2$$

745 **(b)**

Pd – CaCO₃ + BaSO₄ is called Lindlar's catalyst.

746 (c)

As Cannizaro reaction is shown by aldehydes lacking α -hydrogen, hence the combination $CH_3CHO + HCHO$ is not possible NaOH

$$\begin{array}{c} \text{C}_6\text{H}_5\text{CHO} + \text{HCHO} \xrightarrow{\frac{\text{NaOH}}{\Delta}} \text{C}_6\text{H}_5\text{CH}_2\text{OH} \\ + \text{HCOO}^-\text{Na}^+ \\ \begin{array}{c} \text{CHO} \\ \mid \\ \text{CHO} \end{array} \xrightarrow{\frac{\text{NaOH}}{\Delta}} \begin{array}{c} \text{CH}_2\text{OH} \\ \mid \\ \text{COO}^- \end{array}$$

747 (a)

 $CH_3COCH_3 \stackrel{Cl_2}{\longrightarrow} CCl_3$. $COCH_3$; Halogen attacks α -carbon atom.

748 **(b)**

$$2C_6H_5CHO \xrightarrow{\text{NaOH}} C_6H_5CH_2OH + C_6H_5COONa$$

This reaction is given by aldehydes which doesn't have α -hydrogen atom.

749 (a)

Acetone (CH_3COCH_3) and propanal (CH_3CH_2CHO) have same molecular formula C_3H_6O and are functional isomers.

750 **(d)**

To remove SO_2 which will otherwise be absorbed in lime water.

751 (d)

H₂SO₄ acts as protonating (catalyst) agent as well as dehydrating agent.

752 **(b)**

Molecular formula of $A = C_2Cl_3OH$ As (A) reduces Fehling's solution and on oxidation gives a monocarboxylic acid (B). It means (A) must be an aldehyde. CCl₃CHO

(A)

This is further confirmed by the reaction C_2H_5OH

+ Cl₂
$$\xrightarrow[\text{oxidation}]{\text{[O]}}$$
 CH₃CHO $\xrightarrow[\text{chlorination}]{\text{Cl}_2}$ CCl₃CHO

A=Chloral [CCl₃CHO]

753 **(a)**

Glycine is NH₂CH₂COOH.

754 (d)

Aldehydes having α —H-atoms undergoes aldol condensation in the presence of dil.NaOH and yield β —hydroxy aldehydes.

$$\begin{tabular}{l} $\rm OH$ \\ $|$ $\rm CH_3CHO+CH_3CHO \xrightarrow{NaOH} CH_3CH.CH_2CHO \\ \hline $\rm 3-hydroxy\ butanal \\ \end{tabular}$$

755 **(a)**

The carboxylic and terminal methyl groups in even carbon atom acids lie on opposite side to provide more close packing in crystal lattice which provide higher m.p.

757 **(b)**

Nucleophiles that are relatively weak bases such as CN^- , RNH_2 and X^- give conjugate addition, whereas strong bases such as R-Li, R-Mg-X give direct addition.

758 (c)

$$CH_3COOC_2H_5 \xrightarrow{HOH} CH_3COOH + C_2H_5OH$$

759 **(b)**

Aldehydes and ketones containing α -hydrogen atom undergo self condensation in the presence of dilute alkali to form β —hydroxy aldehyde or β —hydroxy ketone. This reaction is called aldol condensation.

H₃C
$$-$$
C $+$ H $-$ CH₂ $-$ C $-$ CH₃ $-$ Ba(OH)₂
CH₃

O OH
H₃C $-$ C $-$ CH₂ $-$ C $-$ CH₃

CH₃
 β -hydroxy ketone

(4-hydroxy-4-methyl pentan-2-one)

Meq. of acid = Meq. of NaOH
$$\frac{0.14}{E} \times 1000 = 12.5 \times 0.1$$

$$E = 112$$

761 **(c)**

Lower aldehydes have pungent odour.

CH₃COOH (acetic acid) cannot reduce Fehling solution while HCOOH, HCHO and CH₃CHO reduce Fehling solution.

763 **(a)**

It is Cannizzaro's reaction shown by aldehydes lacking with α -H-atom.

764 **(b)**

$$C_6H_5CHO + CH_3CHO \xrightarrow{Alkali} C_6H_5CH=CHCHO$$
Cinnamaldehyde

This is claisen condensation.

765 **(c)**

As benezoic condensation is the reaction of aromatic aldehydes, but phenyl ethanal is an aryl substituted aliphatic aldehydes. Hence, it could not show benzoin condensation

769 (c)

 $C = O \leftrightarrow C - O$ the +ve *IE* of alkyl groups decreases +ve charge on C^+ centre more effectively in ketones.

Also, steric hindrance caused by bulky groups for nucleophiles to attack C⁺ centre.

770 **(b)** $2CH_3COCl + R_2Cd \rightarrow 2CH_3COR + CdCl_2$ 771 **(a)**

As the compound having active hydrogen produces alkane on reaction with Grignard reagent, hence – H atom of hydroxyl group is replaced by methyl magnetism iodine

$$IMg \begin{tabular}{l} $\operatorname{CH}_3 + \operatorname{H} \\ \downarrow \\ $\operatorname{CH}_4 + \operatorname{IMgO} \\ $-\end{tabular} \begin{tabular}{l} COCH_3 \\ \downarrow \\ CCH_4 \\ $-\end{tabular} \begin{tabular}{l} COCH_3 \\ CH_4 \\ $-\end{tabular} \begin{tabular}{l} COCH_3 \\ CH_4 \\ $-\end{tabular} \begin{tabular}{l} COCH_3 \\ CH_4 \\ $-\end{tabular} \begin{tabular}{l} COCH_3 \\ COCH_4 \\ $-\end{tabular} \begin{tabular}{l} COCH_3 \\ CH_4 \\ $-\end{tabular} \begin{tabular}{l} COCH_3 \\ COCH_4 \\ $\operatorname{COCH}_4$$$

772 **(b)**

A compound that contains a $-CH_2 - or - CH$ -group flanked by two electron-withdrawing

766 **(a)**

When acetaldehyde is heated with Fehling solution, a red precipitate of Cu_2O is obtained, $CH_3CHO + 2Cu(OH)_2 + NaOH$ $\rightarrow CH_3. COONa + Cu_2O \downarrow + 3H_2O$

red

768 **(b)**

Perkin reaction is the condensation reaction in which aromatic aldehyde is heated with an anhydride of an aliphatic acid in the presence of sodium salt of the same acid to form α, β —unsaturated acid.

group such as C=O group, becomes acidic compound and hydrogen atoms are called acidic hydrogen

$$CH_3-CH_2-CH_2-C-CH_2-CH_3 \longrightarrow$$
3-hexanone

contains no acidic hydrogen

$$CH_3-CH_2-C-CH_2-C-CH_3$$
 \longrightarrow 2,4-hexanedione

contains 2 acidic hydrogen

$$CH_3$$
 $-CH_2$ $-CH_2$ $-CH_3$ $-CH_3$

contains no acidic hydrogen

$$CH_3$$
— CH_2 — CH_2 — C — C — C — C — C 43 —> 2,3-hexanedione

contains no acidic hydrogen

773 **(a)**

 β —hydroxy aldehydes or β —hydroxy ketones (*i. e.*,aldol) readily dehydrated under acidic condition to give $\alpha - \beta$ —unsaturated aldehyde or ketone.

$$\begin{array}{c|c} OH & O & OH_2 \\ \hline & -H^+ \\ \hline & -H_2O \end{array}$$

776 (c)

Group or atom attached with – COOH group shows negative inductive effect, makes the acid stronger or acid has larger dissociation constant. – Br shows poor negative inductive effect and also far away from – COOH, which makes ${\rm BrCH_2CH_2COOH}$ weakest acid and hence, it has smallest dissociation constant.

777 **(d)**

It is an use of salol.

778 **(d)**

NaH₂PO₄ does not react with carbonyl compounds.

780 (a)

The compound is acetophenone

781 (a)

Aqueous NaCl is neutral hence, there is no reaction between ethyl acetate and aqueous NaCl $CH_3COOC_2H_5 + NaCl (aq) \rightarrow No reaction$

782 **(c)**

The reaction is known as Gattermann-Koch reaction.

785 **(b)**

In highly acidic medium, NH₂OH forms salts with acidic molecule and loses its capacity to act as nucleophile.

786 **(a)**

CH₃CHOHCH₂CHO is aldol.

787 (d)

$$\begin{array}{c} H_2O \\ \hline O-R & -H_2O \\ \hline \end{array}$$

$$\begin{array}{c} H_2O \\ \hline \\ \text{hemiacetal} \\ \end{array}$$

$$\begin{array}{c} H_2O \\ \hline \\ \text{hemiacetal} \\ \end{array}$$

$$\begin{array}{c} O-R \\ \hline \\ OOR \\ \end{array}$$

is a hemiacetal.

789 **(b)**

Ketone and aldehyde can be distinguished by Tollen's reagent, Fehling's solution and Schiff's reagent.

CH₃COCH₃ (ketone) and CH₃CH₂CHO(aldehyde) can be distinguised by Tollen's reagent.CH₃CH₂CHO reacts with Tollen's reagent to give silver mirror while CH₃COCH₃ does not react.

$$CH_3CH_2CHO + Ag_2O \xrightarrow{\Delta} CH_3CH_2COOH + 2Ag$$
Silver
mirror

$$CH_3COCH_3 + Ag_2O \xrightarrow{\Delta} No reaction$$

790 **(a)**

HCOOH and CH₃CH₂COOH.

791 (a)

Para nitrophenol has higher b. p. due to H-bonding.

792 (c)

$$\begin{array}{c} \mathsf{CH_3CN} \xrightarrow{\mathsf{Na/C_2H_5OH}} \mathsf{CH_3CH_2NH_2} \xrightarrow{\mathsf{HNO_2}} \mathsf{CH_3CH_2OH} \\ \xrightarrow{[O]} \mathsf{CH_3COOH} \end{array}$$

793 **(c)**

Urea $(NH_2 - CO - NH_2)$ can be use for all types of crops and soil. It is hazardous hence can be store easily and it is cheap as it can be manufactured from crude nephthalein. After assimilation of urea by plants through the interaction of nitrifying bacteria, it leaves behind only carbon di oxide in the soil.

795 **(b)**

Acetophenone is hypnotic agent and called hypnone in medicinal use.

799 (a)

The alkaline hydrolysis of ester is irreversible whereas, acid hydrolysis of ester is reversible.

$$CH_3COOC_2H_5 + H_2O \xrightarrow{H^+} CH_3COOH + C_2H_5OH$$

 $CH_3COOC_2H_5 + NaOH \xrightarrow{OH^-} CH_3COONa + C_2H_5OH$

800 (d)

When ammonia (NH₃) reacts with formaldehyde (HCHO), hexamethylenetetramine which is also known as urotropine, is formed. Urotropine is used as a medicine to treat urinary infections. 6HCHO + 4NH₃ \rightarrow (CH₂)₆N₄ + 6H₂O formaldehyde ammonia urotropine

801 (c)

Generally soda-lime removes ${\rm CO_2}$ from an acid but in case of alkali formate it gives alkali carbonate and hydrogen.

$$\text{HCOONa} + \text{NaOH} \xrightarrow{\text{CaO}} \text{Na}_2\text{CO}_3 + \text{H}_2$$

802 **(c)**

2, 4-D or 2, 4-dichlorophenoxy acetic acid is used as a herbicide.

803 **(b)**

$$C_6H_5CHO + CH_3CHO \xrightarrow{Alkali} C_6H_5CH = CHCHO$$
Cinnamaldehyde

This is claisen condensation.

804 (d)

$$C_2H_2 + H_2O \xrightarrow{40\% H_2SO_4} CH_3CHO$$

acetaldehyde

Acetaldehyde + Fehling's solution $\stackrel{\Delta}{\longrightarrow}$ Cuprous oxide (Red ppt.)

806 **(b)**

Aldehydes lacking with α -H atom undergoes Cannizzaro's reaction; in Cannizzaro's reaction one molecule of such aldehydes is oxidized on the cost of other.

807 (d)

808 **(b)**

Ellution means separation of process.

809 (c)

Pyroligneous acid obtained by destructive distillation of wood contains $\sim 10\%$ acetic acid, $\sim 2-2.5\%$ methanol and $\sim 0.5\%$ acetone.

811 **(a)**

It is like the saponification reaction of esters.

813 **(b)**

Alcohols on reacting with Grignard reagent (RMgX) give hydrocarbon on hydrolysis, hence the compound 'A' cannot be an alcohol as the product is a oxygen containing compound. The compound 'A' must be propanal. The reaction will be as fallows

816 (a)
$$CH_3CH_2 \cdot CH_2OH \xrightarrow{K_2Cr_2O_7/H_2SO_4}$$

Thus, (B) is aldehyde and (A) is primary alcohol. $CH_3CH_2CHO + H_2N.NHCONH_2 \longrightarrow$

818 (a)

It is a laboratory method of the preparation of benzaldehyde.

821 (c)

Secondary alcohols can be conveniently oxidized to ketones without any danger of being further oxidized to acids or oxidation occurring at the end of double bond by **Oppanauer oxidation**

824 (a)

Cl₂reacts with CH₃CHO, CH₃COCH₃ and C₆H₅CHO t respectively.

825 **(b)**

HCOOH $\xrightarrow{P_2O_5}$ H₂O + CO (burns with pale blue flame).

826 **(b)**

Methanal and phenol (or hydorxy benzene) gives Bakelite polymer on polymerization.

827 (a)

$$CH_3CH_2COOH \longrightarrow CH_3CHBr \cdot COOH \xrightarrow{Br_2/P} CH_3 - C - COOH$$

$$\downarrow Br$$

$$\downarrow Br$$

This is Hell-Volhard-Zelinsky reaction.

828 (a)

Cannizzaro's reaction is shown by aldehydes lacking α -H-atom.

Condensation reactions are shown by aldehydes having α -H-atoms.

829 (c)

Collin's reagent (CrO₃-pyridine) converts 2 ° alcohol to ketone and 1° alcohol to aldehyde.

832 **(b)**

Ring 1 is more active, electrophilic shbstitution takes place over ring.1.

- NH − C − Ph is *ortho para* directing. *Para* product is predominating.

0

833 **(b)**

The Reformatsky reaction is the reaction between an α -bromo acid ester and carbonyl compound (aldehyde or ketone) in the presence of Zn to form a β -hydroxy ester.

$$R'\text{CHBrCOO}R'' + \underbrace{\overset{\text{CH}_{3}}{\text{CH}_{3}}}_{\text{CH}_{3}} + \underbrace{\overset{\text{CH}_{3}}{\text{$$

835 (c)

$$RCH_3 \stackrel{[O]}{\rightarrow} RCH_2OH \stackrel{[O]}{\rightarrow} RCHO \stackrel{[O]}{\rightarrow} RCOOH$$

837 **(c)**

The reduction of carboxylic acids to alcohols is carried out by $LiAlH_4$ and boranes (BH_3 or B_2H_6) in THF

839 (a)

Amides on acidic hydrolysis give acid and an amine. Hence, N-dimethylacetamide will give acetic acid and dimethyl amine on hydrolysis.

840 (c)

Cannizaro reaction It is given by aldehydes which do not have α —hydrogen atom. Half of the molecules are oxidised and half are reduced in presence of base.

It is a characteristic of acetamide.

843 (d)

No reaction.

844 **(b)**

$$CH_3CHO \xrightarrow{Na/C_2H_5OH} CH_3CH_2OH$$

845 **(c)**

Oxalic acid is reduced by Zn and H₂SO₄ to give glycolic acid

$$\begin{array}{c} \text{COOH} \\ \mid \\ \text{COOH} \\ \text{oxalic acid} \end{array} + 4[\text{H}] \\ \overline{\text{H}_2\text{SO}_4} \\ \hline \\ \overline{\text{H}_2\text{SO}_4} \\ \hline \\ \text{COOH} \\ \text{cOOH} \\ \text{elycolic acid} \end{array} + \text{H}_2\text{O}$$

846 (a)

Only compounds having – C — are reduced to alcohol using NaBH $_4$ in ethanolic solution.

 \therefore They are reduced to alcohols by reaction with ethanolic NaBH₄solution.

0

 \therefore R - 0 - R does not have-C - group.

∴It cannot be reduced to alcohol by alcoholic solution of NaBH₄.

847 (d)

Carboxylic acid is converted into its anhydride by using phosphorus pentaoxide.

2RCOOH
$$P_2O_5$$
 OCR OCR OCR OCR acid anhydride

848 **(b)**

$$\text{HCOONH}_4 \xrightarrow{\Delta} \text{HCONH}_2 + \text{H}_2\text{O}$$

849 **(b)**

Calcium salts of carboxylic acid on heating give carbonyl compound.

$$(a)(HCOO)_2Ca + (CH_3CH_2COO)_2Ca$$

Calcium formate calcium propanoate

$$0\\ ||\\ \rightarrow 2\text{CH}_3\text{CH}_2\text{C} - \text{H} + 2\text{CaCO}_3$$

propanal

$$(b)(CH_3COO)_2Ca + (CH_3CH_2COO)_2Ca$$

Calcium acetate calcium propanoate

0

Ш

$$\rightarrow$$
 2CH₃ - C - CH₂ - CH₃ + 2CaCO₃

2-butanone

 $(c)(CH_3COO)_2Ca + (CH_3COO)_2Ca$ Calcium acetate calcium acetate

0 || \rightarrow 2CH₃ − C − CH₃ + 2CaCO₃ acetone

$$(d)(HCOO)_2Ca + (CH_3COO)_2Ca$$

Calcium formate calcium acetate

$$0 \\ || \\ \rightarrow 2CH_3 - C - H + 2CaCO_3$$

ethanal

850 (d)

Rest all show elimination of carbonylic oxygen.

851 (c)

$$CH_3CH(OH)COOH \xrightarrow{Fenton's \text{ reagent}} CH_3COCOOH;$$

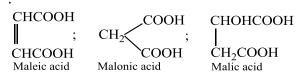
$$[O] \qquad Pyruvic acid$$

Fenton's reagent $FeSO_4 + H_2O_2$ as well as Tollen's reagent give pyruvic acid.

853 (c)

Urotropine is hexamethylene tetramine, *i.e.*, $(CH_2)_6N_4$, used as medicine for gout and urine infections.

854 **(b)**


$$\frac{\text{Wt. of B}_2\text{H}_2\text{PtCl}_6}{2 B + 410} = \frac{\text{Wt. of Pt}}{195}$$
∴
$$\frac{0.75}{2 B + 410} = \frac{0.245}{195}$$
∴
$$B = 93.5$$

Eq. wt. of base = 93; since it is monoacidic.

 \therefore Mol. wt. of base = 93.5 \times 1 = 93.5

855 (d)

Mandelic acid C₆H₅CHOHCOOH is aromatic hydrox

857 **(b)**

Halogen attacks α -carbon atom of acid in presence of I_2 or P (HVZ reaction).

859 (d)

$$CH_3COCH_3, CH_3CH_2CHO, CH_3 CHCH_2$$

$$CH_2 = CHCH_2OH, CH_2$$

$$= CHOCH_3$$

860 (a)

Percentage of N =
$$\frac{28 \times V \times 100}{22400 \times W}$$

862 (d)

Cannizaro reaction takes place as,

863 (a)

(CH₃)₂CHCHO shows both reactions, *i. e.*, aldol condensation and Cannizzaro's reaction.

864 (a)

Formaldehyde reacts with methyl magnesium bromide to give a addition product which ethanol on hydrolys

H C=O + CH₃MgBr
$$\longrightarrow$$
 H C O - Mg - Br formaldehyde

CH₃CH₂OH + Mg OH ethanol Br

865 **(b)**

Stronger acids possess low pK_a value.

866 **(b)**

Clemmensen's reduction.

867 (d)

$$CH_{3}COOH \xrightarrow{CaCo_{3}} (CH_{3}COO)_{2}Ca$$

$$\xrightarrow{'A'}$$

$$\xrightarrow{-CaCo_{3}} (CH_{3})_{2}CO \xrightarrow{NH_{2}OH} (CH_{3})_{2}C = NOH$$

acetoxime

CH₃

$$CH_3$$

$$CH_3CH = C - CH = CH_2 \xrightarrow{O_3}$$

$$CH_3CH = C - CH = CH_2 \xrightarrow{O_3}$$

$$CH_3 = C - CH = CH_2 \xrightarrow{O_3}$$

$$CH_2 = C - CH = CH_2 \xrightarrow{O_3}$$

$$CH_3 = C - CH = CH_2 \xrightarrow{O_3}$$

$$CH_2 = C - CH = CH_2 \xrightarrow{O_3}$$

$$CH_3 = C - CH = CH_3 \xrightarrow{O_3}$$

$$CH_3 = C - CH = C$$

869 (c)

This reaction is an example of Perkin's reaction because in it α , β -unsaturated acid is obtained with aromatic aldehydes.

Therefore, (X) is acetic anhydride i.e., (CH₃CO₂)0.

OMe
$$\longrightarrow$$
 CHO $\xrightarrow{\text{CH}_3\text{C}}$ $\xrightarrow{\text{CH}_3\text{COONa}}$ $\xrightarrow{\text{OCH}_3\text{C}}$ OMe \longrightarrow CH=CHCOOH + CH₃COOH

871 (d)

$$CH_4 \xrightarrow{[O]} H_2O + CO$$

872 **(b)**

Ethyl acetate is obtained when methyl magnesium bromide reacts with ethyl chloroformate.

CI + BrMgH₃C — C — O —
$$C_2H_5$$

$$CI - C - O - C_2H_5$$

$$CI - C - O - C_2H_5$$

$$CH_3$$

$$CH_4$$

$$CH_3$$

$$CH_4$$

$$CH_5$$

It is an example of crossed Cannizaro's reaction.

Reduction of ketone to corresponding alkane using Zn/HCl is called Clemmensen reduction.

876 **(c)**

$$3CH_3COOH + PCl_3 \rightarrow 3CH_3COCl + H_3PO_3$$

879 **(d)**

Acetamide reacts with HNO₂ to give acetic acid and nitrogen gas

 $CH_3CONH_2 + HNO_2 \rightarrow CH_3COOH + H_2O + N_2$ acetamide

881 **(b)**

The self condensation of acetaldehyde in presence of dilute alkalies is called aldol condensation and the product is known as aldol.

882 **(b)**

$$R$$
—C=0; 3σ -bonds on carbon of —CHO.

884 (c)

Amides are reduced by lithium aluminium hydride ($LiAlH_4$) or sodium and ethyl alcohol into primary amines.

$$H_2CH_3C$$
 C $NH_2 + 4[H]$ $LiAlH_4$ $Propagamide$

886 (a)

In presence of sodium hydroxide, benzaldehyde reacts with acetophenone, to give phenyl cinnamate.

$$\begin{array}{c} {\rm C_6H_5CHO+CH_3COC_6H_5} \xrightarrow{{\rm NaOH(aq)}} \\ {\rm O} \\ || \\ {\rm C_6H_5CH=CH-C-C_6H_5} \end{array}$$

888 (d)

Cannizaro reaction is given by only those aldehydes and ketones in which $\alpha\text{-H}$ atom is absent.

Formaldehyde (HCHO)and benzaldehyde (C_6H_5 CHO) both due to the absence of α -H atom

undergo Cannizaro reaction.

889 (a)

In this reaction α -H is replaced by chlorine.

$$CH_3COOH + Cl_2 \xrightarrow{p} CH_2COOH + HCl$$

$$|$$

$$Cl$$

This reaction is called the Hell-Volhard-Zelinsky reaction.

890 (d)

Presence of NO₂ gp. makes it best hydride donor.

891 **(c)**

Aldehydes form white crystalline solid with $NaHSO_3$.

893 **(b)**

$$CH_3CHO + HCH_2COCH_3 \xrightarrow{NaOH}$$
 $CH_3CH(OH)CH_2COCH_3 + CH_3CH(OH)CH_2CHO$
major

$$+(CH_3)_2C(OH)CH_2COCH_3 \\ +(CH_3)_2C(OH) - CH_2CHO$$

$$CH_3CH(OH)CH_2COCH_3 \xrightarrow{\Delta} CH_3CH = CHCOCH_3$$
 major product major product product(25%)

894 **(b)**

$$2CH_3COCl + (CH_3)_2Cd \rightarrow 2CH_3COCH_3 + CdCl_2$$

895 (c)

Picric acid doesn't contain –COOH group. It is 2, 4, 6 trinitrophenol.

$$O_2N$$
 O_2
 O_2
 O_2
 O_2

897 (c)

Organic compound + CaO +
$$Na_2CO_3$$
 Heat in a Pt crucible

Cool the solution and add dil. HNO_3 and then $AgNO_3$. A precipitate of AgX is dried and weighed and the % of halogen is obtained as usual. This is Schiffs and Piria method.

898 (a)

See the influence of -IE of Cl-atom. The negative charge on carboxy late ion is dispersed more in presence of two Cl-atoms.

The IE order F > Cl > Br > I.

Any electron withdrawing group increases the acidity due to -I effect. The -I effect of chlorine is greater than phenyl group. Hence, ClCH₂COOH is the most acidic compound among these.

900 (c)

Molecular formula = integer \times empirical formula.

901 (d)

Carboxylic acids when treated with either diborane or LAH, get reduced to primary alcohols. Diborane is a better reagent than LAH for such conversion, as it does not affect other functional groups such as ester, intro, holo etc.

$$R - COOH + B_2H_6 \xrightarrow{H_3O^+} R - CH_2OH$$

902 **(b)**

CH₃CH₂-CCl₂-CH₃
$$\xrightarrow{\text{Hydrolysis}}$$
 CH₃-CH₂-C $\xrightarrow{\text{CH}_3}$ OH CH₃

-H₂O CH₃-CH₂-C -CH₃
 $\xrightarrow{\text{OH}_3}$ CH₃
 $\xrightarrow{\text{Vellow precipitat}}$ yellow precipitat indeform

(Remember! Only methyl ketones give iodoform test.)

903 (d)

Iodine in presence of base is used to detect presence of CH₃CO group in compound.

 $H - C - H + I_2 + NaOH \rightarrow No reaction$ formaldehyde

0

П

 $\mathrm{CH_3} - \mathrm{C} - \mathrm{H} + \mathrm{I_2} + \mathrm{NaOH} \rightarrow \mathrm{CHI_3}$ acetaldehyde yellow ppt.

:Formaldehyde and acetaldehyde are distinguished by using I2 and base.

906 (d)

Acetaldehyde reduces Tollen's reagent and itself is oxidised to acetic acid.

 $CH_3CHO + Ag_2O \rightarrow CH_3COOH + 2Ag \downarrow$

909 (a)

Ascorbic acid $(C_6H_8O_6)$ is called vitamin C, found 923 (c) in citrus fruits.

910 (c)

 $C_6H_5COCH_3 \xrightarrow{Cl_2} C_6H_5COCH_2Cl_{Tear\ gas}$

911 **(c)**

 $CH_3CONH_2 \xrightarrow{HOH} CH_3COOH + NH_3$

 $\xrightarrow{\text{Nessler's reagent}} \text{ a test for NH}_3.$

912 **(b)**

$$CH_3COOH + PCl_5 \rightarrow CH_3COCI$$
(A)

$$\begin{array}{c|c} COCH_3 \\ \hline C_6H_6 \\ \hline \hline Anhy.AlCl_3 \\ \hline \end{array} \\ \begin{array}{c|c} (i) C_2H_5MgBr \\ \hline \hline \\ (ii) Ether hydrolysis \\ \hline \\ H_3C \\ \hline \\ (C) \\ OH \\ \end{array}$$

915 (a)

Notice + IE of alkyl group which intensifies the ve charge on carboxylate ion and thus, makes it more reactive. The acid therefore becomes more stable.

916 (d)

Baeyer-Villiger oxidation involves transformation of a ketone into ester by reaction with a peracid. The net change is the insertion of an oxygen atom between the carbonyl carbon and an adjacent carbon of the ketone. So, it is an example of Baeyer-Villiger oxidation, the most suitable reagent is m-chloroperbenzoic acid

917 (c)

Aldol condensation, haloform reaction and knovengel reaction involve the formation of a resonance stabilised anion, while the Wittig reaction involves the addition of a nucleophile on the carbonyl carbon. The driving force for the Wittig reaction is the formation of a very strong P - O bond

918 (d)

Better is leaving gp, higher will be reactivity of acyl compound towards nucleophile acyl substitution. Weaker is the base, better is leaving gp. Stronger is base, weaker is its acid and viceversa.

922 (c)

Presence of electron withdrawing atom (-X)increases the acidic nature. Presence of electron repelling gp. $(-CH_3)$ decreases the acidic nature.

$$CH_3CH_2CHO \xrightarrow{[0]} CH_3CH_2COOH$$

924 (d)

All aldehydes give silver mirror with Tollen's reagent.

925 (c)

Organic compound + CuO → CO₂ will come out

if carbon is present.

926 **(b)**

As compared to alcohol, the 0-H bond in carboxylic acids is more strongly polarised due to the adjacent electron withdrawing carbonyl group. Therefore carboxylic acid from stronger intermolecular H-bonds than alcohols, and the boiling points of carboxylic acids are much higher than those of alcohol of comparable molecular masses

927 (c)

Addition of HCN is nucleophilic addition. Greater the electron deficiency of carbonyl group higher the rate of reaction.

Hence,

928 (d)

Benzaldehyde when heated with ethanolic KCN, it gives α —hydroxy ketone, benzoin.

$$\begin{array}{c} \text{O} \\ \text{||} \\ \text{C}_6\text{H}_5\text{CHO} + \text{H} - \text{C} - \text{C}_6\text{H}_5 \xrightarrow{\text{Alc.KCN}} \end{array}$$

Benzaldehyde (2 mol)

0

 $C_6H_5CH(OH)C - C_6H_5$

benzoin

929 (c)

Gastric juice has pH \approx 2.5; lemon juice and pepsi cola have pH \approx 7. Human blood has pH 7.2.

931 **(b)**

The reagent Ni/H₂ reduces double bond and

932 (a)

In Meerwein-Ponndorff-Verley reduction, the carbonyl compound is heated with aluminium *iso*-propoxide in *iso*-propanol solution, it gets reduced to alcohol. The *iso*-propoxide is oxidized to acetone, which is removed from the

equilibrium mixture by slow distillation

934 **(d)**

$$C = O \xrightarrow{Zn - Hg/HCl} CH_2 + H_2CO$$
carbonyl hydrocarbon compound

Carbonyl compounds can be converted into hydrocarbons by treating with zinc-amalgam/HCl (Clemmensen's reduction).

935 **(b)**

Cannizzaro's reaction is shown by aldehydes lacking with α -H-atom.

936 (c)

In the presence of base, cyclohexanone show aldol condensation

937 (a)

Magenta is rosaniline hydrochloride which is decolourised by H₂SO₃ to give Schiff's reagent.

938 **(b)**

Propanal is not formed during the dry distillation of a mixture of calcium formate and calcium acetate.

$$\begin{split} (\text{HCOO})_2\text{Ca} & \xrightarrow{\text{Dry distilllation}} \text{HCHO} + \text{CaCO}_3 \\ (\text{CH}_3\text{COO})_2\text{Ca} & \xrightarrow{\Delta} \text{CH}_3\text{COCH}_3 + \text{CaCO}_3 \\ (\text{HCOO})_2\text{Ca} + (\text{CH}_3\text{COO})_2\text{Ca} & \xrightarrow{\Delta} 2\text{CH}_3\text{CHO} \\ & + 2\text{CaCO}_3 \end{split}$$

939 **(b)**

 $RCOOH + N_3H \xrightarrow{Conc H_2SO_4} RNH_2 + CO_2N_2$ hydrazoic acid primary amine It is Schmidt reaction.

941 **(b)**

Ketones on reduction with LiAIH₄ gives

secondary alcohol.

$$\begin{array}{c|c}
 & OH \\
 & C-CH_3 \\
 & +2[H] \\
\hline
\end{array}$$

$$\begin{array}{c}
 & OH \\
 & CH-CH_3 \\
\end{array}$$

942 (a)

Petrol, kerosene, diesel, etc., have difference in their b. p. of more than 50°C.

943 (c)

Halogen attacks α -carbon of carboxylic acid. This is HVZ reaction.

944 **(b)**

Aldol condensation is shown by the molecules having α -carbon atom

$$\begin{array}{c} \text{CH}_3-\text{CH}+\text{CH}_3\text{CHO} \xrightarrow{\text{NaOH}} \text{CH}_3-\text{CH}-\text{CH}_2\text{CHO} \\ \parallel & \parallel & \parallel \\ \text{OH} \end{array}$$

945 (d)

CH₃CONH₂ on treatment with metallic sodium produce hydrogen.

$$CH_3CONH_2 + Na \rightarrow CH_3CONH^-Na^+ + \frac{1}{2}H_2 \uparrow$$

946 **(b)**

More is the tendency for H-bonding, more will be boiling point. In carboxylic acid H-bonding is more than alcohols.

948 (d)

$$CH_3CONH_2 \xrightarrow{P_2O_5,\Delta} CH_3CN$$
Acetamide ethane mitrile

949 (a)

This is Hofmann's bromamide reaction.

950 **(b)**

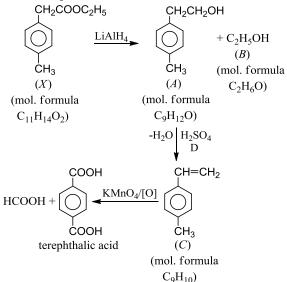
An aqueous solution of sodium periodate and a trace of potassium permanganate is known as **Lemieux reagent.** The alkene is oxidized to *cis*-diol, which is cleaved by periodate to aldehydes and/or ketones. Aldehydes are further oxidized by KMnO₄to acids

$$CH_{3}$$

$$C$$

This is better for both determining the position of double bond and for preparing carbonyl compounds, because in this method, formaldehyde is usually obtained from terminal alkene, instead of producing CO_2 and water

Alkali used is $Ba(OH)_2$.


954 **(c)**

Among the carbonyl compounds, the reactivity decreases with increase in number of alkyl group and size of alkyl group because the positive charge on the carbon atom decreases due to +I effect of alkyl groups.

Thus, the correct order reactivity is $HCHO > CH_3CHO > C_6H_5CHO$

955 **(b)**

Reaction proceeds as

957 (c)

Waxes are esters of higher fatty acids RCOOR'.

958 **(b)**

O is more electronegative than C.

961 (d)

The formation of canary yellow precipitate with am. molybdate confirms the presence of P of As or both due to the formation of $(NH_4)_3 PO_4 \cdot 12MoO_3$ or $(NH_4)_3 As O_4 \cdot 12MoO_3$.

964 (c)

 $NH_2CH_2COOH \rightleftharpoons NH_3^+CH_2COO^-$

965 **(a)**

 ${\rm CH_3CHO}$ and ${\rm CH_3COCH_3}$ forms condensation product with ${\rm NH_3}$.

968 (a)

Toluene can be oxidized to benzaldehyde with a solution of chromyl chloride (CrO_2Cl_2) in CS_2 or CCl_4 . This is known as Etard reaction

Further oxidation of benzaldehyde to benzoic acid is avoided by protection of carbonyl group

969 (c)

The Hell-Volhard-Zelinsky reaction is used for preparing α -halo acid.

$$\label{eq:ch3-ch2-cooh} \begin{split} \operatorname{CH_3-CH_2-COOH} \xrightarrow{\operatorname{Cl_2/P}} \operatorname{CH_3-CH-COOH} \\ & \qquad \qquad | \\$$

∝-chloropropanoic acid

970 (a)

This is Rosenmund's reaction.

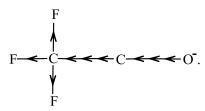
971 (d)

 $CH_3OH \xrightarrow{Cu} HCHO \xrightarrow{NaOH} HCOONa + HCH_2OH;$ Cannizzaro's reaction.

972 (a)

$$CH_3CHO + H_2NOH \rightarrow CH_3CH = NOH + H_2O$$

973 **(b)**


The addition of α , β -unsaturated carbonyl compound, with conjugated diene is called Diel's-Alder reaction.

974 **(d)**

The given statement is of Cannizzaro's reaction.

976 (c)

Follow applications of inductive effect. The negative charge on carboxylate ion is dispersed more due to -IE of F-atom.

The carboxylate ion thus becomes more stable and acid more active.

980 (d)

Cannizaro reaction aldehydes which does not have α —hydrogen atom undergo disproporation reaction (half of the molecule are oxidised and half are reduced).

∴Benzaldehyde is converted into benzyl alcohol by Cannizaro reaction.

981 **(c)**

Thus, oxidation number of carbonyl carbon in acetophenone is +2.

982 **(a)**

$$\begin{aligned} \mathsf{CH_3COOH} + \mathsf{NH_2CONH_2} \\ &\longrightarrow \mathsf{CH_3CONH_2} + \mathsf{CO_2} + \mathsf{NH_3} \end{aligned}$$

983 **(d)**

$$C_6H_5CHO \xrightarrow{Cl_2} C_6H_5COCl$$

984 **(b)**

$$Na + C + N \xrightarrow{Fusion} NaCN$$
.

986 **(d)**

It attacks acidic H (H attached on N, O, F) to show acylating nature.

987 **(b)**

Stinges of bees and wasps contain formic acid.

988 (c)

$$\begin{aligned} \text{NaNO}_2 + \text{HCl} &\rightarrow \text{HNO}_2 + \text{NaCL} \\ \text{H}_2 \text{NCONH}_2 + \text{HNO}_2 &\rightarrow \text{CO}_2 + \text{NH}_3 + \text{H}_2 \text{O} + \text{N}_2 \\ \text{urea} \end{aligned}$$

CO₂ gas evolves with brisk effervescence

989 **(a)**

$$C_2H_5OH \xrightarrow{[0]} CH_3CHO \xrightarrow{[0]} CH_3COOH$$

991 (a)

Benzaldehyde reacts with ammonia to form hydrobenzamide.

HCC₆H₅=
$$O$$
 H₂ N H + O = CH-C₆H₅ \rightarrow HCC₆H₅= N CH.C₆H₅+3H₂O hydrobenzamide

992 (d)

RCHO or RCOR can be reduced t RCH $_2$ OH or RCHOHR respectively by H $_2$ + catalyst, LiAlH $_4$, NaBH $_4$,etc.

993 **(d)**

$$RCOOR' \xrightarrow{NaOH} RCOONa_{Soap} + R'OH$$

The Gattermann-Koch aldehyde synthesis is as follows.

995 (c)

Carboxylic acids are weak acids.

997 (a)

PCl₅, PCl₃, SOCl₂ are used in organic reactions to replace —OH group or to replace carbonylic oxygen.

998 **(b)**

$$C = O + H_2 NNHC_6 H_5 \rightarrow C = N \cdot NHC_6 H_5$$

999 (c)

$$\begin{array}{ccc} \text{CH}_2\text{OH} & \text{CH}_2\text{OH} \\ | & | \\ \text{CHOH} + \text{H}_2\text{C}_2\text{O}_4 & \longrightarrow \text{CHOH} + \text{HCOOH} + \text{CO}_2 \\ | & | \\ \text{CH}_2\text{OH} & \text{CH}_2\text{OH} \end{array}$$

The intermediate formed decomposes to give glycerol back and formic acid.

100 (d)

Benedict solution is readily reduced by aldehyde.It doesn't oxidise anhydrides.

100 (d)

1 7-9% dilute solution of acetic acid is known as vinegar.

Vinegar can be obtained by the fermentation of ethyl alcohol in the presence of enzyme acetobactor.

100 (a)

2 $CH_3COOH + NH_3 \rightarrow CH_3COONH_4$

100 **(b**)

3 Unlike KMnO₄ acid Jone's reagent ($K_2Cr_2O_7 + H_2SO_4$) does not attack C=C.

100 (c)

 4 $CH_{3}CHO \xrightarrow{PCl_{5}} CH_{3}CHCl_{2}$

100 (c)

5 Transesterification is the process of conversion of one ester to another ester.

$$R \xrightarrow{C} C \longrightarrow OR' + R'' \longrightarrow OH \xrightarrow{H^+, R'ONa} Reflux$$

$$R \xrightarrow{C} C \longrightarrow OR'' + R' OH$$

$$R \xrightarrow{C} C \longrightarrow OR'' + R' OH$$

$$R \xrightarrow{C} C \longrightarrow OR'' + R' OH$$

$$R \xrightarrow{H^+, C_2H_5ONa} Reflux$$

$$R \xrightarrow{R} C \longrightarrow OR'' + R' OH$$

$$R \xrightarrow{H^+, C_2H_5ONa} Reflux$$

$$R \xrightarrow{R} C \longrightarrow OR'' + R' OH$$

$$R \xrightarrow{H^+, C_2H_5ONa} Reflux$$

$$R \xrightarrow{R} C \longrightarrow OR'' + R' OH$$

$$R \xrightarrow{H^+, C_2H_5ONa} Reflux$$

$$R \xrightarrow{R} C \longrightarrow OR'' + R' OH$$

$$R \xrightarrow{H^+, C_2H_5ONa} Reflux$$

$$R \xrightarrow{R} C \longrightarrow OR'' + R' OH$$

$$R \xrightarrow{H^+, C_2H_5ONa} Reflux$$

$$R \xrightarrow{R} C \longrightarrow OR'' + R' OH$$

$$R \xrightarrow{R} C \longrightarrow OR' + R' OH$$

$$R$$

100 (a)

The formation of aldehyde from alkyl cyanide takes place by Stephen's reaction

$$R-C \equiv N + 2H$$
 alkyl cyanide $\xrightarrow{SnCl_2}$ $RCH = NH$. HCl aldimine hydrochloride H_2O

aldehyde

100 (d)

PCl₅ usually used to replace — OH gp. or oxygen of

100 **(c)**

9 Fehling's solution is produced by mixing two solutions. Fehling (*A*) containing alkaline CuSO₄ and Fehling (*B*) NaKC₄H₆O₈ or sod. pot. tartrate.

101 (c)

The compound which contains – COCH₃ group in its structure, give positive iodoform test and the compound which contains – CHO group give positive Fehling test.

In ethanal, CH₃CHO both the groups are present, hence it responds to both iodoform test and Fehling's test.

$$\begin{aligned} \text{CH}_3\text{CHO} + \text{I}_2 + \text{NaOH} &\rightarrow \text{CHI}_3 + \text{NaI} + \text{H}_2\text{O} \\ &\quad \text{iodoform} \\ \text{CH}_3\text{CHO} + \text{Cu(OH)}_2 &\rightarrow \text{CH}_3\text{COOH} + \text{Cu}_2\text{O} \\ &\quad \downarrow + 2\text{H}_2\text{O} \\ \text{Fehling's} &\quad \text{red ppt.} \\ \text{Solution} \end{aligned}$$

101 **(b)**

2
$$P_{\text{mixture}} = P_{\text{compound}} + P_{\text{steam}} = 1 \text{ atm (at b. p.)}$$

101 (a)

Two —COOH gp. on one carbon atom gives CO_2 on heating . Two —COOH gp. on adjacent carbon atoms lose H_2O to give anhydride on heating

$$\begin{picture}(2000) \put(0,0){\line(1,0){100}} \put(0,0){\line(1,0){100$$

$$\stackrel{\triangle}{\longrightarrow}$$
 CH₃COOH; $\stackrel{CH_2COOH}{\mid}$ $\stackrel{CH_2CO}{\mid}$ CH₂COOH CH₂CO

101 **(b)**

7 The nitrogen of an organic compound is quantitatively converted to $(NH_4)_2SO_4$ on heating with H_2SO_4 .

101 (a)

8 Propionic acid and KOH reacts to produce potassium propionate.

$$CH_3CH_2COOH \xrightarrow{KOH} CH_3CH_2COOK + H_2O$$
Propionic acid pot. propionate

102 **(b)**

Benzamide on treatment with POCl₃ gives benzonitrile (phenyl cyanide) because in this reaction POCl₃ acts as dehydrating agent and on dehydration of benzamide, benzonitrile is obtained.

$$C_6H_5$$
 C N C_6H_5 $C_$

102 (c)

Both have nearly same boiling point $(HCOOH=100.5^{\circ}C; H_2O=100^{\circ}C)$.

102 **(b)**

2
$$3$$
NaCNS + FeCl₃ \rightarrow Fe(CNS)_{3(Red)} + 3NaCl

102 **(c)**

4 The compound is pentanone-3

$$CH_3-CH_2-CH_2-CH_3 \xrightarrow{H_2NNHC_6H_5}$$

$$\begin{array}{c} \operatorname{CH_3-CH_2-C} = \operatorname{NNHC_6H_5} \\ \operatorname{CH_2} \\ \operatorname{CH_3} \end{array}$$

$$CH_3-CH_2-CH_2-CH_3 \longrightarrow$$
 no iodoform test

$$CH_3-CH_2-C-CH_2-CH_3 \xrightarrow{Tollen's reagent}$$
 no reaction

102 (d)

5 An exceptional aldehyde which does not reduce Fehling's solution.

102 **(c)**

Oxidation of 2-butanol to ethyl methyl ketone can be made effective by using oxidizing agent PCC/DCM (pyridinium chlorochromate in dichloro methane)

$$CH_3-CH_2-CH-OH \xrightarrow{PCC} CH_3-CH_2-C-CH_3$$

$$CH_3$$

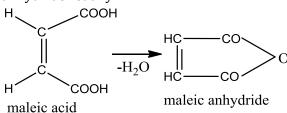
102 (a)

7 The reaction occurs as follows

$$C_6H_5COOC_2H_5 + KOH \xrightarrow{\Delta} C_6H_5COOK + C_2H_5OH$$

ethyl benzoate
 $C_6H_5COOK + HCl \rightarrow C_6H_5COOH + KCl$
white solid

102 **(c)**


8 Al₂O₃ is used as absorbent, the other absorbents an powder, animal charcoal, etc.

102 (d)

The monocarboxylic acids are called fatty acids, because some of the higher members were obtained from fats. The general formula is $C_nH_{2n+1}COOH$ or RCOOH or $C_nH_{2n}O_2$.

103 **(b)**

1 *Cis*-dioic acid readily gives anhydride on heating. Since maleic acid is a dioic acid gives maleic anhydride readily.

103 (c)

3 $Na_2S + Na_2[Fe(CN)_5NO]_{Sod.nitroprusside} \rightarrow Na_4[Fe(CN)_5NOS]_{Sod.thio nitroprusside}$

103 (c)

4 BrCH₂CH₂COOH is the weakest acid and have lowest dissociation constant – *IE* of Br is lesser than F and is far away from —COOH group.

103 (c)

Acid amides are least reactive towards nucleophile amongst the all acid derivatives because of electron deficiency of the acyl carbon due to – *I* effect of the – NH₂ group. In other way, lone pair of electrons undergoes resonance with

It is because of this alkanamides are amphoteric in nature

103 (c)

8 Maleic and fumaric acid are geometrical isomers (*cis*- and *trans*-respectively) having different physical properties but almost same chemical nature.

103 **(c)**

9
$$3$$
NaCNS + FeCl₃ \rightarrow Fe(CNS)_{3 Red colour} + NaCl

104 (d)

1 HCHO and CH₃CHO give different reaction with NH₃

$$6HCHO + 4NH_3 \longrightarrow (CH_2)_6N_4 + 6H_2O$$

urotropine

$$CH_3CHO + NH_3 \longrightarrow CH_3 OH$$
 NH_2

acetaldehyde ammonia

$$2 \qquad R - X \xrightarrow{\text{Alcoholic}} R - \text{CN} \xrightarrow{\text{Dil HCl}} R - \text{COOH}$$

alkyl cyanide carboxylic acid

104 **(d)**

Formic acid HCOOH also contain a – CHO group, so gives some reducing properties of aldehydes HC = O 3 aldehyde group

| 0H

Formic acid is a very strong reducing agent. It reduces Tollen's reagent, Fehling's solution and mercruric chloride.

Acetic acid does not give these reaction.
Formic acid distinguishes from acetic acid by
Fehling's solution. Formic acid gives red ppt of
cuprous oxide with Fehling's solution while acetic
acid does not.

104 (c)

5 Oxalic acid is prepared by the acidic hydrolysis of cyanogen.

$$\begin{array}{c|c}
C & N \\
 & H_2O/H^+ \\
C & N
\end{array}$$
COOH
oxalic acid

104 **(b)**

6 Urea on show heating gives biuret.

$$H_2N.CONH.H + H_2N CONH_2 \longrightarrow$$

104 (a)

Beckmann rearrangement oximes on treatment with catalysts such as conc.H₂SO₄ undergo rearrangement to form substituted amide.

$$\begin{array}{c|c} C_{6}H_{5} & C \\ & &$$

anti-phenyl acetophenone oxime

104 (c)

8 Ethylene glycol is used to protect the carbonyl group of cyclopentanone

$$\begin{array}{c|c}
O & & & & \\
& & CH_2OH \\
& & CH_2OH
\end{array}$$

104 (c)

9 These are characteristics of C₆H₅CHO.

105 (a)

- 2 1. *X* forms 2, 4-DNP derivatives, it shows that it is a carbonyl compound (>C=0).
 - 2. It reduces Tollen's reagent, it shows that it has an aldehyde group.
 - 3. It undergoes Cannizaro reaction, that also shows the presence of an aldehyde having no α -hydrogen.
 - 4. On vigorous oxidation, it produces 1, 2-benzenedicarboxylic acid. It shows that groups are present at 1,2-position on benzene ring.

Thus, the correct structure of the compound *X* is

105 **(a**)

4 Two H-atoms of alkane are replaced by 0.

105 (d)

$$\begin{array}{ccc} 5 & & \text{CH}_3\text{CN} \stackrel{\text{H}_2\text{O}}{\longrightarrow} & \text{CH}_3\text{COOH} \stackrel{\text{NH}_3}{\longrightarrow} & \text{CH}_3\text{COONH}_4 \\ & \stackrel{\Delta}{\rightarrow} & \text{CH}_3\text{CONH}_2 + \text{H}_2\text{O} \end{array}$$

6

Formic acid has —C—H (aldehyde) group. It reduces Tollens reagent to silver mirror like other aldehydes

105 **(d)**

8 By $NH_2 - NH_2/C_2H_5ONa$

Aldehyde and ketones are reduced with hydrazine $NH_2 - NH_2$ and C_2H_5ONa to give hydrocarbon (paraffins). This reaction is called Wolff-Kishner reaction

$$-\text{CHO} \xrightarrow[\text{C_2H}_5$\text{ONa}]{\text{NH}}_2-\text{NH}_3 - \text{CO} \xrightarrow[\text{C_2H}_5$\text{ONa}]{\text{NH}}_2-\text{NH}_2 - \text{CH}_3 - \text{CO} \xrightarrow[\text{C_2H}_5$\text{ONa}]{\text{NH}}_2-\text{NH}_2$$

105 (a)

9
$$CO + NaOH \xrightarrow{High P,T} HCOONa \xrightarrow{NaHSO_4} HCOOH + Na_2SO_4$$

106 **(c)**

$$0 \quad CH_3CHOHCH_3 \xrightarrow{[0]} CH_3COCH_3$$

106 (c)

2 6-8 % solution of acetic acid is called vinegar.

106 (d)

3 See the influence of -IE of Cl-atom. The negative charge on carboxylate ion is dispersed more in presence of two Cl-atoms.

$$Cl \xrightarrow{CH} COO$$

106 **(b)**

5 C₆H₅COOH sublimes on heating.

106 (a)

107 **(b)**

$$0 \xrightarrow{CH_3} C = O \xrightarrow{CH_3} C \xrightarrow{CH_3CHO} CH_3 \xrightarrow{CH_3CHO} CH_3 \xrightarrow{CH_3CHO} CH_2CHO$$

C⁺ is more reactive than O⁻.

107 (a)

$$\begin{array}{ccc} 1 & (\text{CH}_3\text{CO})_2\text{O} \stackrel{\text{NH}_3}{\longrightarrow} 2\text{CH}_3\text{CONH}_2 + \text{H}_2\text{O} \end{array}$$

107 (c)

6 CH_3CHO , CH_3CH_2CHO and CD_3CHO each possess α -H/D atom and will show aldol condensation.

107 (c)

7 13.5 g = 9 g C = 1 g H = 3.5 g N

$$\therefore 100 g = \frac{9 \times 100}{13.5} g \quad C = \frac{1 \times 100}{13.5} g \quad H = \frac{3.5 \times 100}{13.5} g N$$

$$= \frac{9 \times 100}{13.5 \times 12} \text{ mole } C = \frac{1 \times 100}{13.5 \times 1} \text{ mole } H$$

$$= \frac{3.5 \times 100}{13.5 \times 14} \text{ mole } N$$

 \therefore Mol. formula = $C_6H_8N_2$

107 **(c)**

8

6 Tollen's reagent is [Ag(NH₃)₂]NO₃.

106 (a)

 $8 \quad NH_2^-$ withdraws acidic H from active methylene group of $ClCH_2COOC_2H_5$ and it combines with $C_6H_5COCH_3$ to form intermediate that undergoes intramolecular cyclisation

$$\begin{array}{c} \text{NaNH}_2 + \text{H} - \text{CHCOOCH}_2\text{CH}_3 \longrightarrow \text{NH}_3 \\ \stackrel{\vdash}{\text{CI}} \\ & + \stackrel{\vdash}{\text{CHCOOC}}_2\text{H}_5 + \text{Na}^+ \\ \stackrel{\vdash}{\text{CI}} \end{array}$$

$$\begin{array}{c|c}
CH_3 & CH_3 \\
CI & CI
\end{array}$$

$$\begin{array}{c} CH_3 \\ C-CH-COOC_2H_5 \end{array} \begin{array}{c} CH_3 \\ C-CHCOOC_2H_5 \end{array}$$

106 (a)

$$CH \equiv CH \xrightarrow{HgSO_4} CH_3CHO$$

$$acetaldehyde$$

$$[A]$$

$$\xrightarrow{NaOH} CH_3 - CH - CH_2 - CHO$$
[aldel condensation]

OH aldol

This reaction is followed by acidic oxidation and aldol condensation respectively.

It gives acid; R— $CN \xrightarrow{HOH} RCOOH$.

107 **(b)**

9 The slowest step is the transfer of hydride ion to the carbonyl group as shown in mechanism.

0 This is the required order based on *ortho*-effect and electron withdrawing nature of — NO₂ group.

108 **(b)**

1 PCl₃, PCl₅ and SOCl₂ are used to replace –OH group of an alcohol or an acid by –Cl group

When acid reacts with Cl_2 in presence of red phosphorus, \propto -chloro acid is obtained. (Hell-Vohlard-Zelinsky reaction).

$$CH_{3}CH_{2}COOH + Cl_{2} \xrightarrow{\text{Red P}} CH_{3}CHCOOH + HCl}$$

$$\alpha\text{-chloropropionic}$$

acid

108 **(d)**

2 Fractional distillation of petroleum produces a large number of compounds.

108 **(b)**

Aldol condensation aldehydes containing α —hydrogen undergo self addition in presence of a base to form products called 'aldols'. The reaction is called 'aldol condensation'.

Example Two molecules of acetaldehyde combine with each other in presence of dil. NaOH to form 3-hydroxybutanal.

$$\begin{array}{c} \text{OH} \\ | \\ \text{CH}_3\text{CHO} + \text{HCH}_2\text{CHO} \xrightarrow{\text{OH}^-} \text{CH}_3 - \text{CH} - \text{CH}_2 \\ - \text{CHO} \\ \\ \text{3-} \\ \text{hydroxybutanal} \end{array}$$

108 (c)

4 Aldehydes are reduced by LiAIH₄ to alcohols and alcohols are oxidised by copper to give aldehydes.

$$\begin{array}{ccc} \operatorname{CH_3CHO} \xrightarrow{\operatorname{LiAIH_4}} \operatorname{CH_3CH_2OH} \xrightarrow{\quad \operatorname{Cu} \quad} \operatorname{CH_3CHO} \\ (X) & (Y) & (X) \end{array}$$

108 (c)

5 This is Cannizzaro's reaction.

108 **(b)**

6 Methyl ketones (acetone) and acetaldehyde both give indoform test.

0

$$| | |$$

 $CH_3CH/R + 3I_2 + 4NaOH$
0
 $| | |$
 $\rightarrow CHI_3 + H/R - C - ONa + 3NaI + 3H_2O$

108 **(b)**

7 When acetaldehyde is treated with aqueous sodium hydroxide solution, it sundergoes aldol condensation (because of the presence of α –H atom) as.

$$\begin{array}{c} \text{CH}_3\text{CHO} + \text{HCH}_2\text{CHO} \xrightarrow{\text{Dil.aqueous}} \text{CH}_3\text{CH} \\ * \\ = \text{CHCHO} \xleftarrow{\Delta} \text{CH}_3\text{CH(OH)CH}_2\text{CHO} \\ \text{(shows geometrical isomerism)} \\ \text{aldol} \\ \text{(shows optical isomerism)} \\ \end{array}$$

108 **(d)**

 $-{
m NO_2}$ group at any position shows electron withdrawing effect. Thus, acid strength is increased. But o-nitro benzoate ion is stabilised by intramolecular H-bonding like forces. Hence its acid strength is maximum.

Thus, the order of acid strength is (II) > (III) > (IV) > (I).

108 (d)

9 Cyclohexylamines are more basic than aniline; the later shows resonance.

109 (a)

1 Rosenmund reaction,

$$\begin{array}{c|c}
O & O \\
C - CI & C - H \\
\hline
(A) & + [H] \underline{Pd/BaSO_4}
\end{array}$$

So, compound (*A*) is benzoyl chloride.

109 **(b)**

2 Grignard reagent produce carboxylic acid on reaction with CO_2

$$CH_3MgBr + CO_2$$

 $\rightarrow CH_3COOMgBr \xrightarrow{H_2O} CH_3COOH$
 $+ Mg(OH)Br$

109 (c)

4 It is the reason why organic compounds studied as separate branch.

109 **(d)**

A liquid +
$$C_2H_5OH$$
 Conc. H_2SO_4 Compound (fruity smell)

Fruity smell is the characteristic property of ester, thus reaction can be considered as follows

$$CH_{3}COOH + C_{2}H_{5}OH \xrightarrow{Conc.H_{2}SO_{4}} CH_{3} \xrightarrow{C} C \xrightarrow{OC_{2}H_{5} + H_{2}O}$$
ethyl acetate
(fruit smell)

109 **(a)**

7
$$CH_3CH_2OH \xrightarrow{[0]} CH_3CHO$$

